691 research outputs found

    An enhanced resampling technique for imbalanced data sets

    Get PDF
    A data set is considered imbalanced if the distribution of instances in one class (majority class) outnumbers the other class (minority class). The main problem related to binary imbalanced data sets is classifiers tend to ignore the minority class. Numerous resampling techniques such as undersampling, oversampling, and a combination of both techniques have been widely used. However, the undersampling and oversampling techniques suffer from elimination and addition of relevant data which may lead to poor classification results. Hence, this study aims to increase classification metrics by enhancing the undersampling technique and combining it with an existing oversampling technique. To achieve this objective, a Fuzzy Distancebased Undersampling (FDUS) is proposed. Entropy estimation is used to produce fuzzy thresholds to categorise the instances in majority and minority class into membership functions. FDUS is then combined with the Synthetic Minority Oversampling TEchnique (SMOTE) known as FDUS+SMOTE, which is executed in sequence until a balanced data set is achieved. FDUS and FDUS+SMOTE are compared with four techniques based on classification accuracy, F-measure and Gmean. From the results, FDUS achieved better classification accuracy, F-measure and G-mean, compared to the other techniques with an average of 80.57%, 0.85 and 0.78, respectively. This showed that fuzzy logic when incorporated with Distance-based Undersampling technique was able to reduce the elimination of relevant data. Further, the findings showed that FDUS+SMOTE performed better than combination of SMOTE and Tomek Links, and SMOTE and Edited Nearest Neighbour on benchmark data sets. FDUS+SMOTE has minimised the removal of relevant data from the majority class and avoid overfitting. On average, FDUS and FDUS+SMOTE were able to balance categorical, integer and real data sets and enhanced the performance of binary classification. Furthermore, the techniques performed well on small record size data sets that have of instances in the range of approximately 100 to 800

    Data mining in soft computing framework: a survey

    Get PDF
    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF

    READUP BUILDUP. Thync - instant α-readings

    Get PDF

    State of the Art in Privacy Preserving Data Mining

    Get PDF
    Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when Data Mining techniques are used. Such a trend, especially in the context of public databases, or in the context of sensible information related to critical infrastructures, represents, nowadays a not negligible thread. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of modifying the database in such a way to prevent the discovery of sensible information. This is a very complex task and there exist in the scientific literature some different approaches to the problem. In this work we present a "Survey" of the current PPDM methodologies which seem promising for the future.JRC.G.6-Sensors, radar technologies and cybersecurit

    SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary

    Get PDF
    The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered \de facto" standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to di erent type of problems. Since its publication in 2002, SMOTE has proven successful in a variety of applications from several di erent domains. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also signi cantly contributed to new supervised learning paradigms, including multilabel classi cation, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of di erent software packages | from open source to commercial. In this paper, marking the fteen year anniversary of SMOTE, we re ect on the SMOTE journey, discuss the current state of a airs with SMOTE, its applications, and also identify the next set of challenges to extend SMOTE for Big Data problems.This work have been partially supported by the Spanish Ministry of Science and Technology under projects TIN2014-57251-P, TIN2015-68454-R and TIN2017-89517-P; the Project 887 BigDaP-TOOLS - Ayudas Fundaci on BBVA a Equipos de Investigaci on Cient ca 2016; and the National Science Foundation (NSF) Grant IIS-1447795

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology
    • …
    corecore