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Abstract A semantic tagger aiming to detect relevant entities in Arabic medical documents and

tagging them with their appropriate semantic class is presented. The system takes profit of a Mul-

tilingual Framework covering four languages (Arabic, English, French, and Spanish), in a way that

resources available for each language can be used to improve the results of the others, this is spe-

cially important for less resourced languages as Arabic. The approach has been evaluated against

Wikipedia pages of the four languages belonging to the medical domain. The core of the system

is the definition of a base tagset consisting of the three most represented classes in SNOMED-

CT taxonomy and the learning of a binary classifier for each semantic category in the tagset and

each language, using a distant learning approach over three widely used knowledge resources,

namely Wikipedia, Dbpedia, and SNOMED-CT.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction and motivation

Semantic Tagging, a Natural Language Processing (NLP) task

that has attracted recently the interest of many NLP research-
ers, can be defined as the task of assigning to some linguistic
units occurring within a document a unique semantic tag cho-
sen from a predefined tagset.

There is a wide agreement on approaching some NLP tasks
and applications at the semantic level, but there is also agree-
ment on considering that the current state of the technology

does not allow a full accurate semantic parsing of text of an
unrestricted domain. So, most systems restrict themselves to
partial semantic interpretation, at lexical level (Semantic
Tagging), or clause level (Semantic Role Labelling). Semantic
Tagging is, so, a crucial task, per se, or as a necessary

component of Semantic Interpretation Systems.
After this introduction, the organization of the article is as

follows: In Section 2 we sketch the most basics characteristics

as well as the state of the art of the Semantic Tagging
approaches. Section 3 presents the methodology followed.
The experimental framework is described in Section 4. Results

are shown and discussed in Section 5. Finally, Section 6
presents our conclusions and further work proposals.

2. Related work

Semantic Tagging is a difficult task whose key elements are the
following:
iversity

https://core.ac.uk/display/82742373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:vcotik@dc.uba.ar
mailto:horacio@cs.upc.edu
mailto:jorge.vivaldi@upf.edu
http://dx.doi.org/10.1016/j.jksuci.2016.10.004
http://dx.doi.org/10.1016/j.jksuci.2016.10.004
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.10.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2016.10.004


2 V. Cotik et al.
(i) the genre of the document to be processed. The terminol-

ogy used in documents belonging to different domains
differs heavily, but even within a specific domain, termi-
nology, general wording and sub-languages present very

different characteristics. Consider, for instance, within
the medical domain, genres like scientific literature, drug
description outlets, medical report discharges, clinical
proofs results, social media comments about diseases,

and drugs and their efficiency. The characteristics of
the wording used in these genres are highly diverse.
We focus in this article onWP pages, and the evaluation

is made on this kind of document.
(ii) the linguistic units to be tagged. There are two commonly

followed approaches. Those that tag the entities occur-

ring in the text and those that tag the mentions of these
entities. Frequently, entities are represented by co-
reference chains of mentions. Consider the following
example: ‘‘Asthma is thought to be caused by. . . Its diag-
nosis is usually based on . . . The disease is clinically clas-
sified . . .”. In these sentences there is an entity (asthma)
referred three times, and, thus, forms a co-reference

chain of three mentions. In our work, units to be tagged
are terminological string found in WP. So, the linguistic
units are phrases filtered by termhood conditions, i.e.

only POS sequences corresponding to valid terms are
allowed. These sequences are language dependent and
correspond to basic (non recursive) noun phrases

headed by a noun.
(iii) the tagset. Frequently the tagset is really a set of cate-

gories with no explicit relations between them. A crucial
point is its granularity (or size). The spectrum of tagset

sizes is immense. Fine-grained tagsets can consist of
thousands (as is the case of WordNet synsets) or even
millions (as is the case of WP pages) of tags. Coarse-

grained tagsets contains only a few tags. In our case,
we have used a tagset consisting of only three tags.
Details of the selection are given in Section 3.2.

Regarding the resources used for the task, curated
resources (terminologies, lexica, ontologies, etc.), such as Clas-
sification of Diseases and Related Health Problems (ICD-9,

ICD-10),1 Medical Subject Headings (MeSH).2 nomenclature
of drugs and their brands in DrugBank3 and Gray ’s Anatomy,4

etc, are available and are widely used for this task. However,

using these resources is not straightforward. Some of the terms
allow multiple variations5 (not all of them are collected in the
resources) while others (specially the most frequent) are highly

ambiguous.6 Besides, recognizing and classifying the mentions
in documents is highly challenging.
1 http://www.who.int/classifications/icd/en/.
2 http://www.ncbi.nlm.nih.gov/mesh.
3 http://www.drugbank.ca/.
4 http://www.bartleby.com/107/.
5 See for example the English sets [‘‘abdomen”, ‘‘venter”, ‘‘stomach”,

‘‘belly”], [‘‘fever”, ‘‘pyrexia”, ‘‘febris”] or the set of acronyms [‘‘ADE”,

‘‘ADR”, ‘‘DAR”] all sharing the meaning of ”adverse drug reaction”

but using different wordings.
6 Acronyms is a major source of ambiguity as for example: ‘‘MI” in

English can be a synonym of ‘‘myocardical infartion”, ‘‘mitral

insufficiency” or ‘‘mental Illness” while in Spanish it may refer to

‘‘metabolic index”, ‘‘mesenteric ischemia” or ‘‘menstruation

induction”.
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An important source of information for tasks similar to
ours are the proceedings of the 2010 i2b2/VA challenge on con-
cepts, assertions, and relations in clinical text (Uzuner et al.,

2010). Within this contest, Yeganova et al. (2012) uses two
rather simple statistical approaches obtaining good results.
Halgrim et al. (2011) and Uzuner et al. (2010) apply a cascade

of classifiers for extracting medication information from dis-
charge summaries. Our previous work, Vivaldi and
Rodrı́guez (2015), is similar to that presented here but limited

to English. Another source of information is the DDI Extrac-
tion 2013 (task 9 of Semeval-2013, Segura-Bedmar et al., 2014).
Focusing on a narrower domain, Drug-Drug interaction, the
shared task included two challenges: (i) Recognition and Clas-

sification of Pharmacological substances, and (ii) Extraction
and classification of Drug-Drug interactions. The former is
clearly a case of Semantic Tagging, in this case reduced to

looking for mentions of drugs within biomedical texts, but
with a finer granularity of the tagset, It included drug, brand,
group (group of drug names) and drug-n (active substances

not yet approved for human use).
Regarding the techniques involved, many approaches have

been proposed for dealing with Semantic Tagging, such as rule-

based methods and supervised Machine Learning (ML). A
common limitation is the dependence on a narrow domain/-
genre/tagset/language making its adaptation to other settings
highly difficult (and costly). We faced the adaptation issue by:

� Using a multilingual setting in which the process in one lan-
guage can help the process in other (usually less resourced)

languages.
� Using a set of wide-coverage domain-free resources for
learning and using a low cost learning method, distant

learning. Specifically we include as resources: SNOMED-
CT,7 that is restricted to the medical domain, and two
widely used domain-independent encyclopaedical ones:

WP pages (including data obtained from Infoboxes) and
categories, and DBP.8

Related to Semantic Tagging, the first faced problem and
the one that has attracted more attention isWord Sense Disam-
biguation. In Agirre and Edmonds (2006) and Navigli (2009)

we can find two excellent surveys on this issue. A more recent
survey, covering many Semantic Tagging techniques and com-
paring them, can be found in Gerber et al. (2011). A unified

framework including Word Sense Disambiguation and Entity
Linking is presented in Moro et al. (2014). Wikifiers9 proceed
mostly in two steps: candidate detection and classification/

ranking. See Roth et al. (2014) for a recent, excellent and com-
prehensive analysis. Closely related to wikification is the task
of Entity Linking. This task has got an explosive development
starting with the Entity Linking challenge within the TAC KBP

framework,10 from 2010. Overviews of the contests are the
main sources of information: Ji et al. (2010), Ji et al. (2011),
James Mayfield and Artiles (2012), and Mayfield et al. (2013).

English is, by far, the most supported language for biomed-
ical resources. The National Library of Medicine (NLM)
7 https://www.nlm.nih.gov/research/umls/Snomed/snomed_main.

html.
8 http://wiki.dbpedia.org/.
9 Wikifiers are programs that provide texts with content enrichment

by displaying information from WP.
10 http://www.nist.gov/tac/2014/KBP/.
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12 http://sparql.bioontology.org/.
13 See Vivaldi and Rodrı́guez (2010) for details about the way of
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https://www.nlm.nih.gov/ maintains the Unified Medical Lan-
guage System (UMLS)11 that groups an important set of
resources to facilitate computer systems to ‘‘understand” the

meaning of the language of biomedicine and health. Only a
small fraction of such resources are available for languages
other than English. A relevant aspect of information extrac-

tion in medicine is the recognition and identification of
biomedical entities (like disease, genes, proteins . . .). Several
named entity recognition (NER) techniques have been pro-

posed to recognize such entities based on their morphosyntac-
tical pattern and context. NER can be used to recognize
previously known names and also new names, but cannot be
directly used to relate these names to specific biomedical enti-

ties found in external databases. For this identification task, a
dictionary approach is necessary. A problem is that existing
dictionaries often are incomplete and different variations

may be found in the literature; therefore it is necessary to min-
imize this issue as much as possible. Regarding Arabic NER, a
good reference is Benajiba et al. (2010). There are a number of

tools that take profit of the UMLS resources. Some of the
more relevant are Metamap (Aronson and Lang, 2010) and
Whatizit (Rebholz-Schuhmann et al., 2008). Cotik et al.

(2015) uses RadLex to detect concepts in radiology reports
written in Spanish.

3. Methodology

3.1. Outline

This paper, as most of the systems showed in Section 2 pro-
poses a ML solution to a tagging task. Therefore, it requires
two main steps: training and annotation (see Fig. 1). The main

drawback of this type of solutions is the dependency on anno-
tated documents, which usually are hard to obtain. Our main
target in this research is to train a classifier minimizing the

impact of this issue and keeping good results.
For such a purpose we use as learning examples -within the

distant learning paradigm- a set of seed words obtained with a

minimal human supervision. As mentioned in Section 1, we use
domain-independent Knowledge Sources as WP, and DBP.
The reasons for this choice are: (i) they provide good interlin-
gual linking and (ii) although domain-independent, they pro-

vide a nice coverage of the medical domain, including links
to codified datasets. Besides, we include SNOMED-CT
because of (i) its rich coverage of a high variety of medical enti-

ties and (ii) a well-founded taxonomic class organization.
The overall architecture of our system is shown in Fig. 1.
The process of Semantic Tagging is carried out by a module

shown in the bottom of the figure. The process consists of the
performance of a set of binary classifiers (one for each class in
the tagset and for each language) followed by meta-classifiers

(one for each language) that combines the results of the binary
classifiers.

The training of the binary classifiers is performed using a
distant learning approach from the three Knowledge Sources.

For English all the processes are easier because of the direct
availability of all the Knowledge Sources. For other languages
the process is more complex due to the limitation of Knowledge

Sources (some languages, specially Arabic, lack some of the
11 https://www.nlm.nih.gov/research/umls/.
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resources or have smaller coverage). In such cases, We per-
formed cross-lingual mappings. The results of different learn-
ing processes clearly depend on the size and quality of the

training material.
Besides the initial assignment of seed terms corresponding

to WP categories to SNOMED-CT classes no manual inter-

vention was needed. It is worth noting that, only seed terms
that have associated WP pages are considered. The results,
so, are sets of WP pages to be used for learning the classifiers.

Fig. 2 depicts an overall view of the learning components
(occurring in the top of Fig. 1). As can be seen, the system pro-
ceeds in three steps: (i) building the base tagset and the set of
relevant WP categories, this process is further detailed in Sec-

tions 3.2 and 3.3, (ii) selecting the seedterms for learning,
expanded in Fig. 3 and explained in detail in Section 3.4,
and (iii) Learning the binary classifiers and the metaclassifiers.

The classification component of the system (bottom of Fig. 1)
is expanded in Fig. 4.

3.2. Selection of the tagset

Our tagset consists of the three most populated categories
from the 19 top categories in the class structure of

SNOMED-CT. In the rest of the article we refer to these cat-
egories as BP (Body Part), DRUG, and DISEASE. We have
used SNOMED-CT for English (although there exist, too, a
partial version for Spanish and a proprietary version for

French). Using BioPortal SPARQL endpoint12 we have
extracted the top categories, and from them the set of terms
under each one. For all the languages we have collected the

set of translations (using DBP) and we have filtered out the
terms not existing in the corresponding WP (as page or as
category). We have selected for our experiments the three

categories having a higher coverage considering all the
languages.

3.3. Defining the initial set of relevant WP categories

Although our distant learning approach for obtaining addi-
tional training material is based on three Knowledge Sources,
(WP, DBP, and SNOMED-CT) using, when needed, their

interlingual capabilities, a previous step, limited to the English
WP has to be carried out and its results are used for processing
the other Knowledge Source.

Following the approach described in Vivaldi and
Rodrı́guez (2010), that automatically extracts scored lists of
terms from both WP pages titles and WP categories titles,

we got the set of the most reliable WP categories.13 This
resulted on a set of 239 WP categories. We manually assigned
to such categories a unique SNOMED-CT class. Let us denote

Catswp:enclass

�
Catswp:enBP ;Catswp:enDRUG, and Catswp:enDISEASE

�
these sets. We

take profit of the graph structure of WP. WP consists basically
of two graphs, the page graph and the category graph. In the
former the nodes are WP pages while in the later the nodes

are WP categories. Edges consist of WP links. We consider
obtaining such categories from WP resources. The system provides

terms corresponding to bothWP pages and categories, but we use here

only the later.
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Figure 1 Training and testing pipelines.

Figure 2 Learning module.

Figure 3 Distant learning manager.
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three types of links: page-category (categories to which one
page belongs), category-page (pages corresponding to a given
category) and category-category (super and sub categories of
a given one). We compute the score of a page from the scores
Please cite this article in press as: Cotik, V. et al., Arabic medical entity tagging using
– Computer and Information Sciences (2017), http://dx.doi.org/10.1016/j.jksuci.2016
of the categories it belongs to, and the score of a category from
the scores of the pages belonging to it). In this way, using an
iterative procedure, good pages reinforce their categories and
good categories their pages.
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Fig. 4 Semantic tagging component.

16 Although WP pages consist basically of free text, some pages

include, too, structured information. The most popular way of

composing and including this kind of information is using predefined

templates attached to some categories. These structures are named

infoboxes and their items infobox slots. For instance, the disease

infobox contains slots for ICD-9 and ICD-10 codes, MeSH entries,

UMLS CUI, etc.

Arabic medical entity tagging using distant learning 5
3.4. Obtaining the seed terms for each tag and language

To obtain the seed terms needed for learning the classifiers, we

proceed in four ways, using our three Knowledge Sources (see
He etal. (2011) and Yeganova et al. (2012) for analysis of these
and other resources used for similar purposes). The process is

shown in Fig. 3. The following Knowledge Sources have been
used:

� WP, although being a general purpose resource, it densely

covers the medical domain. English WP contains termino-
logical units from multiple medical thesauri and ontologies,
as pointed out above. The current full coverage of the four

WP used in our research are14: 5,093,100 pages for the Eng-
lish WP, 410,657 pages for the Arabic WP, 1,730,505 pages
for the French WP, and 1,198,094 pages for the Spanish

WP.
� DBP is one of the central linked data dataset in Linked
Open Data (LOD). It currently contains more than 3.5 mil-

lion things, and 1 billion RDF (Resource Description
Framework) triples with a nice coverage of the medical
domain. Unfortunately there is not DBP for Arabic and,
so, for this language instances from this source have to be

collected indirectly (through the existence of Arabic labels,
i.e. labels consisting of a string suffixed with @ar, attached
to DBP resources in the available DBPs).

� SNOMED-CT, with more than 350,000 concepts, 950,000
English descriptions (concept names) and 1,300,000 rela-
tionships is the largest single vocabulary ever integrated

into UMLS.15 The basic SNOMED-CT source, and the
only used in our work, is in English.

Our system is based on Vivaldi and Rodrı́guez (2010) and

Vivaldi and Rodrı́guez (2015) extending the later reference,
14 see updated statistics at https://stats.wikimedia.org/EN/Sitemap.

htm.
15 http://www.nlm.nih.gov/research/umls/.
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that was restricted to English, for working in a multilingual
setting. Our aim is to collect medical terminologies for the
semantic classes and languages involved. The process is as
follows:

1. As said in Section 3.3, for each semantic class a set Catswp:enclass

of relevant categories of English WP has been collected.

2. From each of these Catswp:enclass sets we obtain the set of WP

pages and we remove the pages corresponding to more than

one set. Werefer to these sets as Pageswp:enclass

(Pageswp:enBP ; Pageswp:enDRUG, and Pageswp:enDISEASE). These three sets

are our first collection of domain terms.

3. From each of the three Pageswp:enclass collections we collect all

the WP infoboxes and infobox slots.16 We manually
selected the pairs hinfobox, sloti: specific for the corre-
sponding class. We then collected all the pages owning

any of these pairs, resulting on the second collection of

domain terms, Pagesinfobox:enclass .

4. The third collection of domain terms was obtained from
SNOMED-CT. We selected the set of terms under the three

top classes of SNOMED-CT class structure, Clinical
Finding/Disorder, Body_structure, and Pharmaceutical/
biological product that can be mapped into our own classes.

From the set retrieved from SNOMED-CT only the terms
existing in WP have been collected, resulting in Pagessn:enclass.

17
17 It is worth noting that although terms coming from SNOMED-CT

not existing in WP are filtered out, some of the remaining terms could

be new (not detected previously by the other methods) because the way

of selection is different.
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19 In the experiments reported here n was set to 3.
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5. The last source of classified medical terms (and the most

productive) is DBP. For accessing DBP data we used the
DBpedia Sparql endpoint18 that allows an easy way of build-
ing the queries and an efficient way of accessing the data.

Using as seed terms the members of Pageswp:enclass we collected

the most useful predicates (balancing their coverage and
specificity) and obtained the set of subjects in the rdf triples

involving such predicates. In this way we collected our

fourth set of medical terms, Pagesdbp:enclass . See Vivaldi and

Rodrı́guez (2015) for details of this process.
6. We then get the union of the four datasets procured in pre-

vious steps. We have, so, the three sets Pagesall:enclass . For each

page we computed a purity score, i.e. a score ranging in
[0,1] measuring the confidence of the page belonging to

its corresponding SNOMED-CT class. Specifically we
define a purity measure of a page as the inverse of the num-
ber of semantic tags to which their categories belong. So, as

in our work we use three semantic tags, the purity ranges
from 1/3 to 1. If all the WP categories are mapped to a
unique semantic tag the purity is 1.

7. From the sets Pagesall:enclass and the use of English DBpedia

labels we obtained the corresponding translated terms, if

existing, to Arabic, French, and Spanish, Pagesall:arclass ;

Pagesall:frclass , and Pagesall:spclass .

8. Using the English DBP, French DBP, and Spanish DBP

labels, we enriched the corresponding sets in the other lan-
guages, including Arabic. The way of enriching a set of
terms for a target language comes from the presence in a

DBP resource for another source language of a label for
the target. As there is no DBP for Arabic, this language
cannot contribute to enriching the others but only takes

profit of the other languages’ enrichment.
9. We iterate the two last steps until no more terms are found.

The final figures for the four languages and three semantic
classes can be found in Table 1.

Not all the methods for selecting the seedwords perform
equally for the different semantic tags and languages. It is

worth noting that more than a half of the seedwords used
for learning have been selected by the DBP source. For
instance, for Arabic and for the tag BP about 60% of the seed-

terms (1077) come from DBP (657 against 420). As the seed-
words sizes for Arabic are smaller, not using DBP seeds can
result on small datasets (taking into account, too, that some
of the WP pages are filtered out, and that only pages with pur-

ity 1 are used). So although probably for English we have
enough training material without using DBP, for the other lan-
guages, specially for Arabic, DBP data have to be used.

3.5. Learning the classifiers

Following Huang and Riloff (2010), for each semantic class

and language we generate training instances by automatically
labelling each mention of a seed term with its designated
semantic class. The core idea of our approach is that for each

seed term t of a class tag, all the mentions of t in its WP page
can be considered positive examples for learning the class tag.
For each mention we create feature vectors for the classifiers,
the seeds themselves are hidden and only contextual features
18 http://dbpedia.org/sparql.
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are used to represent each training instance. Proceeding in this
way the classifier is forced to generalize with limited
overfitting.

We created a suite of binary contextual classifiers, one for
each semantic class and language. The classifiers are learned
using, as in Huangand Riloff (2010), SVM models using Weka

toolkit (Hall et al., 2009). Each classifier makes a scored deci-
sion as to whether a term belongs or not to its semantic class.
Examples for learning correspond to the mentions of the seed

terms in the corresponding WP pages. Let x1; x2; . . . ; xn be the
seed terms for the semantic class tag. For each xi we obtain its
WP page and we extract all the mentions of seed terms occur-
ring in the page. Positive examples correspond to mentions of

seed terms corresponding to semantic class tag while negative
examples correspond to seed terms from other semantic
classes. Frequently, a positive example occurs within the text

of the page but often many other positive and negative exam-
ples occur as well. We have analyzed the average distribution
of positive and negative terms for all the languages and seman-

tic tags. The results are depicted in Table 2. As can be seen, for
most languages and classes the number of examples (positive
and negative) for training is high and well balanced. Features

are simply words occurring in the local context of mentions.
The corpus of each semantic class and language is divided

into training and test sections. For processing the full corpus
we use a linguistic processor to identify content words in each

sentence and create feature vectors that represent each con-
stituent in the sentence. For each example, the feature vector
captures a context window of n words to its left and right19

without surpassing sentence limits. The linguistic processing
includes sentence splitting, tokenizing, POS tagging, and
Named Entity Recognition. For English, French, and Spanish

Freeling toolbox20 (Padró et al., 2012) has been used to per-
form this task. For Arabic we have used Madamira21 (Pasha
et al., 2014).

For evaluation we used WP categories - SNOMED-CT
classes manually annotated mappings as gold standard as
explained in Section 3.3. We considered for each semantic class
tag a gold standard set including all the WP pages with purity

1, i.e. those pages unambiguously mapped to tag. The accuracy
of the corresponding classifier is measured against this gold
standard set.

We proceed with the sets of seed terms (one set for each
semantic class and language) collected as described in Sec-

tion 3.4, i.e. Pageswp:ltag , for tag 2 fBP;DRUG;DISEASEg and

l 2 far; en; fr; eng. Some of the WP pages corresponding to
the selected terms are removed due to: (i) having less than

100 words, (ii) difficulties in extracting useful plain text (pages
consisting mainly of itemized lists, formulas, links, and so) and
(iii) having purity lower than 1.

The whole set of seed terms for every category tag (see

Table 1) was split in two sections: training and test. Each sec-
tion has been limited to 500 WP pages. The whole set of train-
ing documents was used, regardless the origin of its members,

although, obviously, most of the mentions of a seed term occur
within the documents associated to its origin. For learning a
binary classifier for a semantic class tag, all the mentions of
20 http://nlp.lsi.upc.edu/freeling/.
21 http://nlp.ldeo.columbia.edu/madamira/.
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Table 1 Seedwords datasets sizes.

Medical category English Arabic French Spanish

BODY PART 6464 1077 2183 2663

DISEASE 14,033 1771 3957 3994

DRUG 13,520 1085 2651 2347

Table 2 Distribution of positive and negative seedwords. Pairs consist of the ratio of positive and negative counts per page.

Medical category English Arabic French Spanish All

BODY PART (1.95, 2.63) (1.11, 1.32) (0.73, 0.77) (0.80, 0.86) (1.36, 1.73)

DISEASE (6.75, 4.10) (4.07, 1.84) (2.01, 0.87) (2.10, 1.12) (4.75, 2.74)

DRUG (2.15, 3.07) (0.78, 2.49) (0.83, 1.33) (1.34, 1.78) (1.75, 2.19)

All (4.00, 3.41) (2.36, 1.88) (1.34, 0.99) (1.51, 1.21) (2.94, 2.45)

Table 3 Results (F1) obtained for English with different

sources and combination methods.

Origin of the seed terms Best result Using a meta-classifier

Wikipedia 87,4 89,6

SNOMED 87,4 88,8

DBpedia 94,0 94,9

Overlall 94,0 94,9

22 Reported values are an average over the results for each

SNOMED-CT class. Actual values, for the case of SNOMED-CT

only seed terms, range among 73.0–94.8 (precision) and 67.1–93.6

(recall).
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all the seed terms of tag within all the training documents are
triggers for a positive example while all the mentions of all the
seed terms of tag’, for tag– tag0 , are triggers of negative

examples. Following Huang and Riloff (2010), each example
is represented as a n-dimension binary vector where dimen-
sions correspond to lemmas of content words occurring in

the context of each trigger. Contexts correspond to windows
(limited to size 3) of words surrounding the mentions without
surpassing sentence limits.

4. Experimental framework

We have applied the method described here to the three

semantic categories and four languages. Let l be the language
and tag the semantic category. For each seed term tag in

Pageswp:ltag we obtain its corresponding WP page and, after

cleaning, POS tagging, and sentence segmenting, we extracted
all the mentions (compliant with termhood condition). For
each mention the vector of features is built and the three

learned binary classifiers corresponding to l are applied to it.
If none of the classifiers classifies the instance as belonging
to the corresponding semantic class no answer is returned. If

only one of the classifiers classifies positively the instance,
the corresponding class is returned. Otherwise a combination
step has to be carried out. For combining the results of the bin-

ary classifiers two methods have been implemented:

� Best Result. This method returns the class of the best scored
individual result of the binary classifiers.
Please cite this article in press as: Cotik, V. et al., Arabic medical entity tagging using
– Computer and Information Sciences (2017), http://dx.doi.org/10.1016/j.jksuci.2016
� Meta-classifier. A SVM multiclass classifier is trained using
as features the results of the basic binary classifiers together
with the context data already used in the basic classifiers.
The resulting class is returned.

5. Results

Table 3 depicts the global results obtained for English when
applying both combination methods for the three knowledge
sources extracted.22 As it can be seen, using the meta-

classifier slightly outperforms the best score method. Using
DB as source of seed words consistently outperforms the other
sources. For the other languages we have used for learning the

union of the seedwords coming from all the resources.
The global results are presented in Table 4. As can be

observed, there is a severe drop in accuracy for languages other

than English. The reasons could be due to:

� The differences in size of the training material as shown in
Table 1.

� The differences in WP coverage pointed out is Section 3.4.
� The degradation of data quality resulting from the cross-
lingual mappings that never can be considered error free.

� The differences in accuracy of the linguistic processors for
the different languages involved.

It is worth noting that Arabic results slightly outperforms
Spanish ones despite the lower size of the training material
and WP coverage. This is due to the excellent performance

of Arabic classifier for DISEASE class probably due to the
quality of these annotations in WP medical pages.

It is difficult to compare our results with other state-of-the-
art systems performing the same task because of the lack of

gold standard datasets and the differences on used tagsets
and languages. To our knowledge, WP pages have not been
distant learning in a Multilingual Framework . Journal of King Saud University
.10.004
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Table 4 Global results.

Semantic class English Arabic French Spanish

BP 0.93 0.35 0.93 0.24

DISEASE 0.95 0.78 0.51 0.64

DRUG 0.71 0.33 0.51 0.54

All 0.94 0.54 0.75 0.53

8 V. Cotik et al.
used previously as gold standard for this task. A shallow com-
parison could be carried out for English with the Concept

Extraction task of the 2010 i2b2/VA challenge on concepts,
assertions, and relations in clinical text, Uzuner et al. (2010)
and with the DDI Extraction 2013 (task 9 of Semeval-2013,

Segura-Bedmar et al. (2014), both sketched in Section 2. This
informal comparison is just for seeing whether our results
can be placed within the state-of-the-art ranges for similar

tasks. In the case of 2010 i2b2/VA the results of the three best
scored systems range from 0.78 to 0.85. Our results (0.94)
clearly outperform these ones. In the case of DDI for entity
tagging, the figures of the three best scored systems range

from.51 to 0.83 for DrugBank data and from 0.37 to 0.56
for Medline data, closer to our genre. In this case the compar-
ison should be performed with our results on DRUG classifier

(0.71). Once again our results seem to outperform the ones
obtained in this contest. Although to be fair, and lacking a
direct comparison, we simply can say that our results can be

considered state-of-the-art. For French also a shallow compar-
ison could be made with the CLEF eHealth201523 contest, task
1b (Clinical Named Entity Recognition) (Neveol et al., 2015).
In this case the results range from 0.70 to 0.76 while ours were

of 0.75. To be fair we should point out that the task in this case
was clearly more challenging than our (it consisted on 10
UMLS categories detection and classification task). Unfortu-

nately no way of evaluation even shallow can be made for Ara-
bic and Spanish (the results of Cotik et al. (2015) are not
comparable since the task is slightly different).

6. Conclusions and further work

We have presented a system that automatically detects and

tags medical terms that correspond to WP pages found in
WP pages. The tagset used, consisting of three categories, is
derived from SNOMED-CT taxonomy. The system has been

applied to four languages including Arabic. The results,
although not directly comparable with other approaches, seem
to reach at least state-of-the-art accuracy (compared with best
systems in related contests). A relevant benefit of this approach

is that the effort for obtaining positive/negative examples for
training has been reduced to a minimum.

Some of the tools used in this experimentation are for gen-

eral purpose. Their performance may not be appropriate for
some medical terms (ex. 1,3-difluoro-2-propanol or 8-cyclopen
tyl-1,3-dipropylxanthine, among others) due to the intrinsic

complexity of such terms and the difficulty in processing such
terms with standard NLP tools. We plan to introduce some
improvement in our tools or use already existing/available spe-

cialized tools, such as Metamap (Aronson and Lang, 2010).
23 https://sites.google.com/site/clefehealth2015/.

Please cite this article in press as: Cotik, V. et al., Arabic medical entity tagging using
– Computer and Information Sciences (2017), http://dx.doi.org/10.1016/j.jksuci.2016
Several lines of research will be followed in the next future.

� The main limitation of our system is that training and test-
ing data of the ML algorithm is only based on WP pages.
The use of data provided by the Concept Extraction task

of the 2010 i2b2/VA challenge on concepts, assertions,
and relations in clinical text will be considered for training
and test sets. Our aim is to build a system robust enough to

be applied to more challenging genres, as Electronic Health
Reports.

� As our results are based on three knowledge sources, an
obvious way of possible improvement is the combination

and/or the specialization of the resources for learning more
accurate classifiers. Specially extending the capabilities of
DBP seems to be a good research direction.

� Using a finer grained tagset and including more challenging
categories (as symptoms, clinical findings, procedures,
impairments, . . .).

� Moving from semantic tagging of medical entities to seman-
tic tagging of relations between such entities is a highly
exciting objective, in the line of recent challenges in the
medical domain (and beyond).

Acknowledgements

This work was partially supported by the TUNER project
(Spanish Ministerio de Economı́a y Competitividad,

TIN2015-65308-C5-5-R) and the GRAPH-MED project
(Spanish Ministerio de Economı́a y Competitividad,
TIN2016-77820-C3-3-R).

References

Agirre, E., Edmonds, P., 2006. Word Sense Disambiguation: Algo-

rithms and Applications. AAAI Workshop, Nancy Ide and Chris

Welty.

Aronson, A.R., Lang, F.-M. 2010. An overview of MetaMap:

historical perspective and recent advances. In: JAMIA, vol. 17,

pp. 229–236.

Benajiba, Y, Zitouni, I., Diab, M., Rosso, P., 2010. Arabic named

entity recognition: using features extracted from noisy data. In:

Proceedings of 48th Annual Meeting of the Association for

Computational Linguistics, ACL-2010, Uppsala, Sweden, July

11–16, pp. 281–285.

Cotik, V., Filippo, D., Castano, J. 2015. An approach for automatic

classification of radiology reports in spanish 634–638.

Gerber, A., Gao, L., Hunte, J., 2011. A scoping study of (who, what,

when, where) semantic tagging services. In: Research Report,

eResearch Lab, The University of Queensland.

Halgrim, S., Xia, F., Solti, I., Cadag, E., Uzuner, O., 2011. A cascade

of classifiers for extracting medication information from discharge

summaries. J. Biomed. Semantics.
distant learning in a Multilingual Framework . Journal of King Saud University
.10.004

http://refhub.elsevier.com/S1319-1578(16)30085-4/h0025
http://refhub.elsevier.com/S1319-1578(16)30085-4/h0025
http://refhub.elsevier.com/S1319-1578(16)30085-4/h0025
http://refhub.elsevier.com/S1319-1578(16)30085-4/h0030
http://refhub.elsevier.com/S1319-1578(16)30085-4/h0030
http://refhub.elsevier.com/S1319-1578(16)30085-4/h0030
http://https://sites.google.com/site/clefehealth2015/
http://dx.doi.org/10.1016/j.jksuci.2016.10.004


Arabic medical entity tagging using distant learning 9
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.,

Witten, I., 2009. The weka data mining software: an update. In:

SIGKDD Explorations.

He, J., de Rijke, M., Sevenster, M., van Ommering, R., Qian, Y., 2011.

Generating links to background knowledge: a case study using

narrative radiology reports. In: Proceedings of CIKM’11, Glasgow,

Scotland, UK.

Huang, R., Riloff, E., 2010. Inducing domain-specific semantic class

taggers from(almost) nothing. In: Proceedings of the 48th Annual

Meeting of the Association for Computational Linguistics, Upp-

sala, Sweden, pp. 275–285.

James Mayfield, H.T.D., Artiles, Javier, 2012. Overview of the TAC

2012 knowledge base population track, Text Analysis Conference

(TAC).

Ji, H., Grishman, R., Dang, H.T., Griffitt, K., Ellis, J., 2010. Overview

of the TAC 2010 knowledge base population track, Text Analysis

Conference (TAC).

Ji, H., Grishman, R., Dang, H.T., 2011. Overview of the TAC 2011

Knowledge Base Population Track, Text Analysis Conference

(TAC).

Mayfield, J., Ellis, J., Getmana, J., Mott, J., Li, X., Griffitt, K.,

Strassel, S.M., Wright, J., 2013. Overview of the kbp 2013 entity

linking track. In: Text Analysis Conference (TAC).

Moro, A., Roganato, A., Navigli, R., 2014. Entity linking meets word

sense disambiguation: a unified approach. Trans. ACL, 231–244.

Navigli, R., 2009. Word sense disambiguation: a survey. ACM

Comput. 41.

Neveol, A., Grouin, C., Tannier, X., Hamon, T., Kelly, L., Goeuriot,

L., Zweigenbaum, P., 2015. Clef ehealth evaluation lab 2015 task

1b: clinical named entity recognition. In: Proceedings of CLEF.
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Uzuner, Özlem, South, B.R., Shen, S., DuVall, S.L., 2010. i2b2/va

challenge on concepts, assertions, and relations in clinical text. In:

J. Am. Med. Inform. Assoc., 18, pp. 552–556.
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