
A Field Programmable Gate Array Based Modular

Motion Control Platform

Osman Koç
#1
, Ahmet Teoman Naskali

#2
, Emrah Deniz Kunt

#3
, Asıf Şabanoviç

#4

#
 Mechatronics Engineering, Faculty of Engineering and �atural Sciences, Sabanci University

Istanbul, TURKEY
1
kocosman,

2
teoman,

3
edkunt,

4
asif@sabanciuniv.edu

Abstract— The expectations from motion control systems have

been rising day by day. As the systems become more complex,
conventional motion control systems can not achieve to meet all

the specifications with optimized results. This creates the
necessity of fundamental changes in the infrastructure of the
system. Field programmable gate array (FPGA) technology

enables the reconfiguration of the digital hardware, thus
dissolving the necessity of infrastructural changes for minor
manipulations in the hardware even if the system is deployed.

An FPGA based hardware system shrinks the size of the
hardware hence the cost. FPGAs also provide better power
ratings for the systems as well as a more reliable system with

improved performance. As a trade off, the development is rather
more difficult than software based systems, which also affects the
research and development time of the overall system.

In this paper a level of abstraction is introduced in order to
diminish the requirement of advanced hardware description
language (HDL) knowledge for implementing motion control

systems thoroughly on an FPGA. The intellectual property
library consists of synthesizable hardware modules specifically
implemented for motion control purposes. Other parts of a

motion control system, like user interface and trajectory
generation, are implemented as software functions in order to
protect the modularity of the system. There are also several

external hardware designs for interfacing and driving various
types of actuators.

Keywords— Field Programmable Gate Array, Motion Control,

hardware software co-design, modular, pantograph

I. INTRODUCTION

As today’s multi degree-of-freedom (DOF) mechatronic

systems require more sophisticated control algorithms day by

day, precision, speed and concurrency concepts gain more

importance. This dictates the processing units of the

controllers to have more capabilities than before.

Increasing the capabilities of the processors also leverages

the amount of processing power per dollar. But having a more

intelligent system with better control does not always satisfy

the customers’ demands. To reduce the costs, factories are

forced to have systems that can be quickly adapted to different

environments.

In comparison with application specific integrated circuits

(ASIC), field programmable gate arrays (FPGA) bring more

flexibility to the design with reduced production cost and

lower implementation time. On the other hand FPGAs can not

reach the performance and power rating of an ASIC, but the

differences are becoming negligible at least for motion control

purposes.

However, the microprocessors and DSPs are highly flexible

as well. Also the implementation time may be even lower than

FPGAs’ due to easier programming. But the microprocessors

and DSPs can not work fully parallel as their nature. This may

create lower loop frequencies for multi DOF systems.

Apart from the performance advantages like preventing the

pipeline stages in processors, FPGAs also have better

classifications in terms of power consumption. One of today’s

high-end FPGAs, Xilinx Virtex5, claims around 3 Watts of

power consumption, whereas Intel Core Extreme requires 60-

70 Watts of power.

There are several different solutions developed with FPGAs

commercially and in research. As Altera points out in [1],

FPGAs enable reconfiguring the hardware even if it is

deployed on the field, which can be used for implementing

different standards for industrial ethernet. Also in home

automation systems, the high operation frequency of FPGAs

decreases total-harmonic distortions in the signal as well as

the audible noise and power consumptions, which makes the

system more reliable. Xilinx’s application notes [2] and

National Instruments’ setup [3] also provides different

solutions to the motion control problem.

Several robotic applications have been implemented on an

FPGA based system experimenting different motion control

algorithms [4][5][6]. The experiments presented in [7] shows

the effect of sampling frequency on the control of robotic

manipulators.

Apart from specific application oriented platforms , there

are also projects realized to offer motion control platforms.

Platforms presented in [8] and [9] are both capable of

controlling multi DOF mechanisms completely.

This paper introduces a new modular platform for motion

control purposes. In order to have a thorough platform, all the

major parts of an industrial motion control platform is

implemented, namely the control algorithm, physical

interface, actuator driving hardware, user interface and the

reference generation.

In section II, the IP cores for physical interfacing and

control algorithm will be introduced with synthesis results.

The external hardware designs will be shown in section III.

The user interface and communication parts will be defined in

section IV, and the software library for reference calculation

and kinematics will be described in section V. The

experimental results will be shown in section VI. Finally, the

paper will be concluded in section VI.

II. IP CORE LIBRARY

The IP cores are coded in Verilog HDL in a modular

manner which can be used to build more complex modules,

hence increases the re-usability. The modules can be classified

in five different subsections; floating point arithmetic,

Laplacian, temporal, advanced and physical interface

modules. The subsections consist of modules in an ascending

manner in complexity.

A. Floating Point Arithmetic Functions

For increasing the range and precision of the calculations,

floating point number format is chosen. Instead of

implementing the IEEE 754 single precision standard, a

different floating point format has been chosen for simplicity.

For disambiguation reasons, the chosen format will be

referred as “Easy Floating Point” (EFP) format. In order to

provide compatibility between formats, converters have also

been implemented. The main differences between both

formats are the implied bit and the exponent bias.

Apart from the floating point converters, two blocks for

converting from and to integer format have been implemented

as well. These arithmetic and conversion blocks constitute the

fundamentals for implementing motion control algorithms.

The adder/subtractor block checks the sign bits of the op

erands to determine the operation. The difference between

the exponents results the amount of shift right operations for

the mantissa. After the corresponding operation is done, the

resulting number is normalized according to the EFP format.

The multiplier block adds the exponents, and uses four

hardware multipliers to multiply the mantissas. The resulting

mantissa is normalized depending on its MSB.

The division block is implemented as a finite state machine

(FSM) with 23 states. The logical block diagram is shown in

Fig. 1. The mantissas of the operands are parsed and written to

dividend and divisor registers if they pass from the

normalization checks. The divisor is compared to the

dividend, and if it is smaller, logic-1 is written to the

corresponding bit of the result register. In this case, the

dividend for the next state is gathered from the subtraction of

current dividend and divisor. Before the passing to the next

state, the divisor is shifted right one bit.

Fig. 1. The structure of floating point division unit.

B. Laplacian Functions

The mathematical models of physical structures are

continuous functions or Laplacian functions. In order to use

and process these functions in a digital medium, we need to

find or write the digital equivalents of these functions. Before

going deeper into the implemented blocks, it would be more

appropriate to compare different types of approximations.

As studies show, newly introduced methods like, Al-Alaoui

or implicit Adams provide superior performance than the

classical methods as they are using different weighted

interpolations of the Euler and Tustin methods [10]. Implicit

Adams have been chosen as the Laplace approximation

method; as it provides smoother response than Euler or

Tustin, and easier to calculate than Al-Alaoui method.

The blocks in this subsection are implemented by using the

aforementioned floating point arithmetic units. In order to

consume little resources as possible, the blocks are

implemented in a FSM manner. The implemented functions

are derivative (s), integral (1/s), low pass filter (g/s+g) and

real derivative (sg/s+g).

The derivative and integral functions consists of a 5 state

FSM, which uses one EFP adder/subtractor and an EFP

multiplier as resource. The low pass filter and real derivative

blocks are implemented in a 34 state FSM, which also uses an

EFP division block in addition to the previous blocks. The

block structure of real derivative is shown in Fig. 2.

FSM

23-states

Normalize

XOR

man1>man2

man1=man1-man2

man2>>1

Append

sign1 exp1[7:0] man1[23:0]

SUB

sign2 exp2[7:0] man2[23:0]

sign exp[7:0] man[23:0]

Fig. 2. The structure of real derivative block.

C. Temporal Functions

As the data is processed through time, algorithms may use

the previous samples. In order to manipulate the timing of

data, we need the variable delay block, which delays the input

data, regardless of the number format, to its output with a

given amount of cycles.

The other block is the synchronizer block, which works like

a secondary clock source, enabling other blocks to input data

at the same time as its name implies. This block can also be

used to set the loop frequency of the overall algorithm.

D. Advanced Functions

As it has been mentioned before, in order to satisfy the

concept of modularity, these advanced blocks consist of

combinations of previously introduced basic blocks. The

frequent use of these blocks makes them compulsory to

implement. Due to the optimizations done in the formula,

these combined blocks are better in performance and area

compared to the cascaded implementations.

The Proportional-Integral-Derivative (PID) control is the

most popular method in control theory. The chosen method

uses separated gains in order to ease the trial-error based

parameter tuning and the equation is given in (1).

 ���� = ��	��� + �� � 	��� + ��

�

��
	���

�

�
 (1)

And the discretized version of the formula is given in (2).

 ���� = ��	��� + ��
�������� �������� ������������

�����
+

 ��
�������� �������� �������

�
 (2)

The PID block is implemented with a 35-state FSM, which

inputs the Kp, Ki and Kd gains from the user and the error

signal from the system. All the calculations in the block are

done in EFP format, since the block uses the one of each EFP

arithmetic units as a resource.

One other implemented advanced block is disturbance

observer which was introduced in [11]. The disturbance

observer block is used to estimate the external disturbances

acting on the system and feeds it back in order to eliminate the

existing disturbance from the system, thus increasing the

robustness of the system in noisy environments.

The constants of the actuator, like the inertia and the torque,

and the low pass filter cut off frequency are given by the user

to the system. The block is implemented in 63-states, and uses

one of each EFP arithmetic units as resource.

As the last and the most advanced block, a motion

controller block is implemented. The block consists of a PID

controller, a disturbance observer, and a real derivative which

is used for estimating the velocity from the position input. The

required parameters and the constants for the system are

gained from the user. The block is implemented with 72-

states, in order to ease the control part of a motion control

application. The structure of the block is shown in Fig. 3.

Fig. 3. The structure of motion controller block.

E. Physical Interface Blocks

Physical interface blocks are the bridge between the

external hardwares and the control modules, which also makes

some of them hardware specific modules.

The quadruple encoder module takes conventional A and B

encoder signals, which differ 90 degrees between themselves,

and takes the inverse of both signals in order to double the

precision of the encoder signal. The block seeks specific

signal state transitions in order to increment or decrement the

counter value. The user can set the pulse-to-position ratio

which can be used to receive the position of the actuator in

metric scale like millimeters, degrees or radians. The module

also has limit and set value parameters which can be used in

hardware or software for homing purposes.

Pulse width modulation (PWM) is a method used for

outputting analog values by digital signals. The PWM signal

can be used to source drivers’ reference inputs. Two different

versions of this block are implemented in order to cover most

of commercial drivers which works with PWM signals. The

only difference between the modules is the direction signal

being extracted as an external signal or not. The frequency

and the precision of the PWM signal are linearly dependent

FSM

34-states

FloatAdd/Sub

FloatMult

FloatDiv

FromIEEE754

dataIn[31:0]

Enable

Op1[31:0]

Op1[31:0]

Op1[31:0]

Op2[31:0]

Op2[31:0]

Op2[31:0]

G[31:0]

(User)

dataOut[31:0]

Res[31:0]

Res[31:0]

Res[31:0]

FSM

72-state

FloatAdd/Sub

FloatMult

FloatDiv

Error[31:0]

pos[31:0]

Op1[31:0]

Op1[31:0]

Op1[31:0]

Op2[31:0]

Op2[31:0]

Op2[31:0]

G[31:0]

(User)

fDis[31:0]

Res[31:0]

Res[31:0]

Res[31:0]

FromIEEE754

FromIEEE754

FromIEEE754

FromIEEE754

FromIEEE754

FromIEEE754

Enable

Kp[31:0]

(User)

Ki[31:0]

(User)

Kd[31:0]

(User)

Ktn[31:0]

(User)

Jn[31:0]

(User)

PID

DOB

VOB

(RealDer)

uRef[31:0]

and can be adjusted according to the driver circuitry by

manipulating the parameter in the hardware code.

These two are the fundamental modules for physical

interfacing, hence another module is implemented which

combines the two, namely actuator interface module.

The amount of FPGA resource accommodation of each

block implemented in the library is given in Table 1.

TABLE I
FPGA UTILIZATION OF THE IMPLEMENTED BLOCKS

Name
of

Slices

of

FF’s

of

LUT’s

of

Mult
Speed

 XC2VP30 13696 27392 27392 136 100MHz

FromInteger 165 - 298 - Comb.

ToInteger 117 - 215 - Comb.

FromIEEE754 5 - 9 - Comb.

ToIEEE754 4 - 8 - Comb.

FloatAddSub 272 - 493 - Comb.

FloatMult 50 - 92 4 Comb.

FloatDividor 184 151 339 - 23-states

Derivative 545 241 1057 4 5-states

Low Pass Filter 892 606 1703 4 34-states

Real Derivative 894 639 1688 4 34-states

Integral 516 209 1000 4 5-states

Variable Delay 51 81 34 - Seq.

Synchronizer 22 33 42 - Seq.

PID controller 1199 894 2200 4 35-states

Dist. Observer 1040 676 1988 4 63-states

M. Controller 1599 1046 3044 4 72-states

QuadEncoder 244 36 444 4 Comb.

PWMBias 44 31 78 - Seq.

PWMDirection 33 12 60 - Seq.

ActuatorInterface 292 71 538 4 Seq.

III. EXTERNAL HARDWARE DESIGNS

Most of the commercial FPGA boards do not include power

stages, which are required for driving actuators. There are

various types of actuators with different ways to drive.

Commercial drivers are referenced by PWM or analog signal.

The PWM signal is already present in the system; therefore a

PWM-to-analog converter has been designed in order for the

system to be compatible with any kind of commercial

actuator. The input stage consists of two cascaded RC low-

pass filters, which is followed by an offset and an

amplification stage. The hardware’s output range is ±10V, 0V

being the output of a PWM signal with %50 duty cycle. There

is also an external direction signal included in the hardware

which may be required for some drivers. The encoder

interface on the hardware is standardized with the designed

adapters for various types of encoder connectors. The

schematic of the design is shown in Fig. 3.

Fig. 3. Schematic of PWM to analog converter

Two different boards, for different DC motor sizes, are

designed. The one for low power DC motors is based on L298

chip, which limits the circuit up to 46V and 2Amps. The high

power board is based on HIP4082 gate driver IC; therefore the

power rating of this board is dependent on the driven

MOSFET’s.

For driving solenoid based drivers, Darlington array based

drivers are designed and can be activated by the logic level

output pins of the FPGA.

In order to read industrial switches like Hall Effect, a basic

two cascaded resistor voltage divider is sufficient.

Lastly, an extension board is designed, which utilizes all of

the user GPIO pins present on the FPGA board. The extension

board has 10 input stages for industrial switches, 10

Darlington array based output stages, and 10 sockets for PAC

circuits. This extension board is specific for XUPV2P board.

IV. COMMUNICATION

Communication can be separated into two parts; hardware

and software. Since a commercial FPGA board is used, the

onboard communication hardwares are used. RS232 is used

for low-speed and ethernet is used for high-speed

communication.

The onboard MAX3388 chip converts the logic level

signals to RS232 level. The serial communication is very easy

to use, as it is set as the standard input output communication

medium in the software; therefore it is preferred for

debugging purposes.

The LXT972A chip installed onboard supports IEEE802.3

standard for 10/100 Mbit/sec communication. The chip

provides standard Media Independent Interface (MII) for easy

attachment to 10/100 Media Access Controllers (MAC). The

full-duplex operation mode can be selected between auto-

negotiation, parallel detection or manual control. The physical

layer transceiver (PHY) also provides all functions of the

physical coding sub-layer (PCS), the physical media

attachment (PMA) sub-layer, and the physical media

dependent (PMD) sub-layer for 100 Mb/s connections. The
board also includes a Dallas Semiconductor DS2401 Silicon

Serial Number. This provides a unique identity for each board.

The chip includes a 64-bit ROM with a 48-bit serial number,

an 8-bit CRC, and an 8-bit device family code. The label on

the board has the registered Ethernet MAC address.

V. SOFTWARE LIBRARY

The overall system does not only consist of hardware part,

but also some elements which have been implemented in

software. The written software runs on the embedded IBM

PowerPC 405 processor inside the FPGA. The PowerPC

exists as hardware inside the FPGA; therefore it does not

consume any of the resources present in FPGA, but it creates

convenience for some parts of the implementation.

Aforementioned communication mediums are handled in

software. While the software for RS232 communication is

pretty straightforward, Ethernet communication is a bit more

challenging. For Ethernet communication, an external open

source library named Light Weight IP [12] is implemented.

Using the features provided by the library, a communication

grammar has been built upon. The library intends to ease the

usage of the system for accessing the hardware modules.

A graphical user interface (GUI) has been developed in C#

for Ethernet communication. Via this GUI a user can

command and monitor the system for specific data.

The inverse kinematics of the mechanism which will be

controlled is implemented in software also. The main reason

for implementing the kinematics in the software is, the

overhead brought by implementing all the functions in

hardware. Kinematics consists of several different

mathematical functions like trigonometric, logarithmic,

exponential and polynomial functions. Some of the basic

functions can be approximated with different methods like

Taylor expansion, but logarithmic and exponential functions

are more complicated to approximate.

Each function in the software has been written in a library

form. This enables the future users to understand the code

easier and minimizing the amount of code changes for

different implementations. All the codes have been written in

C, and built by using Xilinx Embedded Development Kit tool.

VI. EXPERIMENTS

From a wider perspective, motion control systems consist of

theory and functionality. In order to test both, two

experiments were made for each perspective.

In order to prove the robustness that the system gains by

using a disturbance observer, the motion controller module

has been compared to the PID module. PID control may need

very fine parameter tuning in several cases. The trial-and-error

period consumes a lot of time. There have been proposed

methods for parameter tuning, like Zeigler-Nichols, but

unfortunately it only provides shallow tuning without

considering the system dynamics. The error that the controller

fails to handle, like overshoot or steady-state error, are treated

as disturbance and compensated by the observer. In order to

test and validate these blocks a simple setup has been

constructed. The setup consists of Maxon motors with

graphite brushes. As gears damp the actuators and increases

stability, in order to observe the differences explicitly,

gearless motors have been chosen. Two motors are connected

by a belt from their shafts, where one motor is controlled, and

the other is supplied with a constant current in order to create

disturbance. The step response of the system with PID and

motion controllers with external disturbances can be found in

Fig. 4 and Fig. 5.

Fig. 4. Step response of PID controller with external disturbance

Fig. 5. Step response of motion controller with external disturbance.

The oscillations in Fig. 4 are caused by the lack of tension

in the belt. As it can be seen clearly, the observer enhances the

controller’s ability to compensate the external disturbance, as

it is in this case the elasticity of the belt. Given a step

reference of 1000 pulses, PID controller results 15 pulse

overshoot, and the system oscillates in steady state with

amplitude of ±2 pulses, while the motion controller results 6

pulses overshoot with no steady-state error.

While this experiment proves the functionality of the IP

cores, in order to measure the precision of the overall system a

pantograph mechanism has been chosen. Pantograph was first

developed to enlarge or shrink the mimicking motion between

each end. The first design had two end effectors. The design

was manipulated over the years and converges to the

mechanism that we know as pantograph and started to be used

in many different application fields. Today it is one of the

most popular planar parallel mechanisms.

The pantograph works in the XY Cartesian plane,

transforming the rotation of the actuators to linear motion;

therefore the trajectory of the end effecter would be given in

XY coordinates, by the user or generated trajectory. This

creates the necessity for the derivation of the inverse

kinematics of the mechanism. Using the notations in the

configuration space, the forward and inverse kinematics of the

mechanism is derived from [13].

In the software, pantograph is defined as a structure in order

to change the constants, like link lengths, easily. This also

makes the software structure modular and scalable. The GUI

for the pantograph shows the end effecter positions. The

parameters for the motion controller hardware block are also

tuned via GUI. A motion controller block is used for each

actuator. The synchronizer block is set to interrupt each

motion controller block in every hundred cycles, which

determines the frequency of the control loop as 1MHz. The

limit switches for the XY actuators are used for calibration

and homing purposes. After the limit switch has been reached,

the positions are set to zero, and ±60 degrees have been given

as initial reference for the actuators. The actuators used in the

mechanism are Faulhaber brushless DC motors, with zero-

backlash gearboxes (ratio 76:1) and embedded incremental

encoder. Mid-Power H-Bridge circuit is used to drive the

actuators. Link lengths of the utilized pantograph are 40mm,

and the distance between the actuators are 30mm.

A square is given as a sample trajectory with 1cm edge

dimension. The trajectory versus position is shown in Fig. 6;

Fig. 6.Tracking results for a square trajectory.

The experimental setup accommodates 68% of the FPGA

resources, consuming 3 Watts excluding the supply for the

actuators. The error of the mechanism is measured to be 40

microns in average, and 70 microns maximum. The overall

setup is shown in Fig 7.

VII. CONCLUSION

The main aim of this paper was to propose an FPGA based

motion control platform which offers an easy-to-build system,

due to the given hardware and software libraries. The libraries

Fig. 7.Overview of the system.

also allow creating custom functionalities without advanced

hardware description language knowledge. The experiments

are setup by using both hardware and software libraries, thus

the results validate the platforms functionality. The

functionalities are designed to cover the fundamentals of

motion control theory.

The performance comparison of the proposed system can be

seen more clearly as the implemented applications require

high sampling rates, and high loop frequencies due to the

physical hardware structure of the system and parallel

processing capabilities. The energy efficiency of the system is

higher than other similar platforms, as the system does not

supply any redundant parts, and works at a lower clock

frequency. The hardware libraries can be synthesized and

compiled for various FPGA’s with different technologies, thus

they are technology independent.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Industry of

Turkey, under SanTez project 00183.STZ.2007-2.

REFERENCES

[1]Altera, Is Motion control technology moving from controllers to FPGA’s?,

Embedded Control Europe Magazine, pp. 24-26, Octorber, 2008

[2]National Instruments, Creating Custom Motion Control and Drive
electronics with FPGA based system, 2010

[3] Xilinx, FPGA Motor Control Reference Design, 2005

[4]J. S. Kim, Hardware Implementation of �onlinear PID Controller with
FPGA Based on Floating Point for 6-DOF Manipulator Robot Arm,

International Conference on Control, Automation and Systems, Oct. 2007

[5] J. S. Kim, Hardware Implementation of a �eural �etwork Controller on
FPGA for a Humanoid Robot Arm, Proc. IEEE/ASMEInternational

Conference on Advanced Intelligent Mechatronics, July 2008

[6] B. S. Kariyappa, FPGA Based Speed Control of AC Servomotor Using
Sinusoidal PWM, IJCSNS International Journal of Computer Science and

Network Security, vol.8 no.10, October 2008

[7] E. Ishii, Improvement of Performance in Bilateral Teleoperation by Using
FPGA, AMC, 2006

[8] X. Shao, Development of an FPGA-Based Motion Control ASIC for
Robotic Manipulators, Proc. 6th World Congress on Intelligent Control and

Automation, June 2006

[9]J. U. Cho, An FPGA-Based Multiple-Axis Motion Control Chip, IEEE
Transactions on Industrial Electronics, vol. 56, no. 3, March 2009

[10] R. S. Barbosa, Time domain design of fractional differintegrators using

least-squares, Signal Processing 86, pp. 2567–2581, 2006
[11] I.Godler, H.Honda and K.Ohnishi, Design Guidelines for Disturbance

observer’s Filter in Discrete Time, AMC2002, The 7th IEEE International

Workshop on Advanced Motion Control, pp. 390-395, 2002.
[12] Xilinx Inc., LightWeight IP (lwIP) Application Examples, June 2009

[13] G. Campion, The Pantograph Mk-II: A Haptic Instrument, Proc. IROS

2005, IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 723-728

