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Abstract

In this paper we analyze the application of parallel and sequential evolutionary al-
gorithms to the automatic test data generation problem. The problem consists of
automatically creating a set of input data to test a program. This is a fundamental
step in software development and a time consuming task in existing software com-
panies. Canonical sequential evolutionary algorithms have been used in the past
for this task. We explore here the use of parallel evolutionary algorithms. Evidence
of greater efficiency, larger diversity maintenance, additional availability of mem-
ory/CPU, and multi-solution capabilities of the parallel approach, reinforce the
importance of the advances in research with these algorithms. We describe in this
work how canonical genetic algorithms (GAs) and evolutionary strategies (ESs) can
help in software testing, and what the advantages are (if any) of using decentral-
ized populations in these techniques. In addition, we study the influence of some
parameters of the proposed test data generator in the results. For the experiments
we use a large benchmark composed of twelve programs that includes fundamental
algorithms in computer science.
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1 Introduction

From the very beginning of computer research, computer engineers have been
interested in techniques allowing them to know whether a software module ful-
fills a set of requirements (the specification). Modern software is very complex
and these techniques have become a necessity in most software companies. One
of these techniques is formal verification, in which some properties of the soft-
ware can be checked much like a mathematical theorem defined on the source
code. Two very well-known logics used in this verification are predicate calcu-
lus [1,2] and Hoare logic [3]. However, formal verification using logics is not
fully automatic. Although automatic theorem provers can assist the process,
human intervention is still needed. Another well-known and fully automatic
formal method is model checking [4]. In this case all the possible program
states are analyzed (in a direct or indirect way) in order to prove that the
program satisfies a given property. This property is specified using a temporal
logic like LTL [5] or CTL [6]. Both in formal verification and model checking
a model of the program is required in order to prove (or refute) the proper-
ties we want to check. In order to ensure that the model correctly captures
the behavior of the program, some refinement-based approach is needed along
the development process. One of the best known model checkers is SPIN [7],
which takes a software model codified in PROMELA (a programming lan-
guage usually not used in real programs) and a property specified in LTL as
input. The drawback of using the PROMELA language is currently solved
by the use of translations tools such as the one integrated in the Bandera
tool kit [8] or the one described in [9], which translates Java code into the
intermediate language accepted by SAL model checker [10]. However, we can
also find model checkers like Java PathFinder [11], which in its last versions
directly works on bytecodes of multi-threaded Java programs. The main draw-
back of a model checking approach is the so-called state explosion: when the
size of the program increases, the amount of required memory also increases
but in an exponential way. This phenomenon limits the size of the models to
be checked. Some techniques used to alleviate this problem are partial order
reduction [12], symbolic model checking [13], and symmetry reduction [14].

Nevertheless, the most popular technique used to check software requirements
is software testing. With this technique, the engineer selects a set of program
inputs and tests the program with them. If the program behavior is as ex-
pected, s/he assumes that it is correct. Since the size of the input data set
is the engineer’s decision, s/he can control the effort dedicated to the testing
task. This is a very important, time consuming, and hard task in software de-
velopment [15–17]. Automatic test data generation consists of automatically
proposing a suitable set of input data for a program to be tested (the test
program). It comes as a way of releasing engineers from the task of finding
the best set of inputs to check program correctness. The automatic generation
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of test data for computer programs has been dealt with in the literature for
many years [18,19]. We can distinguish four large paradigms in search-based
software testing that differ in the kind of information they use to generate
the test data: structural testing, functional testing, grey-box testing, and non-
functional testing [20].

In structural testing [21–25] the test data generator uses the structural in-
formation of the program to guide the search of new input data (for this
reason it is also called white-box testing). Usually, this structural information
is gathered from the control flow graph of the program. Structural testing
seeks to execute every testable element under consideration (whether state-
ments, branches, conditions, etc.), but can only detect faults where one of the
executed elements produces obviously incorrect behavior. If no error is found
the correctness of the program can not be assured. In functional testing [26,27]
the information used by the test data generator is a kind of specification of
the behavior of the program. The objective is to check that the software be-
haves exactly as specified using no information about the internal structure
of the program (black-box testing). The paradigm known as grey-box test-
ing [28] is a combination of the two previous ones (white-box and black-box
testing). It uses structural and functional information in order to generate in-
put data. For example, in assertion testing some asserts are introduced in the
source code to check the functional behavior, while structural testing tech-
niques are used in order to generate input data violating these assertions.
Finally, in non-functional testing [29,30] the objective is to check any aspect
of the program which is not related to its functional behavior. Some examples
of non-functional attributes that could be checked are usability, portability,
memory use, efficiency, etc.

Focusing on structural testing, which is the paradigm followed in this work,
we can find several alternatives in the literature. In the so-called random test
data generation, the test data are created randomly until the objective is sat-
isfied or a maximum number of input data are generated [21,31]. Symbolic
test data generation [18] involves using symbolic rather than concrete values
in order to get a symbolic execution. Some algebraic constraints are obtained
from this symbolic execution and these constraints are used for finding test
cases [32]. A third (widespread) approach is dynamic test data generation. In
this case, the program is instrumented to pass information to the test genera-
tor. The test generator checks whether the test adequacy criterion is fulfilled
or not. If the criterion is not fulfilled it creates new test data to serve as input
for the program. The test data generation process is translated into a func-
tion minimization problem, where the function is some kind of “distance” to
a desirable execution where the test criterion is fulfilled. This paradigm was
presented in [19] and much work has been based on it [21,30,33,34]. Some
hybrid techniques combining symbolic and concrete execution have been ex-
plored with very good results. This is the case of the tools DART [25] and
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CUTE [24].

Sticking to the dynamic test data generation paradigm, several metaheuristic
techniques have been applied to the problem in the past. Mantere and Alander
in [35] present a recent review on the application of evolutionary algorithms
to software testing. Most of the papers included in their discussion use ge-
netic algorithms (GAs) to find test data. In fact, only a few articles listed in
the review include other techniques such as Cultural Algorithms [36] (a spe-
cial kind of GA), Hill Climbing [37], and Simulated Annealing [38]. We have
found other recent works applying metaheuristic algorithms to software test-
ing. In [39] the authors explain how a Tabu Search algorithm can be used to
generate test data obtaining maximum branch coverage. Sagarna and Lozano
tackle the problem by using an Estimation of Distribution Algorithm (EDA)
in [40], and they compare a Scatter Search (SS) with EDAs in [41].

In this work we analyze the application of several decentralized and centralized
evolutionary algorithms (EAs) to the automatic test data generation problem,
specifically genetic algorithms and evolutionary strategies (whose application
to software testing was introduced by the authors for the first time in [42]). We
describe how they can be applied to the software testing problem by analyzing
several alternatives. In addition, we study the influence of some parameters
of the proposed test data generator on the results. The rest of the paper is
organized as follows. We detail the construction of our test data generator
in the next section. Section 3 presents a general description of parallel and
decentralized EAs. Then, in Section 4 we analyze the results obtained in the
experimental study. Finally, Section 5 presents the final conclusions and future
work.

2 The Test Data Generator

In this section we describe the proposed test data generator and the whole
test data generation process. We must define a test adequacy criterion in
order to formalize the objective of the generator, that is, we need a condition
which any input data set should fulfill in order to be considered an adequate
testing set. In this work we use the condition coverage test adequacy criterion.
This criterion requires that all the atomic conditions of the test program be
evaluated to the two boolean values: true and false. Other well-known test
adequacy criteria are branch coverage, requiring all the branches to be taken,
and statement coverage, in which all the program statements must be executed.
It is important to note that the condition coverage criterion is harder than
branch and statement coverage in the case of programs in C language. That
is, if we find a set of input data that makes all the atomic conditions of
a C program take the possible boolean values, then we can ensure that all
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the feasible branches will be taken and, in consequence, all the reachable
statements will be executed. However, the opposite is not true, i.e., executing
all the reachable statements or taking all the feasible branches does not ensure
that all the atomic conditions will take the feasible boolean values. This fact
makes condition coverage equivalent to condition-decision coverage [21] in C
programs and this is the reason why it was selected here.

Our test data generator breaks down the global objective (the condition cover-
age) into several partial objectives consisting of making one atomic condition
take one boolean value. For example, from the fragment of the control flow
graph seen in Fig. 1 we can extract six partial objectives: to make condition
one true (c1t), to make condition one false (c1f), etc. Then, each partial ob-
jective can be treated as an optimization problem in which the function to
be minimized is a distance between the current input and an input satisfying
the partial objective. For this reason we call this function the distance func-
tion. In order to solve such minimization problem, global search techniques
(evolutionary algorithms in our case) can be used.

Fig. 1. We identify six partial objectives in this fragment of the control flow diagram.

2.1 Distance Function

Following on from the discussion in the previous section, we have to solve
several minimization problems: one for each atomic condition and boolean
value. The distance function to be minimized depends on the expression of
the particular atomic condition and the values of the program variables when
the condition is reached. In Table 1 we show the distance function for each
kind of condition and each boolean value.

The distance function of a particular partial objective can only be computed if
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Table 1
Distance functions for different kinds of conditions and boolean values. The variables
a and b are numeric variables (integer or real)

Condition type true expression false expression

a < b a− b b− a

a <= b a− b b− a

a == b (b− a)2 (1 + (b− a)2)−1

a != b (1 + (b− a)2)−1 (b− a)2

a (1 + a2)−1 a2

the program flow reaches the associated atomic condition, because it depends
on the values of the program variables at that point of the program execution.
For this reason, when the condition is not reached, the distance function takes
the maximum possible value for a real number in a machine using 64-bit
IEEE 754 representation (that is, 21024 − 2971).

2.2 Program Instrumentation

We instrument the source code of the program in order to get information
about the value of the distance function and the conditions traversed in a
program run. The instrumentation must be done carefully to avoid a change
in the program behavior. This step is performed automatically (not manually)
by our application that parses the C source program and generates a modified
C source program with the same original behavior. This application trans-
forms each atomic condition into an expression that is evaluated to the same
value as the original condition. This expression has a (neutral) side effect: it
informs about the boolean value it takes, and the distance value related to
the condition. If <cond> is an atomic condition in the original program, the
associated expression used instead of the original condition in the modified
program is:

((<cond>)?

(inform(<ncond>,1),(distance(<ncond>,<true_expr>,<false_expr>),1)):

(inform(<ncond>,0),(distance(<ncond>,<true_expr>,<false_expr>),0)))

where <ncond> is the number of the condition in the program, <true expr>

and <false expr> are the fitness expressions for the true and false values of
the condition, inform is a function that informs the test data generator about
the condition reached and its value, and distance is a function that informs
about the distance value. This transformation does not modify the functional
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behavior of the program unless the original atomic condition has side effects. 1

In the evaluation of an input, when the test data generator executes the mod-
ified test program with such input, a report of the conditions reached and
the distance values are computed and transmitted to the generator. With this
information the generator builds a coverage table where it stores, for each con-
dition, the set of test data that makes the condition true and false throughout
the process. That is, for each condition the table stores two sets: the true set
and the false set. This table is an important internal data structure that is
consulted during the test data generation. We say that a condition is reached
if at least one of the sets associated with the condition is non-empty. On the
other hand, we say that a condition is covered if the two sets are non-empty.

2.3 Test Data Generation Process

Once we have presented the distance functions and the instrumentation details
we can now focus on the test data generator itself. The main loop of the test
data generator is shown in Fig. 2.

Fig. 2. The test data generation process.

At the beginning of the generation process some random inputs (10 in this
work) are generated in order to reach some conditions. Then, the main loop of
the generator begins and the generator selects a partial objective not covered.
The test data generator does not select the partial objectives in a random way.

1 This can be explained because the fitness expressions are formed by combining
the operands of the atomic condition.
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As we said before, the distance function of each partial objective depends on
the expression of the particular atomic condition and the values of the program
variables when the condition is reached. This means that the distance can only
be computed if the program flow reaches the atomic condition. Thus, the test
data generator always selects a partial objective with an associated condition
reached by a previous input.

When the partial objective is selected, it uses the optimization algorithm to
search for test data making that condition take the value not yet covered.
The optimization algorithm is seeded with at least one input reaching the
mentioned condition. The algorithm tries different input data and uses the
distance value to guide the search. During this search test data covering other
conditions can be found. These test data are also used for updating the condi-
tion table. In fact, we can set the stop condition of the optimization algorithm
to cover a partial objective not yet covered (we study this alternative in the
experimental section since it is not our main approach here). As a result,
the optimization algorithm can or can not find a solution. In any case, when
the algorithm stops, the main loop starts again and the test generator selects
a different partial objective. This scheme is repeated until a total condition
coverage is obtained or a maximum number of consecutive failures of the op-
timization algorithm is reached. When this happens the test data generator
exits the main loop and stops.

When we use a decentralized optimization algorithm, such as a distributed
evolutionary algorithm, we have several subalgorithms working independently
of each other with some sparse interconnections among them. In this case we
can assign a different partial objective to each subalgorithm. If all the partial
objectives are solved approximately at the same time, the search could be
accelerated. This alternative will also be analyzed in the course of this article.

2.4 Coverage Metrics

In order to end the description of the test data generator we must discuss the
coverage metric used to report the generator results. The simplest coverage
metric is the ratio between the covered partial objectives and the total num-
ber of partial objectives which, expressed as a percentage, gives the coverage
percentage (condition coverage percentage in our case).

Although the coverage percentage is the simplest way of reporting generator
efficacy, it is not the more appropriate metric. This is because it is impos-
sible for some programs to reach total coverage, because of the presence of
unreachable partial objectives. In this case a global coverage loss is produced
irrespectively of the techniques used for testing. For example, an infinite loop
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while(1)

{
/* The previous condition

is always true */
...

}

char *a;

p = (char *)malloc (4);

if (!p)

{
fprintf("Error");

exit(0);

}

Fig. 3. Two pieces of code that prevent a program from reaching 100% of condition
coverage. The left one produces a code-dependent coverage loss, while the right one
produces an environment-dependent coverage loss.

has a condition that is always true and never false (Fig. 3 left). Another ex-
ample is the condition (sign(x)>2), where the function sign can only return
three values: -1, 0, +1. In these cases there are pairs (condition, boolean)
that are unreachable and no test data generator can reach 100% of condition
coverage due to the test program itself. In this situation we refer to a code-
dependent coverage loss. However, there is another factor which may produce
an unavoidable coverage loss: the environment in which the program is exe-
cuted. One example of this situation is related to dynamic memory allocation.
Suppose that a program allocates some dynamic memory and then checks if
this allocation has failed. Most probably it succeeds for all the tests run on
the program, and the check condition gets only one value. In this case we
talk about an environment-dependent coverage loss (Fig. 3 right). When one
of these situations appears in a program no test data generator can get to-
tal coverage and it may appear to be ineffective when, in fact, it is not. For
example, we can get a low coverage percentage in one program but this low
percentage might happen to be the maximum coverage that it is possible to
obtain.

We search for a coverage metric taking into account the coverage loss, a mea-
surement that gets its known maximum value when it is impossible to get new
input data covering more partial objectives. For this reason we have introduced
another metric that we call the corrected coverage and that is computed as the
ratio between the number of covered and reachable partial objectives. In this
metric the unreachable partial objectives are not taken into account, without
any loss of information or drawback for the testing task. This measure is use-
ful for comparing the performance of the test data generator in the different
programs. In this way, we can sort the programs in order of difficulty. If we
use the simple condition coverage to compare the programs we can classify a
program as difficult when it has a lot of unreachable partial objectives but the
remaining partial objectives can be covered easily. However, the computation
of the corrected coverage requires knowing the unreachable partial objectives.
In small programs these partial objectives can be easily determined but it can
be a difficult task in larger programs (it could be a NP-hard problem itself).
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In these cases the corrected coverage measure is not practical. In this work,
we decide by human observation whether a partial objective is reachable or
not and the unreachable partial objectives are then communicated to the test
data generator via configuration files. We use the corrected coverage in the
experiments in order to avoid code-dependent coverage loss. The environment-
dependent coverage loss is more difficult to avoid and the new metric does not
take this loss into account.

At this point we need to modify the way in which the partial objective selec-
tion is performed at the beginning of the main loop of the test data generator
in order to count the correct number of evaluations required for the coverage
measured. As a matter of fact, in order to avoid unnecessary work the un-
reachable partial objectives should not be taken into account in the partial
objective selection.

3 Evolutionary Algorithms

In this section we intend to provide a quick overview of the evolutionary
algorithm family (sequential and parallel) in order to classify and explain the
algorithms we are using in the paper.

Evolutionary Algorithms (EAs) [43] are metaheuristic search techniques loosely
based on the principles of natural evolution, namely adaptation and survival
of the fittest. These techniques have been shown to be very effective in solv-
ing hard optimization tasks. They are based on a set of tentative solutions
(individuals) called population. The problem knowledge is usually enclosed in
a function, the so-called fitness function, which assigns a quality value to the
individuals. It is usual for many EA families to manipulate the population as
a single pool of individuals. By manipulation we mean applying a selection
of the fittest individuals, recombination of slices of two individuals in order
to yield one or two new children, and mutation of their contents. Frequently,
EAs use these variation operators in conjunction with associated probabili-
ties that govern their application at each step of the algorithm. In general,
any individual can potentially mate with any other by applying a centralized
selection operator. The same holds for the replacement operator, where any
individual can potentially leave the pool and be replaced by a new one. This is
called a panmictic population of individuals. A different (decentralized) selec-
tion model exists in which individuals are arranged spatially, therefore giving
rise to structured EAs. Most other operators, such as recombination or mu-
tation, can be readily applied to either of these two models [44]. Centralized
versions of selection are typically found in serial EAs, although some parallel
implementations also use it. For example, the global parallelism approach eval-
uates in parallel the individuals of the population (sometimes recombination
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and/or mutation are also parallelized), while still using a centralized selection
performed sequentially in the main processor guiding the base algorithm [45].
This algorithm keeps the same behavior as the sequential centralized one,
although it performs time-consuming objective functions much faster.

However, a great amount of parallel EAs found in the literature normally uti-
lize some kind of spatial disposition for the individuals, and then parallelize
the resulting chunks in a pool of processors. Decentralizing a single popu-
lation can be achieved by partitioning it into several subpopulations, where
island EAs are run performing sparse exchanges of individuals (distributed
EAs), or in the form of neighborhoods (cellular EAs). In distributed EAs, ad-
ditional parameters controlling when migration occurs and how migrants are
selected/incorporated from/to the source/target islands are needed [46,47]. In
cellular EAs, the existence of overlapped small neighborhoods helps in ex-
ploring the search space [48]. These two kinds of EAs seem to provide better
sampling of the search space and seem to improve the numerical and runtime
behavior of the basic algorithm in many cases [49,50].

In the present study we mainly focus on distributed EAs. This model can be
readily implemented in a cluster of workstations, which is one main reason for
its popularity. A migration policy controls the search. The migration policy
must define the island topology, when migration occurs, which individuals are
being exchanged, what type of synchronization among the subpopulations is
used, and the kind of integration of exchanged individuals within the target
subpopulations. The advantages of a distributed model (either running on
separate processors or not) is that it is usually numerically faster than a pan-
mictic EA. The reason for this is that both the run time and the number of
evaluations are potentially reduced thanks to its separate search from several
regions of the problem space. High diversity and species formation are two of
the best reported features of distributed EAs.

After this general introduction to parallel and decentralized evolutionary al-
gorithms in the next sections we focus on the details of the specific evolution-
ary algorithms used in this work to tackle the software testing problem. We
find four well-established main types of EA in the literature: Genetic Algo-
rithm (GA) [51], Evolutionary Strategy (ES) [52], Evolutionary Programming
(EP) [53], and Genetic Programming (GP) [54]. The main differences between
the four kinds of algorithms reside in the representation of the solutions and
the variation operators used. In this work we use Evolutionary Strategies and
Genetic Algorithms.
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3.1 Evolutionary Strategies

The Evolutionary Strategy algorithm was introduced for software testing in
a recent work [42]. In an ES [52] each individual is composed of a vector of
real numbers representing the problem variables (x), a vector of standard de-
viations (σ) and, optionally, a vector of angles (ω). These two last vectors
are used as parameters of the main Gaussian mutation operator used by this
technique. The additional parameters evolve together with the program vari-
ables, to allow the search strategy to adapt itself to the landscape of the search
space.

For the selection operator many alternatives exist: roulette wheel, random
selection, q-tournament selection, and so on (see [55] for a good review of
selection operators). All the selection operators can be used with any EA
since the only information needed to select the individuals is the fitness value
(the selection operator does not depend on the representation used).

In the recombination operator of an ES each of the three real vectors of an
individual can be recombined in a different way. Some of the several possibil-
ities for the recombination of the real vectors are discrete, intermediate, and
generalized intermediate recombination [43]. The recombination operator is
not so important as the mutation. In fact, we do not use recombination in our
algorithm.

The mutation operator is governed by the three following equations:

σ′i = σi exp(τN(0, 1) + ηNi(0, 1)) , (1)

ω′i = ωi + ϕNi(0, 1) , (2)

x′ = x + N(0, C(σ′, ω′)) , (3)

where C(σ′, ω′) is the covariance matrix associated to σ′ and ω′, N(0, 1) is
the standard univariate normal distribution, and N(0, C) is the multivariate
normal distribution with mean 0 and covariance matrix C. The subindex i
in the standard normal distribution indicates that a new random number is
generated anew for each component of the vector. The notation N(0, 1) is used
to indicate that the same random number is used for all the components. The
parameters τ , η, and ϕ are set to (2n)−1/2, (4n)−1/4, and 5π/180, respectively,
as suggested in [56].

With respect to the replacement operator, there is a special notation to in-
dicate whether the old population is taken into account or not to form the
new population. When only the new individuals are used, we have a (µ, λ)
replacement; otherwise, we have a (µ + λ) replacement, where the best µ in-
dividuals from the union of the old population and the offspring are selected
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to form the new population. As it was the case in the selection operator, the
replacement operator only needs the fitness value of the individuals to form
the new population. Thus, we can use the two mentioned operators in any
kind of EA.

3.2 Genetic Algorithms

The first work applying Genetic Algorithms to software testing was published
in 1992 [57] and the first in depth study of their capabilities in the software
testing domain was performed in the PhD. Thesis of Sthamer [58]. A Ge-
netic Algorithm is an EA that usually represents the solutions by means of a
binary string (chromosome). However, other representations have been used
with GAs, so we can not use this feature as a distinguishing one. In fact, the
individuals we use in our GA are vectors of numeric values and they can be
integers (int type) or reals (double type). We use this representation in order
to avoid precision loss when using a low number of bits for representing each
numeric input of the test program.

Unlike the ES, the recombination operator is of a great importance in GAs.
Some of the most popular recombination operators are the single point crossover
(SPX), the double point crossover (DPX), and the uniform crossover (UX) [59].
The first one selects a random position in the chromosome and the two par-
ents exchange their slices located before and after this point to generate two
offspring. In DPX, two points are stochastically defined and the two parents
exchange the slices bounded by these two limits creating again two offspring
(however, we select only one in our experiments). Finally, in UX each bit of the
offspring is randomly selected from the two parents. All these recombination
operators can also be applied to our particular representation by replacing the
bits by vector components.

The traditional mutation operator works on binary strings by probabilistically
changing every position to its complementary value. However, for representa-
tions based on vectors of numeric values (like the one used here) the mutation
could add some random value to the components of the vector. In our case,
the probability distribution of these random values is a normal distribution
with mean 0. The standard deviation of the distribution is a parameter of the
mutation operator and we reveal its value in the experimental section.

At this point we can talk about the differences between ES and GA. In general,
ES is characterized by the structure of the individuals (including at least
one separated vector of self-adaptive parameters for the mutation) and the
mutation operator. This is the main difference between the two algorithms.
Unfortunately, we can not give a clear rule to characterize GAs because there is
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considerable variance in the literature in the field. However, the GAs usually do
not have self-adaptive parameters or the self-adaptation mechanism is different
from that of the ES. For this reason we conclude that the main difference
between the algorithms focuses on the self-adaptation.

4 Experiments

In this section we present the experiments performed over a benchmark of
twelve test programs in C covering some practical and fundamental aspects of
computer science. The programs range from numerical computation (such as
Bessel functions) to general optimization methods (such as simulated anneal-
ing). Most of the source codes have been extracted from the book “C Recipes”
available on-line at http://www.library.cornell.edu/nr/bookcpdf.html. The
programs are listed in Table 2, where we present information on the number
of conditions, the lines of code (LOC), the number of input arguments, a brief
description of their goal, and how they are accessed.

Table 2
Programs tested in the experiments. The source column presents the name of the
function in C-Recipes

Program Conds. LOC Args. Description Source

triangle 21 53 3 Classify triangles Ref. [21]

gcd 5 38 2 Greatest Common Denominator Authors

calday 11 72 3 Calculate the day of the week julday

crc 9 82 13 Cyclic Redundant Code icrc

insertion 5 47 20 Sort by insertion method piksrt

shell 7 58 20 Sort by shell method shell

quicksort 18 143 20 Sort by quicksort method sort

heapsort 10 72 20 Sort by heapsort method hpsort

select 28 200 21 kth element of an unordered list selip

bessel 21 245 2 Bessel Jn and Yn functions bessj*,bessy*

sa 30 332 23 Simulated Annealing anneal

netflow 55 112 66 Network optimization Wegener [60]

The first test program, triangle, receives three integer numbers as input and
decides what kind of triangle they represent: equilateral, isosceles, scalene, or
no triangle. The next program, gcd, computes the greatest common denomi-
nator of the two integer arguments. The calday test program computes the
day of the week, given a date as three integer arguments. In crc the cyclic
redundant code is computed from 13 integer numbers given in the arguments.
The next four test programs (insertion, shell, quicksort, and heapsort)
sort an input list with 20 real arguments using well-known sorting algorithms.
The select program gets the kth element from an unsorted list of real num-
bers. The first argument is k and the rest of the arguments form the unsorted
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list. The next program computes the Bessel functions given an order n and
a real argument. The sa program solves an instance of the Travelling Sales-
man Problem with ten cities by using Simulated Annealing. The first three
arguments are seed parameters for the pseudorandom number generator and
the rest are 20 real numbers representing the two-dimensional position of each
city. Finally, the netflow program optimizes a net architecture for maximum
data flow. The input is the description of the net to be optimized. Its size is
limited to 6 nodes and 10 edges.

In the following section we discuss the representation and the fitness function
used in the algorithms. In Section 4.2 we present the first results comparing
the parallel decentralized and the sequential centralized versions of the EAs
used. The next section compares the ES-based test data generators against the
GA-based ones. Then, we perform a study of the influence in the results of
several parameters of the dES-based test data generator. Finally, in Section 4.5
we compare our best algorithm against others found in the literature.

4.1 Representation and Fitness Function

As stated before, the input values of the test programs used in the experiments
are real or integer numbers. In the ES-based algorithms each of these numeric
values is represented with a real value in the solution vector of the individual.
This value is rounded to the nearest integer in the case of integer arguments
when the test program is executed. In the case of the GA-based algorithms
the input values are directly mapped to the chromosome itself without any
extra conversion. By using such unbounded numeric representation in both
algorithm classes we can explore the whole solution space. This contrasts with
other techniques that limit the domain of the input variables to a bounded
region [40].

The fitness function used in the evolutionary search is not exactly the distance
function. We want to avoid negative fitness values in order to be able to apply
selection operators that depend on the absolute value of the fitness function
such as the Roulette Wheel selection. For this reason we transform the distance
value by using an arctan function that maps the whole real number set into
a bounded interval. The resulting fitness function is:

fitness(x) = π/2− arctan(distance(x)) + 0.1 . (4)

In the previous expression we multiply the arctan result by -1 since our EA
software is designed to maximize the fitness function. Thus, we need to add
the value π/2 to the expression in order to always get a positive result. Finally,
the 0.1 value is added so that negative values are not obtained when there is
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precision loss in the difference calculation.

4.2 Parallel Distributed vs Sequential Panmictic EAs

In this section we shall compare the results obtained by the test data gener-
ators with parallel decentralized EAs and sequential centralized EAs as the
search engine. In particular, we compare the distributed ES (dES) to the pan-
mictic one (panES) and the distributed GA (dGA) to the panmictic genetic
algorithm (panGA). With this comparison we want to study the influence
of the decentralized design in the search. For this reason we set the popu-
lation size and the maximum number of evaluations in all the algorithms to
the same values. The parameters of the algorithms are presented in Tables 3
and 4. In all the algorithms we use 25 individuals in the population, random
selection, (µ+λ) replacement, and the stop criterion consists of finding a solu-
tion or reaching a maximum of 500 evaluations (in the distributed algorithms
each of the five islands performs a maximum of 100 evaluations). We must
remember here that the evolutionary algorithms can be executed many times
during one run of the test data generator (see Section 2.3). Thus, a global
number of evaluations larger than 500 might appear in the results. For the
panGA we perform a previous study to determine the best configuration (see
Appendix A) and we use the same configuration in dGA. The recombination
operator used in these algorithms is DPX with probability 1.0. However, from
the two offspring created by the operator only one is selected. In panES and
dES no recombination operator is used. The mutation operator in panGA and
dGA consists of adding a random value following a normal distribution with
mean 0 and standard deviation 1 to each input attribute (as mentioned in Sec-
tion 3.2) with probability 0.6. In the case of panES and dES the well-known
Gaussian mutation (see Section 3.1) is used. The distributed algorithms use
five islands connected with an asynchronous unidirectional ring topology. For
the migration, one individual is selected by 2-tournament selection and sent
to the neighboring island after every ten steps of the subalgorithm main loop.
The individual migrated is inserted into the target subpopulation if it is better
than the worst individual in that subpopulation. At the beginning of the EA
search, the test data generator seeds the EAs with one individual (program
input) reaching the condition associated with the current partial objective as
we said in Section 2.3. The machines used for the experiments are Pentium
4 at 2.8GHz with 512MB of RAM. In the distributed algorithms (dES and
dGA) each island is executed in a different machine.

We performed 30 independent runs of the test data generator for each test
program. In Table 5 we present the average and the maximum corrected con-
dition coverage percentage, the average number of evaluations (test program
executions) required to get the coverage reached, and the average time of
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Table 3
Parameters of the distributed algorithms dES and dGA

Parameters dES dGA

Population size 25 25

Selection Uniform Random Uniform Random

Recombination - DPX (pc = 1.0)

Mutation Gaussian mutation Add N(0, 1) (pm = 0.6)

Offspring 1 per island 1 per island

Replacement (µ + λ) (µ + λ)

Stop criterion Objective or 500 evaluations Objective or 500 evaluations

Islands 5

Topology Unidirectional Ring

Migration type Asynchronous

Migration gap 10

Migr. Selection 2-Tournament

Migr. Rate 1

Migr. Replacement Local worst if incoming is best

Table 4
Parameters of the panmictic algorithms panES and panGA

Parameters panES panGA

Population size 25 25

Selection Uniform Random Uniform Random

Recombination - DPX (pc = 1.0)

Mutation Gaussian mutation Add N(0, 1) (pm = 0.6)

Offspring 5 5

Replacement (µ + λ) (µ + λ)

Stop criterion Objective or 500 evaluations Objective or 500 evaluations

the whole generation process (in seconds) for dES and panES algorithms. We
highlight the best results (the largest values in the case of coverage and the
smallest ones in case of number of evaluations and time) in boldface.

Table 5
Results obtained with dES and panES for all the programs

dES panES

Program Avg. Cov. Max. Cov. Evals. Time(s) Avg. Cov. Max. Cov. Evals. Time(s)

triangle 99.92 100.00 1898.43 5.50 100.00 100.00 1207.30 7.80

gcd 100.00 100.00 39.93 0.80 100.00 100.00 15.67 0.53

calday 97.88 100.00 2188.17 7.47 97.73 100.00 2586.30 23.97

crc 100.00 100.00 39.80 1.43 100.00 100.00 12.83 0.80

insertion 100.00 100.00 10.00 0.60 100.00 100.00 10.00 0.17

shell 100.00 100.00 10.00 0.53 100.00 100.00 10.00 0.30

quicksort 94.12 94.12 10.00 13.57 94.12 94.12 10.00 39.43

heapsort 100.00 100.00 10.00 0.47 100.00 100.00 10.00 0.43

select 83.33 83.33 34.17 14.40 83.33 83.33 13.30 41.03

bessel 97.56 97.56 481.33 11.53 97.56 97.56 198.63 32.20

sa 99.55 100.00 1451.13 4330.20 99.77 100.00 1730.43 10302.73

netflow 98.17 98.17 579.83 1440.50 98.17 98.17 362.40 3242.50

From the results in Table 5 we conclude that there is no difference between the
two algorithms with respect to the coverage metric. In fact, in those programs
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where the average value differs (triangle, calday, sa, and netflow) a sta-
tistical test (details shown in Appendix B) reveals that there is no statistical
difference among them. With respect to the effort, we observe a slightly higher
number of evaluations in the case of dES for programs with the same coverage
using both algorithms. This is somewhat unexpected, since we were aiming
for new larger coverage and reduced numerical effort when using distributed
ESs. For software testing, our first conclusion is that this does not hold, at
least for such island model, and then only a reduction in the running time can
be gained. This result is deceptive because many other works exist in which
the distributed version is clearly superior to the centralized one [49,50,61],
pointing out the necessity of making software testing with distributed algo-
rithms that cooperate in a different manner, maybe by partially constructing
solutions as the search progresses.

It is worth mentioning that for the netflow program our algorithms find
several input data for which the program does not end. For this reason, if
the execution of the program takes more than one minute the generator stops
it in order to continue the search. This fact explains the long time observed
in Table 5 (and to a lesser extent in the following results) for the netflow

program (when the program ends normally it takes no more than one second).

We did find the expected result with respect to the execution time. The execu-
tion of dES is faster than that of panES because each subalgorithm is executed
in parallel. The speed up is sublinear (up to 3.21 times faster with 5 proces-
sors), because the algorithms are not the same and there is an important core
sequential part in the distributed algorithm. The startup process of the dES
requires more time because of the execution of the islands in different ma-
chines. For this reason we can observe one advantage of the panES algorithm
for fast programs.

A final conclusion from these results is that insertion, shell, and heapsort

are the easiest programs of the benchmark. The test data generator is able to
get full coverage only with the first 10 random inputs generated, that is, it is
not necessary to use an optimization algorithm at all. These three programs
are followed by two other easy-to-cover programs: gcd and crc. For these
programs, even a random test data generator could get total coverage.

Now, we present in Table 6 the results obtained by the test data generator
using the parallel distributed and sequential panmictic GAs as search engine.

From the results we conclude, as in the comparison between the ES-based
test data generators, that there is no difference between the two algorithms
in the coverage. The number of evaluations is slightly higher in the dGA, and
the execution time of dGA is lower than the panGA one. That is, the way in
which the search space is explored in the distributed versions of the EAs does
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Table 6
Results obtained with dGA and panGA for all the programs

dGA panGA

Program Avg. Cov. Max. Cov. Evals. Time(s) Avg. Cov. Max. Cov. Evals. Time(s)

triangle 99.84 100.00 3004.43 7.53 99.67 100.00 3209.47 20.30

gcd 100.00 100.00 445.60 1.57 100.00 100.00 257.20 2.00

calday 90.91 90.91 304.17 10.43 90.91 90.91 75.03 28.53

crc 100.00 100.00 14.83 0.83 100.00 100.00 10.37 0.73

insertion 100.00 100.00 10.00 0.47 100.00 100.00 10.00 0.40

shell 100.00 100.00 10.00 0.37 100.00 100.00 10.00 0.43

quicksort 94.12 94.12 10.00 13.20 94.12 94.12 10.00 36.43

heapsort 100.00 100.00 10.00 0.50 100.00 100.00 10.00 0.33

select 83.33 83.33 322.07 14.48 83.33 83.33 83.20 36.07

bessel 97.56 97.56 550.67 13.57 97.56 97.56 533.03 38.63

sa 96.78 98.31 335.33 3865.30 96.72 98.31 176.63 6529.63

netflow 96.36 97.25 937.33 203.33 96.42 98.17 917.90 240.13

not seem to improve the results with respect to the panmictic versions. This
is in fact one contribution of our work since it is counterintuitive, and most
people expect advantages to come from the decentralized search if we think
of the overwhelming set of results on this matter published in the associated
literature.

However, due to the parallel execution, the distributed versions can be suitable
for time consuming programs, like sa. We can also parallelize the panmictic
version using, for example, a master/slave approach by evaluating the individ-
uals (program inputs) in different machines, since the evaluation operator can
be performed in parallel (see the global parallelism approach in Section 3).
But, in this last case the algorithm needs to be synchronized with all the ma-
chines once in each step. This synchronization can be very damaging for the
execution time of the whole process, especially when the execution time of the
test program depends on the input data and, thus, lots of processors could
be idle for long periods of time. This idea will be investigated in future work
(not here). In the distributed EA, synchronization between the machines is
performed when all the subalgorithms stop and thus the number of synchro-
nization points is very low (it is exactly the number of executions of the dEA
during one run of the test data generator), reducing the overall time of the
test data generation. This is why we consider it interesting to research with
distributed approaches as done in this paper.

In order to confirm that insertion, shell, heapsort, gcd, and crc are the
easiest programs in the benchmark we have used a random test data genera-
tor trying a maximum of 20000 random inputs and the results obtained are
presented in Table 7.

As we expected, crc, insertion, shell, and heapsort are covered with a few
random inputs. However, contrary to our expectations, gcd is not covered by
the random testing, only 80% of the partial objectives are covered after the
20000 random inputs (and they are covered with the first three or four random
inputs). The reason is that there are two equalities inside this program, which
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Table 7
Results obtained with Random Testing for all the programs

Random Test Data Generator

Program Avg. Cov. Max. Cov. Evals. Time(s)

triangle 51.22 51.22 141.67 92.30

gcd 80.00 80.00 3.33 94.77

calday 95.45 95.45 74.97 95.10

crc 100.00 100.00 5.97 0.33

insertion 100.00 100.00 1.07 0.10

shell 100.00 100.00 1.00 0.07

quicksort 94.12 94.12 2.07 123.23

heapsort 100.00 100.00 1.00 0.10

select 11.11 11.11 1.00 99.87

bessel 70.73 70.73 158.10 97.70

sa 96.67 98.31 639.03 5861.73

netflow 95.38 96.33 9225.77 133.40

are very difficult to cover with random inputs. In addition, from the random
testing results we find that the coverage obtained for the quicksort program is
the same as that obtained with the EA-based test data generators, that is, the
EA-based test data generators do not improve the results of a random search.
This reveals that it is very easy to reach 94.12% coverage but very difficult
to get total coverage. The reason is that there is one condition checking a
memory allocation failure and another one checking a stack overflow. That
is, there is an environment-dependent coverage loss that sets 94.12% as the
absolute optimum for this program in the running environment. In conclusion,
we do not need a metaheuristic algorithm to cover crc, insertion, shell,
quicksort and heapsort, they can be covered by random testing. For this
reason they are not used in the following sections.

4.3 Evolutionary Strategy vs Genetic Algorithm

In this section we compare the test data generators with respect to the kind
of EA they use. That is, we compare the dES against the dGA and the panES
against the panGA. Let us begin comparing the distributed versions in Table 8.

Table 8
Comparison between dES and dGA

dES dGA

Program Avg. Cov. Max. Cov. Evals. Time(s) Avg. Cov. Max. Cov. Evals. Time(s)

triangle 99.92 100.00 1898.43 5.50 99.84 100.00 3004.43 7.53

gcd 100.00 100.00 39.93 0.80 100.00 100.00 445.60 1.57

calday 97.88 100.00 2188.17 7.47 90.91 90.91 304.17 10.43

select 83.33 83.33 34.17 14.40 83.33 83.33 322.07 14.48

bessel 97.56 97.56 481.33 11.53 97.56 97.56 550.67 13.57

sa 99.55 100.00 1451.13 4330.20 96.78 98.31 335.33 3865.30

netflow 98.17 98.17 579.83 1440.50 96.36 97.25 937.33 203.33
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It can be observed that, in general terms, dES obtains a higher coverage
than dGA with a lower number of evaluations (see the statistical tests in
Table B.3). The two exceptions are those of the calday and sa programs, in
which the number of evaluations is higher for the dES. However, this greater
effort is used to increase the accuracy in the results. At this point we must
indicate that the comparison of the number of evaluations is fair only when
the two algorithms get the same coverage. Otherwise, we can conclude that
the algorithm requiring fewer evaluations is better if the coverage obtained is
higher. This is the case of triangle and netflow in Table 8. So we can state
that the dES technique is more accurate than the dGA in software testing.
The execution time does not show a clear trend in this case. In general, the
mutation operator of the ES requires much more time than the operators of
the GA. For this reason we would expect higher computation times in ES-
based test data generators. However, ES explores the search space in a better
way, requiring fewer evaluations than the GA and reducing the computation
time. These two facts are in conflict with each other, and we can not observe
a clear trend in the computation time.

Table 9
Comparison between panES and panGA

panES panGA

Program Avg. Cov. Max. Cov. Evals. Time(s) Avg. Cov. Max. Cov. Evals. Time(s)

triangle 100.00 100.00 1207.30 7.80 99.67 100.00 3209.47 20.30

gcd 100.00 100.00 15.67 0.53 100.00 100.00 257.20 2.00

calday 97.73 100.00 2586.30 23.97 90.91 90.91 75.03 28.53

select 83.33 83.33 13.30 41.03 83.33 83.33 83.20 36.07

bessel 97.56 97.56 198.63 32.20 97.56 97.56 533.03 38.63

sa 99.77 100.00 1730.43 10302.73 96.72 98.31 176.63 6529.63

netflow 98.17 98.17 362.40 3242.50 96.42 98.17 917.90 240.13

In Table 9 we present the comparison between the panmictic EAs. Again, it can
be seen that the panES technique is more accurate than the panGA. The first
always obtains a coverage percentage higher than or equal to that obtained by
the panGA. The number of evaluations required by the algorithms is smaller
in panES than in panGA with the exceptions of calday, and sa; but the
extra effort is justified (as in the previous results) by the higher coverage. The
overall conclusion of this section is that the Evolutionary Strategy technique
is more suitable for software testing than the Genetic Algorithm either with
a distributed population or with a panmictic one, and this claim is assessed
by statistical confidence tests (see Appendix B).

4.4 Analyzing the Distributed Approach

In this section we are going to study the influence of some parameters in the
distributed algorithms not only to characterize them better but also to ensure
that their previous results are not the result of naive wrong parameterizations.
For the experiments we use only the dES since it obtained better results than
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the dGA in the previous sections. At the same time, from the benchmark
programs we select calday, because netflow and sa programs require too
much time and the rest of the programs obtained the same coverage in all the
runs (so there would be no appreciable difference in the results).

4.4.1 Studying the Search Mode

Initially, we study the behavior of the algorithm when each island is searching
for a different objective (diff search mode), as proposed in Section 2.3. In
the previous experiments all the subalgorithms searched for the same partial
objective (same search mode). But before showing the results we must discuss
one small detail. The algorithms of the previous sections stop when one of the
islands finds the objective, since all of them search for the same objective. Now,
with the diff search mode we are going to change the stopping condition of the
algorithm. Since all the islands are searching for their own different objectives
at the same time, it seems reasonable to stop after a predefined number of
evaluations has been reached in the islands, in order to solve more partial
objectives in one run of the algorithm. This maximum number of evaluations
is set to 500 (100 in each island, as in the previous experiments). In Table 10
we show the coverage percentage, the number of evaluations, and the time of
the two different search modes. The figures presented are the average of 30
independent runs.

Table 10
Comparison of two versions of dES differing in the search mode for the calday
program

Search Mode Coverage Evaluations Time(s)

same 97.88 2188.17 7.47

diff 92.12 693.83 10.07

As can be observed, the best results in coverage and time are obtained when
all the islands search for the same partial objective (same search mode). In
addition, the differences in all the values are statistically significant (see Ta-
ble B.5 in Appendix B). That is, the collaboration among the islands is fruitful
when they are all searching for the same objective, and not when they search
for different objectives.

4.4.2 Studying the Stop Criterion

Now, we are going to study the stop criterion used in dES. The algorithm
used in Sections 4.2 and 4.3 stops when a program input covering the partial
objective is found or a maximum number of evaluations is reached. As we said
in Section 2.3, all the input data covering a partial objective not yet covered is
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kept and added to the coverage table, even if the objective covered is not the
one being searched for. However, the algorithm stops only when the searched
partial objective is found or the maximum number of evaluations is reached.
We study here the alternative of stopping also when a program input is found
that covers a new partial objective (not necessarily the one being searched
for). In Table 11 we compare this alternative (new stop condition) with the
previously used one (obj stop condition).

Table 11
Comparison of two versions of dES differing in the stop condition for the calday
program

Stop Condition Coverage Evaluations Time(s)

obj 97.88 2188.17 7.47

new 97.73 2640.47 9.17

We can observe in the results that the obj stop condition has a slight advantage
over the new one. However, the differences are not statistically significant, so
we can not definitely state that the stop condition used in the previous sections
(obj stop condition) is better than that introduced in this section (new stop
condition).

4.4.3 Studying the Number of Seeds

The next study we perform concerns the number of individuals used to seed
the optimization algorithm. The test data generator used in the previous ex-
periments seeds each island of dES with one individual (program input) that
reaches the condition associated to the partial objective. Each island is seeded
with a different individual if possible, that is, if there are enough program
inputs in the coverage table reaching the condition then all the islands will be
seeded with a different one. Otherwise, several islands would have the same
program input. We examine in this experiment three different values for the
number of seeds used in the islands. The aim of this study is to check whether
the number of “good” solutions in the initial population of dES improves the
accuracy of the test data generator. In Table 12 we show the results obtained
when comparing three test data generators seeding dES with 1, 2, and 3 indi-
viduals, respectively.

The best coverage percentage is obtained with a lower number of seeds (which
seems counterintuitive) and the difference is statistically significant with re-
spect to the generator using only two seeds. We find a statistical difference for
neither the number of evaluations nor the time. One possible reason for this
unexpected behavior could be that the ES has to share its steps between the
two good solutions of the population (the two seeds) and thus the offspring
of both seeds reach the objective later. However, this is not observed when
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Table 12
Comparison of three versions of the test data generator with a different number of
seeds in the initial population of the dES for the calday program

Seeds Coverage Evaluations Time

1 97.88 2188.17 7.47

2 94.85 1300.90 9.17

3 95.91 1745.30 8.53

three seeds are used. In this case some seeds are definitely repeated in the
population (because only ten solutions are stored in the coverage table for
each partial objective) and this can benefit the evolution of the redundant
individuals. However, more experiments are needed to confirm (or refute) this
hypothesis.

4.4.4 Studying the Migration Gap

Finally, we are going to study the influence of the migration gap of the islands
in the results. The migration gap is the number of steps between two consec-
utive migrations and is a measure of the coupling between the islands in a
distributed EA. In the previous experiments the migration gap was set to 10.
In this section we try four more values: 30, 50, 70, and 90. Since the number of
maximum steps of a subalgorithm is 100, a migration gap of 90 means almost
no communication between the islands. We want to test with this experiment
whether the collaboration of the islands profits the search or not. In Table 13
we show the results.

Table 13
Comparison of five versions of the test data generator with a different migration
gap in dES for the calday program

Migration Gap Coverage Evaluations Time

10 97.88 2188.17 7.47

30 98.18 1861.13 7.27

50 98.33 2085.97 7.20

70 98.94 2073.27 7.13

90 99.09 2005.50 6.23

We can observe that the results improve when the migration gap increases.
This is not surprising because as we saw in Section 4.2, the distributed ap-
proach is not better than the panmictic one. However, the values of Table 13
are not statistically significant.
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4.5 Previous Results

The task of comparing our results against previous work is a difficult one.
First, we need to find papers tackling the same test programs. There is one
test program which is very popular in the domain of software testing: the tri-
angle classifier. However, there are several different implementations in the
literature and the source code is usually not provided. In [21] the source
code of the triangle classifier is published. In this work, we use that im-
plementation for comparing performance. We have two other test programs
in common with [21]: the computation of the greatest common denomina-
tor and the insertion sort. However, we use different implementations for
these algorithms. In order to facilitate future comparisons we have indicated
in Table 2 how to get the source code of the test programs (available at
URL http://tracer.lcc.uma.es/problems/testing/ with the exception of
netflow).

A second obstacle when comparing different techniques is that of the metrics.
We use the corrected condition coverage to measure the quality of the solu-
tions. In [34,40,41] the authors report only on the branch coverage. On the
other hand, the coverage metric used in [21] is obtained by using a proprietary
software: DeepCover. We can not directly compare all these results in a quan-
titative manner because all the papers use different metrics. Another obstacle
which may affect the results is the number of independent runs. A low number
of independent runs in stochastic algorithms is not enough to obtain a clear
idea about the behavior of the technique used. This is not our case, but some
papers perform too few independent runs.

In spite of all the previous considerations, we include in Table 14 the best aver-
age coverage results reported for the triangle classifier algorithm in [21,34,40,41]
and the necessary number of evaluations (program tests). We show in the same
table the results of our panmictic ES, the best with regard to the coverage
percentage.

Table 14
Previous results of coverage and number of evaluations for triangle

triangle Ref. [21] Ref. [34] Ref. [40] Ref. [41] panES (here)

Coverage (%) 94.29b 100.00a 100.00a 100.00a 100.00c

Evaluations ≈ 8000 18000 608 3439 1207.30

aBranch coverage.
bDeepCover coverage.
cCorrected condition coverage.

If we focus on the coverage of Table 14, our panES has the best coverage as
well as the algorithms in [34,40,41]. Comparing the number of evaluations, our
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work ranks in second position with respect to the best (lowest) value computed
in the work of Sagarna and Lozano [40]. However, we must remember that the
condition coverage (used here in our work) is a more difficult test adequacy
criterion than the branch coverage used by the authors in [40] (see Section 2),
and this slight increment in the number of evaluations of our algorithm is
justified since it achieves a result of higher quality.

We also have a program in common with the work of Wegener et al. [60]:
netflow. The comparison is shown in Table 15. Analyzing the code we found
that our 98.17% of corrected coverage corresponds to the 99% of branch cover-
age they report (which according to their work is the very maximum coverage).
The conclusion is that we obtain the same coverage with a hundredth of the
number of evaluations, despite the fact that they use a more sophisticated
fitness function.
Table 15
Previous results of coverage and number of evaluations for netflow

netflow Ref. [60] panES (here)

Coverage (%) 99a 98.17b

Evaluations 40703 362.40

aBranch coverage.
bCorrected condition coverage.

5 Conclusions

In this article we have analyzed the application of sequential and parallel de-
centralized EAs to the automatic test data generation problem. In particular,
we have compared a distributed ES and a distributed GA to their panmic-
tic versions using a benchmark of twelve test programs implementing some
fundamental algorithms in computer science.

The results show that the decentralized versions have no statistically signifi-
cant advantage over the panmictic versions, neither in terms of the coverage
nor in effort. This is an unexpected observation since much research exists
reporting a higher degree of accuracy for the decentralized approach. The
conclusion is that the decentralized algorithms should maybe focus on cooper-
ating by constructing the solutions and that other information should perhaps
be migrated (such as subalgorithm parameters or average entropy) that influ-
ences in the way the search is performed on each island.

On the other hand, comparing the two EA techniques, either with a distributed
or panmictic population, we can state that our proposed ES outperforms the
results of the GA. This opens a promising line of future research concerning
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the application of ES to evolutionary testing. Furthermore, the number of
parameters to be tuned in the ES are fewer and for this reason we believe
is more suitable for automatic tools that must be used by people with no
knowledge about evolutionary algorithms.

In a second stage we have studied the influence of several parameters of the
dES-based test data generator such as the search mode, the stop condition, the
number of seeds used in the dES islands and the migration gap. The results
state that, by searching for the same partial objective in all the islands, we can
outperform the results with respect to the version that searches for different
partial objectives in the islands. On the other hand, the stop condition that
involves stopping when any new partial objective is covered does not have a
clear advantage over the one in which only the coverage of the searched partial
objective is used to stop the algorithm. Analyzing the number of seeds used in
the initial population of dES, we discovered that the best results are obtained
with one single seed. Finally, a high migration gap seems to benefit the search
and this confirms that the distributed approach is not good for this problem.

As future work, we plan to study the combination of the ES with other tech-
niques and propose some new methods based on static analysis that can be
applied as a local search operator inside the evolutionary algorithm scheme
in order to hopefully increase the coverage (more accuracy) and decrease the
computational effort (more efficiency) required in the test case generation.
We also want to extend the input data generation to other non-numeric data
types such as strings, structures, arrays, and so on. On the other hand, an
interesting idea is to study the ways in which automatic software testing can
be applied to reactive software.
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A The Parameters of the GA

In order to make a fair comparison between the two kinds of EAs we need to
adjust the parameters of the algorithms and compare the results obtained with
the best configuration of them. For this reason we try different parameters in
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this appendix for the mutation and the crossover of the GA. We do not tune
the ES because the parameters of the mutation operator are well-established
in the literature [43,56].

We are going to modify the standard deviation of the normal mutation, the mu-
tation probability, the recombination operator, and the recombination prob-
ability. We do not use the sa program for the experiments because it is very
time consuming. In all the cases we use 25 individuals in the population, ran-
dom selection, (µ + λ) replacement, and the stop criterion consists of finding
a solution or reaching a maximum of 500 evaluations. For the first experiment
we use uniform crossover with probability 1.0 and normal mutation with prob-
ability 0.2. The mean of the mutation is 0 and we try three different values for
the standard deviation: 1, 10, and 100. The results are in Table A.1. We do
not show the results of insertion, shell, quicksort, and heapsort because
they always get the same results and are not meaningful for the study.

Table A.1
Results obtained when changing the standard deviation of the mutation

σ = 1 σ = 10 σ = 100

Program Avg. Cov. Evals. Avg. Cov. Evals. Avg. Cov. Evals.

triangle 99.43 3961.27 98.86 3175.30 97.15 4718.13

gcd 100.00 190.93 100.00 253.73 100.00 1213.80

calday 90.91 224.30 90.91 114.30 91.97 1548.00

crc 100.00 10.30 100.00 10.80 100.00 10.60

select 83.33 196.37 83.33 171.70 83.33 517.93

bessel 97.56 264.13 97.56 293.27 97.56 1038.87

netflow 96.33 525.47 96.12 454.07 96.36 706.10

From the table we can see that the standard deviation has a different influence
in each program. This is not surprising: this means that each problem has its
own best parameterization. Here, a low standard deviation seems to be good
for the coverage of triangle but not so good for the coverage of calday

and netflow. However, most of the differences are not statistically significant.
Only in the case of triangle and calday we can find significant differences
and they are contradictory. On the other hand, the number of evaluations is
higher with statistical significance in gcd, calday, and bessel for standard
deviation 100. In this case we decide to keep a low standard deviation, that is,
the perturbation in the solution is not very large. For this reason we set the
standard deviation of the mutation to 1 for the following experiments. In the
next experiment we analyze five different values for the mutation probability:
0.2, 0.4, 0.6, 0.8, and 1.0. The results are in Table A.2.

We can not observe a clear influence of the mutation probability in the cover-
age. In fact, the statistical tests show that the differences are not significant.
However, with respect to the number of evaluations we observe a decrease in
several programs when the probability is higher. Again, the differences are not
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Table A.2
Results obtained when changing the mutation probability

pm = 0.2 pm = 0.4 pm = 0.6 pm = 0.8 pm = 1.0

Program Cov. Evals. Cov. Evals. Cov. Evals. Cov. Evals. Cov. Evals.

triangle 99.43 3961.27 99.76 3057.07 99.19 3175.23 99.51 4033.43 99.51 2327.27

gcd 100.00 190.93 100.00 193.33 100.00 153.43 100.00 165.60 100.00 119.40

calday 90.91 224.30 90.91 109.73 90.91 82.80 90.91 84.73 90.91 67.30

crc 100.00 10.30 100.00 10.83 100.00 10.37 100.00 10.57 100.00 10.50

select 83.33 196.37 83.33 173.83 83.33 112.70 83.33 124.33 83.33 117.00

bessel 97.56 264.13 97.56 182.97 97.56 198.73 97.56 188.80 97.56 135.50

netflow 96.33 525.47 96.33 710.80 96.39 789.53 96.33 473.40 96.36 692.53

significant (except in the case of bessel for probabilities 0.2 and 1.0) so we
can not conclude that one probability value is better than another one. We
set the probability of the mutation to an intermediate value: 0.6. Next, we
are going to try three different crossover operators: uniform crossover, single
point crossover, and double point crossover. The results are in Table A.3.

Table A.3
Results obtained when changing the crossover operator

Uniform Single Point Double Point

Program Avg. Cov. Evals. Avg. Cov. Evals. Avg. Cov. Evals.

triangle 99.19 3175.23 99.51 4088.60 99.67 3209.47

gcd 100.00 153.43 100.00 317.77 100.00 257.20

calday 90.91 82.80 90.91 255.07 90.91 75.03

crc 100.00 10.37 100.00 10.80 100.00 10.37

select 83.33 112.70 83.33 110.43 83.33 83.20

bessel 97.56 198.73 97.56 185.77 97.56 533.03

netflow 96.39 789.53 96.33 626.27 96.42 917.90

We observe a slight advantage (not significant) of the double point crossover
with respect to the coverage. For this reason we select this operator. In general,
however, the number of evaluations is also higher with this operator. The last
experiment in this appendix is used to select the crossover probability. We try
five values for the probability: 0.2, 0.4, 0.6, 0.8, and 1.0. We show the results
in Table A.4.

Table A.4
Results obtained when changing the crossover probability

pc = 0.2 pc = 0.4 pc = 0.6 pc = 0.8 pc = 1.0

Program Cov. Evals. Cov. Evals. Cov. Evals. Cov. Evals. Cov. Evals.

triangle 98.13 4814.97 97.97 3208.60 99.02 3817.57 99.51 3310.90 99.67 3209.47

gcd 100.00 117.53 100.00 131.03 100.00 145.20 100.00 210.17 100.00 257.20

calday 90.91 75.37 90.91 92.97 90.91 58.83 90.91 75.00 90.91 75.03

crc 100.00 11.03 100.00 11.30 100.00 11.13 100.00 10.00 100.00 10.37

select 83.33 92.07 83.33 99.50 83.33 93.50 83.33 107.77 83.33 83.20

bessel 97.56 127.10 97.56 170.10 97.56 193.17 97.56 264.90 97.56 533.03

netflow 96.36 1277.07 96.36 1236.60 96.36 1060.63 96.33 902.67 96.42 917.90

In general, we observe a better coverage and worse efficiency with higher prob-
abilities. The few differences that are statistically significant support this ob-
servation. For this reason we select the higher probability 1.0 for the double
point crossover operator. The final configuration for the GA is a double point
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crossover with probability 1.0 and a normal mutation with mean 0, standard
deviation 1, and probability 0.6. This is the configuration of the GA-based
generators in the experiments of Section 4.

B Statistical Validation of the Results

In this appendix we include the statistical tests performed for the comparisons
of this article (except those of Appendix A). This is a very important prac-
tice that researchers in metaheuristics and in non-deterministic algorithms in
general should include in their work. Nowadays, authors not doing statisti-
cal tests often report “clear” advantages for their proposals based on rather
small negligible numerical improvements. Although it is an intensive and time
consuming task, work including this information is supposed to improve the
overall research quality in literature.

In each case the procedure for generating the statistical information presented
in the tables is the following. First a Kolmogorov-Smirnov test is performed
in order to check whether the variables are normal or not. If they are, an
ANOVA I test is performed, otherwise we perform a Kruskal-Wallis test. After
that, we do a multiple comparison test whose results we present in the following
tables. We highlight with boldface the values associated with a significant
difference. This occurs when zero is not included between the lower and upper
bounds of the confidence interval (see columns Lower and Upper). We do
not show the results of the statistical tests for insertion, shell, quicksort,
and heapsort because they get the same results in coverage and number of
evaluations.

Table B.1
Statistical test results for the comparison between dES and panES

Coverage Evaluations Time

Program Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper

triangle -2.96 -1.00 0.96 37.19 691.13 1345.07 -20.50 -11.73 -2.97

gcd 0.00 0.00 0.00 19.23 28.00 36.77 0.78 8.00 15.22

calday -5.79 1.33 8.46 -10.90 -2.07 6.77 -20.30 -16.50 -12.70

crc 0.00 0.00 0.00 -1.89 3.60 9.09 -0.12 7.70 15.52

select 0.00 0.00 0.00 17.57 26.33 35.10 -38.53 -30.00 -21.47

bessel 0.00 0.00 0.00 2.04 10.87 19.69 -38.76 -30.00 -21.24

sa -10.12 -4.00 2.12 -1136.57 -279.30 577.97 -9284.62 -5972.53 -2660.45

netflow 0.00 0.00 0.00 95.06 217.43 339.80 -2020 -1800 -1580
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Table B.2
Statistical test results for the comparison between dGA and panGA

Coverage Evaluations Time

Program Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper

triangle -3.17 1.07 5.30 -1487.02 -205.03 1076.96 -17.37 -12.77 -8.16

gcd 0.00 0.00 0.00 94.54 188.40 282.26 -11.87 -3.57 4.74

calday 0.00 0.00 0.00 186.28 229.13 271.98 -38.52 -30.00 -21.48

crc 0.00 0.00 0.00 -2.27 1.07 4.40 -7.01 0.63 8.27

select 0.00 0.00 0.00 170.96 238.87 306.78 -38.12 -29.50 -20.88

bessel 0.00 0.00 0.00 -165.54 17.63 200.80 -38.74 -30.00 -21.26

sa -3.23 1.00 5.23 -3.17 1.07 5.30 -3076.36 -2664.33 -2252.30

netflow -4.37 -1.03 2.30 -416.70 19.43 455.57 -23.83 -15.00 -6.17

Table B.3
Statistical test results for the comparison between dES and dGA

Coverage Evaluations Time

Program Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper

triangle -2.34 1.00 4.34 -2308.16 -1106.00 96.16 -14.31 -5.57 3.18

gcd 0.00 0.00 0.00 -463.64 -405.67 -347.69 -26.35 -18.80 -11.25

calday 16.42 24.00 31.58 9.33 18.17 27.00 -24.39 -15.90 -7.41

crc 0.00 0.00 0.00 -0.95 4.27 9.49 -0.19 7.27 14.73

select 0.00 0.00 0.00 -350.46 -287.90 -225.35 -10.20 -2.24 5.73

bessel 0.00 0.00 0.00 -24.20 -15.37 -6.54 -32.42 -23.73 -15.05

sa 21.03 29.20 37.37 16.72 25.13 33.55 -594.47 464.90 1524.27

netflow 22.28 30.00 37.72 -613.60 -357.50 -101.40 19.16 28.00 36.84

Table B.4
Statistical test results for the comparison between panES and panGA

Coverage Evaluations Time

Program Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper

triangle -0.34 3.00 6.34 -2793.34 -2002.17 -1210.99 -16.84 -12.50 -8.16

gcd 0.00 0.00 0.00 -38.49 -29.70 -20.91 -27.85 -19.53 -11.22

calday 17.27 25.00 32.73 1709.70 2511.27 3312.84 -12.02 -3.40 5.22

crc 0.00 0.00 0.00 -1.79 2.03 5.86 -7.70 0.20 8.10

select 0.00 0.00 0.00 -31.45 -22.67 -13.88 21.39 30.00 38.61

bessel 0.00 0.00 0.00 -27.70 -18.87 -10.03 -35.79 -27.00 -18.21

sa 21.75 29.73 37.72 18.82 27.20 35.58 608.07 3773.10 6938.13

netflow 21.29 29.00 36.71 -929.13 -555.50 -181.87 2794.27 3002.37 3210.47

Table B.5
Statistical test results for the different search modes in dES applied to the calday
program

Coverage Evaluations Time

Search Mode Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper

same vs diff 11.99 19.73 27.47 6.76 15.60 24.44 -22.59 -14.00 -5.41

Table B.6
Statistical test results for the different stop conditions in dES applied to the calday
program

Coverage Evaluations Time

Stop Condition Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper

obj vs new -5.38 1.87 9.12 -11.70 -2.87 5.97 -3.84 -1.70 0.44
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Table B.7
Statistical test results for the different number of seed individuals in dES applied
to the calday program

Coverage Evaluations Time

Seeds Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper

1 vs 2 1.96 15.83 29.70 -1.71 14.43 30.58 -30.04 -14.43 1.18

1 vs 3 -3.70 10.17 24.04 -6.93 9.22 25.36 -23.23 -7.62 7.99

2 vs 3 -19.54 -5.67 8.20 -21.36 -5.22 10.93 -8.79 6.82 22.43

Table B.8
Statistical test results for the migration gap in dES applied to the calday program

Coverage Evaluations Time

Seeds Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper

10 vs 30 -22.62 0.43 23.49 -26.96 3.63 34.23 -31.68 -0.38 30.92

10 vs 50 -24.91 -1.85 21.21 -35.66 -5.07 25.53 -31.62 -0.32 30.98

10 vs 70 -29.04 -5.98 17.07 -35.85 -5.25 25.35 -30.07 1.23 32.53

10 vs 90 -32.99 -9.93 13.12 -39.91 -9.32 21.28 -21.00 10.30 41.60

30 vs 50 -25.34 -2.28 20.77 -39.30 -8.70 21.90 -31.23 0.07 31.37

30 vs 70 -29.47 -6.42 16.64 -39.48 -8.88 21.71 -29.68 1.62 32.92

30 vs 90 -33.42 -10.37 12.69 -43.55 -12.95 17.65 -20.62 10.68 41.98

50 vs 70 -27.19 -4.13 18.92 -30.78 -0.18 30.41 -29.75 1.55 32.85

50 vs 90 -31.14 -8.08 14.97 -34.85 -4.25 26.35 -20.68 10.62 41.92

70 vs 90 -27.01 -3.95 19.11 -34.67 -4.07 26.53 -22.23 9.01 40.37
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