
 Hosseinabady, M., & Nunez-Yanez, J. L. (2009). Run-time resource
management in fault-tolerant network on reconfigurable chips. In
International Conference on Field Programmable Logic and Applications,
2009 (FPL 2009), Prague. (pp. 574 - 577). Institute of Electrical and
Electronics Engineers (IEEE). 10.1109/FPL.2009.5272400

Link to published version (if available):
10.1109/FPL.2009.5272400

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/FPL.2009.5272400
http://research-information.bristol.ac.uk/en/publications/runtime-resource-management-in-faulttolerant-network-on-reconfigurable-chips(e52ab067-82b0-40b8-a05a-7aa778fc4ba0).html
http://research-information.bristol.ac.uk/en/publications/runtime-resource-management-in-faulttolerant-network-on-reconfigurable-chips(e52ab067-82b0-40b8-a05a-7aa778fc4ba0).html

RUN-TIME RESOURCE MANAGEMENT IN
FAULT-TOLERANT NETWORK ON RECONFIGURABLE CHIPS

Mohammad Hosseinabady
m.hosseinabady@bristol.ac.uk

University of Bristol, Bristol, UK

Jose L. Nunez-Yanez
j.l.nunez-yanez@bristol.ac.uk

University of Bristol, Bristol, UK

ABSTRACT

This paper investigates the challenges of run-time resource
management in future coarse-grained network-on-
reconfigurable-chips (NoRCs). Run-time reconfiguration is a
key feature expected in future processing systems which must
support multiple applications whose processing requirements
are not known at design time. This paper investigates a
stochastic routing algorithm in a NoC-based system with
dynamically reconfigurable tiles, able to cope with the
dynamic behaviour of run-time task mapping. Experimental
results show the efficiency of the proposed stochastic task
mapping.

1. INTRODUCTION
Future multimedia consumer electronic products (e.g., mobile
phones, set-top boxes, home theatre systems, etc.) will need to
support very demanding applications like image, data and
sound processing, cryptography, wireless communication, and
streaming high-definition television. This wide range of
applications and standards imposes new demands in chip
design such as high integration, more reliability, high
bandwidth required among functional modules, and
reconfigurability. Run-time reconfiguration techniques
provide the ability to change parts of the hardware to adapt to
the requirements of an application. Using partial
reconfiguration allows more tasks to be run in hardware and
therefore reduces the application execution time compared
with software running on an embedded processor. Task
mapping and dynamic resource management are main issues
in run-time reconfiguration platforms which are addressed in
this paper.

1.1. Research Motivation and Contribution
The run-time reconfigurable platform that we focus on in this
paper consists of a group of tiles communicating through a
network of routers (Figure 1). A tile in the platform consists
of two parts: static part and run-time reconfigurable (RTR)
part. We assume that the static part contains a bus, a local
memory, and a network interface (NI). We assume that the
RTR part is a fine-grained reconfigurable architecture based
on sea-of-logic-cells as is the case in current FPGA
technology. The RTR part, which is connected to the bus, can
host a hardware core at run-time. The hardware core can be a
general purpose processor or a dedicated hardware with size
not greater than the reconfigurable region area. This platform

will run an application represented by a hardware/software
partitioned and scheduled task graph.
Reconfiguration overhead and dynamic task requests are the
two issues in the task mapping on a run-time reconfigurable
architecture that have motivated this paper. The hardware
reconfiguration overhead is a considerable overhead in an
RTR hardware based on current FPGA technology which
cannot be ignored, for example in the Xilinx Virtex family,
and it can be up to a few milliseconds. In addition, because of
the dynamic behaviour of applications, the requested task in
the SoC is not uniform over time. This introduces randomness
in the location and time of the active task, which in turn
makes difficult to locate a task in the platform.

Figure 1 Run-time reconfigurable NoC under investigation

In this paper, to map a dynamically requested task graph, we
propose a stochastic routing algorithm to find a task or to find
a proper reconfigurable region for mapping the task.
Reliability and network topology independence are the two
benefits of a stochastic routing algorithm. The stochastic
routing algorithm randomly chooses an outgoing port among
the non-faulty ports at each router. Therefore, if there exists a
fault detection mechanism in each router, then the stochastic
routing simply ignores the faulty ports.

1.2. Related Work
Broadcast or multicast routing algorithms are among the
stochastic algorithms presented in the literature [1][2]. Our
stochastic method reserves the data path between source and
destination tiles during task mapping using a single request flit
and this way differs from flooding technique. This is done to
avoid a lot of resource reservation which results in a huge
overhead on the mapping algorithm. Nollet et al. [3]
investigate a run-time task assignment heuristic in a
multiprocessor SoC containing fine-grain reconfigurable
hardware tiles. While they have considered fully
reconfigurable FPGAs in a heterogeneous multi-processor

Memory

D
yn

am
ic

 P
ar

t
S

ta
tic

 P
ar

t

Network
Interface

Reconfigurable NoCReconfigurable Tile

ProcessorH-Core
Logic cell

The authors acknowledge with gratitude the support obtained
from the EPSRC UK under grant number EP/E062164/1

978-1-4244-3892-1/09/$25.00 ©2009 IEEE 574

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:37 from IEEE Xplore. Restrictions apply.

SoC, in this work we consider the partial run-time
reconfigurable feature of FPGAs. Chou et al. [4] propose a
run-time mapping algorithm for run-time applications which
are dynamically mapped onto a NoC-based multiprocessor
SoC with different voltage levels. They propose incremental
mapping method to address the energy and performance in
real time. They use a global manager for system resource
management which runs the mapping algorithm. Using a
centralised global manager limits the scalability of this
method for large NoCs. In addition, any fault in the controller
makes the entire system fail.
The rest of this paper is organised as follows. The next section
explains the proposed SoC architecture and the stochastic
routing algorithm. Experimental results are presented in
Section 3. Finally, the paper concludes with Section 4.

2. PROPOSED PLATFORM AND METHODOLOGIES
Our methodology gets a scheduled task graph and a mesh of
reconfigurable tiles as its inputs. The proposed methodology
incrementally maps the requested tasks of the task graph onto
the tiles. Figure 2(a) shows a simple task graph with three
tasks (i.e., t1, t2 and t3). Let’s assume task t1 is mapped on tile
10, and it needs task t2. For this purpose, it sends a task
request flit (TRF), which has information about task t2 as well
as some fields for routing algorithm, to its router. The router
sends the TRF randomly to one of its neighbouring routers
(i.e., router 11). This router, which receives the TRF, sends
the TRF to its attached tile to check that it can host (or has)
the task t2. The router registers itself to the TRF as a volunteer
if it has the capability of hosting the task. Routers along the
path reserve resources needed for the future data transmission
and decrement the life-time field in the TRF. When the life-
time of the TRF expires, the last router in the path sends back
the TRF. The return TRF releases all unnecessary reserved
path and activates the best tile along the path to run the task. It
is difficult to find a suitable tile to host a task only by using a
simple random walk routing. A good distribution of different
PR region can improve the success of the random routing. In
addition, some factors and metrics about the dynamic
behaviour of the mapped task and PR regions are saved in
tables in tiles which can be used to guide TRF towards a
proper tile. These metrics are explained in Subsection 2.2.

Figure 2 Simple idea of the proposed random routing

2.1. Topology
The number and type of resources and their distributions are
important to successfully find a suitable resource during a
stochastic task mapping scheme.
Allocating different types of partially reconfigurable regions
is the first step to design a NoC topology. PRRs with
different types can be PRR with different sizes (which we
assume in this paper), different supply voltages, or different
frequencies. We spread different resource types on the NoC
considering the distribution of task types in the task graphs.

2.2. Task mapping guidelines
The random walk should follow the following constraints to
be able to map a task to a PRR, efficiently.

Constraint 1: Finding an existing task
Constraint 2: Finding a PRR which fits the task
Constraint 3: Minimize the communication overhead

between two communicating tasks
We define a few metrics to numerically denote these
constraints. Network interface of tiles save these numbers as
guidelines for the randomly travelled flit.
PRR factors: PR number (PRN) and PR distance (PRD)
factors, which are computed for each port of a router for each
PR type, denote the number and average distance of free PR
regions of a specific type in the half-plane area on the side of
the port, respectively. The randomly routing scheme uses
these factors to tend flit towards the area with more available
required PR regions. When a PR region hosts a task, the
corresponding NI sends its new state to the neighbouring
routers to inform those routers of the new state. Also, the tiles
that update their states send the new states to their neighbours.
So, after a while all NIs are able to update their tables.
Example: Let’s consider the tile (2,3) of Figure 4(c). All PR
region of types a, b, c, and d on the right hand side of this tile
(i.e., 2) are 4, 4, 1, and 1, respectively. Therefore, 2,3 4, 2,3 4 2,3 1, 2,3 1
The average distance of the PRs of type a on the right hand

side of this point is
∑ ,, ,∑ , , 4.

Using the same scheme, we can compute PRNs and PRDs for
the other three directions which are left, up, and down.
Task factors: Task number (TN) and Task distance (TD)
factors, which are saved in NI and are computed for each port
of a router for each task, denote the number and average
distance of free mapped tasks in the half-plane area on the
side of the port, respectively. Randomly routing scheme uses
these factors to tend flit towards the already free mapped task
in order to reduce task reconfiguration overhead. When a
mapped task in a tile finishes its functionality, it sends a flit to
its neighbouring tiles and informs them of the available free
task in the tile which is a hop away. The neighbouring tiles
update the distance to the task in a table and send a flit to
inform their neighbours of the free task in a tile which is two
hops away and other tiles do the same. These factors are
computed in the same method of computing PRR factors.

TR
F

t1

t2

t1

t2

(a) Task graph (a) RTR Platform

00 10 20

01

02

11

12 22

21

t3

Lin

Lout

575

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:37 from IEEE Xplore. Restrictions apply.

Cost function (CF): while the four factors PRN, PRD, TN, and
TD try to guide a flit towards the proper direction. The cost
function, CF, evaluates different tile opportunities along the
path. So, the algorithm can select the best tile along the
traversed path to map the task. Considering the
reconfiguration overhead and the incoming/outgoing
bandwidth needed for the required task, the following
equation computes the CF at each NI for the given task. , /4, , ,

The first term shows the reconfiguration overhead of each
task. The second term computes the incoming communication
bandwidth overhead in which Lin denotes the incoming
bandwidth and D(ti, tj) shows the number of hops between
predecessor mapped task ti and requested task tj. The third
term predicts the communication bandwidth overhead for the
successor task of the requested task tj in which Lout is the
outgoing bandwidth and ∑ /4, , , predicts the
average distance to the available PRR for the successor task tk.

2.3. Task mapping algorithm
In this subsection, we explain the router and NI algorithms
with more details.
Router: An application is described by a scheduled task
graph. In the proposed algorithm a predecessor task sends a
task request flit (TRF) to find or map the successor task(s).
The task request flit format for one task is shown in Figure 3.
It contains routing flags, task information, and life time fields.
Router which generates a random number less than
RANDMAX use the routing flags to select the outgoing port.
Routing flags computed by NI are three numbers which divide
the range between 0 and RANDMAX into four intervals.

Figure 3 Task request flit format

Network interface: NI has two responsibilities for the routing
algorithm: table updating and TRF updating.
Table updating: during the platform start-up, the PRNs/PRDs
and TNs/TDs factors can be initialised in the tables. If we
assume that there is no preloaded or hardwired task then all
TNs/TDs factors are zero. When a tile hosts a task, it informs
other tiles by sending an updating flit using a simple
broadcasting algorithm. Note that this broadcasting method
can be done whenever system is in steady state and there is
enough resource for that. Because of the stochastic task
mapping, we can still map tasks if one of the tiles cannot
broadcast its new state. A NI which receives an updating flit
(e.g., denotes adding/releasing of a task t1 of type a at distance
d) modifies its factors as follows:
Adding/Using a task: 1 / 1 1 1
Using/Replacing a task: 1 / 1 1 1
Releasing a task:

1 / 1 1 1 1 / 1 1 1 which i, a, t are indices to denote the direction (i.e., right, left,
up, down), PRR type, and task identification, respectively.
Updating TRF: combining task factors we compute factor
as follows: / / / ; , , , , 0

Also, combining PRR factors we compute factor as
follows. / / / ; , , , , 0

Then combining these two factors, and , we can
calculate the routing flag for the requested task as below: / / /

3. EXPERIMENTAL RESULTS
To evaluate the proposed technique, we simulate 10000 times
the two applications shown in Figure 4(a), (b). The App1 and
App2 application task graphs are based on the task graphs of a
263 decoder mp3 decoder (App1) [5], a multi-window display
(MWD) [6] (App2).
We have considered four types of PR regions (PR regions
with different sizes denoted by a, b, c, and d) which are shown
on each task node in task graphs. The mapping of the resource
graph on a 5x5 mesh topology is shown in Figure 4(c). The
resource type distribution in this mesh topology is the same as
resource type distribution in the two task graphs. As it can be
seen, the resources available in 5x5 mesh topology are not
enough to run two applications, simultaneously. Therefore, for
running multiple applications we use a mesh of 10x10 nodes
with the PR region type distribution the same as resource type
distribution in task graphs. In the sequel, using these
applications and mesh topologies, we evaluate the proposed
methodology for mapping the tasks to the 10x10 mesh.

Figure 4 Three task graphs, their resource graph and PRR

distribution on NoC

To investigate the behavior of the proposed methods in a
loaded NoC, we mapped six applications (two 263mp3dec,

IDL R U CF Tile
ID LT

Task information

Lin Lout s

Routing
Flag Life-Time

0

19

24 23

22

21 16

15

14

18

17

6

12

13

11

4

5

1082

3 971

(a) App1: 263 mp3 decoder

20

25

(b) App2: MWD

b c a b b

c c b b b

a c b d a

a d d c a

b a a a a

(c) mesh 5x5 PRR distribution

a

a

a

a

a

a

a

a

a

a

b

b

b b

b

b

b

c

d

c

c

c

c

c

d

d

250187 25
25

500

3672

380

3672

3672

500

4060

10

2083500

100

0 1 2 3 4
0

1

2

3

4

576

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:37 from IEEE Xplore. Restrictions apply.

three MWD, and one 263mp3dec, consequently) on the 10x10
NoC. Figure 5(a) and (b) show the results of mapping these
applications using the proposed stochastic method and random
walk, respectively. Based on Figure 5(a), the proposed
algorithm can find the proper tiles with high probability even
in a heavy loaded NoC wheras the random walk needs much
higher life time for request packets to be able to mapp an
application in a heavy loaded NoC.

Figure 5 Probability of mapping applications with different

size on 10x10 mesh

To handle the reconfiguration overhead issue the proposed
method tries to reuse the already reconfigured tasks in tiles.
To evaluate the task reuse feature of the proposed
methodology, starting from tile (0, 0), we have mapped MWD
application twice, consecutively, on the 5x5 and 10x10 mesh
topologies for three different scenarios: simple random walk,
the proposed method with only PRR factors, and the proposed
method with PRR and task factors. Figure 6(a) and (b) shows
these results for 5x5 and 10x10 mesh, respectively. As it can
be seen, PRR factors can significantly improve the task reuse
with compared to the simple random walk. In addition, using
task factors also improves the task reuse, which is one of the
paper contributions. As it can be seen, with the increase in
mesh size from 5x5 to 10x10 the reusability decreases
significantly. Regional based task mapping is a solution to
handle this drawback. Because even if we can find an existing
task which is in a distance from its predecessor task in the task
graph, the communication overhead may be higher than the
reconfiguration overhead. Investigating this technique will be
part of our future work.

4. CONCLUSIONS
This paper has proposed a stochastic mapping and routing
algorithm to run an application described by a task graph on a
NoC-based reconfigurable platform. The paper has defined
two kinds of factors to represent the information about the
available reconfigurable resource and free mapped tasks in the
tiles. These factors guide the stochastic routing to find suitable

reconfigurable region and already mapped tasks in order to
optimise reconfiguration overhead and find a feasible
solution. The experimental results show the success of the
defined factors in optimally map applications onto 5x5 and
10x10 mesh topologies compared to the simple random walk
mapping scheme.

Figure 6 Percentage of task reuse when we map MWD twice

consecutively with different TRF life time

REFERENCES
[1] T. Dumitras¸ and R. Marculescu, “On-Chip Stochastic

Communication,” in Proceedings of Design, Automation and
Test in Europe (DATE’03), 2003.

[2] R. Karp et. al. Randomized rumor spreading. In Proc. IEEE
Symp. On Foundations of Comp. Sci., 2000.

[3] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H.
Corporaal, ‘‘Run-time management of a MPSoC containing
FPGA fabric tiles,’’ IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 1, 2008.

[4] C. L. Chou, U. Y. Ogras, and R. Marculescu, “Energy- and
performance-aware incremental mapping for network on chip
with multiple voltage levels,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 27, no. 10, October 2008.

[5] K. Srinivasan, K. S. Chatha, and G. Konjevod, ‘‘Linear-
programming-based techniques for synthesis of network-on-
chip architectures,’’ IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, no. 4, pp. 407-420, 2006.

[6] K. Srinivasan, and K. S. Chatha, ‘‘A low complexity heuristic
for design of custom network-on-chip architectures,’’ in
Proceedings of the conference on Design, automation and test
in Europe (DATE’06), pp.130-135, 2006.

0

10

20

30

40

50

60

70

80

90

100

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98

Life Time

Life Time

Pr
ob

ab
ili

ty
 o

f m
ap

pi
ng

ap

pl
ic

at
io

n
%

Pr
ob

ab
ili

ty
 o

f m
ap

pi
ng

ap

pl
ic

at
io

n
%

(a) Proposed stochastic method

(b) Random walk method

1- 263mp3dec 2- 263mp3dec 3-MWD 4-MWD 5-MWD 6- 263mp3dec

1- 263mp3dec 2- 263mp3dec 3-MWD 4-MWD 5-MWD 6- 263mp3dec

0

10

20

30

40

50

60

70

80

90

100

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98

PRN/PRD PRN/PRD&TN/TD Random

R
eu

se
 %

(a) Mapping of MWD on 5x5 mesh

(b) Mapping of MWD on 10x10 mesh

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

PRN/PRD PRN/PRD&TN/TD Random

Life Time

Life Time

R
eu

se
 %

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

577

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:37 from IEEE Xplore. Restrictions apply.

