1,223 research outputs found

    Run-time resource management in fault-tolerant network on reconfigurable chips

    Get PDF

    Fault tolerant methods for reliability in FPGAs

    Full text link

    Development of a Multi-Standard Protocol Using Software Defined Radio for a Mobile Station Transceiver

    Get PDF
    In this thesis, the Software Defined Radio Digital Control System (SDR DCS) has been developed to perform a multi-standard protocol of the handset using the GSM and CDMA systems. The SDR DCS was designed for the SDR based band digital transceiver of the handset as a control and protocol software to control and handle the operation of the handset when roaming between different protocols; it could easily and quickly let the handset reconfigure with the future protocol; it configured the handset with either of the GSM or CDMA protocol software, and scheduled for reconfiguration of the handset with the second protocol in sequence. The SDR DCS controls the download of the specific air interface environment. In order to implement the whole design in software, the design had to go through three stages. The first stage was to do all the design steps in the software using generic computing resources such as Hardware Description Language (HDL), with the top-level design for each protocol. The second stage was to define a logic circuit to perform the signal processing for each protocol; this step was applied after the simulation and synthesis, and eventually programming that circuit into the FPGA board. The third stage was to use the FPGA to implement the functions required for each protocol which constitutes the multi-standard protocol. The VHDL files were created for each element of the GSM and CDMA protocols. The GSM related system was developed with encoders and decoders linked to the channel model. The CDMA related system was designed with a transmitter to encode the user’s data into wide bandwidth using a reverse link channel and a synchronized receiver to receive the signal from the forward link channel and decode the wide bandwidth to recover the base band user’s data. The Synopsys™ software package was used for the design, synthesis and simulation of the SDR base band platform. The simulation tools used include the Model Sim and System Studio. Meanwhile, the Xilinx ISE 9.2i was used as the synthesis tool. The results of the simulated and synthesized top-level design files were downloaded into the Xilinx XSA-3S1000 FPGA board. The waveforms for the GSM and CDMA outputs approximately matched the ones seen in the oscilloscope for the FPGA output pin. This proved that the SDR DCS had successfully implemented its task, according to the objectives of the design

    A Dynamic Programming Approach to Energy-Efficient Scheduling on Multi-FPGA based Partial Runtime Reconfigurable Systems

    Get PDF
    This paper has been studied an important issue of energy-efficient scheduling on multi-FPGA systems. The main challenges are integral allocation, reconfiguration overhead and exclusiveness and energy minimization with deadline constraint. To tackle these challenges, based on the theory of dynamic programming, we have designed and implemented an energy-efficient scheduling on multi-FPGA systems. Differently, we have presented a MLPF algorithm for task placement on FPGAs. Finally, the experimental results have demonstrated that the proposed algorithm can successfully accommodate all tasks without violation of the deadline constraint. Additionally, it gains higher energy reduction 13.3% and 26.3% than that of Particle Swarm Optimization and fully balanced algorithm, respectively

    VR-ZYCAP: A versatile resourse-level ICAP controller for ZYNQ SOC

    Get PDF
    This article belongs to the Special Issue Architecture and CAD for Field-Programmable Gate Arrays (FPGAs)Hybrid architectures integrating a processor with an SRAM-based FPGA fabric—for example, Xilinx ZynQ SoC—are increasingly being used as a single-chip solution in several market segments to replace multi-chip designs. These devices not only provide advantages in terms of logic density, cost and integration, but also provide run-time in-field reconfiguration capabilities. However, the current reconfiguration capabilities provided by vendor tools are limited to the module level. Therefore, incremental run-time configuration memory changes require a lengthy compilation time for off-line bitstream generation along with storage and reconfiguration time overheads with traditional vendor methodologies. In this paper, an internal configuration access port (ICAP) controller that provides a versatile fine-grain resource-level incremental reconfiguration of the programmable logic (PL) resources in ZynQ SoC is presented. The proposed controller implemented in PL, called VR-ZyCAP, can reconfigure look-up tables (LUTs) and Flip-Flops (FF). The run-time reconfiguration of FF is achieved through a reset after reconfiguration (RAR)-featured partial bitstream to avoid the unintended state corruption of other memory elements. Along with versatility, our proposed controller improves the reconfiguration time by 30 times for FFs compared to state-of-the-art works while achieving a nearly 400-fold increase in speed for LUTs when compared to vendor-supported software approaches. In addition, it achieves competitive resource utilization when compared to existing approaches.This research was funded by Spanish Ministry of Science and Innovation under the ACHILLES project, grant number PID2019-104207RB-I00 and by Taif University Researchers Supporting fund, grant number (TURSP-2020/144), Taif University, Taif, Saudi Arabia

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present

    A field programmable gate array based modular motion control platform

    Get PDF
    The expectations from motion control systems have been rising day by day. As the systems become more complex, conventional motion control systems can not achieve to meet all the specifications with optimized results. This creates the necessity of fundamental changes in the infrastructure of the system. Field programmable gate array (FPGA) technology enables the reconfiguration of the digital hardware, thus dissolving the necessity of infrastructural changes for minor manipulations in the hardware even if the system is deployed. An FPGA based hardware system shrinks the size of the hardware hence the cost. FPGAs also provide better power ratings for the systems as well as a more reliable system with improved performance. As a trade off, the development is rather more difficult than software based systems, which also affects the research and development time of the overall system. In this paper a level of abstraction is introduced in order to diminish the requirement of advanced hardware description language (HDL) knowledge for implementing motion control systems thoroughly on an FPGA. The intellectual property library consists of synthesizable hardware modules specifically implemented for motion control purposes. Other parts of a motion control system, like user interface and trajectory generation, are implemented as software functions in order to protect the modularity of the system. There are also several external hardware designs for interfacing and driving various types of actuators

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201
    corecore