211 research outputs found

    Entity set expansion from the Web via ASP

    Get PDF
    Knowledge on the Web in a large part is stored in various semantic resources that formalize, represent and organize it differently. Combining information from several sources can improve results of tasks such as recognizing similarities among objects. In this paper, we propose a logic-based method for the problem of entity set expansion (ESE), i.e. extending a list of named entities given a set of seeds. This problem has relevant applications in the Information Extraction domain, specifically in automatic lexicon generation for dictionary-based annotating tools. Contrary to typical approaches in natural languages processing, based on co-occurrence statistics of words, we determine the common category of the seeds by analyzing the semantic relations of the objects the words represent. To do it, we integrate information from selected Web resources. We introduce a notion of an entity network that uniformly represents the combined knowledge and allow to reason over it. We show how to use the network to disambiguate word senses by relying on a concept of optimal common ancestor and how to discover similarities between two entities. Finally, we show how to expand a set of entities, by using answer set programming with external predicates

    Semantic tagging of French medical entities using distant learning

    Get PDF
    In this paper we present a semantic tagger aiming to detect relevant entities in French medical documents and tagging them with their appropriate semantic class. These experiments has been carried out in the framework of CLEF2015 eHealth contest that proposes a tagset of ten classes from UMLS taxonomy. The system presented uses a set of binary classifiers, and a combination mechanisms for combining the results of the classifiers. Learning the classifiers is performed using two widely used knowledge source, one domain restricted and the other is a domain independent resource.Peer ReviewedPostprint (published version

    Multilingual Information Extraction

    Get PDF

    Arabic medical entity tagging using distant learning in a Multilingual Framework

    Get PDF
    AbstractA semantic tagger aiming to detect relevant entities in Arabic medical documents and tagging them with their appropriate semantic class is presented. The system takes profit of a Multilingual Framework covering four languages (Arabic, English, French, and Spanish), in a way that resources available for each language can be used to improve the results of the others, this is specially important for less resourced languages as Arabic. The approach has been evaluated against Wikipedia pages of the four languages belonging to the medical domain. The core of the system is the definition of a base tagset consisting of the three most represented classes in SNOMED-CT taxonomy and the learning of a binary classifier for each semantic category in the tagset and each language, using a distant learning approach over three widely used knowledge resources, namely Wikipedia, Dbpedia, and SNOMED-CT

    A Hybrid Environment for Syntax-Semantic Tagging

    Full text link
    The thesis describes the application of the relaxation labelling algorithm to NLP disambiguation. Language is modelled through context constraint inspired on Constraint Grammars. The constraints enable the use of a real value statind "compatibility". The technique is applied to POS tagging, Shallow Parsing and Word Sense Disambigation. Experiments and results are reported. The proposed approach enables the use of multi-feature constraint models, the simultaneous resolution of several NL disambiguation tasks, and the collaboration of linguistic and statistical models.Comment: PhD Thesis. 120 page

    Proceedings

    Get PDF
    Proceedings of the NODALIDA 2011 Workshop Constraint Grammar Applications. Editors: Eckhard Bick, Kristin Hagen, Kaili Müürisep, Trond Trosterud. NEALT Proceedings Series, Vol. 14 (2011), vi+69 pp. © 2011 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/19231

    Larger-first partial parsing

    Get PDF
    Larger-first partial parsing is a primarily top-down approach to partial parsing that is opposite to current easy-first, or primarily bottom-up, strategies. A rich partial tree structure is captured by an algorithm that assigns a hierarchy of structural tags to each of the input tokens in a sentence. Part-of-speech tags are first assigned to the words in a sentence by a part-of-speech tagger. A cascade of Deterministic Finite State Automata then uses this part-of-speech information to identify syntactic relations primarily in a descending order of their size. The cascade is divided into four specialized sections: (1) a Comma Network, which identifies syntactic relations associated with commas; (2) a Conjunction Network, which partially disambiguates phrasal conjunctions and llly disambiguates clausal conjunctions; (3) a Clause Network, which identifies non-comma-delimited clauses; and (4) a Phrase Network, which identifies the remaining base phrases in the sentence. Each automaton is capable of adding one or more levels of structural tags to the tokens in a sentence. The larger-first approach is compared against a well-known easy-first approach. The results indicate that this larger-first approach is capable of (1) producing a more detailed partial parse than an easy first approach; (2) providing better containment of attachment ambiguity; (3) handling overlapping syntactic relations; and (4) achieving a higher accuracy than the easy-first approach. The automata of each network were developed by an empirical analysis of several sources and are presented here in detail
    corecore