19 research outputs found

    An improved multiple classifier combination scheme for pattern classification

    Get PDF
    Combining multiple classifiers are considered as a new direction in the pattern recognition to improve classification performance. The main problem of multiple classifier combination is that there is no standard guideline for constructing an accurate and diverse classifier ensemble. This is due to the difficulty in identifying the number of homogeneous classifiers and how to combine the classifier outputs. The most commonly used ensemble method is the random strategy while the majority voting technique is used as the combiner. However, the random strategy cannot determine the number of classifiers and the majority voting technique does not consider the strength of each classifier, thus resulting in low classification accuracy. In this study, an improved multiple classifier combination scheme is proposed. The ant system (AS) algorithm is used to partition feature set in developing feature subsets which represent the number of classifiers. A compactness measure is introduced as a parameter in constructing an accurate and diverse classifier ensemble. A weighted voting technique is used to combine the classifier outputs by considering the strength of the classifiers prior to voting. Experiments were performed using four base classifiers, which are Nearest Mean Classifier (NMC), Naive Bayes Classifier (NBC), k-Nearest Neighbour (k-NN) and Linear Discriminant Analysis (LDA) on benchmark datasets, to test the credibility of the proposed multiple classifier combination scheme. The average classification accuracy of the homogeneous NMC, NBC, k-NN and LDA ensembles are 97.91%, 98.06%, 98.09% and 98.12% respectively. The accuracies are higher than those obtained through the use of other approaches in developing multiple classifier combination. The proposed multiple classifier combination scheme will help to develop other multiple classifier combination for pattern recognition and classification

    Optimization based clustering and classification algorithms in analysis of microarray gene expression data sets

    Get PDF
    Doctor of PhilosophyBioinformatics and computational biology are relatively new areas that involve the use of different techniques including computer science, informatics, biochemistry, applied math and etc., to solve biological problems. In recent years the development of new molecular genetics technologies, such as DNA microarrays led to the simultaneous measurement of expression levels of thousands and even tens of thousands of genes. Microarray gene expression technology has facilitated the study of genomic structure and investigation of biological systems. Numerical output of this technology is shown as microarray gene expression data sets. These data sets contain a very large number of genes and a relatively small number of samples and their precise analysis requires a robust and suitable computer software. Due to this, only a few existing algorithms are applicable to them, so more efficient methods for solving clustering, gene selection and classification problems of gene expression data sets are required and those methods need to be computationally applicable and less expensive. The aim of this thesis is to develop new algorithms for solving clustering, gene selection and data classification problems on gene expression data sets. Clustering in gene expression data sets is a challenging problem. The increasing use of DNA microarray-based tumour gene expression profiles for cancer diagnosis requires more efficient methods to solve clustering problems of these profiles. Different algorithms for clustering of genes have been proposed, however few algorithms can be applied to the clustering of samples. k-means algorithm, among very few clustering algorithms is applicable to microarray gene expression data sets, however these are not efficient for solving clustering problems when the number of genes is thousands and this algorithm is very sensitive to the choice of a starting point. Additionally, when the number of clusters is relatively large, this algorithm gives local minima which can differ significantly from the global solution. Over the last several years different approaches have been proposed to improve global ii Abstract Abstract search properties of k-means algorithm. One of them is the global k-means algorithm, however this algorithm is not efficient when data are sparse. In this thesis we developed a new version of the global k-means algorithm, the modified global k-means algorithm which is effective for solving clustering problems in gene expression data sets. In a microarray gene expression data set, in many cases only a small fraction of genes are informative whereas most of them are non-informative and make noise. Therefore the development of gene selection algorithms that allow us to remove as many non-informative genes as possible is very important. In this thesis we developed a new overlapping gene selection algorithm. This algorithm is based on calculating overlaps of different genes. It considerably reduces the number of genes and is efficient in finding a subset of informative genes. Over the last decade different approaches have been proposed to solve supervised data classification problems in gene expression data sets. In this thesis we developed a new approach which is based on the so-called max-min separability and is compared with the other approaches. The max-min separability algorithm is an equivalent of piecewise linear separability. An incremental algorithm is presented to compute piecewise linear functions separating two sets. This algorithm is applied along with a special gene selection algorithm. In this thesis, all new algorithms have been tested on 10 publicly available gene expression data sets and our numerical results demonstrate the efficiency of the new algorithms that were developed in the framework of this researc

    Genetic algorithm-neural network: feature extraction for bioinformatics data.

    Get PDF
    With the advance of gene expression data in the bioinformatics field, the questions which frequently arise, for both computer and medical scientists, are which genes are significantly involved in discriminating cancer classes and which genes are significant with respect to a specific cancer pathology. Numerous computational analysis models have been developed to identify informative genes from the microarray data, however, the integrity of the reported genes is still uncertain. This is mainly due to the misconception of the objectives of microarray study. Furthermore, the application of various preprocessing techniques in the microarray data has jeopardised the quality of the microarray data. As a result, the integrity of the findings has been compromised by the improper use of techniques and the ill-conceived objectives of the study. This research proposes an innovative hybridised model based on genetic algorithms (GAs) and artificial neural networks (ANNs), to extract the highly differentially expressed genes for a specific cancer pathology. The proposed method can efficiently extract the informative genes from the original data set and this has reduced the gene variability errors incurred by the preprocessing techniques. The novelty of the research comes from two perspectives. Firstly, the research emphasises on extracting informative features from a high dimensional and highly complex data set, rather than to improve classification results. Secondly, the use of ANN to compute the fitness function of GA which is rare in the context of feature extraction. Two benchmark microarray data have been taken to research the prominent genes expressed in the tumour development and the results show that the genes respond to different stages of tumourigenesis (i.e. different fitness precision levels) which may be useful for early malignancy detection. The extraction ability of the proposed model is validated based on the expected results in the synthetic data sets. In addition, two bioassay data have been used to examine the efficiency of the proposed model to extract significant features from the large, imbalanced and multiple data representation bioassay data

    Algorithms for internal validation clustering measures in the post genomic era.

    Get PDF
    Inferring cluster structure in microarray datasets is a fundamental task for the -omic sciences. A fundamental question in Statistics, Data Analysis and Classification, is the prediction of the number of clusters in a dataset, usually established via internal validation measures. Despite the wealth of internal measures available in the literature, new ones have been recently proposed, some of them specifically for microarray data. In this dissertation, a study of internal validation measures is given, paying particular attention to the stability based ones. Indeed, this class of measures is particularly prominent and promising in order to have a reliable estimate the number of clusters in a dataset. For those measures, a new general algorithmic paradigm is proposed here that highlights the richness of measures in this class and accounts for the ones already available in the literature. Moreover, some of the most representative validation measures are also considered. Experiments on 12 benchmark datasets are performed in order to assess both the intrinsic ability of a measure to predict the correct number of clusters in a dataset and its merit relative to the other measures. The main result is a hierarchy of internal validation measures in terms of precision and speed, highlighting some of their merits and limitations not reported before in the literature. This hierarchy shows that the faster the measure, the less accurate it is. In order to reduce the time performance gap between the fastest and the most precise measures, the technique of designing fast approximation algorithms is systematically applied. The end result is a speed-up of many of the measures studied here that brings the gap between the fastest and the most precise within one order of magnitude in time, with no degradation in their prediction power. Prior to this work, the time gap was at least two orders of magnitude

    Genetic algorithm-neural network : feature extraction for bioinformatics data

    Get PDF
    With the advance of gene expression data in the bioinformatics field, the questions which frequently arise, for both computer and medical scientists, are which genes are significantly involved in discriminating cancer classes and which genes are significant with respect to a specific cancer pathology. Numerous computational analysis models have been developed to identify informative genes from the microarray data, however, the integrity of the reported genes is still uncertain. This is mainly due to the misconception of the objectives of microarray study. Furthermore, the application of various preprocessing techniques in the microarray data has jeopardised the quality of the microarray data. As a result, the integrity of the findings has been compromised by the improper use of techniques and the ill-conceived objectives of the study. This research proposes an innovative hybridised model based on genetic algorithms (GAs) and artificial neural networks (ANNs), to extract the highly differentially expressed genes for a specific cancer pathology. The proposed method can efficiently extract the informative genes from the original data set and this has reduced the gene variability errors incurred by the preprocessing techniques. The novelty of the research comes from two perspectives. Firstly, the research emphasises on extracting informative features from a high dimensional and highly complex data set, rather than to improve classification results. Secondly, the use of ANN to compute the fitness function of GA which is rare in the context of feature extraction. Two benchmark microarray data have been taken to research the prominent genes expressed in the tumour development and the results show that the genes respond to different stages of tumourigenesis (i.e. different fitness precision levels) which may be useful for early malignancy detection. The extraction ability of the proposed model is validated based on the expected results in the synthetic data sets. In addition, two bioassay data have been used to examine the efficiency of the proposed model to extract significant features from the large, imbalanced and multiple data representation bioassay data.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Efficient feature reduction and classification methods

    Get PDF
    Durch die steigende Anzahl verfügbarer Daten in unterschiedlichsten Anwendungsgebieten nimmt der Aufwand vieler Data-Mining Applikationen signifikant zu. Speziell hochdimensionierte Daten (Daten die über viele verschiedene Attribute beschrieben werden) können ein großes Problem für viele Data-Mining Anwendungen darstellen. Neben höheren Laufzeiten können dadurch sowohl für überwachte (supervised), als auch nicht überwachte (unsupervised) Klassifikationsalgorithmen weitere Komplikationen entstehen (z.B. ungenaue Klassifikationsgenauigkeit, schlechte Clustering-Eigenschaften, …). Dies führt zu einem Bedarf an effektiven und effizienten Methoden zur Dimensionsreduzierung. Feature Selection (die Auswahl eines Subsets von Originalattributen) und Dimensionality Reduction (Transformation von Originalattribute in (Linear)-Kombinationen der Originalattribute) sind zwei wichtige Methoden um die Dimension von Daten zu reduzieren. Obwohl sich in den letzten Jahren vielen Studien mit diesen Methoden beschäftigt haben, gibt es immer noch viele offene Fragestellungen in diesem Forschungsgebiet. Darüber hinaus ergeben sich in vielen Anwendungsbereichen durch die immer weiter steigende Anzahl an verfügbaren und verwendeten Attributen und Features laufend neue Probleme. Das Ziel dieser Dissertation ist es, verschiedene Fragenstellungen in diesem Bereich genau zu analysieren und Verbesserungsmöglichkeiten zu entwickeln. Grundsätzlich, werden folgende Ansprüche an Methoden zur Feature Selection und Dimensionality Reduction gestellt: Die Methoden sollten effizient (bezüglich ihres Rechenaufwandes) sein und die resultierenden Feature-Sets sollten die Originaldaten möglichst kompakt repräsentieren können. Darüber hinaus ist es in vielen Anwendungsgebieten wichtig, die Interpretierbarkeit der Originaldaten beizubehalten. Letztendlich sollte der Prozess der Dimensionsreduzierung keinen negativen Effekt auf die Klassifikationsgenauigkeit haben - sondern idealerweise, diese noch verbessern. Offene Problemstellungen in diesem Bereich betreffen unter anderem den Zusammenhang zwischen Methoden zur Dimensionsreduzierung und der resultierenden Klassifikationsgenauigkeit, wobei sowohl eine möglichst kompakte Repräsentation der Daten, als auch eine hohe Klassifikationsgenauigkeit erzielt werden sollen. Wie bereits erwähnt, ergibt sich durch die große Anzahl an Daten auch ein erhöhter Rechenaufwand, weshalb schnelle und effektive Methoden zur Dimensionsreduzierung entwickelt werden müssen, bzw. existierende Methoden verbessert werden müssen. Darüber hinaus sollte natürlich auch der Rechenaufwand der verwendeten Klassifikationsmethoden möglichst gering sein. Des Weiteren ist die Interpretierbarkeit von Feature Sets zwar möglich, wenn Feature Selection Methoden für die Dimensionsreduzierung verwendet werden, im Fall von Dimensionality Reduction sind die resultierenden Feature Sets jedoch meist Linearkombinationen der Originalfeatures. Daher ist es schwierig zu überprüfen, wie viel Information einzelne Originalfeatures beitragen. Im Rahmen dieser Dissertation konnten wichtige Beiträge zu den oben genannten Problemstellungen präsentiert werden: Es wurden neue, effiziente Initialisierungsvarianten für die Dimensionality Reduction Methode Nonnegative Matrix Factorization (NMF) entwickelt, welche im Vergleich zu randomisierter Initialisierung und im Vergleich zu State-of-the-Art Initialisierungsmethoden zu einer schnelleren Reduktion des Approximationsfehlers führen. Diese Initialisierungsvarianten können darüber hinaus mit neu entwickelten und sehr effektiven Klassifikationsalgorithmen basierend auf NMF kombiniert werden. Um die Laufzeit von NMF weiter zu steigern wurden unterschiedliche Varianten von NMF Algorithmen auf Multi-Prozessor Systemen vorgestellt, welche sowohl Task- als auch Datenparallelismus unterstützen und zu einer erheblichen Reduktion der Laufzeit für NMF führen. Außerdem wurde eine effektive Verbesserung der Matlab Implementierung des ALS Algorithmus vorgestellt. Darüber hinaus wurde eine Technik aus dem Bereich des Information Retrieval -- Latent Semantic Indexing -- erfolgreich als Klassifikationsalgorithmus für Email Daten angewendet. Schließlich wurde eine ausführliche empirische Studie über den Zusammenhang verschiedener Feature Reduction Methoden (Feature Selection und Dimensionality Reduction) und der resultierenden Klassifikationsgenauigkeit unterschiedlicher Lernalgorithmen präsentiert. Der starke Einfluss unterschiedlicher Methoden zur Dimensionsreduzierung auf die resultierende Klassifikationsgenauigkeit unterstreicht dass noch weitere Untersuchungen notwendig sind um das komplexe Zusammenspiel von Dimensionsreduzierung und Klassifikation genau analysieren zu können.The sheer volume of data today and its expected growth over the next years are some of the key challenges in data mining and knowledge discovery applications. Besides the huge number of data samples that are collected and processed, the high dimensional nature of data arising in many applications causes the need to develop effective and efficient techniques that are able to deal with this massive amount of data. In addition to the significant increase in the demand of computational resources, those large datasets might also influence the quality of several data mining applications (especially if the number of features is very high compared to the number of samples). As the dimensionality of data increases, many types of data analysis and classification problems become significantly harder. This can lead to problems for both supervised and unsupervised learning. Dimensionality reduction and feature (subset) selection methods are two types of techniques for reducing the attribute space. While in feature selection a subset of the original attributes is extracted, dimensionality reduction in general produces linear combinations of the original attribute set. In both approaches, the goal is to select a low dimensional subset of the attribute space that covers most of the information of the original data. During the last years, feature selection and dimensionality reduction techniques have become a real prerequisite for data mining applications. There are several open questions in this research field, and due to the often increasing number of candidate features for various application areas (e.\,g., email filtering or drug classification/molecular modeling) new questions arise. In this thesis, we focus on some open research questions in this context, such as the relationship between feature reduction techniques and the resulting classification accuracy and the relationship between the variability captured in the linear combinations of dimensionality reduction techniques (e.\,g., PCA, SVD) and the accuracy of machine learning algorithms operating on them. Another important goal is to better understand new techniques for dimensionality reduction, such as nonnegative matrix factorization (NMF), which can be applied for finding parts-based, linear representations of nonnegative data. This ``sum-of-parts'' representation is especially useful if the interpretability of the original data should be retained. Moreover, performance aspects of feature reduction algorithms are investigated. As data grow, implementations of feature selection and dimensionality reduction techniques for high-performance parallel and distributed computing environments become more and more important. In this thesis, we focus on two types of open research questions: methodological advances without any specific application context, and application-driven advances for a specific application context. Summarizing, new methodological contributions are the following: The utilization of nonnegative matrix factorization in the context of classification methods is investigated. In particular, it is of interest how the improved interpretability of NMF factors due to the non-negativity constraints (which is of central importance in various problem settings) can be exploited. Motivated by this problem context two new fast initialization techniques for NMF based on feature selection are introduced. It is shown how approximation accuracy can be increased and/or how computational effort can be reduced compared to standard randomized seeding of the NMF and to state-of-the-art initialization strategies suggested earlier. For example, for a given number of iterations and a required approximation error a speedup of 3.6 compared to standard initialization, and a speedup of 3.4 compared to state-of-the-art initialization strategies could be achieved. Beyond that, novel classification methods based on the NMF are proposed and investigated. We can show that they are not only competitive in terms of classification accuracy with state-of-the-art classifiers, but also provide important advantages in terms of computational effort (especially for low-rank approximations). Moreover, parallelization and distributed execution of NMF is investigated. Several algorithmic variants for efficiently computing NMF on multi-core systems are studied and compared to each other. In particular, several approaches for exploiting task and/or data-parallelism in NMF are studied. We show that for some scenarios new algorithmic variants clearly outperform existing implementations. Last, but not least, a computationally very efficient adaptation of the implementation of the ALS algorithm in Matlab 2009a is investigated. This variant reduces the runtime significantly (in some settings by a factor of 8) and also provides several possibilities to be executed concurrently. In addition to purely methodological questions, we also address questions arising in the adaptation of feature selection and classification methods to two specific application problems: email classification and in silico screening for drug discovery. Different research challenges arise in the contexts of these different application areas, such as the dynamic nature of data for email classification problems, or the imbalance in the number of available samples of different classes for drug discovery problems. Application-driven advances of this thesis comprise the adaptation and application of latent semantic indexing (LSI) to the task of email filtering. Experimental results show that LSI achieves significantly better classification results than the widespread de-facto standard method for this special application context. In the context of drug discovery problems, several groups of well discriminating descriptors could be identified by utilizing the ``sum-of-parts`` representation of NMF. The number of important descriptors could be further increased when applying sparseness constraints on the NMF factors

    Machine Learning Approaches for Breast Cancer Survivability Prediction

    Get PDF
    Breast cancer is one of the leading causes of cancer death in women. If not diagnosed early, the 5-year survival rate of patients is just about 26\%. Furthermore, patients with similar phenotypes can respond differently to the same therapies, which means the therapies might not work well for some of them. Identifying biomarkers that can help predict a cancer class with high accuracy is at the heart of breast cancer studies because they are targets of the treatments and drug development. Genomics data have been shown to carry useful information for breast cancer diagnosis and prognosis, as well as uncovering the disease’s mechanism. Machine learning methods are powerful tools to find such information. Feature selection methods are often utilized in supervised learning and unsupervised learning tasks to deal with data containing a large number of features in which only a small portion of them are useful to the classification task. On the other hand, analyzing only one type of data, without reference to the existing knowledge about the disease and the therapies, might mislead the findings. Effective data integration approaches are necessary to uncover this complex disease. In this thesis, we apply and develop machine learning methods to identify meaningful biomarkers for breast cancer survivability prediction after a certain treatment. They include applying feature selection methods on gene-expression data to derived gene-signatures, where the initial genes are collected concerning the mechanism of some drugs used breast cancer therapies. We also propose a new feature selection method, named PAFS, and apply it to discover accurate biomarkers. In addition, it has been increasingly supported that, sub-network biomarkers are more robust and accurate than gene biomarkers. We proposed two network-based approaches to identify sub-network biomarkers for breast cancer survivability prediction after a treatment. They integrate gene-expression data with protein-protein interactions during the optimal sub-network searching process and use cancer-related genes and pathways to prioritize the extracted sub-networks. The sub-network search space is usually huge and many proteins interact with thousands of other proteins. Thus, we apply some heuristics to avoid generating and evaluating redundant sub-networks
    corecore