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Abstract

Mimicking natural evolution to solve hard optimization problems has played an im-

portant role in the artificial intelligence arena. Such techniques are broadly classified

as Evolutionary Algorithms (EAs) and have been investigated for around four decades

during which important contributions and advances have been made.

One main evolutionary technique which has been widely investigated is the Ge-

netic Algorithm (GA). GAs are stochastic search techniques that follow the Darwinian

principle of evolution. Their application in the solution of hard optimization problems

has been very successful. Indeed multi-dimensional problems presenting difficult search

spaces with characteristics such as multi-modality, epistasis, non regularity, deceptive-

ness, etc., have all been effectively tackled by GAs.

In this research, a competitive form of GAs known as fine or cellular GAs (cGAs)

are investigated, because of their suitability for System on Chip (SoC) implementa-

tion when tackling real-time problems. Cellular GAs have also attracted the atten-

tion of researchers due to their high performance, ease of implementation and massive

parallelism. In addition, cGAs inherently possess a number of structural configura-

tion parameters which make them capable of sustaining diversity during evolution and

therefore of promoting an adequate balance between exploitative and explorative stages

of the search.

The fast technological development of Integrated Circuits (ICs) has allowed a con-

siderable increase in compactness and therefore in density. As a result, it is nowadays

possible to have millions of gates and transistor based circuits in very small silicon

areas. Operational complexity has also significantly increased and consequently other

setbacks have emerged, such as the presence of faults that commonly appear in the

form of single or multiple bit flips. Tough environmental or time dependent operating

conditions can trigger faults in registers and memory allocations due to induced radia-
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tion, electron migration and dielectric breakdown. These kinds of faults are known as

Single Event Effects (SEEs).

Research has shown that an effective way of dealing with SEEs consists of a com-

bination of hardware and software mitigation techniques to overcome faulty scenarios.

Permanent faults known as Single Hard Errors (SHEs) and temporary faults known

as Single Event Upsets (SEUs) are common SEEs. This thesis aims to investigate the

inherent abilities of cellular GAs to deal with SHEs and SEUs at algorithmic level. A

hard real-time application is targeted: calculating the attitude parameters for navi-

gation in vehicles using Global Positioning System (GPS) technology. Faulty critical

data, which can cause a system’s functionality to fail, are evaluated. The proposed

mitigation techniques show cGAs ability to deal with up to 40% stuck at zero and 30%

stuck at one faults in chromosomes bits and fitness score cells.

Due to the non-deterministic nature of GAs, dynamic on-the-fly algorithmic and

parametric configuration has also attracted the attention of researchers. In this respect,

the structural properties of cellular GAs provide a valuable attribute to influence their

selection pressure. This helps to maintain an adequate exploitation-exploration trade-

off, either from a pure topological perspective or through genetic operations that also

make use of structural characteristics in cGAs. These properties, unique to cGAs, are

further investigated in this thesis through a set of middle to high difficulty benchmark

problems. Experimental results show that the proposed dynamic techniques enhance

the overall performance of cGAs in most benchmark problems.

Finally, being structurally attached, the dimensionality of cellular GAs is another

line of investigation. 1D and 2D structures have normally been used to test cGAs at

algorithm and implementation levels. Although 3D-cGAs are an immediate extension,

not enough attention has been paid to them, and so a comparative study on the di-

mensionality of cGAs is carried out. Having shorter radii, 3D-cGAs present a faster

dissemination of solutions and have denser neighbourhoods. Empirical results reported

in this thesis show that 3D-cGAs achieve better efficiency when solving multi-modal

and epistatic problems. In future, the performance improvements of 3D-cGAs will

merge with the latest benefits that 3D integration technology has demonstrated, such

as reductions in routing length, in interconnection delays and in power consumption.
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Chapter 1

Introduction

1.1 Motivation

Optimization has been an essential part of systems design and implementation. Among

classical optimization techniques are the theory of minima and maxima and the cal-

culus of variations. At the time when the field of optimization reached a certain level

of maturity (in the 1960’s) and researchers were very much attracted to the area, bi-

ologically inspired techniques started to appear [1]. Thus, Evolutionary Algorithms

(EAs) are computational techniques of the artificial intelligence arena that follow the

Darwinian principle of evolution. Among those, Genetic Algorithms (GAs) stand out

as a powerful tool with which to solve difficult optimization problems in a wide variety

of application scopes. GAs were introduced in 1975 by John Holland and since then

researchers have dedicated extensive investigations to their improvement and to making

them available to tackle real world problems.

GAs possess a simple processing structure that works on an initial randomly gener-

ated population. Individuals (chromosomes) are strings normally represented through

binary, grey or real encoding. An iterative process of selection, recombination, muta-

tion and replacement among individuals takes place. Each iteration or each sequence

of genetic operations is known as a generation. In each generation a new population is

generated, either with newly created individuals or with a mixture of individuals from

the previous generation and new individuals. The evolutionary process stops either

when a pre-defined number of generations is reached or the solution is found [2].

Each individual independently encodes a solution to the problem and its success

depends on its own and the selected partner’s quality for reproduction; thus GAs can
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easily be parallelized. However, in order to do that and from an implementation per-

spective, the population’s grain should be defined. Coarse grain GAs are those in which

the population is divided and parallelized while panmictic interaction (all individuals

in the population can potentially mate any other individual) is maintained inside each

sub-population. In this way, parallelism is carried out at sub-population level. On the

other hand, fine grain or cellular GAs (cGAs) define a population topology, normally by

using a toroidal grid structure, placing one individual per grid position that interacts

only through nearby neighbours [3].

One of the main issues in evolutionary algorithms is the preservation of diversity.

Excessive exploitation could lead the search to stagnate or to converge to a local op-

timum. In contrast, too much exploration could significantly increase the number of

evaluations required to find the solution, or in the worst case scenario to fail or to con-

verge to a local optima. Maintaining a balance between exploitation and exploration

is a major challenge in evolutionary techniques. In many cases, this balance is pursued

through changes in the genetic operations of the main reproductive cycle [4].

In the fault tolerant arena, diversity could also be affected by the presence of faults

known as Single Event Effects (SEEs) which are logical temporary or permanent faults

that could affect main data structures in evolutionary optimization engines, such as

the phenotypes or genotypes registers. In this thesis the inherent properties of cGAs

are investigated as mitigation techniques to sustain diversity while dealing with faults

at algorithmic level. Those characteristics include the size and shape of the local

neighbourhood, the implicit migration due to the smooth spread of solutions as a

result of neighbourhoods overlapping, or the explicit migration with policies that allow

individuals to avoid faulty neighbourhoods as an attempt at survival aiming to converge

to the global optimum.

Genetic Algorithms possess significant attributes for dynamic adaptation while

searching for the solution to a problem. A major challenge in the EAs arena is to

take advantage of those attributes in order to improve the algorithmic performance

without increasing the computational cost. Dynamic parameter setting of genetic op-

erations is an area of research that has been widely investigated since the very beginning

of EAs. Perhaps less visible are other properties of certain evolutionary techniques such

as those that attracted the Author’s attention: the structural properties of cellular GAs

and their effect on the evolutionary process.
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1.2 Goals

The aim of this thesis is to propose fault tolerant and dynamic algorithmic techniques

to further investigate the ability of fine grained Genetic Algorithms to improve their

performance when tackling difficult optimization problems. The work presented in this

thesis is organized into three main parts; the development of mitigation techniques that

take advantage of the inherent properties of cellular GAs to overcome faulty scenarios;

the development of dynamic criteria to improve the performance of cellular GAs while

taking advantage of their structural properties, and thirdly, the investigation of the

implication of dimensionality in cellular GAs.

The research in this thesis started as a continuation of ongoing research at the

System Level Integration research group. The investigation explores the fault toler-

ant arena to deal with two kinds of Single Event Effects (SEEs): Single Hard Errors

(SHEs), permanent faults, and Single Event Upsets (SEUs), temporary faults, affecting

main data structures in a cellular GA based reconfigurable architecture. The targeted

application is the GPS attitude determination problem, a hard real-time constrained

problem used for vehicles’ navigation. An interesting area of research is the development

of mitigation techniques to deal with faults caused, among other factors, by radiation

affecting a system operating in harsh environmental conditions. The presence of SEEs

in main system data such as phenotypes or genotypes registers and memory allocations,

would cause the searching process of a cGA to fail. In order to deal with failures with-

out significantly increasing the use of physical or computational resources, properties

specific to cellular GAs are investigated in this thesis as a resource for mitigation of

SEEs.

This thesis investigates fine grained GAs while tackling difficult optimization prob-

lems from a particular perspective: that is the way in which the inherent structural

and processing properties of cellular GAs are advantageous as an approach for diver-

sity preservation. Dynamic on-the-fly modification of EAs parameters is an important

arena. In this respect, cellular GAs provide a distinct feature that could be added to

the investigation of dynamics in EAs. The principal characteristic of cellular GAs is the

use of a decentralized and structured population together with a neighbourhood that

locally delimits the interaction of individuals, providing, at the same time, a double

approach to deal with the search space. Locally, solutions are exploited, while globally
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throughout the grid, the landscape is explored. The basis of the second part of this

study is to further investigate the effect of dynamically changing the topology con-

figuration at run time, in order to contribute to sustaining diversity by appropriately

balancing the exploitation-exploration trade-off.

The third part of this investigation aims at providing a better understanding of

the dimensionality of cGAs and its effect on their performance. Cellular GAs are

normally implemented on 1D or 2D grid topologies, toroidally connected. 3D-cGAs

present characteristics such as shorter radii that allow a faster spread of solutions; a

larger number of individuals in the neighbourhood that locally permits more diversity

of solutions for selection, amongst others. An empirical study is carried out in order

to determine whether 3D-cGAs achieve better performances than 2D-cGAs without

increasing the number of individuals in the population. If the outcome is positive, in

future combining 3D-cGAs at algorithmic level with the advances on 3D-IC technology

will represent a robust platform for high performance optimization engines.

1.3 Contribution to knowledge

This study aims at providing a deeper understanding of the abilities cellular GAs pos-

sess from a structural point-of-view. The need of a structure and consequently the

configuration of the population topology and the local neighbourhood are aspects that

differentiate cGAs from panmictic and other parallel GAs approaches. This study con-

centrates on demonstrating that it is possible to take advantage of those structural

characteristics to extend the application of cGAs to the fault tolerant arena and to

influence the exploration-exploitation trade-off, a main challenge in evolutionary tech-

niques. The thesis presents the following novel ideas to improve cGAs performance:

• Migration operation as a mitigation technique to overcome SHEs and implicitly

SEUs affecting fitness score registers. Several migration policies were defined and

evaluated based on random, best neighbourhoods and best neighbours selection.

• Configuration of the local neighbourhood as a way of modifying the induced selec-

tive pressure and to provide every individual with more alternatives for selection

and therefore to avoid faulty individuals in the phenotypic space.

• Modification of the topology shape during evolution to provide a lower selective
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pressure and therefore a more explorative search together with an explicit mi-

gration mechanism that allows non-faulty individuals to avoid faulty ones in the

genotypic space.

• Improvement in results accuracy by using a distributed parallel approach that

provides two levels of selective pressure.

• Application of previous distributed parallel approach to balance the exploration-

exploitation trade-off as a way of dealing with the loss of diversity due to SHEs

or SEUs affecting the phenotypic space.

• Dynamic internal reconfiguration of the population’s topology while maintaining

the adjacency of individuals without inducing an explicit migration mechanism.

• Dynamic anisotropic selection which makes use of individuals location inside the

neighbourhood an dynamically assigns probabilities for selection.

• Dimensionality as a way to improve cGAs performance as a result of a faster

spread of solutions due to shorter radii and having locally more alternatives for

reproduction.

1.4 Thesis Organization

The remainder of this thesis is divided into five chapters and is organized as follows:

• Chapter 2 gives an introduction to Evolutionary Algorithms with a particular

emphasis on Genetic Algorithms. A review of parallel GAs approaches is also

provided in order to situate fine grained or cellular GAs, which are the main sub-

ject of this research. A detailed review of cellular GAs is also presented including

an initial empirical comparison with standard GAs. This chapter also includes an

overview of several standard and cellular GA based reconfigurable architectures.

Finally, the topic of fault tolerance is presented in order to introduce the fault

tolerant perspective examined in Chapter 3.

• Chapter 3 presents a study on fault tolerance while tackling a hard real-time

constrained problem: the GPS (Global Positioning System) attitude determi-

nation problem. Determining the attitude parameters of a vehicle using GPS

technology represents a system’s simplification and a significant cost reduction in
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comparison to traditional systems for vehicle navigation, such as inertial naviga-

tion systems [5]. As a result, a fault tolerant platform is proposed based on the

inherent ability of cGAs to deal with Single Hard Errors (SHE) and Single Event

Upsets (SEUs) which could permanently or temporarily affect its operation. Two

faulty scenarios are evaluated: SHEs or SEUs affecting phenotypes or genotypes

registers. Moreover, a distributed approach is also investigated as a fault tolerant

platform using migration as a mitigation technique to overcome faulty scenarios.

• Chapter 4 assesses an extended set of difficult optimization problems to further

investigate the effect of cGAs structural properties on their performance. Con-

tinuous mathematical functions, such as the Rastrigin, Griewank and Langerman

functions, are explored on the discrete domain using binary representation. Real

problems such as the Frequency Modulation Sound (FMS) problem, the GPS at-

titude determination problem and the System of Linear Equations problem are

also tackled. Finally, combinatorial problems such as the Massively Multi-modal

Deceptive Problem (MMDP), the Minimum Tardy Task Problem (MTTP) and

the P-Peaks problem are approached through several dynamic criteria.

The main objective in the second part of this research is to maintain the canonical

form of cGAs while taking advantage of their structural properties. The aim is to

avoid increasing their computational cost which would also imply an increase in

the amount of resources required for their implementation. Two experimental set

ups are proposed: 1) a gradual inclusion of internally different lattice topologies

is evaluated. 2) three experimental cases proposed by Dorronsoro et al. in [6],

including static, pre-programmed and adaptive reconfiguration mechanisms, are

directly compared to the internal constant and adaptive lattice reconfiguration

techniques proposed here.

• Chapter 5 is dedicated to investigating and comparing 2D versus 3D cellular

GAs. Increasing dimensionality in cellular GAs provokes different selection pres-

sures on the same population sizes. This chapter aims to research the advantages

in the performance of cGAs when using 3D toroidal structures for the develop-

ment of future 3D optimization engines. This chapter is also the starting point

for current ongoing research in the System Level Integration research group.

• Chapter 6 presents a summary and the conclusions of this thesis including the
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main contributions of this research. Finally, some guidelines for future research

are presented.
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Chapter 2

Literature Review

In this chapter, a general overview of Evolutionary Algorithms (EAs) is presented, to-

gether with a comprehensive review of cellular Genetic Algorithms (cGAs). Being part

of a wide algorithmic family such as EAs, cGAs have demonstrated to be a competitive

tool showing interesting abilities to deal with hard optimization problems, outperform-

ing in several cases the traditional standard GAs and other well known parallel GAs

approaches.

2.1 Evolutionary Algorithms

Evolutionary Algorithms are non-deterministic techniques that follow the Darwinian

Principle of Evolution. A population is randomly or under certain conditions created

and formed by individuals. Normally, individuals are encoded using binary, grey or real

encoding [7]. Competition for survival among individuals determines which ones will

reproduce and pass their genetic material to new individuals in following generations.

There is a set of basic genetic operations that EAs use during evolution [8]. In-

dividuals are picked out in pairs following a predefined criterion (selection), pairs of

individuals are mated, this operation is commonly known as crossover (recombination).

Then, the offspring alleles can be randomly modified in order to recover genetic diver-

sity or to be able to avoid convergence to local optima (mutation). A random genetic

change can determinately modify the search process. Thus, careful attention should

be paid to this operation. Finally, the offspring are introduced into the population

following certain rules, as an example, they can replace old individuals in the current

population or create a new population composed by old and new individuals.
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EAs are classified in four groups: Genetic Algorithms (GAs), Genetic Programming

(GP), Evolutionary Strategies (ES) and Evolutionary Programming (EP). Each evolu-

tionary technique works in specific application arenas but commonly apply, with lower

or higher priority and strength, the following genetic operations: selection, recombi-

nation and mutation. For example, GP operates on chromosomes of variable length,

while GAs maintain constant chromosomes length. Therefore, GP needs to use modi-

fied genetic operators [4]. In cases such as GP and ES, there is no difference between

genotypic and phenotypic representation, while GAs clearly distinguish between phe-

notype and genotype spaces. These techniques are relatively new, GAs were proposed

by John Holland in 1975, John Koza proposed GP in 1992, while in 1960 ES and EP

were created by Bienert, Rechenber and Schwefel and Lawrence Fogel respectively [9].

Evolutionary techniques have the disadvantage of providing, in some cases, less

accurate solutions in comparison to an application specific algorithm. However, EAs

offer important advantages, such as their inherent parallelism. Moreover, due to the

fast technological development and the processing power nowadays available, EAs par-

allelism has been exploited tackling difficult and real problems. This research focuses on

the study of cellular Genetic Algorithms, a subgroup of Genetic Algorithms that works

with decentralized populations. In the next section an overview of Genetic Algorithms

is presented.

2.2 Genetic Algorithms

Genetic Algorithms are maybe the most widely studied evolutionary technique. As

mentioned above, GAs were proposed by Holland in the seventies. He proposed the use

of this algorithmic approach to solve practical problems rather than for simulating bi-

ological systems [10]. Successfully, his idea was rapidly accepted and spread. However,

Holland’s aim was not only to solve application specific problems but to create a gen-

eral framework for a kind of adaptive system, in which individuals represent encoded

programs that communicate through binary sensors.

As search strategies, GAs aim at obtaining the best approximate solution for a given

problem. Theoretically, GAs define two spaces: the representation or genotypic space

in which solutions are encoded into chromosomes, normally using binary strings but

other ad-hoc representations are also used. And the search or phenotypic space, where

30



chromosomes are translated into actual solutions. Mapping between genotype and

phenotype spaces is done by an encoding function. After that, phenotypes are evaluated

by the fitness function. Once individuals fitness scores are calculated, parents selection

is performed. After selection, pairs of individuals are recombined and mutation is then

applied to the offspring. The final step in the reproductive cycle is the insertion of the

new individuals. Hence, replacement policies are defined, for example, new individuals

can replace current ones always or only if offspring provide better solutions [3].

In Algorithm 1, a standard GA pseudocode is presented. The basic reproductive

cycle consists of three main operations: selection, recombination and mutation, that

can be tuned accordingly to problem specific characteristics [2].

Algorithm 1 Genetic Algorithm Pseudocode

1: procedure ga

2: (x)← random (x0) ⊲ initial population

3: (f)← evaluation (x) ⊲ evaluation

4: while k ← 1, generations, or f̄ <= threshold do

5: (f ′, x′)← selection (f, x) ⊲ parents selection

6: (x′′)← recombination (x′) ⊲ parents recombination

7: (x′′′)← mutation (x′′) ⊲ offspring mutation

8: (fnew)← evaluation (x′′′) ⊲ offspring evaluation

9: (f, x)← replacement (fnew, xnew) ⊲ individuals replacement

10: end while

11: end procedure

There are several selection methods, among those commonly used are: tournament

selection, roulette wheel selection, deterministic selection, among others. Tournament

selection consists in choosing a specific number of individuals on a random base. These

individuals are pairs of parents that will reproduce. Individuals selection can be per-

formed with or without replacement. The size of the tournament would vary based on

the experimental constraints. In this thesis, binary tournament (BT) selection is used

on the experimental set ups. BT randomly selects two individuals who compete for

a parent place. In standard or panmictic GAs, a mating pool is created by selected

individuals that would mate according to recombination and mutation operations.

Another commonly used method is the roulette-wheel selection (RW). It assigns, as

in a roulette-wheel, slots for each individual. The size of the slot depends on its fitness.
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Individuals with higher fitness scores have wider slots, and therefore higher probability

for selection. Instead, individuals with lower fitness scores would have narrower slots in

the wheel. Individuals can then be selected with or without replacement, in a similar

way to tournament selection.

Deterministic selection is less flexible. It consist in defining a fixed criterion for

individuals selection. For example, only individuals with highest fitness scores are con-

sidered for selection. Depending on the problem, this method induces more rapidly the

loss of diversity. Systematically choosing only highly fitted individuals would probably

stagnate the evolutionary process, as there is not diversity among individuals to explore

or exploit diverse areas of the search space.

Recombination is an operation closely related to individuals’ representation. For

binary chromosomes representation, single or double point crossover is commonly ap-

plied. For real or float chromosomes representation, arithmetic crossover is implemented

[7, 11]. Mutation, which aims at introducing genetic diversity in each reproductive cy-

cle, is also an operator that needs to be finely tuned. In fact, mutation by itself started

a subclass of evolutionary techniques known as Evolutionary Strategies as their pri-

mary operator. Finally, replacement policies are also fundamental in GAs. In fact,

two improved versions known as steady state and generational GAs directly depend on

replacement policies. In the next section, an overview of parallel Genetic Algorithms

is presented.

2.3 Parallel Genetic Algorithms

Evolutionary techniques are prone to parallelization. In particular, GAs have been

widely investigated in this regard and parallel approaches have emerged since the very

early years GAs came up. Parallelization in GAs can be carried out in several ways

at different algorithmic and implementation levels, aiming at improving their efficiency

and efficacy when tackling difficult optimization problems.

A rough classification for Parallel Genetic Algorithms (PGAs) groups them by grain

size in coarse and fine PGAs. Coarse PGAs mainly consist in dividing a whole panmic-

tic population into several sub-populations with individuals migrating among them.

Thus, reducing the number of individuals each processing unit should deal with. A

consequent link between algorithm and implementation is thus appreciated. However,
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Figure 2.1: A coarse or distributed Genetic Algorithm

implementations using a single processing unit to deal with several sub-populations

have also been developed and improved performances have been achieved [12]. Coarse

PGAs, also named as distributed GAs (dGAs), gave place to new research arenas in the

field of GAs. Having different parameters configuration to perform genetic operations

and/or implementing different grains, and/or having distinct chromosome representa-

tion in each sub-population, were among others new possibilities to explore that would

possibly lead to improve GAs performance [13, 14, 15, 16]. In Figure 2.1 a dGA diagram

is shown. Each sub-population is centralized and migration policies need to be defined

by rate and frequency. It is also necessary to define if migration would be synchronous

or asynchronous. In [17] an interesting approach of heterogeneous distributed PGA was

presented. Using a hypercube structure with each vertex holding one sub-population.

All sub-populations located on one side of the cube perform more exploitative or more

explorative search. Internally, each sub-population implements distinct configurations

for the genetic operations in order to promote different exploitation-exploration lev-

els. Hence, diversity is well maintained globally while locally the accuracy of results is

improved.

The main difference of fine grained PGAs with respect to coarse or distributed
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Figure 2.2: A fine or cellular Genetic Algorithm

PGAs is the decentralization of the population and the consequent also decentralized

selection of individuals. Fine PGAs are also known as cellular GAs (cGAs), in Figure

2.2, a common square population topology following a torus like grid with wraparound

edges is drawn. A single individual is located per grid position. Around each individual,

a neighbourhood is defined, among its individuals is the second parent that would be

selected for reproduction. In Figure 2.2 a local Moore neighbourhood with 9 individuals

is drawn as an example.

In cellular GAs, every individual interacts with its close neighbours, providing a

smooth diffusion of solutions throughout the grid due to the neighbourhoods overlap-

ping [18]. In coarse PGAs, individuals association is loose while it is strong in cellular

GAs. These among other characteristics specific to cGAs makes them a powerful tool

to tackle, from a variety of perspectives, difficult search spaces of hard problems.

Researchers have pursued several goals through the parallelization of GAs, such

as finding new routes to solve a problem, parallel searching of different regions in

the search space, better convergence and processing times in comparison to sequential

versions, simplified parallelization techniques, among others [19]. Parallel GAs allow

several levels for parallelization, and combining panmictic and cellular sub-populations

in dGAs is an interesting approach detailed in Subsection 2.3.1.

An important operation in evolutionary processes and particularly in dGAs is the

migration of individuals among sub-populations. Once individuals are evolving in each

sub-population, one or more of them should be selected to migrate and replace individ-
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uals in other sub-populations. In this regard, migration policies should be defined not

only in terms of frequency and rate, but also policies for selection of migrants and re-

placement of individuals after arriving to new sub-populations are required [20]. More-

over, migration among sub-population is performed synchronously or asynchronously.

Synchronous migration expect all sub-populations to be at the same state and then

individuals migrate at the same time. On the other hand, asynchronous migration al-

low each sub-population to determine when individuals should migrate. In Subsection

2.4.3 a discussion on migration synchronism is presented.

Cantú-Paz et al. provided a complete study on dGAs, from a theoretical and practi-

cal perspective [3]. Initially, a proposal to solve the problem of determining an adequate

population size to achieve certain solution quality is analysed. A mathematical model

using the building blocks hypothesis, proposed by Holland and continued by Goldberg

[2], is tested on several problems with accurate results that also showed good scalability.

To find bounding cases for dGAs, in terms of efficiency, the interaction among

sub-populations and its effect on the quality of solutions was also analysed in [3]. It

has been previously investigated that the quality of solutions changes according to

the way sub-populations interact. Having loosely to null communication among sub-

populations results in less accurate solutions while better ones are obtained through

panmictic approaches. However, when individuals migrate among sub-populations, at

low or middle frequency, the overall dGAs performance improves, achieving in several

cases super linear speedups and better quality of solutions. Due to its essential role

in dGAs, migration is analysed in detail in Subsection 2.3.2 and in Subsection 2.4.3.1

migration synchronism is explained.

2.3.1 Homogeneous and Heterogeneous PGAs

Different scenarios to define homogeneous or heterogeneous distributed PGAs exist.

Roughly, at algorithmic level the same or different configuration for the genetic oper-

ations can be applied in each sub-population. From these genetic operations, distinct

configuration parameters can tune the search on each sub-population. For example,

different crossover definitions or mutation probabilities operate individuals in each sub-

population. Also, individuals representation can be different among sub-populations.

At a higher level, only panmictic GAs or cellular GAs or a mixture of both can be im-

plemented. On the other hand, at implementation level, heterogeneous computing has
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been used in the study of PGAs. In [21] different processing platforms were available

to deal with PGAs sub-populations.

In [12], several continuous functions were tackled through an improved version of

an heterogeneous PGA platform using real chromosomes encoding. A double hyper-

cubic topology was compared with a single hypercubic topology. Sub-populations lo-

cated at the vertexes on each face were configured to promote a more explorative or

more exploitative search through genetic operations tuning. Recombination provides a

more explorative behaviour while mutation encourages solutions exploitation. Migra-

tion between sub-populations allows the search to be refined among explorative and

exploitative levels performed by each sub-population. Results showed the importance

of asynchronism in migration and the direct effect on execution time as well as in the

average number of evaluations for both topologies. In terms of the hit rate, a double

hypercubic topology outperformed a single one.

At implementation level, heterogeneous computing has also been used to assess

PGAs. Alba et al. proposed a heterogeneous platform in which different operating

systems with distinct security restrictions execute a distributed PGA model [21]. In

an unidirectional ring, each sub-population executes a steady state GA. In every gen-

eration one offspring is produced and replaces the worst individual. Asynchronous mi-

gration between sub-populations is applied due to its proved better performance. Two

combinatorial problems were tackled to evaluate the heterogeneous PGA performance.

Comparisons were carried out against a homogeneous processing platform. Improved

results in terms of the number of evaluations were achieved by the heterogeneous plat-

form due to the exploitation of solutions at different rates.

2.3.2 Migration in PGAs

Migration in PGAs can be analysed from multiple perspectives. In coarse PGAs, where

panmictic or fine sub-populations evolve in parallel, migration should be considered as

a mechanism to introduce new individuals and therefore to promote or restore diversity

among sub-populations [22]. In contrast, an implicit mechanism for migration in fine or

cellular PGAs occurs on a single decentralized population, due to the neighbourhoods

overlapping, where individuals slowly spread their solution throughout the array. This

is a migration mechanism inherent to cellular GAs processing structure. It does not

need any frequency or rate for migration, or any selection and replacement policies to
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be defined.

In this section, an overview of migration policies used in coarse PGAs is carried

out. Although these policies are more appropriate for coarse PGAs, an added level for

migration can also be implemented on fine PGAs, apart from the natural migration

mechanism described before.

Cantu-Paz dedicated a complete study on PGAs emphasizing the importance of

migration rules and mechanisms [3]. The aim of his study was to stablish appropriate

criteria for migration which would improve PGAs performance. It was suggested that

maintaining certain isolation level among sub-populations is a necessary condition.

If a sub-population remains in complete isolation, improvements in its diversity are

minimal and therefore its ability to solve the problem is reduced. Yet, if permanent

communication among sub-populations is considered, the cost increases dramatically

and becomes impractical. Thus, the aim of migration is to avoid the total isolation of

sub-populations while maintaining an acceptable level of communication among them.

In [23] a theoretical study to calculate the appropriate number of processors needed

to minimize the execution time in PGAs is carried out. An experimental set up is im-

plemented considering bounding cases in terms of connectivity among sub-populations.

That is the case of having the maximum and minimum migration frequencies and

rates. Theoretical conclusions for a single population indicated that an optimal num-

ber of processors is given by O

(

√

nTf

Tc

)

, where n is the population size, Tf is the time

to calculate the fitness of one individual and Tc is the average time for communication

of one processor. This means that dividing a single population into multiple processors

reduces the overall execution time. Moreover, the same conclusion was achieved for

a multi-population approach considering addition separable functions [24]. Therefore,

using several processors while implementing PGAs has a positive impact in reducing

the execution time.

Another study to analyse the effect of migration policies in coarse PGAs was pre-

sented in [20]. The main objective was to determine how the migration operation

affects the induced selection pressure and to implicitly provide an explanation for the

super-linear speedups achieved by PGAs. The way individuals are selected for migra-

tion and replacement has a considerable effect in selection pressure and therefore in

PGAs convergence time. Selecting and replacing individuals by fitness score drastically

increases or decreases the selection pressure. It was observed that higher migration
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rates reported also an increase in selection pressure. High selection pressures lead the

search to a faster convergence, however the risk of premature convergence at a local

optimum is increased.

Although migration has mainly been investigated considering coarse PGAs; there

are also studies that have approach migration in fine PGAs, not only considering the

inherent induced migration due to neighbourhoods overlapping but establishing some

criteria to migrate individuals among lattice locations. In [25], a binary tree-like struc-

ture was proposed to divide a square grid topology in concentric formations of individu-

als, implementing in each two different migration policies. The exchange of individuals

among formations defined by this structure slows down the search process, allowing

more exploration. Results showed a better performance on constrained problems. Mu-

tation is applied to avoid the presence of super individuals that could lead the search

to stagnate while taking over the entire population much quicker. In the next section

all details about fine or cellular GAs are provided, including examples not only at

algorithmic but also at implementation level.

2.4 Cellular Genetic Algorithms

Cellular Genetic Algorithms are fine grained GAs consisting of a decentralized popu-

lation where individuals interact with others located at nearby positions. Normally,

cGAs are implemented on a n-dimensional toroidal grid with wraparound edges follow-

ing traditional geometrical shapes, such as square, rectangular or linear structures.

Cellular GAs processing matches that of a Cellular Automata (CA). CAs ideally

represent discrete physical systems in space and time. Determining a global rule that

define a specific behaviour built from local rules is achieved by CAs. In [26, 27], an

interesting analysis in this work considers the distance between a cell and its neighbours

as a determinant factor to avoid any loss of new information produced due to cells

interaction. Hence, a maximum distance between two cells and an average distance

among cells are used as metrics to evaluate CAs performance. On one dimension CAs,

the average distance among cells is larger than having two or more dimensions, where

distance is reduced and more individuals are reached at a time.

In [28] one dimension CAs are extended to two and three dimensions. GAs were used

in combination with CAs to evolve the desired global behaviour. Results showed that
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higher dimensions perform significantly better when evolving a global behaviour. This

combination of a CA and a GA is in EAs classification known as a cellular GA, with the

difference of having a more elaborated representation for each cell: chromosomes. In

[26] observations were made as regards to cells or individuals communication reaching

long distances, that are allowed by neighbourhoods interactions or overlapping. Thus,

information travels among cells, combining and generating new information. Having

more neighbours sharing information allows individuals to accelerate the process of

creating new behaviours to fit the problem with a minimum loss of information. Three

combinatorial problems were tackled, the majority problem, the checker board problem

and the evolution of bitmaps. Results showed that multi dimensional CAs solve these

problems much faster than one dimension CAs.

In Algorithm 2, the basic pseudocode for cellular GAs is presented. An initial

random population is generated to fill all positions in the toroidal like grid, placing one

individual per location. This initial population is evaluated and the main reproductive

cycle starts. A local neighbourhood is defined by closely located individuals surrounding

each individual. From the neighbourhood, both parents or only one parent is selected.

Details about cGAs configuration are provided in the following sections. There are

different selections methods that can be used in cGAs, those commonly implemented

on standards GAs, such as binary tournament, roulette-wheel or deterministic selection.

There are also other selection methods that only apply on decentralized GAs, such as

anisotropic or centric selection [29, 30]. After selection, parents are recombined and

offspring are mutated, there is no difference in the application of these operations to

that used in standard GAs. Individuals’ updating can be carried out synchronously

or asynchronously. If individuals are updated synchronously, a temporary array would

allocate the offspring until the entire population has fully reproduced and then the

temporary population will replace the current population. The reproductive cycle is

repeated until the stop condition is fulfilled. Subsection 2.4.3 is dedicated to explain

synchronism in PGAs with particular attention to its role in cGAs. In the following

section, the topic of selection pressure in cGAs is presented.

2.4.1 Selection Pressure due to Structural Properties

In this thesis, particular attention has been paid to cGAs structural properties and

how these can benefit the searching performance of this evolutionary technique. The
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Algorithm 2 Cellular Genetic Algorithm Pseudocode

1: procedure cga

2: (x)← random (x0) ⊲ initial population

3: (f)← evaluation (x) ⊲ evaluation

4: while k ← 1, generations, or f̄ <= threshold do

5: for i← 1, populationSize do

6: (f1, f2)← selection (f, fN , fE , fS , fW ) ⊲ parents selection

7: (x1, x2)← selection (x, xN , xE , xS , xW ) ⊲ in L5 neighbourhood

8: (x′1, x
′
2)← recombination (x′1, x

′
2) ⊲ parents recombination

9: (x′′1, x
′′
2)← mutation (x′1, x

′
2) ⊲ offspring mutation

10: (fnew)← evaluation (x′′1, x
′′
2) ⊲ offspring evaluation

11: (f, x)← replacement (fnew, xnew) ⊲ individuals replacement

12: end for

13: end while

14: end procedure

shape of the population topology, the number of individuals a neighbourhood has, the

shape of the neighbourhood, among others are structural properties that need to be de-

fined. Moreover, other operations performed during evolution, such as the individuals

selection at local level, individuals replacement, synchronous or asynchronous individ-

uals updating, migration policies, among others, are also implicitly modified by cGAs

structural characteristics.

In Figure 2.2 a common cGA toroidal grid is shown. Several authors have reported

that different lattice shapes induce different levels of selection pressure [31, 32, 33]. In

[31], an analysis on the effect of the population topology and neighbourhood configu-

ration is carried out. In order to establish a numerical relation between both, neigh-

bourhood and topology, the dispersion pattern of p points (each individual position)

centred at (x0, y0) was calculated. Dispersion was used as a measure because other

possible measures, such as the radius of a circle, would give the same value for different

population topologies. Thus, the neighbourhood and topology radii are calculated as

follows:

D =

√

∑

(xi − x̄)2 +
∑

(yi − ȳ)2

p
(2.1)

where (x̄) =
∑p

i=1
xi

p
and (ȳ) =

∑p
i=1

yi
p

. Hence, the ratio between the neighbourhood
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Figure 2.3: Examples of Lattices and Neighbourhoods Shapes

and the grid is given by:

NGR =
Dneighbourhood

Dgrid
(2.2)

this measure is known as the neighbourhood to grid ratio (NGR). Different neighbour-

hood shapes and sizes as well as different configurations of population topologies, as

those shown in Figure 2.3, provide a distinct NGR.

A square lattice combined with a L5 neighbourhood is a configuration commonly

used in cGAs implementation. In Figure 2.4, the NGR is drawn for different population

sizes with a L5 neighbourhood. Three lattice shapes are considered: square, rectangular

and narrow. The NGR curves show higher ratios for square grids while lower ratios are

obtained for narrow topologies. This ratios difference is tightly related to the selection

pressure that cGAs structural characteristics induce during evolution. In order to

appreciate this effect, another concept needs to be explained: the take-over time or the

growth rate of the best individual. The take-over time reflects how long it takes for the

best individual to spread its solution throughout the whole lattice, applying only local

selection. Thus, longer take-over times represent lower selection pressure and therefore

more explorative behaviour. On the contrary, shorter take-over times correspond to
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Figure 2.4: Neighbourhood to grid ratio for different population sizes and shapes with

a L5 neighbourhood

higher selection pressure, equivalent to a more exploitative search.

A meta-heuristic that makes use of a set of different neighbourhood configurations

(shape and size) during the search process is known as variable neighbourhood search

(VNS). A solution space is initially generated either randomly or based on specific prob-

lem constraints; solutions are locally evaluated and new ones generated within limits

of the local neighbourhood. Exploration takes place among distant neighbourhoods

considering the best current solution and movements or jumps among those neighbour-

hoods are performed only if that solution improves. VNS has similarities with cGAs

in terms of the different levels of selective pressures that can be induced through the

configuration of the local neighbourhood. Dynamically modifying the local neighbour-

hood configuration during the search in cGAs would be a form of VNS. VNS is easily

extendible to tackle large size problems, for more applications of this technique the

reader is referred to [34, 35, 36, 37].

2.4.1.1 Theoretical take-over times

A Belgian mathematician Pierre Verhulst in the 19th century, studied the logistic

growth model to describe biological systems under conditions of limited resources. Hav-
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ing limited resources holds for the growth rate of the best individual in a panmictic

population. Considering a population size popsize and a number of copies of the best

individual at a discrete time t given by N (t). The growth rate is expressed through

the following discrete recurrence model:

N (0) = 1,

N (t) = N (t− 1) + pspopsizeN (t− 1)

(

1−
(

1

popsize

)

N (t− 1)

)

(2.3)

where ps is the selection probability for an individual and N (t) can be approximated

by the continuous logistic equation [38]:

N(t) =
popsize

1 +
(

popsize
N(0) − 1

)

e−αt
(2.4)

where α is the ps probability. Although similar curves are obtained by structured

populations, their behaviour is not exponential but rather polynomial as suggested by

Spiessen and Manderick in [39]. Thus, structural characteristics need to be included

in the growth rate mathematical model for fine or cellular GAs. Considering an upper

bounding case where the best individual in the neighbourhood is always selected to

replace the current individual, that is ps = 1. Having a population size popsize, with
√
popsize × √popsize square topology and a local neighbourhood with radius r. The

best individual growth rate is described by:

N (0) = 1,

N (t) = N (t− 1) + 4r2t− 2r (r + 1) , 0 ≤ t ≤
(√

popsize− 1
)

2
, (2.5)

N (t) = N (t− 1)− 4r2t+ 4r
√

popsize− 2r (r + 1) , t ≥
(√

popsize− 1
)

2

that in its closed form remains as:

N (t) = 2r2t2 + 2r (2r + 1) t+ 1, 0 ≤ t ≤
(√

popsize− 1
)

2
, (2.6)

N (t) = −2r2t2 + 2r
(

2
√

popsize− 3r − 1
)

t+ 1, t ≥
(√

popsize− 1
)

2
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Figure 2.5: Theoretical growth rate in a square toroidal grid with a Moore local neigh-

bourhood and selection probability ps = 1

Figure 2.6: Probabilistic growth rate in a square toroidal grid with a Von Neumann

local neighbourhood and selection probability ps

In Figure 2.5, the growth rate for a population of 81 individuals with a local Moore

neighbourhood is presented.

If ps is now variable, and each individual has a different probability for selection:

p0 central individual probability and p1, p2, p3, p4...p8 each other individual probability

in a Moore neighbourhood. Modelling the exact recurrence becomes very difficult.

In order to obtain simple models, the growth rate is described as the expansion of a

rotated square, where the side length is given by s =
√

N (t), and the half diagonal of

the rotated square by d =

√

N(t)
2 . Thus, individuals growing with variable probability

pi is contained inside the rotated square and is given by the following recurrence:

N (0) = 1,

N (t) = N (t− 1) + 4pi

√

N (t− 1)

2
, N (t) ≤ popsize

2
, (2.7)

N (t) = N (t− 1) + 4pi
√

popsize−N (t− 1), N (t) >
popsize

2

Finding a closed form of this model is very difficult as indicated by Tomassini [32].

In Figure 2.6 a probabilistic growth rate is shown as an example of the difficulty it

represents for mathematical modelling.
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Figure 2.7: Average growth rates for the best individual on square, rectangular and

narrow lattices with L5 neighbourhood. The average growth rate is calculated based

on sets of 50 experiments and applying only local selection.

2.4.1.2 Empirical take-over times

An experimental set-up to empirically determine the take-over time for different lattice

shapes is carried out. Binary tournament local selection is implemented and 50 exper-

imental samples per configuration case were performed. In Figure 2.7 corresponding

growth rate curves are presented considering a population size of 400 individuals, with

the following grid shapes and sizes: 1)
√
400×

√
400 square, 2) 10× 400

10 rectangular and

3) 4× 400
4 narrow. The difference among take-over time curves is evident. Narrow lat-

tices provide slower diffusion of the best individual solution throughout the array and

lower selection pressure, therefore a more explorative search. Instead, square lattices

quickly spread the best individual solution, in a less number of generations, inducing

high selection pressure, thus a more aggressive or exploitative search. In [6] an ap-

proach to dynamically change the population topology during evolution is proposed

with positive results. This work is discussed in more detail in the next chapters.

Cellular GAs structural properties are subjected to further investigation in this

thesis. One main difference between cGAs and panmictic GAs or distributed GAs is

their structured population, and the consequent added parameters that can influence
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the evolutionary process based only on cGAs structural characteristics. In the next

subsection, the speedups topic is discussed.

2.4.2 Speedups

A controversial topic has been the speedups that dGAs and cGAs can achieve. Yet,

speedup is an accepted measure for efficiency in parallel algorithms. Calculating the

ratio between the average execution time of the best sequential GA or other non evo-

lutionary technique and the average execution time of a parallel GA running on a

number of processors provides its speedup. Sub-linear speedups indicate the ratio is

smaller than the number of processors for the PGA execution. Linear speedups indi-

cates this relation is equal while super linear speedups indicate this ratio is larger than

the number of processor elements [13].

A strong speedup measurement would involve a comparison against the best se-

quential algorithm, which would be indeed very difficult to find [40]. Considering a

serial GA performance as a reference together with a stop condition that evaluates the

same solution quality for all experimental samples, would allow to more fairly compare,

in speedups terms, serial and parallel approaches.

Three sources for PGAs speed ups have been identified: 1) dividing the search

space in several areas for exploration carried out by different processors, 2) reducing

the processing load among processors through dividing the population among them and

3) genetic operators dealing with reduced data structures [41].

In [41] an analysis of dGAs speedups, with panmictic sub-populations, was pre-

sented. In part of it, a comparison versus a single panmictic GA performance resulted

in excessive speedups. Yet, when the distribution of sub-populations was carried out

on several processors, a comparison versus a single processor implementation showed

that speedups were still obtained but these were moderate and perhaps more realistic.

This analysis is extended to consider different migration frequencies and synchronous

or asynchronous migration among sub-populations. In [40], Alba et al. compared the

speedups obtained for a set of test problems. Eight times super linear speedups were

obtained in both approaches, when using a maximum of eight sub-populations with dif-

ferent migration frequencies. Lower migration frequencies together with asynchronous

communications among sub-populations provided the highest speedups. These results

were based on implementing the same parameters on each sub-population. In the next

46



subsection, synchronism in PGAs is discussed.

2.4.3 Synchronism

Synchronism in parallel GAs is assessed in two arenas. In distributed PGAs with struc-

tured sub-populations, synchronism of individuals migrating among sub-populations

has been investigated and compared against distributed parallel GAs with panmictic

sub-populations. On the other hand, in cellular GAs, individuals updating can be

performed in synchronous or asynchronous ways.

2.4.3.1 In Distributed GAs through Migration

Alba et al. investigated the effect of synchronism in the migration of individuals be-

tween sub-populations. Initially, two scenarios were considered: 1) having only pan-

mictic sub-populations, 2) having only cellular sub-populations [42, 43]. A third sce-

nario had later on been investigated: having a mixture of panmictic and cellular sub-

populations. These approaches were evaluated not only from an algorithmic perspective

but also a parallel platform was implemented [21, 12].

In [42], a MIMD (Multiple Instruction Multiple Data) implementation for homoge-

neous sub-populations is used. Several migration frequencies were defined as multipliers

of the population size. In an homogeneous approach, a frequency of zero represents

several panmictic or cellular populations evolving independently. Three problems were

tackled: the generalized sphere problem, the subset sum problem, and the training of

a neural network. For a fair comparison, the same configuration for genetic operations

had been applied. In general, results showed a superior performance of asynchronous

approaches with lower migration frequencies. In this regard, cellular sub-populations

achieved significantly better efficacy than panmictic distributed PGAs. Speedups were

also analysed. Lower migration frequencies reported linear speedups for cellular sub-

populations and super-linear for panmictic ones.

To continue this research, Alba et al. extended the set of problems to target a

wider variety of characteristics that can be found on real world problems, such as

multi-modality, deceptiveness and epistasis [43, 44]. For panmictic sub-populations,

a steady state reproductive cycle was implemented. This means only one offspring is

reintroduced every generation if it provides a better solution to the problem. Apart from

the influence of migration frequency, random selection versus best migrants selection
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were also compared. Similar to previous results, the best performance in terms of

hit rate and number of evaluations was achieved through low frequencies and random

selection of individuals for migration. Cellular dGAs outperformed panmictic dGAs

in dealing with deceptiveness but performed similarly when tackling multi-modality

and epistasis. Moreover, cellular sub-populations responded better to higher migration

frequencies. Speedups were also assessed, the migration frequency was directly related

to higher speedups in both panmictic and cellular approaches. Super-linear speedups

were achieved by panmictic dGAs.

The third case considering a mixture of panmictic and cellular sub-populations was

studied in [21]. Using a multi-platform approach, heterogeneous distributed PGAs were

compared to results obtained by homogeneous ones. The main conclusion in this study

was that super-linear speedups can be achieved also through heterogeneous computing,

similar to the homogeneous approaches described above. Time measures were assessed

in discrete (number of generations) and CPU real-time.

2.4.3.2 In cellular GAs through Updating Policies

Synchronism in cGAs refers to the way individuals are updated. In [45] the following

updating policies were analysed: 1) line by line or line sweep, 2) fixed random sweep,

3) new random sweep and 4) uniform choice. Each of these updating policies can be

implemented synchronously or asynchronously. Synchronous updating means a new

entire population is generated from current individuals. Contrary to asynchronous

updating that replaces an individual every time it evolves; thus individuals in one

generation have evolved from offspring of the same generation.

Line by line or line sweep is the easiest way individuals can be updated in a toroidal

grid topology. Following individuals sequential locations, either by row or by column,

updating is performed. Fixed random sweep consist in randomly choosing an individ-

ual without replacement (each cell can be chosen once every generation) with uniform

probability. A fix updating distribution of individuals is used every generation, contrary

to new random sweep that in each generation applies a different random distribution.

The last policy, uniform choice, randomly chooses, with uniform probability, an indi-

vidual with replacement. That means a cell can be updated more than once in the

same reproductive cycle.

In [32], synchronous and asynchronous updating policies in cGAs were further inves-
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tigated. Initially, mathematical models of the take-over times were provided for linear

and torus like cellular structures. Synchronous and asynchronous cases were evaluated

in both topologies considering each updating policy case.

Synchronous updating policies presented slower growth rates, therefore a more ex-

plorative search; followed by the asynchronous uniform choice updating. Asynchronous

new random sweep and line sweep showed faster growth rates but not as the fastest of

a panmictic population [46]. The main conclusion was that panmictic GAs are more

exploitative than cellular GAs independently of the updating policy.

Synchronous and asynchronous policies were evaluated on a variety of combinatorial

and continuous problems. In combinatorial problems, asynchronous updating outper-

forms synchronous updating in terms of the average number of generations. Instead,

synchronous updating achieved higher hit rates. All algorithmic approaches were con-

figured without considering problem specific parameters or operations at local level.

In continuous problems, overall performance results were not as clear as with combi-

natorial problems. Asynchronous updating performs better not only in terms of the

solution accuracy, but also improved hit rates and convergence times were achieved in

some cases. Yet in general, synchronous updating obtained the best hit rates.

For a complete analysis on growth rates models for asynchronous updating policies

the reader is referred to [32, 46]. In the next subsection an empirical comparison

between panmictic and cellular GAs is presented.

2.4.4 Panmictic vs Cellular GAs

In this section an empirical study to situate cellular GAs with respect to standard or

panmictic GAs is presented. In Appendix A, benchmark problems evaluated in this

section are detailed. Two competitive versions of standard GAs are implemented: the

steady state GA (ssGA) and the generational GA (genGA). The name steady state

comes from the idea of introducing small changes, in terms of new genetic material,

every generation. Hence in (µ+ 1) GA, a single offspring is introduced into the pop-

ulation every generation. In Algorithm 3 a ssGA pseudocode is presented. The main

reproductive cycle consists of selecting two parents out of the entire population, and

after recombination and offspring mutation, only one child replaces an individual in

the current population. The number of offspring that replace current individuals is not

limited to one but to a small number, in order to smoothly modified the population
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diversity.

Algorithm 3 Steady State GA

1: procedure ssga

2: (x)← random (x0) ⊲ initial population

3: (f)← evaluation (x) ⊲ evaluation

4: while k ← 1, generations, or f̄ <= threshold do

5: (f1, f2, x1, x2)← selection (f, x) ⊲ selection from a panmictic population

6: (x′1, x
′
2)← recombination (x1, x2) ⊲ parents recombination

7: (x′′1, x
′′
2)← mutation (x′1, x

′
2) ⊲ offspring mutation

8: (fnew)← evaluation (x′′1, x
′′
2) ⊲ offspring evaluation

9: (f, x)← replacement (fnew, xnew) ⊲ individuals replacement

10: end while

11: end procedure

The second standard GA that has been implemented is the generational GA. The

main difference between ssGAs and genGAs is the use of a temporary array to store

new offspring until a population of size λ is created and replaces just part or the entire

current population. The maximum size of the temporary population is the size of the

population. In Algorithm 4 a pseudocode for the generational GA is presented. The

main reproductive cycle consists in selecting the parents from a panmictic population

and once the offspring are evaluated, one of them is stored in a temporary array, the

cycle is repeated until a temporary population of size µ = λ is created.

In the experimental set up, the following constraints are evaluated:

• A population size of 400 individuals is used in most problems. Due to their size,

GPS and MTTP problems are tackled using a population size of 64 and 100

individuals respectively.

• One hundred independent runs are carried out per experimental case.

• A problem specific threshold based on the population average fitness is used as a

stop condition.

• A limit of 500 generations is used in most problems, with the exception of the

Langerman function, the SLE and the MMDP problems with a limit of 700 gen-

erations.
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Algorithm 4 Generational GA

1: procedure ssga

2: (x)← random (x0) ⊲ initial population

3: (f)← evaluation (x) ⊲ evaluation

4: while k ← 1, generations, or f̄ <= threshold do

5: for i← 1, λ do ⊲ λ ≤ populationsize

6: (f1, f2, x1, x2)← selection (f, x) ⊲ selection from a panmictic population

7: (x′1, x
′
2)← recombination (x′1, x

′
2) ⊲ parents recombination

8: (x′′1, x
′′
2)← mutation (x′1, x

′
2) ⊲ offspring mutation

9: (fnew)← evaluation (x′′1, x
′′
2) ⊲ offspring evaluation

10: (ftemp, xtemp)← replacement (fnew, xnew) ⊲ temporary allocation

11: end for

12: (f, x)← (ftemp, xtemp) ⊲ individuals replacement

13: end while

14: end procedure

The cGA is implemented on a square toroidal topology with a local Von Neumann

neighbourhood consisting of four individuals plus the central one. Local selection is

performed with the central individual always as the first parent while the second is

selected through binary tournament from individuals in the neighbourhood. On the

other hand, panmictic GAs are implemented using two selection methods: binary tour-

nament (BT) and roulette-wheel (RW). BT randomly selects two individuals from the

entire population (or from the neighbourhood in cGAs case) as parents for mating. In

contrast, RW selection, as it name implies, defines a slot for each individual based on

its fitness score. It means, better individuals have larger slots in comparison to indi-

viduals with low fitness scores. Due to the tight limit in the number of generations, the

steady state GA is executed as
(

µ+ µ√
µ

)

. Thus, 50 individuals, for a population of

400 individuals, are replaced every generation. The generational GA is experimentally

assessed with µ = λ.

Tables 2.1 and 2.2 show performance results obtained in terms of the average number

of generations, hit rate and results accuracy. The stop condition in all cases is the

maximum number of generations or when the average fitness score reaches a problem’s

specific threshold, see Appendix A for more details on each problem.

The superior performance of cellular GAs is noticeable. When tackling continuous
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problems, the ssGA and genGA through RW selection perform very poorly, in compar-

ison to the cGA and both panmictic GAs through BT selection. Cellular GAs achieve

better performance for the Rastrigin and the Langerman functions. However, a better

hit rate is achieved by the ssGA through BT when tackling the Griewank function.

For the FMS problem presenting strong epistasis, only the cellular GA is able to solve

it, although with a low hit rate of 41%. Comparable results are obtained for the SLE

problem; with similar performance achieved by the genGA through RW selection in

terms of hit rate, 39% (cGA) and 37% (genGA). However, the later almost double the

average number of generations. For the rest of the problems, the GPS, the MMDP

and the MTTP, cGAs outperformed panmictic approaches with the experimental con-

straints here implemented; a clear example is the MMDP where none of the panmictic

GA versions converge to the global optimum.

In the next section, a review of several architectures based on panmictic and cellular

GAs are revised.

2.5 Hardware Implementation of GAs

From the theoretical to the real world, GAs feasibility for hardware implementation

has also been investigated. From the Very Large Scale Integration (VLSI) point of

view, GAs possess important characteristics that makes them suitable for hardware

implementation targeting real time applications.

Not only problem specific hardware architectures based on GAs have been devel-

oped but also evolutionary design of electronics has been targeted through GAs. This

relatively new research arena is known as Evolvable Hardware (EHW) [9]. Parallelized

versions of GAs have been used as optimizers and adapted for hardware implemen-

tation targeting real-time performance. Among problems solved by parallel GAs are:

the image registration problem [47, 48, 49], the disc scheduling problem [50] and the

GPS attitude parameters determination problem [5, 51, 52, 53]. On the other hand, in

EHW, Sekanina highlights the difference between solving a problem using a hardware

implementation of an EA, and to evolve a digital or analog circuit in order to obtain

the best configuration bit stream [9]. Some of the work related with EHW is reported

in [54, 55, 56, 57, 58], these articles are concerned to evolutionary techniques targeting

FIR filters design and linear transformations.
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In [50], a cGA architecture was developed targeting the disc scheduling problem. It

consists in finding the best attending tasks order to reduce the access time per request.

In this architecture, a cellular GA encodes up to 32 queued requests ordered by a

fitness function that minimizes latency and search time per request. The architecture

achieved an scheduling time of up to 2 milliseconds per access request and 4 milliseconds

of searching time per request. Thus, timing constraints were fulfilled. Ordered based

crossover and mutation operations were performed. Ordered based crossover randomly

selects chromosome positions in one parent, finds these positions in the second parent

and copies corresponding alleles to the offspring. Thereafter, a reordering policy is

applied, for selected genes to maintain their positions in the offspring. Ordered based

mutation selects certain chromosome positions and mutate the alleles.

An image processing architecture was developed to tackle the image registration

problem that presents real-time constraints [47, 48]. First, in [47] an architecture for

image registration using a cellular GA was proposed. The image registration problem

consists in matching a 2-D captured image to a reference image. A transformation

between both images is necessary. The fitness function measures the number of cor-

responding pixels between captured and reference images. Once a perfect match has

been found, the transformation encodes the object’s position and orientation. Each

transformation parameters were encoded in 6 bits. At algorithmic level, an extra step

was added to the canonical cGA procedure defined by Tomassini [32]. Each transfor-

mation parameter is incremented or decremented in one unit for promotion through

hill climbing, while the best individual is always kept. Results showed that real-time

constraints are fulfilled up to a tenth of a second to match the images, corresponding

approximately to 35 generations for 64× 64 images.

In [48], an improved cGA architecture for image processing combining data compres-

sion and image registration is presented. For the image registration, a cGA determines

an affine transformation for the image coordinates with respect to a reference image.

The fitness function minimizes the error between the transformed and the referenced

images. Then, the Discrete Cosine Transform (DCT) using a data compression algo-

rithm is applied in order to reduce the memory storage requirements. In terms of speed,

processing one chromosome took up to 2 milliseconds with limited accuracy for 64× 64

images.

A cellular GA architecture tackling the GPS attitude determination problem was
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developed by Xu et al. In this thesis this problem, at algorithmic level, is further

investigated from a fault tolerant perspective. An extended analysis and results of

the proposed approaches are included in Chapter 3. In [5, 51] a method to determine

the attitude parameters of a vehicle based on the Global Positioning System (GPS)

technology and the Ambiguity Function Method (AFM), is presented. The attitude

parameters are determined by the vector difference between GPS receivers attached to

the vehicle.

Binary chromosome representation of 32 bits is used. The azimuth angle is encoded

in the first 14 bits, the elevation angle in the next 10 bits and the base line length in

the last 8 bits. The minimum steps for each parameter are 0.022, 0.030 degrees and

0.78 millimetres respectively.

In [51] a comparison among a panmictic GA, a panmictic GA with fine and coarse

search stages, and a cellular GA with fine and coarse stages was carried out. Different

array sizes were tested in order to find the best population size to solve the problem.

Algorithmic performances were measured in terms of the average number of generations,

and the hit rate together with the results accuracy. Results showed that a cGA with

population size of 25 outperforms both panmictic GAs approaches.

Stefatos et al. extended the GPS attitude architecture presenting a novel approach

from a fault tolerance perspective to deal with Single Hard Errors (SHEs) and implicitly

with Single Event Upsets (SEUs), both are Single Event Effects (SEEs) subclasses [52].

Erroneous bit flipping in data registers, temporary (SEUs) or permanently (SHEs) is

the effect of this kind of faults. If faulty registers correspond to critical data, the

system’s functionality fails. In the proposed architecture, a faulty scenario considering

stuck at zero faults at fitness score registers was targeted. In the cGA, individuals

with faulty fitness scores are not selected and therefore their solution is not spread

throughout the population.

The fault tolerant architecture is a double layer approach, each layer implements a

cellular GA. A computational layer to determine the GPS attitude parameters and a

control layer to determine the best configuration of individuals or Processor Elements

(PEs) to overcome a faulty scenario. Several experiments were carried out, first only

the computational layer was tested in order to observe how the cGA deals with the

faults. Then the control layer was executed and a performance comparison is carried

out. Results showed a significant improvement in the system’s performance when the
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control layer was active, in the worst case scenarios with 30% and 40% faulty PEs.

Although, using the control layer allows an improvement in the system performance,

there is a significant increment in the use of hardware resources. Another disadvantage

is that the control layer was considered free of faults.

Finally, in [53] a high performance hardware architecture for the GPS attitude deter-

mination problem was presented; emphasis was paid to the speed, power consumption

and hardware usage. Thus, a Coordinate Rotation Digital Computer (CORDIC) mod-

ule was implemented to calculate the trigonometric functions required by the fitness

function [59]. Results fulfil real-time constraints due to the simplified arithmetic units.

This subsection provided a first glance to the fault tolerant arena. In the next section

a more detailed review on this topic is carried out.

2.6 Fault Tolerance

The operation of electronics systems needs to be reliable. However, scenarios exist

where systems are subjected to tough environmental conditions or where human life

could be at risk. For example, systems operating in critical environments such as land,

water, or air craft systems, outdoor operating systems, or medical equipment which

operation not only involve risks but also human life is compromised, either directly or

as a consequence of the results provided by an equipment.

In the first part of this research, the GPS attitude determination problem (see

Chapter 3), is the case study tackled from a fault tolerant perspective. The GPS

attitude module is central to navigation systems. In air navigation, electronic circuits

of an aircraft are prone to radiation due to the effect of high charged particles that

could affect them at an operational or physical level. A complete analysis of this kind

of faults known as Single Event Effects (SEEs) is presented in [60].

SEEs have been researched for more than three decades, in which several approaches

at different system levels have been applied. Among them, the development of SEE

hardened device technologies has relieved some of the problems. However, several dis-

advantages still remain, such as high power consumption, increasing usage of hardware

resources, loss of performance, reduced availability and high costs. Thus, developing

new techniques to deal with SEEs is still necessary not only because of the very elabo-

rated processing on today’s systems but also the sensitivity as regards to smaller fabric

57



sizes.

There are several types of SEEs, in particular Single Hardware Errors (SHEs) and

implicitly Single Event Upsets (SEUs) are investigated in this research. SHEs induce

a lasting change on the operation of a system by permanently stuck at logic zero or

one critical data registers or memory allocations. SEUs are transients or temporal

state changes caused by the energy induced in a device by an ionizing particle such

as a cosmic ray or a proton. The functionality of the system is retrieved after data

rewriting or a system reset.

Developing SEE tolerant systems is nowadays carried out from a functional rather

than a physical perspective, mainly because the energy induced by SEE causes func-

tional impacts by propagating in the worst case scenario to all modules in a system.

This condition has guided SEE analysis to an algorithmic level by identifying the main

functions and critical data that need to meet operational constraints when SEEs occur.

Several approaches have been developed in order to deal with SEEs. Among those,

Triple Modular Redundancy (TMR) with voting, triplicates one or more system mod-

ules [61, 62]. However, the voting module of a TMR system is considered free of faults,

but SEE can still affect it. Moreover, increasing system’s reliability through this method

requires an exhaustive use of hardware resources.

Another hardening technique, known as DICE (Dual Interlocked Storage Cell), is

applied at circuit level [63]. It duplicates the storage latch and uses state restoring

feedback which is more compact and add less delays than TMR systems. Yet, an

important disadvantage of this technique is the difficulty in its application on highly

dense devices due to the significant area overhead.

A widely used combination in VLSI (Very Large Scale Integration) technology is

the FPGA (Field Programmable Gate Array) using SRAM (Static Random Access

Memory). This reconfigurable platform has dramatically increased its density in the

last two decades, making it also very attractive because of small fabric sizes. However,

SRAM is highly sensitive to induced radiation and therefore prone to SEE, in particular

SEU, SHE and their multiple counterpart: MBU (Multiple Bit Upset) [64].

The effect of sizing reduction, low power requirements and high frequencies neg-

atively affect devices reliability. Combining these trends of new technologies has in-

creased the probability of SEEs. Operating on small interconnections at higher fre-

quencies increases the number of errors due to timing constraints violations. On the
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other hand, smaller transistors operating at low power voltages increase their sensibil-

ity to neutron and alpha particles, and therefore higher error rates are observed [65].

Because of the advances in manufacturing processes, permanent faults occurring as a

consequence of physical damage, have been reduced significantly. In contrast, tempo-

rary or transitory and intermittent faults have increased. Hareland et al. empirically

demonstrate the negative effect of fabric size reduction for alpha particles and high en-

ergy neutrons, affecting electronics due to terrestrial radiation. For 0.25 µm technology

at 2V , the SER (Soft Error Rate) resulted in nine times increase considering SRAM or

DRAM (Dynamic RAM) size from 2Mb to 10Mb. In contrast, 0.18µm technology at

1.6V for alpha particles reported an increase of ≈ 90 to ≈ 380 SER for the same S/D

RAM sizes [66].

In [67], the last reliability report of one of the main companies producing FP-

GAs, Xilinx, reports the following SEU and Soft Error Rates measurements in cells

used as configuration memories and block RAM: For 250nm (Virtex family) technol-

ogy node, 160FIT/Mb (Faults in Time per Megabyte) in configuration memory and

160FIT/Mb in block RAM, with an error of ±20%. 130nm (Virtex-II Pro family)

and 90nm (Virtex-4 family) node technologies imply: 386FIT/Mb and 261FIT/Mb in

configuration memory; while in block RAM 655FIT/Mb and 438FIT/Mb are reported

with errors of ±7% and −17%/+22% respectively. One FIT is equivalent to one fault

per 109 operation hours.

Referring to Multiple Bit Upsets for the same Xilinx families, in [68] is reported

that MBUs are more likely to occur in the Virtex family in comparison to the Virtex-II

and Virtex-4 families. Results showed that I/O Blocks are very sensitive to MBU and

in Virtex II and 4 Pro families are nearly as sensitive as CLBs (Configurable Logic

Blocks). The observed MBUs are events of more than 5 bits in the Virtex-4 family.

On the other hand, in the same JPL report, due to fabric size reduction, MBUs are

reported to be 27-33 times more likely to occur in the Virtex II and II Pro families than

in the former Virtex family. Moreover, in 90nm Virtex-4 and 130nm Virtex II and II

Pro, MBUs are 3 and 69 times more likely to occur than in 220nm Virtex family.

Considering the empirical results discussed above, in the next chapter fault tolerant

mitigation techniques are presented and empirically assessed. The case study is the

GPS attitude determination problem which is a hard real-time constrained problem.

Following the remarks of the SEE criticality analysis presented in [60], as being more
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appropriate to deal with SEEs at software and hardware levels; several soft fault toler-

ant mitigation techniques are developed in this research. The proposed fault tolerant

mechanisms take advantage of the algorithmic properties to tackle the problem. A

cellular Genetic Algorithm is implemented and critical data structures are considered

prone to SEE that can lead the system’s normal operation to fail. For example, if the

fitness score or the chromosomes registers are faulty, the cGA would fail in determining

the attitude parameters. These techniques take advantage of the inherent structural

properties of cellular GAs with a minimum increase in the computational cost.
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Chapter 3

On Fault Tolerance

In this chapter, several experimental set-ups to evaluate the ability of cellular GAs to

deal with faults are analysed. Specific types of Single Event Effects (SEEs) known as

Single Hard Errors (SHEs) and implicitly Single Event Upsets (SEUs) are evaluated.

Those kinds of faults cause permanent or temporal changes in system data that can

be critical for normal operation. The operation of real-time systems based on cGAs

platforms, such as the image registration, the tasks scheduling and the GPS attitude

determination problems, are prone to faults due to different reasons, such as tough

environmental operation conditions, highly dense fabrics, induced radiation, among

others. However, fault tolerance requirements are not only necessary in systems which

are susceptible to faults; but indispensable also in systems operating in safety-critical

conditions, such as medical equipment, vehicles for human transportation, among oth-

ers.

In [69], fundamental concepts of fault tolerant systems are introduced. Firstly, the

definition of a real-time system consisting of two aspects: being logically and temporar-

ily correct. Logical correctness refers to the proper functionality of the system while

the temporal correctness refers to the fulfilment of timing deadlines. Secondly, two

independent stages should be considered in a fault tolerant system: fault detection and

isolation followed by fault recovery. In this chapter, the second stage is approached

assuming the isolation of faulty elements. Autonomous execution of both stages is

essential in fault tolerant systems [70].

A representative case study is tackled in this chapter: the GPS attitude determina-

tion problem. This problem presents a number of characteristics that makes it suitable

for analysis from a fault tolerance perspective. Determining the attitude parameters of
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a vehicle is an essential part of its navigation system, in land, water, air or outer space

vehicles. Such a system can be subjected to harsh environmental conditions, including

high doses of radiation which could directly affect data critical to the system. It is a

hard real-time application requiring an adequate algorithmic approach to fulfil timing

constraints. It is also a safety-critical application in vehicles involving people trans-

portation. On the other hand, a permanent failure of an attitude determination module

and therefore of the vehicle’s navigation system mean a loss of expensive equipment for

example in unmanned vehicles.

It is also a system which operation implies people’s safety or high costs in equipment

not accessible for maintenance or repair, such as in unmanned vehicles.

Current research on the fault tolerance arena is a continuation of previous work

in the SLI group. Xu et al. explored the suitability of cellular GAs to solve the

GPS attitude determination problem fulfilling real-time requirements [5]. Thereafter,

Stefatos et al. proposed a fault tolerant architecture to deal with stuck at zero faults at

fitness score registers [52]. An improved high performance version of this architecture

was then implemented [53]. In this research, topological characteristics, such as the

neighbourhood and grid configuration; together with structurally attached operations

of cGAs, such as local selection, migration and replacement policies are investigated as

mitigation techniques to deal with SHEs and implicitly with SEUs.

In order to assess cGAs ability to deal with SEEs, data critical to the system are

subjected to faults. In this chapter, two sections are dedicated to analyse the proposed

fault tolerant techniques. In Section 3.2, SHEs/SEUs are induced at the phenotypic

space in fitness score registers. Three types of faults are considered: stuck at zero,

stuck at one and a combination of both, a hybrid case. In Section 3.3, SHEs/SEUs are

injected in the genotypic space at chromosomes registers which encode the individuals.

The same kinds of faults as in the former case are evaluated. Next, in Section 3.4

a distributed cGA approach is presented aiming to improve the results accuracy and

after that to incorporate fault tolerant mitigation techniques. To begin with in the

next section, the mathematical basis for the GPS attitude determination problem is

explained.
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3.1 Case Study: GPS attitude determination

The electronic circuits of an aircraft vehicle consist of several subsystems. Among

them, the attitude control module represents the navigation core of a vehicle, attaining

and maintaining its position. Hierarchically, the attitude control system is associated

with several subsystems which may include different kinds of sensors, gyroscopes and

support electronics. Recently, a new attitude determination technique based on Global

Positioning System (GPS) technology has been developed [5]. An advantage of this

technique is its simplicity, since it does not employ any elaborated or expensive systems

including solar sensors or inertial elements.

In [5], a cellular GA to determine the GPS attitude parameters of a vehicle was

presented. This approach is based on the Ambiguity Function Method (AFM) which is

a full search technique that can deal with cycle slips but has an expensive computational

cost [71, 72]. The fitness-function of this method measures the carrier phase difference

between two antennas attached to a vehicle. In [51] a cGA is compared against a

standard GA, in both cases, a coarse to fine search process is applied in order to

overcome standstills at local optima. Simulation results were provided in order to show

that cGAs presented superior performance over standard GAs, when using different

population array sizes, the best performance is obtained using an array of 25 individuals.

In [52] a cellular GA to explore the feasibility of a fault-tolerant VLSI architecture

targeting the GPS attitude determination problem, is presented. The performance

of cGAs in the presence of SHEs and implicitly SEUs, which occur at critical data

registers was investigated. Initially, faults were restricted to registers that store in-

dividuals fitness score. SHEs and SEUs are considered as changes in microelectronic

devices caused by the presence of high-energy particles which may induce permanent

or temporary single or multiple bit flips in registers. The fault-tolerant approach pre-

sented in [52] consists of two layers. The first implements a cGA targeting the attitude

parameters determination, while the latter, which is also based on a cGA, acts as a

control to handle faulty processor elements. This hardware design showed to improve

the performance of the system with the inclusion of the control layer in faulty scenarios.

However, implementing a second cGA layer implies a significant increase in hardware

resources usage. Finally, in [53] a high-performance VLSI architecture targeting real-

time operation and the reduction of hardware usage was presented. In the next section

63



Figure 3.1: GPS triangulation

an introduction to the GPS technology is presented.

3.1.1 Brief introduction to GPS technology

GPS is a Global Positioning System used originally in the military arena, but opened

later for civil use. It consists of an array of 24 satellites in six orbital planes with four

satellites on each plane. Each satellite contains four atomic clocks for continuous and

highly accurate repositioning and reorientation. GPS operation is based on measuring

the signals travelling times, and therefore the distances, from several simultaneously

observable GPS satellites to a GPS receiver. Knowing the distances between satellites

and receiver, facilitates the determination of the receiver’s position with accuracy within

meters. The main applications for GPS technology are positioning and navigation. In

[73], an introduction to GPS technology is provided and in [74] mathematical and

algorithmic details are covered.

In Figure 3.1, the process to calculate the position of a GPS receiver is shown. Con-

sidering an Earth centred coordinate system, the intersection of an imaginary sphere

centred at a GPS satellite position and the Earth delimits the searching area of the

receiver position. A second imaginary sphere centred at a second GPS satellite position

reduces the search area for positioning a GPS receiver to a plane. Finally, intersecting

a third imaginary sphere centred at a third GPS satellite position provides a two points

option for the receiver’s position. A fourth GPS satellite measurement is necessary in

order to eliminate any clock error in the GPS receiver using the time provided by a

fourth satellite’s atomic clock.

Calculating the distance (range) between at least four GPS satellites and a receiver
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is necessary to mathematically determine its position. GPS satellites use radio signals.

In order to determine the total distance travelled by a signal, from satellite to receiver,

the velocity of the signal and its time to arrive are required. The travel velocity is

considered to be the speed of light, 300 × 103 km
sec

. Ideally a signal travelling from

a satellite located exactly overhead to a point on the Earth’s surface, takes around

6 × 10−2 seconds to arrive. Yet, higher accuracy is required in GPS calculations and

therefore more information is needed.

Calculating the time for signals to travel from satellites to receiver is done using a

pseudo-random code which is a string of 1023 bits repeated every millisecond. Each

satellite possess a unique pseudo-random code to identify itself once its signal arrives

at the receiver. Only 37 codes out of the total number of possibilities (21023) are weakly

correlated and can be used for this purpose [75]. The same pseudo-random code signal

leaves the satellite and the receiver is delayed until both are synchronized. The pseudo-

random code shifting at the receiver determines how long the signal takes to arrive.

There is another issue to calculate the position of the receiver. Timing at satellites

is as accurate as possible, due to the atomic clocks each satellite is equipped with.

However, receivers’ clocks do not provide the same accuracy, due to obvious cost rea-

sons. Instead, a fourth satellite’s signal is acquired and the difference is calculated

with respect to the other three measurements, calculating in this way the exact signals

travelling time.

The GPS process described before is an ideal one. It means that no induced errors

due to environmental conditions have been considered. Thus, in order to get more

accurate results, error correction is implemented in GPS receivers. It was mentioned

that in order to calculate the distance between satellites and receivers, the speed of

light multiplies the signal’s travel time. However, the speed of light occurs in vacuum

conditions, and the signal travels through several layers with charged particles and

water: the ionosphere and the troposphere. On each of these layers the signals slow

down inducing a delay similar to having a clock error. Determining the error due

to environmental factors can be carried out by modelling these conditions. However,

environmental modelling is not an easy task. Instead, it is possible to compare the

relative difference between two different signals: dual frequency. Yet, that method is

only available in advanced receivers.

Minor timing errors can also be induced by satellites. The GPS constellation has
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terrain stations that frequently communicate with the satellites in order to adjust their

position and orientation. This information known as ephemeris is updated in an al-

manac every receiver has when acquiring GPS signals. However, ephemeris updating

does not happen every second, thus other sources for correction need to be considered.

In order to improve GPS technology to deal in a much better way with those setbacks,

which to date have been accepted as normal in GPS operation and also to achieve

higher accuracy, the differential GPS was created.

Differential GPS has two receivers instead of one. One of the receivers is static while

the other remains mobile. Both receive signals from a satellite which travel through

the same environmental conditions. GPS satellites orbit more than 28 × 103 meters

above the earth’s surface. Thus, a distance on the earth’s surface of a hundred meters,

does not represent a significant change with respect to a satellite orbiting position.

It is considered that the static receiver, due to its fixed and therefore well known

position, will calculate an accurate position, and will provide the mobile receiver with

the corrective factors. In this way, the errors mentioned before can be eliminated.

Because the static GPS receiver knows its actual position accurately. Working as a

differential GPS, it calculates the times for current travelling signals and then compares

their time with its own information. Then, it transfers this information to the mobile

receiver to correct the calculation of its position.

The static GPS receiver does not know which satellite(s) the mobile GPS is using

to makes its calculations. Therefore, the mobile receiver acquires all signals coming

from all visible satellites and transmits all correction factors from those satellites to

the static receiver which decides which one(s) to use. In the next subsection details of

the mathematical method used to determine the attitude parameters of a vehicle are

introduced.

3.1.2 Ambiguity Function Method

Recently, GPS technology has been applied in the determination of attitude parameters

of a vehicle through the calculation of the correct carrier phase integer ambiguity values

[71]. Several techniques have been developed in this regard, such as the Ambiguity

Function Method (AFM) which is a full search method, computationally expensive

but not sensitive to cycle slips that corrupt the measurement of the carrier phase

due to a temporary clock loss during signals tracking [5]. The AFM determines the
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Figure 3.2: AFGA search space

correct carrier phase integer ambiguity values through the calculation of the double

difference observable between satellites and GPS receivers. The AFM function which

guides the search is a multi-peak, non-linear function combining trigonometric functions

such as sine and cosine. GAs have shown their ability to deal with such complicated

search spaces successfully. In Figure 3.2, an example of the search space is presented

considering an azimuth range of 0 to 200 degrees, an elevation range of ±20 degrees

with a fixed baseline.

Figure 3.3 shows how the AFM determines the attitude parameters. The baseline

vector is defined by points A and B which are the extremes of a vehicle where the

GPS receivers are attached. The wave fronts arriving at those points present different

true distances between satellites and receivers. The carrier phase measurement at each

point is defined in terms of the true distance (ρjA, ρ
j
B), the light speed (C), the satel-

lites and receiver clock errors (dT j , dTA, dTB), the ionospheric and tropospheric delays

(djion, d
j
trop), the integer cycle ambiguity (N j

A), and the GPS carrier signal wavelength,

which is λ = 0.19m for commercial GPS receivers. The equation at point A is given

by:

Φj
A = ρjA + C(dT j − dTA) + λN j

A − djion − djtrop (3.1)
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Figure 3.3: Carrier phase measure between GPS satellites and receivers
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If the single difference is calculated, DΦj
AB = Φj

A−Φj
B, only the satellite clock error

is eliminated, but the receiver clock error remains and is coupled to the ambiguity term.

The calculation of the double carrier phase difference eliminates this error. On the other

hand, the ionosphere and troposphere delays are not considered because the distance

between the receivers is assumed to be short, up to 50 meters. The unknown double

difference value for the carrier phase is calculated as:

DDΦjk
AB(ϕ, β, b) = b

[

sinβ
(

sinαj − sinαk
)

+ cosβ
(

cosαj cos(Ωj − ϕ)
)

− cosαk cos
(

Ωk − ϕ
)]

(3.2)

Finally, the fitness function presented in [5, 51] is defined in terms of the angles between

the horizontal and vertical planes and the baseline. The maximum possible value is

close to 1.0 due to the induced noise:

AFGA (ϕ, β, b) =
m
∑

i=1

n
∑

j=2

cos

(

2π

λ

(

DDΦ1j
AB

m (n− 1)
− DDΦ1j

AB (ϕ, β, b)

m (n− 1)

))

(3.3)

where DDΦ1j
AB is the known double difference for the observable carrier phase, n is

the number of satellites (4-6 satellites), and m is the number of epochs, one epoch is

the time interval in which the satellites information is received by the GPS antennas.

3.2 Faults at Phenotypes

In order to assess the inherent ability of cellular GAs to deal with SHEs and SEUs that

could permanently or temporarily affect the operation of a system, several parameters

which directly affect the performance of their search process need to be monitored and

controlled. Those parameters include the migration rate and frequency, the population

size and the local neighbourhood configuration. All of them have a remarkable effect in

the performance of cGAs. By appropriately controlling these parameters, the difficult

search space of the GPS attitude determination problem, presenting a multiple-peaks

landscape, would be effectively explored.

Fitness score registers have been identified as critical and when subjected to faults,

particularly SHEs, the search process is at risk. Representing a major disadvantage to

fulfil hard real-time constraints. It was mentioned before that three faulty scenarios

are evaluated: stuck at zero or stuck at one bits and a hybrid case. The severity of
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faulty scenarios in the phenotypic space depends on the problem to optimize. For

example, minimization would be more affected for stuck at zero faults because locally

during selection, individuals with low fitness scores are more likely to be selected and

consequently, poor solutions could spread. The opposite case occurs in a maximization

case. However, in reality, a hybrid case is more likely to occur. Therefore, all possible

scenarios are evaluated. In the next subsections topics like the operations specific to

cGAs, the proposed algorithmic approach and the injection of faults are covered.

3.2.1 SHEs Mitigation Approach

There are several parameters that affect cGAs operation, such as the size of the grid, the

size and shape of the local neighbourhood, the local selection method, among others.

Initially, the study of cGAs has focused on their algorithmic performance based on

empirical knowledge of those parameters. However, there has been an effort to provide

mathematical models to explain their behaviour, see Subsection 2.4.1.

On the other hand, migration is a genetic operator used in distributed and cellular

GAs to provide genetic diversity among sub-populations and individuals respectively

[22]. Applying migration is useful to exchange genetic material among sub-populations

or neighbourhoods, and to avoid a standstill during the search process. Migration

policies are defined through several parameters such as the number of individuals to

migrate, the migration frequency, and the migration selection and replacement rules. In

[20] several migration policies are compared, results showed better performance when

the best individuals are selected for migration and those replace the worst individuals

in the receiving sub-populations.

In the cGA configuration proposed here, explicit migration is applied to show its

ability as a mitigation technique to overcome faulty scenarios where data critical to

the system are affected. Initially, highest migration rate and frequency are assessed.

Highest frequency means migration occurs every generation, highest rate means all in-

dividuals migrate. Applying bounding cases serve as an indicator of cGAs performance

and normally these parameters are adjusted to intermediate values. Several migration

policies are evaluated and results are provided in Subsection 3.2.4.

Migration would provide every individual with the option of looking for other neigh-

bourhoods which might have less number of faulty individuals. An individual would

not benefit from migration if reproduction is performed in a neighbourhood with solu-
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tions which are worst than its current one. Therefore, several selection and replacement

criteria are evaluated. In Subsection 3.2.3 details about the proposed migration criteria

are presented.

An analysis on selection intensity in cGAs is presented in Subsection 2.4.1. Selec-

tion intensity or selection pressure are referred indistinctly. In cGAs, selection intensity

is tightly attached to the topology in which individuals lie on, and can be controlled

through the size and shape of the local neighbourhood. In [31], it is shown how the

growth rate of the best individual changes according to number of individuals in the

local neighbourhoods and its shape. From the fault tolerance perspective, increasing or

decreasing the selection intensity through the local neighbourhood configuration would

allow to sort out faulty individuals without affecting the results accuracy and the con-

vergence time. In Figure 2.3 several local neighbourhoods named after their shape as

L5, L9, C9 and C13 are drawn. L5 and L9 are cross-like neighbourhoods which include

individuals at North, East, South and West. L5 only evaluates individuals within a

Manhattan distance of one. L9 evaluates individuals within Manhattan distances of

one and two. C9 is a square-like neighbourhood which considers not only L5 individ-

uals but also those at North-East, South-East, South-West and North-West. C13 is a

combination of L9 and C9 local neighbourhoods.

Migration and selection intensity are directly related to cGAs performance. Here,

both are evaluated separately; however a combination of both or a dynamic control of

them is a possibility that need to be explored. In the next subsection, faults specification

and their injection into data critical to the system are provided.

3.2.2 Faults Specification

The kind of faults the proposed cGA deals with are SHEs, but its inherent ability to

overcome SEUs due to their temporary nature is assumed. In a maximization problem

such as determining the attitude parameters of a vehicle; stuck at zero faults in fitness

score registers imply low fitness values for faulty individuals. To simulate that effect,

the fitness scores of faulty individuals are set to zero. Locally, the algorithm selects

the fittest individual as the second parent for reproduction. Thus faulty neighbours

are not selected and their solutions are not passed to the next generations. However,

faulty individuals are possibly good solutions which are ignored, this consequence of

a faulty scenario could induce an increase in convergence time and a possible loss in
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results accuracy. The stop condition of the cGA evaluates that all non faulty individuals

converge to the global optimum.

The opposite case, stuck at one faults, is thought to be more critical. The local

selection method chooses, recombine and spread the solutions of faulty individuals

which might be poor solutions and, due to migration, possibly affect individuals located

at far regions. In Subsection 3.2.4 is demonstrated that the fault tolerant algorithmic

response deteriorates in this faulty scenario. Yet, the cGA still shows certain ability to

converge.

The third faulty scenario evaluates the hybrid case. A combination of stuck at

zero and one bits in fitness score registers which are injected with 50% probability of

occurrence. In Subsection 3.2.4 the experimental constraints are described.

In Figure 3.4, an example of a worst case scenario with 50% faulty individuals is

shown. In the example, the current evaluated individual migrates on a randomly deter-

mined direction (West) with a randomly determined distance (4 positions in Manhattan

distance). Due to local selection, the central individual will always be the first parent

for reproduction. After migration, the new neighbourhood might have less number of

faulty individuals, as it occurs in the example. Several migration criteria are proposed

based on the quality of solutions in the local neighbourhood. More details are presented

in the next subsection.

Figure 3.4: Worst case scenario, 50% faulty individuals
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3.2.3 Algorithm Description

In [5], a double-stage cGA was proposed to tackle the GPS attitude determination

problem. In the first or coarse stage, the algorithm aims to achieve a minimum 0.96

average fitness score, the maximum fitness value is close to 1.0 but less than 1.0 due to

the noise effect. The second or fine stage is performed within a limit in the number of

generations. During the coarse stage the search goes all over the search space. Once the

minimum average fitness score is achieved and the algorithm goes into the fine stage,

the search is locally performed on limited regions of the search space.

Migration among individuals is implemented as a mitigation technique to deal with

faults at fitness score registers. In the cGA proposed here, a single search stage is

performed with a higher convergence threshold of 0.98 average fitness score.

The algorithm promotes the central individual of a local neighbourhood to migrate

to other neighbourhoods located in its own row or column (North, East, South and

West directions). Implying a communications cost reduction because each individual

is connected to those in its same row and column (rows + columns) instead of being

connected to all individuals of the array (row * columns).

Migration distance and direction are randomly defined. Yet, three criteria for select-

ing recipient local neighbourhoods, are proposed: 1) migration occurs on a completely

random base, 2) recipient local neighbourhoods (randomly selected in all directions)

are evaluated in terms of their overall fitness score and selected accordingly and 3)

individuals in recipient local neighbourhoods (randomly selected in all directions) are

individually evaluated and selected to create a new neighbourhood.

On the other hand, the induced selection intensity is controlled through different

local neighbourhood shapes and sizes, and in those cases only the effect of the local

neighbourhood shape is evaluated without introducing any migration. These properties

are evaluated separately to show their benefit but combinations of different migration

rates and frequencies and local neighbourhoods configuration could benefit the perfor-

mance of cGAs.

In Algorithm 5, the cGA pseudocode is presented considering a L5 local neighbour-

hood. For each individual the migration distance and direction are determined in the

reproductive cycle. In line 11, the second parent is selected after migration is applied.

For varying local neighbourhoods, lines 11 and 12 would change to individuals in corre-

sponding neighbourhood configuration (L9, C9, C13), and lines 8 and 9 for migration
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are not executed.

Algorithm 5 Fault Tolerant cGA through Migration

1: procedure cga

2: GPS input data

3: (x)← random (x0) ⊲ initial population

4: (f)← evaluation (x) ⊲ evaluation

5: while k ← 1, generations, or f̄ ≥ 0.98 do

6: for i← 1, popSize do

7: if migration then

8: (ds, dr)← random () ⊲ migration distance and direction

9: end if

10: (fmax)← max
(

fNds,dr
, fEds,dr

, fSds,dr
, fWds,dr

)

⊲ second parent selection

11: (x′1, x
′
2)← spc (xi, xmax) ⊲ single point crossover

12: (x′′1, x
′′
2)← mutation (x′1, x

′
2) ⊲ offspring mutation

13: (fnew)← max (fi, f
′′
1 , f

′′
2 ) ⊲ offspring evaluation

14: (ftemp, xtemp)← (fnew, xnew) ⊲ temporary population

15: end for

16: (f, x)← (ftemp, xtemp) ⊲ whole population replacement

17: end while

18: end procedure

3.2.4 Experimental Results and Analysis

Several test scenarios are considered in order to show the ability of the proposed fault

tolerant cGA to overcome SHEs when migration is applied or selection intensity is

controlled. The following experimental constraints are evaluated:

• Population size: 25, 36, 49 and 64 individuals

• L5, L9, C9 and C13 local neighbourhood configurations

• 10× 103 independent runs per experimental case

• Maximum number of generations: 50

• The stop condition is the population’s average fitness score where ∆f̄ > 0.98
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• The same random faulty distributions are applied in all cases

• The same input GPS data set is evaluated in all cases

In Figure 3.5, results for 25 and 64 processor elements (PE) are shown considering

stuck at zero SHEs at fitness score registers. Regarding convergence time, it is ob-

served that the smaller the array size, the less time the algorithm requires to converge.

However, when faults are induced and migration is applied or selection intensity is in-

creased, the convergence time is reduced in both cases. For 64 individuals the effect

of migration and selection intensity is noticeable because the number of generations

reduces when the faults percentage increases. The reason is, for stuck at zero faults,

the algorithm discards the solutions of faulty PEs and through migration or bigger local

neighbourhoods the alive individuals sort out the faults and converge to the threshold.

However, for hard real-time applications such as the one considered in this study, it is

indispensable to maintain the results accuracy. In Figure 3.5(b), it is observed that an

accuracy loss for 64 individuals is 6x10−4 while for 25 PEs, the loss is 2x10−3 in terms

of fitness score. This loss of accuracy is the result of the population size plus the faults

effect. Therefore, based on the results obtained, a population size of 64 individuals is

more suitable for this application. Finally, in terms of the hit rate or the number of

successful experiments; the bigger the array the better the hit rate when migration or

selection intensity are applied.

The stuck at logic one case is more critical for the algorithm, due to the local

selection method being based on the fittest individual and the consequent dissemination

of poor solutions throughout the population. In Figure 3.7, the fitness score for alive

PEs with faulty neighbours is presented. The worst cases correspond to those PEs

which are surrounded by more than one faulty PE. If only one faulty PE is within the

local neighbourhood the PEs can still converge to the threshold. To show the negative

effect of this faulty scenario, the real fitness score of faulty individuals is obtained and

included in the same graph. It is observed that poor solutions are spread through the

array severely affecting not only adjacent but also distant located individuals due to

neighbourhoods overlapping.

It is observed that without migration and the corresponding selection intensity

of a L5 neighbourhood, the hit rate is unacceptable. Similar results are obtained

for migration policies based on the fittest neighbourhood and the fittest neighbours
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Figure 3.5: Population sizes of 25 and 64 PEs with stuck at zero SHEs at fitness score

registers. Fault mitigation techniques are migration and the configuration of the local

neighbourhood.
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Figure 3.6: Hit rate expressed as the percentage of successful experiments from the

total number of independent runs.

criteria. However, with a random migration policy, the algorithm converges with up to

30% faulty PEs for all array sizes with a considerable increase in the convergence time

while maintaining the results accuracy. In contrast, the hit rate is affected due to the

spread of poor solutions through the array.

Finally, the hybrid case for stuck at logic zero and one at phenotypes is evaluated.

The same experimental constraints are assessed considering 50% probability for zero or

one bit flips to occur. After applying the same migrations policies and different local

neighbourhoods, the cellular GA has shown its ability to deal with faults when applying

a random migration criterion. For other migration policies and local neighbourhood

shapes, the algorithm fails in finding the global optimum. In Figure 3.8 it is shown

how the convergence time increases up to 30 generations in the worst case, while better

accuracy is achieved through a larger population size.

On the other hand, there is a significant loss in the hit rate for 64 individuals. The

reason is the increase in the number of faulty individuals affected by the spread of poor

solutions, with stuck at one faults, throughout the array. Although the percentages

of faults for all array sizes are the same, the faults impact is different. For example,

with 15% of faulty PEs, a 25 array deals with up to 4 faulty individuals, while 64
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Figure 3.7: Non-faulty individuals’ fitness scores surrounded by one or more faulty

individuals with stuck at one SHEs in fitness score registers and corresponding faulty

individuals’ fitness scores are shown for one experimental sample.

individuals deals with up to 10 faulty PEs. Thus, the number of affected individuals

every generation is proportional to the population size. In the next subsection, a

summary of this section is presented.

3.2.5 Summary

The ability of cellular GAs to deal with SHE, and consequently with temporary SEU,

has been empirically demonstrated through the integration of migration and controlled

selection intensity, both specific to cellular GAs. Several migration policies were tested

based on different selection and replacement policies; moreover, the selection intensity

has been modified through changing the local neighbourhood shape and size. It has

been shown that fitness score registers are critical for cGAs based architectures. Faulty

fitness registers misguide the search spreading poor solutions and in worst case scenario

the search stagnates or converge to a local optima. However, it has been empirically

demonstrated that the algorithm could deal with stuck at zero faults without affecting

the performance and reliability of the system. Instead, in the presence of stuck at one

faults, the algorithm can converge only when a random migration policy is applied and
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Figure 3.8: Hybrid SHEs (stuck at zero and one) at fitness score registers. Top graph:

average number of generations for successful experiments. Amid graph: Population’s

average fitness score for successful experiments. Bottom graph: Hit rate or number of

successful experiments.
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faults affect up to %30 of PEs. Similar observations were true for the hybrid case,

stuck at logic one and zero bits. However in this case the cellular GA could deal with

larger faults percentages. Migration and different local neighbourhood configurations

are characteristics specific to cGAs. Boundary conditions for migration and several local

neighbourhoods configurations have been considered and explored, in order to obtain

a general overview of cGAs abilities to deal with faults at algorithmic level. However,

designing efficient, accurate and fault tolerant cGAs implies to finely tune these and

other parameters, not only at topological level but also at algorithmic level. In the

next section, the genotypic space is subjected to SEEs and a fault tolerant algorithmic

perspective is provided.

3.3 Faults At Genotypes

In this section, a fault tolerant approach is developed for the genotypic also known as the

representation space of GAs. Individuals or chromosomes are normally characterized

through binary or real strings, though other representations are also possible. In this

thesis, binary encoding has been used to solve the GPS attitude determination problem.

Yet, problem representation in the evolutionary arena is a research line by itself, for

more details the reader is referred to [7].

The same criterion of Section 3.2 is followed. To investigate the inherent ability

of cGAs to deal with SHEs that could permanently affect the operation of a system.

SEUs are implicitly evaluated due to their temporary nature. The proposed approach

is based on detecting significant changes in genotypic diversity during the evolutionary

process and thus to control the exploration-exploitation trade off through modifying

the neighbourhood to grid ratio (NGR), a parameter specific to cGAs, see Subsection

2.4.1 for more details. By appropriately controlling the NGR, the difficult search space

associated to the attitude determination problem is conveniently explored in terms of

efficiency and efficacy.

In this respect, permanent SHEs and temporary SEUs are targeted at functional

level through the dynamic adaptation of the topology of cGAs. Adding to the fault

tolerant cGA presented in the previous section now to deal with faults at the geno-

typic space. Here the algorithmic approach aims at quantifying the effect of SHEs

in chromosomes registers by measuring the loss of genetic diversity and thus to re-
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act by changing the lattice configuration to mitigate the faults effect. The proposed

algorithmic description is introduced in the next subsection.

3.3.1 Algorithm Description

Structurally, cGAs possess several characteristics that can directly affect the evolution-

ary process and therefore the search’s outcome. As mentioned before, among those

features are the lattice and local neighbourhood size and shape, the implemented local

selection methods, the implicit diffuse migration due to neighbourhoods overlapping,

among others. De Jong et al. assigned an unique numerical measure to the effect of

combining different lattice and local neighbourhood sizes and shapes, that parameter is

known as the neighbourhood to grid ratio (NGR) [31]. In Figure 2.4, the NGR is drawn

for different sizes and shapes of lattices with a L5 local neighbourhood. Corresponding

take over times are shown in Figure 2.7 for square, rectangular and narrow lattices also

with a L5 neighbourhood considering a population of 400 individuals. Results demon-

strated that having lower NGRs indicates more explorative search while higher NGRs

perform a more aggressive search.

Recently, dynamically changing the lattice shape at run time has been investigated

as a resource for appropriately balancing explorative and exploitative stages of the

search [6]. A variety of problems presenting different levels of difficulty were tackled

in order to demonstrate the approach. Promoting solutions exploration or exploitation

through switching the topology configuration improves the search quality in terms of

convergence time and results accuracy. An adaptive cGA implementing a speed measure

for the loss of diversity at the genotypic and phenotypic spaces is proposed. Results

showed improved performances through the proposed approach.

Investigating dynamic changes in the population topology from a fault tolerant per-

spective at the genotypic space is the main aim of the proposed algorithmic approach.

Measuring the loss of genetic diversity due to SHEs -implicitly SEUs- at chromosomes

registers in order to induce a reconfiguration step in the population topology of the

cGA is suggested. In Figure 3.9 an example of a common faulty scenario is shown.

Considering that one or more bits in chromosome x0 are faulty, stuck at one or zero,

and possibly one or more chromosomes of its neighbourhood contains faulty bits too,

in the example xs is also faulty. After local selection and recombination, and even

though x0 mates with a non faulty individual, xe, faulty bits are inherited by the off-
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spring, altering their current genetic material and possibly affecting individuals quality

for future generations. In a way, SHEs/SEUs at chromosomes registers are a form of

mutation, with no rules attached. Due to the permanent nature of SHEs, the effect

of faulty bits will remain in the upcoming generations, while SEUs will be overcome

due to their temporary nature. It is also important to remember that, mutation has in

itself a great effect in cGAs behaviour, as showed in [76, 77].

Figure 3.9: Faulty scenario

Genetic diversity is lost as a consequence of SHEs or SEUs. Measuring the genetic

diversity loss during the search provides enough information to dynamically commute

between square and rectangular grid shapes and promote exploitation or exploration

as required. Balancing exploitation and exploration during the search is necessary.

Excessive exploitation would result in premature convergence to a local optimum. On

the other hand, too much exploration would guide the algorithm to areas of poor

solutions in the search space. Consequently, the processing time would increase and in

the worst case scenario the search would stagnate. If faults are added to this scenario

and SEEs affect the chromosomes registers, to maintain an adequate balance becomes

more important, because non faulty individuals would be able to sort out faulty ones
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and evolve towards the global optimum.

Genetic diversity is calculated based on individuals entropy which is given by the

Hamming distance among chromosomes from one generation to another. In order

to overcome a quick loss of genetic diversity due to the faults, exploration must be

promoted through migration. Thus, individuals surrounded by faulty ones could mate

with distant and possibly non-faulty individuals.

In Algorithm 6 shows the cellular GAs flow chart including the adaptive criteria

to dynamically switch between topologies. ∆Ht = Ht −Ht−1 is the average Hamming

distance between two continuous generations. A decrease in that difference by a fac-

tor (ǫ) implies slow evolution and consequently excessive exploration [6]. Exploring in

excess would increase the number of generations required to converge to the global op-

timum, because the cGA would spend valuable time searching in areas of the landscape

with poor solutions. Thus, switching to a topology with higher NGR is desirable. On

the other hand, if the average Hamming distance between two consecutive generations

increases by a normalized difference of the same factor ((1− ǫ)), it means the search

process is going fast, and therefore too much exploitation is being applied and there is

high probability of premature convergence. Promoting exploration by switching to a

topology with lower NGR would improve the search process. If none of those conditions

are fulfilled the algorithm evolves using the last configuration of the topology.

This adaptive approach was introduced in [6] with an ǫ = 0.05 factor experimentally

determined as an optimum value, based on the results obtained from a set of problems

comprising several optimization features such as: epistasis, multi-modality, deceptive-

ness, etc. The main advantage of this approach is its inexpensive computational cost

which is O (p · l) where p corresponds to the number of individuals and l to chromo-

somes length. In the next subsection, the experimental results and their analysis are

presented.

3.3.2 Experimental Results and Analysis

Several test scenarios are considered in order to show the ability of cGAs to overcome

SHEs/SEUs at chromosomes registers by controlling the NGR. The following experi-

mental constraints are assessed:

• Array sizes of 25, 36, 49 and 64 individuals for square topologies, and 24, 36, 48

and 64 for rectangular topologies,
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Algorithm 6 Adaptive fault tolerant cGA based on genotypic diversity

1: procedure cga

2: GPS input data

3: (x)← random (x0) ⊲ initial population

4: (f)← evaluation (x) ⊲ evaluation

5: while k ← 1, generations, or f̄ ≥ 0.98 do

6: for i← 1, popSize do

7: (f ′)← selection (fN , fE , fS , fW ) ⊲ second parent selection

8: (x′1, x
′
2)← recombination (x0, x

′) ⊲ parents recombination

9: (x′′1, x
′′
2)← mutation (x′1, x

′
2) ⊲ offspring mutation

10: (fnew)← evaluation (x0, x
′′
1, x

′′
2) ⊲ evaluation

11: (ftemp, xtemp)← replacement (fnew, xnew) ⊲ temporary allocation

12: end for

13: (f, x)← (ftemp, xtemp) ⊲ synchronous population’s updating

14: if ∆Ht −∆Ht−1 < ǫ∆Ht−1 then ⊲ promote exploitation

15: Evolve on a square grid; ⊲ high NGR

16: else if ∆Ht −∆Ht−1 > (1− ǫ)∆Ht−1 then ⊲ promote exploration

17: Evolve on a rectangular grid; ⊲ low NGR

18: else

19: Evolve on previous generation grid’s shape;

20: end if

21: end while

22: end procedure
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• L5 local neighbourhood,

• 5x103 independent runs were carried out per experimental case,

• A maximum of 50 generations,

• The same random faults distributions are applied in all experimental cases,

• The same input GPS data set is evaluated,

• Only non faulty individuals are considered for threshold evaluation.

Due to the large number of experimental samples, only results corresponding to 25 and

64 individuals are included in this section. Cellular GAs performances for intermediate

population sizes are observed to be in between those results reported for the smaller

and the larger population sizes. The efficiency of the algorithm is measured in terms of

convergence time as the number of generations required to obtain an optimal solution.

The algorithmic efficacy is evaluated considering the hit rate together with the results

accuracy.

3.3.2.1 Stuck At Zero Faults

In Figure 3.10, results are presented considering stuck at zero SHEs at chromosomes

registers. In terms of convergence time, for lower percentages of faulty chromosomes

(15%), 64 PEs behave in a similar way in both normal and adaptive approaches. In con-

trast, the smaller array 25 individuals, increases its convergence time with the adaptive

approach. With high fault percentages (40%), the adaptive approach shows a reduc-

tion in convergence time for 64 individuals, meanwhile it increases for an smaller array.

In that case, genetic diversity provided by a large number of individuals improves the

efficiency of the larger array.

The results accuracy of 25 PEs shows the adaptive approach outperforms the stan-

dard cellular GA. In Figure 3.11(a), in all percentages of faulty individuals, higher

average fitness scores were achieved. On the other hand, for 64 PEs, the adaptive

approach improvement is noticeable for 30% and 40% faulty individuals. However,

experiments show better results accuracy with the smaller array. In terms of efficacy,

the achieved hit rate is 99% through the adaptive approach while 95% is obtained by

a standard cGA.
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Figure 3.10: Faulty Chromosomes, SHEs Stuck at zero
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Figure 3.11: Faulty chromosomes, average fitness - SHEs Stuck at zero
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3.3.2.2 Stuck At One Faults

Regarding stuck at one SHEs at chromosomes registers, positive results were also ob-

tained. For 25 PEs, the convergence time is reduced when adaptive approach is applied

with fault percentages of 30% and 40%; while the average fitness score is superior in

all cases when compared to the performance of a standard cGA. 64 individuals show

an overall reduction in convergence time for all percentages of faults, while the results

accuracy is also improved.

Chromosomes with faulty bits stuck at one imply in the worst case scenario that

corresponding faulty variables would permanently or temporarily represent their max-

imum rank values (the opposite occurs in the stuck at zero case). However because of

the adaptability of the algorithm, faulty chromosomes are sorted out when migration

is induced by the reconfiguration of the topology. The hit rate is maintained in 99%

for the adaptive and the standard cellular GA.

3.3.2.3 Hybrid Stuck At Faults

Finally, random hybrid faults distributions (stuck at one or zero) are injected in chro-

mosomes registers. The same experimental constraints are assessed considering equal

probability for stuck at logic zero or one bit flips to occur. Results showed an inter-

mediate performance between the two faulty cases evaluated before (stuck at zero or

at one faults). In terms of the average number of generations, the proposed adaptive

approach does not improve the convergence time. Having stuck at zero and one bits

in chromosomes registers could affect individuals fitness scores in many different ways.

For example, if significant bits per encoded variable are affected the individual fitness

score can erroneously and dramatically change. On the other hand, if less significant

bits per encoded variable are affected, it may still be possible for those faulty individ-

uals to spread a solutions that is not importantly affected by the faults. On the other

hand, results accuracy for the standard cGA is improved by the adaptive approach.

The hit rate is the same than in the previous stuck at one faulty scenario.

3.3.3 Summary

In this section, the ability of cGAs to deal with SHEs affecting chromosomes registers

was empirically demonstrated. An adaptive approach to change the topology configu-

ration while measuring the lost of genotypic diversity due to the faults was proposed
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Figure 3.12: Faulty chromosomes, 25 PEs, SHEs stuck at one
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Figure 3.13: Faulty chromosomes, 64 PEs, SHE stuck at one
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and assessed. Changing the topology shape provides either a more explorative (low

NGR) or more exploitative (high NGR) search. The main objective of this research is

to propose mitigation techniques that take advantage of the inherent properties cGAs

possess to deal with permanent bit flips affecting chromosomes data. This study does

not pursue a comparison with today’s state of the art GAs or any other non-evolutionary

optimization tool but to further investigate and extend to the fault tolerant arena the

implicit capabilities of cellular GAs.

The experimental results showed a superior performance for the adaptive approach

regarding results accuracy. Convergence time was better maintained when large ar-

ray sizes were used. The hit rate was similarly maintained in both approaches with

minimum advantage for the adaptive approach for stuck at zero faults.

Measuring genotypic diversity and adaptively commute to a lower or higher NGR

has been an initial step in the investigation of the inherent abilities of cGAs to deal with

faulty scenarios. Monitoring not only genetic diversity but also phenotypic diversity

changes during the evolutionary process, is a desirable combination from a fault tol-

erance perspective. Although genetic changes normally imply phenotypic changes, the

opposite consideration is not always valid. Phenotypic changes do not always represent

an alteration in the genotypic space, and fault tolerance is an example of that. For

example, if faulty chromosome registers have a high fitness score due to stuck at one

faults, and therefore higher fitness scores are obtained, this does not necessarily mean

the algorithm is approaching a global optimum. On the contrary, obtaining higher fit-

ness scores due to genetic diversity loss could cause the algorithm to stay trapped at a

local optimum. Thus, more restrictive criteria for algorithm adaptability are needed. In

the next section, a distributed approach is first analysed aiming to improve the results

accuracy without adding computational cost. Thereafter, a fault tolerant approach is

incorporated. Several experimental set-ups are implemented in order to validate the

proposed approach while the same case study of this section is tackled.

3.4 A Distributed Approach

In this section, a distributed cellular Genetic Algorithm (dcGA) for the implementa-

tion of the GPS attitude determination system is proposed and tested. Previously, a

cellular GA architecture was proposed and comparison among different standard and
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parallel implementations was carried out. However, comparison among those reveals

that accuracy is compromised when the population size is increased. In this section,

a distributed configuration approach is proposed and compared with previous imple-

mentations [5]; a significant improvement in terms of accuracy is reported without

increasing the computational cost.

A fine cellular parallel GA was presented in [51], targeting the GPS attitude deter-

mination problem. Results from a set of experiments with different parameters con-

figuration showed that cellular GAs outperform sequential ones in terms of efficiency

and efficacy. Moreover, another set of experiments considering cellular configuration

and random migration for individuals was also evaluated. It was noted that when pop-

ulation size increases the average fitness score drops significantly. Similar behaviour

was observed for sequential and parallel GA implementations. Meanwhile, the aver-

age number of generations decreased as expected and the hit rate was maintained. The

combined approach introduced here aims at improving results accuracy without increas-

ing computational resources of previous implementations. In order to achieve this, a

combined distributed and cellular GA is proposed. Initially, a fixed configuration is im-

plemented with only certain individuals mating others from different sub-populations

while evolving in parallel.

In Section 2.3, distributed PGAs are introduced including an analysis of their main

characteristics. In [42] and [43], distributed PGAs were tackled through a combined

coarse and fine GA evolving in parallel with predefined time slots for interaction among

sub-populations. It was identified that excessive interaction among sub-populations

could lead the algorithm to perform worse than panmictic approaches. Therefore,

defining an adequate migration criteria is one of the main issues in distributed PGAs.

On the other hand, Gordon et al. evaluated a multiprocessor cGA implementation,

subdividing the whole population in small sub-populations with predefined intervals for

interaction among them [78]. Contrary to expectations, this island approach performed

poorly in comparison to a fully connected grid structure for a test bench of difficult

optimization functions. As mentioned before, a difficult optimization task such as the

GPS attitude problem is targeted here using a distributed cellular GA approach, sub-

dividing the entire population into sub-populations with information exchange among

these only through predefined individuals. Results show to improve a standard cellular

GA.
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3.4.1 Algorithmic Approach

The cellular GA proposed here is a combination of a distributed and a cellular parallel

GA. A structured population on a square grid is divided into sub-populations. In Fig-

ure 3.14 the overall connection scheme is presented. Each sub-population is connected

according to a toroidal like shape with its edges wraparound, thus each sub-population

evolves independently. Interaction among sub-populations is performed through indi-

viduals located at sub-populations corners. Those individuals change their local neigh-

bourhoods configuration to consider individuals located at adjacent sub-populations

corners (Figure 3.14(b) red lines) for selection, and in the case those were stronger

individuals in comparison to local ones, for reproduction. Individuals located at grid

corners require a total of 2 remote accesses (during migration events) and 4 local ac-

cesses for selection and replacement. In this study, interaction among sub-populations

is defined by two migration policies: 1) maximum migration frequency and 2) an adap-

tive migration criterion have been defined based on the loss of phenotypic and genotypic

diversity during the evolutionary process.

(a) Isolated cellular populations (b) Individuals at corners reproduce among sub-

populations

Figure 3.14: Algorithm connection diagram

In [20] and [3] an extensive study of main aspects in PGAs and particularly mi-

gration policies are covered. Random and best individuals selection and replacement

criteria showed to improve the search quality and to reduce the convergence time.
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3.4.1.1 Adaptive Migration

Defining migration policies is one of the main issues in parallel GAs. Applying the

maximum migration frequency (migration takes place every generation) is commonly

used as a reference point for comparison. However, it is known that applying high

migration frequency could lead the search to an exploration excess, where individuals

would probably spend time looking at areas of the landscape with poor solutions. Here,

the adaptive approach measures the loss of phenotypic or genotypic diversity inherent to

the evolutionary process and allows predefined individuals to migrate for reproduction.

Algorithm 7 shows the distributed cellular GA pseudocode for a square grid pop-

ulation subdivided into four sub-populations, considering a L5 local neighbourhood

defined by individuals at North, East, West and South of each chromosome position.

Diversity at phenotypic and genotypic spaces is evaluated: 1) measuring the average

fitness score difference of current and previous generations shows the search progress

in the phenotypic space; 2) the population entropy is measured using the Hamming

distance between individuals from one generation to the other, providing algorithm

behaviour in the genotype space.

Changes in the phenotypic space are defined by ∆f̄t = f̄t − ¯ft−1 and ∆ ¯ft−1 =

¯ft−1− ¯ft−2, which are differences between the current and previous generations in terms

of the average fitness score. On the other hand, genotypic variations are calculated by

∆H̄t = H̄t − ¯Ht−1 and ∆ ¯Ht−1 = ¯Ht−1 − ¯Ht−2, as introduced in [6]. Both conditions

are implemented separately and results are presented in the next subsection. In both

scenarios, increments in more than the normalized difference of a factor (1 − ǫ) in

the phenotypic or genotypic measures, mean that the search process is going fast,

with the risk of a quick loss of diversity and a consequent stagnation in the search.

Thus, exploration is pursued through sub-populations jointly evolving and exchanging

genetic material through their corners. However, if that difference decreases in less

than a factor (ǫ), exploitation should be promoted, through independent evolution of

sub-populations. The epsilon factor is the same used previously in Section 3.3. Having

different values of this parameter imply a stronger or a weaker threshold to determine

the speed of evolution.

An advantage of this dynamic control of interaction among sub-populations is its

low computational cost. Complexity to calculate the average fitness of a population of n

individuals is O (n) and for population’s entropy is O (n · l), where l is the chromosome
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Algorithm 7 Distributed cellular GA algorithm

1: procedure dcGA

2: (x1, x2, x3, x4)← random (x0) ⊲ initialize sub-populations

3: (f1, f2, f3, f4)← evaluation (x1, x2, x3, x4) ⊲ evaluation

4: while k ← 1, generations, or f̄ <= threshold do

5: if ∆f̄t −∆ ¯ft−1 > (1− ǫ)∆ ¯ft−1 then ⊲ sub-populations evolve jointly

6: else ⊲ sub-population evolve independently

7: end if

8: for i← 1, pop size do

9: (f ′, x′)← selection (f, x) ⊲ parents selection

10: (x′′)← recombination (x′) ⊲ parents recombination

11: (x′′′)← mutation (x′′) ⊲ offspring mutation

12: (fnew)← evaluation (x′′′) ⊲ offspring evaluation

13: (ftemp, xtemp)← (fnew, xnew) ⊲ temporary storage

14: end for

15: (f, x)← (ftemp, xtemp) ⊲ replacement

16: end while

17: end procedure
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length. In the following section, experimental constraints and results are presented.

3.4.2 Results Analysis

In [51], Xu et al. proposed a cellular GA to tackle the GPS attitude determination

problem. A comparison among different population sizes and algorithm configurations

was carried out. Initially, a set of standard GA configurations was implemented and

compared. A cellular GA with a L5 local neighbourhood (formed by North, East, West

and South (NEWS) individuals) and two search stages was introduced. In the first or

coarse stage the aim was to achieve a population’s average fitness score of 0.96 and then

a second or fine stage was performed based on the results obtained in the coarse stage;

the evolutionary process is stopped within 200 generations of the fine stage [51]. On

the other hand, two versions of a sequential GA were also implemented and compared:

one with a single search stage and a second with two, coarse and fine, search stages.

Results showed a superior performance of the cellular GA in terms of efficiency (number

of generations) and efficacy (accuracy and hit rate). A second set of experiments was

also evaluated; the main experimental difference was the introduction of a probability

based migration criterion. Migration occurs when an individual evaluates and mates

other from a random or a predefined neighbourhood located at a certain distance. In

that set of experiments, similar performance was obtained in terms of the mean average

fitness score and hit rate, as well as with the average number of generations. The results

accuracy in both experimental sets was lost when the population size was increased [5,

51]. High accuracy is particularly essential for the GPS attitude application tackled in

this study. An increase in the threshold of the stop condition, which is the population’s

average fitness score, from f̄ = 0.98 originally used in [5, 51] to f̄ = 0.99 implies a

variation in the outcome of the attitude parameters of approximately (due to the noise)

ϕ = 0.5 degrees in the azimuth angle and β = 0.1 degrees in the elevation angle. The

experimental results for the algorithmic approach presented here, show improvement

in the results accuracy without increasing the algorithmic cost.

The next experimental constraints are defined:

• Population sizes of 16, 36 and 64 with sub-population sizes of 4, 9 and 16 indi-

viduals,

• L5 local neighbourhood with five individuals in NEWS shape,
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• A limit of 500 number of generations,

• The stop condition is the population’s average fitness score where ∆f̄ > 0.99.

• The same GPS input data set is evaluated in all experimental cases,

• 500 independent runs are performed per case.

As explained in section 3.4.1, the proposed distributed cellular GA subdivides the en-

tire population into four sub-populations; as a reference, internal sub-population data

accesses are considered as local and among sub-populations as remote, regardless the

actual implementation platform. Interaction among sub-population is only allowed for

individuals at corners. For reproduction, each individual at interior grid positions,

requires 6 local data accesses; 4 for selection (4 neighbours), 1 for individual content

retrieval and 1 for offspring placement. Meanwhile, corner individuals perform 4 local

and 2 remote data accesses. If
√
nsub is the sub-population side size, and only individ-

uals at corner can migrate, in total 4
(√

nsub − 2
)

remote accesses per sub-population

are avoided.

In Figure 3.15(a), results for the average number of generations are presented. For

16 and 36 individuals, the standard cellular GA increases the convergence time to

achieve the average fitness score threshold. However, for 64 individuals the algorithm

cannot converge to the threshold in any of the experiments. In contrast, when the

distributed cellular configuration is applied, the convergence time is improved in all

array sizes. The performance difference in terms of convergence time among migration

policies shows a slight improvement through phenotypic adaptive migration in compar-

ison to the maximum migration frequency; the opposite happens with genotypic based

migration. In terms of the hit rate, see Figure 3.15(b), the largest array outperforms

smaller populations achieving up to 90% success. However, even for smaller arrays, the

hit rate is improved through the distributed cellular approach, except for the genotypic

based migration policy which performs poorly. The performance of a population size

of 64 individuals highlights the improvement of having a parallel cellular GA. In com-

parison to previous results [51], where the largest population size of 49 individuals on

a static cellular structure provided an accuracy of 0.980 of the average fitness score.

Results obtained in this study show that the distributed cellular approach overcomes

this threshold without increasing processing resources or algorithmic steps.
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In Figure 3.16, a random experimental sample is drawn showing some snapshots

during the evolutionary process: at the beginning, in the middle and at the end of

an average successful experiment. Darker squares correspond to highest fitness scores

and vice versa. Considering a population size of 64 individuals, the same random

initial population is used in all samples. In the middle of the search, the distributed

cGA has almost conquered the whole population with individuals achieving at least

the average fitness score. Instead, the standard cGA shows more individuals with

lower fitness scores and therefore more phenotypic diversity. Yet, those observations

are not conclusive, because of the stochastic nature of genetic operations where higher

phenotypic diversity does not necessarily means the search would stagnate or would

converge to a local optimum. However, final snapshots reveal something interesting, in

standard cGAs, phenotypic diversity is regained, and due to the applied stop condition

several individuals cannot converge. Distributed cGAs follow a better search strategy by

having more exploitative sub-populations and higher hit rates are in general achieved.

In the next subsection a summary of this section is presented.

Figure 3.16: Snapshot Samples - cellular GA vs distribute cGA
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3.4.3 Summary

A combined distributed and cellular GA has been compared with a standard cellular

GA. The case study was the GPS attitude determination problem which presents a

difficult search space with multiple peaks. Improving the accuracy of the attitude

parameters has been the main aim in this study. Therefore a high convergence threshold

of 0.99 of the average fitness score has been used in all experiments. The distributed

cellular GA has outperformed a standard cGA when using an array with 64 individuals.

The standard cGA fails in all experimental samples while 90% hit rate was achieved

by the distributed approach.

The migration policy which measures the genotypic diversity performed poorly in

comparison to having maximum frequency for migration or phenotypic adaptive mi-

gration. The interaction among sub-populations is limited to individuals placed at grid

corners. Yet the performance improvement is significant.

At algorithmic level, fault tolerance has been investigated in [79] and [80] and in [52]

at implementation level. In particular the inherent ability of cellular GAs to efficiently

retrieve the attitude parameters of a vehicle operating at aerospace environmental con-

ditions has been assessed. In such a system the electronics are prone to faults, such

as SHEs and SEUs, due to radiation. In the next subsection, fault tolerant mitigation

techniques are proposed using the distributed cGA studied in this section.

3.4.4 Fault Tolerance Perspective

To extend into the fault tolerant arena the distributed cGA platform introduced in the

previous section is the objective in this subsection. The algorithm encompasses speed,

adaptability and performance as its key objectives while dealing with Single Hard Errors

(SHE) from the fault tolerance perspective. The GPS attitude determination technique

is also based on the Ambiguity Function Method (AFM) overcoming restrictions and

computational overheads incurred by existing code-phase techniques.

Navigation systems need to fulfil not only time and accuracy constraints, but also

fault tolerance capability must be provided. Electronic systems of air and space crafts

operate at difficult environmental operation conditions, where these are prone to unex-

pected radiation doses. Fault tolerance has been researched following different perspec-

tives; for example, hardened devices have been developed in order to protect electronic

modules; however, low availability and consequently high costs are disadvantages of
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this approach. Thus, tackling fault tolerance at an algorithmic level could substitute

or strengthen hardware oriented techniques. In the next subsection the fault tolerant

approach proposed in this study is detailed.

Overall, the proposed approach is based on measuring the population diversity

during the evolutionary process and thus to control the exploitation-exploration trade

off. An adaptive control to dynamically switch from exploration to exploitation to guide

the search process has been performed based on phenotypic diversity changes during

the evolutionary process. Applying this adaptive approach improves the distributed

cellular GA performance when Single Hard Errors (SHEs) occur during the search; the

loss of diversity due to this kind of faults at fitness score registers is investigated.

Results show a superior performance for the distributed and adaptive approach

with the added ability to deal with SHEs at fitness score registers. Convergence time is

better maintained when applied to large array sizes. This algorithmic approach would

provide an architecture for the GPS attitude determination problem which meets the

goals of speed, accuracy, adaptability and performance.

3.4.4.1 Evolutionary Approach

A distributed parallel cGA with several independent sub-populations evolving with

the possibility of information exchange among them during predefined time slots is

implemented from a fault tolerant perspective. Having cellular structures on each

sub-population has among other advantages, the fast spreading of solutions due to

neighbourhoods overlapping. In Figures 2.1 and 2.2, diagrams for distributed and cel-

lular GA approaches are drawn. An important characteristic of distributed and cellular

GAs are the super-linear speedups they can achieve due to their massive parallelism, a

detailed review of PGAs speedups is provided in Subsection 2.4.2. Among others, those

abilities make distributed cGAs suitable to deal with the difficulties the GPS attitude

determination problem presents.

In cellular GAs, the neighbourhood to grid ratio (NGR) determines the strength of

the selection intensity with which the search is performed. Normally, it is considered

that having an explorative search at the beginning followed by a more aggressive or

exploitative search, is an appropriate way to deal with hard landscapes. However, the

selection intensity in most evolutionary techniques remains constant during the search,

unless genetic operation parameters are modified at run time. Yet, cellular GAs possess
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structural properties that can be dynamically modified and thus varying the induced

selection pressure.

The same configuration topology presented in Figure 3.14 is used. A structured

population implemented on a square lattice is divided into sub-populations. Each

sub-population is connected through individuals located at the corners. However, the

independent evolution of sub-populations is prioritized. The interaction among sub-

populations is ruled by several migration policies which have been defined and em-

pirically assessed. The fault tolerant response of the distributed cGA is based on its

ability to react when phenotypic diversity is lost because of SHEs affecting its fitness

score registers. Therefore, migration acts as a regulator to allow certain individuals to

migrate to those sub-populations affected by faults.

In genetic algorithms the phenotypic space is where solutions are represented by

their fitness values. When SHEs affect the fitness score registers triggering either faulty

low or high fitness scores due to stuck at zero or one single or multiple bit flips, weak or

strong individuals can be wrongly selected or discarded from the evolutionary process

and negatively impact the outcome of the search.

As mentioned before, defining adequate migration policies is one of the main issues

in parallel GAs. Applying the maximum migration frequency (migration is performed

every generation) could lead the search to an exploration excess, where individuals

would spend time on areas of the search space possibly with poor solutions. The

adaptive approach measures the way in which phenotypic values are affected by SHEs

and promotes the exchange of predefined individuals through migration. Algorithm

7 describes the distributed cGA using a population placed on a square grid which is

subdivided in 4 sub-populations, with a L5 local neighbourhood. The overall condition

for the migration of individuals is defined by the average fitness score difference in

the current and previous generations. This change is defined by ∆f̄t and ∆ ¯ft−1. An

increase in the overall fitness score by a factor (1− ǫ) indicates that the search process

is going fast, with the risk of quick loss of diversity and stagnation; this possibility is

increased by SHEs at fitness score registers. Promoting exploration through migration

is a way to overcome both effects and lead the search to the global optimum. On

the contrary, if this difference decreases by the same factor (ǫ), exploitation should be

promoted internally in each sub-population. Low computational cost is an advantage of

the adaptive approach; the complexity to calculate the average fitness of a population
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of n individuals is O (n). In the next subsection, the experimental constraints and the

results analysis are presented.

3.4.4.2 Results Analysis

The same experimental constraints defined in Subsection 3.4.2 are evaluated. For com-

parison, the performance of a standard cGA is used as a reference. The stop condition

forces most of the individuals to have achieved a solution of the same quality. A thresh-

old of 0.99 of the population’s average fitness score is the stop condition. This threshold

is empirically determined in non faulty conditions presenting a hit rate of 50%, 25%

and less than 5% for 16, 36 and 64 individuals respectively.

The first faulty scenario is stuck at zero SHEs at fitness score registers. The same

random faults distributions are injected in all independent runs. For experimental

purposes three values for the ǫ factor are evaluated. When ǫ = 0.05 migration scarcely

occurs. In contrast, ǫ = 0.3 is a more flexible condition for individuals to migrate. In

the experimental set-up, an intermediate value has also been experimentally assessed:

ǫ = 0.175. The ǫ factor was originally introduced by Dorronsoro et al. in [6].

A total of 200 independent runs are performed for each experimental case with up

to 25% of faulty individuals. In Figure 3.17(a), the average number of generations is

presented for three population sizes. In general, the distributed cGA that measures the

effect of SHEs in the phenotypic space outperforms the standard cGA. In the figure,

from left to right the first two blue columns correspond to the simulation of the stan-

dard cGA and the rest to the distributed cGA approach. The convergence time changes

according to the population size. The condition to fullfil if migration were to happen

with ǫ = 0.05 is tougher. Therefore this configuration provides in general a better

convergence time for all population sizes. In terms of the hit rate, the largest popu-

lation with 64 individuals outperforms smaller arrays. In particular, the distributed

cGA significantly improves the hit rate of the standard cGA. The improvement is a

consequence of being able to sort out the scenario of possibly having strong individuals

with faulty fitness scores which are not selected for mating.

In the second faulty scenario with stuck at logic one bits at fitness score registers, the

same experimental constraints are evaluated. However, the amount of faulty individuals

is reduced to 10%, because this case is more difficult to deal with. The selection of

faulty individuals causes that possibly weak individuals are quickly spread throughout
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(a) Average number of generations

(b) Hit rate

Figure 3.17: Stuck at zero faults at fitness score registers
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local subpopulations and among subpopulations.

It was mentioned before that the same grid configuration and migration policies are

assessed in this subsection from a fault tolerant perspective. The performance of the

standard cGA is negatively affected. Low hit rates are reported, from the total number

of independent runs, only 5% converge. The average number of generations to find the

global optima for the proposed distributed cGA increases to 250 generations and the

hit rate is 50% for a population size of 64 individuals. These results provide a reference

of the criticality of this faulty scenario as the hit rate is not acceptable for the GPS

attitude determination problem.

Although, the distributed cGA outperforms the standard cGA, those results only

provide an overview of the criticality in this faulty scenario and the proposed algorithmic

approach is a base for further investigation.

In the last faulty scenario, bits at fitness score registers are stuck at zero or one

logic (hybrid case). Faulty zero and one bits are induced with the same probability.

Therefore, strong and weak individuals are wrongly selected for reproduction and the

offspring spread locally and then globally in the distributed cGA and only globally in

the standard cGA.

The same experimental constraints are applied and results show that the standard

cGA is not able to cope in this faulty scenario. Not only weak individuals are quickly

spread and mated with others selected as a result of SHEs, but also possibly strong

individuals are discarded for reproduction. On the other hand, the distributed cGA is

able to cope with this scenario, with up to 10% of faulty chromosomes, with hit rate

of 70% which is also the best hit rate, and an average processing time of less than 80

generations for the largest array. Similar to the previous case, this faulty scenario must

be reassessed from a local perspective together with the benefits of adaptive migration

on a distributed cGA which clearly improved a standard cGA. In the next subsection,

a summary of the study is presented.

3.4.4.3 Summary

A fault tolerant and dynamic approach targeting the GPS attitude determination prob-

lem has been investigated. An evolutionary platform based on a distributed cGA has

been assessed when SHEs affect the fitness score registers. The experimental results

have confirmed that a distributed cGA outperforms a standard cGA in several faulty
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scenarios. The importance and influence of migration policies have also been investi-

gated. The distributed cGA with an array of 64 individuals improves its convergence

time and its hit rate in most faulty scenarios. For example, the hit rate is negatively

affected in faulty scenarios where bits are stuck at one or a combination of stuck at

zero and one bits. Although, the obtained hit rate is not adequate for safety-critical

applications such as the GPS attitude determination, a distributed cGA does improve

the hit rate in these critical faulty scenarios. Thus, the results obtained in this research

confirm the ability of distributed cGAs to deal with SHEs in fitness scores registers.

3.5 Chapter Summary

This chapter has investigated the inherent abilities of cellular GAs to deal with SHEs

and implicitly SEUs. Data critical to the system has been targeted such as fitness score

and chromosome registers or memory allocations. Faulty scenarios were evaluated

considering stuck at zero, stuck at one and a hybrid case with stuck at zero and one

faults. The main idea is to take advantage of cGAs’ structural properties to overcome

faulty scenarios. The contribution to knowledge in this topic is:

• Migration operation was proposed and assessed as a mitigation technique to deal

with faults affecting fitness score registers. Several migration policies were de-

fined and evaluated based on random, best neighbourhoods and best neighbours

selection.

• The configuration of the local neighbourhood was proposed and assessed as a

way to provide every individual with more alternatives for selection and therefore

to avoid faulty individuals. It is also used as a measure to modify the induced

selective pressure for a better balance of the exploration-exploitation trade-off.

Several local neighbourhoods configurations were evaluated with a minimum of 4

and a maximum of 12 neighbours.

• The proposed mitigation techniques were able to deal with randomly generated

faulty scenarios within limits. Faults criticality implies that potential solutions

are discarded for selection (stuck at zero) while poor solutions are selected for

reproduction (stuck at one). The second case is much harder.

• Fault tolerant cGAs were able to deal with stuck at zero faults and improve
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algorithm’s efficiency and efficacy for higher percentages of faulty individuals

using large population sizes. However with stuck at one faults the hit rates in

most experimental cases dropped significantly. Only through random migration

the algorithm was able to cope with the faults. The hybrid faults case provided

intermediate performance results.

• Another proposed and assessed mitigation technique is to measure the genotypic

diversity loss due to SHEs affecting chromosomes registers and to modify the

configuration of the topology as a way of providing lower selective pressure and

therefore a more explorative search; and moreover to explicitly migrate individuals

in order to sort out faulty individuals.

• The proposed mitigation technique was able to deal with stuck at zero SHEs at

chromosomes registers while improving the algorithmic efficacy. On the other

hand, with stuck at one faulty bits there was also a slight improvement in results

accuracy and in the average number of generations to converge to the global

optimum.

• A distributed parallel approach was proposed and assessed to improve the results

accuracy. Empirical results showed an improvement of f̄ = 1× 10−2 in the pop-

ulation’s average fitness score that implies a variation in the attitude parameters

of ϕ = 0.05 degrees for the azimuth angle and β = 0.01 degrees for the elevation

angle.

• A fault tolerant approach was then introduced to tackle SHEs and implicitly SEUs

affecting fitness score registers using the proposed distributed parallel approach.

The idea behind is to balance the exploration-exploitation trade-off to deal with

the loss of diversity due to the faults.

In this chapter the case study has been the GPS attitude determination problem.

The operational constraints of this problem make it an interesting case for investigation

from algorithmic and implementation perspectives. However, focusing on a single prob-

lem does not allow to validate the effectiveness of cGAs when tackling hard optimization

problems. In the next chapter, the dynamics of cGAs are further investigated through

a more complete set of test problems presenting a wide variety of characteristics and

therefore different levels of difficulty.

107



108



Chapter 4

On Dynamic Cellular Genetic

Algorithms

Providing a deeper insight into the flexibility cellular GAs inherently possess is the aim

of this chapter. When appropriately exploited, cGAs’ unique properties as regards the

interaction of individuals enhance their searching abilities. In EAs, the main interest

is to preserve population diversity through satisfactorily balancing the exploration and

exploitation of solutions throughout the search space; in order to successfully converge

to the global optimum in the minimum number of generations [81]. In this regard,

structural properties of cGAs have shown their effectiveness in maintaining this balance,

in several cases improving cGAs performance [31]. In this chapter, a dynamic cellular

approach that internally reconfigures a traditional square topology into smaller sub-

cellular structures is investigated.

In order to validate the importance of decentralized GAs, authors have compared

their results to those of standard GAs, and to those from improved versions of standard

GAs, such as the steady state GA or the generational GA. In several cases, cGAs were

proved to perform better in terms of algorithmic efficiency and efficacy [41]. In sub-

section 2.4.4 a comparison between steady state, generational GAs and cellular GAs

has been included. The effect of synchronism in migration policies of distributed ap-

proaches using cGAs or panmictic independent populations, has also been studied and

compared. Asynchronous and low frequency migration in distributed PGAs outper-

formed synchronous migration policies [42]. On the other hand, the ease of implemen-

tation of processor elements in cGAs is also an advantage that has been investigated
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and implemented [53].

Alba et al. have widely studied decentralized GAs [82]. An important area covered

by their work is to compare distributed parallel GAs considering homogeneous or het-

erogeneous populations or a mixture of these. In [21, 12] a detailed analysis of several

approaches at algorithmic and implementation levels is presented. Configurations of ho-

mogeneous sub-populations (only panmictic or cellular), heterogeneous sub-populations

(a mixture of panmictic and cellular), comprising several migration and replacement

criteria are evaluated. In general, those results showed an improved performance of dis-

tributed cellular GAs in terms of efficacy over panmictic distributed PGAs. However,

cellular GAs showed slower convergence times than standard steady-state distributed

GAs. Communication among sub-populations was also assessed. Asynchronous com-

munication leads to faster convergence and better speed-ups than synchronous ones.

As discussed in previous chapters, in cellular GAs the population is distributed in

a torus like grid structure with wraparound edges. One individual is placed per grid

position and can only interact with nearby neighbours. Several parameters need to

be configured in order to achieve an optimum algorithmic performance, such as, the

shape and size of the local neighbourhood and the population topology, the migration

rate and frequency (in case explicit migration occurs), local selection and replacement

policies, among others [13].

Previously, researchers have proposed to manipulate the structure of cGAs to con-

trol the selection pressure. In [83] disturbances are induced in order to create inner

islands and thus modify the selective pressure. Results improved the accuracy of results

but a statistical analysis was not provided. The stop condition compares the solutions

quality after a certain number of generations. However, it is believed more appropriate

to evaluate the algorithmic performance once a solution of the same quality has been

achieved. In [6], the dynamic reconfiguration of the population topology is introduced.

The proposed approach implies an explicit form of migration which occurs during the

relocation of individuals. The reconfiguration of the grid is performed after a specific

number of generations or adaptively. Once the lattice shape has changed, individuals

interact with others previously located at non-adjacent positions and therefore diversity

is promoted. In this chapter, the proposed dynamic reconfiguration mechanisms main-

tain the original adjacency of individuals while changing internally the configuration

of the topology. Therefore any improvement in the algorithmic performance is only
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a consequence of the lattice reconfiguration mechanism with no intervention of other

genetic operations. The proposed mechanisms are applied to a set of continuous, real

and combinatorial problems presenting characteristics such as multi-modality, epistasis,

deceptiveness and non-regularity.

In the next two sections, dynamic cellular GAs are investigated from a structural

perspective. In Section 4.1 the structural properties of cGAs are dynamically modified

in order to improve their performance. In Section 4.2 a local selection method that

takes advantage of the structural characteristics of cGAs topology is studied and dy-

namically modified. Most benchmark problems included in Appendix A are assessed

in the following sections.

4.1 Dynamic cGAs Based on Structural Properties

Cellular Genetic Algorithms (cGAs) have attracted the attention of researchers due

to their high performance, ease of implementation and massive parallelism. Research

has been carried out not only from an empirical point of view but also in an effort

to establish a theoretical base to provide modelling tools that contribute to cGAs un-

derstanding. Maintaining an adequate balance between exploitative and explorative

search is essential when studying evolutionary optimization techniques. In this re-

spect, cGAs inherently possess a number of structural configuration parameters that

are able to contribute in sustaining diversity during evolution. In this chapter, the in-

ternal reconfiguration of the lattice is proposed, to constantly or adaptively control the

exploration-exploitation trade-off. Genetic operators are characterized in their simplest

form since algorithmic performance is assessed based on the implemented reconfigura-

tion techniques. Moreover, internal reconfiguration allows the adjacency of individuals

to be maintained. Hence, any improvement in performance is only a consequence of

topological changes. Two local selection methods presenting opposite selection pres-

sures are implemented in order to evaluate the influence of the proposed techniques.

To provide a deeper insight into the great flexibility cellular GAs inherently pos-

sess, their unique properties as regards the interaction of individuals are investigated

with the aim of enhancing their searching abilities. In EAs, the main interest is to

preserve population diversity through satisfactorily balancing the exploration and ex-

ploitation of solutions throughout the search space; in order to successfully converge to
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the global optimum in the minimum number of generations [81]. In this regard, struc-

tural properties of cGAs have shown their effectiveness in maintaining this balance,

in several cases improving standard cGAs performance [31]. In this study, a dynamic

cellular approach that internally reconfigures a traditional square topology into smaller

sub-cellular structures is investigated.

As a result of the population topology and the local neighbourhood configuration,

the selection pressure characterized by the NG ratio, can be constantly or adaptively

controlled in order to improve the performance of cellular GAs. Previously, researchers

have proposed dynamically reconfiguring the population topology [6]. However, a form

of migration occurs during the relocation of individuals; this approach from now on

is named as external lattice reconfiguration. Three main scenarios were evaluated:

static (fixed topology shape), pre-programmed (reconfiguration at predefined time slots)

and adaptive (dynamic reconfiguration). Statistically significant results were obtained

for several difficult benchmark problems. The mapping of individuals, after grid re-

arrangement, induces a loss of the natural adjacency of individuals. In this chapter,

adjacency among individuals is maintained while constant or adaptive lattice reconfig-

uration is carried out by subdividing the entire population into smaller square, rectan-

gular or linear toroidal arrays, with no induced migration among them apart from the

neighbourhoods overlapping. The proposed internal reconfiguration mechanisms are

applied to a set of continuous, real and combinatorial problems covering characteristics

such as multi-modality, epistasis, deceptiveness and non-regularity.

4.1.1 Selection Pressure Control

The selection pressure is controlled constantly or adaptively through the internal re-

configuration of the population topology. Internal reconfiguration means that there

is no alteration to the natural adjacency of individuals. In cellular GAs, the number

of generations the best individual of an initial population needs to spread its solu-

tion throughout the grid under selection operation only, indicates the intensity of the

selective pressure [31, 32].

Selection pressure in cGAs provides important information about the evolutionary

process showing different levels of exploration or exploitation with which population

topologies contribute to the search. In [82] selection pressure is considered as an indica-

tor of the search speed. If the average fitness increases drastically from one generation
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to the other, the search process proceeds rapidly and therefore exploitation is high. On

the other hand, if the average fitness of the population is the same or has decreased

compared to previous generations, it means the population is slowly evolving. Thus

individuals are widely spread throughout far-off regions of the search space. Although,

this analysis covers several possible scenarios, it does not include all of them. For ex-

ample, individuals can be loosely located over the landscape and their average fitness

could be increasing or vice versa.

Researchers have demonstrated that the exploration-exploitation trade-off can be

implicitly controlled in cGAs through the configuration of the population topology and

the local neighbourhood [46, 26]. A measure known as the neighbourhood-grid ratio

(NGR) has been defined in order to model this behaviour. In Figure 4.1, four popu-

lation configurations are drawn. Internally, smaller cellular structures imply a higher

or lower NGR, that as a whole would modify the search making it more exploitative

or explorative. Configurations denoted by n
(

1× n
2

)

and 2
(

n
2 × n

)

in Figure 4.1, are

considered in both vertical and horizontal alignments. These lattice configurations have

been used in the experimental set-up.

The NGR was first introduced by De Jong in [31]. Details of how the NGR is cal-

culated are provided in Chapter 2, subsection 2.4.1. For most topologies in Figure 4.1,

a compact Von Neumann local neighbourhood is used consisting of individuals located

at North, East, South and West with Manhattan distance of one from the central in-

dividual; except in linear lattices (n
(

1× n
2

)

) that employ a linear local neighbourhood

with Manhattan distance of two.

For a population of 400 individuals, the dispersion measures for the Von Neumman

and the linear local neighbourhoods are DvonNeumman = 0.8944 and Dlinear = 1.4142

respectively. The corresponding average NGR for the cellular configurations drawn in

Figure 4.1 are as follows:

• NGRn×n = 0.1093

• ¯NGR2(n
2
×n) = 0.1380

• ¯NGR4(n
2
×n

2
) = 0.2169

• ¯NGRn(1×n
2
) = 0.4780

A square topology (n × n) is more explorative (lower ratio), while dividing the
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population in two rectangular grids (2
(

n
2 × n

)

) results in having more exploitative

sub-arrays with in average higher NGR.

Having different ratios means having higher or lower selection pressures. Therefore,

decentralized GAs are structurally capable of modifying the selection pressure while

changing the population structural configuration. Previously, Dorronsoro et al. pro-

posed several constant and adaptive criteria to externally modify the induced selection

pressure in order to improve the performance of cGAs [6]. However, that approach

implies an inherent migration mechanism; through it, new positions are calculated for

individuals when the population topology is changed among square, rectangular and

narrow lattice shapes. Although results showed an improvement in performance for

several benchmark problems, it is not clear if this improvement is purely due to con-

trolling the NG ratio or if it is also a consequence of migration. Controlling, constantly

or adaptively, the NG ratio while maintaining the original adjacency among individuals

is the aim in this study.

In order to characterize selection pressure in cellular GAs, the take-over time con-

cept is used. This is also referred, in cGAs, as the proportional growth rate of the

best individual. The take-over time reflects how long it takes for the best individual to

spread its solution throughout the whole lattice, applying only local selection. Thus,

longer take-over times represent lower selection pressure and therefore more explorative

behaviour. In contrast, shorter take-over times correspond to higher selection pressure,

equivalent to a more exploitative search. More details on take-over time theory are

included in Chapter 2, Subsection 2.4.1.

At a local level, two different selection methods are applied; widely known binary

tournament selection and ad-hoc for cellular GAs, anisotropic selection proposed by

Simoncini et al. [84, 29]. These selection methods provide distinctively opposite selec-

tive pressures. Binary tournament is highly exploitative in comparison to anisotropic

selection which is more explorative.

In Figure 4.2, the proportional growth curves for both selection methods are shown.

One hundred experiments for a population of 400 individuals were performed. Only

constant lattice reconfiguration among topologies drawn in Figure 4.1 is performed.

Constant reconfiguration occurs every 5 generations. Once an initial population is

created, evolution starts on a 4
(

n
2 × n

2

)

topology. Thereafter, every 5 generations a

different lattice reconfiguration performs the search, in a cycle from high/middle to
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lower selection pressure. For n
(

1× n
2

)

and 2
(

n
2 × n

)

formations, horizontal or vertical

alignments are executed with probability P = 0.5. Adaptive lattice reconfiguration

is not subject to proportional growth analysis since it depends on the diversity of

phenotypes or genotypes; information that is not available if only local selection is

applied.

In a n × n square topology, binary tournament induces higher selection pressure

than anisotropic selection which is more explorative. In Figure 4.2, corresponding

take-over time curves for binary tournament are much closer than anisotropic selection

curves. Therefore, anisotropic selection through constant lattice reconfiguration allows

a wider span to dynamically adjust the selective pressure in comparison to binary tour-

nament selection. Moreover, on a static square topology, anisotropic selection is more

explorative when compared to constantly reconfiguring the grid. This behaviour is not

repeated through binary tournament selection, presenting more explorative behaviour

when constant reconfiguration is performed. In the following section, the details of

the algorithmic procedure and the diversity measures for lattice reconfiguration are

provided.
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Figure 4.2: Take-over time for binary tournament and anisotropic local selection meth-

ods. Constant reconfiguration is performed using the four topologies drawn in Figure

4.1
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4.1.2 Cellular Configuration

This study proposes to constantly or adaptively reconfigure the internal population

topology to inherently tune the neighbourhood to grid ratio (NGR), and thus achieve

an appropriate balance between searching exploration and exploitation, essential for

maintaining population diversity during evolution. In this proposal, lattice reconfigu-

ration is implemented by subdividing a squared population into smaller squared, rect-

angular or linear toroidal arrays. A similar approach has been referred to as a parallel

cellular GA [82]. However, that approach has a fixed internal configuration. Whilst

an homogeneous distributed or an island cGA model is one possible perspective [85],

migration policies have not been investigated nor implemented. During constant or

adaptive periods of evolution, smaller topologies maintain internally toroidal connec-

tions [18, 86].

In Algorithm 8, the pseudocode for the proposed cellular GA approach is included.

A single random seed is used to generate the entire initial population. Two topol-

ogy configurations are evaluated to start the search process; the population is initially

evolved on a 4
(

2
n
× 2

n

)

or a n× n topology configuration (line 2). For each individual,

neighbours located at North, East, South and West positions are evaluated in order to

select a second parent for reproduction (line 7). Two local selection methods presenting

opposite selection pressure are applied for experimental purposes. Binary tournament

presents higher selection pressure than anisotropic selection. After synchronous updat-

ing (line 16), the population’s average fitness score is verified as the stop condition (line

17), if the problem specific threshold has not been achieved, lattice reconfiguration is

performed either constantly or adaptively based on phenotypic or genotypic diversity

measures (line 22).

Binary tournament randomly chooses two individuals from the local neighbour-

hood and the best one (x′) is mated with the central individual (x0). On the other

hand, anisotropic selection requires an extra parameter (α) that leads the search in

North-South or East-West grid directions. Thus, anisotropic probabilistic equations

are defined for each individual in the neighbourhood as: PN = PS = P0 (1 + α) and

PE = PW = P0 (1− α); where P0 is the uniform probability for each neighbour to be se-

lected. If α = 0.8 and P0 = 0.25, individuals at North and South positions are assigned

with higher probabilities for selection compared to East and West individuals that re-

main with lower selection probabilities. In this way the search process is directionally
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Algorithm 8 Reconfigurable cGA

1: procedure cGA

2: n× n | 4(n2 × n
2 ) ⊲ Initial topology configuration

3: for k ← 1, gens do

4: for i← 1,m do

5: for j ← 1, n do

6: x0 = x(i, j); f0 = f(i, j);

7: (fn, fe, fs, fw)← evaluation(xn, xe, xs, xw);

8: (x′)← selection(xn, xe, xs, xw);

9: (x1, x2)← recombination(x0, x
′);

10: (x′1, x
′
2)← mutation(x1, x2);

11: (f ′
1, f

′
2)← evaluation(x′1, x

′
2);

12: (f ′
0)← [max|min](f0, f

′
1, f

′
2);

13: (xtemp(i, j), ftemp(i, j))← replace(x′0, f
′
0); ⊲ Replace policy if-better

14: end for

15: end for

16: x = xtemp, f = ftemp; ⊲ Synchronous updating

17: if f̄ <= threshold then

18: stop;

19: else

20: next;

21: end if

22: CLR | PLR(f) | GLR(x); ⊲ Execute lattice reconfiguration mechanism

23: end for

24: end procedure
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guided and adjusting the α parameter would supply higher or lower selection pressure

[87, 84]. For experimental purposes, α = 0.8 has been used due to presenting lower

selection pressure and thus being more explorative. Although fewer studies have been

reported using anisotropic selection in cGAs, this method does provide more flexibility

in terms of selection pressure while taking advantage of cGAs structural properties with

the added effect of the reconfiguration mechanisms proposed in this research.

Recombination is performed using Single Point Crossover (SPC) with the highest

probability and constant low mutation probability. Both genetic operators have been

applied in their simplest form, as it is not the objective of this research to evaluate

the effect of either of them but to widely investigate the effect of dynamically changing

selection pressure through cGAs structural properties. Although it is outwith the scope

of this research, particular attention should be paid to mutation as its effect has been

modelled for cellular GAs as an essential control parameter to lead or mislead the search

[76, 77].

4.1.2.1 Constant Lattice Reconfiguration

In Algorithm 8, line 22, [CLR|PLR (f) |GLR (x)] corresponds to Constant Lattice

Reconfiguration, Phenotypic Lattice Reconfiguration or Genotypic Lattice Reconfigu-

ration, respectively.

CLR is detailed in Algorithm 9. A constant interval of c number of generations

is defined for lattice reconfiguration to be performed (line 2). In both experimental

set-ups, c is set to 5 generations. That interval was selected following the experimental

constraints implemented in [32] where GP island models were evaluated with larger

population sizes. However, the constant frequency for cellular sub-structures to re-

configure the overall population topology is a free parameter that can be empirically

assessed. For rectangular and linear grid configurations (see Figure 4.1), both horizon-

tal and vertical alignments are performed each with 50% probability. Thus the NGR

is constantly decreased or increased in a cyclical pattern.

4.1.2.2 Phenotypic Lattice Reconfiguration

PLR procedure to evaluate phenotypic diversity is shown in Algorithm 10. Initially,

to compare the proposed internal reconfiguration approach, the same phenotypic mea-

sure defined in [6] is evaluated in the first experimental set-up, see Subsection 4.1.3.
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Algorithm 9 Constant lattice reconfiguration

1: procedure clr

2: if k mod c == 0 then ⊲ c is a constant

3: if NGR = NGRn×n then ⊲ Lowest NGR

4: NGR = NGRn(1×n
2
); ⊲ Reconfigure the grid to the highest NGR

5: else

6: NGR =
[

NGR2(n
2
×n)|NGR4(n

2
×n

2
)

]

; ⊲ Middle NGR

7: end if

8: else

9: end if

10: end procedure

Dorronsoro et al. considered the average fitness score as a way to evaluate the pheno-

typic diversity; yet, an extra tuning parameter (ǫ) was employed to measure the loss

of diversity. A value of ǫ = 0.05 was empirically determined in [6] as an optimum.

It is considered that too much exploitation would represent large changes on pheno-

typic values, that is most individuals are closely distributed over the landscape. On

the contrary, excessive exploration would lead individuals to distant and possibly poor

regions of the search space. Both states are not desirable, instead a balance between

exploration and exploitation should be achieved. As explained before, this criterion

does not cope with all possible scenarios. For example, individuals could be located

at distant regions of the landscape and yet present significant changes in their fitness

scores. This example is evident in multi-modal search spaces where the evolutionary

process could stagnate at local optima. To support this idea, in [88] a study on di-

versity in the representation space is presented. Phenotypic diversity is measured as

the number of unique fitness values in the population at a certain time known as the

phenotypic entropy. Consequently, in the second experimental set-up in Section 4.1.4,

the phenotypic entropy is calculated as a condition for the reconfiguration of the lattice.

Both strategies for measuring phenotypic diversity are defined next:

• The average population fitness score, ∆f̄ , is measured in consecutive generations.

Thus, the difference among ∆f̄t, ∆ ¯ft−1 and ∆ ¯ft−2 would determine if the phe-

notypic diversity has or has not significantly changed when comparing the fitness

of current (f̄)and previous generations ( ¯ft−1, ¯ft−2); where ∆f̄t = f̄t − ¯ft−1 .
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If
(

∆f̄t −∆ ¯ft−1

)

is less than
(

∆ ¯ft−1 −∆ ¯ft−2

)

, individuals are spread and ex-

ploitation should be promoted by increasing the average NGR. If the same con-

dition indicates an increase in the average fitness score, exploration should be

raised through switching to a lattice configuration that presents an average lower

NGR. Otherwise, the population topology remains the same.

• The phenotypic entropy, HP , among consecutive generations:

HP = −
N
∑

j=1

fj log (fj) (4.1)

where fj is the proportion of individuals in one generation having fitness j. Thus,

the difference between ∆HPt , ∆HPt−1
and ∆HPt−2

would determine if the phe-

notypic diversity in the current generation has or has not significantly changed

with respect to previous generations; where ∆HPt = HPt −HPt−1
.

If
(

∆HPt −∆HPt−1

)

is less than
(

∆HPt−1
−∆HPt−2

)

, diversity of phenotypes has

decreased, and exploration should be encouraged through switching to a lattice

configuration that presents on average a lower NG ratio. If the same condition

indicates an increase in phenotypic diversity, in order to make the search more

aggressive, exploitation should be promoted by increasing the average NG ratio.

Otherwise, the population topology would remain the same.

4.1.2.3 Genotypic Lattice Reconfiguration

In order to determine genotypic diversity, the Hamming distance among chromosomes

is used as a measure. In Algorithm 11, details for GLR procedure are presented. In

line 2, the distance between current (∆H̄Gt = H̄Gt − ¯HGt−1
) and previous (∆ ¯HGt−1

,

∆ ¯HGt−2
) generations is calculated, in order to assess genotypic diversity changes.

In a similar way to phenotypic diversity, if
(

∆H̄Gt −∆ ¯HGt−1

)

difference is less than
(

∆ ¯HGt−1
−∆ ¯HGt−2

)

, exploration should be encouraged through a lattice configuration

with an average lower ratio. On contrast, exploitation should be promoted through

increasing the NG ratio and having more exploitative cellular structures. If neither of

these conditions are satisfied, the population topology remains the same.

In [6], conditions for lattice external reconfiguration imply the relocation of indi-

viduals to new positions, inducing a kind of migration among them. Hence, the impact
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Algorithm 10 Phenotypic lattice reconfiguration based on the phenotypic entropy

∆Hp or the average fitness score ∆f̄ measurements

1: procedure plr(f)

2: if
[

∆HPt < (2 ∗∆HPt−1
)−∆HPt−2

| ∆f̄t > (2 ∗∆ ¯ft−1)−∆ ¯ft−2

]

then

3: //Promote exploration

4: if NGR = NGRn(1×n
2
) then ⊲ Highest NGR

5: NGR = NGR4(n
2
×n

2
);

6: else if NGR = NGR4(n
2
×n

2
) then

7: NGR = NGR2(n
2
×n);

8: else

9: NGR = NGR(n×n);

10: end if

11: else if
[

∆HPt > (2 ∗∆HPt−1
)−∆HPt−2

| ∆f̄t < (2 ∗∆ ¯ft−1)−∆ ¯ft−2

]

then

12: //Promote exploitation

13: if NGR = NGR(n×n) then ⊲ Lowest NGR

14: NGR = NGR2(n
2
×n);

15: else if NGR = NGR2(n
2
×n) then

16: NGR = NGR4(n
2
×n

2
);

17: else

18: NGR = NGRn(1×n
2
);

19: end if

20: else

21: end if

22: end procedure
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Algorithm 11 Genotypic lattice reconfiguration

1: procedure glr(x)

2: if ∆H̄Gt < (2 ∗∆ ¯HGt−1
)−∆ ¯HGt−2

then

3: //Promote exploration

4: if NGR = NGRn(1×n
2
) then ⊲ Highest NGR

5: NGR = NGR4(n
2
×n

2
);

6: else if NGR = NGR4(n
2
×n

2
) then

7: NGR = NGR2(n
2
×n);

8: else

9: NGR = NGR(n×n);

10: end if

11: else if ∆H̄Gt > (2 ∗∆ ¯HGt−1
)−∆ ¯HGt−2

then

12: //Promote exploitation

13: if NGR = NGR(n×n) then ⊲ Lowest NGR

14: NGR = NGR2(n
2
×n);

15: else if NGR = NGR2(n
2
×n) then

16: NGR = NGR4(n
2
×n

2
);

17: else

18: NGR = NGRn(1×n
2
);

19: end if

20: else

21: end if

22: end procedure
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of reconfiguring the grid is not completely clear; as migration is an influential oper-

ation that can by itself change significantly the performance of cGAs [20, 41]. The

reconfiguration mechanisms proposed here, do not induce any explicit migration and

once internally the population topology is reconfigured, the toroidal connection with

wraparound edges is maintained in all cellular sub-structures. Thus, different selection

pressures are locally applied while maintaining individual adjacency during evolution.

Moreover, the stop condition in every generation, evaluates the average fitness score

for the entire population; in consequence the calculated diversity, either phenotypic or

genotypic, relates to all individuals as a whole.

The pre-programmed criteria of Dorronsoro et al. consists of externally changing

the topology shape after a certain number of generations, that is half way through a

normal successful run for a square topology. For the adaptive approach, the authors

determined an ǫ = 0.05 parameter as an optimum value to measure phenotypic and

genotypic diversity to switch among square, rectangular and narrow topologies. The

criteria proposed here avoid the use of an extra parameter and directly measure signif-

icant changes while extending the generation-range to measure diversity. Combining

diversity measures in both phenotype and genotype spaces can strengthen conditions

for lattice reconfiguration as demonstrated in [6]. In the following subsection, the first

experimental set-up is presented.

4.1.3 First Experimental Set-Up: From Single-Static to Several-Dyna-

mic Lattice Topologies

The first experimental set-up aims to evaluate the effect of gradually introducing dif-

ferent population topologies that in average will induce different levels of exploitation,

and carry out a comparison with the performance of a standard cGA on a static and

fully connected topology. In Figure 4.1, each topology configuration case is drawn. Dy-

namically swapping between two, three and four of these configurations is empirically

evaluated in order to determine if there is an improvement in the performance of the

dynamic cGAs. The following cases are defined for experimental purposes:

1. Double configuration: 4(n2 × n
2 )↔ n× n,

2. Triple configuration: 2(n2 × n)↔ 4(n2 × n
2 )↔ n× n,

3. Quadruple configuration: n(1× n)↔ 2(n2 × n)↔ 4(n2 × n
2 )↔ n× n .
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Topology configurations n(1× n) and 2(n2 × n) are executed in horizontal and ver-

tical alignment. The dynamic reconfiguration of the population topology is performed

constantly, every certain number of generations, or adaptively based on phenotypic and

genotypic diversity changes.

To support the results, the following statistical analysis is carried out, an initial

normality test is performed on each set of experimental results regarding the conver-

gence time. The Lilliefors test is used at 5% of significance. This test is suitable when

a fully-specified null distribution is unknown, contrary to the Kolmorov-Smirnov test.

Once the normality of results has been established, the Analysis of Variance (ANOVA)

is applied to the results which follow a normal distribution whereas the Kruskal-Wallis

test is applied to the results which do not follow a normal distribution.

The statistical significance is evaluated in such a way that a standard cGA with a

static square topology is compared to dynamic cellular GAs with constant or adaptive

lattice reconfiguration mechanisms. Therefore, a population size n distributed on a

square topology formed by
√
n × √n individuals is compared to the three topology

cases described before.

In the results tables, + symbol represents that 5% statistical significant difference is

proved among convergence time results. In contrast, a • symbol indicates that conver-

gence time results are not statistically different, and therefore applying the proposed

dynamic criteria makes no difference in terms of the number of generations. In the

analysis of results each test problem is individually discussed. The statistical analysis

only assesses the efficiency of proposed techniques.

The following experimental constraints are evaluated:

• A population size of 400 individuals was used for most problems. Due to their

size, GPS and MTTP problems are tackled using a population size of 64 and 100

individuals respectively.

• Local neighbourhood configuration is Von Neumann or linear composed by four

individuals plus a central individual.

• One hundred independent runs are carried out per experimental reconfiguration

criterion.

• A problem specific threshold based on the population’s average fitness is used as

a stop condition.
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• A limit of 500 generations is used in most problems, with the exception of the

Langerman function, the SLE and the MMDP problems with a limit of 700 gen-

erations.

• The diversity measures in the adaptive approaches are calculated for the entire

population regardless the internal topology configuration.

4.1.3.1 Results Analysis

For presentation, results are divided by local selection method and problems are orga-

nized in two sets, a) continuous problems and b) real-world and combinatorial problems.

Continuous Problems

Table 4.1 presents results for binary tournament selection. The hit rate is the number

of experiments that successfully converge to the threshold and for the Rastrigin func-

tion is 100% for all configurations, and the convergence time is reduced when lattice

reconfiguration is applied. For all proposed reconfiguration cases, the average number

of generations decreases, although this difference is more significant by the quadruple

configuration alternative. Moreover, in all experimental sets statistical difference is

proved. The Rastrigin function is highly multimodal, separable and regular, although

difficult it does not present neither epistatic nor asymmetric characteristics.

In the Griewank function, the effect of varying the NGR through the topology

configuration slightly benefits the convergence time (with statistical proof only for

quadruple case) but negatively affects the hit rate which is reduced from 90% to 67% in

the worst case scenario, having a double topology configuration and adaptive genotypic

lattice reconfiguration. This function is highly epistatic apart from being multi-modal.

Having more than one topology option combined with the high selection pressure of

binary tournament negatively affects the algorithmic efficacy.

The Langerman function is more difficult in comparison to the previous problems.

It is not regular which means the local optima are randomly distributed; therefore there

is no advantage of having the global optima located at the same variables values. Al-

though experiments were carried out for a problem size of 10 dimensions, the algorithm

efficacy, in terms of hit rate, dropped dramatically. This does not allow to properly

evaluate the proposed test scenarios. Therefore, the results of Table 4.1 correspond to

5 dimensions. Similar to previous functions, the average convergence time is improved
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Table 4.1: Convergence time1 and hit rate2 results for continuous problems. Local

selection: central + binary tournament.
TC | RM 3 Rastrigin Griewank Langerman

Square | None
136.69± 12.42 275.65± 44.56 76.90± 20.81

100% 90% 81%

Double | Constant
130.69± 13.44 278.80± 55.20 69.93± 12.78

100% 85% 81%

Double | Phenotypic
127.62± 14.65 269.65± 63.96 70.12± 13.95

100% 79% 86%

Double | Genotypic
127.58± 15.14 255.48± 40.10 70.01± 17.03

100% 67% 94%

ANOVA/K-W (+) • (+)

Triple | Constant
130.89± 14.41 263.28± 46.60 73.67± 33.92

100% 81% 86%

Triple | Phenotypic
129.74± 11.73 269.60± 56.54 69.30± 15.67

100% 79% 88%

Triple | Genotypic
130.59± 18.44 268.23± 59.83 69.69± 18.17

100% 75% 88%

ANOVA/K-W (+) • (+)

Quadruple | Constant
124.08± 13.16 257.23± 57.03 65.38± 13.70

100% 68% 88%

Quadruple | Phenotypic
129.13± 14.62 270.54± 55.15 65.21± 15.20

100% 77% 85%

Quadruple | Genotypic
126.35± 13.56 260.72± 45.38 72.86± 26.33

100% 77% 88%

ANOVA/K-W (+) (+) (+)

1 Convergence time is measured as the average number of generations for successful experiments.

Corresponding standard deviation is included after ± symbol.

2 Hit rate is presented as the percentage of successful experiments out of the total number of

experiments which is one hundred samples.

3 Topology Configuration (TC) refers to the number of configurations among which lattice recon-

figuration is performed, see Subsection 4.1.3. Reconfiguration Mode (RM) refers to constant or

adaptive lattice reconfiguration mechanisms.

127



through the proposed reconfiguration mechanisms; this is more noticeable when the

quadruple topology configuration is applied. The hit rate is also positively affected

improving from 81% to 94% when the double topology option is performed based on

genotypic diversity. The statistical analysis shows a significant difference in all test

scenarios.

Table 4.2 presents the performance results for the same functions but through

anisotropic selection. For the Rastrigin function, similar to binary tournament se-

lection, the algorithmic efficiency in terms of convergence time is improved when re-

configuration is performed. There is statistical significance in all scenarios while the hit

rate is maintained in 100%. The standard deviation shows results consistency among

experimental sets.

Anisotropic selection presents lower selection pressure and more flexibility while

having more than one topology option as explained in Section 4.1.1. The benefit of

applying higher or lower selection pressure during the evolutionary process is evident

for the Griewank function in both performance measures. In terms of efficacy, the

hit rate improves from 67% for a cellular GA with static square topology (constant

selection pressure) to 93% through constant lattice reconfiguration and having four

topology configurations. Moreover, the average number of generations is reduced in

10% while statistical significance is shown in all experimental groups. On the other

hand, the Langerman function presents a slight improvement in terms of hit rate (3%)

while the average convergence time is reduced by approximately 30% when compared

to a cGA with a static square topology.

The effect of having dynamic selection pressure is noticeable for both local selection

methods. Convergence time is improved through binary local selection, although the hit

rate is negatively affected in one of the problems. However, better results are obtained

for the proposed reconfiguration mechanisms through anisotropic selection in terms of

convergence time and hit rate for the benchmark problems tackled here. Roughly, it is

also observed that constant and adaptive grid reconfiguration do not show an important

difference in convergence time between them. Next, results for the real-world problems

are presented.

Real-world Problems

In Table 4.3 the results for binary tournament selection are presented. The FMS
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Table 4.2: Convergence time1 and hit rate2 for continuous problems. Local selection:

central + anisotropic selection.
TC | RM 3 Rastrigin Griewank Langerman

Square | None
230.38± 15.51 444.73± 41.52 163.61± 42.23

100% 67% 95%

Double | Constant
224.42± 19.22 445.09± 37.19 161.08± 49.35

100% 68% 96%

Double | Phenotypic
218.31± 20.56 435.70± 31.28 151.17± 37.01

100% 79% 98%

Double | Genotypic
216.53± 17.70 433.58± 36.44 159.95± 46.27

100% 76% 97%

ANOVA/K-W (+) (+) •

Triple | Constant
217.90± 14.41 440.85± 37.73 147.90± 31.91

100% 75% 93%

Triple | Phenotypic
217.83± 19.52 416.92± 41.24 150.43± 43.03

100% 83% 96%

Triple | Genotypic
215.42± 17.63 424.58± 45.50 158.77± 36.78

100% 78% 94%

ANOVA/K-W (+) (+) (+)

Quadruple | Constant
188.91± 15.96 402.91± 47.46 117.90± 28.00

100% 93% 96%

Quadruple | Phenotypic
196.71± 29.43 400.56± 45.63 128.86± 26.68

100% 91% 97%

Quadruple | Genotypic
203.70± 18.51 412.68± 43.95 140.34± 38.07

100% 83% 97%

ANOVA/K-W (+) (+) (+)

1 Convergence time is measured as the average number of generations for successful experiments.

Corresponding standard deviation is included after ± symbol.

2 Hit rate is presented as the percentage of successful experiments out of the total number of

experiments which is one hundred samples.

3 Topology Configuration (TC) refers to the number of configurations among which lattice recon-

figuration is performed, see Subsection 4.1.3. Reconfiguration Mode (RM) refers to constant or

adaptive lattice reconfiguration mechanisms.
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problem is an epistatic, multi-modal and asymmetric problem. Its difficulty is re-

flected in the results where a low hit rate of less than 50% is obtained in all cGA

reconfigurations cases. In [82] p. 42, for similar configuration constraints, except for

the recombination method (double point crossover was employed) and the replacement

policy, 27% hit rate is reported. Also in [82] p. 63, results applying binary tourna-

ment selection for both parents reported a hit rate of 63% for the best case scenario.

On the other hand, the hit rate obtained for the FMS problem with a static square

topology is 41% while constant reconfiguration alternatives present an increase of 2%

to 5%. Similarly, adaptive reconfiguration improves from 1% to 8% for most cases, ex-

cept for the quadruple genotype based reconfiguration mechanism where the hit rate is

33%. The convergence time is improved when applying the reconfiguration techniques

in 10%. However, results do not provide statistical difference for any of the proposed

mechanisms.

Analysing the SLE results, the loss of efficacy with respect to the number of suc-

cessful experiments is noticeable: from 39% hit rate for the static square topology to

14% for the triple topology configuration. Although, there is one case, double topology

case, presenting a better hit rate of 44%. In general the algorithm’s hit rate is nega-

tively affected when dynamic reconfiguration mechanisms are applied. In contrast, a

slight improvement of 10% is obtained in terms of convergence time for the quadruple

topology option with constant and phenotypic based reconfiguration.

For the GPS problem a smaller population size of 64 individuals is consistently used

due to previous research reported in [89]. However, a more accurate threshold has been

defined in the current experiments. Results do not show significant statistical difference

as regards the convergence time and a slight improvement of 3% in terms of hit rate is

obtained by the quadruple configuration case.

Table 4.4 shows the results for anisotropic selection. In contrast to binary tourna-

ment selection, the efficiency when solving the FMS problem is improved from 46% to

72% with quadruple constant based reconfiguration and in general all proposed mecha-

nisms improve the hit rate. Similarly, a convergence time reduction of 25% is achieved.

Yet, statistical significance is obtained for triple and quadruple topology configuration

options. Comparable behaviour is shown by constant and adaptive mechanisms in the

SLE problem: hit rate is improved from 19% to 40% when reconfiguration is performed

while convergence time is reduced in approximately 15% with quadruple constant re-
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configuration. On the other hand, results for the GPS attitude determination problem

show a hit rate improvement of 11%. However, the convergence time is maintained and

in some cases is slightly increased by topology reconfiguration.

The difference in convergence time between binary tournament and anisotropic se-

lection is significant. That difference is supported by the take-over times both methods

present. Binary tournament is more exploitative in comparison to anisotropic selection,

and therefore it implies shorter convergence times.

Combinatorial Problems

In Table 4.3, MMDP and MTTP results are included in the last two columns. For

the MMDP, a size of 25 sub-problems has been evaluated, a maximum limit for the

number of generations is increased to 700 (similarly to the SLE problem). On the other

hand, for the MTTP a problem size of 100 tasks has been evaluated. In particular for

this problem a population size of one hundred individuals has been employed. Several

population sizes were initially tested and a population size of 100 individuals provided

an adequate performance. However, it is not aimed in this study to determine the

adequate population size as regards the size and difficulty of the problem but to evaluate

the proposed mechanisms in order to improve the overall performance of cGAs.

The MMDP tackled through binary tournament selection provides a hit rate of

89%, similar efficacy is achieved by a couple of the proposed mechanisms presenting

a slight improvement. The convergence time is reduced in 10%. Results also present

statistical significance when compared to a static square topology. On the other hand,

the hit rate is 100% in most test scenarios for the MTTP, while the convergence time

is similar in all cases.

The results for anisotropic local selection are presented in Table 4.4. The highest hit

rate for the MMDP is obtained with a static square topology (97%) or double constant

reconfiguration (99%). It is noticeable that for the rest double and all triple reconfig-

uration mechanisms, the efficiency drops to 30% in the worst case scenario. However

when quadruple constant or adaptive reconfiguration is applied, the hit rate recovers to

91%. The fourth topology configuration option provides in average the highest selective

pressure which is probably the cause of that improvement. Comparing these results

with those obtained through binary tournament selection which locally induces higher

selection pressure, a minimum 80% hit rate is achieved in all experimental cases. There-
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fore, to find the solution of the MMDP requires to sustain a more exploitative search

during the evolutionary process to avoid stagnation. In terms of the average number of

generations statistical significance is obtained in all experimental sets but it does not

represent an improvement for the proposed lattice reconfiguration mechanisms.

For the MTTP through anisotropic selection, the hit rate is improved by all proposed

lattice reconfiguration cases. From 31% without reconfiguration to 87% with quadruple

constant lattice reconfiguration. The results do not have statistical significance in terms

of convergence time in double and triple reconfiguration cases; contrary to the quadruple

topology reconfiguration case where an improvement of 10% is achieved.

4.1.3.2 Summary

In this subsection, the research has focused on the effect of constantly or adaptively

modifying the NGR through the lattice reconfiguration while internally maintaining

toroidal like sub-structures. Providing different levels of selective pressure through

several shapes and sizes in the internal sub-structures helps in promoting an adequate

balance of the exploration-exploitation trade-off. Previously, researchers reported a

better performance when the whole population shape was constantly or adaptively

changed during evolution [6]. However, an implicit migration mechanism is induced

and the effect of modifying the NGR while changing the whole population topology has

not been separately evaluated. Here, individuals maintain their location with respect

to the rest of the population while dynamically subdividing the entire population into

smaller square, rectangular or linear sub-arrays.

Several problems have been tested in order to evaluate the proposed mechanisms

from continuous to real and combinatorial problems. Emphasis has been put on evalu-

ating the proposed mechanisms rather than the individual effect of genetic operations,

thus maintaining cGAs operation close to their standard form. Two local selection

methods presenting opposite selection pressures have been used in order to evaluate

the flexibility introduced by combining higher or lower NGRs through the dynamic

reconfiguration of the grid.

Binary tournament presents higher selection pressure and less flexibility when more

than one topology configuration is used during evolution. In contrast, anisotropic selec-

tion provides lower selection pressure and better flexibility through the dynamic control

of the NGR when the population topology is reconfigured. For binary tournament se-
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lection, most benchmark problems achieved a better hit rate while the convergence time

was reduced in comparison to a cGA evolving on a static square topology. However, a

better trade-off of both performance measures was obtained for intermediate cases such

as having double and triple NGR alternatives. For anisotropic selection, having four

topology configurations outperformed a static square topology in terms of convergence

time consistently in most benchmark problems except for the MMDP and the GPS

problem.

Comparing the dynamic lattice reconfiguration mechanisms, constant reconfigura-

tion slightly outperformed adaptive approaches in several cases, a deeper analysis in

this respect is included in the second experimental set-up. In the next section, diversity

measures are refined in order to enhance the current adaptive algorithmic performance.

4.1.4 Second Experimental Set-Up: Internal vs External Lattice Re-

configuration

In the second experimental set-up, the main aim is to incorporate a direct comparison

to the static, pre-programmed and adaptive criteria proposed by Dorronsoro et al., as

well as to change the phenotypic diversity measure in order to improve the adaptive

approach. Moreover, statistical analysis is extended to evaluate the algorithmic efficacy

and a multiple comparison test for the convergence time is also carried out.

In Subsections 4.1.1 and 4.1.2, the expected effect of internally reconfigure the

topology of the population is explained in detail. Together with three criteria to perform

the grid reconfiguration: constantly or adaptively according to diversity measures at

the phenotypic and genotypic spaces. In particular, the measurement of phenotypic

diversity evaluated by Dorronsoro et al. in [6] which does not consider all possible

scenarios is discarded and measuring the phenotypic entropy of the population every

generation is proposed instead. See Subsection 4.1.2.2 for details of the new proposed

measure.

As a consequence of the results obtained in the first experimental set up, having a

quadruple topology option to reconfigure the grid provided the most distinctive perfor-

mance results when analysing the effect of dynamically changing the topology of the

population during evolution. In this subsection, only the quadruple topology config-

uration option is experimentally evaluated. Thus, the reconfiguration case drawn in

Figure 4.1 is executed, constantly or adaptively.
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Crossover and mutation operators are configured in a simple form and are kept

constant during the search process. Single Point Crossover (SPC) operates pairs formed

by a central individual and an individual selected from its local neighbourhood with

probability Pc = 1.0. SPC randomly selects a single point for recombination. On the

other hand, mutation is performed after recombination with probability Pm = 0.02.

These genetic operators are not evaluated from a dynamic perspective.

As mentioned in previous chapters, replacement policies also play an important

role in GAs. In cGAs, an offspring can replace a current individual in the following

three ways: 1) always, 2) only if it has a better fitness score or 3) following some other

condition. In this experimental set-up an only replace if better policy is followed. On the

other hand, synchronous population updating is also applied. Synchronous updating

requires current and next generations to be stored separately; once all individuals

have evolved, new offspring will entirely replace the current population. Asynchronous

updating has also been investigated and in several problems outperforms synchronous

updating in terms of convergence time although the results accuracy and hit rate are

negatively affected [42].

The following experimental constraints are evaluated:

• A population size of 400 individuals was used for most problems. Due to their

size, GPS and MTTP problems are tackled using a population size of 64 and 100

individuals respectively.

• Local neighbourhood configuration is Von Neumann or linear composed by four

individuals plus a central individual.

• One hundred independent runs are carried out per experimental reconfiguration

criterion.

• A problem specific threshold based on the population’s average fitness is used as

a stop condition.

• A limit of 500 generations is used in most problems, with the exception of the

Langerman function, the SLE and the MMDP problems with a limit of 700 gen-

erations.

The same reconfiguration mechanisms are applied to all problems and results are

analysed based on convergence time and hit rate. The accuracy of results is deter-
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mined by problem specific thresholds, see Appendix A. The stop condition evaluates

the population average fitness score. Thus, the best individual solution has been spread

through the entire grid. Commonly, researchers use as a stop condition a maximum

limit in the number of generations or when an individual has reached the global op-

timum. It has also been established that experimental samples should evolve until a

solution of the same quality has been found and not up to a limit in the number of

generations [42]. The stop condition herein considered has been defined due to previous

research constraints related to fault tolerance. Although fault tolerance is a different

topic, outwith the scope of this subsection, the decision was made to keep the same

stop condition for consistency.

In order to statistically support results so far obtained, the Lilliefors normality

test, at 5% of significance, is performed on each set of convergence time results. This

test is suitable when a fully-specified null distribution is unknown, in contrast to the

Kolmorov-Smirnov test. Once normality of results has been established, an Analysis of

Variance (ANOVA) is applied among results that follow a normal distribution whereas

the Kruskal-Wallis test is applied to results that are not normally distributed. For sets

of results with non normal distributions, dispersion of data is calculated using the mean

absolute deviation and italics are used to highlight these cases in the results tables.

In the next subsection, results are summarized in two tables, one for static, pre-

programmed and constant reconfiguration criteria and a second one for adaptive ap-

proaches. Then, in order to prove that a certain approach outperforms others, in terms

of convergence time, a multiple comparison test is carried out, after a statistical anal-

ysis is done independently for each table of results. In contrast, if statistical proof is

obtained only in one of the two tables, a multiple comparison test is applied separately.

In the results tables, where a statistically significant difference at 5% has been found

among convergence time results, this has been represented by the symbol +. On the

contrary, a • symbol represents results which are not statistically different, and where

therefore the application of proposed dynamic criteria makes no difference in terms of

the number of generations. On the other hand, having statistically different results

does not mean the proposed approaches definitively improve cGAs performance. This

statistical analysis only evaluates the efficiency of proposed techniques. Therefore, the

efficacy of results has also been statistically considered.

The hit rate has been statistically evaluated as a Bernoulli trial. A random ex-
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periment whose result is either success or failure can be considered a Bernoulli trial

[32]. For each dynamic lattice reconfiguration criterion, 100 experiments were carried

out. In successful experiments, the global optima, at a certain threshold, is reached.

Measuring the standard deviation of percentages of successful experiments provides

a numerical value that indicates how significantly different are these hit rates. The

standard deviation for each experimental sample is calculated as follows:

σ =
√

r ∗ p̂ (1− p̂) (4.2)

where p̂ represents the probability of successful experiments and r is the total number

of experiments. In the next subsection, results are detailed.

4.1.4.1 Results Analysis

The results and corresponding analysis presented in this subsection, aims to empirically

support the main hypothesis of this study: dynamic modification of the NGR through

the lattice reconfiguration would lead to significant improvements in the performance

of cGAs. At a local level, as explained previously in Section 4.1.1, two different local

selection methods have been applied. The main difference between them consists in

applying higher (binary tournament) or lower (anisotropic) selection pressure. These

two methods were chosen because of their considerably different selection intensity.

Thus, it is possible to separately evaluate 1) the effect of having a highly exploitative

or explorative cellular GA, due to local selection, and 2) the added flexibility of dy-

namically reconfiguring the population topology in order to supply the search process

with a more convenient and balanced exploitation-exploration trade-off.

For presentation, results are divided by local selection method. Two tables of results

are organized: the first includes static, pre-programmed (external) reconfiguration and

constant (internal) reconfiguration. The second group presents adaptive approaches

for both external and internal lattice reconfiguration approaches.

In the tables, numbers in bold indicate the best average convergence time and italics

are used to distinguish between standard deviation (normal distributions) and mean

absolute deviation (non normal distributions) as dispersion measures. Next to the hit

rates, corresponding Bernoulli trial standard deviations are shown in small numbers.

Binary Tournament Local Selection

Continuous problems corresponding to well known mathematical functions (Rast-
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rigin, Griewank and Langerman functions) are tackled considering an average fitness

score threshold in the order of f̄ ≈ 1 × 10−4. On the other hand, although real chro-

mosomes encoding might be more appropriate to solve these kind of problems [11], it

has been decided to explore proposed cellular configurations using binary encoding.

The main reason is that the authors’ research group investigates the design and imple-

mentation of reconfigurable architectures targeting hard real-time applications [53, 51].

Hence, using binary encoding in this research allows the extension of current cGAs

research to the actual implementation of these techniques on reconfigurable fabrics

in which resources for real data processing and representation are strictly limited. For

more details on problem representation for evolutionary techniques, readers are referred

to [7].

Tables 4.5 and 4.6 present results for static, pre-programmed, constant and adaptive

lattice reconfiguration criteria through binary tournament local selection. The Rast-

rigin function hit rate is 100% for all configurations, and convergence time is slightly

affected through lattice reconfiguration. Statistical proof is obtained for the best cri-

terion: square → constant internal reconfiguration. On the other hand, adaptive ap-

proaches do not show significant difference in convergence time.

Similar results in the number of generations are obtained for the Griewank function,

statistical difference at 5% is proved for square → constant internal reconfiguration

with respect to static and pre-programmed criteria. However, in terms of hit rate, pre-

programmed square → narrow approach shows major advantage in this regard, from

80% (σ = 4.0) to 100% σ = 0.0, based on calculated sample standard deviations. On

the other hand, for adaptive approaches there is no significant difference amongst them

in terms of convergence time. The best hit rate is 88% (σ = 3.2496) for rectangular

→ adaptive external reconfiguration, which is not as good as the pre-programmed

approach.

The Langerman function is the most difficult in the continuous problems set; hit

rates are not higher than 29%. The improvement for lattice reconfiguration approaches

is not significant, either in convergence time or in the hit rate for all proposed crite-

ria through binary tournament local selection. Similar results were obtained for the

FMS problem. No significant improvement in terms of convergence time was obtained

through any of the proposed approaches. Standard deviations for hit rates do not show

significant statistical difference either.
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From these two sets of results, it is worth noticing that the best convergence times

in Table 4.5 correspond to constant approaches. However, hit rates in some cases are

higher for either static or pre-programmed criteria, with statistical proof, for example,

in the Griewank function. For adaptive approaches, in Table 4.6, best convergence

times correspond to external reconfiguration techniques, however these results are not

statistically supported. Results consistency for convergence times is maintained for

most problems, except in the Langerman function.

In Tables 4.7 and 4.8, corresponding results for SLE, GPS and combinatorial prob-

lems, through binary tournament selection, are shown. In terms of convergence time,

the SLE problem presents a significant difference for square → constant internal re-

configuration. However, in terms of hit rate, a standard static square grid provides

the highest efficacy (39%). In contrast, the best phenotypic adaptive (4(n2 × n
2 ) →

adaptive) and genotypic (square → adaptive) adaptive criteria achieve a hit rate of

30%, with a minimum significant difference due to σ = 4.8774 (39%) and σ = 4.5825

(30%) respectively. The convergence times for adaptive criteria are not different, and

the consistency of the results is not well maintained.

For the GPS attitude determination problem, through binary local selection, no

statistical proof was obtained in terms of convergence time and hit rate for both sets

of results. In contrast, the MMDP statistical proof was found in convergence time for

4(n2 × n
2 ) → constant internal reconfiguration. However, the best hit rate of 92% (σ =

2.7129) is reached through pre-programmed narrow→ square external reconfiguration,

in comparison to 87% (σ = 3.363) of former approach. However, the narrow→ adaptive

genotypic based approach, external reconfiguration, provides the best efficiency and

efficacy.

For the MTTP, high hit rates are in general obtained. There is a statistical dif-

ference for the best configuration case among static, pre-programmed and constant

approaches: square → constant internal reconfiguration. Similarly for adaptive ap-

proaches, statistical difference is proved for the best adaptive mechanism: narrow →
adaptive genotypic based external reconfiguration. After a multiple comparison test

is performed for both sets of results, no statistical proof was found for the adaptive

approach in terms of convergence time.

Finally, for the P-Peaks problem through binary tournament selection, no statistical

difference was obtained for either static, pre-programmed, constant or for adaptive
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approaches in terms of convergence time. On the other hand, the hit rates were in all

cases 100%.

Anisotropic Local Selection

Results obtained through anisotropic local selection are presented in this subsection.

In Tables 4.9 and 4.10 results for continuous problems and the FMS problem are pre-

sented. Anisotropic local selection with constant α = 0.8 presents a more explorative

behaviour if compared to binary tournament selection. Moreover, this selection method

also makes use of structural properties in cGAs, due to the neighbourhood configuration

in which the location of individuals for selection is implied.

In both tables, statistical difference is proved for all problems. Therefore, multiple

comparison tests were carried out among all approaches. The Rastrigin function shows

statistical difference in convergence time for both sets of results. However, no statistical

proof supports this difference between best approaches on each table. In comparison to

a static square topology, convergence time consistency is held in constant and adaptive

criteria.

The Griewank function is better approached by internal reconfiguration, square

→ constant for best convergence time, and 4(n2 × n
2 ) → constant for best hit rate.

Similar results are obtained through adaptive approaches. Genotypic based internal

reconfiguration also provides the best performance. In terms of the hit rate, 95%

and 93% are reached respectively. However, after multiple comparison, no statistical

proof was obtained between constant and adaptive criteria. Moreover, consistency in

convergence time is kept through internal and adaptive external mechanisms.

The Langerman function also provides the best performance through constant and

phenotypic internal reconfiguration. Similar to the previous function, statistical proof,

in convergence time, was not found between the best constant and adaptive approaches.

On the other hand, convergence time consistency is slightly lost through internal con-

stant and adaptive reconfiguration. In terms of hit rate, square→ constant and 4(n2× n
2 )

→ adaptive achieve up to 37% and 32% hit rate respectively. This represents a signifi-

cant improvement in efficacy in comparison to a static square topology, from σ = 4.074

to σ = 4.8280 and σ = 4.6647 in standard deviations.

The last problem presented in Tables 4.9 and 4.10 is the real FMS problem. This

problem is highly epistatic, which means genetic interdependency is strong. Constant
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internal reconfiguration gives the best performance through 4(n2× n
2 )→ constant mech-

anism with statistical significant difference. On the other hand, adaptive phenotypic

and genotypic internal reconfiguration mechanisms provide the best convergence time

and hit rate respectively. However, once again no statistical proof was obtained be-

tween constant and adaptive reconfiguration techniques. Moreover, best hit rates are

71% in both cases. Consistency in convergence time is maintained among reconfigura-

tion approaches.

It is worth noticing that through static rectangular topologies most of the problems

in Table 4.9 lose performance quality, increasing convergence time and limiting their hit

rates to the minimum, except in the Rastrigin function. Moreover, for static narrow

lattices, three of the problems do not converge at all. An important observation is

that the best performance results are obtained through constant and adaptive internal

reconfiguration mechanisms.

In Tables 4.11 and 4.12, results for SLE, GPS and all combinatorial problems are

presented. For most of the problems in each table, statistical difference was found in

terms of convergence times, except for the MMDP problem in Table 4.11 and the SLE

problem in Table 4.12.

The best convergence time for the SLE problem is achieved through 4(n2 × n
2 ) →

constant internal reconfiguration together with the highest hit rate of 42%. Statistical

difference is proved in the average number of generations with respect to a static square

topology, as well as in hit rates where the difference in standard deviation ranges from

σ = 3.923 to σ = 4.9356. On the other hand, dispersion of data increases through

constant reconfiguration. In contrast, results for adaptive approaches are not signif-

icantly different in convergence time and best hit rate of 40% is achieved through

genotypic based external reconfiguration. Nevertheless, convergence times are similar

among adaptive mechanisms.

Overall, the GPS problem is the smallest problem. Yet, its landscape is multi-

modal and non symmetric also presenting high epistasis. A smaller population size

was implemented with 64 individuals and for anisotropic selection, statistical proof was

obtained in convergence time. Overall, the best convergence time is achieved through

adaptive genotypic based external reconfiguration, although a substantially better hit

rate of 91% is reached through a static narrow topology. On the other hand, compared

with a static square topology, consistency in convergence time is preserved through
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constant and adaptive internal approaches.

The last three problems are combinatorial. Hit rates of 97% are achieved through

static square and rectangular topologies for the MMDP problem, while a narrow topol-

ogy cannot converge at all. No statistical proof is obtained in terms of convergence time.

For adaptive approaches, the best performance was obtained through phenotypic and

genotypic based 4(n2× n
2 )→ adaptive internal reconfiguration with statistical difference

in convergence time and 96% hit rate. After a multiple comparison test, statistical proof

is also found between best convergence times on each table while consistency is also

maintained. However, it is clear that a static square or rectangular topology provides

the best overall performance.

The MTTP presents a very low hit rate for a static square population topology.

Moreover, through rectangular and narrow topologies, cGAs are not at all appropriate

to solve this problem. However, the best convergence time and hit rate are achieved

by constant internal reconfiguration and the hit rate is improved up to 100%. Adap-

tive approaches show, with statistical difference, improvement in terms of convergence

time. Narrow → adaptive genotypic based external reconfiguration outperforms other

approaches. Yet, hit rate reaches 98% and 99% in the best cases. Convergence time

consistency is kept among internal constant and adaptive reconfiguration.

Overall, hit rates for the P-Peaks problem are 100%. In terms of convergence time,

statistical tests prove a significant improvement. Constant internal and adaptive geno-

typic based external reconfiguration outperform the rest of the proposed techniques,

although, there is no statistical proof to differenciate between both approaches. The

results consistency is well maintained through the best approaches.

Similar to the results in Table 4.9 for static, pre-programmed and constant ap-

proaches; in Table 4.11, the best convergence times and most of the best hit rates cor-

respond to constant internal reconfiguration. Having a static topology or to perform

a pre-programmed change in population topology during evolution does not provide

the best performance cGAs could achieve. However, in some cases better hit rates are

obtained through static and pre-programmed reconfiguration approaches.

To summarize this subsection, binary tournament and anisotropic local selection

methods present distinctively different selection intensities. Binary tournament is more

exploitative in comparison to anisotropic selection which configured with an α = 0.8,

slows down by three times the growth rate for the best individual. Therefore, con-
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vergence times are not directly comparable. In most problems, the average number

of generations is duplicated through anisotropic selection. Hence, results analysis has

been carried out separately for each local selection method.

Broadly speaking, Tables 4.5, 4.7, 4.9 and 4.11 show a persistent tendency for

constant internal reconfiguration achieving better convergence times. This is not fully

repeated in terms of hit rate, which in some cases is improved through static and

pre-programmed approaches.

For adaptive approaches, results do not show a predominant improvement through

any of the proposed approaches. Through phenotypic diversity measures, external

reconfiguration calculates the average fitness score achieved in each generation. Rather,

through internal reconfiguration, phenotypic diversity is monitored through its entropy.

On the other hand, genotypic diversity is in both, external and internal cases, measured

through its entropy, which for binary chromosomes encoding is determined using the

Hamming distance. Finally and most importantly, in just a few cases, statistical proof

was obtained when comparing constant internal reconfiguration cases and the best

adaptive approaches. Therefore, constant reconfiguration results in a better approach

to improving cGAs performance through dynamically modifying the topology of the

population and is also computationally less expensive.

4.1.4.2 Summary

The aim of the second experimental set-up has been to investigate how structural

properties in cGAs can be a factor in adequately tuning diversity during evolution.

Internal lattice reconfiguration had been experimentally tested and compared against

external reconfiguration proposed in [6]. The main difference of both approaches is that

individual adjacency is maintained through internal lattice reconfiguration while it is

lost in the external approach because it induces a migration mechanism. This makes it

difficult to distinguish if performance changes are due to lattice reconfiguration or due

to the induced migration.

Diversity measures are calculated differently. Phenotypic diversity is measured

through their entropy, as opposed to considering fitness scores as a measure for di-

versity. Genotypic diversity is calculated using the Hamming distance.

Conditions needed to perform lattice reconfiguration are also different. External

reconfiguration evaluates an evolution speed criterion that does not cover all possible
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scenarios for diversity at the phenotypic and genotypic spaces. It also requires an extra

parameter to decide whether or not reconfiguration should occur. In contrast, internal

lattice reconfiguration considers a wider range of generations for diversity measurements

and performs reconfiguration if the difference between intervals is significant.

Two local selection methods were implemented, binary tournament presenting high

selection pressure compared to anisotropic selection with low selection intensity. Through

constant internal reconfiguration, binary tournament presents reduced flexibility to

control selection intensity compared to anisotropic selection.

In general for the problems tackled here, internal lattice reconfiguration outper-

formed static and pre-programmed approaches in terms of convergence time for both

local selection methods. However, in some cases, better hit rates were achieved through

static and pre-programmed techniques. Statistical difference in convergence time was

obtained for most problems with anisotropic selection and for half of them through

binary tournament.

Adaptive approaches through binary tournament did not show significant improve-

ment over constant internal reconfiguration in terms of efficiency and efficacy. More-

over, multiple comparison tests only show statistical difference in some of the problems.

Similar results were obtained for anisotropic selection through adaptive approaches.

However, with the exception of the SLE problem, the rest of the problems showed

statistical proof in terms of convergence time. Also, adaptive internal reconfiguration

achieved better performance in most of the problems.

Diversity tuning in cGAs for assessed benchmark problems was accomplished through

dynamically changing their structural configuration, improving in many cases their

overall performance. However, the effect of controlling the exploitation-exploration

trade-off through cGAs structural properties was limited, as results thus far obtained

have shown. Moreover, it was expected to obtain better results through adaptive

approaches; thus the contribution to balancing the exploration-exploitation trade-off

using diversity measures should be reconsidered due to their computational cost. Ex-

perimentally, the same or better performance was achieved through constant lattice

reconfiguration for the problems tested here. This suggests that maintaining diversity

through cGAs structural configuration does not need to be as prompt as phenotypic or

genotypic changes occur. Constant modification of selection intensity during evolution

will supply, at a certain level, an improved balance for diversity.
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4.2 Dynamic cGAs Based on Local Selection

The aim in this section is to compare the dynamic control of the exploration-exploitation

trade-off in cellular Genetic Algorithms (cGAs) from two perspectives: 1) through the

approach proposed in previous section which is the dynamic reconfiguration of the pop-

ulation topology and thus to take advantage of their inherent structural properties; 2)

through the local selection using a recently developed criterion known as anisotropic

selection which allows to modify at local level the overall population selection pres-

sure. In both perspectives, the dynamic control of selection pressure is implemented

constantly (every c generations) or adaptively based on diversity changes at the pheno-

typic or genotypic spaces. Most benchmark problems in Appendix A are tackled and

the statistical analysis is carried out to assess the convergence time.

This research has focused on cellular GAs and has aimed to provide a deeper insight

into the flexibility they offer. Particularly, the structural properties of cGAs have been

investigated in the previous and in the current chapter. The performance results of the

proposed approaches have been empirically tested and statistically supported. In this

final section, two perspectives for diversity tuning are studied and compared. Both are

dynamic approaches that aim at controlling the overall selection pressure while taking

advantage of the inherent structural properties of cGAs. Firstly, a dynamic approach

to reconfigure the population topology is employed; internal cellular sub-structures

presenting different NG ratios are implemented while the adjacency of individuals is

maintained through their positions in the internal sub-structures [31, 33]. Secondly,

diversity is maintained through the dynamic control of selection pressure induced by

the local selection method. This is achieved using a local selection technique known as

anisotropic selection [84]. In the next subsection both approaches are explained.

4.2.1 Selection Pressure Control

Two criteria are evaluated in order to dynamically control the selection pressure in

cGAs. Firstly, through the population topology configuration, using the NGR as a

tuning parameter, which is given by the local neighbourhood and the population size

and shape. Regular local selection methods are applied during evolution. Secondly,

through the local selection method, which can be tuned and modified in order to main-

tain an adequate exploration-exploitation trade-off.
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4.2.1.1 Lattice Reconfiguration

In this section, the results obtained in the previous section as regards the dynamic

reconfiguration of the grid are compared to controlling the induced selection pressure

through a dynamic local selection method. In Subsection 4.1.3 the process for lattice

reconfiguration occurs first between two different topology configurations that in aver-

age induce different levels of selective pressure. Then, a third topology is introduced

(2
(

n
2 × n

)

). Finally, a fourth lattice configuration is considered, with an average more

exploitative behaviour (n
(

1× n
2

)

). Both topologies are executed in horizontal and

vertical alignments, with probability of occurrence of 50%. See Figure 4.1 for details.

In Subsection 4.1.4, the proposal of internally reconfigure the population topology

in order to provide different levels of selection intensity is compared to Dorronsoro et

al. approach for external lattice reconfiguration. Cases such as static, preprogrammed,

constant and adaptive reconfiguration approaches are evaluated. The reader is referred

to Section 4.1 for details on the lattice reconfiguration criteria that are compared in

this section.

4.2.1.2 Dynamic Local Selection

Anisotropic selection depends on the direction of individuals location in a Von Neumann

like local neighbourhood, which consists of individuals at the North, East, South and

West directions, at a Manhattan distance of one from a central individual. Anisotropic

selection would choose an individual following two probabilistic equations determined

by an α parameter: PN = PS = P0 (1 + α) and PE = PW = P0 (1− α) respectively.

For example, if α = 0.0 and P0 = 0.25 a uniform probability for all neighbours is

applied. Varying α from 0.0 to 0.9 assigns higher or lower probabilities to individuals

located at North/South or East/West positions.

Similar to the previous approach, in Figure 4.3, the take-over times for anisotropic

selection are drawn considering α ∈ [0.0, 0.9]. These curves are obtained from an

average of 100 experiments on a population of 400 individuals and a minimum α step

of 0.1. Higher α values promote exploration while lower α values perform a more

exploitative search. Moreover, for α ≤ 0.3 take-over times are very similar. Thus, for

these values the expected effect of controlling the selection pressure is minimal. In the

next subsection, configuration details for the proposed approaches are presented.
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Figure 4.3: Take-over time for dynamic anisotropic local selection

4.2.2 Cellular Configuration

Two perspectives to dynamically control the selection pressure in cellular GAs are

compared: 1) to reconfigure the population topology and inherently control the overall

induced selection pressure; or 2) by local selection, a method known as anisotropic selec-

tion that allows an α parameter to be tuned and thus affect the exploration-exploitation

trade-off. For the first perspective, results from Subsection 4.1.4 as regards dynamic

internal lattice reconfiguration are analysed and compared to the second approach in

this section.

For both approaches, the basic algorithmic structure is the same. The difference

becomes clear when decision is made with respect to 1) reconfiguring the topology of

the population or 2) increasing/decreasing the anisotropic parameter (α) in order to

change the selection intensity making it more or less exploitative or explorative. These

approaches are evaluated following two criteria: 1) the change is constant, which means

that every c generations the lattice will be reconfigured or the α parameter is changed

from 0.0 to 0.9 in a cyclic manner. 2) measures of diversity at the phenotypic or

genotypic spaces are carried out every generation, and thus the lattice is reconfigured

on a variable basis. Similar considerations apply to the α parameter in anisotropic

selection. Measuring diversity changes at the phenotypic or genotypic spaces, a lower

or higher α value is set in order to perform a more exploitative or more explorative
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search.

In Algorithm 12, the cGA pseudocode is described. A single random seed is used to

generate the initial population. Initially, the population is evolved on a 4
(

2
n
× 2

n

)

or on

a n× n topology configuration or with anisotropic selection with α = 0.0 (line 2). For

each individual, neighbours located at North, East, South and West positions are eval-

uated in order to select a second parent for reproduction (line 7). For dynamic lattice

reconfiguration, two local selection methods, presenting opposite selection pressures,

have been applied. Binary tournament selection presents higher selection pressure

when compared to constant anisotropic selection with α = 0.8. For dynamic local se-

lection, anisotropic selection with α variable is used. After synchronous updating (line

16), the population’s average fitness score is verified as the stop condition (line 17), if

the problem specific threshold has not been achieved, either lattice reconfiguration or

dynamic anisotropic selection are performed either constantly or adaptively based on

phenotypic or genotypic diversity measures (line 20 or line 21 respectively).

In Algorithm 13, constant lattice reconfiguration (CLR) and constant dynamic

anisotropic (CDA) criteria are detailed. A constant interval of c = 5 generations is

applied, to dynamically change the selection intensity. The same lattice configura-

tion options drawn in Figure 4.1 are implemented and evaluated here. Rectangular

(2
(

n
2 × n

)

) and linear (n
(

1× n
2

)

) lattice options are also executed in horizontal and

vertical alignments with probability occurrence of 50%. For dynamic anisotropic selec-

tion, an initial α = 0.0 is increased constantly by an α = 0.1 step; once the limit is

reached, α is reinitialized to 0.0.

Dynamic selection pressure based on phenotypic diversity applies the measure of the

first experimental set-up presented in Subsection 4.1.2.2 which corresponds to the aver-

age population fitness score, ∆f̄ , in consecutive generations. The same conditions are

applied to the dynamic modification of the local selection through the α parameter of

anisotropic selection. It is considered that too much exploitation would represent large

changes on phenotypic values and that most individuals would be closely distributed

over the landscape. On the contrary, excessive exploration would lead individuals to

distant and possibly poor regions of the search space, and phenotypic values would

present, in average, minimal changes. Both states are not desirable, instead a balance

between exploration and exploitation should be achieved. Yet, as explained in Sub-

section 4.1.2.2 this criterion does not comprise all possible scenarios and therefore the
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Algorithm 12 Dynamic lattice reconfiguration or anisotropic selection cGA

1: procedure cGA

2: n× n | 4(n2 × n
2 ) | α = 0.0 ⊲ Initial topology or anisotropic selection config.

3: for k ← 1, gens do

4: for i← 1,m do

5: for j ← 1, n do

6: x0 = x(i, j); f0 = f(i, j);

7: (fn, fe, fs, fw)← evaluation(x0, xn, xe, xs, xw);

8: (x′)← selection(xn, xe, xs, xw);

9: (x1, x2)← recombination(x0, x
′);

10: (x′1, x
′
2)← mutation(x1, x2);

11: (f ′
1, f

′
2)← evaluation(x′1, x

′
2);

12: (f ′
0)← [max|min](f0, f

′
1, f

′
2);

13: (xtemp(i, j), ftemp(i, j))← replace(x′0, f
′
0); ⊲ Replacement policy

if-better

14: end for

15: end for

16: x = xtemp, f = ftemp; ⊲ Synchronous updating

17: if f̄ <= threshold then

18: stop

19: else

20: CLR|PLR(f)|GLR(x); ⊲ Execute lattice reconfiguration mechanism

OR

21: CDA | PDA(f) | GDA(x); ⊲ Apply dynamic anisotropic selection

22: end if

23: end for

24: end procedure
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Algorithm 13 Constant reconfiguration criterion

1: procedure clr,cda

2: if k mod c == 0 then ⊲ c is a constant

3: if [NGR = NGRn×n | α = 0.9] then ⊲ Exploration limit

4:

[

NGR = NGR4(n
2
×n

2
); | α = 0.0;

]

⊲ Restart constant cycle

5: else

6: NGR =
[(

NGR2(n
2
×n) | NGRn(1×n

2
)

)

| α = α+ 0.1
]

; ⊲ Change NGR

OR increase α

7: end if

8: else

9: end if

10: end procedure

phenotypic entropy of the population is a desirable measure to determine diversity in

the phenotypic space.

In Algorithm 14, phenotypic lattice reconfiguration (PLR) and phenotypic dynamic

anisotropic (PDA) criteria are shown. If the difference between ∆f̄t and ∆ ¯ft−1 is less

than
(

∆ ¯ft−1 −∆ ¯ft−2

)

, individuals are too spread and exploitation should be promoted

by reconfiguring the population topology or decreasing the α value. If the same condi-

tion indicates an increase in the average fitness score, exploration should be promoted

through a lattice configuration that presents lower selective pressure or higher α value.

Otherwise, the population topology remains the same.

Algorithm 14 Phenotypic diversity criterion

1: procedure plr/pda(f)

2: if ∆f̄t < (2 ∗∆ ¯ft−1)−∆ ¯ft−2 then

3: [NGR = NGRhigher | α = α− 0.1] ⊲ Exploit

4: else

5: if ∆f̄t > (2 ∗∆ ¯ft−1)−∆ ¯ft−2 then

6: [NGR = NGRlower | α = α+ 0.1] ⊲ Explore

7: else

8: end if

9: end if

10: end procedure
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The same form to determine genotypic diversity used in Subsection 4.1.2.3 is applied

here. The Hamming distance among chromosomes is used as a measure. Thus, if

difference among genotypes at current (∆H̄t) and previous (∆ ¯Ht−1, ∆ ¯Ht−2) generations

is significant, the population topology is reconfigured. In Algorithm 15 details for

genotypic lattice reconfiguration (GLR) and genotypic dynamic anisotropic (GDA)

criteria are presented: if
(

∆H̄t −∆ ¯Ht−1

)

is less than
(

∆ ¯Ht−1 −∆ ¯Ht−2

)

, diversity is

being lost, therefore exploration should be promoted through the reconfiguration of the

grid by reducing the NGR or increasing the α value. On the contrary, if
(

∆H̄t −∆ ¯Ht−1

)

is grater than
(

∆ ¯Ht−1 −∆ ¯Ht−2

)

, diversity is increased and exploitation should be

encouraged. Therefore, the grid configuration is changed to another with higher ratio

or smaller α value. If neither of these conditions are satisfied, the population topology

or α value remain the same.

Algorithm 15 Genotypic diversity criterion

1: procedure glr/gda(x)

2: if ∆H̄t > (2 ∗∆ ¯Ht−1)−∆ ¯Ht−2 then

3: [NGR = NGRhigher|α = α− 0.1] ⊲ Exploit

4: else

5: if ∆H̄t < (2 ∗∆ ¯Ht−1)−∆ ¯Ht−2 then

6: [NGR = NGRlower|α = α+ 0.1] ⊲ Explore

7: else

8: end if

9: end if

10: end procedure

4.2.3 Results Analysis

In this subsection the experimental results are analysed. Most benchmark problems

included in Appendix A are evaluated and compared here. The same experimental

constraints, used in previous sections, are also implemented; as well as the same con-

figuration for genetic operators is used: Single Point Crossover (SPC) with probability

Pc = 1.0 and mutation with probability Pm = 0.02.

The following experimental constraints are evaluated:

• A population size of 400 individuals is used for most problems, except for the
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GPS and the MTTP problems, where a population size of 64 and 100 individuals

are used respectively.

• Local neighbourhood configuration is Von Neumann composed by four individuals

plus the central one.

• 100 independent runs are carried out for each proposed criterion.

• A limit of 500 generations is defined for most problems, except for the Langer-

man function, the SLE and the MMDP problems where the limit is set to 700

generations.

The statistical analysis initially performs a normality test in each set of experi-

mental results as regards the convergence time. Thus, normality is determined by the

Kolmorov-Smirnov test or the Lilliefors test, both with 5% of significance. The Lil-

liefors test is suitable when a fully-specified null distribution is unknown, contrary to

the Kolmorov-Smirnov test. Once the normality of the results has been established, the

Analysis of Variance (ANOVA) is applied to results with normal distribution whereas

the Kruskal-Wallis test is applied in any other case.

As a reference for the analysis of results, the performance of a static square topol-

ogy is used. Thus, statistical significance tests evaluate the performance between the

proposed dynamic criteria and a standard cGA. To represent that statistical significant

difference at 5% has been determined in terms of convergence time, a + symbol is used.

Instead, a • symbol represents results are not statistically different, and therefore ap-

plying the proposed dynamic criteria makes no difference in terms of the number of

generations, when compared to a standard cGA. On the other hand, having statisti-

cally different results does not mean the proposed approaches improve the performance

of a standard cGA but highlights that results are indeed different. Therefore to avoid

confusion an individual analysis for each problem accompanies the interpretation of the

results.

Results are analysed based on convergence time and hit rate. The convergence time

is measured in terms of the number of generations while the hit rate represents the

number of experiments that succeeded in solving the problem, out of the total number

of experiments which is set to one hundred. On each table of results, bold fonts highlight

the best performance in terms of efficiency and efficacy. Results accuracy is assured

by the stop condition which is for all problems highly accurate, see Appendix A for
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details. Commonly, as a stop condition, researchers use a maximum limit in the number

of generations or when an individual has reached the global optimum. However, in this

research the stop condition evaluates that successful experimental samples should have

achieved a solution of the same quality. The stop condition evaluates the average

population fitness score with respect to a problem-specific threshold. This condition

has been defined due to previous research constraints related to the fault tolerant arena.

Although that is a different topic, decision was made in order to maintain the same

stop condition, to be consistent with previous research.

4.2.3.1 Continuous problems

The results for continuous problems tackled through binary tournament selection, con-

stant anisotropic selection (α = 0.8) and dynamic anisotropic selection are presented in

Tables 4.13, 4.14 and 4.15 respectively. The effect of being highly exploitative (binary

tournament) or highly explorative (constant anisotropic selection) are easily observed

in terms of convergence time through both static local selection methods while using a

static square topology.

For the Rastrigin function, which is highly multi-modal, 100% hit rate is achieved

in all cases and the best convergence time is obtained through binary tournament se-

lection. However, statistical significance is proved through lattice reconfiguration for

constant and dynamic anisotropic selection. The best convergence time is achieved by

constant lattice reconfiguration. On the other hand, for the Griewank function, which

is highly multi-modal and epistatic; applying binary tournament selection affects nega-

tively the hit rate when the lattice is reconfigured. In contrast, for constant anisotropic

selection (α = 0.8), both performance measures are enhanced in all cases. The hit rate

improves from 67% to 95% through genotypic based reconfiguration; while convergence

time also improves with statistical significance. Similar results are obtained through

dynamic anisotropic selection presenting overall the best hit rate of 98% achieved when

measuring the phenotypic diversity.

The last continuous problem, the Langerman function, which adds the difficulty of

non-regularity, shows in general a very low hit rate. Slight improvements in terms of

convergence time and hit rate are obtained when lattice reconfiguration or dynamic

local selection are applied. Yet, results statistical significant difference is shown. The

hit rate improves from 21%, on a static square topology, to 41% obtained through
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Table 4.13: Convergence time1 and hit rate2 for continuous problems through constant

and dynamic internal lattice reconfiguration and binary tournament local selection
Dynamic control Rastrigin Griewank Langerman

None
136.69± 12.42 275.65± 44.56 291.04± 103.90

100% 90% 21%

Constant
124.08± 13.16 257.23± 57.03 222.90± 109.72

100% 68% 20%

Phenotypic
129.13± 14.62 270.54± 55.15 230.96± 96.96

100% 77% 25%

Genotypic
126.19± 10.09 264.16± 49.22 248.81± 118.69

100% 82% 22%

ANOVA/K-W 3 • (+) •

Table 4.14: Convergence time1 and hit rate2 for continuous problems through constant

and dynamic internal lattice reconfiguration and anisotropic local selection
Dynamic control Rastrigin Griewank Langerman

None
230.38± 15.51 444.73± 41.52 432.61± 47.01

100% 67% 21%

Constant
188.91± 15.96 402.91± 47.46 309.42± 81.44

100% 93% 16%

Phenotypic
196.71± 29.43 400.56± 45.63 364.33± 60.92

100% 91% 33%

Genotypic
202.92± 16.62 396.14± 46.87 356.46± 58.23

100% 95% 26%

ANOVA/K-W 3 (+) (+) (+)

Table 4.15: Convergence time1 and hit rate2 for continuous problems through dynamic

anisotropic local selection
Dynamic control Rastrigin Griewank Langerman

Constant
194.15± 13.65 398.59± 42.02 346.31± 82.05

98% 97% 22%

Phenotypic
237.50± 30.02 397.19± 41.64 362.70± 69.06

100% 98% 41%

Genotypic
213.19± 27.79 422.96± 52.15 259.30± 83.93

100% 84% 26%

ANOVA/K-W 3 (+) (+) (+)

1 Convergence time is the average number of generations for successful experiments ± std. dev.

2 Hit rate is presented as the percentage of successful experiments out of hundred samples.

3 Statistical tests: (+) statistical difference is proved / • is not proved.

dynamic anisotropic selection approach based on phenotypic diversity.
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4.2.3.2 Real and combinatorial problems

In Tables 4.16, 4.17 and 4.18 results for real and combinatorial problems are presented.

Similar to results obtained when tackling continuous problems, the difference between

applying binary tournament or anisotropic (α = 0.8) local selection in terms of the

average convergence time is clear in most of the problems except for the GPS attitude

determination problem.

The FMS problem presents similar hit rates for constant local selection methods.

For binary tournament, the improvement is minimal while a significant increase in hit

rate (from 46% to 71%) is obtained through anisotropic selection with constant α = 0.8

when the population topology is constantly rearranged. The convergence time is also

reduced with significant difference while standard deviation shows the results consis-

tency. There is also an improvement in terms of hit rate through dynamic anisotropic

selection when compared to the lattice reconfiguration with binary tournament and

constant anisotropic selection. Comparing constant and dynamic anisotropic selec-

tion based on phenotypic diversity both present a hit rate of 61%. However, a better

convergence time is obtained through dynamic lattice reconfiguration with constant

anisotropic selection.

Solving a SLE of ten variables is a difficult task; low hit rates, below 50%, are ob-

tained in all cases. Higher selection pressure, binary tournament, performs better than

constant anisotropic selection on a static square topology. The results are the opposite

for dynamic lattice reconfiguration mechanisms with binary tournament and constant

anisotropic selection. Higher selection pressure negatively affects the hit rate meanwhile

lower selection intensity improves the hit rate from 19% to 38%, being more consistent

to constantly rearrange the population topology. For dynamic anisotropic selection,

the best overall hit rate (44%) obtained through phenotypic diversity is achieved with

no statistically significant improvement in terms of convergence time.

For the GPS attitude determination problem, there is no statistical significance in

convergence time between having a static squared topology and the proposed dynamic

lattice reconfiguration criteria. However, the best hit rate (87%) is obtained through

anisotropic local selection and phenotypic diversity based criterion. Yet, this result is

similar to applying dynamic anisotropic local selection (84%).

Finally, for combinatorial problems, results show the following: the MMDP presents

no improvement in terms of hit rate when lattice reconfiguration or dynamic anisotropic

164



T
ab

le
4.
16
:
C
on

ve
rg
en
ce

ti
m
e1

an
d
h
it
ra
te

2
fo
r
re
al

an
d
co
m
b
in
at
or
ia
l
p
ro
b
le
m
s
th
ro
u
gh

co
n
st
an

t
an

d
d
y
n
am

ic
la
tt
ic
e
re
co
n
fi
gu

ra
ti
on

w
it
h

b
in
ar
y
to
u
rn
am

en
t
lo
ca
l
se
le
ct
io
n

D
y
n
am

ic
co
n
tr
ol

F
M
S

S
L
E

G
P
S

M
M
D
P

M
T
T
P

N
on

e
21
0.
78
±
58
.7
6

29
7.
28
±
72
.5
6

73
.1
2
±
41
.8
3

43
1.
31
±
54
.4
4

25
9.
65
±
44
.1
6

41
%

3
9
%

57
%

89
%

99
%

C
on

st
an

t
18
9.
78
±
66
.9
9

25
3.
05
±
60
.3
8

6
4
.6
6
±
25
.7
8

3
6
1
.7
1
±
65
.2
4

25
2.
16
±
65
.1
8

42
%

19
%

50
%

87
%

10
0%

P
h
en
ot
y
p
ic

19
2.
58
±
56
.9
6

2
5
0
.0
9
±
55
.5
5

80
.5
5
±
54
.2
5

38
4.
38
±
72
.3
8

24
8.
46
±
56
.9
1

41
%

21
%

6
0
%

89
%

10
0%

G
en
ot
y
p
ic

1
7
5
.0
0
±
61
.9
8

27
4.
88
±
98
.1
0

65
.2
4
±
34
.2
2

38
8.
95
±
62
.1
4

2
3
9
.1
7
±
38
.2
3

4
5
%

27
%

57
%

9
0
%

10
0%

A
N
O
V
A
/K

-W
3

•
(+

)
•

(+
)

•

1
C
o
n
v
er
g
en

ce
ti
m
e
is

m
ea
su
re
d
a
s
th
e
av
er
a
g
e
n
u
m
b
er

o
f
g
en

er
a
ti
o
n
s
fo
r
su
cc
es
sf
u
l
ex
p
er
im

en
ts
.
C
o
rr
es
p
o
n
d
in
g
st
a
n
d
a
rd

d
ev
ia
ti
o
n
is

in
cl
u
d
ed

a
ft
er

±
sy
m
b
o
l.

2
H
it

ra
te

is
p
re
se
n
te
d
a
s
th
e
p
er
ce
n
ta
g
e
o
f
su
cc
es
sf
u
l
ex
p
er
im

en
ts

o
u
t
o
f
th
e
to
ta
l
n
u
m
b
er

o
f
ex
p
er
im

en
ts

w
h
ic
h
is

o
n
e
h
u
n
d
re
d
sa
m
p
le
s.

3
S
ta
ti
st
ic
a
l
te
st
s:

(+
)
st
a
ti
st
ic
a
l
d
iff
er
en

ce
is

p
ro
v
ed

/
•
is

n
o
t
p
ro
v
ed

.

165



T
ab

le
4.17:

C
on

vergen
ce

tim
e
1
an

d
h
it

rate
2
for

real
an

d
com

b
in
atorial

p
rob

lem
s
th
rou

gh
con

stan
t
an

d
d
y
n
am

ic
lattice

recon
fi
gu

ration
w
ith

con
stan

t
an

isotrop
ic

lo
cal

selection
(α

=
0.8)

D
y
n
am

ic
con

trol
F
M
S

S
L
E

G
P
S

M
M
D
P

M
T
T
P

N
on

e
379.38±

67.83
594.21±

54.23
8
0
.7
3
±
20.36

568.98±
54.01

444.45±
36.92

46%
19%

76%
9
7
%

31%

C
on

stan
t

3
0
0
.3
2
±
53.09

506.23±
22.29

86.76±
25.15

5
5
8
.5
6
±
57.01

4
0
3
.0
0
±
47.85

7
1
%

3
8
%

80%
91%

8
7
%

P
h
en
oty

p
ic

321.91±
67.11

526.63±
84.10

81.75±
23.07

608.13±
47.26

428.17±
50.21

61%
3
8
%

8
7
%

87%
75%

G
en
oty

p
ic

328.76±
67.82

4
8
9
.8
4
±
100.97

80.00±
19.15

615.22±
52.97

425.02±
47.48

56%
26%

77%
85%

70%

A
N
O
V
A
/K

-W
3

(+
)

(+
)

•
(+

)
(+

)

1
C
o
n
v
erg

en
ce

tim
e
is

m
ea
su
red

a
s
th
e
av
era

g
e
n
u
m
b
er

o
f
g
en

era
tio

n
s
fo
r
su
ccessfu

l
ex
p
erim

en
ts.

C
o
rresp

o
n
d
in
g
sta

n
d
a
rd

d
ev
ia
tio

n
is

in
clu

d
ed

a
fter

±
sy
m
b
o
l.

2
H
it

ra
te

is
p
resen

ted
a
s
th
e
p
ercen

ta
g
e
o
f
su
ccessfu

l
ex
p
erim

en
ts

o
u
t
o
f
th
e
to
ta
l
n
u
m
b
er

o
f
ex
p
erim

en
ts

w
h
ich

is
o
n
e
h
u
n
d
red

sa
m
p
les.

3
S
ta
tistica

l
tests:

(+
)
sta

tistica
l
d
iff
eren

ce
is

p
rov

ed
/
•
is

n
o
t
p
rov

ed
.

166



T
ab

le
4.
18
:
C
on

ve
rg
en
ce

ti
m
e1

an
d
h
it

ra
te

2
fo
r
re
al

an
d
co
m
b
in
at
or
ia
l
p
ro
b
le
m
s
th
ro
u
gh

d
y
n
am

ic
an

is
ot
ro
p
ic

lo
ca
l
se
le
ct
io
n

D
y
n
am

ic
co
n
tr
ol

F
M
S

S
L
E

G
P
S

M
M
D
P

M
T
T
P

C
on

st
an

t
3
2
4
.2
1
±
65
.2
4

5
1
1
.7
3
±
69
.3
6

6
8
.9
3
±
25
.2
0

5
9
0
.0
8
±
49
.0
1

3
9
4
.4
2
±
48
.4
2

6
5
%

38
%

76
%

9
2
%

9
5
%

P
h
en
ot
y
p
ic

36
3.
06
±
63
.1
7

51
5.
70
±
87
.2
6

85
.8
5
±
33
.8
3

64
1.
14
±
34
.4
3

41
9.
92
±
46
.4
9

61
%

4
4
%

8
4
%

50
%

66
%

G
en
ot
y
p
ic

32
7.
29
±
66
.6
7

53
0.
88
±
96
.4
9

74
.5
1
±
30
.7
5

64
3.
13
±
39
.6
0

44
0.
00
±
35
.6
2

64
%

27
%

82
%

38
%

51
%

A
N
O
V
A
/K

-W
3

(+
)

•
(+

)
(+

)
(+

)

1
C
o
n
v
er
g
en

ce
ti
m
e
is

m
ea
su
re
d
a
s
th
e
av
er
a
g
e
n
u
m
b
er

o
f
g
en

er
a
ti
o
n
s
fo
r
su
cc
es
sf
u
l
ex
p
er
im

en
ts
.
C
o
rr
es
p
o
n
d
in
g
st
a
n
d
a
rd

d
ev
ia
ti
o
n
is

in
cl
u
d
ed

a
ft
er

±
sy
m
b
o
l.

2
H
it

ra
te

is
p
re
se
n
te
d
a
s
th
e
p
er
ce
n
ta
g
e
o
f
su
cc
es
sf
u
l
ex
p
er
im

en
ts

o
u
t
o
f
th
e
to
ta
l
n
u
m
b
er

o
f
ex
p
er
im

en
ts

w
h
ic
h
is

o
n
e
h
u
n
d
re
d
sa
m
p
le
s.

3
S
ta
ti
st
ic
a
l
te
st
s:

(+
)
st
a
ti
st
ic
a
l
d
iff
er
en

ce
is

p
ro
v
ed

/
•
is

n
o
t
p
ro
v
ed

.

167



selection are applied. For the second criterion, the hit rate drops dramatically to 38%

for genotypic diversity based dynamic selection. There is a statistically significant

improvement in terms of convergence time for binary tournament selection when the

lattice reconfiguration is carried out based on phenotypic or genotypic diversity. Simi-

lar results are obtained for the MTTP; overall binary tournament provides the highest

hit rate with no improvement in convergence time. However, constant anisotropic se-

lection on a standard cGA topology shows the worst hit rate (31%) which significantly

improves to 87% and 95% through constant lattice reconfiguration and constant dy-

namic anisotropic selection respectively.

4.2.4 Summary

In this section, two approaches for diversity tuning in cellular GAs have been evalu-

ated and compared. The aim was to dynamically control the overall induced selection

pressure while taking advantage of the structural properties of cGAs.

Two constant local selection methods were applied while dynamic lattice reconfig-

uration was performed: binary tournament and anisotropic selection. Both methods

present distinctively opposite selection pressure. The effect of dynamically reconfig-

ure the grid whereas binary tournament local selection was applied was not significant

in terms of efficiency. Binary tournament selection is highly exploitative while con-

stant anisotropic selection becomes more explorative. In fact, anisotropic selection

offers more flexibility when internal lattice reconfiguration is performed. Therefore,

anisotropic selection with constant α = 0.8 showed better convergence times in most

of the problems except for the MMDP.

Implementing dynamic anisotropic selection provided similar or better overall per-

formance in comparison to reconfiguring the population topology. Dynamic anisotropic

selection showed greater flexibility in terms of selection pressure. Therefore, highly ex-

plorative search could be performed at the cost of increasing the convergence time.

However, for some problems, having high and constant selection pressure produced

a better performance (the Griewank function and the SLE problem). But, in most

problems, if selection pressure was dynamically controlled the overall performance was

enhanced.
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4.3 Chapter Summary

This chapter was aimed at investigating the dynamic reconfiguration of the popula-

tion topology and the dynamic allocation of probabilities in anisotropic selection as

mechanisms for diversity tuning to provide a more balanced exploration-exploitation

trade-off. Three experimental set-ups were assessed in order to validate the proposed

criteria. The contribution to knowledge in this arena is:

• Dynamic internal lattice reconfiguration to allow different levels of selective pres-

sure while maintaining the adjacency of individuals; any improvement in the algo-

rithmic performance is due to the reconfiguration mechanism without involvement

of other evolutionary based operations.

• Improvement in cGAs performance through dynamically reconfigure the popula-

tion topology was achieved for most benchmark problems. Two local selection

methods presenting opposite selective pressures were locally applied. In most

benchmark problems (except the Griewank function and the MMDP problem)

the average number of generations required to find the solution was reduced and

in most cases the hit rate increased. Both performance measures were statistically

assessed.

• Having a number of levels for selective pressure through different topology configu-

rations result in a more effective attempt for balancing the exploration-exploitation

trade-off from a structural point-of-view.

• A comparative analysis between: 1) Dorronsoro et al. proposed mechanism for

externally changing the population topology [6], and 2) the internal lattice recon-

figuration criterion proposed in this research; showed that the former achieved

better efficiency in most benchmark problems with binary tournament selection

(high selective pressure) through adaptive measures. However, Dorronsoro et

al. mechanism implies individuals migration which benefits local diversity and

implicitly modifies the selective pressure. On the other hand, with anisotropic

selection (low selective pressure with α = 0.8), cGAs performance is improved

in terms of efficiency and efficacy except for the MMDP problem; and constant

lattice reconfiguration outperformed adaptive measures.
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• In cGAs exploration is mainly carried out globally throughout the grid and ex-

ploitation is mostly promoted locally within neighbourhoods. Therefore, the pro-

posed mechanism for diversity tuning works at a global level through the con-

figuration of the lattice and its effect does not need to be a prompt response

to phenotypic or genotypic diversity changes. Constant and periodical recon-

figuration of the grid provides a similar effect as measuring diversity in any of

both spaces to trigger the reconfiguration mechanism and is less computationally

expensive.

• Anisotropic selection assigns probabilities for selection according to individuals

locations in the neighbourhood, where exploitation is mainly promoted in cGAs.

Dynamically modifying those probabilities for selection of individuals in the neigh-

bourhood induces different levels of selective pressure. An improvement in cGAs

performance is achieved in terms of efficiency and efficacy for most benchmark

problems except for the MMDP problem.

• Applying dynamic lattice reconfiguration and dynamic anisotropic selection achieved

similar algorithmic performance in terms of efficiency in most benchmark prob-

lems. Lattice reconfiguration affects globally the exploration of the search space

carried out throughout the grid while dynamic anisotropic selection affects the

exploitation promoted locally within neighbourhoods. Therefore a combination

of both approaches is desirable and will be explored in future work.
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Chapter 5

On 3D Cellular Genetic

Algorithms

This chapter aims to analyse and compare 2D and 3D cellular GAs, while maintaining in

general their configuration constraints such as population size, neighbourhood radius,

local selection method, replacement polices, among others. A primary objective is

to provide a wide insight into the advantages of increasing cellular dimensionality for

future development of 3D adaptive optimization engine architectures.

Parallel architectures have been suitable to adapt and implement evolutionary

search strategies. Particularly, fine or cellular Genetic Algorithms own a processing

structure that creates a strong association between soft (algorithm) and hard (archi-

tecture) levels, with attractive properties in terms of system performance. Typically, a

cellular GA consists of a decentralized population distributed on a grid structure with

its edges wraparound, following a toroidal shape. Only one individual is placed at each

grid position. Thus, interaction among individuals is performed at two stages; locally,

each individual is mated with its closest neighbours, and globally through genotypes

information that is spread all around the structure.

Cellular Genetic Algorithms present several advantages over other GAs approaches;

such as the diversity level which can be maintained for much longer in comparison with

centralized ones [3]. Moreover, cellular GAs outperform panmictic based GAs, not

only in terms of efficiency, measured as the number of generations required to reach a

defined threshold; but also in its efficacy, quantified as the hit rate in combination with

the results accuracy. These improvements emerge from the specific interaction among
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individuals defined by the population mapping over a grid structure.

An immediate step towards a better understanding of cGAs behaviour and model

their performance, is to increase their structural dimensionality; which is the main

purpose of the study herein presented. Comparing 2D and 3D square shape topologies

while keeping the same processing and interaction constraints among individuals will

provide a wider overview of cGAs potential as optimization tools.

Previously in [28], a study on multi-dimensional cellular automata was carried out.

The interaction among cells was performed using genetic operations such as selection,

recombination and mutation. Three problems which aim is to evolve local rules to

perform a specific global behaviour were tackled. Those problems are the majority

problem, the checker board problem and the evolution of bitmaps. Different parameter

settings in terms of crossover and mutation probabilities and the size of the tournament

in local selection were evaluated. In most of the problems a 3D topology outperformed

1D and 2D topologies in terms of maximum fitness score achieved and number of

generations. However, comparison among structural dimensions is carried out with

very different number of cells, for example, the majority problem was assessed using a

13× 13 2D topology and a 7× 7× 7 3D topology, which represents a difference of 274

cells.

In this chapter the aim is to further investigate the effect of having a 3D-cGA

while using different population sizes and local neighbourhood distances or radius while

tackling difficult landscapes and larger problem sizes. The population sizes used in this

study are very similar when using 2D and 3D structures. An initial set of four problems

with similar characteristics and distinct landscapes is assessed. Rastrigin and Schwefel

functions are multi-modal and separable. On the other hand, Ackley and Griewank

functions are not only multi-modal and regular but also epistatic. Details of these

benchmark problems are provided in Appendix A. A reduced test bench is initially

assessed from a dimensional point-of-view with problems of medium to high difficulty

for GAs, such as those tackled here while using different population sizes. Research on

dimensionality in cellular GAs presented in this thesis is the starting point for future

investigation at the System Level Integration research group.

In addition, a major motivation for this research is to explore at algorithmic level

the benefits of 3D structures in cellular GAs and to relate them with those of the

recently developed three-dimensional integration technology. 3D integration technology
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research started in the early 90s. Recent advances in this area have presented positive

results at hard level; hence combining the soft approach of implementing 3D cellular

GAs as optimization engines, in order to solve hard real time problems, would bring

together the advantages that 3D integration technology has provided. Although, it is

not yet a widely commercial technology; 3D integration technology is considered as

the future for coarse and fine grained reconfigurable architectures [90, 91]. Among the

advantages that 3D integration technology brings are: reduction of the routing length,

decrease of the interconnections delay which impact not only the fabric size but also

the device performance. It has also been reported a significant improvement in terms

of logic and memory density. Regarding logic density, for fine grained devices, it has

been determined that 80%-90% of their area is used for reconfigurable interconnections.

This percentage is reduced to 25%-60% when 3D integration technology is applied [92].

Future adaptive systems must offer characteristics such as fast adaptation, au-

tonomous behaviour and fault tolerance. Cellular GAs have shown to be adaptive

as well as fault tolerant for specific applications [93, 53]. 3D cellular architectures will

offer the added advantage of speed and package density. This paper investigates a

number of 3D cellular GA architectures and compares these to their 2D counterparts.

5.1 Algorithm configuration

Most of the existing cGAs studies are based on one and two dimensions. The goal of

this study is to compare 3D versus 2D cellular GAs in terms of efficiency and efficacy.

The population is structured as a square toroidal 2D grid in 2D-cGAs and as a cube

toroidal 3D grid in 3D-cGAs, as shown in Figure 5.1.

Several population sizes are considered for both grids (2D and 3D). The population

sizes for 2D grids are (3× 3), (5× 5), (8× 8), (11× 11), (15× 15), and (19× 19).

While the population sizes introduced in 3D are (2× 2× 2), (3× 3× 3), (4× 4× 4),

(5× 5× 5), (6× 6× 6), and (7× 7× 7). These sizes are selected to produce almost

equal population sizes for both grids.

Chromosomes are encoded as binary strings. Each gene (variable) has a length of

10-bits, so the chromosome length L is equal to 10 × q bits, where q is the function

dimension. Although the considered neighbourhood topology is linear for both grids,

the neighbourhood size differs according to the grid dimensions. Thus, the algorithm
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(a) 2D Topology (b) 3D Topology

Figure 5.1: Cellular toroidal topologies

is configured with two different neighbourhood radii in both dimensions. Considering

one distance step from the central cell results in 4 neighbours (North, East, West, and

South) with radius 0.89 in case of 2D-cGA and 6 neighbours (horizontal North and

South, vertical North and South, East, and West) with radius 0.925 in case of 3D-cGA.

Figure 5.2 shows the NGR considering two different radii and lattices. Smaller

neighbourhood size yields lower NGR which in turn decreases as the population size

increases. A lower NGR implies less global selection intensity and therefore more

exploration [31, 82, 33]. As show in Figure 5.3 the NGR is not evaluated for a population

size of (3× 3) (2D) with three distance steps because of the small grid size. Proceeding

three steps from an individual results in increasing its probability for selection. For

the same reason, the NGR is not computed for population sizes of less than (6× 6× 6)

individuals.

Figure 5.2 shows the proportion of the best individual growth curves for population

sizes (19× 19) (2D) and (7× 7× 7) (3D) considering one and three distance steps. As

the curves imply, 2D-cGA with one step has the slowest growth curve while 3D-cGA

with three steps has the fastest growth curve. 2D-cGA with three steps (NGR =

0.2679) produces almost similar growth curve to the 3D-cGA with one step (NGR =

0.2673). The reason of this behaviour is that in both cases the ratio is similar [31].

In the following subsection, the cellular GA pseudo-code evaluated in this chapter is

presented.
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Figure 5.2: 2D/3D Neighbourhood to grid ratio (NGR) with different population sizes

Figure 5.3: 2D/3D Best individuals growth curves
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5.1.1 3D cellular GA Pseudo-code

In Chapter 2, Section 2.4, the basic pseudocode for a 2D-cGA is presented. In Algorithm

16, a similar pseudocode with variations corresponding to a 3D-cGA is shown. The

initial stages are the same than in a 2D-cGA. A random initial population is generated,

which then is evaluated and proceed by successively updating the individuals using

genetic operations, until a termination condition is fulfilled. The main difference is

the configuration of the local neighbourhood, which in 3D adds 2 individuals for a L7

neighbourhood.

The local selection method used in the neighbourhood is binary tournament (BT)

to select the second parent (line 7) while the first parent is the current one (line 6).

A single point crossover for recombination is applied with probability Pc = 0.9 -line

8- that delivers one child with the best fitness. Following a bit-flip mutation with

probability Pm = 0.02 (line 9).

The new individual generated by local selection, crossover, and mutation replaces

the old one if it is better and added into a temporal population (lines 11). Considering

synchronous individuals updating, each population replaces the previous one completely

(line 13).

In the next section experimental constraints and results analysis are provided.

5.2 Results Analysis

The next experimental constraints are defined:

• Local neighbourhood L5 with Manhattan distance of 1 and 3

• Local selection: 1st parent: central individual + 2nd parent: binary tournament

• Single Point Crossover with probability Pc = 0.9

• Mutation with probability Pm = 0.02

• Maximum number of generations: 500

• Chromosome length: 10 bits × problem dimension

• Replacement policy: replace if-better

• Stop condition: average fitness ≤ problem specific threshold
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Algorithm 16 3D Cellular Genetic Algorithm Pseudocode

1: procedure cga

2: (x)← random (x0) ⊲ initial population

3: (f)← evaluation (x) ⊲ evaluation

4: while k ← 1, generations, or f̄ <= threshold do

5: for i← 1, populationSize do

6: (f0, x0)← (fi, xi) ⊲ current individual

7: (f2, x2)← selection (f, ffront, fback, fN , fE , fS , fW ) ⊲ 2nd parent

selection

8: (x′1, x
′
2)← recombination (x0, x2) ⊲ parents recombination

9: (x′′1, x
′′
2)← mutation (x′1, x

′
2) ⊲ offspring mutation

10: (fnew, xnew)← evaluation (x0, x
′′
1, x

′′
2) ⊲ current individual and offspring

evaluation

11: (ftemp, xtemp)← replacement (fnew, xnew) ⊲ individuals replacement

12: end for

13: (f, x)← (ftemp, xtemp) ⊲ temporary population replaces current one

14: end while

15: end procedure
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The results are assessed following two metrics: the mean number of generations,

algorithm efficiency, and the hit rate in combination with the results accuracy repre-

sent the efficacy of the algorithm. Both are computed as an average of one hundred

independent runs.

The cGA is applied to the Rastrigin and Schwefel functions with dimension n = 10,

and neighbourhood radii (0.8944, 2.0755 and 0.9258, 2.1026) for 2D and 3D respectively.

The neighbourhood radii are almost similar for both topologies considering the same

distance steps; the slight difference refers to a grid connection which assigns six neigh-

bours in the 3D grid instead of four neighbours in the 2D grid considering one distance

step [28].

In Figure 5.4 the average number of generations for the Rastrigin and Schwefel func-

tions with a neighbourhood radius with Manhattan distance equal to three is shown.

The results obtained are almost similar for both grid topologies (2D and 3D) with

respect to the average number of generations considering both radii. An increase in

the average number of generations is noticed with 3D-cGA considering the Rastrigin

function with Manhattan distance of 3. The hit rates of previous configuration are

shown in figure 5.5. Similar hit rates are obtained especially for larger population sizes.

In contrast, the results obtained from applying the same algorithmic configuration

to the Griewank and the Ackley functions for q = 5 dimensions show an improvement

for 3D-cGAs in convergence time but in terms of hit rate only for the Griewank function.

In Figures 5.6 and 5.7 results for the Ackley function are presented; in terms of the

average number of generations, 3DcGA improves 2DcGA performance with around 10

generations for small array sizes, and with around 20 for largest populations when a

local neighbourhood radius r = 1 is applied. For r = 3 a similar profile is obtained;

however in this case results are compared only for population sizes with more than 200

individuals, due to the fact that large local radii on 3D structures represent individual

duplicity during selection and therefore are omitted for comparison.

Regarding the hit rate, 2D-cGAs outperform 3D-cGAs for populations over 100

individuals with r = 1. Similar results are observed with r = 3, although the difference

is reduced to approximately 10%.

In Figure 5.8, results for the Griewank function are presented considering a n = 5

dimension. For this case, the 3D-cGA convergence time improvement is comparatively

minor than with the Ackley function. The hit rate obtained represents an improvement
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Figure 5.4: Rastrigin and Schwefel functions average number of generations

of approximately 40% for small population sizes, see Figure 5.9. However, when the

population size increases to more than 100 individuals both cGA approaches perform

similarly.

In conclusion, the 3D-cGA outperforms the 2D-cGA when solving the Griewank

problem and achieves better convergence time for the Ackley function; while both

perform similarly when solving the Rastrigin and the Schwefel problems. As mentioned

previously, all these problems are highly multi-modal and regular but the Rastrigin

and Schwefel functions are separable while the Griewank and Ackley are non-separable

which make them more difficult to optimize. As explained before, with 3D lattices the

neighbourhood size is more dense than in 2D, considering similar population sizes and

distance steps. The larger the neighbourhood size the higher the selection intensity and

therefore a more exploitative search. This implies finding the best solution faster (less

number of generations) which explains the convergence time reduction by 3D-cGA.
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Figure 5.5: Rastrigin and Schwefel functions hit rate

5.3 Summary

This chapter has analysed and compared the performance of cellular GAs using 2D and

3D topologies while tackling a set of four benchmark problems presenting characteristics

such as multi-modality and epistasis. The results obtained by 3D-cGAs empirically

showed to be more efficient in terms of convergence time when solving harder problems,

the Griewank or the Ackley functions, which are multi-modal and epistatic problems.

In terms of the hit rate, both cellular structures achieve similar percentages but a 3D-

cGA improves when smaller local neighbourhood radius is used. A 3D-cGA provides

larger neighbourhood sizes than a 2D-cGA considering similar population sizes [28];

this is a consequence of the topology’s dimension. Interconnection between the cells

results in vertical expansion instead of horizontal expansion in a 2D grid. Although

the interconnection leads the algorithm to be more exploitative, the balance between

exploitation and exploration is kept by choosing an appropriate neighbourhood radius

with respect to the grid topology [33]. If the selection pressure is dynamically controlled

through these parameters, higher hit rates and better convergence times would be

achieved.
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Figure 5.6: Ackley function average number of generations

In [94] further 3D-cGAs results were presented implementing a probabilistic local

selection method as a dynamic control for selection pressure. In [95] an automatic 3D-

cGA fault tolerant approach was proposed. The method considered the loss of genotypic

diversity due to the faults, affecting the phenotypic space. Thus, an automatic isolation

process was performed in order to allow non faulty individuals to migrate and to evolve

within free-fault neighbourhoods. A variety of test problems were tackled and the

proposed fault tolerant 3D-cGA was able to deal with up to 30% faulty individuals.

If the benefits of the performance results so far obtained are merged with the advan-

tages that 3D technology has shown, the resulting architecture would offer significant

advantages in terms of decreased routing length, reduced interconnections delay and

increased logic and memory density. In the future it will be possible to improve today’s

optimization engines performance at algorithmic and implementation levels.

5.4 Chapter Summary

This chapter has focused on carrying out an empirical comparative analysis between 2D-

cGAs and 3D-cGAs. The premise was that a 3D population topology would outperform
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Figure 5.7: Ackley function hit rate

a 2D lattice configuration in algorithmic performance. A 3D structure presents shorter

radii that allow faster solutions spreading and more dense local neighbourhoods that

affects locally the induced selective pressure. The contribution to knowledge in this

topic is:

• Having larger radius (r = 3) in a 2D topology shows the same growth rate for

the best individual than shorter radius (r = 1) in a 3D topology. Thus, the

same selective pressures are induced and similar NGRs are observed for different

population sizes.

• Local neighbourhoods with the same radius present higher NGRs on 3D topologies

while lower NGRs are shown in 2D topologies and therefore 3D-cGAs would

perform a more exploitative search.

• Similar algorithmic performance in terms of convergence time (average number

of generations to find the global optimum) and hit rates (number of successful

experiments) are achieved by 2D and 3D topologies for different population sizes

while tackling multi-modal and regular problems such as the Rastrigin and the

Schwefel functions.
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Figure 5.8: Griewank function average number of generations

• Better convergence times are achieved by 3D-cGAs when tackling multi-modal

and epistatic problems such as the Griewank and Ackley functions. However, for

the Ackley function the improvement is more noticeable than in the Griewank

function. Although both functions present similar properties, the landscape of

each individual problem present specific challenges for the search process.

• In cGAs exploration is carried out globally throughout the grid in concurrence

with the exploitation of solutions that is promoted locally within neighbourhoods.

3D-cGAs provides denser neighbourhoods which allow more diversity for the local

selection of solutions modifying implicitly the selection intensity. Moreover, the

overall 3D structure present shorter radii for the fast spreading of solutions and

these unique properties allow a better balance of the exploration-exploitation

trade-off.
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Chapter 6

Summary and Conclusions

The main aim of this thesis has been to investigate the implicit abilities of cellular Ge-

netic Algorithms to deal with hard optimization problems. On the one hand, the fault

tolerant arena is targeted through the usual genetic operations as well as the structural

properties of this evolutionary technique functioning as mitigation techniques to over-

come faulty scenarios, and thus successfully converge to the global optimum. On the

other hand, cGAs structural properties are further investigated from a dynamic per-

spective in order to improve their performance. Measuring phenotypic and genotypic

changes during evolution provides important information to guide the search while

maintaining an adequate exploitation/exploration trade-off. For this purpose, an ex-

tended test bench was considered including continuous, real-world and combinatorial

problems.

This chapter presents a summary of the work carried out in each chapter of this

thesis, followed by the conclusions derived from the research presented. Finally, future

research guidelines are provided.

6.1 Thesis Summary

Cellular Genetic Algorithms have successfully tackled difficult optimization problems

that at different levels present characteristics such as multi-modality, epistasis and

asymmetry, among others. In Subsection 2.4.4, an empirical study has been presented,

comparing two widely used standard versions of GAs known as generational and steady

state GAs and cellular GAs. Tight limits in the number of generations were defined,

which might be a disadvantage for standard GAs; yet cGAs proved to outperform
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standard GAs under these restrictive experimental constraints. Limiting the maximum

number of generations in the experimental set-ups evaluated in this thesis has been

consistent with the hard real-time application arena considered during the development

of this research.

Chapter 3 focuses on the fault tolerant arena. As it was more appropriate to fol-

low a combined hardware and software approach to deal with SEEs, several mitigation

techniques were proposed and were evaluated while targeting the hard real-time ap-

plication known as the GPS attitude determination problem. This problem is highly

multi-modal, epistatic and non regular, and therefore difficult to optimize. Moreover,

if a GPS attitude system were to operate as part of the electronics for vehicle naviga-

tion, it would be subjected to harsh environmental conditions, such as in aircraft where

electronics are prone to radiation; in such a case, if the essential data of the system

were to be affected by SEEs, there would be a failure in an architecture implementing

a cellular GA to calculate the attitude parameters. In this respect, two faulty scenarios

were empirically assessed: SHEs or SEUs, both in their single and multiple bit versions,

affecting fitness scores and chromosome registers.

SHEs and SEUs at the phenotypic space would radically affect the normal operation

of the GPS attitude architecture. Indeed, stagnation or convergence to a local optima

could be the search outcome. Applying normal genetic operations such as migration,

or using cGAs inherent properties as mitigation techniques was demonstrated to be a

viable tool to deal with faults. Explicit migration was implemented following several

selection and replacement criteria and the cGAs ability to overcome faulty scenarios

was demonstrated experimentally. On the other hand, the induced selection pressure

was modified through changing the configuration of the local neighbourhood, using

different sizes and shapes. In this way, faulty individuals have less opportunity for

selection and therefore the search can still converge to the global optimum. In both

cases, cGAs were able to deal with up to 40% stuck at zero faults, with up to 30% of

stuck at one SHEs or SEUs and with similar percentages in the hybrid case, stuck at

zero and one faults.

In the second part of Chapter 3, the fault tolerant approach consisted in injecting

SHEs/SEUs into cells where chromosomes are allocated. The loss of diversity at the

genotypic space is measured and the selection pressure is changed through the con-

figuration of the population topology in order to induce a more explorative or more
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exploitative search and thus maintain an adequate diversity level in order to allow non-

faulty individuals to continue evolving towards the global optimum. The same types of

faults as in the phenotypic case were injected: stuck at zero, stuck at one and hybrid

stuck at zero and one, considering in the worst case scenario up to 40% of chromosome

bits to be faulty. Results reported an improvement in terms of results accuracy while

the hit rate and convergence time were similar for a standard cGA and the proposed

adaptive approach.

In the next section of the same chapter, a distributed parallel cellular GA was

proposed to improve results accuracy compromised in previous reported results [5, 51].

Final observations pointed to the replacement policy as the main cause of losing results

accuracy when the population size was increased. However, a parallel cGA with a non

adequate replace-always policy still showed an improvement in the overall performance

of the algorithm. A loose connection among cellular sub-structures was implemented

where only individuals located at corners communicate with their adjacent neighbours,

reducing the communication cost. Migration among sub-cellular structures based on

phenotypic diversity changes showed the best convergence times and hit rates.

A fault tolerance perspective was then studied considering a distributed parallel

cGA. SHEs and SEUs affecting fitness score registers were induced. A tuning param-

eter that triggers migration was evaluated considering flexible/middle/strict criteria

for corner individuals to communicate with adjacent cellular sub-structures. Results

showed a distributed parallel cGA outperformed a cGA, when stuck at zero faults occur

in 25% of individuals. However, the proposed approach could only deal with up to 10%

of stuck at one faults at fitness score registers. In general, cGAs demonstrated that

they possess inherent abilities to deal with these kinds of faults affecting critical data

in cGA based architectures.

Chapter 4 focuses on further investigating the dynamics of cellular GAs to deal

with hard optimization problems. An extended test bench was therefore utilised in-

cluding continuous, real-world and combinatorial problems. Two main experimental

set-ups were proposed and assessed: 1) from a single-static to several-dynamic lattice

topologies, 2) comparing internal versus external lattice reconfiguration.

Taking advantage of the inherent properties cellular GAs possess, either to deal with

faulty scenarios or to improve their algorithmic performance, has been a consistent ap-

proach during the development of this research. The decentralized and structured pop-
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ulation of cGAs is the main difference between them and standard or panmictic GAs.

Dynamically modifying the lattice’s configuration provides different levels of selection

pressure that help in maintaining an adequate exploration/exploitation trade-off; which

in many cases leads to a better overall performance. This was demonstrated in the first

experimental set-up where different configuration topologies were gradually introduced.

The lattice reconfiguration effect was assessed through two local selection methods pre-

senting opposite selection pressures. Although statistically supported results for most

of the problems were obtained when reconfiguration was carried out between two and

three different grid configurations, the most significant improvements were achieved

while having four lattice configuration options and a weak selection pressure induced

locally through anisotropic selection.

The second experimental set-up aimed to directly compare the external reconfigu-

ration approach proposed by Dorronsoro et al. with the internal lattice reconfiguration

mechanism applied in the first experimental set-up. The external lattice reconfiguration

approach necessarily implies the re-allocation of individuals and therefore an explicit

form of migration is induced. Reconfiguring the grid internally helps in maintaining

the original adjacency of individuals while increasing the inner selection pressure at

cellular sub-structures. Thus, any improvement in algorithmic performance is only a

consequence of the lattice reconfiguration mechanism. Statistically supported results

on performance improvement were achieved in most of the problems in terms of con-

vergence time and hit rate. The accuracy of the results was assured by using highly

accurate thresholds.

In both experimental set-ups the dynamic reconfiguration mechanisms were per-

formed constantly, every certain number of generations, or adaptively, based on phe-

notypic or genotypic diversity changes. One of the main conclusions of both set-ups is

that no statistical difference was found in terms of convergence time between constant

and adaptive approaches for the majority of the problems. It is however more conve-

nient to use a constant reconfiguration scheme rather than adding computational cost

by calculating the phenotypic or genotypic diversity.

In the final section of this chapter, another approach to dynamically controlling the

selection pressure in cGAs is studied. A local selection method known as anisotropic

selection introduced by Simoncini et al. was investigated as a control mechanism.

Anisotropic selection also makes use of cGAs structural properties, particularly of the
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local neighbourhood configuration. It assigns selection probabilities to individuals ac-

cording to their position in the neighbourhood; this induces different levels for selection

pressure because not only the best (high selection pressure) or worst (low selection

pressure) individuals are selected for reproduction. This approach was compared to

the dynamic lattice reconfiguration mechanism presented before. In most problems,

performance results were similar or in some cases better than dynamically reconfigur-

ing the grid. Yet, for some problems (the Griewank function and the SLE) applying

constant high selection pressure reported the best performances.

In Chapter 5, a comparative study of 2D and 3D cGAs is presented. Cellular

GAs are normally implemented on 2D toroidal lattices; however, 3D toroidal struc-

tures present characteristics such as reduced radii for individuals’ placement and thus

shorter times for diffusion of solutions throughout the grid. A neighbourhood with more

individuals located at the same distance implicitly induces the same selection pressure

as in a 2D local neighbourhood with triple the radius. Several population sizes and

neighbourhood configurations were empirically evaluated. 3D-cGAs achieved better

convergence times when tackling multi-modal and epistatic problems. However, higher

hit rates were only obtained for populations with less than a hundred individuals.

In future, optimization engines would combine the benefits at algorithmic level of

3D-cGAs with the latest improvements in 3D-IC technology, such as reduced routing

length with consequently shorter interconnection delays and increasing memory and

logic density, among others.

6.2 Conclusions

This thesis has further investigated the inherent abilities of cellular Genetic Algorithms

as optimization engines while tackling difficult optimization problems. The fundamen-

tal idea has been to take advantage of specific cGAs’ characteristics such as the struc-

tured and decentralized population, the implicit migration due to the neighbourhoods

overlapping and thus the smooth diffusion of solutions throughout the grid, the explicit

migration, the size and shape of the population topology and the local neighbourhood,

the selection pressure induced locally by the selection method, etc.

At the initial stages of this research, a hard real-time application was tackled, the

GPS attitude determination problem, a difficult optimization task presenting charac-
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teristics such as multi-modality, epistasis and non regularity. A fault tolerant approach

was proposed to deal with SEE, in particular with SHEs and SEUs affecting data crit-

ical to the system such as fitness scores and chromosomes storage cells. The ability

of cGAs to deal with faulty scenarios was empirically demonstrated, while applying

explicit migration or modifying the selection pressure through the configuration of the

topology or the local neighbourhood. Several migration policies as well as structural

configuration criteria were tested. The proposed mitigation techniques are based on

implicit characteristics of cGAs, therefore the added computational cost was minimal.

Following on from this, a dynamic approach based on cGAs structural properties

was developed aiming to improve their overall performance. A wide variety of problems

were tackled including continuous, real-world and combinatorial. Having a structured

and decentralized population is a main characteristic of cGAs. It makes it possible to

parallelize the search, while performing, at two levels, the exploitation and exploration

of the solutions space. Exploitation is carried out locally through the neighbourhoods,

and the exploration of the search space is performed globally throughout the grid. For

most of the test problems, it was empirically demonstrated that through dynamically

modifying the internal configuration of the population topology a significant improve-

ment in performance could be achieved. These results were statistically supported.

A second approach was developed to dynamically modify the induced selection pres-

sure through a local selection method known as anisotropic selection. This method is

also based on the structural properties of cGAs, in particular the neighbourhood con-

figuration. The extended test bench presented had been assessed through the proposed

dynamic local selection approach, see Appendix A. A comparative analysis between

both dynamic approaches: local selection versus lattice reconfiguration was carried out.

Dynamic local selection achieved similar or in some cases better performances. Dynam-

ics in both mechanisms were performed constantly or adaptively, based on phenotypic

and genotypic diversity changes. Although detecting changes in both spaces provides

a more accurate timing for dynamically changing the population topology, the effect

in the overall performance of the adaptive criteria was not as significant as expected.

Performing a constant reconfiguration of the grid every certain number of generations

showed similar improvements with no added computational cost.

Finally, a comparative analysis of cGAs dimensionality was developed. 3D-cGAs

achieved better performance in terms of convergence time than 2D-cGAs when tackling
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multi-modal and epistatic problems. However, only in small population sizes did 3D-

cGAs outperform 2D-cGAs in terms of hit rates. This initial study was the starting

point for ongoing research within the System Level Integration group. In future, it will

be possible to combine the algorithmic advantages of 3D algorithmic structures and

the latest improvements in 3D-IC technology.

6.3 Future Work

This thesis has thoroughly investigated cellular GAs, emphasizing the inherent abilities

they possess to improve their performance. However, several interesting aspects remain

open for further investigation which might contribute to current knowledge of cGAs as

optimization engines.

In the fault tolerant arena, the proposed mitigation techniques can be extended and

combined. For example, to consider SHEs and SEUs affecting both the phenotypic and

genotypic spaces simultaneously. Analysing the consequence of such a scenario would

be important. Genotypic changes are normally expressed at the phenotypic space. Yet,

the opposite case is not always sustained. In the genotypic space, developing an iso-

lation criteria for faulty individuals is an aspect open for further investigation. Before

isolation, faulty individuals should be detected. A direct indication of faulty bits in

chromosome registers is reflected by the loss of diversity in genotypes and consequently

an incorrect mapping in the phenotypic space. However, the fact that phenotypes are

faulty does not necessarily reflect on their chromosomes, and therefore faults in pheno-

types should be detected in their own space. In this research, worst case scenarios were

considered. However, more specific criteria for faults detection in the phenotypic space

need to be proposed. Other internal structures of the cellular GA based architecture

should also be explored from a fault tolerant perspective, for example the Finite-State

Machine (FSM) that rules transitions between stages of evolution, among others.

It is demonstrated that a more adequate balance of the exploitation/exploration

trade off is achieved through structurally modifying the population topology or the

local selection; thus leading to an improvement in cGAs performance. A more refined

approach is desirable for the formation of internal cellular substructures. In [96] a

self-organizing topology EA is compared with a 1D-cGA implemented with certain

automatic rules for dynamic topological changes. In this respect, on-the-fly information

191



of genotypic and phenotypic diversity could provide some guidelines for limiting the

borders of internal structures. Similarly, at local level the probability of neighbours

for selection, assigned by the direction of individuals’ position in anisotropic selection,

can also be tuned automatically [30]. A combination of both is an immediate step;

yet a careful analysis should be carried out to avoid an undesirable overbalance. The

concurrent application of a global and a local dynamic control for selective pressure

could deteriorate the natural course of individuals’ evolution and could negatively affect

cGAs performance.

An assessment from the fault tolerance point-of-view of the dynamic criteria for

diversity tuning proposed in Chapter 4 is an immediate further extension of present

work. The effect of SHEs or SEUs in chromosomes and fitness score registers or memory

allocations directly influence diversity in phenotypic and genotypic spaces, therefore a

structural based mechanism for an improved balance of the exploration - exploitation

trade-off would benefit cGAs performance in such faulty scenarios. Dynamic anisotropic

selection allocates probabilities for selection according to individuals position in local

neighbourhoods, directly affecting the search’s exploitation which is mainly promoted

locally within neighbourhoods. This dynamic criterion can apply to the isolation pro-

cess of possible faulty individuals from a local perspective.
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Appendix A

Benchmark Problems

Dynamic cGAs proposed in this research are assessed through ten benchmark problems

in the continuous, real-world and combinatorial domains. Five widely known functions

presenting difficult landscapes with characteristics such as multi-modality, epistasis and

non-symmetry are targeted in Chapters 4 and 5. Moreover, three real-world problems

and three combinatorial problems are also evaluated. In the following section, the

characteristics of those problems are detailed.

A.1 Continuous Problems

Continuous problems are most commonly evaluated in the real domain [97]. However,

due to binary chromosomes encoding, continuous functions have been targeted here in

the discrete domain with a specific minimum step per variable. An accurate average

fitness score threshold has been assessed in all experimental cases. The aim is to

evaluate difficult characteristics of theoretical continuous problems that are commonly

found in real-world problems.

• Rastrigin function

f (~x) = 10n+
n
∑

i=1

(

x2 − cos (2πxi)
)

(A.1)

n is the dimension of the function and x is each encoded variable where xi ∈
(−5.12, 5.12). The global minima is located at xmin (0, 0, ..., 0). The minimum

step, per variable, in the encoded solution is xmin = 10
210−1

. An average fitness

score threshold f̄ ≤ 0.0005 is evaluated.
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Figure A.1: Rastrigin function search space

Rastrigin function is highly multi-modal, regular, and separable and it is cata-

logued as difficult for most optimization techniques. Multi-modality means having

several local optima in the search space. Multi-modality increases the difficulty of

the problem, because the searching process needs to escape multiple local optima

to avoid stagnation. In this function, local optima are distributed symmetrically

which makes it regular. Function separability refers to genes inter-dependency;

thus in a separable function, there is no epistatic effect among variables. There-

fore, optimization tackles each variable independently.

• Schwefel function

f (~x) = 418.9829n+

q
∑

i=1

xisin
(

√

|xi|
)

(A.2)

q is the dimension of the function and x is each encoded variable where xi ∈
(−500, 500). The global minima is located at xmin (420.9687, 420.9687, ..., 420.9687).

The minimum step, per variable, in the encoded solution is xmin = 103

210−1
.

The Schwefel function is highly multi-modal, regular, and separable and it is

catalogued as difficult for most optimization techniques [98], see Figure A.2.

• Griewank function

f (~x) = 1 +
n
∑

i=1

x2i
4000

−
∏

cos

(

xi√
i

)

(A.3)
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Figure A.2: Schwefel function search space

n is the dimension of the function and x is each encoded variable, with xi ∈
(−600, 600). The global minimum is xmin (0, ...0). The minimum step, per vari-

able, in the encoded solution is xmin = 1×103

210−1
. An average fitness score threshold

f̄ = 0.0001 has been assessed in all experimental cases.

As the number of dimensions increases the number of minima grows exponentially.

Griewank function is multi-modal, regular, and non-separable. Non-separable

functions are epistatic. Epistasis defines genes interdependency through the mod-

ification of one gene by one or more genes. Therefore, this kind of function is

more difficult to optimize since moving from one point to another in the search

space highly depends on the joint action of two or more genes.

• Ackley function

f (~x) = 20 + e
−20

(

−0.2
√

1

q

∑q
i=1

x2

i e(
1
q

∑q
i=1

cos(2πxi))
)

(A.4)

q is the dimension of the function and x is each encoded variable where xi ∈
(−30, 30). The global minima is located at xmin (0, 0, ..., 0). The minimum step,

per variable, in the encoded solution is xmin = 60
210−1

. The Ackley function is

highly multi-modal, regular, and non-separable, see Figure A.4.
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Figure A.3: Griewank function search space

• Langerman function

f (~x) = −
n
∑

i=1

cie
− 1

π

∑D
j=1(xj−a2ij)cos



π
D
∑

j=1

(xj − aij)
2



 (A.5)

n is the dimension of the function and xi is each encoded variable, with xi ∈
(0, 10). The minimum step, per variable, in the encoded solution is xmin = 10

210−1
.

Similar to previous test functions, Langerman function is highly multi-modal and

epistatic but also presents a random distribution of its local minima. Thus, this

function presents no advantages in symmetry due to local optima distribution and

can be considered the hardest one of these three problems. For testing purposes,

matrix aij and vector ci were taken from [99].

A.2 Real-world Problems

Three real problems have been evaluated. The Frequency Modulation Sound (FMS)

and the System of Linear Equations (SLE) problems are selected from [82]; the third is

the GPS attitude determination problem tackled in the previous chapter from a fault

tolerant perspective, details for this problem are included in Chapter 3, Section 3.1.

These problems present highly multi-modal and highly epistatic landscapes; while the
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Figure A.4: Ackley function search space

FMS and the GPS problems have also a non-symmetrical distribution of their local and

global optima.

• Frequency Modulation Sound Problem (FMS)

The FMS parameter identification problem consists in finding the corresponding

real parameters (a1, w1, a2, w2, a3, w3) of:

f (t) = a1 · sin(w1 · t · θ

+ a2 · sin (w2 · t · θ + a3 · sin (w3 · t · θ))) (A.6)

which fit the sound wave given by:

f (t) = 1.0 · sin(5.0 · t · θ

− 1.5 · sin (4.8 · t · θ + 2.0 · sin (4.9 · t · θ))) (A.7)

where θ = 2π/100 and w1,2,3 and a1,2,3 ∈ [−6.4, 6.35]. To minimize the sum of

square errors is the aim of this problem which is highly multi-modal and epistatic,

as observed in the equations above.

• System of Linear Equations (SLE)

Solving a matrix equation of the form Ax = b is the aim of this problem. A and
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Figure A.5: Langerman function search space

b matrices are the same to those used in [82]. These are given by:

A =


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Evolutionary techniques and particularly GAs are not the most appropriate opti-

mization tool to solve a system of linear equations, linear programming is more suitable

for this aim [1]. However, an analysis of the performance the proposed dynamic criteria

achieve is still feasible, other authors have also tackled a SLE through GA such as in

[12, 82].
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A.3 Combinatorial Problems

Combinatorial problems are discrete domain problems. The solution to the problem is

directly represented in the encoded individual. Three difficult combinatorial problems

are studied and evaluated in this thesis.

• Massively Multimodal Deceptive Problem (MMDP)

MMDP is a problem composed by q sub-problems. The fitness value of each sub-

problem reflects the number of ones (unitation) each sub-problem has. A very

simple lookup table with assigned values is used, see Table A.1. The number of

local and global optima would depend on the size of the problem. In this research,

a size of q = 25 sub-problems has been used. Therefore the fitness function will

sum up individual fitness per sub-problem (x) and a value of 25 will be obtained

when the global optimum is reached. The fitness function is given by

fMDDP (~x) =

q
∑

i=1

fitnessxi
(A.8)

Table A.1: MMDP lookup table

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unitation per sub−problem

f M
M

D
P
(x

i)

Ones fMMDP (xi)

0 1.0000

1 0.0000

2 0.3603

3 0.6405

4 0.3603

5 0.0000

6 1.0000

In Table A.1, the graph indicates that each sub-problem has a deceptive point

in the middle and two global maxima at the extremes. This problem presents a

large number of local optima in comparison to the number of global ones which

is 2q, where q is the number of sub-problems [82].

• Minimum Tardy Task Problem (MTTP)

MTTP is a NP-complete combinatorial optimization problem. An optimum so-

lution should fulfil corresponding schedule constraints. In the objective function,

an encoded solution that does not fulfil scheduling constraints is penalized. This
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problem is highly multi-modal and epistatic. An instance of this problem is gen-

erated considering a MTTP scalable test problem introduced in [100]. A problem

size of p = 100 tasks has been targeted with a population size of 100 individuals,

with which an adequate performance to evaluate the proposed dynamic lattice

reconfiguration mechanisms is achieved.

To generate large problem sizes, a minimum MTTP instance with p = 5 tasks,

shown in Table A.2, has been scaled to generate a problem size of p = 100 tasks.

Table A.2: MTTP problem instance

task 1 2 3 4 5

length 3 6 9 12 15

deadline 5 10 15 20 25

weight 60 40 7 3 50

Scheduling constraints are:

– A task (x) cannot be scheduled before the last scheduled task had finished.

– Tasks must finish according to deadlines.

A scheduling function g(~x) for i = 1, ..., p tasks is defined to fulfil those constraints.

The fitness function includes the weight of each task which cannot be scheduled

as a measure of feasibility. Thus, better solutions are less penalized. The fitness

function is expressed in terms of the corresponding tasks’ weights as

fMTTP (~x) =

p
∑

i=1

weightxi
(A.9)

• P-Peaks Problem

The P-Peaks problem is a tunable test problem that can vary its epistasis level if

the number of generated peaks is increased or decreased. Every instance of the

problem is different, thus it is also a non symmetric problem due to the random

location of its solution [101]. P binary strings are randomly generated with Q

bits of length representing the location of the peaks. Increasing or decreasing

the number of peaks defines the difficulty of the problem and therefore the level

of epistasis. In this thesis, for testing purposes the number of peaks is set to
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P = 100 with binary strings of Q = 100 bits of length. Thus, the fitness score of

an individual is calculated as the Hamming distance between the individual and

the closest peak. Normalizing the calculated distance provides the fitness score.

Hence, the maximum fitness score in the following fitness function is equal to 1.0.

fP−Peaks(~x) =
1

Q
maxPi=1 (Q−Hamming (~x, Pi)) (A.10)
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