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1 Introduction

In recent years the number of texts digitally available has increased dramatically.

In the early days of the world wide web the majority of these texts were English.

Recently the number of non-English texts has grown considerably. These develop-

ments have opened possibilities and created the need for tools for processing texts

in other languages. Information extraction is an important text processing tool to

make the information in large text collections more easy accessible to humans and

computer programs.

Around ten years ago information extraction started to become an increasingly

intense and successful field of research. Automatic extraction of information from

texts involves deciding whether a text is relevant for a certain domain, and if so

extracting a set of facts from that text. Most of the known information extraction

systems have been invented for texts written in the English language. Nowadays

English language information extraction systems perform nearly as well as human

experts. Most publications consider problems from the point of view of English

language specialities. Only recently an increasing number of papers deal with non-

English information extraction [AI99, Gri+99].

In comparison to the success of English language information extraction systems,

information extraction systems for other languages are not as reliable, or are still

lacking essential components. Depending on the number of native speakers, pros-

perity of countries, and the need for natural language processing capabilities, as well

as due to the complexity of certain languages, information extraction systems are

differently developed for individual languages. Recent research has focused on deve-

loping information extraction systems comparable to English systems. Additionally,

new methods are being invented to create information extraction components for

new languages. Machine translation, for instance, can be used to transfer linguistic

knowledge from English to other languages. In environments where many languages

are present, monolingual information extraction systems need to be assembled to-

gether into multilingual systems. Multilingual frameworks serve as an infrastructure

where text can be processed in any language.

In Chapter two I give an overview of the most common information extraction tasks

and the methods used in classical information extraction for the English language.

With these concepts in mind, I discuss in Chapter three how information extrac-

tion is adapted to new languages. Often the classical concepts are not satisfying

because other languages lack resources which are available in English. I will there-

fore describe methods for overcoming the resource shortages and creating informa-

tion extraction components for new languages. The difference between mono- and

multilinguality is distinguished and general methods for multilingual text processing

tasks are discussed. In Chapter four I present a multilingual information extraction

framework utilising the previously studied methods. Summary and conclusion are

presented in Chapter five.
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2 Information Extraction

Information extraction is the task of extracting information from natural language

text. More specifically, information extraction is expected to extract the same type

of information from every text document in a text corpus, and only if the text

contains such relevant information. If the text does not contain relevant information,

nothing is to be extracted. Often it is anticipated that results are in the form of a

data tuple which can be stored in a database. The patterns for these data tuples

are also called templates. Thus, sometimes information extraction is also referred to

as template filling.

At a first glance information extraction might appear to be similar to information

retrieval. Information retrieval, however, presents the texts as result in ranked or-

der, which is different to the templates filled in information extraction. Automated

text summarisation also appears to be somewhat similar to information extraction.

During summarisation it is important to preserve the most important information

in a text. Information extraction is only concerned with one specific kind of infor-

mation and widely ignores others, possibly important, but for the task irrelevant

information. Text categorisation solves some of the problems of information ex-

traction. Texts could be categorised into two classes: those containing relevant

information for the information extraction task, and those which do not. However,

text categorisation is mainly based on statistical analysis of word frequency, while

information extraction employs various formal linguistic analysis methods to access

syntactic and semantic structure of the text. Information extraction can help to im-

prove the text processing tasks mentioned above. One could imagine, for instance,

that future Internet search engines use a combination of these disciplines for text

retrieval. Large text collections would be easily accessible and could be sorted by

the extraction results [Gri+99].

In the early days of information extraction, research focused on extraction from En-

glish text. As a result, some components of English information extraction systems

perform nowadays on a level comparable to human experts. English information

extraction is far ahead of information extraction systems for other languages and

in this paper English information extraction will be used as an example to explain

general problems of and concepts for information extraction. Certainly it will not

always be possible to exactly copy information extraction concepts from English to

other languages. Nevertheless, these concepts build a good foundation and under-

standing them will help us to derive concepts for information extraction in other

languages [Gri+99].
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For a decade information extraction was driven by the conferences for message un-

derstanding (MUC). These conferences helped to formalise information extraction1.

As example information extraction tasks, the so-called MUC tasks, have been spec-

ified and include evaluation criteria and text corpora for testing. The MUC tasks

are widely used for evaluation of information extraction systems. For MUC-1 and

MUC-2 (1989) a corpus of messages about naval operations were published. For

MUC-3 (1991) and MUC-4 (1992) a collection of news articles about terrorist ac-

tivities in South- and Middle-America were published. The task was to extract

information about place, time, perpetrators, victims and the kind of terrorist ac-

tivity. For the MUC-5-(1993) a corpus of news articles about joint ventures and

micro electronics was provided. The task prepared for the MUC-6 (1995) includes

a collection of news articles dealing with executive succession. The MUC-7 task is

based on a corpus of news articles about space vehicle and missile launches [Che03,

MUC91, MUC92, MUC93, MUC95, MUC98].

There are two important aspects of information extraction. The first is to construct

an information extraction system, the second to use it. Information extraction can

be divided into various subtasks. Some of these are performed to build or train an

information extraction system, others are used to perform information extraction,

and a few are used in both circumstances. In many cases the use of one concept

rules out the use of another. Differences between information extraction systems

are, for instance, the thoroughness with which analysis of syntax and semantics is

carried out on the text, or what general linguistic approach is favoured for linguistic

subtasks. The scientific field of computational linguistics is traditionally split into

two camps. One favours stochastic methods using a prepared training corpus while

the other favours handcrafted systems based on linguistic rules [JM00].

An information extraction task is usually meant to be carried out on texts belonging

to one language domain. That often includes dealing with language using specific

vocabulary, expressions and sentence structure which are rather rare and not ne-

cessarily known to everybody. Considering, for instance, the MUC tasks, it is easily

observed how different and specific the language domains of the test corpora can be.

The methods used for creation of an information extraction system are considered

domain independent. Nonetheless certain components of information extraction

systems are specialised to perform on one certain domain and task.

1The first Message Understanding Conference (MUC-1) was held 1987, the last conference

MUC-7 was held 1997. Nowadays various conferences in the field of computational linguistics and

artificial intelligence deal with information extraction or its subtasks.
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The most important and promising concepts of information extraction are shown

in the flow chart in Figure 1. We will discuss information extraction components

focusing on how they can be used for information extraction in other languages.

Only those concepts and methods which I believe are useful and relevant in the

context of other languages and multilingual information extraction are described.

POS Tagger

Morphologic Analyser
Lexical

Dictionary

Tokeniser

Name
Rules

Name
Lexicon

Lexicon and Rule Based

Name Entity Recognition
Name

Lexicon

Syntax Parser

Inference Analyser

Coreference and

Bootstrapping

Pattern Matching

Discourse Analyser

Extracted
Results

Events

...

Activities

Relations

Patterns/Words
Seed

Text

Corpus

Test

Corpus

Figure 1: Outline of a generalised information extraction system.

Above, in Figure 1, each large rectangular box represents one component. The

grey boxes represent components which are not used in all information extraction

systems and are optional. The arrows show the work flow of information extraction,

the dashed arrows depict optional paths. The smaller rectangles represent resources,

that is lexica, text corpora, databases, lists of regular expressions and seed word lists.
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At first the text corpus is tokenised into paragraphs, sentences and words2. After

tokenisation we look up all words in a lexical dictionary and, if necessary, we analyse

their morphology. Some information extraction systems apply in the same phase

part-of-speech (POS) taggers, which add syntactical information about the words

as tags to the text. Morphological analysis and POS tagging are strongly related

and are often implemented as one component. They are described and analysed in

detail in section 2.2.

The next component in line is named entity recognition. Named entities are definite

noun phrases, naming, for instance, persons, locations and organisations. Named

entities consist of one or more words and often represent the information which is

to be extracted. There are several methods to recognise and extract named entities.

At this point only rule and lexicon based named entity recognition is applied. We

store the found named entities in a name lexicon for later use. More about named

entity recognition can be found in section 2.3.

We discover further syntactical information comparable to the part-of-speech infor-

mation throughout syntax parsing and tag it to the text. Syntax parsing does not

depend on named entity recognition and we could apply it also before. Depending

on the amount of syntax information required by the subsequent components, we ei-

ther execute shallow syntax parsing and ignore complex syntax structures, or we use

deep analysis methods to analyse the syntax fully. A more thorough introduction

to parsing is given in section 2.4.

Newer information extraction systems apply explicit analysis of coreferences and

inferences to produce better results. Some information extraction systems post-

process the extracted results to discover relationships appearing in the discourse of

the texts. Coreferences, inferences and discourse analysis are discussed in section

2.5.

Finding extraction patterns is the core task of information extraction systems. In-

formation will be extracted using these patterns. Based on the linguistic analysis on

the text during the previously applied components, extraction patterns match facts.

These facts, or pieces of information, are later used to fill the slots of the result

templates and are assembled to result data tuples. The basic concepts of extraction

patterns are described in section 2.6.

Newer systems use various bootstrapping algorithms to improve the results of the

pattern matching, or do unsupervised named entity recognition. Some systems re-

2Tokenising is a fairly simple task in languages using the Latin alphabet. In this paper I consider

only such languages and hence will not discuss tokenising. However, for example Chinese, Japanese

and Korean scripts are not that simple to tokenise and the recognition of word and sentence borders

is an issue which must be addressed for information extraction in those languages.
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quire a test corpus to evaluate the results of the pattern matching and bootstrapping

process. Others use bootstrapping and evaluate the results by their appearance in

the context and do not need a test corpus. The different bootstrapping algorithms

are discussed in section 2.7.

After the single pieces of information have been extracted from text, they need to

be merged together so that the information items belonging together are assembled

together into one result data tuple. Merging is not further discussed in this paper.

2.1 Evaluation of Information Extraction

Information extraction systems may take quite diverging approaches in solving the

problems at hand. A fair comparison of the results is often not directly possible. We

need a comparison method in order to decide which approach works better under

given circumstance. That will enable us to compare information extraction results.

Additionally the performance of single components of information extraction needs

to be evaluated.

Most often the used evaluation method is statistical evaluation. The results are

compared against the correct solution to the problem. However, we have to keep

in mind that sometimes there is not only one correct solution. In some cases even

human experts disagree on which information exactly to extract. If we assume that

a correct solution is available, it consists of a data tuple for each relevant text in

the test corpus, containing the correct extraction set of information. An extraction

result for a text is correct when the correct data tuple matches exactly the template

the information extraction system filled3. A result is incorrect when the information

extraction system extracts information that does not match, or that is irrelevant to

the correct solution [AI99].

An exact match of one data tuple is called a true positive (TP). A text document

considered irrelevant in both the correct solution and the information extraction

system output is called a true negative (TN). If the information extraction system

discards a text document which is not discarded in the correct solution, we call it a

false negative (FN). If the correct solution rejects a document but the information

extraction system extracts a data tuple from it, it is a false positive (FP).

3The definition of a pair of matching data tuples depends on the implementation of the sys-

tem under evaluation. An exact string match, for example, will be too strict in the case of not

normalised named entities (c.f. section 2.3).
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FP

TN

FNTP

Result of Evaluated System

Correct Results

Figure 2: Precision and recall of the results.

Figure 2 depicts the TP , TN , FP and FN as sets. The result is correct when both

sets, the evaluated results and the correct results, are the same and FP = FN = ∅.

We need to compute more expressive values in order to get useful evaluation at-

tributes from these statistical values. The precision π, given in equation (2.1),

describes how many of the results the information extraction system generates are

correct.

π =
TP

TP + FP
(2.1)

The recall ρ, given in equation (2.2), describes how many of the correct results the

information extraction system is able to find.

ρ =
TP

TP + FN
(2.2)

Obviously precision and recall range in the interval 0 ≤ π, ρ ≤ 1. Precision and

recall each describe one quality of the information extraction system’s performance.

Systems have to maximise both. Accordingly, full evaluation of the system is only

expressed by both values. In other words, if the precision is very high and the recall

rather low, the result may be worse than an average value for both precision and

recall. If we want to compare systems directly, we need one single value representing

the quality of the information extraction system’s performance.
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One such value is the Fβ-measure. It is calculated from precision π and recall ρ as

given in equation (2.3) [Rij79].

Fβ =
(β2 + 1)πρ

β2π + ρ
(2.3)

The π-weight parameter β, 0 ≤ β ≤ ∞, is used to give the precision more or less

weight than the recall. The F -measure used in many evaluations of information

extraction systems, is the F1-measure for β = 1.

Fβ=1 =
2πρ

π + ρ
(2.4)

Some newer information extraction systems do not need tagged training text cor-

pora anymore, which means that test results are not available. Calculating precision,

recall and F1-measure values without a test result is not possible. Thus the com-

parison of such systems with others is not directly possible. Of cause such systems

can be applied on a test corpus to get comparable results. That, however, overlooks

the strength of these systems to perform under circumstances where no test corpus

is available.

The evaluation techniques of precision, recall and F1-measure are also employed for

some of the information extraction subtasks. The results of POS taggers, named

entity recognisers and syntax parsers, for example, can be measured using the same

principles as we have seen above.

It would be desirable to have objective measures for the comparison of the perfor-

mance of information extraction systems and their components. A fair comparison

is only possible under identical testing conditions. Unfortunately these are not given

for most of the concepts discussed in this paper, especially not for information ex-

traction in other languages than English. Evaluation results are published with the

use of precision, recall and F1-measure in almost all publications on which this paper

is based upon. The evaluation conditions are, however, not directly comparable in

most cases. That is because different text corpora were used, preconditions were

different and the evaluated language domains varied. Even though it is desirable to

compare the methods described throughout this paper with each other, an evalua-

tion based on the published evaluation values is not fair. Rather than comparing

on an unfair basis, we will not make any comparison between results presented in

different publications. For those interested, evaluation results are found in the cited

papers.
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2.2 Morphological Analysis and Part-of-Speech Tagging

Morphology is concerned with the internal structure of words, that is inflectional

changes, derivations of words and compound words. In general there are two ways

to deal with morphology: listing the inflections, derivations and possible compounds

in a lexical dictionary, or listing only abstract descriptions (such as, infinitive,

nominative) and describe the morphology with a set of inflection and derivation

rules [Arn+94].

In comparison to other languages, the English language has a fairly simple morpho-

logical structure. There are, for instance, only few cases and verb inflection forms

in English. Thus, morphology does not present a real problem in processing Eng-

lish texts. Some authors argue that listing all inflection forms in a lexicon provides

less complex and fast solutions. Other researchers, on the other hand, have shown

that rule based morphological analysers perform well also for English language, and

utilise them for information extraction where lexicon based analysers are of less

use [AI99, YGT00, Vou97, TJ97].

In order, for us to undertake morphological analysis, we need to look up each word

in a lexical dictionary. We will have to do the same for part-of-speech analysis and,

in a way, both are the counterparts of one and the same analysis. The part-of-speech

feature is the functional part a single word plays in a sentence, for example, sub-

stantive, adjective, verb, adverb, conjunction, pronoun, preposition and determiner.

In order to ascertain which part-of-speech a word represents, we will need to look it

up in a lexicon. If the word is not in the dictionary, we can usually find the basic

form of the word in the dictionary. We use morphological analysis in order to decide

on the basic form of words. Once we have determined the part-of-speech of a word,

the word receives a tag with its part-of-speech. This is in fact why the process is

often referred to as part-of-speech tagging.

The example (S2.1) shows a simple sentence and its POS tags. ’VB ’ marks the

verb, ’DT ’ the determiner and ’NN ’ the singular noun of the sentence. In addition,

finer grained information gained throughout morphological analysis, such as voice

and tense of a verb4, or number, case and gender of a substantive, may be added to

the POS tag.

(S2.1)
VB DT NN

Book that flight.

4Note that verbs in the preterit tense and some other forms appear in combination with an

auxiliary verb. POS taggers are not concerned with word groups and, hence, will not be able to

determine the voice and tense of verb groups. This task belongs to syntactical analysis, which is

covered within the following section. POS tagging is neither interested in noun phrases amounting

to more than one word.
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The major problem faced during POS tagging is the ambiguity of words, as the

examples (S2.2) and (S2.3) depict: While race in the sentence (S2.2) is a verb, in

sentence (S2.3) it is a noun. We need an indication from the context of the word

race to know which POS tag is appropriate. Otherwise the part-of-speech of race is

ambiguous. POS tags are dependent on the context in which the word appears and

what it means.

(S2.2) Secretariat is expected to race tomorrow.

(S2.3) People continue to enquire the reason for the race for outer space.

[JM00]

We can resolve the ambiguity by examining the preceding word. Consider again the

example above: If race is preceded by the determiner the, it is a noun, if preceded

by to, it is a verb. Other ambiguities can be removed during syntactical analysis.

Some ambiguities, however, cannot be ruled out with certainty. Nevertheless, in

many cases one meaning is much more likely than the others [JM00].

Three different approaches to POS tagging have been used throughout the recent

decades. The first approach is to build a rule based tagger. Rule based taggers

incorporate a list of decision rules. In cases where there are ambiguities to resolve,

a rule will match in the appropriate context and tag the correct part-of-speech.

The example (S2.4) below depicts such a rule that resolves the ambiguity of the

word race. Rule based taggers typically include many such rules. The construction

of these rules is a time consuming task and requires linguistic expertise. The POS

tagger ENGTWOL is a more complex and well performing example of a rule based

tagger [Vou97, JM00].

(S2.4) If race is preceded by to then tag as verb.

[JM00]

The second approach is to train stochastic taggers. Using a tagged training corpus,

the tagger is learning the probability of each word, to have a certain tag. Using

Hidden Markov models and the Viterbi algorithm, the tagger will find the sequence

of POS tags for a whole sentence with the highest likelihood, based on the trained

probabilities (see section 2.3) [JM00].
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The Brill tagger represents the third approach. It uses transformation based lear-

ning. This method is a combination of probabilities and rules, where the rules are

created using machine learning mechanisms. Hence, the creation of a Brill tagger

requires a tagged training corpus [JM00, Bri95].

There are diverging opinions on how important POS tagging is for information

extraction. The tagger used for the ExDisco information extraction system uses

tags based on a grammar, heuristic rules and trained statistics. The tags contain

quite rich details on each words part-of-speech [YGT00, Vou97, TJ97].

The opposing side claims that POS tagging may as well be omitted. It is clear, that

in some cases, it is better to have no POS tag at all than an erroneous tag. It has

been observed, that the cases in which information extraction would benefit most

from POS tags are those where words contain rare senses. These are unfortunately

also the five percent of cases where POS taggers fail to disambiguate [AI99].

2.3 Named Entity Recognition

A named entity is an individual existence such as a person, a place or an institution.

Names are used to refer to named entities. Names of persons, places, institutions

and so forth appear in almost every text. Names consist of definite noun phrases

often including more than one word. Specific parts of the name have often specific

meanings. In order to access the information in texts, it is important for us to

identify those definite noun phrases that are names, as well as which named en-

tity is described by the name. We can divide named entities into classes by their

semantics. That is, for example, if the named entity is human, the name belongs

to the semantic class person. Other classes are, for instance, locations, companies

and institutions, product names, dates and numbers. Named entity recognition is

to recognise named entities, to sort them into semantic classes and to tag them in

the text. In information extraction, named entities are important because typically

some or possibly even all slots of the result templates are to be filled with named

entities. The quality of information extraction will inevitably be influenced by the

quality of named entity recognition.

There are several difficulties in recognising and categorising named entities. Many

names and their semantic classes can be listed in a semantic lexicon, so that we

can look up them up for named entity recognition. The names of all countries, or

common first and last names, for instance, can be easily listed. Yet, many names

cannot be listed for several reasons. To list, for instance, more than just the largest

cities of the world is tedious.
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In other cases we cannot predict the whole number of all valid names. Product and

company names, for example, are invented almost every day and naming conventions

change. The example (S2.5), the name of a margarine product, depicts an extreme

and unforeseeable name.

(S2.5) Product name of a margarine: I can’t believe it’s not butter!

[AI99]

The ambiguity of words presents another problem. Sometimes a name will fit into

several semantic classes or matches with several named entities. The name Washing-

ton, for example, will typically be used to describe a location. There are cases when

that is not the case as example (S2.6) shows, where Washington is a person name.

The named entity recogniser needs to decide whether the ambiguous name belongs

to another semantic class.

(S2.6)

Consuela Washington, a longtime staffer and an expert in securities

laws, is a leading candidate to be chairwoman of the Securities and

Exchange Commission in the Clinton administration.
[Poi00]

Quite often one named entity has several representations as, for instance, persons

names. The names ’Mr Smith’, ’John Smith’ and ’Smith’ are some possible refer-

ences to the same person. Yet, the same text could possibly mention another person

’Will Smith’, which would make ’Smith’ ambiguous. Beside synonyms, other name

references also appear in text. Coreferences such as ’the company’, ’he’, ’they’, and

’we’ refer to named entities mentioned earlier in the discourse. Much information is

spread across sentences through such coreferences. Leaving coreferences unresolved

means missing relevant information. Coreferences are dealt with separately in sec-

tion 2.5. References expressing real world knowledge are rather difficult to deal with.

The named entity in example (S2.7), for instance, refers nowadays to ’Bill Gates’,

and is a typical case of applied real world knowledge [AHG98, AI99].

(S2.7) Referring nowadays to Bill Gates: The richest man of the world.
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Throughout the last decade, research on named entity recognition concentrated on

several specific problems. As a result some methods for certain general and domain

specific semantic classes are widely accepted. Besides the person names mentioned

above, location names and company names have received special attention. If the

text corpus consists of a certain domain language, such as medical reports, domain

specific vocabulary and semantic classes must be taken into consideration [AI99].

Four different approaches are widely used for named entity recognition in informa-

tion extraction. Semantic lexica are used for named entities which can be listed in

reasonable time, or when name lists exist already. Handcrafted recognisers consist

of a set of rules to recognise named entities. Stochastic methods are used to train

recognisers with tagged training text. Bootstrapping applies repeatedly extraction

patterns to recognise named entities and to sort them into their semantical classes.

These methods perform differently on dissimilar named entities and typically two

or more of them are applied in combination [AI99].

A semantic lexicon contains a list of names, their corresponding named entity

(a normed form of the name) and the corresponding semantic classes. Named en-

tity recognition uses lexicon based analysis, if such a semantic lexicon is available.

Lexical analysis appears to perform better with rather small domain specific lexica

than with large general lexica [AI99].

Other named entities are better identified using regular expressions to match names

following certain naming conventions. In many languages, for example, names start

with capitalised initials5, which can be used to identify them in texts. Naming

rules must be implemented and tested by a human expert. Usually regular ex-

pressions are used in combination with domain specific semantic lexica. They are

also used to build such lexica in the first place. The information extraction system

WHISK for semistructured and structured texts employs these techniques in many

contexts [Sod99].

Implementation of name recognition rules by hand is quite time consuming and

requires some language expertise. Instead we can use statistical methods and ma-

chine learning algorithms to train named entity recognisers automatically. Machine

learning is based on hidden Markov models. A hidden Markov model is an un-

known finite state automaton. We assume that a finite state automaton exists

which consumes the text and reaches a final state exactly when a proper name and

its surrounding context have been consumed.

5One exception is the German language, where all substantives begin with a capital letter.
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Figure 3: A finite state automaton topology for hidden Markov models.

Figure 3 above shows the layout of such a finite state automaton. The circles are

states of the automaton each representing one word. The hexagonal shaped state

matches the proper name. The arrows depict possible transitions from one state to

another, that is the order in which the words may appear. The automaton matches

every sentence that has a valid path through the automaton from the beginning

state, marked by an arrow with no previous state, to the final state, denoted by two

concentric circles. Each finite state automaton is equivalent to a regular expression.

Constructing an automaton for a certain proper name is similar to constructing

a regular expression as rule to match the name. We use hidden Markov models

to estimate such automatons when they are not available or are too laborious to

construct. The arrows of a hidden Markov model depict probable transitions from

state to state. During a training phase, a probability is learnt for every arrow. We

learn the probabilities by counting the occurrences of word sequences in a training

text. Using the Viterbi algorithm, we will get the likelihood of the transitions from

one state to the next for each state in the automaton. When we apply hidden

Markov models to match proper names, several automatons may match the same

sentence. We choose the one with the highest probability along the whole matching

path. A hidden Markov model can have more than one (hexagonal) target state

to reflect possible variations of the proper name. We need a training corpus with

tagged named entities to construct a hidden Markov model [FM99, JM00].
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The following observation points out quite clearly the limitations of hidden Markov

models. Two separate groups of scientists noticed quite independently that roughly

every doubling of training words increases the F -measure by 0.015. This rule has

been verified for a maximum of 1.2 million training words, at the time the maximum

training corpus available. In order to achieve a result with F -measure ≥ 0.9, the

time needed for tagging enough words of training data has been estimated to be

about 800 hours, or 20 man weeks. The assumption is that a rule set which obtains

the same F -measure results can be handcrafted in far less time. This example makes

it clear that hidden Markov models are only helpful if enough training data is already

available [AI99].

2.4 Syntax Analysis

In contrast to POS tagging, syntax analysis, also called syntax parsing, looks beyond

the scope of single words. During syntax analysis we attempt to identify syntactical

parts of a sentence (verb group, noun group and prepositional phrases) and their

functions (subject, direct and indirect object, modifiers and determiners). Simple

sentences, consisting, for instance, of a main clause only, can be parsed using a finite

state grammar. Simple finite state grammars are often not sufficient to parse more

complex sentences, consisting of one or more subordinate clauses in addition to the

main clause, or containing syntax structures, such as prepositional phrases, adverbial

phrases, conjunction, personal and relative pronouns and genitives in noun phrases.

Using finite state grammars in such cases may result in errors. Instead, those cases

are handled by either heuristic hand coded rules or statistically founded methods

which have to be trained with training text corpora. The important decision to be

made for syntax analysis is basically the same as for named entity recognition and

POS tagging. We have to decide what kind of parsing is to be employed: more

robust shallow techniques, or deep complex syntax analysis [JM00].

The subsequent methods used in varying information extraction systems are different

especially from the point on, when syntax parsing is applied. The type of syntax

analyser employed depends on how the results are used later on during coreference

resolution, pattern matching and discourse analysis. Shallow systems exclude certain

syntactical constructs from their analysis based on how relevant they might be for

information extraction tasks. As a result important information might be ignored.

The SRI international FASTUS system favours a rather shallow and robust approach

to syntax parsing. This decision is based on the claim that experience so far has

proved this approach to be the superior one [AI99].



16

Nonetheless is might be necessary to analyse some of these structures in certain lan-

guages domains. A very promising syntax parsing tool has been created based on

the formalism of functional dependency grammars (FDG). It is used in the ExDisco

information extraction system. The FDG parser uses heuristic rules to create gram-

mar dependency trees and performs a thorough, if not complete syntax analysis.

The parser has specific heuristics dealing with ambiguity. The heuristic rules used

for the FDG parser are not strictly language specific and the FDG parser has been

adjusted to a variety of languages [TJ97, Yan+00, YGT00].

2.5 Coreferences and Discourse Analysis

Free text contains a rich variety of references and relationships which are beyond

the scope of simple syntactical analysis and often represent some kind of semantics.

Named entity recognisers, for instance, when unaware of references, may fail to find

named entities. The early information extraction system Wrap-Up attempted to ex-

tract relationships from text by performing discourse analysis. The new information

extraction subtask coreference analysis was introduced in MUC-66. One information

extraction system also carries out inference analysis [SL94, SL95, Gri97].

Coreference analysis deals with anaphoric references which often appear in the form

of a pronoun or a definite noun. Anaphora typically appear as a pronoun or noun

in a preceding or subsequent clause of the noun they refer to.

Examples (S2.8) and (S2.9) show a typical anaphoric coreference. The anaphora her

in (S2.9) refers to the noun phrase This woman in (S2.8).

(S2.8) This woman came here every day.

(S2.9) If I would have only known her name.

Sometimes anaphoric references stretch out over several sentences. Often anaphora

cannot be resolved because synonymous named entities have not been recognised

as such during named entity recognition. This is especially the case if pragmatic

or real world knowledge is required to decrypt the reference (see example (S2.7) on

page 12). Coreferences can appear in many contexts and locating coreferences is

quite important for information extraction. Facts are often spread out over several

sentences. Ignoring coreference would mean omitting facts in many cases [Yul96].

6Coreference analysis was not a new task at that point but had been performed implicitly in

earlier information extraction systems [AI99].
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There are two common methods of coreference analysis: knowledge engineering and

automatically trained systems. In the knowledge engineering approach we consider

every noun phrase to be a potential coreferent and prune them so that only core-

ferences remain.

The following steps outline this pruning:

1. Find each candidate coreference and analyse its attributes.

2. Prune the scope for each candidate.

3. Rule out candidate coreferences by doing sortal and semantical checks.

4. Sort the remaining candidate coreferences by dynamic semantical preference.

The first step is to assign a set of attributes to each noun phrase. These attributes

are sort (location, company, person), number (singular or plural), gender and syn-

tactic features. The next step is to set the probable word or sentence scope for

each candidate. We carry out a sortal check by comparing the attributes of the

referent and antecedent of every candidate coreference. Then we sort all remaining

candidates by a dynamic semantical preference to rule out competing ambiguous

coreferences. Finally, we use the best candidate referent antecedent pairs to resolve

the coreference [AI99].

Automatically trained systems are based on hand tagged training texts and use, for

example, decision trees in deciding what is a coreference and to which noun phrase

it is referring [HGA97].

It has been observed that coreference resolution fails to resolve coreferences in a few

complex cases. Unfortunately, complex cases are those which would be especially

useful for ambiguity resolution in other information extraction tasks [AI99].

Inference is information which can be derived from coreferences. Consider examples

(S2.10) and (S2.11): In example (S2.10) and (S2.11) the inference is that Harry has

become president. In order to understand this information, we need at first resolve

the corefence that He is Sam. The fact that Sam was a president and that the

verb succeeded implies that the office is transfered to Harry, is to be resolved. Most

information extraction systems ignore inferences. The NYU Proteus system extracts

information from inferences using hard-coded rules [Gri97].

(S2.10) Sam was president.

(S2.11) He was succeeded by Harry.
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Discourse analysis aims to expose all kinds of information given throughout the

discourse of a text. Such information can be, for instance, family relationships,

ownership or even production chains. The Wrap-Up and Crystal information ex-

traction systems use ID3 decision trees for discourse analysis on the MUC-5 task

(see MUC-5 on page 3). Most information extraction systems do not perform dis-

course analysis [SL94, SL95].

2.6 Extraction Patterns

The resulting output of information extraction consists of single data items filled

into the slots of data tuple templates. The data tuples populate the result database,

one tuple for each relevant document of the input text corpus. The data items are

pieces of information which have to be located in the text. Extraction patterns are

used for this task.

An extraction pattern is a text pattern which matches a certain token and its sur-

rounding context. While the surrounding context is constant, the token is variable.

The context might consist of words or linguistic tags, such as POS or syntax tags.

One single extraction pattern matches only a certain type of information so that

it will always produce the same type of item in the result template. Consider the

examples (S2.13) and (S2.14). The extraction pattern in example (S2.13) extracts

bomb targets and the pattern in example (S2.14) extracts perpetrators.

The AutoSlog system introduced extraction patterns that extract noun phrases

within the context of a sentence. Using a few hand picked noun phrases as seed

words AutoSlog finds all extraction patterns in a text corpus that occur as context

for the seed words. It produces, for example, with the seed words ’World Trade

Center’ and terrorists from the sentence (S2.12) the extraction patterns (S2.13)

and (S2.14). We use these extraction patterns in turn to extract bomb targets and

perpetrators from text.

(S2.12) World Trade Center was bombed by terrorists.

(S2.13) <x> was bombed

(S2.14) bombed by <y>
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AutoSlog uses 13 distinct linguistic extraction patterns in order to find such pat-

terns. An example of AutoSlogs linguistic extraction patterns is the pattern (S2.16).

These linguistic patterns are applied to every sentence where the seed words appear.

In example (S2.15) the seed word ’World Trade Center’ occurs and the linguistic

pattern (S2.16) matches. The match of the linguistic pattern is translated into the

extraction pattern (S2.13) [Ril93].

(S2.15) <World Trade Center subject> <was bombed passive verb>

(S2.16) <subject> passive verb

Not all such patterns created will be of use because they might be too general,

too specific or contain too many ambiguities. The AutoSlog-TS system extends

AutoSlog with a sentence analyser doing the following: Every found extraction

pattern is applied on a test text corpus. The text corpus consists of documents

classified as relevant and irrelevant for the information extraction task. The sentence

analyser gathers statistics about the number of matches for every pattern found in

the relevant texts.

Then AutoSlog-TS ranks the extraction patterns according to their RlogF metric

shown in equation (2.5).

RlogF (pattern) =
F

N
× log2(F ) (2.5)

F is the number of unique lexicon entries matched by pattern and N is the total

number of unique noun phrases matched by pattern.

It is assumed that the extraction patterns generated by AutoSlog and AutoSlog-TS

will be reviewed by a human expert before they are finally used in building an infor-

mation extraction system. The bootstrapping algorithm described in the following

section represents a solution making such reviews unnecessary [Ril93, Ril96].
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2.7 Bootstrapping

The extraction patterns created by AutoSlog and AutoSlog-TS (see previous section)

are not necessarily of the required quality. Some patterns will be too general and

extract wrong information, others are too specific and extract only the exact phrase

they are created from. The review of the ranked patterns delivered by AutoSlog-

TS requires work of a human expert. This is time-consuming. It is also unlikely

that the seed words appear in all contexts where wanted information appears, and,

hence, potentially good extraction patterns will be overlooked. All these problems

are targeted by bootstrapping algorithms that automatically evaluate extraction

patterns, extend the search of extraction patterns beyond the scope of the seed

words, and bootstrap the result to a list of quality extractions.

The RlogF ranking performed by AutoSlog-TS has one weakness. It does not recog-

nise false positive matches. With the help of a bootstrapping mechanism, we are

able to automate the selection of the most appropriate patterns and improve the

scoring of extraction patterns. Using seed words from certain semantic classes (per-

son names, locations, etc.), the bootstrapping creates a semantic lexicon from noun

phrases found in similar contexts as the seed words. The multi-level bootstrapping

algorithm ranks patterns and their extracts separately to prevent bad noun phrases

from being placed into the semantic lexicon. The algorithm consists of an inner

loop, the mutual bootstrapping, and an outer loop, the meta bootstrapping.

AutoSlog NP extraction Score RlogF

EP
List

Semantic
Lexicon Score NP’s

Words
Seed

Temporary
Semantic
Lexicon

Mutual Bootstrapping

EP & NP
Best EP

best NP’sbest 5 extracted noun phrases

initialise EP’s

Text

Corpus

Test

Corpus

Figure 4: Multilevel bootstrapping.

Figure 4 depicts how AutoSlog and two levels of bootstrapping are combined for noun

phrase extraction. We employ AutoSlog with a list of seed words to create extraction

patterns from a text corpus. We apply all those candidate extraction patterns to
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the text. We save the list of extraction patterns and their corresponding extracted

noun phrases. The mutual bootstrapping loop iterates on this list. We score the

candidate patterns during each loop using the RlogF metric (see equation (2.5),

on page 19). We then automatically choose the best candidate extraction pattern,

remove it from the candidate pattern list, and add it to a category pattern list.

We add the corresponding extracted noun phrases to a temporary semantic lexicon.

The bootstrapping loop ends when all candidate extraction patterns have been used,

no new words are found, or the RlogF score falls below a user defined threshold.

We score the noun phrases of the temporary semantic lexicon based on how many

category extraction patterns have extracted them and how highly those patterns

scored. The equation (2.6) is used as score metric.

score(NP ) =
∑

k∈N

1 + (0.1 × RlogF (patternk)) (2.6)

N is the set of extraction patterns in the extraction pattern list which extract noun

phrase NP .

During every iteration of the outer loop we add the best five noun phrases to the

semantic lexicon. We then initialise AutoSlog with a seed word list that has been

extended by the five new phrases. The multilevel bootstrapping algorithm ends

when the meta bootstrapping has iterated a certain number of times, no new words

are found, or the noun phrase score falls below a certain threshold. We apply

the multilevel bootstrapping on seed words, one semantical class at a time. The

algorithm produces a semantical lexicon containing noun phrases falling all into the

same semantical class as the seed words. Semantical lexica are used, for instance,

during named entity recognition [RJ99].

To perform multi-level bootstrapping, we still need a test corpus, and this boot-

strapping algorithm extracts only categories of noun phrases. The ExDisco system

uses a bootstrapping algorithm which needs only seed words but no test text corpus.

A different style of syntax tagging makes it possible to categorise also verb groups.



22

Split Corpus

Score Patterns

Seed
Patterns

FDG parser

Semantic
Lexicon

Apply Patterns

Best Pattern

& Lexical Lookup
Quadruple Reduction

Corpus

Text

Figure 5: The ExDisco bootstrapping.

Figure 5 outlines the ExDisco system. The whole text corpus is firstly parsed with

a FDG parser (see section 2.4) which reduces all clauses to a set of quadruples.

The quadruples are further reduced to a set of pairs, for example subject-object or

verb-object, so that one or more pairs are produced from each quadruple. We genera-

lise these patterns even further by replacing each lexical item, that is a recognised

member of a semantical class, by its class name.

During the bootstrapping the following steps are iterated:

1. Apply all seed patterns on the whole text corpus.

2. Split the text corpus into two categories, so that one category contains all

relevant texts in which one or more seed patterns scored and the other category

contains all the other texts.

3. Score all the patterns gained from the text corpus based on their density of dis-

tribution in relevant documents in comparison to their density of distribution

in all texts.

4. Use the highest scoring patterns to generate concept classes by merging those

pairs which appear in the correlated text.

The pattern (S2.17), for instance, contains a class of verbs which occur with the rele-

vant subject-object pair company-person. These verbs have been merged into the

same pattern. During each iteration we add one such pattern to the seed patterns.

ExDisco stops when no new patterns are discovered [YGT00, Yan+00].

(S2.17) company {hire/fire/expel} person
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3 Multilingual Information Extraction

Information Extraction has for many years meant extracting templates from text

in the English language. Almost all research effort was spent in improving the

performance of English information extraction systems. When it became evident

that information extraction systems can perform considerably well, the focus of

research began to shift toward information extraction in other languages.

By shifting the focus into other languages than English, the problem of information

extraction, as described in the previous chapter, gets a new dimension. The first

objective is to create information extraction systems that perform the same tasks

but on a different language. On second glance, there are many more challenges in a

multilingual context than transferring monolingual information extraction systems

into a new language. Users might not know the language of the texts, or corpora may

consist of texts written in more than one language. Knowledge about a language,

linguistic tools and text corpora in a language may not be available.

Adaptation of information extraction systems to new languages means that we need

to adapt the components of information extraction to new languages. Some of these

components are easily adaptable using one of the methods used to build these com-

ponents for English language text. Others are already implemented and available.

Some are, however, not available and adapting them by implementing the same ideas

used in English will fail due to greater complexity of linguistic features in many lan-

guages. In many cases the resources available in English that initiated the invention

of the methods in the first place are not available in other languages, and the effort

it would take to create these resources seems excessive.

The additional dimension of multilinguality, nevertheless, offers some opportunities

that were not available when English information extraction systems were created.

Machine translation is the key technology, which, despite its still poor quality, makes

transfer of linguistic tools and knowledge across languages possible. Remarkable

ideas are still being published enabling linguistic tasks in languages that seemed

impossible not too long ago.

In multilingual environments, such as the Internet, where texts appear in numerous

languages, monolingual information extraction is a restricted tool. A multilingual

framework for linguistic tools that would deal with texts in various given languages

is needed. Information extraction results should extend across language borders.

Such multilingual framework will be useful for information extraction, as well as

information extraction components and other linguistic applications.
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Within this chapter we will look at the difference between monolinguality and multi-

linguality and we will study how information extraction can be adapted to new

languages. We will additionally analyse multilingual concepts for information ex-

traction and its components. We will get introduced to the concepts of text align-

ment, cross-language projection, language recognition and machine translation and

we discuss their benefits to multilingual information extraction. We will analyse the

adaptability of POS taggers, named entity recognisers, coreference and discourse

analysers to new languages using classical and new approaches. Bootstrapping and

extraction patterns are language independent concepts and we will not explicitly

discuss them in this chapter. Nor will we discuss syntax analysers. For now we as-

sume that syntax analysis is a language specific tasks and needs to be handcrafted

separately for each and every language.

3.1 Monolingual, Bilingual and Multilingual Information Ex-

traction

A monolingual information extraction system performs on texts written in one

language. In the last chapter we discussed English language information extrac-

tion − an example of monolingual information extraction. We assumed that every-

thing, the text on which information extraction is performed, the subtasks, and

the generated output were in English. Thus, we define monolingual information

extraction as follows:

Definition 1 A monolingual information extraction system performs information

extraction on text input written in one single language and produces results in that

same language.

We will see various concepts using tools to transfer linguistic knowledge from one

language into another in the following sections. Unlike English monolingual infor-

mation extraction, the new approaches process during training or application of

information extraction more than one language. They perform, however, still mono-

lingual information extraction in respect to Definition 1 as long as the input text and

the results are in the same language. We could certainly argue that those architec-

tures are designed to perform some tasks in more than one language and are, thus,

not monolingual. However, when we compare them with the capabilities of multi-

lingual information extraction systems, we will discover that they are monolingual

although they utilise multilingual linguistic tools.
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The difference between mono-, bi- and multilingual information extraction is the

number of languages appearing in input and output of the system. Monolingual

information extraction systems process text in one language, bilingual information

extraction systems handle two languages and multilingual systems two or more lan-

guages.

Confusingly the terms ’bilingual’, ’multilingual’ and ’language independent’ are be-

ing used with various meanings in recent publications. The question, for example,

if two monolingual systems together constitute a bilingual information extraction

system will be answered differently depending on who is being asked. Often the

impression remains that people use the terms ’multilingual’ and ’language indepen-

dent’ to make their objects of research sound brighter. Some information extraction

systems use, for example, monolingual information extraction tools for a target lan-

guage L2 and bilingual tools for a source language L1 and L2. Yet the result is

a system performing monolingual information extraction in L2 despite bilinguality

being involved throughout the task (see Figure 6 on page 30). The question remains

when each term is to be used. We define bi- and multilingual information extraction

as follows:

Definition 2 A bilingual or multilingual information extraction system processes

input text in two or two or more languages.

Following on the same line of thought, we can define language independent infor-

mation extraction as follows:

Definition 3 A language independent information extraction system processes in-

put text in any language.

An information extraction system taking bi- or multilingual input does not neces-

sarily process output in all, or even any, of the input languages. A multilingual

information extraction system, for instance, may produce all information extrac-

tion results in English even though it processes texts in a number of languages.

Some information extraction systems keep their results in a language independent

representation, an interlingua (see section 3.3).

The question on what the terms mono-, bi- and multilinguality and language inde-

pendence describe is not only relevant for information extraction as a whole but also

for its components and linguistic tools in general. Let us consider the components

of information extraction systems. All of these components deal with input text or

some processed parts of it. Inevitably every component of information extraction

has to be either specialised for text in one language, or a few specified languages, or

it has to be able to perform its task no matter what language is involved. Each such
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component is either dependent on a certain input language or not. As mentioned

earlier, some components as, for instance, bootstrapping, are language independent

because they can be applied on any tagged and tokenised texts whatever the lan-

guage. The other language dependent components, nonetheless, need to be adapted

to each and every new language. Let us take a closer look at these components of

bi- and multilingual information extraction.

POS taggers, named entity recognisers, syntax parsers and coreference resolvers are

examples of linguistic tools. We define monolingual linguistic tools as follows:

Definition 4 A monolingual linguistic tool processes input text in one language and

produces output text in the same language.

Again, the definition above leaves the problem of whether the processing, or cre-

ation of the tools involves multilingual methods unresolved. The linguistic tool is

treated as a black box, which from outside is monolingual. Analogously, we de-

scribe bi-, multilingual and language independent linguistic tools with the following

definitions:

Definition 5 A bilingual or multilingual linguistic tool processes input text in two

or two or more languages and produces output text in those same languages.

Definition 6 A language independent linguistic tool processes input text in any

language and produces output text in a language independent representation or in

the language of input texts.

Language independent tools, as they are defined above, are not restricted to tasks,

such as bootstrapping, where the language is irrelevant. In theory, a tool performing

a language dependent task but being able to handle all languages, is also a language

independent linguistic tool.

A text corpus is monolingual if it contains texts written in one language only. A

bilingual or multilingual text corpus contains texts written in one of two or several

languages. In some cases text contains a mixture of sentences in different languages.

Language recognition is able to recognise language for distinct sentences (see section

3.2). Yet, such texts are hardly of use in information extraction. The detection of

information spread out over several sentences written in different languages seems

very unlikely unless a specific tool for this task is developed.



27

Multilinguality increases the use cases of information extraction systems and lin-

guistic tools. Users and creators of the system may or may not know the languages

involved. The one linguistic use case for monolingual information extraction is to

extract information from texts in the same language. Typically, training the system

involves only that one single language.

We find the following use cases for a bilingual system in languages L1 and L2.

i. The user of the system knows only L1, only L2, or both L1 and L2.

ii. The system processes texts in L1 only, L2 only, or both L1 and L2.

iii. In order to build the system, linguistic expertise in L1 only, L2 only, or both

L1 and L2 is required.

iv. Linguistic resources for training the system, such as training or test corpora,

are available in L1 only, L2 only, or both L1 and L2.

Such use cases can lead to situations where we must translate the extraction results

into another language, so that the user is able to read them. Another observation

is that language expertise, or resources for some languages, may not be available.

Obviously, these problems grow exponentially when more than two languages are

involved in a multilingual system.

An architecture for multilingual information extraction can be developed under di-

verging priorities. A system might be designed, for instance, to maximise the result

quality, to minimise building efforts, to be open for extensions of new domains and

languages, or fit other needs. If a system is, for example, meant to be used in a

certain bilingual domain language, there is probably no point in trying to keep it

domain or language extensible. Generally systems should be as open to extensions

as possible. Nowadays, the most restricting factor in deciding what architecture to

choose is the availability of linguistic resources. In the future, the number of avail-

able resources in many languages will change. At some point the above restriction

may become insignificant in comparison to other factors.

At the moment research focuses on multilingual systems for small specific domains,

trying to keep the architecture open for new languages. New language independent

representations, such as template interlingua, have been introduced. The problem

for multilingual systems dealing with many languages is especially the question in

which language, or interlingua to store the extracted results. If users have dif-

ferent language backgrounds we may need to translate the results into any language

required [Azz+97, Bol+97, Kam97, Din98, Gri+99].
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3.2 Language Recognition

The first task for an information extraction system in a multilingual context will

be to recognise the language of the documents in a text corpus. In some situations

a text corpus consists of texts in a mixture of languages. That, for example, is

the case with documents retrieved through a web search, or document collections

poorly maintained in the context of the European Union. In such cases the document

languages must be identified prior to information extraction.

We can use bi-gram frequency matrices in order to recognise a particular language.

This method is based on the observation that every language has its own ortho-

graphic characteristics that appear more frequently. A bi-gram is a sequence of

two characters. We consider punctuations, for example full stop, comma and excla-

mation mark, as word separators, and summarise them as one symbol representing

space. If a text is written in several languages, for instance, one paragraph in one lan-

guage, or one sentence in one language, we employ paragraph separators or sentence

separators. A full bi-gram frequency table contains the frequency of every possible

bi-gram for one language. Hence, a language recogniser needs a frequency table

for every language it is to recognise. In order to generate such bi-gram frequency

tables, we need to select representative texts from every included language. If, for

instance, a text contains an untypically high number of loan words or proper names

from another language, the frequencies will not represent that language properly.

Each bi-gram has a distinct frequency in every language7. In other words, the

frequency for a bi-gram in one language shows the probability of it to be of that

language. Let L be the set of languages implemented in the language recogniser.

Further, let ab be a bi-gram and table Tl the frequency table for bi-grams in lan-

guage l. The probability Pl(ab) for ab to be of language l ∈ L is:

Pl(ab) =
Tl[ab]∑

k∈L Tk[ab]
(3.1)

It has been observed that often particular bi-grams appear frequently in several

languages. Dutch and German or Spanish and Portuguese, for example, have often

rather similar bi-gram frequencies.

7With the exception of a few strongly related or otherwise orthographically very similar lan-

guages.
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The probability of a word w is estimated to be of language l as follows:

Pl(w) =
Pl( w[1]) + Pl(w[|w|] ) +

∑|w|−1

i=1
Pl(w[i]w[i + 1])

|w| + 1
(3.2)

In equation (3.2) |w| is the length of w in characters, w[i] represents the i-th character

of w and ’ ’ represents the word separator.

Proper names and loan words from other languages impact the performance of lan-

guage recognition. In order to decrease that negative impact, we analyse the con-

text heuristics of words in a whole sentence or paragraph. The probability for a

word of being of a certain language depends also on the language estimation of its

neighbouring words. Close neighbours will have a stronger impact on the language

estimation and we will have to consider only words within a specified window. We

use a weight of 1/(1 + x) for the influence of neighbour probability, where x is the

distance in words. At first, we cumulate the probability of the i-th word wi in

the sentence or paragraph and the weighted probabilities of the s closest neighbour

words of Wi, to be of language l, as follows:

Qs
l (wi) = Pl(wi) +

bs/2c∑

j=1

(Pl(wi−j) + Pl(wi+j)) ×
1

1 + j
(3.3)

We still need to normalise this cumulated values in order to obtain the heuristic

probability of the i-th word in the sentence or paragraph wi for language l and the

window size s, P s
l (wi), as shown in the following equation:

P s
l (wi) =

Qs
l (wi)∑

k∈L Qs
k(wi)

(3.4)

In order to finally decide on the language a paragraph or sentence is written in, we

merge the heuristic probabilities of all words. For paragraph p = w1, w2, . . . , wn the

probability Pl(p) is calculated as follows:

Pl(p) =

∑
i=1,...,n P s

l (wi)

n
(3.5)

We pick the language with the highest probability Pl(p) as our result.

The method for language recognition as described above has not been systematically

tested. Thus, possible weaknesses exist, such as where texts contain an exceptionally

high number of loan words and foreign expressions [Hag99].
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3.3 Machine Translation

Machine translation is one of the traditional challenges of natural language pro-

cessing. It has various linguistic problems in common with information extraction.

Machine translation can be used in situations where other methods for information

extraction fail due to lack of linguistic resources. If we want to use machine transla-

tion for information extraction, we need to understand its strengths and weaknesses.

Automated translation of free text still produces many errors or leaves ambiguous

phrases untranslated. Machine translation is nowadays only used as a tool for human

translators, the final translation is always a result reviewed by a human. Typical

pitfalls of machine translation are ambiguities, pragmatics, discourse and idiomatic

phrases. Around ten years ago machine translation was predicted to remain a not

fully solved problem for years to come. That has turned out to be the case so far.

Generally, machine translation will not be able to translate randomly given free text

in a satisfactory manner for use in information extraction [Arn+94].

Machine translation resources, as information extraction resources, are not evenly

distributed between languages. Machine translation systems for the most widespread

and important languages, English, Spanish, French and German, are further deve-

loped in comparison to less spoken and less important languages. In addition, lin-

guistic problems within certain languages limit the availability of machine transla-

tion. Machine translation from English to Russian, for instance, is considered fairly

simple in comparison to translation from Russian to English due to the complexity

of Russian grammar.

Let us first take a look at the most obvious architecture in order to understand

how machine translation is useful for information extraction. Let us assume that a

text corpus in language L1, an information extraction system in language L2 and a

machine translation system translating from L1 to L2 are available.

L2L1

Machine Translation

L2

Information Extraction
Monolingual

L1 L2 L2

Results

Extracted

Corpus

Text

Corpus

Text

Figure 6: A simple IE architecture using machine translation.

As depicted in Figure 6, the text corpus TL1
is first translated into language L2. Then

information extraction is performed on the translated text. The main weakness

of machine translation will come to effect when we apply machine translation on

TL1
first. The translation errors will have a negative impact in the performance of
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information extraction. Machine translation does not perform well on free text. It is

worth observing how machine translation is affected by language domains especially

considering that information extraction is applied on text of a certain language

domain. A general machine translation system performs well on some domains, yet

on others its performance can be worse than that on free text. Nevertheless it is

possible to adapt machine translation to language domains [Arn+94].

Information extraction does not demand full text translation when we use another

architecture. It is sufficient to translate the information extraction results only. The

data items of information extraction results consist of rather simple language, such

as noun phrases or verbs. Several researchers report satisfactory results using off-

the-shelf products for machine translation of information extraction results [RSY02].

IE
Monol.

L1 Templates
L1

L2L1

MT

L1 L2

ResultsCorpus

Text

Figure 7: Machine translation of information extraction results.

Figure 7 depicts this combination of machine translation and information extraction.

Firstly, full monolingual information extraction is performed on the text corpus TL1
.

The machine translation is thus applied on the information extraction results. If we

only consider the performance of machine translation, this architecture is superior.

That is because in comparison to the one we discussed previously, machine transla-

tion performs better on information extraction results than on full text. Information

extraction results contain less complex language structures than full text. Unfor-

tunately, that leaves any possible language resource shortage problem of language

L1 unresolved. A full monolingual information extraction system for L1 is needed

when using this architecture. It offers merely information extraction results in L2,

yet, makes no information extraction in L2 available.

In contrast, the architecture in Figure 6 produces extraction results in L2 while the

text corpus is originally in L1. Neither the architecture in Figure 6, nor the archi-

tecture in Figure 7 delivers monolingual information extraction for a new language

without implementing it. There may be cases where these designs are of use, but

they do not solve the problem of making information extraction available for a new

language without actually implementing it.
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L1

Corpus

Text
L2L1

MT

L2

Corpus

Text

L2

IE
Monol.

L2

Results

MT
L1L2 Results

L1

Figure 8: Monolingual information extraction using machine translation.

Figure 8 shows the addition needed to achieve a monolingual information extraction

system for L1 with the help of machine translation. A second machine translation

system is needed8 to translate the information extraction results back into L1. That

architecture has the same weakness as the first architecture we have seen in Figure 6.

That is because machine translation is to be carried out on the full text corpus before

information extraction.

The previous three architectures show us, that as long as machine translation per-

forms unsatisfactorily on full text, it is only of small help in making monolingual

information extraction available for new languages. So far only general off-the-shelf

machine translation systems have been used in combination with information ex-

traction. Due to the linguistically restricted and often domain specific contexts of

information extraction, a machine translation system adapted to specific contexts

could perform much better.

One limitation of machine translation is worth observing closer due to its relevance

to multilingual information extraction. A machine translation system requires a

transfer system which translates words, phrases or sentences from a source language

L1 into a target language L2. If the previously performed linguistic analysis is rather

shallow, this transfer system will necessarily contain a large amount of language

specific rules for both L1 and L2. A machine translation system which analyses

the linguistic structure of L1 in detail, will probably need fewer language specific

heuristics within the transfer system. Figure 9 on the following page depicts this

coherence.

8The machine translation systems MTL1→L2
and MTL2→L1

are not equivalent and need to

be constructed separately. In fact, there are cases where MTL1→L2
is performing well, whereas,

MTL2→L1
performs poorly due to a more complex language structure of language L2. Known cases

with such problems are, for example, English-Russian and English-Japanese.
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Figure 9: Coherence of interlingua and complexity of machine translation.

Detailed analysis is more expensive and one would think it is better to have an ex-

tensive transfer system. Yet, the drawback comes if we need to add another language

into the system. To translate between three languages L1, L2, and L3, for instance,

six transfer systems (L1 → L2, L2 → L1, L1 → L3, L3 → L1, L2 → L3, L3 → L2)

are needed. The number of transfer systems needed grows exponentially with linear

growth of languages in the system. In an environment where translation between

several languages is needed, we obviously will have to try to keep transfer systems

as light-weighted as possible. We could try to find an abstract language description

that contains all information in a language independent fashion. This, however,

would require a full linguistic analysis, but would in turn decrease the number of

translation systems dramatically. This so called interlingua could be used to con-

struct a representation in any language without any translation by just inverting the

analysis process. However, the construction of an all-purpose interlingua is probably

impossible, and construction of a full linguistic analysis tool hypothetical [Arn+94].
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Nevertheless, the idea of interlingua has been adapted to information extraction.

While a full text interlingua representation is out of reach, it has been observed that

due to simple linguistic structure of the data tuples of information extraction results,

it is possible to find language independent representations for them. Numbers, loca-

tion names, country names and titles, for example, may not need translation at all.

Others can be represented in a way which makes the generation of language specific

representation possible. Somewhat more difficult is the interlingua representation

of verbs [XNS00].

Results
I

L1

Interlingua
Generator

I

Results
L3

Results
L2

Results
L4

L1

Results
L1

IE
Monol.

L1

Generator
Natural Language

I L2,3,4

Corpus

Text

Figure 10: Interlingua in information extraction.

In Figure 10 an information extraction system that uses an interlingua result repre-

sentation I, is outlined. After information extraction in language L1 is completed,

an interlingua generator translates all result tuples into language independent repre-

sentation I. Later on the results stored in language independent representation I can

be translated into languages L2, L3 and L4 by using a natural language generator.

Theoretically, we could improve that architecture further by generating an interlin-

gua representation of the text corpus and applying information extraction on the

interlingua version of the text corpus. We would only need one information ex-

traction system for the interlingua texts. An appropriate interlingua for full text,

however, is yet to be invented.
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3.4 Text Alignment and Cross-Language Projection

The previous section considered the problem of introducing new languages into

information extraction in a rather coarse scope. Instead of treating information

extraction as a black box task, we can adapt the components of information extrac-

tion systems into new languages. That enables us to choose suitable methods for

individual languages and components in the case of language resource shortage. We

will also benefit from efforts of related language technologies. A range of approaches

are already developed for adapting common linguistic tools into new languages.

One common method to construct linguistic tools is to train these based on Hid-

den Markov models using tagged training corpora and the Viterbi algorithm (see

sections 2.2 and 2.3). Cross-language projection attempts to make such training cor-

pora available for new languages. With these training corpora, statistical linguistic

tools can be made available. Examples for such tools are POS taggers, named en-

tity recognition, noun phrase bracketers, and morphological analysers. All that is

required is a tagged training corpus for an already developed language, and a paral-

lel text corpus for the new language. We then project the tags across the parallel

corpus using text alignment.

A parallel bilingual text corpus TL1,L2
= TL1

∪ TL2
is a text collection (ti,L1

, ti,L2
),

ti,L1
∈ TL1

, ti,L2
∈ TL2

where for each text ti,L1
written in language L1, the text ti,L2

is the translation into language L2. TL2
is the parallel text corpus of TL1

.

An aligned text corpus TL1,L2
has an alignment between every corresponding text

pair (ti,L1
, ti,L2

). In sentence aligned text pairs, every sentence sj,L1
∈ ti,L1

is aligned

to a sentence sk,L2
∈ ti,L2

. Word aligned text pairs contain alignments between single

words in each sentence. Due to different language structures a 1-to-1 word-by-word

alignment is not always possible as the following examples show.

Examples (S3.1) - (S3.6), on the following page, show possible scenarios of word

alignment between POS tagged English and French named entities. The tags in

these examples are from the 45-tag Penn Treebank tag-set [MSM93]. The tag ’DT ’

marks a determiner, ’NN ’ a noun in singular, ’NNS ’ a noun in plural and ’VBG ’

describes a verb in gerund.
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(S3.1)
Les

DT

DT

The

lois

NNS

NNS

laws
(S3.2)

∅

VBG

living

salon

NN

NN

room

The 1-to-1 alignment (S3.1) is an example of straightforward word-by-word align-

ment. However, the other examples show that 1-to-1 alignment is not always pos-

sible. (S3.2) is an example of n-to-1 alignment. There are different ways to align

the words in the case of several words translating into one word. The goal here is to

project POS tags across the alignments. If we would align n source language words

(living and room) to one target language word (salon) the projection result would

be a POS tag ’VBG NN’ for the French noun salon, whereas, the correct POS tag

is ’NN’ only. One way to deal with this is to align some superfluous words to the

empty word ∅ as is done in (S3.2) and (S3.4).

(S3.3)
Les

NNS

lois

NNS



 @@

NNS

Laws
(S3.4)

Les

∅

∅

lois

NNS

NNS

Laws

The 1-to-n alignment encounters similar problems as we can see in the examples

(S3.3) and (S3.4). In both examples the projection of POS tags does not produce

the correct POS tag ’DT’ for Les.

(S3.5)
pommes

NNS

de

NNS

terre

NNS

���� JJ
PPPPP

NNS

potatoes
(S3.6)

anciens

NNS

combattants

NNS

����
bbb

NNS

veterans

Also the word-to-phrase alignment examples (S3.5) and (S3.6), which are typical

examples of phrasal 1-to-n alignments, show that projected tags are often erroneous

across 1-to-n alignments. In certain cases one simple heuristic rule will be enough

to post-process and remove those errors. There are, however, cases where mistakes

are more complex to locate and correct [YNW00, ON00].
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Let us now consider how cross-language projection can be used to introduce informa-

tion extraction and its components into new languages. If a parallel bilingual corpus

is available, for example, various bible translations and the Canadian Hansards9, we

can use the following configuration:

L1

Linguistic Tool

Cross−Language
Projection

Word Alignment &

L1

L2

L1

L2

Linguistic Tool
Trained Statistic 

Corpus

Text

Corpus

Text

Tagged
Text

Corpus

Tagged
Text

Corpus
L2

Figure 11: Cross-language projection on parallel corpora.

As outlined in Figure 11, we need a parallel bilingual text corpus TL1,L2
. We assume

that a certain linguistic tool for language L1 is available and apply it on TL1
. Next,

we execute word alignment on the parallel bilingual corpus so that we can project

the tags from TL1
to TL2

. The result is a tagged text corpus TL2
. We can use TL2

for training a similar linguistic tool for language L2 using the statistical methods

described previously.

There are only a few given bilingual parallel text corpora available, restricting the

number of occasions when this architecture can be of use. It may be as much effort

to obtain a parallel corpus as to create monolingual tools for the new language from

scratch, especially, when the texts belong to a specific domain language. Bearing

in mind the restrictions pointed out in the previous section, we can use machine

translation in creating bilingual parallel text corpora.

9The Canadian Hansards are the official records of the Canadian Parliament. A part of the

Canadian Hansards is available as bilingual text corpus with sentence alignment in English and

French language.



38

Cross−Language
Projection

Word Alignment &

L2

Linguistic Tool
Trained Statistic 

L1

Linguistic Tool

L2L1

Machine Translation

L1

Tagged
Text

Corpus

Tagged
Text

Corpus
L2

L2

L1

Corpus

Text

Corpus

Text

Figure 12: A cross-language projection architecture with machine translation.

Figure 12 shows where machine translation fits into the cross-language projection

architecture. Machine translation from L1 to L2 is used to create a parallel text

corpus TL2
of the existing text corpus TL1

. Yet, that means that machine translation

is applied to full text and it is likely to lead to errors caused by bad translation.

Alignment, however, benefits from machine translation because machine translated

text is usually already sentence aligned.

Cross−Language
Projection

Word Alignment &

L1

Inf. Extraction

L2

L1

L2L1

Machine Translation

Corpus

Text

Corpus

Text

Results  
2L

Results  
1L

Figure 13: Cross-language projection of information extraction results.

Cross-language projection can also be used to project information extraction results

across a parallel bilingual text corpus as outlined in Figure 13. We need to tag

the information extraction results in the text corpus TL1
in order to projected them

across the word alignment. This is an alternate method for translating information

extraction results [YNW00, RSY02].
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3.5 Part-of-Speech Tagging

POS tagging is a language specific task. In a multilingual environment we must

create an individual POS tagger for each and every language involved. It does not

appear to be possible to re-use parts of part-of-speech taggers in a multilingual

environment. There are three methods widely used for English POS tagging (see

section 2.2). We can choose to implement any of those in the new language. Yet,

in difference to English language, resources, such as tagged training corpora or

grammar rule sets, are not available in most other languages. Neither can we expect

those methods to perform as well as they do on English texts. In fact, there may

be languages for which POS tagging is easier than English as well as those for

which it is more difficult. The reason for this is differently distinct or complex

language structure. Many languages have more complex grammar and morphologic

structures than English. That may have effect on some methods and languages.

However, without closer investigation it is difficult to predict which method works

best. Usually, the resources available in a language will already imply the starting

point.

The rule based approach to POS tagging requires linguistic expertise in the language

and is a time consuming task. Each language has its own grammatical phenomena

which may be very different to that of English. In most languages, rule based

approaches will probably lead to slightly better POS taggers than stochastic taggers.

Yet, they are expensive and difficult to construct.

Stochastic approaches depend on the availability of training data. The construction

methods for stochastic English taggers can be easily adapted to new languages.

The probabilities for whole sentence POS tags can be determined using the Viterbi

algorithm, but only if a large tagged training corpus is available.

Brill taggers using transformation based learning can be trained for any language as

long as a tagged training corpus is available. Brill taggers have already successfully

been constructed for a number of languages [Bri95].

When we take a closer look on the options for creating a POS tagger for a new lan-

guage, it seems that the shortage of resources is the decisive bottleneck. That insight

has led to the invention of methods utilising other language resources available. A

few methods have been suggested using cross-language projection.
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As described in section 3.4, POS tags can be projected across parallel aligned text

corpora. The resulting corpus with projected tags can be employed to train POS

taggers using stochastic methods or transformation based learning [YNW00].

Alternatively, bilingual dictionaries can be utilised to tag texts in a new language.

A dictionary entry for one word in the new language L2 typically contains a set of

possible translations into the language L1 where a POS tagger is available. Assuming

we know the probabilities of the possible POS tags for all these translations, we can

calculate the average probability for a certain POS tag based on all these translations

and use it as the probability for the tag of the word in L2 [CY02].

3.6 Named Entity Recognition

Recognition of named entities is an important part of information extraction. Un-

recognised named entities have noticeable negative effect on the overall performance

of information extraction. Introduction of new languages to information extraction

gives rise to the need for named entity recognisers. We need to construct named

entity recognisers for new languages and new semantic classes, as named entity

recognition is usually specialised to a certain language domain. Four main methods

are used in English language to build named entity recognisers: Semantic lexica,

that contain a list of proper names; rule based named entity recognisers, that use

handcrafted heuristics (we require linguistic and domain expertise to implement

these rule); stochastic named entity recognisers, that are trained on tagged trai-

ning corpora (these training corpora need to be tagged or must be already available

somehow); and bootstrapping, that automatically builds semantic lexica. Trans-

formation based learning can be used to combine stochastic and rule based named

entity recognition. All these methods can only be adapted for new languages when

either training corpora or linguistic expertise are available in that language. In many

languages these resources are not available. Thus, other approaches have been tried

in order to craft named entity recognisers for new languages.

One alternative method to create training corpora for a new language L2 is cross-

language projection. If machine translation between L1 and L2, and a tagged trai-

ning corpus in L1 is available, a training corpus in L2 can be obtained (see also

section 3.4) [YNW00].

Another method for named entity recognition, which bypasses the problem of re-

source shortage, is based on a bootstrapping method. It requires an untagged trai-

ning corpus for a certain language and domain, and about 100 seed words for dif-

ferent semantic classes. The idea is to use words morphological structures to identify

named entities. The same type of words often share common prefixes or suffixes.

Moreover, most languages contain such common word prefixes or suffixes.



41

n

i

e

#

c

c

o

u

p

l

e

#

a

# l

x

#

e

n

d

# a

#

r

e

#

Figure 14: A morphological prefix trie.

We can use trie structures to represent all found prefixes and suffixes in a text.

Figure 14 shows the prefix trie for the sentence (S3.7). The ’#’ character represents

word boundaries. Alike, trie structures can be used to represent context structures,

for example, each trie node contains a token/word. The path from root to leave

nodes represents the forward or backward context the token appears in.

(S3.7) Alex and Anda are a nice couple.

We use the text corpus to build tries for named entity recognition as follows:

1. Generate prefix and suffix tries, and forward and backward context

tries of the corpus as preparation for the bootstrapping. During this

stage, we gather statistics and save them within each node. We also

need to count the following probabilities in the text corpus: For prefix

and forward context tries we count the probability for the node to be

an ending node, for suffix and backward context tries we count the

probability to be a starting node of a token.
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2. During the bootstrapping process, introduce all seed words sequen-

tially into the tries and recompute the node probabilities. In every

trie node a probability for each node to represent the starting or en-

ding point of a certain semantic class is generated whenever a seed

word is matched morphologically. When the probability of prefix- or

suffix trie node to belong to a certain semantical class boosts over 0.5,

the context will also gain a higher probability to embed a named entity

of that semantical class. When the probability of a semantical class in

a context trie node gains a probability of over 0.5, all words appearing

in that context are added to the seed words.

3. The bootstrapping ends when no seed words are left.

Trie based bootstrapping can be used to build statistical named entity recognisers

for languages with suitable morphological structures [CY99].

Named entity recognition is not strictly a language dependent task. Many named

entities have similar or identical representations in a number of languages. Some

closely related languages have such a similarity between them that recognisers in

one language produce usable results in related languages [Poi+03].

A multilingual named entity recogniser can be designed so that it is able to re-use

its language independent parts. It is also desirable that we can integrate different

recognition methods. This enables us to use the most economical or easily imple-

mentable named entity recognition method for each individual language. It is also

desirable to modularise language domain specific features in the architecture.

Figure 15, on the following page, outlines a multilingual named entity recognition

architecture which integrates rule based named entity recognition, stochastic named

entity recognition, and named entity recognition using transformation based lear-

ning. At a first glance it may not seem obvious, but the architecture also implements

multilinguality in a modularised fashion. The architecture is built on the transfor-

mation based learning architecture that iteratively applies rule based and stochastic

named entity recognition methods on the text. In the case where only one method

is available in any given language, we simply omit the other methods.
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Figure 15: A multilingual named entity recognition architecture.

We archive language modularisation as follows: Initially, language recognition is

applied on each text. Lexical analysis is typically language dependent and every

text is handed over to its own language morphological analyser and POS tagger.

Grammar rules may be language dependent or independent. Every text is first

handed to all language independent rules and then to its language dependent rules.

We implement this as a rule tree. The text is then handed down from rule to rule

starting from the root and ending at a leave according to its language.

Stochastic systems are typically language dependent. Languages that are closely

related may benefit from the application of stochastic named entity recognition of

a related language if one is not available for the required language.

In a few cases human revision may be required, to resolve known cases of ambiguity.

The Washington example (S2.6), on page 12, depicts one of these cases. We can

integrate language domain modularisation by integrating specific rules into the rule

tree structure [Poi+03, Gro+02].
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3.7 Coreference and Discourse Analysis

Coreference analysis is important for information extraction as it connects parts

of information which otherwise would be lost in the discourse of text. Adaption

of English coreference analysis methods means either founding coreference analysis

on knowledge bases or training corpora. The decision on the method is usually

motivated by the availability of resources for the new language. Language speciali-

ties, however, may be a restrictive factor for that decision. The knowledge based

approach means implementing rules by hand. This requires expert knowledge of

the new language and its grammar. The training corpus approach requires a set

of tagged texts in the new language. Some concepts for multilingual coreference

resolution architectures have been published already. These coreference resolvers

are designed to deal with texts in various languages and re-use all components of

the analysis tool, some of which are not strictly language dependent.

The multilingual information extraction system M-LaSIE implements a multilingual

coreference resolver founded on a knowledge base. In the M-LaSIE system the text

is first POS tagged and fully parsed. It is then transformed into a quasi logical

form(QLF), a representation which embodies lexical and syntactical information as

first level logical predicates. These QLFs are then connected to a semantic net into

which coreferences can easily be added.

The QLF representation of text itself is language independent, only the transition

into QLF is language dependent. Hence, the task of coreference resolution in the

semantic net is language independent. When adding new items to the semantic net,

we apply the following four rules to identify possible anaphora.

1. New items which are proper names are compared to all existing items that are

proper names.

2. All new items are compared with each other.

3. New items which are pronouns are first compared with all items in the para-

graph, and then with each previous paragraph in turn until the antecedant is

found.

4. Other new items are compared with all existing items in the semantic net.

The heuristics of this coreference resolver are fairly simple and benefit from the

thorough language analysis undertaken as preparation. This coreference analyser re-

solves the simpler anaphora easily but overlooks the complex coreferences. [AHG98].
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Another multilingual coreference resolution architecture can be constructed from

a heuristic knowledge base. As prerequisite we need a POS tagged text corpus.

The system gains multilinguality by sorting the heuristics into categories and within

those categories into language independent and language dependent heuristics. This

method is quite similar to translation based learning used for POS taggers (see sec-

tion 2.2).

We depict the system as a hierarchical tree structure of heuristics where candidate

coreferences are passed down individual paths along the tree. The path depends on

the nature of the coreference as well as the language it consists of. Every heuristic

rule scores the candidate link. Some heuristics are also able to rule out and remove

candidates. Finally, we choose the highest ranking link of each item to be the

coreference. The system can perform on texts in any language. In order to improve

the quality, some language dependent heuristics need to be added to the knowledge

base for each newly added language. The performance of this system depends mainly

on the amount and quality of heuristic rules in the knowledge base [Aon94, MBS98].

An alternative approach is taken by the SWIZZLE system using multilingual core-

ference analysis. It has been claimed that SWIZZLE even improves the performance

of monolingual coreference analysis. As prerequisite, an aligned parallel bilingual

corpus is required which already contains coreference resolution tags for both lan-

guages. The SWIZZLE system matches the different, already resolved, anaphora

between the aligned corpora in finding resolutions for coreferences in the other lan-

guage. The system works on the assumption that some coreferences are easier to

resolve in some languages than in others [HM00].
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4 A Multilingual Framework for Information Ex-

traction

In the previous chapters we have investigated the components of information extrac-

tion and how they can be adapted to new languages and multilingual environments.

In this Chapter I wish to propose an architecture to integrate these components

into, a multilingual information extraction framework. The framework will have the

following characteristics:

i. The architecture is to be open for new languages and language domains.

ii. Language dependent components can be integrated without harming the multi-

lingual nature of the system.

iii. Results can be retrieved in any language implemented.

These key characteristics ensure that the framework is extensible and flexible for

general use as well as domain specific information extraction.

Figure 16 on the following page shows the architecture for a multilingual information

extraction system. The large rectangular boxes represent the components of the

information extraction system and the small rectangles represent resources (lexical

dictionaries, name lexicons, rule sets and seed pattern lists). The dashed arrows

depict optional paths in the work flow, indicating that subtasks of POS tagging and

syntax analysis can also be omitted.

As seen in the previous chapter, some components of information extraction can

be implemented as multilingual components, not consisting of a collection of mono-

lingual components. The algorithms of these components process, without adjust-

ment, a number of languages. Other components are strictly language dependent

and individual implementations for each and every language are required. Language

dependent components have their own language specific resources that need to be

maintained. The vertical dashed line in Figure 16 divides multilingual and language

specific components and resources.
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Figure 16: A multilingual information extraction framework.
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The multilingual information extraction system outlined will do the following when

applied on a text corpus: In the beginning the language (or languages) of the in-

dividual texts in the corpus is recognised and we tag this information to each text.

We will see later how this language tag is used to decide which language specific

components to apply. The successive components perform their tasks on the texts

and after bootstrapping we receive information extraction results. If an essential

component is unavailable for the required language, the information extraction task

must be rejected. Note that at this stage all information extraction results are in a

language specific representation.

Let us now consider the problem of managing information extraction results in nu-

merous languages. We have seen in section 3.3 how machine translation is employed

to translate information extraction results and how an interlingua representation

of the results is useful in decreasing translation work. We combine these concepts

in this architecture to store information extraction results and deliver them in any

language. We store information extraction results received in a language specific

representation in their original form. If for the type of results an interlingua repre-

sentation exists, the interlingua generator creates the interlingua representation of

the results and they are stored in a separate database. When a language specific

information extraction result that is not yet available is requested, we have two op-

tions: If an interlingua representation of the results exists, we can use the natural

language generator to create a version of the results in the required language; or

we can use machine translation to translate the results from the original language

into the required one. If, however, we have neither a machine translation module

for translating from the original into the requested language, nor an interlingua re-

presentation is available, or interlingua generation or natural language generation is

not available, we cannot deliver the requested results [BNX98, Din98, XNS00].
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Figure 17: Multilingual component architecture using a tree layout.

It is important that we can embed components into the framework whenever they

are available, as creating new information extraction components is laborious. Most

components, however, are not created for use in a multilingual environment. To

embed language dependent information extraction components, we will use a tree

architecture that allows integrating of components in a modularised manner. We

will see that this design equips every component of the system with a multilingual

interface enabling easy addition of new languages. Figure 17 depicts the multilingual

architecture for integrating language dependent components using a tree layout.

Let us assume that every text, on which the multilingual component is to be applied,

has received a tag <lang> during language recognition indicating the language of

the text. This tag is used to decide which specific language dependent module to

apply on the text.

We may have one or more language independent modules which we place at the

root of the tree. This is depicted as two module boxes in the area marked as

language independent in Figure 17. Language independent tasks are, for example,

rule sets of rule based components that do not match on language specific features.

While still rather uncommon, there might be more language independent tasks when

components are modularised into language dependent and language independent

parts.

We use the <lang> tag as decision criteria on which path a text progresses through

the module tree. The language specific modules can be arranged in various layouts.

Three examples are suggested in Figure 17.
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The first layout (down the path L1, at the bottom left of Figure 17) is a simple

linear sequence of one or more language specific modules applied on the text. This

layout is appropriate where we have only one component per language available.

The second layout (down the path L2, at the bottom centre of Figure 17) is designed

to offer choice where several mutually exclusive components are to be integrated.

That will be the case, for instance, for rule based and statistical tagging tools. The

system will be configured to use one of those modules as default but the user can

opt to use any of the others for the task at hand. Using one module rules out the

use of the others. A somewhat similar layout can be used to simultaneously apply

mutually exclusive modules. This could be useful for comparing or merging results

produced by different modules.

The third layout (down the path Li, at the bottom right of Figure 17) follows the

method of iteratively applying two or more modules that we have investigated for

named entity recognition (see also Figure 15 in section 3.6). Assuming we have two

or more component modules complementing each other, we can choose to iteratively

apply them on the text.

We can add new language capabilities to the multilingual component by inserting

another subtree for any new language. If a language has not yet been implemented,

we can configure the component to apply the modules of a related language on

the text. We can also integrate user interaction to aid, for example, in ambiguity

resolution.

In summary, the multilingual information extraction framework recognises text lan-

guage, delegates the texts of various languages to the appropriate components and

manages the multilingual information extraction results. The system is restricted by

the language specific implementations. The overall quality depends on the quality of

the implementation of components that are used throughout a specific information

extraction task [Gro+02, Poi+03].
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5 Conclusions

The Internet increasingly consists of texts in multiple languages. Information ex-

traction is a powerful tool to access information in large text collections. There is a

need for multilingual information extraction to access information spread across lan-

guage borders. While various topics related to multilingual information extraction

have been examined sufficiently, little has been attempted to consolidate these re-

lated topics in a general multilingual information extraction framework. This paper

has reviewed the problems and possibilities surrounding multilingual information

extraction and its underlying technology. Through a review of monolingual English

information extraction, I have established the key information extraction compo-

nents and how they relate to each other. I have united information extraction and

numerous multilingual concepts in an attempt to propose a general multilingual

information extraction framework.

I have studied the main methods available to build the key information extraction

components. Assessing the restrictions and requirements of these is important when

creating information extraction components in new languages. As multilingual in-

formation extraction can be assembled from monolingual components, constructing

them for new languages is another step towards multilingual information extrac-

tion. The methods used for creation of English components can be imitated in

other languages. Yet, it is important to be able to estimate what will be needed to

construct similar information extraction components for new languages. Possessing

information extraction components for various languages alone is not necessarily

sufficient to achieve multilingual information extraction. In consequence, I have

proposed definitions of monolingual and multilingual information extraction as well

as monolingual and multilingual linguistic tools to highlight when multilinguality is

achieved, and when it is not. I have defined multilinguality based on the number of

input languages a system accepts.

I have analysed various concepts employing machine translation in combination with

information extraction, some of which can be used to provide information extrac-

tion in new languages. Most of those layouts, however, suffer from one or another

drawback and are useful in a few circumstances only. Machine translation turns into

a more powerful tool when combined with cross-language projection across aligned

bilingual corpora, enabling the creation of information extraction components and

other stochastic linguistic tools for new languages.
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I have discussed the options available for the adaption of part-of-speech tagging,

named entity recognition, coreference analysis and discourse analysis to new lan-

guages. Stochastic methods and handcrafted rules can be employed as well as me-

thods using cross-language resources or language similarities to make new language

resources available. The construction of any tool requires linguistic resources and

expertise. Hence, the availability of useful resources is the restrictive factor in bring-

ing information extraction to new languages. I have reviewed a language recognition

method that is able to identify the language of individual texts. Language recogni-

tion of each text is a necessary preparation for multilingual information extraction.

Multilingual information extraction produces results in multiple languages. To make

these results useful, the language border can be crossed using interlingua representa-

tion for the results. Even though in natural language processing interlingua is more

a theoretical concept than a practical solution to various problems, creating and

utilising interlingua for the restricted language of information extraction results is

possible. The multilingual information extraction framework presented in this paper

is to be as general as possible and open to extension. Other layouts are probably

more efficient when extendability is not required.

For the time being the availability of resources for languages concerned dictates

the methods which can be used for multilingual information extraction. It is to be

expected that the number of linguistic resources will grow for the most common

languages in the coming years. Greater availability of resources offers more possi-

bilities for text processing tasks. The multilingual concepts especially, and those

transferring knowledge from one language to another are like to evolve in the near

future. Globally accessible information is and will be an ongoing motivation for

research in this field.
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