
DISSERTATION

Titel der Dissertation

Efficient Feature Reduction and
Classification Methods

Applications in Drug Discovery and Email Categorization

Verfasser

Mag. Andreas Janecek

angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, im Dezember 2009

Studienkennzahl lt. Studienblatt: A 786 880

Dissertationsgebiet lt. Studienblatt: Informatik

Betreuer: Priv.-Doz. Dr. Wilfried Gansterer

2

Contents

1 Introduction 11

1.1 Motivation and Problem Statement 11

1.2 Synopsis . 12

1.3 Summary of Publications . 13

1.4 Notation . 14

1.5 Acknowledgements . 14

I Theoretical Background 15

2 Data Mining and Knowledge Discovery 17

2.1 Definition of Terminology . 18

2.2 Connection to Other Disciplines . 19

2.3 Data . 20

2.4 Models for the Knowledge Discovery Process 21

2.4.1 Step 1 – Data Extraction . 23

2.4.2 Step 2 – Data Pre-processing 24

2.4.3 Step 3 – Feature Reduction 25

2.4.4 Step 4 – Data Mining . 26

2.4.5 Step 5 – Post-processing and Interpretation 29

2.5 Relevant Literature . 31

3 Feature Reduction 33

3.1 Relevant Literature . 34

3.2 Feature Selection . 34

3.2.1 Filter Methods . 35

3.2.2 Wrapper Methods . 40

3.2.3 Embedded Approaches . 41

3.2.4 Comparison of Filter, Wrapper and Embedded

Approaches . 42

3.3 Dimensionality Reduction . 43

3

4 CONTENTS

3.3.1 Low-rank Approximations . 43

3.3.2 Principal Component Analysis 44

3.3.3 Singular Value Decomposition 48

3.3.4 Nonnegative Matrix Factorization 50

3.3.5 Algorithms for Computing NMF 51

3.3.6 Other Dimensionality Reduction Techniques 54

3.3.7 Comparison of Techniques . 55

4 Supervised Learning 57

4.1 Relevant Literature . 58

4.2 The k-Nearest Neighbor Algorithm 58

4.3 Decision Trees . 60

4.4 Rule-Based Learners . 63

4.5 Support Vector Machines . 65

4.6 Ensemble Methods . 70

4.6.1 Bagging . 70

4.6.2 Random Forest . 71

4.6.3 Boosting . 73

4.6.4 Stacking . 74

4.6.5 General Evaluation . 74

4.7 Vector Space Model . 76

4.8 Latent Semantic Indexing . 77

4.9 Other Relevant Classification Methods 79

4.9.1 Näıve Bayesian . 79

4.9.2 Neural Networks . 80

4.9.3 Discriminant Analysis . 81

5 Application Areas 83

5.1 Email Filtering . 83

5.1.1 Classification Problem for Email Filtering 84

5.1.2 Relevant Literature for Spam Filtering 85

5.1.3 Relevant Literature for Phishing 89

5.2 Predictive QSAR Modeling . 91

5.2.1 Classification Problem for QSAR Modeling 93

5.2.2 Relevant Literature for QSAR Modeling 94

5.3 Comparison of Areas . 96

CONTENTS 5

II New Approaches in Feature Reduction and Classification 99

6 On the Relationship Between FR and Classification Accuracy 101

6.1 Overview of Chapter . 101

6.2 Introduction and Related Work . 102

6.3 Open Issues and Own Contributions 102

6.4 Datasets . 103

6.5 Feature Subsets . 104

6.6 Machine Learning Methods . 105

6.7 Experimental Results . 105

6.7.1 Email Data . 106

6.7.2 Drug Discovery Data . 109

6.7.3 Runtimes . 113

6.8 Discussion . 114

7 Email Filtering Based on Latent Semantic Indexing 117

7.1 Overview of Chapter . 117

7.2 Introduction and Related Work . 118

7.3 Open Issues and Own Contributions 118

7.4 Classification based on VSM and LSI 119

7.4.1 Feature Sets . 119

7.4.2 Feature/Attribute Selection Methods Used 122

7.4.3 Training and Classification 123

7.5 Experimental Evaluation . 123

7.5.1 Datasets . 123

7.5.2 Experimental Setup . 124

7.5.3 Analysis of Data Matrices . 124

7.5.4 Aggregated Classification Results 126

7.5.5 True/False Positive Rates . 127

7.5.6 Feature Reduction . 128

7.6 Discussion . 130

8 New Initialization Strategies for NMF 133

8.1 Overview of Chapter . 133

8.2 Introduction and Related Work . 133

8.3 Open Issues and Own Contributions 135

8.4 Datasets . 135

8.5 Interpretation of Factors . 136

8.5.1 Interpretation of Email Data 137

8.5.2 Interpretation of Drug Discovery Data 138

6 CONTENTS

8.6 Initializing NMF . 140

8.6.1 Feature Subset Selection . 140

8.6.2 FS-Initialization . 141

8.6.3 Results . 141

8.6.4 Runtime . 142

8.7 Discussion . 144

9 Utilizing NMF for Classification Problems 147

9.1 Overview of Chapter . 147

9.2 Introduction and Related Work . 148

9.3 Open Issues and Own Contributions 148

9.4 Classification using Basis Features 149

9.5 Generalizing LSI Based on NMF . 152

9.5.1 Two NMF-based Classifiers 152

9.5.2 Classification Results . 153

9.5.3 Runtimes . 154

9.6 Discussion . 157

10 Improving the Performance of NMF 161

10.1 Overview of Chapter . 161

10.2 Introduction and Related Work . 161

10.3 Open Issues and Own Contributions 163

10.4 Hardware, Software, Datasets . 164

10.4.1 Datasets . 164

10.4.2 Hardware Architecture . 165

10.4.3 Software Architecture . 165

10.5 Task-Parallel Speedup . 166

10.6 Improvements for Single Factorizations 168

10.6.1 Multithreading Improvements 168

10.6.2 Improving Matlab’s ALS Code 169

10.7 Initialization vs. Task-parallelism . 171

10.8 Discussion . 174

11 Conclusion and Future Work 177

Summary

The sheer volume of data today and its expected growth over the next years are

some of the key challenges in data mining and knowledge discovery applications.

Besides the huge number of data samples that are collected and processed, the high

dimensional nature of data arising in many applications causes the need to develop

effective and efficient techniques that are able to deal with this massive amount

of data. In addition to the significant increase in the demand of computational

resources, those large datasets might also influence the quality of several data min-

ing applications (especially if the number of features is very high compared to the

number of samples). As the dimensionality of data increases, many types of data

analysis and classification problems become significantly harder. This can lead to

problems for both supervised and unsupervised learning. Dimensionality reduction

and feature (subset) selection methods are two types of techniques for reducing the

attribute space. While in feature selection a subset of the original attributes is

extracted, dimensionality reduction in general produces linear combinations of the

original attribute set. In both approaches, the goal is to select a low dimensional

subset of the attribute space that covers most of the information of the original data.

During the last years, feature selection and dimensionality reduction techniques have

become a real prerequisite for data mining applications.

There are several open questions in this research field, and due to the often

increasing number of candidate features for various application areas (e. g., email fil-

tering or drug classification/molecular modeling) new questions arise. In this thesis,

we focus on some open research questions in this context, such as the relationship

between feature reduction techniques and the resulting classification accuracy and

the relationship between the variability captured in the linear combinations of di-

mensionality reduction techniques (e. g., PCA, SVD) and the accuracy of machine

learning algorithms operating on them. Another important goal is to better un-

derstand new techniques for dimensionality reduction, such as nonnegative matrix

factorization (NMF), which can be applied for finding parts-based, linear repre-

sentations of nonnegative data. This “sum-of-parts” representation is especially

7

8 SUMMARY

useful if the interpretability of the original data should be retained. Moreover, per-

formance aspects of feature reduction algorithms are investigated. As data grow,

implementations of feature selection and dimensionality reduction techniques for

high-performance parallel and distributed computing environments become more

and more important.

In this thesis, we focus on two types of open research questions: methodological

advances without any specific application context, and application-driven advances

for a specific application context. Summarizing, new methodological contributions

are the following: The utilization of nonnegative matrix factorization in the context

of classification methods is investigated. In particular, it is of interest how the im-

proved interpretability of NMF factors due to the non-negativity constraints (which

is of central importance in various problem settings) can be exploited. Motivated by

this problem context two new fast initialization techniques for NMF based on feature

selection are introduced. It is shown how approximation accuracy can be increased

and/or how computational effort can be reduced compared to standard randomized

seeding of the NMF and to state-of-the-art initialization strategies suggested earlier.

For example, for a given number of iterations and a required approximation error a

speedup of 3.6 compared to standard initialization, and a speedup of 3.4 compared

to state-of-the-art initialization strategies could be achieved. Beyond that, novel

classification methods based on the NMF are proposed and investigated. We can

show that they are not only competitive in terms of classification accuracy with

state-of-the-art classifiers, but also provide important advantages in terms of com-

putational effort (especially for low-rank approximations). Moreover, parallelization

and distributed execution of NMF is investigated. Several algorithmic variants for

efficiently computing NMF on multi-core systems are studied and compared to each

other. In particular, several approaches for exploiting task and/or data-parallelism

in NMF are studied. We show that for some scenarios new algorithmic variants

clearly outperform existing implementations. Last, but not least, a computation-

ally very efficient adaptation of the implementation of the ALS algorithm in Matlab

2009a is investigated. This variant reduces the runtime significantly (in some settings

by a factor of 8) and also provides several possibilities to be executed concurrently.

In addition to purely methodological questions, we also address questions aris-

ing in the adaptation of feature selection and classification methods to two specific

application problems: email classification and in silico screening for drug discovery.

Different research challenges arise in the contexts of these different application ar-

eas, such as the dynamic nature of data for email classification problems, or the

imbalance in the number of available samples of different classes for drug discovery

problems. Application-driven advances of this thesis comprise the adaptation and

SUMMARY 9

application of latent semantic indexing (LSI) to the task of email filtering. Experi-

mental results show that LSI achieves significantly better classification results than

the widespread de-facto standard method for this special application context. In the

context of drug discovery problems, several groups of well discriminating descriptors

could be identified by utilizing the “sum-of-parts“ representation of NMF. The num-

ber of important descriptors could be further increased when applying sparseness

constraints on the NMF factors.

10 SUMMARY

Chapter 1

Introduction

The tremendous improvements in techniques for collecting, storing and transferring

large volumes of data have also increased the volume of data for knowledge discovery

and data mining applications. Data grow not only due to the number of data

samples available, but also due to the increasing number of candidate features for

various application areas. Not only the effort and computational cost of data mining

applications grow with increasing dimension of data.

1.1 Motivation and Problem Statement

As the dimensionality of the feature space increases, many types of data analysis and

classification also become significantly harder, and, additionally, the data becomes

increasingly sparse in the space it occupies which can lead to big difficulties for both

supervised and unsupervised learning. This phenomenon – known as the curse of

dimensionality – is based on the fact that high dimensional data is often difficult to

work with. A large number of features can increase the noise of the data and thus

the error of a learning algorithm, especially if there are only few observations (i. e.,

data samples) compared to the number of features.

Feature selection and dimensionality reduction methods (summarized as feature

reduction methods) are two techniques that aim at solving these problems by re-

ducing the number of features and thus the dimensionality of the data. In the last

years, several studies have focused on improving feature selection and dimension-

ality reduction techniques and substantial progress has been obtained in selecting,

extracting and constructing useful feature sets. However, due to the strong influence

of different feature reduction methods on the classification accuracy, there are still

several open questions in this research field. Moreover, due to the often increasing

number of candidate features for various application areas new questions arise.

11

12 CHAPTER 1. INTRODUCTION

In this thesis, we focus on some of these open research questions, such as the rela-

tionship between several feature reduction techniques and the resulting classification

accuracy. The goal is to identify a set of features that best approximate the original

data without a reduction in the classification result. Other problems are based on

computational cost of feature reduction algorithms. The huge amount of data arises

the need to develop computationally efficient feature reduction techniques which can

be performed concurrently. To address this problem we study several approaches

for exploiting task and/or data-parallelism in NMF and introduce computationally

very efficient adaptations of the existing NMF algorithms. To further speed up the

runtime of NMF, we investigate new initialization techniques for NMF based on

feature selection as well as fast and effective classification methods based on NMF.

Moreover, there are several problems when analyzing the interpretability of dimen-

sionality reduction techniques. The linear combination of dimensionality reduction

methods are usually not interpretable and the information how much an original

feature contributes is often lost. In this thesis, we investigate how the improved in-

terpretability of NMF factors due to the non-negativity constraints can be exploited

to retain interpretability of the original data.

Experimental evaluations are performed on datasets coming from two very dif-

ferent application areas with different research challenges: email classification and

in silico screening for drug discovery.

1.2 Synopsis

This work is structured into two parts, each several chapters.

In Part I theoretical background is summarized and discussed. In Chapter 2 the

definitions of data mining and knowledge discovery are discussed, connections of

data mining to other disciplines are summarized, and a short overview about the

different types of data used in data mining applications is provided. Moreover, a new

knowledge discovery process model (KDP) is introduced and the five steps of this

model together with several feedback loops are discussed in detail. Finally, there

is a summary of relevant introductory literature for data mining and knowledge

discovery. Feature reduction methods – which are included in step 3 of the KDP

model introduced in Chapter 2 – are discussed in detail in Chapter 3. Definition for

both feature selection and dimensionality reduction techniques are given and several

important methods are analyzed and compared. In Chapter 4 several supervised

learning algorithms are reviewed and compared in terms of expected classification

accuracy, comprehensibility, complexity and speed. In the KDP model introduced

in Chapter 2, supervised learning algorithms are included in step 4 together with

1.3. SUMMARY OF PUBLICATIONS 13

unsupervised learning methods such as clustering algorithms. Chapter 5 discusses

the two application areas that are used in Part II of this thesis. These two appli-

cation areas are on the one hand email filtering, where the feature space contains

various properties of email messages, and the other hand, drug discovery problems

are considered. Here, quantitative representations of molecular structures are en-

coded in terms of information-preserving descriptor values. Relevant literature for

both application areas is summarized and the classification problems for the two

fields are discussed. Finally, general characteristics of these areas are compared.

In Part II of this thesis, we focus on three dimensionality reduction methods dis-

cussed in Chapter 3 (PCA, SVD, NMF) for investigating the interaction between

feature reduction methods and learning algorithms in the context of the two applica-

tion areas email filtering and drug discovery. In Chapter 6 the relationship between

several feature reduction methods and the resulting classification accuracy is inves-

tigated. Classification results based on different variants of the principal component

analysis, information gain, and deterministic wrapper methods are compared for

the two application areas discussed in Chapter 5. In Chapter 7 the application of

latent semantic indexing to the task of spam filtering is studied. Comparisons to

the basic vector space model and to a state-of-the-art rule-based filtering system

are given for two different feature sets. In Chapter 8 new initialization strategies

for nonnegative matrix factorization algorithms are introduced. Besides than, the

interpretability of the NMF factors in the email classification and drug discovery

contexts are also considered. Motivated by the approaches investigated in Chap-

ter 8, two new classification methods based on the nonnegative matrix factorization

are introduced and investigated in Chapter 9. Finally, Chapter 10 introduces several

ideas to execute NMF computations task- and data-parallel. Complex interaction

between problem size, initialization strategy, accuracy of the factorization and com-

putational efficiency of NMF computations on multi-core systems are illustrated.

Moreover, a computationally very efficient adaption of a specific NMF algorithm is

introduced.

1.3 Summary of Publications

The study described in Chapter 6 was presented at the 2008 Workshop on New Chal-

lenges for Feature Selection in Data Mining and Knowledge Discovery in conjunction

with the ECML PKDD Conference 2008. This work was further published in the

Journal of Machine Learning Research (JMLR) series for Workshop and Confer-

ence Proceedings, Volume 4 (cf. Reference [JGD08]). The study on the application

of LSI to the task of spam filtering (Chapter 7) was presented at the 2007 Text

14 CHAPTER 1. INTRODUCTION

Mining Workshop in conjunction with the SIAM SDM 2007. Moreover, this work

was published as a separate chapter in the book Survey of Text Mining II (see

Reference [GJN08]). New initialization strategies for NMF (cf. Chapter 8) and

new approaches of utilizing NMF for e-mail classification problems (cf. Chapter 9)

were presented at the 2009 Text Mining Workshop at the SIAM SDM 2009 (see

Reference[JG09]). This work will further appear as a separate chapter in the book

Survey of Text Mining III.

1.4 Notation

In this thesis, we use the following notation: A matrix is represented as an uppercase

italic letter (example: A, B, Σ, . . . , null matrix O, identity matrix I). A vector

is represented as a lowercase bold letter (example: u, x, q1, . . . , null vector o). A

scalar is represented as a lowercase Greek letter (example: λ, µ, . . .), and indices

(positive integers) as lowercase italic letters i, j, n,m, and p.

1.5 Acknowledgements

First and foremost, I want to express my special gratitude to my supervisor Dr.

Wilfried Gansterer, for the support, encouragement and guidance he showed me

throughout the last years. Wilfried also broadened my perspective in several aspects

by sharing his theoretical, methodological, and empirical knowledge with me. He

has not only given me constructive criticism which I hope I have been able to apply

in my work, but he has also been a great source of inspiration to me.

Moreover, I want to thank Prof. Gerhard Ecker and his group at the Department

of Medicinal Chemistry for the productive cooperation and joint work during the last

years. Many thanks also to my colleagues at my department for their encouragement

and practical advice. I am thankful to everyone who helped out reading my reports,

commenting on my views and helping me understand and enrich my ideas.

Many friends have helped me stay sane through the last weeks of writing this

thesis. I greatly value their friendship and I appreciate their belief in me. A special

thanks to all friends who helped me proofreading important parts of this thesis.

None of this would have been possible without the love and support of my family.

I want to express my heartfelt gratitude to my parents who always supported my

interest in science and research, and always supported decisions I made in my life.

Finishing this work also reminds me of my grand-fathers a lot, who would have loved

seeing their grandson finishing his PhD thesis.

Part I

Theoretical Background

15

Chapter 2

Data Mining and

Knowledge Discovery

Data mining (DM) is a general term that combines various computer-based pro-

cedures to analyze possibly huge datasets. It is an interdisciplinary research area

where experts from various areas such as statistics, computer science, mathematics

etc. often work together with experts from different application areas. DM tech-

niques are usually deployed to find novel and useful patterns in data that might

otherwise remain unknown. A frequently cited definition is given by Decker and

Focardi [DF95, p. 3]: Data mining is a problem-solving methodology that finds

a logical or mathematical description, eventually of a complex nature, of patterns

and regularities in a set of data. Contrary to traditional statistical methods that

are used to verify or disprove a pre-defined hypothesis, data mining offers the pos-

sibility to automatically generate new hypotheses. The goal is to efficiently and

effectively extract information and knowledge from data that should make sense of

the data, i. e., this knowledge should exhibit some essential attributes: it should be

understandable, valid, novel and useful (cf. [CPS07]).

By definition, data mining is a part of a superordinated process called knowl-

edge discovery in databases (KDD), where the term “database” refers to any

kind of data storage and does not solely comprise data stored in database manage-

ment systems. KDD is defined by Fayyad et al. [FPS96, p. 6] as follows: Knowledge

discovery in databases describes the non-trivial process of identifying valid, novel,

potentially useful, and ultimately understandable patterns in data. In other words,

KDD addresses the problem of mapping low-level data (which are typically too large

to understand) into other forms that might be more compact, more abstract (e. g.,

a descriptive approximation of the data) or more useful (e. g., a predictive model for

estimating the values of future cases). In the definition of Fayyad et al. [FPS96], the

17

18 CHAPTER 2. DATA MINING AND KNOWLEDGE DISCOVERY

application of specific DM methods is at the core of the knowledge discovery process

(KDP), which also comprises the extraction of background knowledge of the respec-

tive application area, the problem/goal definition of the whole KDP, the selection

and preparation of the data, the reduction of features and samples, the selection of

the learning model and interpretation and evaluation of the obtained results. Data

mining is integrated as a single step of the KDP, usually between model selection

and interpretation. In the literature, the term data mining is often used instead of

or synonymously with the term knowledge discovery in databases and thus some-

times refers to the complete KDP. In this thesis, we follow this common terminology

and use the terms data mining and data mining application to refer to the complete

KDP. Contrary to that, the terms data mining algorithm and data mining method

are used to refer to the actual data mining step within the KDP.

In this chapter, all relevant literature is summarized in a separate section at the

end. However, when it seems useful the references are also given directly in the text

as well.

Data mining applications. Several DM applications are used in a wide vari-

ety of scientific and commercial applications. For example, web or media search

algorithms are often based on DM techniques, such as text mining or document

clustering, (mass) surveillance, pattern mining and pattern recognition. Pharmaco-

and bioinformatics use DM for diagnosis, QSAR-modeling or gene expression, while

other scientific fields use it for image screening or spatial DM (application of DM

techniques to spatial data). In costumer relationship management applications, au-

tomated DM applications are often used for decision support, market basket analysis,

costumer support and costumer analytics, load forecasting or fraud detection. Re-

cently, the application of data mining to the analysis of on-line communities such as

MySpace or Facebook has become increasingly important.

2.1 Definition of Terminology

Not all information discovery tasks are considered to be purely data mining. Al-

though several sections of the following areas are overlapping, there are some im-

portant distinctions between them. Machine learning (ML) refers to the design

and development of learning algorithms that allow computers to automatically learn

patterns or make decision based on data (cf. [WF05]). Machine learning is consid-

ered as a part of the data mining process (cf. Section 2.4). Information retrieval

(IR) comprises techniques such as searching for documents or information within

documents, or for metadata about documents. Moreover, IR also covers the task of

searching relational databases and the World Wide Web. Although many IR tasks

2.2. CONNECTION TO OTHER DISCIPLINES 19

may involve the use of sophisticated algorithms, they rely on traditional computer

science and statistical techniques. The difference between DM and IR is that IR

pertains to getting back or retrieving information stored in various storage media,

exactly in the same way it is stored, while DM aims to reveal insight into the data

that is not quite obvious (cf. [HK06]). OLAP (On-line analytical process) is a de-

cision support tool that extends traditional database query and report tools. While

traditional tools describe what is in a database, OLAP is used to answer why cer-

tain things are true. OLAP consists of usually deductive methods that aim to verify

hypothetical patters (verification driven mining), while DM uses the data itself to

uncover such patterns (i. e., inductive reasoning or discovery driven mining). The

term data warehouse summarizes a company-wide concept of a data-basis, where

data can be stored centralized, unified and consistent. The data is detached from

operative databases and can be used by various applications, for example, by DM

or OLAP applications.

2.2 Connection to Other Disciplines

Even though data mining and statistics have different historical traditions, many

parts of these two perspectives have converged. Many DM tasks incorporate a

great deal of statistical thinking and use a variety of statistical methods. There are

classification algorithms that use statistical tests during the construction of trees

and rules or to validate and evaluate machine learning models. DM also adopts

ideas from artificial intelligence (for example, neural networks), pattern recognition

and other related fields such as optimization, information theory, signal processing

or visualization techniques. Other areas can be seen as supporting areas for DM

applications. For example, database technology is used to provide support for query

operations, indexing or efficient storage. Figure 2.1 illustrates the interaction of DM

with various related applications as well as underlying, supporting disciplines.

Database Technology, High Performance Computing (Parallel and Distributed Computing)

Statistics

Artificial
Intelligence,

Pattern
RecognitionData Mining

Figure 2.1: Data mining and related fields (adapted from [TSK05]).

20 CHAPTER 2. DATA MINING AND KNOWLEDGE DISCOVERY

Over the last years, the tremendous improvements in techniques for collecting,

storing and transferring large volumes of data have also increased the volume of

data used within data mining applications, and thus have increased the demands

for effective and efficient ways to deal with those large datasets. Generally, high-

performance computing issues play a pivotal role in order to address the possibly

large size of the data. When dealing with massive data, there are two critical dimen-

sions to deal with: memory and runtime. Many non-incremental algorithms, where

the whole data has to be loaded into the memory at once, may run out of memory

space if the data is too big. On the other side, the model building process may need

too much time to be performed in a feasible time period. Moreover, if there are time

constraints within the prediction process, the time for assigning unclassified objects

to a certain group (classification) has to be reduced. As the data grows, imple-

mentations of data mining techniques in high-performance parallel and distributed

computing environments are thus becoming more and more important. Parallel and

distributed algorithms are used to reduce the time complexity of the model build-

ing process and the classification process for new data as well as for several other

data mining tasks such as feature reduction or clustering. To give an example, the

problem could be split into smaller parts, the parts are processed independently

of each other on separate processors, and finally the results are combined. Actual

algorithmic implementations address a variety of parallel hardware platforms such

as shared-memory systems (SMPs), distributed-memory systems (DMSs) or clusters

of desktop computers or laptops. Chapter 10 focuses on parallel high-performance

implementations of feature reduction techniques based on nonnegative matrix fac-

torization (cf. Section 3.3.4).

2.3 Data

This subsection gives a brief overview of the types of data used in data mining

applications. Most datasets can be viewed as a collection of data objects (also called

samples, records, observations, entities, instances, . . .). These data objects are

described by a number of attributes (also called features, variables, descriptors, . . .)

that capture basic properties and characteristics of the objects. The term “variable“

is often used to refer to raw, original information, whereas the terms “attribute” and

“feature” are often used to refer to a variable that has been preprocessed in a certain

manner.

Generally, four different types of attributes or features can be defined: nominal,

ordinal, interval and ratio. The first two types belong to group of categorical or

qualitative attributes which lack most of the properties of numbers. While values

2.4. MODELS FOR THE KNOWLEDGE DISCOVERY PROCESS 21

of nominal attributes are just different names and provide only enough information

to distinguish one object from another (e. g., ID numbers, gender, color, . . .), ordinal

attributes provide enough information to order objects (e. g., grades, street numbers,

{bad, average, good}). The remaining two types of attributes, interval and ratio, be-

long to the group of numeric or quantitative attributes, which are represented by

real numbers. For interval attributes, the differences between values are meaningful

(e. g., temperature in Celsius of Fahrenheit, calendar dates, . . .), but ratios between

attributes are not meaningful (e. g., 30 degrees Celsius is not twice as hot as 15

degrees Celsius). For ratio attributes both differences and ratios between values are

meaningful (e. g., temperature in Kelvin, age, mass, length, . . .). Attributes can

also be distinguished between discrete attributes (finite or countably infinite set of

values) and continuous attributes (values are real number). Binary attributes can

be considered as a special case of discrete attributes and assume only two values

(yes/no, true/false,. . .).

2.4 Steps in the Knowledge Discovery

Process

Several knowledge discovery process (KDP) models can be found in the literature

that guide users through a sequence of steps and provide systematic approaches to

successful KDD and DM. The first academic KDP models were established in the

mid-1990s. The main emphasis of these KDP models was to provide a sequence of

activities that helps to execute a KDP in an arbitrary domain. Industrial models

followed a few years later, with more emphasis on commercial aspects. The academic

process model following Fayyad et al. [FPS96] – one of the first, and probably the

most popular and most cited model – is an interactive and iterative model that con-

sists of nine steps (with possible loops between any two steps) involving decisions

made by the user, but lacks the specific details of the feedback loops. Contrary

to this sequential model, the business oriented CRISP-DM model (cross-industry

standard process for data mining) emphasizes the cyclical character of data min-

ing, and contains loops between several of its six steps. A detailed description of

this (mainly) industrial model (which has also been incorporated into a commercial

KDD system called clementine1) can be found in [CCK00]. Another representative

industrial model based on five steps can be found in [CHS97], while [AB98] provide

an eight-step academic model. Moreover, Cios et al. [CPS07] published a hybrid

academic/industrial six-step model which is mainly based on the CRIPS model, but

provides a more general, research-orientated description of the steps and introduces

1http:/www.spss.com/clementine

22 CHAPTER 2. DATA MINING AND KNOWLEDGE DISCOVERY

Problem
Definition Data Extraction

- Data Collection

- Data Computation

- Data Exploration

- Instance Sampling

...

Pre-processing

- Data Cleansing

- Handle Missing Data

- Data Preparation

- Feature Aggregation

...

Feature
Reduction Data Mining

- Supervised and

 Unsupervised

 Machine Learning

 Algorithms

...

Evaluation and

Interpretation

- Post-processing

- Evaluation

- Interpretation

- Visualization

...

Use Knowledge

Deploy Model

- Feature Ranking

 & Subset Selection

- Dimensionality

 Reduction

...

Figure 2.2: Steps in the KDD process.

some new explicit feedback mechanisms. [CPS07] also provide a detailed comparison

of all five process models mentioned above.

In this thesis we introduce a knowledge discovery process model that is strongly

correlated with the ones introduced by [FPS96] and [CPS07], but puts more emphasis

on technical aspects and the technical descriptions of each step than on the problem

definition steps. Contrary to the model by Cios et al. [CPS07], we assume that

the objectives and requirements from a business or from an academic perspective

are already known and that the data mining goals have already been determined,

i. e., the problem definition step is already finished. Unlike most other models, we

split up the data preparation step into three autonomous steps (steps 1-3), each

with emphasis on a certain aspect. The first step – the data extraction step –

deals with collecting and computing data as well as exploring the data objects and

selecting subsets of them. The next step comprises simple pre-processing tasks such

as data cleansing, handling missing data, normalization, discretization or feature

aggregation. It is important to notice that more sophisticated methods for feature

reduction are outsourced into a separate step, the feature reduction step. In other

KDP models, simple pre-processing tasks and sophisticated methods for reducing the

feature space are usually pooled together in one step. In our model, this third step

comprises several techniques for ranking or selecting subsets of original features, or

for reducing the dimensionality of the feature space due to dimensionality reduction

or feature transformation methods. The subsequent data mining and evaluation

steps are mainly similar to the KDP model introduced by Cios et al. [CPS07]. Our

KDP model is depicted in Figure 2.2 and shows the five main steps mentioned before.

Feedback loops. As can be seen from the model, there are loops between any two

steps, as well as three explicit feedback loops from the data mining step and the

evaluation and interpretation step backwards to the data extraction step as well as

from the evaluation step backwards to the problem definition. The most common

2.4. MODELS FOR THE KNOWLEDGE DISCOVERY PROCESS 23

reasons for the feedback loop from evaluation and interpretation to problem defini-

tion is poor understanding of the data, requiring modification of the project’s goal.

Incorrect understanding and interpretation of the domain and incorrect design or

understanding of the problem restrictions and requirements may require a repetition

of the compete KDP. The feedback loops from both data mining and evaluation and

interpretation back to data extraction are ambiguous. On the one hand, if the results

are unsatisfactory there might be a need for better understanding or better selection

of the data to avoid subsequent failures in the KDP process. On the other hand,

if the results are satisfactory, the feedback loops may be used to provide important

information for this step for subsequent runs of the KDP (e. g., only a specific sub-

set of objects or features might be required, thus saving memory requirements and

runtime).

The tasks and techniques associated with each of the five steps following the

problem definition are described on the next pages. Moreover, for each step, possible

feedback loops back to preceding steps are discussed. For better readability, the

detailed descriptions of the techniques involved in steps 3 and 4 – feature reduction

and data mining – are both summarized in separate chapters (Chapters 3 and 4).

2.4.1 Step 1 – Data Extraction

The first task in the data extraction phase is to create the target dataset. This

extraction can be performed in several ways. In the easiest setting, the data has al-

ready been extracted and is stored in files, or can easily be collected from a database

(e. g., using SQL-queries) or from a data warehouse (e. g., using OLAP tools, cf. Sec-

tion 2.1). In other scenarios, there might not be any extracted information about

the data, but instead samples are stored in their original format and the features

and properties of the data have to be computed explicitly. For example, consider a

set of email messages saved in some email format (e. g., mbox-format) that should be

used to create a learning model that is able to classify newly arriving email messages

to one of the groups spam/not-spam. In this case, features describing these email

messages have to be computed in order to use this sample for building a learning

model and classifying unlabeled email messages. If the data are not already avail-

able, the data extraction phase might take a large part of the time and effort of the

entire knowledge discovery process.

At this point it is also very important to get to know the data. Data exploration

is the preliminary investigation of the data in order to better understand its specific

characteristics. Summary statistics (mean, standard deviation, . . .), visualization

techniques (histograms, scatter plots, . . .) and OLAP techniques are useful tools to

explore the dataset at an early stage and to prevent (costly) failures at later steps.

24 CHAPTER 2. DATA MINING AND KNOWLEDGE DISCOVERY

Instance sampling is the process of selecting a representative subset of data ob-

jects (not features!) in order to reduce the number of objects within a dataset –

ideally without loss in the mining quality. The selected subsets can be chosen ran-

domly (either with or without replacement) or via sampling strategies that sample

objects from pre-defined groups or clusters (stratified sampling). In other settings,

the focus might be on the analysis of a specific group of samples, where a sys-

tematic selection of samples having similar properties in some sense is performed.

Usually, the selection of subsets of features (see step 3, feature reduction) is a more

complicated and complex task than the selection of samples of objects and has to

be performed carefully, since a lot of information about the data might be lost if

the wrong features are removed. The feedback loop from this step to problem def-

inition is based on the need for additional domain knowledge in order for better

understanding the data.

2.4.2 Step 2 – Data Pre-processing

It is unrealistic to expect that data will be perfect after they have been extracted.

Since good models usually need good data, a thorough cleansing of the data is

an important step to improve the quality of data mining methods. Not only the

correctness, also the consistency of values is important. Missing data can also be a

particularly pernicious problem. Especially when the dataset is small or the number

of missing fields is large, not all records with a missing field can be deleted from the

sample. Moreover, the fact that a value is missing may be significant itself. A widely

applied approach is to calculate a substitute value for missing fields, for example,

the median or mean of a variable. Furthermore, several data mining approaches

(especially many clustering approaches, but also some learning methods) can be

modified to ignore missing values.

Data preparation consists of techniques such as standardizing or z-scoring (shift-

ing the mean of a variable to 0 and the standard deviation to 1) or normalizing

the data (scaling the range of an attribute to some pre-defined interval, for example

[0,1]). It is also sometimes necessary to transform a continuous attribute into a cat-

egorical attribute (discretization), or both continuous and discrete attributes may

need to be transformed into one or more binary attributes (binarization).

Feature aggregation aims at combining two or more variables into a single fea-

ture. Depending on the type of the attributes (qualitative, quantitative, etc.; cf.

Section 2.3) the aggregate transaction is created differently. Since feature aggre-

gation is usually not an automated feature reduction process but requires good

knowledge of the data, we assign it to the data pre-processing step and not to the

feature reduction step.

2.4. MODELS FOR THE KNOWLEDGE DISCOVERY PROCESS 25

The feedback loop to data extraction is especially important if the quality of the

data is unsatisfactory, for example due to noisy data, too many missing values, or

missing heterogeneity among features. In the data pre-processing step, the quality

of the data is analyzed using simple statistical methods such as mean, variance, or

correlation between features. In some cases, there might also be a need for additional

information or more specific information about the data.

2.4.3 Step 3 – Feature Reduction

In many application areas, datasets can have a very large number of features. As

the dimensionality of the feature space increases, many types of data analysis and

classification become significantly harder, and, additionally, the data becomes in-

creasingly sparse in the space it occupies which can lead to big difficulties for both

supervised and unsupervised learning. In the literature, this phenomenon is referred

to as the curse of dimensionality and was first mentioned 1961 by Bellman [Bel61].

On the one hand, in the case of supervised learning or classification, there might

be too few data objects to allow the creation of a reliable model that assigns a

class to all possible objects. On the other hand, for unsupervised learning methods

or clustering algorithms, various vitally important definitions (e. g., density or dis-

tance between points) may become less meaningful (cf. [Pow07]). For example, the

proximity of points tends to become more uniform in high-dimensional data, and,

moreover, Tan et al. [TSK05] state that the traditional Euclidean notion of density,

which is the number of points per unit volume, becomes meaningless. As a result,

a high number of features can lead to lower classification accuracy and clusters of

poor quality.

Besides this key factor, Tan et al. [TSK05] mention various other benefits from

reducing the number of features. Such a reduction can (i) lead to a better under-

standable model, (ii) simplify the usage of different visualization techniques (e. g.,

looking at pairs or triplets of attributes, self-organizing maps [Koh00] (cf. 2.4.4),

etc.), and, last but not least, (iii) significantly reduce the computational cost and

memory requirements of the classification algorithm applied on the data.

Overfitting. With increasing number of attributes, a classification algorithm will

usually be able to fit the training data better. A classification algorithm is said

to overfit relative to a simpler algorithm (the same method, but with a smaller

number of attributes) if it is more accurate in fitting training data but less accurate

in classifying (predicting) new data (cf., for example, [TSK05]). This approach is

in accordance with Occam’s razor: simpler models are preferred over more complex

ones (cf., for example, [Hir97]). Especially in the case where training examples are

26 CHAPTER 2. DATA MINING AND KNOWLEDGE DISCOVERY

rare (compared to the number of features), the learning algorithm may adjust to

very specific random features of the training data that do not have a causal relation

to the target function (i. e., they are not good at predicting unlabeled objects).

Classification models that are based on a small number of training samples are also

susceptible to overfitting, even when the number of attributes is small.

Generally, feature reduction strategies can be grouped into two main groups – feature

selection (FS) and dimensionality reduction (DR). The terminology used in this

thesis follows the work of Tan et al. [TSK05], but other (differing and thus often

confusing) terminology is widely used throughout the literature. The main idea of

feature selection strategies is to remove redundant or irrelevant features from the

dataset as they can lead to a reduction of the classification accuracy or clustering

quality and to an unnecessary increase of computational cost (cf. [KS96, BL97]). The

advantage of feature selection (over DR) is that no information about the importance

of single features is lost. On the other hand, if a small set of features is required

and the original features are very diverse, information may be lost as some of the

features must be omitted.

With dimensionality reduction techniques the size of the attribute space can often

be decreased strikingly without loosing a lot of information of the original attribute

space. An important disadvantage of dimensionality reduction is the fact that the

linear combinations of the original features are usually not easily interpretable and

the information about how much an original attribute contributes is often lost.

The feedback loop from this step to data pre-processing is needed if the properties

of the data (e. g., discretized, normalized data) are not consistent with the applied

feature reduction or data mining techniques, i. e., a feature reduction method that

is based on discrete data might be unable to work with continuous data. In this

case, the data has to be discretized in step 2 prior to the application of the feature

reduction method.

Both feature selection and dimensionality reduction techniques are an important

part of this thesis and are discussed in more detail in Chapter 3.

2.4.4 Step 4 – Data Mining

At the core of the knowledge discovery process is the application of specific data

mining methods. Typically, data mining methods have two high-level goals: predic-

tion and/or description. The goal of predictive data mining tasks (in the literature

also referred to as supervised learning) is to build a model that predicts unknown

(or future) values of a particular attribute of interest based on known values of some

other attributes. The attribute to be predicted is commonly known as target, class

2.4. MODELS FOR THE KNOWLEDGE DISCOVERY PROCESS 27

or dependent variable. Attributes used for making the prediction are known as the

explanatory or independent variables (cf. [TSK05]).

The task of building a model for the target variable as function of the explanatory

variables is called predictive modeling. Classification (prediction of discrete target

variables) and regression (prediction of continuous target variables) are the two

main types of predictive modeling. The goal of classification and regression is to

build a model that minimizes the error between the predicted and true values of

the target variable. In almost any data mining application, the choice of which

specific learning algorithm should be used is a critical step, since there is no generally

“best” learning algorithm (a statement, which can be found in almost all reviews

and books about data mining). One algorithm may be more accurate in the sense of

classifying unlabeled objects, but very slow in performance. Other algorithms may

be very fast but not as accurate as others. In Chapter 4, several supervised learning

algorithms are reviewed and compared in terms of expected classification accuracy,

comprehensibility, complexity and speed.

The process of building predictive models requires a well-defined training and test

set in order to insure that the data is trained on one dataset and tested on another

dataset with different objects in order to measure the expected generalized error.

This results in an estimate of how the model will perform on future data that are

similar to the training and test data. Sometimes a third set, called validation dataset,

is used to act as a further independent measure of the model’s accuracy. There are

several methods that are commonly used to split the data samples into training and

test set. In the holdout method, the data with labeled examples is partitioned into

two disjoint sets (training and test set). The classification model is then built on

the training set and its performance is evaluated on the test set. The proportion

of the size of the training and test set depends on the sample size, the learning

algorithm and the application area. In the random sub-sampling approach, the

holdout method is repeated several times with randomly selected training and test

sets (sampling without replacement). Cross-validation is a popular and commonly

used approach, where each object is used the same number of times for training and

exactly once for testing. For an n-fold cross-validation each sample is split randomly

into n parts of roughly equal size and alternately n-1 of these parts are used for

training and one of them for testing. The leave-one-out approach is a special case of

cross-validation where the test set contains only one object. The advantage of cross-

validation is that all data is used for training, but due to its nature this approach

may be computationally expensive. Contrary to the approaches mentioned so far,

the bootstrap approach samples objects with replacement, i. e., an object already

chosen for the training set is put back and might be redrawn such that it appears

28 CHAPTER 2. DATA MINING AND KNOWLEDGE DISCOVERY

twice or even more often in the training set. The objects not chosen for the training

set are used as test set.

Contrary to predictive tasks, descriptive data mining tasks (also referred to as

unsupervised learning) start with a number of objects and try to define similarity

among them with respect to a number of attributes. Here, the goal is to derive

patterns (clusters, anomalies, correlations, . . .) that summarize the underlying re-

lationships in the data in human-understandable terms. As the name implies, unsu-

pervised classification methods work without the class information of a sample, i. e.,

there is no a priori known output at the time of classification. All attributes are

treated in the same way – there is no distinction between explanatory and dependent

variables.

Clustering or cluster analysis is one of the core descriptive data mining tasks.

Here, closely related observations are assigned into subsets (called clusters) so that

observations in the same cluster are similar in some sense. Clustering algorithms

can typically be divided into hierarchical and partitional clustering. While hierar-

chical algorithms find successive clusters using previously established clusters (using

a bottom-up or a top-down strategy), partitional algorithms determine all clusters

at once. The most famous clustering method is the (partitional) k-means algo-

rithm [JD88], which assigns each point to one of the k clusters whose center is

nearest. The center is the average (typically the arithmetic mean) of all points

in the cluster. Famous application areas for clustering algorithms are document

clustering, anomaly detection, product positioning, or gene sequence analysis. An-

other classical example of unsupervised learning methods are self-organizing maps

(SOMs, cf. Section 4.9), which are special types of neural networks that generate

a topology-preserving non-linear mapping of a high-dimensional input space to a

low-dimensional space.

The algorithms used in Part II of this thesis are purely predictive algorithms

(i. e., supervised learning). As already mentioned, several classification algorithms

(including all algorithms used in Part II of this thesis) are described in more detail

in Chapter 4.

The feedback loop from this step (data mining) to feature reduction is one of the

most often executed feedback steps, as these two steps (feature reduction and data

mining) are tightly coupled. This is due to the fact that almost all feature selection

and dimensionality reduction techniques need data mining methods to evaluate the

quality of a specific feature set. Some of these methods (wrapper methods, see

Section 3.2.2, as well as embedded methods, see Section 3.2.3) in fact use a learning

algorithm as an integral part of the feature selection process.

2.4. MODELS FOR THE KNOWLEDGE DISCOVERY PROCESS 29

Table 2.1: Confusion matrix for a two class problem.

Predicted class

yes no

Actual class
yes true positive (TP) false negative (FN)

no false positive (FP) true negative (TN)

2.4.5 Step 5 – Post-processing and Interpretation

Once a classification model has been constructed, it can be used to predict the class

of previously unseen objects. In a simple binary case with classes “yes” (positives)

and “no” (negatives), a single prediction has four different possible outcomes (shown

in a confusion matrix in Table 2.1). The true positives (TP) and true negatives (TN)

are correct classifications, i. e., an object of class “yes” is correctly predicted as “yes”

(analogously for class “no”). When the outcome of an object of class “no” is incor-

rectly predicted as “yes” (positive), this is called a false positive (FP) (incorrectly

predicted as positive), and a false negative (FN) occurs when an object is incorrectly

predicted as negative (“no”) when it actually belongs to class “yes”. In statistics a

FP is often referred to as type I error and a FN as type II error. In many cases the

two kinds of error (FP and FN) will have different costs. For example, the cost of

classifying a legitimate email message as spam (loss of possibly important informa-

tion) may be much higher than the cost of classifying a spam message as not-spam

(cf. Section 5.1.2). Based on these four possible predictions, various performance

metrics can be computed to compare the quality of the classification results of a

two class problem. The most important performance metrics are summarized in the

following.

• The overall accuracy or aggregated accuracy or overall success rate is the to-

tal number of correct classifications (which is TP + TN) divided by the total

number of classifications (which is TP + TN + FP + FN). Throughout the lit-

erature, varying terminologies such as predictive power or generalization error

are used to refer to the general or overall accuracy of learning algorithms.

• The true positive rate is TP divided by the total number of positives (which

is TP + FN), and the false positive rate is FP divided by the total number of

negatives (which is FP + TN).

• Similarly, the true negative rate is TN divided by the total number of negatives

30 CHAPTER 2. DATA MINING AND KNOWLEDGE DISCOVERY

Table 2.2: Confusion matrix for a three class problem.

Predicted class

a b c

a (a pred. as a) (a pred. as b) (a pred. as c)

Actual class b (b pred. as a) (b pred. as b) (b pred. as c)

c (c pred. as a) (c pred. as b) (c pred. as c)

(which is the same as 1 - FP rate), and the false negative rate is FN divided

by the total number of positives (which is the same as 1 - TP rate).

• In some application areas, the true positive rate is also referred to as sensitivity,

and the true negative rate is referred to as specificity. Moreover, recall and

precision are also two widely used performance metrics.

• Recall measures the fraction of positive compounds correctly predicted by the

classifier and is thus identically to sensitivity. Precision (also called hit rate)

determines the fraction of TP in the group which the classifier has declared as

a positive class (which is TP + FP).

In multi-class prediction (i. e., more than two classes), the confusion matrix can

be extended to a matrix with rows and columns for each class. Each matrix element

shows the number of test examples for which the actual class is the row and the

predicted class is the column. Table 2.2 shows an example of a confusion matrix for

a three class problem. All correct classifications are highlighted in italic format.

Since different classifiers usually show a different classification performance on

different datasets, it is often useful to compare the performance of different classifiers

to determine which classifier works better on a given dataset. Besides a comparison

of the overall accuracy, TP rate, FP rate, sensitivity, specificity and precision, a

statistical t-test can be used to check the null hypothesis that the mean difference

between two classifiers is zero. In the case of unsupervised learning (clustering algo-

rithms, SOMs, . . .), the evaluation of the learning algorithm is often a difficult task,

since no information about the class labels are available (i. e., it might be impossi-

ble to validate the outcome of the learning algorithm with the metrics mentioned

above). Instead, measures such as intra-cluster similarity (validation if instances

within a cluster are similar) and inter-cluster similarity (validation if instances from

different clusters are dissimilar) can be applied.

2.5. RELEVANT LITERATURE 31

Visualizing the outcome helps to summarize results in a compact way that is often

easier to interpret than numbers and tables. Besides plotting curves for TP, TN,

FP, FN, recall, precision and the overall classification accuracy, receiver operating

characteristic curves (ROC), a graphical plot of the sensitivity vs. (1 - specificity)

for a binary classification, are commonly used visualization techniques for supervised

classification models.

At the end of the KDP is the utilization and deployment of the learning model.

Once a classification model is built correctly and validated, it can either be used

directly by viewing the model and its results or it can be applied to different data.

In the latter case, the model often needs to be incorporated into a program using

an API or code generated by some specific data mining tool.

2.5 Relevant Literature

Since the number of references for this introductory chapter is rather large, all

references are summarized in this section. In the subsequent chapters, relevant

literature will be included directly in the main text.

A vast amount of books and survey papers exist which present a detailed overview

of various data mining and knowledge discovery techniques and methods. Beside

numerous introductory textbooks [Dun02, TSK05, HK06, CPS07, Lar07, ML07],

there are books which focus more on technical aspects of machine learning algo-

rithms [WF05], or put more emphasis on statistical learning theory [Vap99, HTF02].

A discussion of the overfitting problem can be found, for example, in [BFS84]

and [Sch93].

Some data mining and machine learning books focus on a specific application

area, for example, web data mining [Liu07], text mining [FS06], or pattern recog-

nition [DHS01, Bis07]. Other books focus on the application of machine learning

and knowledge discovery methods in bio- and pharmacoinformatics [WZT04, HP07,

ZZL08], QSAR and molecular modeling [Lea01, HSR08, Gup09], or put their em-

phasis more on the business application of data mining methods [BL04].

The work by Kargupta et al. [KC00, KJS04, KHY08] focuses especially on dis-

tributed aspects of data mining and knowledge discovery applications, while [ZH00]

and [GKK03] discuss the parallelization potential of data mining algorithms. More

related work for distributed and parallel data mining as well as high-performance

computing aspects of data mining applications can be found in Chapter 10.

Several differing knowledge discovery process (KDP) models are described in

the literature, for example in [FPS96, CHS97, AB98, CCK00, CPS07], and a com-

parison of these models can be found in [CPS07]. Descriptions of data extraction

32 CHAPTER 2. DATA MINING AND KNOWLEDGE DISCOVERY

and data pre-processing can be found in almost all introductory data mining text-

books. Relevant literature for feature reduction methods is discussed in Chapter 3,

and literature dealing with specific supervised learning algorithms can be found in

Chapter 4. An empirical study to compare the performance metrics obtained us-

ing different estimation methods such as random sub-sampling, bootstrapping and

cross-validation can be found in [Koh95].

A classical introduction to clustering techniques for statistics can be found, for

example, in [KR05], and several clustering techniques containing both hierarchical

and partitional relocation clustering are surveyed in [Ber02]. Detailed information

about approximate statistical tests for comparing classification algorithms can be

found in [Die98], and information for estimating confidence intervals for accuracy

measures can be found in [TSK05]. Some comments on the definition of the general-

ization error can be found in [Sch03], and several evaluation possibilities for cluster-

ing techniques are summarized in [DGG07]. Visualization techniques in knowledge

discovery and data mining are discussed in [Spe00] and [FGW01].

Chapter 3

Feature Reduction

The curse of dimensionality, introduced in Section 2.4.3, is based on the fact that

high dimensional data is often difficult to work with. A large number of features can

increase the noise of the data and thus the error of a learning algorithm, especially

if there are not enough observations to get good estimates. Moreover, the effort and

computational cost of data mining applications grow with increasing dimension. As

already mentioned in Section 2.4.3, there are several methods that aim at solving

these problems by reducing the number of features and thus the dimensionality of

the data. In this section, these methods are categorized into two main groups and

several of them are discussed and compared to each other.

The general objectives for reducing the number of features are to avoid overfitting

(cf. Section 2.4.4) and thus to improve the prediction performance of classification

algorithms, reduce the computational cost of the training and prediction phase, and

also to provide a better understanding of the achieved results and gain a deeper

insight into the underlying processes that generated the data. Since the terminology

used in the area of feature reduction methods varies throughout the literature, this

work follows the notation of Tan et al. [TSK05] for the distinction between feature

selection (reduction of the dimensionality by selecting attributes that are a subset

of the old, original variables) and dimensionality reduction (reduction of the dimen-

sionality by using low-rank approximation techniques to create new attributes that

are a combination of the old, original variables). In other literature, dimensionality

reduction is sometimes also referred to as feature transformation, feature extraction

or feature construction. In this thesis, the term feature reduction is used as a general

term comprising both, feature selection and dimensionality reduction methods.

33

34 CHAPTER 3. FEATURE REDUCTION

3.1 Relevant Literature

Contrary to Chapter 2, in this chapter relevant literature for feature selection and

dimensionality reduction and methods is included directly in the main text.

3.2 Feature Selection

Feature selection (FS) refers to selecting attributes that are a subset of the original

attributes. According to class information availability in the data, there are super-

vised and unsupervised (cf. [Dy07]) feature selection methods. The focus of this

thesis is on supervised feature selection methods. In this case, feature selection can

be defined as follows:

Definition 1 (Supervised feature selection). Given a set of features F = {f1, . . . , fi,

. . . , fn}, find a subset F ′ ⊆ F that maximizes the ability of the learning algorithm

to classify patterns. Formally, F ′ should maximize some scoring function Θ, such

that F ′ = argmaxG∈Γ{Θ(G)}, where Γ is the space of all possible feature subsets

of F .

Feature selection techniques do not alter the original representations of features,

but select a subset of them. Hence, these techniques preserve the original semantics

of the features, offering the advantage of interpretability by a domain expert. In

theory, the goal is to find the optimal feature subset that maximizes the scoring

function above. The selection of features (or subsets of features) should be performed

on the training set only, the test set is then used to validate the quality of the selected

features (subsets).

Throughout the literature (cf., for example, [KJ97, GE03, YL03, LY05b, SIL07]),

feature subset selection approaches are categorized into three main groups: filter

methods, wrapper methods and embedded approaches. Filter methods rely on gen-

eral characteristics of the training data to evaluate and select subsets of features

without involving a learning algorithm. Contrary to that, wrapper approaches use

a classification algorithm as a black box to assess the prediction accuracy of various

subsets. The last group, embedded approaches, performs the feature selection pro-

cess as an integral part of the machine learning algorithm. In the following, these

three techniques are described in detail. A visual overview of these three approaches

is given in Figure 3.1 (A = filter methods, B = wrapper methods, C = embedded

approaches).

3.2. FEATURE SELECTION 35

All features
Feature
subset

Filter
approach

Classification
method

All features

Wrapper
approach

Classification
method

Multiple
feature subsets

All features

Feature
selection

Classification
method

Embedded Feature Selection

A

B

C

Figure 3.1: A simple scheme of feature selection techniques.

3.2.1 Filter Methods

Filter methods are classifier agnostic, no-feedback, pre-selection methods that are

independent of the machine learning algorithm to be applied. Following the classifi-

cation of [SIL07] (which slightly differs from the classification in [KJ97] and [GE03]),

filter methods can further be divided into univariate and multivariate techniques.

Univariate filter models consider one feature at a time, while multivariate methods

consider subsets of features together, aiming at incorporating feature dependencies.

In the survey by Guyon and Elisseeff [GE03], univariate filter methods are referred

to as single variable classifiers, and multivariate filter methods are grouped together

with wrapper methods and embedded methods and referred to as variable subset

selection methods.

Univariate filter methods. These methods consider features separately and usu-

ally make use of some scoring function to assign weights to features individually and

rank them based on their relevance to the target concept (cf., for example, [YL03]).

In the literature, this procedure is commonly known as feature ranking or feature

weighting. A feature will be selected if its weight or relevance is greater than some

threshold value.

Definition 2 (Feature ranking). Given a set of features F = {f1, . . . , fi, . . . , fn},
order the features by the value of some individual scoring function S(f). If S(fi) is

greater than a threshold value t, feature fi is added to the new feature subset F ′.

36 CHAPTER 3. FEATURE REDUCTION

It may happen that features in this subset contain redundant information or

do not provide information by themselves (without being combined with other fea-

tures). For example, perfectly correlated features are truly redundant in the sense

that no additional information is gained/lost by adding/removing them to/from the

subset. These features are often a problem for univariate filter methods. Univariate

filter methods may select several redundant features containing the same informa-

tion, because only the individual feature weights are considered. On the other side,

a feature that is useless by itself can provide useful information when taken in com-

bination with others. These features might be excluded from the feature subset

because their individual predictive power is low.

Various univariate filter methods exist, such as the family of instance-based RelieF

algorithms, or statistical approaches such as Pearson’s correlation, linear regression

or χ2 statistics.

RelieF (recursive elimination of features) algorithms (cf. [KR92]) are able to

detect conditional dependencies of features between instances. They evaluate the

worth of an attribute by repeatedly sampling an instance and considering the value

of the given attribute for the nearest instance of the same and different class. Most

RelieF algorithms can operate on both discrete and continuous class data. A theo-

retical and empirical analysis of several ReliefF algorithms can be found in [RK03].

The Pearson’s product moment correlation (Pearson’s correlation for short, cf.

[Guy08]) reflects the degree of linear relationship between two variables, and is

defined as R(i) = cov(xi,y)√
var(xi)var(y)

. In linear regression models (cf., for example,

[HL95]), R(i)2 is used as a variable ranking criterion and enforces a ranking according

to goodness of linear fit of individual variables (cf. [GE03]). The χ2-statistics method

(cf. [LS96]) measures the independence between explanatory and target variables and

evaluates the worth of an attribute by computing the value of the χ2-statistic with

respect to the class.

Besides instance-based and statistical approaches, there are several univariate

filter methods that use information theoretic criteria for variable selection, such

as information gain (also called Kullback-Leibler divergence) and gain ratio, both

described in [Qui93, WF05, Bra07] and summarized briefly in the following.

Information gain. One option for ranking features of a given dataset according

to how well they differentiate the classes of objects is to use their information gain

(IG), which is also used to compute splitting criteria for some decision tree algorithms

(for example, the C4.5 algorithm discussed in Section 4.3). Information gain is based

on entropy, an information-theoretic measure of the “uncertainty” contained in a

training set, due to more than one possible classifications (cf. [Bra07]). Given a

3.2. FEATURE SELECTION 37

discrete explanatory attribute x with respect to the (also discrete) class (or target)

attribute y, the uncertainty about the value of y is defined as the overall entropy

H(y) := −
k∑
i=1

P (y = yi) log2 (P (y = yi)). (3.1)

The conditional entropy of y given x is then defined as

H(y |x) := −
l∑

j=1

P (x = xi)H (y |x = xi). (3.2)

The reduction in entropy (“uncertainty”) or the “gain in information” of each

attribute x is then computed as

IG(y; x) := H(y)−H(y |x). (3.3)

Example: Given a training set of 14 instances, a binary classification problem (with

classes “yes” and “no”), and a variable “temperature” with three discrete values

{hot, mild, cool}. For five instances of the training sample, the value of the variable

temperature is hot. Out of those five instances, the class variable of two instances

is “yes”, and the class variable of the three other instances is “no”. The variable

temperature is mild for four instances of the training set, all of them have the class

variable “yes”. Finally, the value of the variable temperature of the remaining five

instances is cold, three of them belong to class “yes”, two of them to class “no”.

Overall, nine out of 14 instances belong to the class “yes”, and five instances belong

to the class “no”.

Thus, the overall gain in information (“information gain”) for the attribute tem-

perature can be computed as IG(temperature) := H([9, 5]) − H([2, 3], [4, 0], [3, 2]),

where H([9, 5]) can be computed as −9/14 × log2 9/14 − 5/14 × log2 5/14 = 0.940.

Moreover, H([2, 3]) ≡ H([3, 2]) = 0.971, and H(4, 0) = 0. Thus, H([2, 3], [4, 0], [3, 2])

= (5/14)×0.971+(4/14)×0+(5/14)×0.971 = 0.693. The information gain for the

variable temperature then becomes IG(temperature) = 0.940 − 0.693 = 0.247. A

high information gain indicates that the variable is able to differentiate well between

different classes of objects.

Gain ratio. Information gain favors features which assume many different val-

ues. Since this property of a feature is not necessarily connected with the splitting

information of a feature, features can also be ranked based on their information gain

ratio (GR), which normalizes the information gain and is defined as

GR(y; x) := IG(y; x)/splitinfo(x), (3.4)

38 CHAPTER 3. FEATURE REDUCTION

where

splitinfo(x) := −
l∑

i=1

P (x = xi) log2 P (x = xi). (3.5)

Although feature ranking may not be optimal, it may be preferable to other feature

reduction methods because of its computational and statistical scalability. Feature

ranking is computationally efficient, because it requires only the computation of

n scores and sorting the scores, and statistically robust, because it is known to

avoid overfitting due to its low variance compared to multivariate feature selection

methods (cf. [HTF02]). Nevertheless, since only the individual predictive power of

features is taken into account and feature dependencies are ignored, many redundant

features containing similar information may be chosen.

Multivariate filter methods. Members of this second group of filter methods

(also referred to as subset search evaluation) search through candidate feature sub-

sets guided by a certain evaluation measure which captures the quality of each subset

(not only the individual predictive power of single features). Contrary to wrapper

methods, multivariate filter methods do not rely on a specific learning algorithm.

Instead, consistency measures or correlation measures are often used to find a min-

imum number of features that are able to separate classes as good as the full set

of features can. An overview over several subset search evaluation methods can be

found in [LM98, DLM00, DL03]. Subset search evaluation can be defined as follows:

Definition 3 (Subset search evaluation). Given a set of features F = {f1, . . . , fi, . . . ,

fn}, find a feature subset F ′ such that the classification accuracy based on the feature

subset F ′ is maximized.

The “best” subset search evaluation approach to find the optimal subset would be

to try all possible feature subsets as input for the classification algorithm and choose

that subset which leads to the best results (in terms of classification accuracy).

Since the number of possible attribute subsets grows exponentially with the number

of attributes this exhaustive search method is impractical for all but simple toy

problems. To illustrate this, Figure 3.2 shows all 16 (24) possible feature subsets

for a very simple four-feature problem. Generally, the size of the search space for n

features is O(2n). Hence, most multivariate filter methods as well as most wrapper

methods use heuristic search methods to balance the quality of the subset and the

cost of finding it.

Famous examples of multivariate filter methods are correlation-based feature se-

lection (CBFS, cf. [Hal00]) and its extension, fast CBFS (cf. [YL04]). Generally

3.2. FEATURE SELECTION 39

0,0,0,0

0,0,0,10,0,1,00,1,0,01,0,0,0

0,1,1,01,0,0,11,0,1,01,1,0,0

0,1,1,11,0,1,11,1,0,11,1,1,0

1,1,1,1

0,1,0,1 0,0,1,1

Figure 3.2: All 2n possible feature subsets for a simple four-feature problem [KJ97], “1”
and “0” denotes the appearance/absence of a feature in a subset, respectively.
Each node is connected to nodes that have one feature deleted or added.

speaking, the idea behind CBFS is that a feature is important if it is relevant to

the class concept but is not redundant to any of the other relevant features. Ap-

plied with correlation, the goodness of a feature is measured, i. e., it is measured

whether a feature is highly correlated with the class but not highly correlated with

any of the other features. In Fleuret’s approach [Fle04], conditional mutual infor-

mation is used to catch dependencies among features. The author states that by

picking features which maximize their mutual information with the class to predict

conditional to any feature already picked, the method ensures the selection of fea-

tures which are both individually informative and two-by-two weakly dependent.

Experimental results show the strength of this approach, even when combined with

a very simple näıve Bayesian classifier (cf. Section 4.9). Moreover, self-organizing

or Kohonen maps (SOMs, cf. Section 4.9), which are usually used as unsupervised

classification methods (cf. Section 2.4.4), can also be applied independently of the

classification to the task of subset search evaluation. Usually, SOMs generate a

topology-preserving non-linear mapping of a high-dimensional input space (the de-

scriptor space) to a low-dimensional space, but they can also be applied as feature

selection methods by identifying correlations between features (cf., for example, the

recent study in [KOS09]).

Compared to feature ranking methods, multivariate filter algorithms are able to

identify and remove redundancies between features. Concerning the computational

cost, since multivariate filter algorithms need to measure the quality of a possibly

large number of candidate feature subsets instead of the quality of single features,

they are less scalable and slower than univariate techniques (cf. [GE03, SIL07]).

However, they still have a better computational complexity than wrapper methods.

40 CHAPTER 3. FEATURE REDUCTION

3.2.2 Wrapper Methods

Wrapper methods (cf. [KJ97, Das01]) are feedback methods which incorporate the

machine learning algorithm in the feature selection process, i. e., they rely on the

performance of a specific classifier to evaluate the quality of a set of features. Here,

the classification algorithm is used as a black box (cf. [KJ97]). Wrapper methods

search through the space of feature subsets using a learning algorithm to guide

the search. To search the space of different feature subsets, a search algorithm is

“wrapped” around the classification model. A search procedure in the space of

possible feature subsets is defined, various subsets of features are generated, and the

estimated classification accuracy of the learning algorithm for each feature subset is

evaluated.

Generally, wrapper methods can be divided into two groups, deterministic and

randomized methods.

Deterministic wrapper methods. These methods search through the space of

available feature either forwards or backwards. In the forward selection process,

single attributes are added to an initially empty set of attributes. At each step,

variables that are not already in the model are tested for inclusion in the model

and the most significant variables (e. g., the variable that increases the classification

accuracy based on the feature subset the most) are added to the set of attributes.

In the forward stage-wise selection technique only one variable can be added to the

set at one step. For example, in the best first search method the space of possible

attribute subsets is searched by a greedy hillclimbing algorithm augmented with a

backtracking facility. In the backward elimination process one starts with the full

set of features and deletes attributes one at a time (cf. [AB95, WF05]). In a study by

Guyon and Elisseeff (cf. [GE03]), a recursive implementation of this technique called

recursive feature elimination (RFE) has successfully been applied to the task of gene

selection by utilizing support vector machines (cf. Section 4.5) as feature ranking

method. A paired t-test is often used to compute the probability if other subsets may

perform substantially better. If this probability is lower than a pre-defined threshold

the search is stopped. The result is a (heuristically) optimal feature subset for the

applied learning algorithm.

Li and Yang [LY05a] have compared multiple classifiers with FS in recursive

and non-recursive settings and showed that the ability of a classifier for penalizing

redundant features and promoting independent features in the recursive process has

a strong influence on its success.

Randomized (non-deterministic) wrapper methods. Compared to determin-

istic wrapper methods, randomized wrapper algorithms search the next feature sub-

3.2. FEATURE SELECTION 41

set partly at random (i. e., the current subset does not directly grow or shrink from

any previous set following a deterministic rule). Single features or several features

at once can be added, removed, or replaced from the previous feature set. Famous

representatives of randomized wrapper methods are genetic algorithms (cf. [Gol89]

or [Vos99]), stochastic search methods which are inspired by evolutionary biology and

use techniques encouraged from evolutionary processes such as mutation, crossover,

selection and inheritance to select a feature subset. The application of genetic

algorithms as non-deterministic wrapper methods has been studied, for example,

in [JC99] or [HSL02]. Simulated annealing (cf. [KGV83]) – another stochastic search

method – is a generic probabilistic global search meta-algorithm for the global op-

timization problem, which has also been successfully applied as wrapper method

(cf. [BZF06]).

The interaction of wrapper methods with the classification algorithm often results

in better classification accuracy of the selected subsets than the accuracy achieved

with filter methods (cf. [KJ97, GE03, SIL07]). Nevertheless, the selected subsets are

classifier dependent and have a high risk of overfitting (cf. [SIL07]). Like multivariate

filter models, wrapper methods model feature dependencies, but are computationally

more expensive. Furthermore, deterministic models are prone to getting stuck in

a local optimum (greedy search). Compared to deterministic wrapper methods,

randomized methods are less prone to getting stuck in a local optimum, but have

a higher risk of overfitting (cf. [SIL07]). While some studies (cf. [Str07]) report

that non-deterministic wrapper approaches are usually faster than deterministic

approaches, the survey in [SIL07] states that randomized algorithms are sometimes

slower than deterministic algorithms.

3.2.3 Embedded Approaches

Embedded approaches (cf. [BL97]), sometimes also referred to as nested subset meth-

ods (cf. [GE03]), act as an integral part of the machine learning algorithm itself.

During the operation of the classification process, the algorithm itself decides which

attributes to use and which to ignore. Just like wrapper methods, embedded ap-

proaches thus depend on a specific learning algorithm, but may be more efficient in

several aspects. Since they avoid retraining of the classifier from scratch for every

feature subset investigated, they are usually faster than wrapper methods. More-

over, they make better use of the available data by not needing to split the training

data into a training and test/validation set.

Decision trees (cf. Section 4.3) are famous examples that use embedded feature

selection by selecting the attribute that achieves the “best” split in terms of class

42 CHAPTER 3. FEATURE REDUCTION

distribution at each leave. This procedure is repeated recursively on the feature

subsets until some stopping criterion is satisfied. The output is a model that uses

only a subset of features – those that appear in the nodes of the decision tree

(cf. [Mla06]). For this reason, decision trees are usually not sensitive to the presence

of irrelevant features.

Another example of embedded feature selection, which is based on training a

non-linear support vector machine (SVM, cf. Section 4.5), was proposed in [Rak03].

In this study, different criteria for variable selection are derived from SVM theory.

These criteria are based on (i) the weight vector norm and (ii) generalization er-

ror bounds sensitivity with respect to a variable (see Section 4.5 for details about

SVMs). The results show that the criterion based on the weight vector derivative

achieves good results. Guyon et al. [GWB02] introduced embedded feature selection

using the weight vectors of a support vector machine in combination with recursive

feature elimination. Their work was applied to the task of gene selection, and results

show that their method eliminates gene redundancy automatically and yields subsets

that achieve better classification than the full set of features. An approach called

grafting, which uses fast gradient-based heuristics to find the best feature subset,

was introduced in [PLT03]. Iteratively, a gradient-based heuristic is used to quickly

assess which feature is most likely to improve the existing model, that feature is

then added to the model, and the model is incrementally optimized using gradient

descent. Moreover, random forests (see Section 4.6) are also often considered and

applied (cf. [DA06]) as embedded feature selection methods, because of their built

in possibility to measure descriptor importance as well as the similarity between

features.

3.2.4 Comparison of Filter, Wrapper and Embedded Approaches

Wrapper methods usually have the highest computational complexity, followed by

embedded approaches. Multivariate filter methods are usually faster than embedded

approaches and wrapper methods, but slower than univariate filter methods (feature

ranking), which are often a good choice for datasets with a very large numbers of

instances. Since wrapper and embedded approaches select the feature subsets based

on a specific learning algorithm, they are more prone to overfitting than filter meth-

ods which are independent of the later applied classifier. Moreover, deterministic

wrapper algorithms are also prone to getting stuck in local optima. On the other

hand, wrapper and embedded methods have often proven to achieve very good clas-

sification accuracies for specific problems. Due to the wide variety of variables, data

distributions, classifiers and objectives, there is no feature selection method that

is universally better than others (cf., for example, [GGN06]). A general compari-

3.3. DIMENSIONALITY REDUCTION 43

son of filter and wrapper methods as well as embedded approaches is, for example,

given in [JC99, LY05b, GGN06, SIL07], where methods are compared in terms of

classification performance, general and computational complexity, scalability, model

independence, and behavior (are methods prone to getting stuck in local optima or

have high risk of overfitting).

3.3 Dimensionality Reduction

In some applications, reducing the dimension of the data is only useful if the original

features can be retained (for example, because the interpretability of the original

features should not be affected). If these considerations are not of concern, other

techniques which reduce the dimension of a dataset can be considered.

Dimensionality reduction (DR) refers to algorithms and techniques which create

new attributes as (often linear) combinations of the original attributes in order to

reduce the dimensionality of a dataset (cf. [LM98]). Rather than selecting a subset

of the features, these techniques involve some type of feature transformation and aim

at reducing the dimension such that the representation is as faithful as possible to

the original dataset, but with a lower dimension and removed redundancy. Because

the new attributes are combinations of the original ones, the transformation process

is also referred to as feature construction or feature transformation. This process

of constructing new features can be followed by or combined with a feature subset

selection process – the original feature set is first extended by the newly constructed

features and then a subset of features is selected (cf. [Mla06]). The study in [Pop01]

shows that adding newly computed features to the original attributes can increase

the classification results achieved with these feature sets more than replacing the

original attributes with the newly computed features.

In contrast to many feature selection methods, dimensionality reduction tech-

niques usually map the data to lower dimension in an unsupervised manner, i. e.,

the class labels are not considered, just the explanatory variables are used.

3.3.1 Low-rank Approximations

Low-rank approximations replace a large and often sparse data matrix with a re-

lated matrix of much lower rank. The objectives of these techniques are to reduce

the required storage space and/or to achieve a more efficient representation of the

relationship between data elements. Low-rank approximations are used within sev-

eral dimensionality reduction methods, such as principal component analysis (PCA,

cf. Section 3.3.2) or singular value decomposition (SVD, cf. Section 3.3.3). De-

pending on the applied approximation, great care must be taken in terms of storage

44 CHAPTER 3. FEATURE REDUCTION

requirements. If the original data matrix is very sparse (for example, as it is the

case for many text mining problems), the storage requirements for the low-rank ap-

proximations might be higher than for the original data matrix with much higher

dimensions, since the approximation matrices are often almost completely dense.

For the factors of the low-rank approximation technique, the sparseness may still be

preserved (for example, the SVD factors U,Σ, V , or the NMF factors W and H), but

the approximation of the original data matrix is usually almost dense (for example,

the product UΣV > within SVD, or the product WH within NMF, see later).

Different matrix factorization or matrix decomposition techniques can be applied

for computing low-rank approximations. The most well known techniques are the

eigenvalue decomposition and singular value decomposition, but there are several

other techniques – some of them are listed at the end of this section. In recent

years, an approximation technique for nonnegative data – called nonnegative matrix

factorization (NMF, cf. Section 3.3.4) – has been used successfully in various fields.

In the following, the main characteristics of principal component analysis, singular

value decomposition and nonnegative matrix factorization are discussed.

3.3.2 Principal Component Analysis

One of the most widely used DR techniques is the principal component analysis

(PCA, cf. [Kra98, Par98, Jol02, Sha03]), which produces new attributes as linear

combinations of the original variables. These new attributes – called principle com-

ponents (PCs) – have to meet the following criteria: The PCs are (i) linear combi-

nations of the original attributes, (ii) orthogonal to each other, and (iii) capture the

maximum amount of variation in the data (see paragraph on principal components).

Often the variability of the data can be captured by a relatively small number of

PCs, and, as a result, PCA can achieve high reduction in dimensionality with usu-

ally lower noise than the original patterns. A drawback of PCA is that the PCs are

not always easy to interpret, and, in addition to that, PCA depends on the scaling

of the data (i. e., removing the mean of each variable). Depending on the field of

application, PCA is sometimes also referred to as Karhunen-Loève transform (KLT,

cf. [Fuk90]). In the following, the mathematical background of PCA is explained

briefly.

Eigenvalues and eigenvectors. For an n × n matrix C and a nonzero vector q,

the values of λ satisfying the equation

Cq = λq (3.6)

are called the eigenvalues of C, the vectors q satisfying Equation (3.6) are called

3.3. DIMENSIONALITY REDUCTION 45

eigenvectors. The number of non-zero eigenvalues of C is at most rank(C), which

is the maximal number of linearly independent columns or rows of C, respectively.

Equation (3.6) can also be written as (C − λIn)q = 0.

If C (and hence (C − λIn)) is an n× n square and full-rank matrix (i. e., C has

at most n linearly independent eigenvectors), the eigenvalues of C can be found,

for example, by solving the characteristic equation (also called the characteristic

polynomial) det(C−λIM) = 0, where det(S) denotes the determinant of the square

matrix S. This method for solving the characteristic equation should be considered

as a mathematical proof rather than as a state-of-the-art method. Computational

methods are not based on this representation (as it is the case for the algorithms

mentioned in the paragraph about computational complexity (see below)).

If C has n linearly independent eigenvectors q1,...,qn, then C can be expressed

by a product of three matrices

C = QΛQ−1, (3.7)

where Λ is a diagonal matrix whose diagonal entries are the eigenvalues of C in

decreasing order (λ1, ..., λn), and Q = [q1, ...,qn] is the matrix of eigenvectors of

C (the ith eigenvector corresponds to the ith largest eigenvalue). Equation (3.7) is

called eigenvalue decomposition (or eigendecomposition) of C. Mathematical details

behind the eigendecomposition can be found in the literature, for example, in [GV96]

or [Dem97].

Covariance and correlation. The covariance of two attributes is a measure of

how strongly these attributes vary together. The covariance of a sample of two

random variables x and y (with mean x and y) with sample size n can be calculated

as

Cov(x,y) =
1

n− 1

n∑
i=1

(xi − x)(yi − y). (3.8)

If x = y, then the covariance is equal to the variance. When x and y are normalized

by their standard deviations σx and σy, then the covariance of x and y is equal to the

correlation coefficient of x and y, which indicates the strength and the direction of

a linear relationship between x and y. The correlation coefficient can be calculated

as

Corr(x,y) =
Cov(x,y)

σxσy
. (3.9)

Given an m × n matrix A, whose m rows are data objects and whose n columns

are attributes, the covariance matrix Cov(A), which is a square matrix constructed

of the single covariances, can be calculated. If the values of each attribute of A are

46 CHAPTER 3. FEATURE REDUCTION

shifted such that the mean of each attribute is 0, then Cov(A)= A>A.

Principal components. If the eigenvalue decomposition is performed on the

square matrix Cov(A), then the original data matrix A can be transformed to an-

other matrix A′ := AQ, with Q = [q1, ...,qn] (see also Equation (3.7)). Each column

of A′ is a linear combination of the original attributes, the columns of A′ are the

principal components, the variance of the ith new attribute is λi, and the sum of the

variances of all new attributes is equal to the sum of the variances of the original

attributes.

The eigenvalue decomposition can also be performed on Corr(A). Chapter 6

provides some detailed discussions and comparisons about the application of the

eigenvalue decomposition using the covariance matrix or the correlation coefficient

matrix. In both cases (i. e., using Cov(A) or Corr(A)), A′ satisfies the following

properties (cf. [TSK05]):

i Each pair of the new attributes has covariance 0,

ii The new attributes are ordered descendingly with respect to their variance,

iii The first new attribute (i. e., the first principal component) captures as much

of the variance of the data as possible by a single attribute, and,

iv Each successive attribute captures as much of the remaining data as possible.

The eigenvectors of Cov(A) (or Corr(A), respectively) define a new set of orthog-

onal axes, and the eigenvector associated with the largest eigenvalue indicates the

direction in which the data has the most variance. PCA can be viewed as a rotation

of the original axes, where the total variability of the data is still preserved, but the

new attributes are now uncorrelated.

-10 -5 0 5 10
-6

-4

-2

0

2

4

6

8

10

12

x

y

Figure 3.3: Data before the PCA
transformation.

-10 -5 0 5 10
-6

-4

-2

0

2

4

6

8

10

12

x

y

Figure 3.4: Data after the PCA
transformation.

3.3. DIMENSIONALITY REDUCTION 47

Figures 3.3 and 3.4 show the alignment of the new axes in the directions of the

maximum variability of the data. The figures show a plot of two dimensional data

points, before and after a PCA transformation. The total variance of the original

data points (shown in Figure 3.3) is equal to the total variance of the new attributes,

but the first new attribute captures as much of the variance of the data as possible.

In Figure 3.3, the variance on the x-axis is 3.84, the variance on the y-axis is 7.99,

and the total variance is thus 11.83. After the transformation (Figure 3.4), the total

variance remains unchanged, but the variance on the x-axis is increased to 10.36 and

the variance on the y-axis is reduced to 1.47.

Advantages and drawbacks. PCA is a relatively simple, non-parametric, generic

method that is useful for finding new, more informative, uncorrelated features and

it can be used to reduce dimensionality by rejecting low variance features. Since

the principal components are orthogonal to each other, every principal component

is uncorrelated to every other principal component (i. e., they do not contain any

redundant information). The principal components are designed to account for the

highest percentage of the variation among the variables with as few PCs as possible.

Thus, often the first few PCs account for some large percentage of the total variance,

allowing for a compact representation of the data with only low dimensions.

However, PCA is limited to re-expressing the data as combinations of its basis

vectors. A main drawback of PCA is that each PC is a linear combination of all

original variables, thus leading to a potentially difficult interpretation of the PCs.

On the contrary, in a system with many variables PCA may be used to project

the dimension down to a reasonable number of plots, and the principal components

could be rotated towards a more meaningful representation. Moreover, PCA is

sensitive with respect to the units of measurement. If the units and the variances

of attributes vary a lot, then variables with high variance tend to dominate the first

few principal components. In this case, the data need to be normalized prior to the

PCA transformation.

Computational complexity. From a computational point of view, the eigenvalue

decomposition for solving the PCA transformation is rather expensive in terms of

runtime, especially for a large number of attributes. There are several algorithms

for solving symmetric eigenproblems, but all of them are of order O(n3). Dem-

mel [Dem97] discusses several algorithms for computing the eigenvalue decompo-

sition, such as tridiagonal QR iteration (see also [GV96]), bisection and inverse

iteration, the divide-and-conquer algorithm (see also [Cup81]), Rayleigh quotient

iteration (see also [Par98]), as well as the cyclic Jacobi method (see also [GV96]).

The first three algorithms are reported to be the fastest (cf. [Dem97]) – however,

48 CHAPTER 3. FEATURE REDUCTION

they are still of order O(n3). A recent comparison of the performance of LAPACK 1

implementations (a software package that offers fast linear algebra routines) of these

three algorithms can be found in [DMP08].

3.3.3 Singular Value Decomposition

Equation (3.7) decomposes a square matrix into a product of three matrices. An

arbitrary matrix can be decomposed in a similar way (although eigenvectors do not

exist for non-square matrices). The singular value decomposition (SVD, cf. [Dem97,

BDJ99]), is a more general method that factors any m× n matrix A of rank r into

a product of three matrices, such that

A = UΣV >, (3.10)

where U is m × m (the left singular vectors), Σ is m × n, and is V is n × n (the

right singular vectors). U and V are both orthonormal matrices (i. e., UU> = Im

and V V > = In), and Σ is an m × n matrix where the nonnegative and descend-

ingly ordered elements along the diagonal of the left/top quadratic subblock are the

singular values σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σr ≥ 0 of A. All other elements of Σ are 0.

If r < min(m,n), i. e., the matrix A is not full-rank, then only r singular values

are greater than 0. A full-rank decomposition of A is usually denoted like this:

Ar = UrΣrV
>
r . The singular values are always real numbers. If the matrix A is real,

then U and V are also real. The relative sizes of the matrices U , Σ and V are shown

in Figure 3.5. All entries not explicitly indicated in Σ are zero.

Figure 3.5: Illustration of the SVD (following [BDJ99]). For m > n (upper part of the
figure), and m < n (lower part).

The truncated SVD (or reduced rank SVD) to A can be found by setting all but

1http://www.netlib.org/lapack

3.3. DIMENSIONALITY REDUCTION 49

the first k largest singular values equal to zero and using only the first k columns of

U and V . This is usually denoted like

Ak = UkΣkV
>
k , (3.11)

or, more explicitly

Ak ' (u1, . . . ,uk)


σ1

. . .

σk




v>1
...

v>k

 , (3.12)

where (u1, . . . ,uk) are the column vectors of U , and (v>1 , . . . ,v
>
k) are row vectors of

V >.

A theorem by Eckart and Young from 1936 [EY36] states that amongst all possible

rank k approximations, Ak is the best approximation in the sense that ||A−Ak||F is

as small as possible (cf. [BDJ99]), in other words, the singular value decomposition

gives the closest rank k approximation of a matrix, such that

||A−Ak||F ≤ ||A−Bk||F , (3.13)

where Bk is any matrix of rank k, and ||.||F is the Frobenius norm, which is defined

as (
∑
|aij |2)1/2 = ||A||F) (cf. [Dem97]). Since both, premultiplying an m×n matrix

X with an m×m orthogonal matrix, and postmultiplying X with an n×n orthogonal

matrix leaves the Frobenius norm unchanged, it can be shown that the Frobenius

norm of A is equal to the Euclidean norm of the vector containing all singular values

||A||F = ||UΣV >||F = ||ΣV >||F = ||Σ||F =

√√√√ rA∑
j=1

σ2
j . (3.14)

Computational complexity. In general, the computational complexity of the

original Golub-Reinsch SVD algorithm for computing all three matrices U , Σ and V

is O(4m2n+ 8mn2 + 9n3), for computing only the matrices Σ and V it is O(4mn2 +

8n3) (cf. [GV96]), making the decomposition unfeasible for large datasets. The R-

SVD algorithm introduced by Chan [Cha92] has a complexity of O(4m2n+22n3) for

computing all three matrices, and a complexity of O(2mn2 + 11n3) for computing

only Σ and V . The Lanczos method (cf. [GV96, Par98]) is able to compute a thin

SVD (i. e., r – the number of required singular values – must be known in advance)

in O(mnr2), but is known to be inaccurate for smaller singular values (cf. [Ber92]).

[Bra02] proposed an SVD update algorithm for dense matrices, which shows a linear

50 CHAPTER 3. FEATURE REDUCTION

time complexity in the size and the rank of the data, O(mnr).

Relation to PCA. Calculating the SVD is equivalent of finding the eigenvalues

and eigenvectors of AA> and A>A. The eigenvectors of AA> make up the columns

of U , the eigenvectors of A>A make up the columns of V . Moreover, the singular

values in Σ are the square roots of eigenvalues from AA> and A>A. The SVD-PCA

connection stems from the straightforward linear algebra calculations

AA> = (UΣV >) (V Σ>U>) = UΣ2U>, and (3.15)

A>A = (V Σ>U>) (UΣV >) = V Σ2V >. (3.16)

A comparison with Equation (3.7) shows the following: As already mentioned before,

if the values of each attribute of A are shifted such that the mean of each attribute is

0, then Cov(A)=A>A. If we re-write Equation (3.7) in the form A>A = QΛQ−1, and

replace the left part of Equation (3.16) with the right part of Equation (3.7), we get

QΛQ−1 = V Σ2V >. Since Q and V are orthonormal, Q−1 = Q>, and V −1 = V >.

If the columns of Λ and Q are now arranged such that the eigenvalues in Λ are

descendingly ordered, then it can be seen that Λ is identical to the square of Σ, and

Q is identical to V .

An often mentioned difference between these two approaches is that PCA re-

moves the mean of each variable whereas SVD uses the original data (however, the

mean could also be removed before computing the SVD). Especially for sparse data

it is not always preferable to remove the mean of the data (cf. [TSK05]). The similar-

ities and dissimilarities of PCA and SVD have been examined in various studies, for

example Cherry [Che97] provides an excellent comparison of these two techniques.

Software. There are several software libraries for numerical linear algebra imple-

mentations (LAPACK 2, ScaLAPACK 3, SVDPACK 4, . . .) that contain various algorithmic

variants for computing the SVD (and also the eigenvalue decomposition for PCA).

3.3.4 Nonnegative Matrix Factorization

The nonnegative matrix factorization (NMF, cf. [PT94, LS99]) consists of reduced

rank nonnegative factors W ∈ Rm×k and H ∈ Rk×n with (problem dependent) k �
min{m,n} that approximate a given nonnegative data matrix A∈ Rm×n: A ≈WH.

The non-negativity constraints require that all entries in A, W and H are zero or

positive. Despite the fact that the product WH is only an approximate factorization

2http://www.netlib.org/lapack
3http://www.netlib.org/scalapack
4http://www.netlib.org/svdpack

3.3. DIMENSIONALITY REDUCTION 51

of A of rank at most k, WH is called a nonnegative matrix factorization of A. The

non-linear optimization problem underlying NMF can generally be stated as

min
W,H

f(W,H) =
1

2
||A−WH||2F , (3.17)

where ||.||F is the Frobenius norm (see Section 3.3.3). Although the Frobenius norm

is commonly used to measure the error between the original data A and WH, other

measures are also possible, for example, an extension of the Kullback-Leiber di-

vergence to positive matrices (cf. [DS05]), a convergence criterion based on the the

Karush-Kuhn-Tucker (KKT) condition (cf. [KP08]), or an angular measure based on

the angle θi between successive basis vectors, i. e. W
(j+1)
i and W

(j)
i (cf. [LMA06]).

Unlike the SVD, the NMF is not unique, and convergence is not guaranteed for all

NMF algorithms. If they converge, then they usually converge to local minima only

(potentially different ones for different algorithms). Fortunately, the data compres-

sion achieved with only local minima has been shown to be of desirable quality for

many data mining applications (cf. [LMA06]).

Due to its nonnegativity constraints, NMF produces so-called “additive parts-

based” (or “sum-of-parts”) representations of the data (in contrast to many other

linear representations such as SVD, PCA or ICA). This is an impressive benefit of

NMF, since it makes the interpretation of the NMF factors much easier than for

factors containing positive and negative entries, and enables NMF a non-subtractive

combination of parts to form a whole [LS99]. For example, the features in W (called

“basis vectors”) may be topics of clusters in textual data, or parts of faces in image

data. Another favorable consequence of the nonnegativity constraints is that both

factors W and H are often naturally sparse (see, for example, the update steps of

Algorithm 3, where negative elements are set to zero).

3.3.5 Algorithms for Computing NMF

NMF algorithms can be divided into three general classes: multiplicative update

(MU), alternating least squares (ALS) and gradient descent (GD) algorithms. A

review of these three classes can be found, for example, in [BBL07]. Pseudo code

for the general structure of all NMF algorithms is given in Algorithm 1.

In the basic form of most NMF algorithms, the factors W and H are initialized

randomly. Since the approximation quality and convergence of NMF algorithms

strongly depends on the initialization of the factors, NMF algorithms are usually re-

peated several times, each time with newly initialized factors. The variable maxrep-

etition in line 2 specifies the number of repetitions of the complete algorithm. Most

algorithms need pre-initialized factors W and H, but some algorithms (for example,

52 CHAPTER 3. FEATURE REDUCTION

Algorithm 1 – General structure of NMF algorithms.

1: given matrix A ∈ Rm×n and k � min{m,n}:
2: for rep = 1 to maxrepetition do

3: W = rand(m, k);

4: (H = rand(k, n);)

5: for i = 1 to maxiter do

6: perform algorithm specific NMF update steps

7: check termination criterion

8: end for

9: end for

the ALS algorithm) only need one pre-initialized factor (as indicated with brackets

in line 4 of Algorithm 1). In each repetition, NMF update steps are processed iter-

atively until a maximum number of iterations is reached (maxiter, line 5). Different

update steps for the three basic NMF algorithms are briefly described in the follow-

ing paragraph. If the approximation error of the algorithm drops below a pre-defined

threshold, or the shift between two iterations is very small, the algorithm might stop

before all iterations are processed (for details, see paragraph termination criteria).

Multiplicative update algorithm. The update steps for the multiplicative up-

date algorithm given in [LS01] are based on the mean squared error objective func-

tion. Adding ε in each iteration avoids division by zero. A typical value used in

practice is ε = 10−9.

Algorithm 2 – Update steps for the multiplicative update algorithm.

1: H = H . ∗ (W>A) ./(W>WH + ε);

2: W = W . ∗ (AH>) ./(WHH> + ε);

The operator ./ divides each entry of the matrix on the left hand-side of the

operator by the corresponding entry of the matrix on the right hand-side of the

operator. Similarly, the operator .∗ indicates an element-by-element multiplication.

Alternating least squares algorithm. Alternating least squares algorithms were

first mentioned in [PT94]. In an alternating manner, a least squares step is followed

by another least squares step. As can be seen in Algorithm 3, all negative elements

resulting from the least squares computation are set to 0 to ensure nonnegativity.

The standard ALS algorithm only needs to initialize the factor W , the factor H

is computed in the first iteration. This algorithm also works with a pre-initialized

factor H (lines 3 and 4 in Algorithm 3 have to be executed prior to lines 1 and 2).

Gradient descent algorithm. This third algorithm always takes a step in the

3.3. DIMENSIONALITY REDUCTION 53

Algorithm 3 – Update steps for the alternating least squares algorithm.

1: solve for H : W>WH = W>A;

2: set all negative elements in H to 0;

3: solve for W : HH>W> = HA>;

4: set all negative elements in W to 0;

direction of the negative gradient, the direction of steepest descent (which can be

computed using the partial derivatives for H and W , respectively). Here, εH

Algorithm 4 – Update steps for the gradient descent algorithm.

1: H = H − εH∇Hf(W,H)

2: W = W − εW∇W f(W,H)

and εW are step-size parameters which have to be chosen carefully in order to get

a good approximation (cf. the discussion in [Lin07]). The partial derivatives are

∇Hf(W,H) = W>(WH − V) and ∇W f(W,H) = (WH − V)H>, respectively.

An interesting study investigating proposing and discussing an adaption of gra-

dient descent algorithm was published by Lin [Lin07]. In this paper, the author

proposed the use of a projected gradient bound-constrained optimization method

for computing the NMF. Results show that this method is is computationally very

competitive and appears to have better convergence properties than the standard

MU approach in some cases.

All three algorithms are iterative and their convergence depends on the initialization

of W (and H). Since the iterates generally converge to a local minimum, often

several instances of the algorithm are run using different random initializations, and

the best of the solutions is chosen. A proper non-random initialization of W and/or

H (depending on the algorithm) can avoid the need to repeat several factorizations.

Moreover, it may speed up convergence of a single factorization and reduce the error

as defined in Equation (3.17). In Chapter 8 we introduce, discuss and compare new

initialization methods for NMF.

Termination criteria. The simplest possible convergence criterion, which is used

in almost all NMF algorithms, is to run for a fixed number of iterations (denoted

maxiter in Algorithm 1). Since the most appropriate value for maxiter is problem-

dependent, this is not a mathematically appealing way to control the number of

iterations, but applies when the required approximation accuracy does not drop

below a pre-defined threshold ε, even after several iterations. The quality of the

approximation accuracy is another convergence criterion. Obviously, the choice of ε

depends on the size and structure of the data. As already mentioned in Section 3.3.4,

54 CHAPTER 3. FEATURE REDUCTION

different convergence measures can be applied, such as the Frobenius norm (see

Equation (3.17)), Kullback-Leiber divergence, KKT, or angular measures. An third

convergence criterion is based on the relative change of the factors W and H from

one iteration to another. If this change is below a pre-defined threshold δ, then the

algorithm also terminates.

Computational complexity of NMF algorithms A single update step of the

MU algorithm has the complexity O(kmn) (since A is m× n, W is m× k and H is

k × n), see, for example, [LCL07, RM09]. Considering the number of iterations i of

the NMF yields an overall complexity of O(ikmn). The computational complexity

of basic GD methods depends on computing the partial derivatives in Algorithm 4,

which yields also a complexity of O(ikmn), and is also based on the effort needed

for retrieving the optimal size of the step-sizes parameters (cf. [Lin07]). For the ALS

algorithm, the complexity for solving the equations in lines 1 and 3 of Algorithm 3

need to be considered additionally. In its most general form, these equations are

solved using an orthogonal-triangular factorization.

3.3.6 Other Dimensionality Reduction Techniques

The goal of a factor analysis (FA, cf. [Gor83, JW07]) is to express the original

attributes as linear combinations of a small number of hidden or latent attributes.

The factor analysis searches for underlying (i. e., hidden or latent) features that

summarize a group of highly correlated attributes. The following equation shows

the relationship between the old and new data objects for a standard factor analysis

model (assuming that the mean of each attribute is zero):

a>i∗ = Λf>i∗ + ε, (3.18)

where ai∗ is the ith row vector of the original m× n data matrix A (each row of A

corresponds to an instance), and f i∗ is the corresponding row vector of the new m×p
data matrix F . Λ is an m × p matrix of factor loadings, that indicate how much

each single original attribute depends on the new attributes (also called latent or

common factors). ε is an error term that accounts for the portion of the attributes

not accounted by F . Several mathematical and statistical methods are needed to

extract the factors, including principal component analysis, maximum-likelihood,

and least-squares (cf., for example, [Att99]).

Independent components analysis (ICA, cf. [HKO01]) – a member of the

class of blind source separation (BSS) methods – is a method for finding underlying

factors or components from multivariate (multidimensional) statistical data. More

precisely, ICA separates multivariate signals into additive subsets, that are both

3.3. DIMENSIONALITY REDUCTION 55

statistically independent and non-gaussian.

Multidimensional scaling (MDS, cf. [CC01]) finds projections of the data to

a lower dimensional space, while preserving pairwise distances (based on an objec-

tive function). Usually, MDS explores similarities and dissimilarities in the data.

FastMap [FL95], a fast incremental technique, and ISOMAP [TSL00], a method

used to handle data with non-linear relationship to one another, are two famous

examples within the set of MDS techniques.

Locally linear embedding (LLE, cf. [RS00]) is an unsupervised, non-linear and

non-parametric dimensionality reduction technique that computes low-dimensional,

neighborhood-preserving embeddings of high-dimensional input. LLE maps data

into a single global coordinate system of usually much lower dimensionality, without

being prone to getting stuck in local minima.

A classical method for the lossy compression of datasets (instances, not at-

tributes) is vector quantization (cf. [LBG80]). This method models the prob-

ability density functions by the distribution of prototype vectors (also called code

vectors). A vector quantizer divides a large set of k-dimensional vectors into a finite

set of prototype vectors Y = yi : i = 1, 2, ..., N , where each yi acts as a centroid point

(comparable to centroids in clustering algorithms), and all yi have approximately

the same number of points closest to them. Vector quantization has been used for

image and signal compression (cf. [GG91]), voice recognition (cf. [KL93]), and for

general statistical pattern recognition (cf. [SDM06]).

3.3.7 Comparison of Techniques

When comparing dimensionality reduction techniques, various key issues of the

methods have to be taken into account. Important aspects are quality and type

of representation, theoretical provability, determinism, computational complexity,

availability of algorithms, etc. An important property of DR methods is the as-

pect if the representation captures the characteristics of the data that are important

while eliminating aspects that are irrelevant or even detrimental (e. g., noise). The

answer to this question depends to a large extend on the characteristic of the data.

Some DR methods capture linear relationships between the old and the new sets of

attributes (PCA, SVD, FA), while other methods such as ISOMAP and LLE are

also able to capture with nonlinear relationships. Due to the non-negativity con-

straints of NMF, this technique is able to produce “sum-of-parts” representations

of the original data (cf. Section 3.3.4), which makes the interpretation of the NMF

factors much easier than for other methods.

From a theoretical point of view, PCA and SVD have the best theoretically prov-

able properties, and give the best approximation in terms of approximation error of

56 CHAPTER 3. FEATURE REDUCTION

all methods (cf. Equation (3.13) in Section 3.3.3). Moreover, both techniques are

purely deterministic and always produce reproducible results (for identical input).

NMF algorithms based on non-randomly initialized factors are also deterministic,

while randomly initialized factors produce different answers on different runs. Fac-

tor analysis and MDS techniques are also non-deterministic. The computational

complexity of most methods is over O(m2) (cf. [TSK05]), where m is the number

of objects. Only FastMap has a linear time and space complexity.

The availability of fast and efficient algorithms is also an essential aspect of di-

mensionality reduction methods. The software libraries mentioned in Section 3.3.3

provide several algorithmic variants for efficiently computing singular value decom-

position and eigenvalue decomposition. Moreover, SVD and eigenvalue decomposi-

tion algorithms are integrated into Matlab5, and methods for computing NMF and

factor analysis are included into the Matlab Statistics Toolbox.

In Part II of this thesis, we focus on three of these methods (PCA, SVD, NMF) for

investigating the relationship between dimensionality reduction methods and the

resulting classification accuracy in the context of email filtering and drug discovery

applications. Summarizing, SVD, PCA and NMF contain several crucial properties

that make them preferable over other methods in the context of this thesis. PCA

and SVD benefit from their theoretical provability and the fact, that they are able to

produce the best approximation of the original data compared to any other method.

Contrary to that, NMF seems to be a very promising method since the “sum-of-

parts” representation obtained from the non-negativity constraints of NMF provides

the possibility to interpret the factors (“basis vectors” or “basis features”).

5http://www.mathworks.com/

Chapter 4

Supervised Learning

In Chapter 2 of this thesis, machine learning algorithms were classified into two

distinct groups – supervised (predictive) and unsupervised (descriptive) learning

methods. Algorithms for supervised learning use a set of labeled training examples,

each with a feature vector and a class label. Given some training data, most algo-

rithms produce a classifier model that maps an object to a class label. Contrary to

that, unsupervised learning algorithms aim at finding similarities among unlabeled

objects and work without the class information of a sample (cf. Section 2.4.4). In

this thesis, the focus is on the application of supervised learning algorithms to the

task of classification in order to compare and evaluate the classification performance

of these algorithms based on several subsets of features extracted by feature selection

and dimensionality reduction techniques discussed in Chapter 3.

In this chapter, all classification models used in Part II of this thesis are explained

and discussed separately. Moreover, the algorithms are compared to each other

in terms of classification accuracy, comprehensibility, complexity and speed. The

discussed methods comprise k-nearest neighbor classifiers, decision trees, rule-based

learners, support vector machines and several ensemble methods (including bagging

and random forest). Moreover, two techniques originating from web search and

text mining – the vector space model and its extension, latent semantic indexing

– are discussed. At the end of this chapter, some classification methods which are

not used in Part II of this thesis, but which have been used in the contexts of the

application areas discussed in Chapter 5 are summarized briefly. Relevant literature

for each learning algorithm is given directly in the appropriate sections discussing

these algorithms.

57

58 CHAPTER 4. SUPERVISED LEARNING

4.1 Relevant Literature

Similarly to Chapter 6, relevant literature for supervised learning algorithms is again

included directly in the main text.

4.2 The k-Nearest Neighbor Algorithm

The k-nearest neighbor (kNN) algorithm (cf. [CH67, Aha92, CH95]) is a simple and

one of the most intuitive machine learning algorithms that belongs to the category

of instance-based learners. Instance-based learners are also called lazy learner be-

cause the actual generalization process is delayed until classification is performed,

i. e., there is no model building process. Unlike most other classification algorithms,

instance-based learners do not abstract any information from the training data dur-

ing the learning (or training) phase. Learning (training) is merely a question of

encapsulating the training data, the process of generalization beyond the training

data is postponed until the classification process.

kNN is based on the principle that instances within a dataset will generally exist

in close proximity to other instances that have similar properties (cf. [CH67]). If

the objects are tagged with a classification label, objects are classified by a major-

ity vote of their neighbors and are assigned to the class most common amongst its

k-nearest neighbors. k is a usually rather small odd (to avoid tied votes) positive

number and the correct classification of the neighbors is known a priori. The ob-

jects can be considered n-dimensional points within an n-dimensional instance space

where each point corresponds to one of the n features describing the objects. The

distance or “closeness” to the neighbors of an unclassified object is determined by

using a distance metric (also called similarity function), for example the Euclidean

distance or the Manhattan distance. A survey of different distance metrics for kNN

classification can be found, for example, in [WBS06].

The high degree of local sensitivity makes kNN highly susceptible to noise in the

training data – thus, the value of k strongly influences the performance of the kNN

algorithm. The optimal choice of k is a problem dependent issue, but techniques

like cross-validation (cf. Section 2.4.4) can be used to reveal the optimal value of k

for objects within the training set. Figure 4.1 is an example of how the choice of

k affects the outcome of the kNN algorithm. In Figure 4.1 (a), if k is set to 7 or

smaller, a majority count of the k-nearest neighbors of the object under investigation

(qi) returns the (obviously correct) class crosses. Increasing k to 9 (all objects inside

the big circle) would result in predicting qi to class circles. On the contrary, setting

k to 1 or 9 in Figure 4.1 (b) returns class circles, if k is set to 3, 5, or 7, the kNN

4.2. THE K-NEAREST NEIGHBOR ALGORITHM 59

qi qi

Figure 4.1: kNN classifier.

algorithm returns class crosses.

Since the procedure of finding the closest object(s) of a training set is linear in the

number of training instances for every unlabeled object, the time to make a single

prediction is proportional to the number of training instances. Moreover, every

additional feature further increases the classification time. As kNN has absolutely

no built-in process of selecting important features, feature reduction is particularly

important for this algorithm to scale down the required runtime. Especially feature

ranking (cf. Section 3.2) is often used to discard features with weights below a

certain threshold value and to improve classification accuracy of the classifier (cf.,

for example, [Aha92]).

General evaluation. Considering the simplicity of the kNN algorithm, the classi-

fication results of kNN are generally quite good and comparable to the performance

achieved with decision trees and rule-based learners (cf. [Kot07]). However, the clas-

sification accuracy of kNN models does in general not reach the accuracy achieved

with support vector machines or ensemble learners. kNN is considered to be intol-

erant to noise, since its similarity measures can easily be distorted by errors in the

attribute values, and is also very sensitive to irrelevant features. On the contrary,

kNN models are usually not prone to overfitting and can be applied to incremental

learning strategies – since kNN does not build a classification model, newly classified

instances can be added to the training set easily.

Relevant literature. There are several studies that survey the application of kNN

for classification tasks. Besides almost all introductory data mining books and sur-

veys mentioned in Section 2.5, there are, for example, the book by Mitchell [Mit98]

or a recent survey article by Jiang et al. [JCW07], that summarizes several im-

provements of kNN algorithms for classification. An interesting publication on

weighted kNN classification based on symbolic features was published by Cost and

60 CHAPTER 4. SUPERVISED LEARNING

Salzberg [CS93]. Distance tables are calculated to produce real-valued distances from

features coming from symbolic domains. The authors state that their technique is

comparable or superior to standard kNN in three different application domains and

has advantages in training speed and simplicity. A different study, published by

Han et al. [HKK01], focuses on a weight-adjusted kNN implementation which finds

the optimal weight vector using an optimization function based on the leave-out-out

cross-validation and a greedy hill climbing technique. Moreover, two performance

optimizations based on intelligent selection of words followed by a document clus-

tering process, are introduced. The results show that the classification accuracy re-

mains generally unchanged while the computational performance could be improved

by a few orders of magnitude. Gracia et al. [GDB08] investigated high-performance

aspects of kNN classification based on utilizing GPU performance and show that

kNN can be accelerated up to a factor of 120 when using specific GPU settings.

4.3 Decision Trees

Decision trees (cf. [Kas80, BFS84, Qui93, SL98], sometimes also called classification

trees or regression trees) apply a “divide-and-conquer” approach to the problem

of learning from a set of independent instances. All decision trees are structured

such that the root node and the internal nodes contain attribute test conditions to

separate (classify) records that have different characteristics. The branches between

nodes represent conjunctions of features that lead to those classifications, and leaf

nodes represent the class labels.

Since the problem of constructing optimal (binary) decision trees is an NP-

complete problem (cf., for example, [Qui93]), heuristics are used for constructing

near-optimal trees. The feature that best divides the training data is used to par-

tition the records into smaller subsets. The crucial step is how to determine which

feature to split on. Different feature evaluation rules are used to search for the best

splitting feature. Some of these rules are derived from information theory, most of

them being based on Shannon’s entropy (cf. [Sha51]). Information gain (cf. Sec-

tion 3.2.1), a technique which can also be applied as feature ranking method, is one

of the most widely used splitting criteria. Another information theory based split-

ting criterion is to maximize the global mutual information by expanding tree nodes

that contribute to the largest gain in average mutual information of the whole tree

(cf., for example, [LWL03]). Rules derived from distance measures between groups

calculate the separability, divergence or discrimination between classes. Popular

distance measures are the Gini index of diversity (cf. [BFS84]), a measure of the

inequality of a distribution, the Kolmogorov-Smirnov distance (cf. [Sha03]), a mea-

4.3. DECISION TREES 61

sure of the underlying similarity of two samples, or the χ2-statistic (cf. [LS96]), a

statistical significance test that uses the χ2-distribution to test the fit between a

theoretical frequency distribution and a frequency distribution of observed data for

which each observation may fall into one of several classes The χ2-distribution is the

sum of the squares of a set of variables or attributes, each of which has a normal

distribution and is expressed in standardized unit.

Basic algorithm. The typical decision tree algorithm proceeds as follows: First,

select an attribute to place at the root node and make one branch for each possible

value (or interval) of this attribute. This splits up the training set into subsets, one

for every value (interval) of the attribute. Then, repeat the process recursively for

each branch. If at any time all instances at a node have the same classification, stop

developing that part of the tree. Algorithm 5 presents a pseudo-code for building

decision trees.

Algorithm 5 – Pseudo-code for building decision trees.

Given a set set of training records D(t) that are associated with node t

and class labels y = {y1, y2, . . . , yc}
. .

Apply recursively for each child node

if all records in recordset D(t) belong to the same class yt then

t is a leaf node labeled as yt

else

D(t) contains records that belong to more than one class

Select evaluation rule to partition the records into smaller subsets

Create a child node for each outcome of test condition

Distribute the records in D(t) to the children

end if

Three major groups of decision tree algorithms are used in practice. The most

well-known algorithms are C4.5 and its successor C5.0, which are extensions of the

ID3 algorithm, all introduced by Quinlan [Qui93]. ID3, C4.5 and C5.0 trees use

information gain as splitting criterion and can handle both, categorical and numeric

attributes (cf. Section 2.3). Moreover, C4.5 is able to deal with missing values, i. e.,

objects, where one or more attribute values are missing. The commercial successor

C5.0 is faster and more memory efficient than C4.5, and supports boosting (cf.

Section 4.6), weighting the attributes and winnowing the data (i. e., discarding those

attributes that appear to be only marginally relevant). The CART (classification

and regression trees) algorithm developed by Breiman [BFS84] uses the Gini index

(see last paragraph) as evaluation rule and allows only for binary splits (in contrast to

62 CHAPTER 4. SUPERVISED LEARNING

C4.5). The CHAID (chi-square automatic interaction detectors) algorithm [Kas80]

uses the χ2 test (see last paragraph) as splitting function and a statistical stopping

rule that discontinuous tree growth. Like C4.5, this algorithm allows for multiple

splits.

Since decision trees are often prone to overfitting (cf. [WF05], high generalization

error due to too many attributes, cf. Section 2.4.4), the trees are usually pruned, i. e.,

the number of tests along a certain path is reduced. The tree is either not grown to

its full size, or subtrees of the fully grown tree are replaced with leafs subsequent to

the model building process. Pruned trees are also more easily comprehensible than

full trees, and the classification process can be performed faster since the number of

attributes under investigation is reduced.

General evaluation. The comprehensibility of decision trees is one their most use-

ful characteristics, since domain experts can easily understand the principle of the

tree, and why a certain object is classified to belong to a specific class. Moreover, de-

cision trees are probably the most extensively researched machine learning method,

can deal with any kind of input data (discrete, continuous, binary,... attributes).

They can also cope with missing values (see Section 2.4.2), since the information

that attribute values are missing for specific objects can be processed by most de-

cision tree algorithms. The learning process of decision trees is usually quite fast

compared to other methods like support vector machines or neural networks, and

since most trees are pruned, their classification process is usually also very fast. Sev-

eral studies (cf. [WF05, Kot07, JGD08]) have shown that the classification accuracy

is generally comparable to the quality of kNN and rule-based learners, but cannot

reach the quality of support vector machines or embedded methods, which, on the

contrary, are hardly comprehensible (difficult to understand for domain experts) and

are not good in handling missing data (since missing data has to be replaced with

alternative values such as mean or zero values before classification).

Relevant literature. Besides the introductory work on the three major decision

tree algorithms mentioned before (cf. [Kas80, BFS84, Qui93]), there are several

studies that provide comprehensive surveys on the application of various decision

tree algorithms in the fields of data mining and machine learning, for example,

[Mur98] or [SL98]. Breslow and Aha [BA97] reviewed methods of tree simplifica-

tion to improve the comprehensibility of the trees. Recently, several publications

focused on the parallel and distributed potential of decision tree algorithms. A

study by Yildiz and Dikmen [YD07] analyzed the parallelization potential of C4.5

algorithms, and provided three ways to parallelize them. The algorithms are par-

allelized by distributing either the features, the data or, the nodes among several

4.4. RULE-BASED LEARNERS 63

slave processors. Experimental results show that the node based parallelization im-

plementation demonstrates the best speedup among these three approaches. An

article by Bhaduri et al. [BWG08] focused on a distributed algorithm for decision

tree induction in large peer-to-peer environments. The authors state, that with suf-

ficient time, the algorithm converges to the same tree given all the data of all the

peers, and mention that this algorithm is suitable for scenarios in which the data is

distributed across large P2P networks (since the algorithm seamlessly handles data

changes and peer failures). Other recent work on the distribution of decision trees

includes the induction of multi-class and multi-feature split decision trees from dis-

tributed data [OPS09]. This study describes a method that generates compact trees

using multi-feature splits in place of single-feature splits and is based on Fisher’s

linear discriminant function, which aims at finding the projection vector such that

the projection of the original data has the best discriminantability (cf. [DHS01]).

Moreover, a new scheme on a privacy-preserving distributed decision tree algorithm

was introduced in [FYS09]. Their work presents a decision-tree mining algorithm

based on homomorphic encryption technology.

4.4 Rule-Based Learners

The output of decision trees can easily be mapped into a set of rules. Each path

from the root node to the leafs in the trees can be considered as a separate rule

(one rule for each leaf). Rule-based algorithms (cf., for example, the overview of

Fuernkranz [Fue99]) can create rules directly from the training data without creating

a tree. Most rule-based learners classify records using a collection of if . . . then

rules. The rules are represented in a disjunctive normal form (DNF), where a logical

formula is represented as one or more disjunctions of one or more conjunctions of

one or more literals, such as SR = (r1 ∨ r2 ∨ · · · ∨ rk), where SR is the rule set, and

ri are single classification rules (or disjuncts), which are expressed as

ri : (Conditioni)→ yi. (4.1)

The right-hand side of the rules (“rule consequent”) contains the predicted class yi,

and each condition or precondition on the left-hand side (“rule antecedent”) contains

a conjunction of different attribute tests, such as

Conditioni = (A1 ∗ val1) ∧ (A2 ∗ val2) ∧ · · · ∧ (Ai ∗ vali), (4.2)

where Ai is an attribute specifier, vali the value of attribute Ai, and ∗ is one of

the set of logical operators {=, 6=, <,>,≤,≥}. A rule ri covers an object if the

64 CHAPTER 4. SUPERVISED LEARNING

attributes of the object satisfy the condition of the rule. A very simple example

of such a rule that covers an object with two attributes weather (value: hot) and

temperature (value: 31) may look like

r1 : (weather = sunny) ∧ (temperature > 28◦C)→ icecream. (4.3)

The quality of a classification rule can be evaluated using the measures cover-

age and accuracy. The coverage of a rule is the fraction of records that satisfy the

antecedent of a rule, while the accuracy of a rule is the fraction of records that

satisfy both the antecedent and consequent of a rule (over those that satisfy the

antecedent). Both coverage and accuracy of a rule measure the quality of a single

classification rule instead of the complete set of rules, and are thus not comparable

to performance metrics such as the TP and FP rate, recall or precision (cf. Sec-

tion 2.4.5). Moreover, the length of a rule indicates the number of attributes used

within that rule. Some rules may not be mutually exclusive, i. e., more than one

rule may cover the same instance, and the rules may predict conflicting classes. If

a strict enforcement of mutual exclusiveness is not possible, rules can be ordered in

a decision list in decreasing order of their priority. This priority can be defined in

several ways, for example, based on the coverage or accuracy of rules, or the order

in which rules are generated. A test record is then classified by the highest-ranked

rule that covers the record, other rules that also cover this record are not processed.

If rules are not ordered, it is also possible to allow a record to trigger multiple rules

and consider the consequent of each triggered rule as a (sometimes weighted) vote

for that particular class.

Construction process. As already mentioned, it is possible to generate a initial

set of rules directly from the data or indirectly from other classification methods

such as decision trees. After creating the initial set, the rules are pruned, simplified

and sometimes ordered and further optimized. Then, a rule set SR is created. One

of the most well-known rule-based algorithms is RIPPER [Coh95], a learner that

forms rules through a process of repeated growing and pruning. During the first

phase – the growing phase – rules are made more restrictive in order to match the

training objects as accurately as possible. In the succeeding pruning phase, the rules

are made less restrictive in order to avoid overfitting of the model.

General evaluation. Rule-based learners are nearly as expressive as decision trees,

they are also easy to interpret and to generate, and their performance is often compa-

rable to decision trees (cf., for example, [WF05]). Moreover, the classification speed

of rule-based algorithms and decision trees is comparable, but the learning process

for rule-based learners is often more time consuming. Contrary to decision trees,

4.5. SUPPORT VECTOR MACHINES 65

rule-based learners cannot deal directly with continuous data and their tolerance to

noise and irrelevant attributes is lower (cf. [AC99]).

Relevant literature. As for k-nearest neighbor and decision trees, the princi-

ples of rule-based learners are described in almost all introductory data mining

and machine learning books. Moreover, there are several review articles [Gom04,

SW07], and, as already mentioned, the survey in [Fue99]. Besides the RIPPER

method (cf. [Coh95]), there are other well known algorithms such as 1R [Hol93],

IREP [FW94], or CN2 [CB91].

4.5 Support Vector Machines

Support vector machines (SVMs) are some of the most recent and most success-

fully applied classification algorithms and were introduced to the machine learning

community by Cortes and Vapnik [CV95, Vap99]. The goal of an SVM is to min-

imize an upper bound on its expected classification error. SVMs seek the optimal

separating hyperplane between two classes by maximizing the margin between the

classes, hence, they are also referred to as maximum margin classifiers. If an n-

dimensional dataset is linearly separable in the n-dimensional space, it is possible to

find an infinite number of hyperplanes (a point in the 1-dimensional space, a line in

the 2-dimensional space, a plane in the 3-dimensional space) that separate the data

points.

Figure 4.2 shows two possible decision boundaries with different margins between

the classes. Since decision boundaries with small margins (B2 in Figure 4.2) are sus-

ceptible to model overfitting (a slight change to the decision boundary can have a

significant impact on the classification) and tend do generalize poorly on previously

unseen examples (cf. [TSK05]), the goal is to find the decision boundary with the

maximal margin (B1 in Figure 4.2). Such a hyperplane, which maximizes the dis-

tance to the closest points from each class is called maximum margin hyperplane.

The closest points to the hyperplane are called the support vectors. Only these

points influence the position of the hyperplane – all the other vectors (i. e., objects)

are not considered.

Although the concept of a maximum margin hyperplane only applies to the

problem setting of classification, some support vector machine algorithms have been

also developed for regression problems (i. e., numeric prediction, see Section 2.4.4,

cf., [SS04]).

Linear SVM. Each example is denoted as a tuple (xi, yi) (i = 1, 2, . . . , N), where

xi = (xi1, xi2,. . . , xid)
> corresponds to the attribute set for the ith example, and

66 CHAPTER 4. SUPERVISED LEARNING

2

1

Figure 4.2: Maximum margin between groups.

yi ∈ {−1, 1} corresponds to its class label. When the dataset is linearly separable,

the decision boundary can be written as w · x + b = 0, where the normal vector w

and the bias (or offset) b are parameters of the model, and x is the set of attributes

of the model. The decision rule is then given by fw,b(x) = sgn(w>x + b), i. e.,

yi = sgn(w>xi + b). During the training phase of SVM, the parameters w and

b of the decision boundary are estimated from the training data, and must fit the

following conditions:

w · xi + b ≥ 1, if yi = 1,

w · xi + b ≤ 1, if yi = −1.
(4.4)

The optimization problem for a dataset with N training samples can then be written

as:

min
w

||w||2

2
subject to yi(w · xi + b) ≥ 1, i = 1, 2,, N. (4.5)

Since this is a convex optimization problem it can be solved using the standard

Lagrange multiplier method. First, the optimization problem (4.5) is re-written in

the following form

LP =
1

2
||w||2 −

N∑
i=1

λi(yi(w · xi + b)− 1), (4.6)

which is known as the primary Lagrangian for the optimization problem. After

minimizing the primary Lagrangian (by setting the derivative of LP with respect to

w (δLP
δw) and b (δLP

δb) to zero) the optimization problem can then be transformed

4.5. SUPPORT VECTOR MACHINES 67

into a dual optimization problem

LD =

N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyjxi · xj , (4.7)

which can be solved using numerical techniques such as quadratic programming. A

detailed mathematical discussion of this optimization problem is beyond the scope

of this thesis and can be found, for example, in [Vap99, CS00, SS01, TSK05, Iva07,

Kot07].

The soft margin method (cf. [CV95]) is an extension of linear SVMs that al-

lows for mislabeled examples of the training data. If no hyperplane can separate the

examples of two classes, this method will choose a hyperplane that splits the objects

as good as possible. The soft margin method introduces positive slack variables ξi,

i = 1, . . . , N in the constraints of Equation (4.5), which then become

min
w

||w||2

2
+ C

N∑
i=1

ξi subject to yi(w · xi + b) ≥ 1− ξi, i = 1, 2,, N, (4.8)

where C is a constant that appears only as an additional constraint in the primary

Lagrange multipliers. The dual Lagrangian for the soft margin method remains

unchanged compared to Equation (4.7), except for the restriction that all λi are

greater than or equal to 0, and are smaller than or equal to C (0 ≤ λi ≤ C).

Mathematical details are again explained in [Vap99, CS00, SS01, TSK05, Iva07,

Kot07].

Nonlinear SVM. The maximum margin hyperplane is able to classify data that are

– maybe with some exceptions – linearly separable. Unfortunately, many real-world

problems involve data where no useful separating hyperplane can be found. In such

cases, SVMs transform the data and map objects from their original coordinate space

(“input space”) x into a new larger space (“feature space”) φ(x), where the objects

are then linearly separable. This transformation is usually denoted as: φ : Rd1 →
Rd2 ,x 7→ φ(x), where d1 < d2. Figure 4.3 shows a simple case where the data is not

linearly separable in its original (2-dimensional) input space. After mapping (φ) the

data to the 3-dimensional feature space, the objects can be linearly separated.

Using a transformed feature space of sufficiently high dimensionality, any con-

sistent training set can be made linearly separable, and this linear separation in

the transformed feature space corresponds to a nonlinear separation in the original

input space (cf. [Kot07]). By replacing the original coordinate space in x in the con-

straints of Equation (4.5) with its corresponding feature space φ(x), the optimization

68 CHAPTER 4. SUPERVISED LEARNING

Input space Feature space

Figure 4.3: Mapping to higher dimensional space (following [TN06]).

problem can now be formulated as:

min
w

||w||2

2
subject to yi(w · φ(xi) + b) ≥ 1, i = 1, 2,, N. (4.9)

The dual Lagrangian for the constrained optimization problem then becomes

LD =

N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyjφ(xi) · φ(xj), (4.10)

Since φ(x) usually has a much higher dimension than x, maximizing the target func-

tion (4.9) and evaluating the new decision function then requires the computation of

dot products 〈φ(xi) · φ(xj)〉 in a high-dimensional space. Such computation can be

quite expensive and may suffer from the curse of dimensionality (cf. Section 2.4.3).

SVMs overcome this problem by applying a technique known as the kernel trick,

by choosing a kernel K such that: K(xi ·xj) = φ(xi) ·φ(xj). Kernels are special non-

linear functions that have the advantage of operating in the input space, where the

solution of the classification problem is a weighted sum of kernel functions evaluated

at the support vectors. The kernels allow inner products to be calculated directly in

the feature space, without performing the mapping described above [SS01]. Kernel

functions are very powerful and allow SVM models to perform separations even with

very complex boundaries. The theory behind the kernel trick is based on Mercer’s

theorem [CV95], which ensures that the kernel functions can always be expressed as

the dot product of two input vectors in some high-dimensional space.

Some examples of basic kernel functions are the linear kernel K(xi,xj) = xi ·xj ,
the polynomial kernel K(xi,xj) = (xi ·xj+1)p, or the radial basis kernel K(xi,xj) =

e||−xi−xj ||2/2σ2
. Since there is no theoretical tool to predict which kernel will give

the best results for a given dataset, experimenting with different kernels is often the

only way to identify the best function (cf. [Iva07]).

4.5. SUPPORT VECTOR MACHINES 69

Multi-class SVM. The standard SVM algorithm is only directly applicable for

binary, two-class tasks, but SVMs can also be applied to problems with three or

more classes.

Besides multi-class ranking SVMs, where the SVM decision function attempts to

classify all classes (by finding a decision boundary that is able to separate between

more than two classes), there are two possibilities to construct multi-class classifiers

from combinations of several binary classifiers. In the one-against-all classification,

one binary SVM for each class is created to separate members of that class from

members of all other classes. In the pairwise classification, there is one binary

SVM for each pair of classes to separate members of one class from members of the

other class. Relevant literature for multi-class SVMs can be found, for example,

in [CS02, Abe03, PBC06].

General evaluation. Various studies have shown that SVMs are usually able

to achieve very good classification results compared to other supervised machine

learning algorithms (cf., for example, [BTH01, GDD01, FC04, Kot07, CKY08]).

The good classification results are mainly based on the fact that SVMs are not

prone to getting stuck in local minima (cf. [SC04]). On the contrary, the possibly

biggest limitations of SVMs lie in the questions related to choice of the kernel and

in their algorithmic complexity (cf. [Bur98]). While SVMs are able to perform the

classification process very fast, their speed of learning is usually much slower than for

decision trees, rule-based learners or other learning algorithms. Like decision trees,

SVMs can deal well with irrelevant attributes, but the resulting model is usually

very hard to comprehend and interpret by domain experts.

Relevant literature. There are several books and survey papers that provide a

good introduction and detailed information about SVMs and their mathematical

background. Besides the introductory works by Cortes and Vapnik [CV95, Vap99],

the survey by Burges [Bur98], two books by Crisianini and Shawe-Taylor [CS00,

SC04] as well as the comprehensive book by Smola and Schölkopf [SS01] provide

extensive tutorials on support vector machines and the principles of learning with

kernels. One of the most cited publications about SVMs (applied to the task of text

categorization) is [Joa98]. Huang et al. [HKK06] focus on kernel-based algorithms

for huge dataset, and Ivanciuc [Iva07] reviews applications of SVMs in Chemistry.

References for mathematical background information about SVMs and multi-class

SVM are already listed in the appropriate paragraphs. Relevant literature and

further references for support vector regression can be found, for example, in the

tutorial by Smola and Schöllkopf [SS04].

70 CHAPTER 4. SUPERVISED LEARNING

4.6 Ensemble Methods

Ensemble methods or classifier combination methods aggregate the predictions of

multiple classifiers into a single learning model. Several classifier models (called

“weak” or “base” learners) are trained and their results are usually combined through

a voting or averaging process. The idea behind ensemble methods can be compared

to situations in real life. When critical decisions have to be taken, often opinions

of several experts are taken into account rather than relying on a single judgment.

Ensembles have shown to be more accurate in many cases than the individual clas-

sifiers, but it is not always meaningful to combine models. Ideal ensembles consist

of classifiers with high accuracy which differ as much as possible. If each classi-

fier makes different mistakes, the total error will be reduced, if the classifiers are

identical, a combination is useless since the results remain unchanged. Combining

multiple models depends on the level of disagreement between classifiers and only

helps when these models are significantly different from each other.

4.6.1 Bagging

The principal idea of bagging (short for bootstrap aggregating) is to aggregate

predictions of several models of a given weak learner fitted to bootstrap samples

of the original dataset by a majority vote (cf. [Bre96]). Bootstrapping refers to re-

sampling with replacement from the original sample of instances (not attributes),

and a weak learner is some pre-defined standard learning algorithm (e. g., a deci-

sion tree, SVM,. . .). The term “weak learner” is widely used across the literature,

although weak learners are usually not bad classifiers.

Bagging proceeds as follows: First, M bootstrap samples Lm, m=1,. . . ,M from

the original learning sample L are drawn. Second, a base learner is applied for each of

the bootstrap samples bm(Lm), and the classifier models f(bm(Lm)) are constructed.

In the classification process, the individual models are aggregated using weights am

= 1/M , yielding the ensemble (cf. [HDB05])

M∑
m=1

bM (L) =

M∑
m=1

f(bm(Lm))

M
. (4.11)

As can be seen, in the standard bagging procedure each sample model (i. e., weak

learner) receives equal weight. The standard algorithm for bagging applied to the

task of classification is shown in Algorithm 6 (cf. [WF05]).

Some main advantages of bagging are its ability to reduce variance and to avoid

model overfitting (cf. [Kot07]). It is an intuitive and easy to implement approach

4.6. ENSEMBLE METHODS 71

Algorithm 6 – Pseudo-code for ensemble classification using bagging.

Model generation

Let N be the number of instances in the training data, and

M be the number of samples to be drawn.

For each of the M samples:

Sample N instances with replacement from training data.

Fit the weak learner to the sample and construct classifier.

Store the resulting model.

. .

Classification

For each of the M models (samples):

Predict class of new, unclassified instance using model.

Return class that has been predicted most often.

and can be used with any learning algorithm as weak learner. Moreover, bagging has

shown to achieve a very good performance in several studies and the empirical fact

that bagging improves the predictive performance of several learning algorithms is

widely documented (cf. [Bre96, ZTD01, PY02, ES05]). However, it is computation-

ally rather expensive (no explicit feature selection) and often lacks the possibility of

interpretation of the resulting model. Since bagging exploits the instability inherent

in learning algorithms (i. e., here, the term instability refers to the fact that different

samples lead to different models), it is only useful if weak learners are unstable.

4.6.2 Random Forest

A random forest [Bre01] is a special modification of bagging that mixes the bagging

approach with a random sub-sampling method. While bagging works with any al-

gorithm as weak learner, random forests are ensembles of unpruned classification or

regression trees (Section 4.3). The commonly used growing algorithm for the single

decision trees used within the random forest algorithm is CART (cf. Section 4.3).

Just like bagging, random forests select instances randomly with replacement (boot-

strap), but unlike bagging, random forests also sample attributes (without replace-

ment) for each tree. The trees are grown to maximal depth (no pruning) and each

tree performs an independent classification/regression. Then each tree assigns a

vector of attributes or features to a class and the forest chooses the class having

most votes over all trees (using a majority vote or averaging).

Each tree is grown as follows: If the number of cases in the training set is N ,

sample N cases at random with replacement (i. e., the size of the sample is equal to

72 CHAPTER 4. SUPERVISED LEARNING

the size of the training set – but some instances of the training set may be missing

in the sample while some other instances may appear multiply in the sample). This

sample is the training set for growing the tree. If there are M input variables, a

number m << M is specified such that at each node m variables are selected at

random out of the M and the best split on these m attributes is used to split the

node. The value of m is held constant during the forest growing. Each tree is grown

to the largest extent possible, there is no pruning (cf. Section 4.3). The standard

algorithm is shown in the pseudo code in Algorithm 7.

Algorithm 7 – Pseudo-code for random forest.

Model generation

Let N be the number of instances in the training data, and

M be the number of samples to be drawn (i. e., number of trees).

For each of the M samples:

Sample N instances with replacement from training data.

Sample m << M attributes without replacement.

Fit a DT to the sample and construct classifier/regression model.

Store the resulting model.

. .

Classification / Regression

For each of the M decision trees models (samples):

Predict class/probability of new, unclassified instance using model.

Return class that has been predicted most often (classification) or use

an averaging process (regression).

Similar to bagging, random forests are easily comprehensible and can reduce

the variance of the prediction accuracy, but due to the sampling of attributes, the

learning process of random forests is usually faster. Random forests can handle a

very large number of input variables, and even when a large portion of attribute

values is missing, it is often able to maintain the desired accuracy. Moreover, it is

possible to measure attribute importance as well as the similarity between attributes.

The predictions of random forests have the drawback that they are the outcome of

a black box, especially if a small number of informative variables are hidden among

a great number of noisy variables. Random forests are prone to overfitting if the

data is noisy (cf. [Seg04]), and the CART algorithm for growing the single trees

within random forests does not handle large numbers of irrelevant attributes as well

as decision tree algorithms that use entropy-reducing splitting criteria, such as C4.5

(cf. [GGM08]).

4.6. ENSEMBLE METHODS 73

4.6.3 Boosting

In the ideal bagging situation, all models complement each another, each being a

specialist in a part of the domain where the other models do not perform very

well. Boosting [FS97, Sch03] exploits this idea by explicitly seeking models that

complement each other, and applies certain re-sampling strategies in order to get

the most informative strategic data. Instances that were classified incorrectly by

some classifiers are taken into the training set more often, i. e., boosting encourages

new models to become experts for instances handled incorrectly by earlier models.

The general boosting algorithm (following [WF05]) is shown in Algorithm 8.

Algorithm 8 – Pseudo-code for boosting.

Model generation

Assign equal weight to each training instance.

For each of t iterations:

Select weighted dataset based on randomness and instance weights.

Apply learning algorithm to weighted dataset and store model.

Compute training error e of the model on weighted dataset.

If (e == 0) or (e >= 0.5):

Terminate model generation.

For each instance in dataset:

If instance is classified correctly by model:

Multiply weight of instance by e/(1− e) (weight is decreased)

Normalize weight of all instances.

. .

Classification / Regression

Assign weight zero to all classes.

For each of the t models:

Add −log(e/(1− e)) to weight of class predicted by the model.

Return class with highest weight

On the one hand, boosting is similar to bagging because both methods combine

models of the same type (i. e., same weak learner) and use voting (for classification)

or averaging (for regression) to combine outputs of individual models. On the other

hand, boosting differs from bagging because it is an iterative process where each new

model is influenced by the performance of the models built previously. Moreover,

boosting weights a model’s contribution by its performance rather than giving equal

weight to all models (as done with bagging). The main advantage of boosting

is the fact that combined classifiers can be built even from very simple classifiers

74 CHAPTER 4. SUPERVISED LEARNING

as long as they achieve less than 50% error. Boosting often produces classifiers

which are significantly more accurate on fresh data than ones generated by bagging.

Nevertheless, there are several studies (for example, [Die02, MR03, BH08]) that

have shown that boosting sometimes fails in practical situations where it generates

a classifier that is significantly less accurate than a single classifier built from the

same data. This behavior usually indicates that the combined classifier overfits the

data, which is one of the major drawbacks of boosting. Moreover, standard boosting

is sensitive to noise (cf. [BS03]). Adaptive Boosting (AdaBoost, cf. [Sch03]) is

a famous boosting variant that aims at reducing the susceptibility of boosting to

the overfitting problem. Although AdaBoost was reported to be sensitive to noisy

data and outliers, it has achieved popularity because of its good generalization and

the fact that it may handle even very large sets of features (compared to other

boosting variants). Some comments about the convergence of AdaBoost can be

found in [RSD07].

4.6.4 Stacking

Although Stacking (stacked generalization, [Wol92]) is older than bagging and boost-

ing it is less widely used. Unlike bagging and boosting, stacking combines models

built by different learning algorithms. Instead of voting or averaging the results of

different models or choosing the best model, stacking uses the concept of a meta-

learner. Stacking tries to learn which weak learners are the reliable ones, using

another learning algorithm (the meta-learner) to discover the best way to combine

the outputs of the base learners. If applied correctly, the meta-learner can be more

efficient than a standard voting or averaging procedure. Since stacking does not rely

only on one specific weak learner but on a combination of various weak learners,

it is less prone to overfitting, produces a more general model of the data, and has

been shown to be consistently effective for applications in several data mining do-

mains [SPS05]. Unfortunately, stacking is difficult to analyze theoretically and there

is no generally accepted best way of doing it. Moreover, it is hardly comprehensible

and is often considered as the ultimate black box amongst the group of ensemble

learners.

4.6.5 General Evaluation

Ensemble methods are often able to improve accuracy by combining the predictions

of a set of different hypotheses. However, Ferri [FHR02] annotates two important

shortcomings associated with ensemble methods: (i) huge amounts of memory are

required to store a set of multiple hypotheses and, more importantly, (ii) the com-

4.6. ENSEMBLE METHODS 75

prehensibility of a single hypothesis is lost. Other studies report that these short-

comings are true for both, supervised and unsupervised learning methods such as

clustering (cf. [VJ06]). Due to the nature of ensemble methods, most algorithms are

not prone to overfitting (except boosting in some cases), and can deal with noisy

or missing attribute values. Among the four ensemble methods mentioned in this

section, bagging and random forest are often preferred over boosting and stacking,

but there is no general proof of which method is best (cf. [VD02]).

Relevant Literature for Ensemble Methods. Besides the introductory work

for bagging, random forests, boosting and stacking, there are some surveys of en-

semble methods [Die00, Die02], as well as some work with general comparisons of

ensemble methods (cf. [VD02, OT08]). Bagging has been combined successfully with

cost-sensitive learning (“MetaCost”, [Dom99]) and boosting [Rid02, Det04]. [PY02]

introduced two variants of bagging: subsample aggregating, where sub-sampling is

used instead of the bootstrap for the aggregation, and bragging (bootstrap robust

aggregating), which uses the sample median over the bootstrap estimates instead of

the sample mean.

Various studies on random forests have shown that the performance of decision

trees could be improved if ensembles of trees were used (cf. [Bre01, Die02, SLT04]).

Svetnik et al. [SLT03] have combined random forests with a feature selection algo-

rithm based on measuring the importance of single features, and successfully ap-

plied this combination to the task of QSAR-modeling (cf. Section 5.2). [PP08]

used random forests for multi-class classification and regression by combining it

with multi-nominal logit (MNL), a generalization of logistic regression that allows

more than two discrete outcomes and is commonly applied within the customer re-

lationship management domain. Recently, [BDL08] discussed several consistency

theorems for various versions of random forests and other randomized ensemble

classifiers, and [AN09] used random forests to uncover bivariate interactions in high

dimensional small datasets.

Interesting recent work on boosting comprises a study based on boosting with

noisy data [Jia04], and the publication of a new boosting algorithm for improved

time-series forecasting based on neural networks [ABC08]. An empirical evaluation

of several state-of-the-art methods for constructing ensembles of heterogeneous clas-

sifiers with stacking and a comparison to single classifiers can be found in [DZ04].

The results show that stacking performs best by selecting the best classifier from the

ensemble by cross validation. Another article [RPN06] investigates an algorithmic

extension to stacking that prunes the ensemble set and achieves equal classifica-

tion accuracy while having the advantage of producing smaller and less complex

ensembles.

76 CHAPTER 4. SUPERVISED LEARNING

4.7 Vector Space Model

In information retrieval, the vector space model (VSM, cf. [SWY75, DDF90, RW99])

is a widely used model for representing information. Each item or document is

represented as a potentially very high dimensional vector whose components reflect

a term or key word associated with the given document. Each document can thus

be represented as a vector in Rt, where each axis represents a term. The value

of the components is typically a function of the frequency with which the term

occurs in the complete document collection or in a single document (cf. [Dum91]).

A matrix containing d documents described by t terms is represented as a t × d

term-by-document matrix. The distance between the document vectors and a query

vector is the basis for the information retrieval process, which is summarized very

briefly in its standard form in the following (for a more detailed description see, for

example, [Lan05]).

Generally speaking, a vector space model for d documents is based on a certain

set T of t terms. Then, the value vij for each of these terms ti from each document

j has to be extracted. The t-dimensional (column) vector vj with the components

vij , i = 1, 2, . . . , t, then represents document j in the VSM. The t × d matrix A is

composed using all the vectors vj as columns, and represents the training samples

against which the query vectors are compared.

Query matching. Given a query vector q of length t, the distances of q to all

documents represented in A can then be measured (for example) in terms of the

cosines of the angles between q and the columns of A, but other similarity measures

are also possible (see, for example, the review in [JF87]). The column with the

smallest angle (largest cosine value) with the query vector represents the closest

match between the document collection and the query vector. The cosine ϕi of the

angle between q and the i-th column of A can be computed as

(VSM) : cosϕi =
e>i A

>q

||Aei||2||q||2
, (4.12)

where ||x||2 is the Euclidean vector norm defined as ||x||2 =
√
x>x.

Many text collections contain documents having different contexts. In this case,

the number of terms is often much greater than the number of documents, such that

t >> d. Since documents generally use only a small subset of the entire dictionary

of terms generated for a complete term-by-document matrix, most elements of A

are zero (cf. [BDJ99, Lan05]).

When comparing the vector space model with state-of-the-art supervised learning

algorithms (as the ones presented earlier in this chapter), the strong relationship to

4.8. LATENT SEMANTIC INDEXING 77

the kNN model is obvious. VSM can also be considered as an instance-based learner

– in the learning phase, the data is only encapsulated from the training data, the

process of learning is postponed until the classification process. The main difference

between kNN and VSM is the applied distance measure.

General evaluation. A problem of the VSM is that it may fail if terms have multi-

ple meanings (e. g., issue, light) or if different words (i. e., tokens) exist that have the

same meaning (e. g., car, automobile, . . .). Polysemy (words having multiple mean-

ings) and synonymy (multiple words having the same meaning) are two fundamental

problems when retrieving relevant information from a database. The closeness of

a query vector to documents concerning the same topic might be returned as not

relevant if polysemic or synonymic words are used. Various approaches have been

developed to respond to such failures (e. g., usage of a controlled vocabulary). The

most important method aims at replacing the exact term-by-document matrix by an

approximation of lower rank in order to uncover latent information and connections

between different terms. This approach is known as latent semantic indexing and is

explained in Section 4.8.

Relevant literature. The idea of using a vector space model for representing and

classifying documents was presented in an article by Salton et al. [SWY75], which

is partly based on earlier work by Sparck-Jones [Jon72]. A detailed introduction

to the vector space model can be found in a variety of scientific papers or books,

for example, [SM86, BDJ99, Dum91, SS95]. Raghavan and Wong [RW99] give a

critical analysis of the vector space model for information retrieval. Besides its

classical application area, document classification, vector space models have recently

been used, for example, for ontology-based IR [CFV07], XML-based IR [GCL09] or

protein retrieval [AAR07].

4.8 Latent Semantic Indexing

Latent semantic indexing (LSI, c.f., for example, [DDF90, BDJ99, Lan05]) – which

is also referred to as latent semantic analysis (LSA) – is a variant of the basic vector

space model. Instead of the original matrix A, the singular value decomposition

(c.f. Section 3.3.3) is used to construct a low-rank approximation Ak of A such that

A = UΣV > ≈ UkΣkV
>
k =: Ak. LSI works by omitting all but the k largest singular

values of the SVD decomposition. When A is replaced by Ak, then the cosine ϕi of

the angle between q and the i-th column of A is approximated as

cosϕi ≈
e>i A

>
k q

||Akei||2||q||2
, (4.13)

78 CHAPTER 4. SUPERVISED LEARNING

When Ak is replaced with its decomposition UkΣkV
>
k , (4.13) becomes

cosϕi ≈
e>i VkΣkU

>
k q

||UkΣkV
>
k kei||2||q||2

, (4.14)

At this step it is possible to identify parts of the Equation (4.14) that only need

to be computed once and can be reused for each query matching step. The left

part of the enumerator can be pre-computed, and the result of e>i VkΣk can be

stored in hi. In the denominator, the left norm can be computed prior to the query

matching. Moreover, since Uk and Vk are both orthogonal matrices, ||UkΣkV
>
k ei||2

can be replaced with ||Σkei||2 (since ||X||2 and ||X>||2 are both equal to 1 if X is

orthogonal). Equation (4.14) thus becomes

cosϕi ≈
hiU

>
k q

||Σkei||2||q||2
. (4.15)

At runtime, only ||U>k q|| and ||q||2 must be computed, thus saving computational

cost for each query.

Analysis of LSI. The LSI subspace captures the essential meaningful semantic

associations while reducing redundant and noisy semantic information. LSI goes

beyond lexical matching and aims at addressing the problem of using individual

keywords to identify the content of documents. LSI is based on the principle that

words that are used in the same contexts tend to have similar meaning. In other

words, queries against a set of documents that have undergone LSI will return results

that are conceptually similar in meaning to the search criteria even if the results do

not share specific words with the search criteria (cf. [DDF90]). The approximated

data Ak often gives a cleaner and more efficient representation of the relationship

between data elements (cf. [LMA06]) and helps LSI to overcome the problems of

polysemy and synonymy. The goal is to capture the underlying (latent) semantic

structures, which often index the documents better than individual indexing terms.

General evaluation. From a computational point of view, LSI also has advan-

tages over the basic VSM in terms of storage requirements and computational cost

for determining the distances between the query vector q and the documents (see

Equation (4.14)). The storage saving, discussed in Section 3.3.3, can be achieved

by a representation based on the three small decomposition matrices within the

SVD instead of the original term-by-documents matrix. These considerations are

discussed in greater detail in [BDJ99]. One of the main drawbacks of LSI is the

rather large computational cost of computing the singular value decomposition. Al-

though there are relatively fast algorithms for computing only the first k singular

4.9. OTHER RELEVANT CLASSIFICATION METHODS 79

values of an SVD (cf. Section 3.3.3), k must be chosen properly in order to avoid

recomputing the SVD (if k turns out to be too small). Actually, determining the

optimal number of rank of the low-rank approximation (value of k for SVD) is a

main challenge of LSI. A higher rank enables more specific comparisons of concepts

contained in a collection of text, while a lower rank allows for broader comparisons

of these concepts (better to cope with polysemy and synonymy). A recent research

study [Bra08] has demonstrated that a rank around 300 will usually provide the best

results for a document collection of moderate size, for larger collections (millions of

documents) the rank should be increased to 400. However, these numbers should be

taken only as indications since the best choice of k is usually problem-dependent.

Relevant literature. Besides its classical application area text mining [DDF90,

Lan05, BB05b], LSI has been used successfully in other areas such as cross lingual ap-

plications [LL90, LDL97], spam filtering [Gee03, GJL07], gene clustering [HHW05],

information visualization [LLD04], calculating chemical similarity for drug discov-

ery problems [HFS01, HSN01], and several different other application areas. The

effectiveness of LSI has been demonstrated empirically in several studies. A work

by [PTR98] goes beyond empirical evidence and provides a theoretical evidence that

LSI is able to deal effectively with the problem of synonymy.

4.9 Other Relevant Classification Methods

In this section, several classification methods that are referred to in Chapter 5 are

summarized briefly. A detailed survey of all available learning algorithms is beyond

the scope of this thesis, but can be found in the relevant literature given in Chapter 2,

for example, in [Dun02, TSK05, HK06, CPS07, Lar07, ML07].

4.9.1 Näıve Bayesian

A näıve Bayesian (NB) classifier (cf., for example, [TSK05, WF05]) is a simple statis-

tical modeling approach based on applying Bayes’ theorem from Bayesian statistics.

It estimates the class-conditional probability by assuming that the attributes are

equally important and conditionally independent, by assuming that the presence

or absence of a particular feature is independent to the presence or absence of any

other feature. NB is particularly suited when the dimensionality of the inputs is

high. Despite its simplicity, näıve Bayesian classifiers are often able to achieve very

high classification results (cf. [KP04]).

80 CHAPTER 4. SUPERVISED LEARNING

4.9.2 Neural Networks

The study of (artificial) neural networks (ANN/NN, cf. [KS93]) was inspired by

attempts to simulate biological neural systems, more precisely the behavior of the

human brain. The human brain can learn by changing the strength of the synaptic

connection between neurons upon repeated stimulation by the same impulse (cf.

[Roj96]). Analogous to this structure, ANNs are composed of an interconnected

assembly of nodes and directed links. The training of ANNs is usually very time

consuming and ANNs are also sensitive to the presence of noise in the training data

(cf. [TSK05]). Contrary to that, their classification speed is rather fast. Moreover,

ANNs can handle redundant features and are able to deal with discrete/binary/con-

tinuous attributes (cf. [Kot07]).

The perceptron is the simplest representative of an ANN. It consists of two

types of nodes – several input nodes and one output node. Each input node is

connected via a weighted link vector to the output node, these weighted links are

used to emulate the strength of a synaptic connection between neurons.

A multilayer ANN (or multilayer perceptron) has a much more complex struc-

ture than a perceptron model, which is caused by additional intermediary (hidden)

layers between input and output layers, and by the variability of activation functions

that can be used. The nodes embedded in these layers are called hidden nodes. The

nodes in one layer can either be connected only to nodes in the next layer, or may be

connected to nodes within the same layer and nodes from the next layer. The first

approach is called a feed-forward network, the latter one is called recurrent neural

network.

Self-organizing (SOM) or Kohonen maps (cf. [Koh00]) are special types of neu-

ral networks and are counted among the group of unsupervised classification meth-

ods, i. e., they work without the class information of a sample (there is no a priori

known output at the time of classification). SOMs generate a topology-preserving

non-linear mapping of a high-dimensional input space (usually the descriptor space)

to a low-dimensional space (cf. [Sch00]).

Contrary to SOMs, counterpropagation neural networks (CPG-NN, cf.

[Hec87]), a similar, but slightly different class of neural networks, represent a two-

step learning algorithm, which can be divided into a unsupervised (Kohonen) learn-

ing step, and a consecutive supervised, prediction step. Since each input pattern of

a CPG-NN needs a unique node in the hidden layer, this type of network is very

limited to be applied for real world problems (cf. [FC08]).

4.9. OTHER RELEVANT CLASSIFICATION METHODS 81

4.9.3 Discriminant Analysis

Discriminant analysis (cf., for example, [McL04]) is usually used to either assess

the adequacy of classification given the group memberships of the objects under

investigation, or to assign an object to one out of several a priori known groups

of objects. Stepwise discriminant analysis (SDA, cf. [Jen77]) is often used to

identify redundant variables and to select variable subsets that preserve multivariate

data structure adequate for discrimination purposes. SDA tries to iteratively modify

a candidate feature subset (instead of analyzing all dimension subsets exhaustively)

until no further improvement is possible (starting with an initially empty set of

features).

82 CHAPTER 4. SUPERVISED LEARNING

Chapter 5

Application Areas

All experimental evaluations in this thesis are performed on data from either one

or both application areas mentioned in this chapter. On the one hand, we con-

sider email filtering, where the feature space contains various properties of email

messages derived from the header of the message, from the body of the message,

or from both. Besides the well known problem of spam filtering, we also discuss

the problem of filtering potentially harmful phishing email. On the other hand, we

consider drug discovery problems where quantitative representations of molecular

structures are encoded in terms on information-preserving descriptor values. More

precisely, we focus on the application of QSAR modeling (quantitative structure

activity relationship).

In the following, the classification problems arising in the contexts of email clas-

sification and QSAR modeling are discussed briefly. Moreover, relevant literature is

reviewed for both application areas and the performance metrics from Section 2.4.5

are adapted to the properties of the specific classification tasks for each application

field.

5.1 Email Filtering

About a decade ago, unsolicited bulk or commercial email (UBE, UCE, “spam”)

started to become one of the biggest problems on the Internet. In [Cor07], email

spam is defined as “unsolicited, unwanted email that was sent indiscriminately, di-

rectly or indirectly, by a sender having no current relationship with the recipient”.

The transmission of spam email has several negative consequences (cf. [Cor07]). Be-

side direct consequences (loss of money, Trojan horses, cyber attacks) mostly borne

by the victims (i. e., individuals fooled by the spam email), network resource con-

sumption is an enormous problem caused by spam. The vast majority of email

83

84 CHAPTER 5. APPLICATION AREAS

traffic today is spam – estimations from web security service providers indicate a

spam rate of up to 90% (cf. [Mes09]). This traffic consumes enormous bandwitdth

and storage, and increases the risk of untimely delivered (or even outright loss of)

messages. Human resource consumption caused by spam is another severe prob-

lem, especially for companies. Amongst all consequences caused by spam, the loss

of legitimate email messages is often the greatest problem since relevant pieces of

information may be lost. Incorrectly classified messages, overlooking of legitimate

email in a pool of spam messages, or congestion problems on email servers due to

spam are some examples of how email can be lost.

In recent years, phishing (“password fishing”) has become a severe problem in

addition to spam email. The term covers various criminal activities which try to

fraudulently acquire sensitive data or financial account credentials from Internet

users, such as account user names, passwords or credit card details. The steal of

the victims identity is thus a dangerous consequence caused by phishing. Phishing

attacks use both social engineering and technical means. Although the phishing rate

in the total email traffic is much smaller than the spam rate (0.2-0.4%) (cf. [Mes09]),

the damage caused by successful phishig attacks usually exceeds the damage caused

by single spam messages considerably. In contrast to unsolicited but harmless spam

email, phishing is an enormous threat for all big Internet-based commercial oper-

ations. The structure of phishing messages tends to differ significantly from the

structure of spam messages, but is usually closer to the structure of regular ham

messages (because for a phishing message it is particularly important to look like

a regular message from a trustworthy source). As a consequence, phishing email is

usually much harder to distinguish from legitimate email than spam email (even for

humans).

5.1.1 Classification Problem for Email Filtering

In this section, general performance metrics discussed in Section 2.4.5 are adopted to

the problem of email classification. Classical spam filtering is a binary classification

problem in the sense that every incoming email message has to be classified as

“spam” or “not spam”. In the context of spam filtering, a “positive” usually denotes

a spam message and a “negative” usually denotes a ham message. Consequently, a

true positive (TP) is a spam message which was correctly classified as spam, and a

false positive (FP) is a ham message which was wrongly classified as spam. The goal

is to maximize the rate of true positives and to minimize the rate of false positives

simultaneously (in order not to loose possibly important ham messages). Thus, a

lower TP rate (with a lower FP rate) is often preferable over a higher TP rate (with

a simultaneously increasing FP rate).

5.1. EMAIL FILTERING 85

As an alternative to classical binary spam filtering, the problem of classifying

email into ham, spam and phishing is a ternary classification problem. A ternary

classification problem can also be addressed as a sequence of two binary classification

problems (for example, one filter for separating ham from spam and phishing email,

and a second filter for separating spam from phishing email), but this usually involves

some drawbacks such as additional overhead, lower efficiency, and, most important,

often lower classification accuracy (cf. [GP09]). For a ternary classification, the

definitions of TP, FP, TN and FN cannot be adopted, since a ternary classification

has nine different possible outcomes (cf. Table 2.2 in Section 2.4.5). Instead, a true

positive rate (fraction of correct classification) and a false positive rate (fraction of

the sum of all incorrect classifications) for each class can be defined.

5.1.2 Relevant Literature for Spam Filtering

Generally, methods for filtering spam email can be categorized according to their

point of action in the email transfer process. Consequently, three classes of ap-

proaches can be distinguished. Pre-send methods act at the sender side before the

email is transported over the network, whereas post-send methods act at the receiver

side after the email has been transferred to the receiver. A third class of approaches

comprises new protocols, which are based on modifying the transfer process itself.

Pre-send methods and the development of new protocols are very important be-

cause of their potential to avoid most of the waste of resources (network traffic,

server workload, etc.) caused by spam. However, the efficiency of pre-send methods

and of new protocols heavily depends on their widespread deployment. It is unre-

alistic to expect global acceptance and widespread use of these new methods in the

near future, and thus the third group of methods, post-send spam filtering methods,

continues to be the “work horse” in spam defense.

Pre-send methods. The focus of pre-send methods is on potential solutions for

detecting and preventing spam in outgoing email traffic on the sender side, i. e., on

technology applicable on outgoing mail servers. The two basic strategies that can be

distinguished in this category are strategies for increasing the cost of sending email

and strategies for increasing the risks of sending spam due to stricter legal regu-

lations and stricter enforcement of these regulations. There are several interesting

approaches to increase the senders cost and to make the spammers business model

unprofitable, either by introducing monetary fees or by delaying the sending of each

email.

The introduction of monetary fees for each email relies on the idea to “pay” some

amount of (possibly symbolic) currency for each email to be sent (micro payment).

86 CHAPTER 5. APPLICATION AREAS

This idea is based on the fact that spammers need to send millions of messages to

make profit (since the response rate is very low, for details, see [ISG06]). Even a

very small payload would affect the spammers’ business model, while the costs for

private users and companies remain negligible. The lightweight currency protocol

(LCP, [TH04]) is an example of such a strategy that proposes a mechanism where

servers require payment for accepting incoming messages. Two limiting problems of

money based solutions are the relatively high administration overhead and the fact

that the very popular free email accounts do not fit into this strategy.

Technical solutions for delaying the sending of each email message are mostly

based on CPU time, where the sender is required to compute a moderately ex-

pensive function (pricing function) before the email is actually sent (“CPU-bound

strategies”). The computation of such a function usually takes a few seconds and

thus strongly limits the number of spam messages that can be sent from a com-

puter in a specific time period. Regular email users should hardly be influenced by

the computation of the pricing function. A software plug-in for mail clients called

Hashcash [Bac02] is a well-known representative of CPU-bound strategies. Since the

delay caused by the computation of the function is usually not independent of the

hardware of the computer system, the lack of fairness of these pricing functions is a

major drawback. Some studies have focused on this problem. [DGN03], for example,

introduced memory-bound functions which do not rely on hardware performance as

much as CPU-bound functions. However, so far no final solution for the fairness

problem has been found.

In [GHI05], the authors use a different approach and adapt a token-bucket strat-

egy (which is traditionally used for traffic shaping) to fit the needs of email traffic

regulation. The approach is based on creating its own “currency” (tokens) for email

messages and includes a starting seed as well as a certain refill rate. Each message

sent consumes a certain number of tokens. This implementation allows to impede

heavy-duty users while remaining unnoticed by common users.

New protocols. Methods of this group of email filtering strategies affect both,

sender and receiver side. Most of these techniques comprise suggestions for renew-

ing or altering email transfer protocols. The Internet mail 2000 project (IM2000,

[Ber00, Boy04]) designed an Internet email infrastructure which is based on the con-

cept that email storage is the sender’s responsibility. IM2000 uses a pull mechanism

and stores email at the sender’s ISP (Internet Service Provider), which becomes the

always-on-line post office from which the receiver picks up the message. Although

the idea seems interesting, IM2000 would require a global adoption and acceptance

of a this new email infrastructure, which is not really expectable. The authenticated

mail transfer protocol (AMTP, [Wei03]) is being designed as a replacement for the

5.1. EMAIL FILTERING 87

SMTP protocol (simple mail transfer protocol), with security features designed to

reduce the impact of spam for receiving email servers. AMTP accepts email only

from authenticated senders (using an SSL-like authentication protocol), allows for

publishing “policies” and indicates what type of email is being sent. Just as for

IM2000, a widespread acceptance for AMTP is – unfortunately – very unrealistic in

the near future.

Contrary to IM2000 and AMTP, Greylisting (cf. [Har03]) is based on utilizing

properties of the SMTP protocol instead of replacing it. The basic idea is to (tem-

porarily) reject an email message when it is first received and to accept it only

when it is resent. This strategy is based on the observation that many spammers

use incomplete email server implementations which do not resend a message if it

is temporarily rejected. The efficiency of greylisting was evaluated empirically and

demonstrated several times (cf. [TWM04, Lev05]). Nevertheless, in its conventional

form it has important drawbacks: It introduces delays in the email delivery process,

legitimate email may potentially get lost if an email server not conforming with the

SMTP standard is used, and difficulties may arise in the process of distinguishing

between first and second delivery attempts of email messages, especially when email

server farms are involved. Moreover, conventional greylisting is only a short term

strategy, because it is quite easy for spammers to adapt to it and to bypass it by

sending every email twice.

[JGK08] have proposed the concept of a 2-level greylisting technique to be used

in the context of a component architecture (cf. [GJL07]) for detecting and filter-

ing spam. In contrast to previously existing greylisting approaches, this method

successfully handles messages originating from server farms and it cannot be by-

passed by sending identical messages repeatedly. It has been illustrated that this

technique allows for achieving very high spam blocking rates of 99.9% and higher.

Moreover, a reputation-based trust mechanism has been integrated into the 2-level

greylisting technique which significantly reduces the transfer delay for legitimate

messages caused by the additional greylisting level. However, the email messages

from untrusted senders still experience a delay between some minutes and a few

hours.

defNullSpam [Gar07] is a spam filtering system which uses a strategy similar to

that of greylisting by sending an automated response to the point of origin of the

incoming unknown email. This automated response contains a code of verification

which has to be manually sent back by the recipient of the automated response.

Returning this code/key will create a link to this address of origin and enter it in

an “approved sender list”. This approach requires human interaction to ensure the

delivery of email and thus it is difficult to handle legitimate mass email.

88 CHAPTER 5. APPLICATION AREAS

Post-send methods. Spam filters of this group act at the receiver side. Most post

send methods operate after the email has already been transfered completely to the

receiving SMTP server (i. e., after the receiving SMTP server has assumed responsi-

bility for delivering the message), but some of them act already at the beginning of

the SMTP dialogue. Black- and whitelisting – two techniques based on the source

of email – are able to block/pass a message before it is completely transfered to

the receiving mail server. At the beginning of the SMTP dialogue, the receiving

SMTP server verifies if the sender’s IP address appears on a blacklist or a whitelist,

respectively. Any message coming from a source appearing on a whitelist will be

accepted and will bypass filtering, while any message coming from a source appear-

ing on a blacklist will (ideally) not be received completely by the receiving SMTP

server. Both black- and whitelists can be self-maintained or maintained globally by

third-party organizers, such as real time blacklists (RBLs) which can be scanned

on-line. Black- and whitelists must be updated regularly and suffer from the fact

that either all email from a given host is accepted, or all email is rejected. Two other

approaches based on the source of email – policy frameworks [Ioa03] and digital sig-

natures [TH03] – can be used to authenticate the sender of email. Unfortunately,

both approaches need a central authentication authority which is difficult to realize

in practice.

Most other post-send methods act after the email has been transfered to the

receiving SMTP server, and thus tend to be purely reactive. Content-based filtering

techniques depend on the content of email, and thus can only be applied after the

email has been transfered to the receiving SMTP server. Approaches such as finger-

prints (e. g. [Sym09]), (digital) signatures (e. g. [TH03]), checksums (e. g. [Sch09]) or

URL analysis (e. g. [KLL03]) are examples of content-based email filtering. Another

technique, Bayesian spam filtering (cf. [SDH98]), is a statistical filtering technique

that is based on the näıve Bayesian classifier (NB, cf. Section 4.9) to separate spam

email from legitimate email. The idea is to compute a conditional probability for

an email being spam based on the words or tokens it contains. This technique is

exclusively based on textual features, making this technique prone to be fooled by

diluting the spam message with enough obviously innocent words.

Rule-based filters combine several methods mentioned before and block email

based on a pre-determined set of rules. Based on these rules, features describing

an email message can be extracted and used as input (training and test data) for

several machine learning algorithms. A single email can be considered as an instance,

sample or object, and each rule can be considered as a variable, attribute or feature

describing an email. Based on some already labeled training data, a classification

model is built. Then, a classification process can be applied to predict the class

5.1. EMAIL FILTERING 89

(ham, spam, phishing) of unclassified email. Besides these rules mentioned before,

it is also possible to use other attributes for classification, such as purely text-based

features, where single tokens are extracted from the content of email messages (cf.

Section 6).

A de-facto standard of a rule-based spam filtering system is the SpamAssassin

system [McG07, Spa09], which extracts a large number of features from incoming

email messages, comprising pieces of information from header, body, and the full

text of the message. SpamAssassin uses several mechanisms including text analysis,

DNS block-lists, collaborative filtering databases, or a built-in Bayesian classifier,

and requires training samples of labeled spam and non-spam email in order to fine

tune parameters and optimize learning.

Several machine learning algorithms (some of them mentioned in Chapter 4)

have been applied to the task of spam detection. An example for the application of

Bayesian spam filtering based on textual features to the scenario of spam filtering is

given in [AKC00]. Delany et al. [DCC05, DCD05] have studied and assessed a case-

based reasoning email classification as a lazy learner method that outperforms näıve

Bayesian (NB) classifiers (cf. Section 4.9). Contrary to that, Lai [Lai07] performed a

comparative study of the performance of various machine learning methods in spam

filtering, and showed that Bayesian classifiers are able to achieve better results than

kNN and comparable results to an SVM model. Chuan et al. [CXM05] presented

an approach based on an LVQ-based (learning vector quantization) neural network

that outperforms NB models, and Bratko et al. [BCF06] have investigated an ap-

proach based on adaptive statistical data compression models and report very good

classification results of their empirical evaluation.

Fdez-Riverola et al. [FID07] presented an instance-based reasoning email filter-

ing model that partly performed better than classical machine learning techniques

(SVM, AdaBoost, NB) and other successful lazy learner approaches in the domain

of spam filtering. Youn et al. [YM07] proposed a spam filtering method using adap-

tive ontologies that allows for machine-understandable semantics of the data. A

comprehensive survey of several machine learning-based post-send methods can be

found in [Cor07], and [Hid05] provides a list of research papers dealing with machine

learning methods for building spam filters.

5.1.3 Relevant Literature for Phishing

Compared to spam filtering, only relatively little research has been done so far on

specifically detecting phishing email. Chandrasekaran et al. [CCU06] have proposed

a method that sends faked formular data and analyzes the returned answers. Their

work is based on the assumption that phishing sites usually do not check input data,

90 CHAPTER 5. APPLICATION AREAS

whereas an authentic web site would usually produce an error message for incorrect

input data. Phishing toolbars (for example, [McA09, Goo09]) aim to visually warn

the user about the web site referred to, but usually act after the user has already

decided to follow a link provided in an email.

Other approaches are based on the general concept of feature-based phishing de-

tection, where the focus is on analyzing the content of an email message. Obviously,

feature-based phishing detection is closely related to rule-based email filtering and

thus fits the classification methodology applied in this thesis. In the approach by

Liu et al. [LDH06], several key words are extracted from every email message. Web

pages linked within these messages are then compared with web sites which are close

to these key words based on their visual layout. The SpamAssassin system [Spa09]

mentioned in Section 5.1.2 can also be used to identify phishing email – recently,

some rules which specifically target phishing messages have been integrated into the

system. Investigations of special features that are indicators for phishing email were

studied in [FST07]. Here, ten features were used for classifying phishing attempts,

and are reported to achieve a very high classification accuracy. In another study by

Abu-Nimeh et al. [ANW07], the phishing detection performance of several machine

learning algorithms was compared. Random forests achieved the best results for clas-

sification with equally weighted classes. When penalizing false positives more than

false negatives, classification based on logistic regression achieved the best results. A

recent study by Gansterer and Pölz [GP09] also focussed on feature-based phishing

detection and aims at extending and refining existing methods. The authors pro-

posed 15 new features which turned out to be crucial for the achieved classification

accuracy. Their results show that the classification model based on a support vector

machine (cf. Section 4.5) achieved the highest accuracy amongst all classifiers and

that a ternary classification (ham vs. spam vs. phishing, cf. Section 5.1.1) worked

better than a sequence of two binary classification steps for this problem.

Conceptually, feature-based email classification seems to be a promising approach

for phishing detection, especially in combination with the ternary classification prob-

lem formulated above instead of the classical binary one. This allows for specifically

targeting phishing messages in the enormous volume of regular and unsolicited email

(spam). Open issues are the selection of relevant features and the combination of

features, which are crucial tasks when dealing with large data in order to identify

important features and decrease the computational cost for classifying unlabeled

email. The goal is to identify features which are able to distinguish well between

all three classes of email without a loss in classification accuracy. In Chapters 8

and 9, we investigate dimensionality reduction techniques based on NMF in order

to address these open questions for ternary email classification problems.

5.2. PREDICTIVE QSAR MODELING 91

5.2 Predictive QSAR Modeling

The increasing use of computational methods in the drug design and development

process provides the possibility to analyze the interactions of small molecules with

their target proteins on a quantitative level. This enables on the one side a deeper

understanding of the molecular basis of drug-protein interactions, and on the other

side a prediction of the biological activity of new molecules in a virtual screening

run prior to their synthesis.

In the area of QSAR modeling (quantitative structure activity relationship mod-

eling), quantitative representations of molecular structures are encoded in terms of

information-preserving descriptor values. These descriptors are then used to de-

termine the pharmacological or biological activity of molecular structures, which

describes the beneficial or adverse effects of a drug in an organism. The big ad-

vantage of this process is the possibility to save time- and cost-expensive clinical

trials by predicting the pharmaceutical activity of compounds with computational

learning methods. Generally speaking, the pharmacological activity is a function of

the properties of molecule structures, such that activity = f(physiochemical and/or

structural properties). Compounds which have a particular pharmaceutical activity

are also called inhibitors, agonists or substrates of a protein.

Chemical descriptors: In the literature (cf. [Ltd09]), a chemical descriptor is

defined as the final result of a logical and mathematical procedure which transforms

chemical information encoded within a symbolic representation of a molecule into

a useful number or the result of some standardized experiment. In other words,

chemical descriptors are used to derive and represent molecular and physicochemical

properties of compounds, such as their 1D, 2D or 3D structure. In the context of

data mining and machine learning, descriptors are also often referred to as features

or attributes.

Similarity principle: Compounds having similar chemical structures (i. e., de-

scriptor similarity) usually possess similar physicochemical properties and biological

activities. Thus, compounds can be classified according to their chemical structures.

Similar to email filtering, where unlabeled email is classified based on a set of already

classified email samples (training set), unlabeled compounds can thus be classified

based on a training set of compounds, whose pharmacological activity is known.

Descriptors are usually computed from structural codes, such as SMILES (sim-

plified molecular input line entry specification (cf. [Wei88, WWW89]). SMILES is a

simplified chemical notation that allows the representation of 2D chemical structures

in linear textual form and supports also representation of some 3D characteristics,

such as bold and hatched bonds, as well as charged and complexed molecular en-

92 CHAPTER 5. APPLICATION AREAS

tities. According to [TC00], the most frequently used descriptors can be divided

into 18 classes, the most important of them being geometrical descriptors such as

volume and surface area, as well as constitutional and topological descriptors such

as molecular weight, number of rings and rotatable bonds. A complete listing of

these classes can also be found in [DJT08].

Chemical descriptors comprise different levels of complexity and thus the com-

putational cost for determining them varies. Nowadays a variety of software tools is

available to translate the textual representations of chemical structures into descrip-

tor numbers. Among them, widely used tools for deriving molecular descriptors are

DRAGON [TGT05], MOE [Gro09], Molconn-Z [Edu09], and JOELib [LYU07b].

The development of new chemical descriptors is still a topic of major interest

in Chemoinformatics. Their choice as well as their number strongly influences the

computational cost of steps 1-4 in Section 2.4. Especially the extraction of the data

(step 1) can be a very costly process. Moreover, the data mining step (step 4) can

be computationally very expensive if the number of features (descriptors) is large.

Descriptors most suitable for representing compounds of a particular property can

be selected either by intuition or, preferably, more systematically by means of feature

selection or dimensionality reduction methods (cf. Chapters 3 and 6).

Application areas: The concept of avoiding drug-ligand interactions has raised

high interest in recent years – especially in the field of ADMET, which refers to the

absorption, distribution, metabolism, excretion, and toxicity properties of a molecule

within an organism. Optimizing these properties during an early phase of the drug

discovery process is crucial for reducing ADMET problems later in the develop-

ment process. Almost one third of all compounds in the drug development process

pipeline fail due to improper ADMET behavior which renders predictive ADMET

an important issue in drug discovery (cf. [PVR03, TE08a]). Several key proteins

identified so far in the ADMET cascade appear to show polyspecific interactions

in the binding of their ligands. The goal of QSAR modeling is to identify these

proteins, since they influence the pharmacokinetic or toxicological profile of a drug

candidate. These proteins – so called antitargets – include nuclear hormone recep-

tors (e. g. , PXR and CAR), cytochrome P450 enzymes, several ABC transporters,

and the hERG potassium channel.

• Nuclear hormone receptors (NHR) are a class of proteins that regulate

gene expression by activating genes, and therefore leading to the up-regulation

of various other proteins (such as ABC transporters and CYP enzymes).

• Hepatic cytochrom-P450 enzymes (e.g. CYP3A4, 2D6) are liver enzymes

that are responsible for detoxification. Drug inhibition of CYP450 may lead

5.2. PREDICTIVE QSAR MODELING 93

to impaired liver function and toxic side effects.

• The members of the ATP-binding cassette (ABC) transporter family are

membrane-bound efflux transporters, which can be divided into seven classes

(ABCA-ABCG). The best studied class so far is the ABCB1 class, which is

also called P-glycoprotein.

• The human-ether-a-go-go-related gene (hERG) channel, is a potassium-

channel of the heart muscle. Drug inhibition of hERG leads to arrhythmia

and can thus result in sudden death.

Although the proteins mentioned above are different with respect to their cellular

localization, their three dimensional structure and also their biochemical function,

they have one striking feature in common: they are polyspecific in recognizing their

ligands, i. e., all of them interact with small molecules that are unrelated in their

chemical structure as well as in their pharmacological function. This polyspecifity

renders the identification of the “most useful” descriptors reflecting the relationship

between the biological activity (discrete or continuous) and the calculated properties

extremely difficult. The large number of available descriptors requires techniques

for (i) identifying the “best” descriptors to discriminate between classes, and, (ii)

reducing the dimensional space of the descriptors. There are several techniques

to achieve one or both of these goals, but careful investigation of these methods

is needed to avoid loss of information. In Part II of this thesis, several feature

reduction (feature selection and/or dimensionality reduction) techniques applied on

data coming from the QSAR modeling field are compared in terms of classification

accuracy and runtime.

5.2.1 Classification Problem for QSAR Modeling

Classical QSAR modeling can either be defined as a regression problem or as a clas-

sification problem. In the problem setting of binary classification, every compound

under investigation has to be classified as “active” or “inactive”. In this context,

“positives” are compounds that have a particular pharmaceutical activity such as

inhibitors or substrates of a protein. On the contrary, “negatives” are compounds

that do not have this particular pharmaceutical activity. Consequently, a true posi-

tive (TP) is an active compound which was correctly classified as active, and a false

positive (FP) is an inactive compound which was wrongly classified as active. True

negatives (TN) are thus inactive compounds which were correctly classified as inac-

tive, and false negatives (FN) are active compounds which were wrongly classified

as inactive.

94 CHAPTER 5. APPLICATION AREAS

In the field of QSAR modeling, the true positive rate is sometimes also referred

to as sensitivity, accuracy on actives or A1, and the true negative rate is sometimes

referred to as specificity, accuracy on inactives or A0.

5.2.2 Relevant Literature for QSAR Modeling

A wide variety of data mining and machine learning algorithms have been applied

to establish in-silico models related to antitargets. A very recent and comprehensive

collection of these efforts can be found in the book by Vaz and Klabunde [VK08].

Furthermore, a review of machine learning algorithms and their performance with

respect to various ADMET related proteins is given in [LYU07a]. Several studies in

the area of QSAR modeling have proven that feature reduction algorithms can lead

to improvements in the classification performance and that the results achieved with

reduced feature sets are generally easier to interpret. In the following, several studies

related to molecular modeling focusing on feature reduction and classification are

summarized briefly. The studies are grouped according to the type of antitargets

under investigation. A survey of feature selection techniques for predictive QSAR

modeling techniques for polyspecific drug targets can be found in [DJT08].

Ung et al. [ULY07] have presented a comprehensive in-silico prediction study

that addresses the problem of discriminating between PXR activators and non-

activators. They used a wrapper approach with recursive feature elimination (cf.

Section 3) applied to three different learning methods (kNN, SVM and neural net-

works). Obtained results show that the classification performance based on reduced

feature sets outperforms the classification results achieved with all descriptors by

3-5%.

Yap et al. [YC05] applied two distinct adaptations of a support vector machine

(called PPCSVM – “positive probability consensus” and PMCSVM – “positive ma-

jority consensus”, respectively) for the discrimination of substrates and inhibitors

on three different datasets for three different CYP450 enzymes. The chemical space

of the datasets under investigation was initially represented by 1607 descriptors and

a genetic algorithm wrapper was used to remove irrelevant descriptors. The inter-

esting results show that the same descriptor classes were identified to be important

for all three classification problems, i. e., on different CYP450 enzymes. This sug-

gests that there are several descriptor classes suitable for describing any CYPP450

classification problem.

A large number of research studies focused on the problem of predicting ABCB1

substrates and non-substrates. Xue et al. [XYS04, XSY04] described the classifica-

tion performance of a support vector machine applied to three different ABCB1

datasets, and applied a recursive feature elimination (RFE) wrapper (cf. Sec-

5.2. PREDICTIVE QSAR MODELING 95

tion 3.2.2) as feature selection method. The authors observed a significant increase

in the prediction accuracy when applying RFE (up to 11%) compared to a classi-

fication on the complete desriptor set. De Cerqueira-Lima and colleagues [CGO06]

utilized a method called BinaryQSAR to construct ABCB1 substrate/non-substrate

classification models. BinaryQSAR (developed by Labute (cf. [Lab99])) is a tech-

nique based on Bayesian classification (cf. Section 4.9) which is implemented in the

MOE package (cf. [Gro09]) and can be applied on binary data only. Since this tech-

nique assumes that descriptors are uncorrelated to each other, a principle component

analysis is usually performed prior to the classification step. Obviously, the number

of principle components used within the classification process can be much smaller

than the original dimensionality of the data (cf. Section 3.3.2). The results indicate

that BinaryQSAR is able to achieve comparable and often better results than kNN,

and is able to outperform a support vector machine classifier when using descriptors

computed with the MOE package. Other work using feature reduction in combina-

tion with ABCB1 classification comprises the study by Svetnik et al. [SLT03], who

evaluated the application of random forests (cf. Section 4.6) for the classification

problem of ABCB1 substrates, the study by Huang et al. [HMM07], who established

an SVM model for ABCB1 substrates which is optimized by a wrapper approach

based on a particle swarm algorithm, or the study by Wang et al. [WTH05], who

evaluated the performance of a self-organizing map by applying stepwise discrimi-

nant analysis (cf. Section 4.9) as feature selection method to the problem of ABCB1

classification.

Several studies focused on the application of feature reduction methods to hERG

channel blockers. Seierstad et al. [SA06] compared principal component analysis

(PCA, cf., Section 3.3.2) to randomized wrapper methods such as simulated anneal-

ing and deterministic wrapper methods using stepwise forward selection for a hERG

ligand regression problem. It can be seen from their results that PCA performs com-

parable with most of the other methods, while simulated annealing achieves the best

results for this problem setting. In a study by Thai and Ecker [TE08b], BinaryQSAR

(explained above) was applied to the task of classifying hERG channel blockers and

non-blockers. Their results show that in some cases models derived with fast and

easy to calculate 2D molecular descriptors achieve similar results as models based

on the complete feature set. In a later study [TE08a], the same authors classified

hERG blockers based on a feature selection technique called QuaSAR-contingency (a

method available in the MOE package) and a supervised adaption of a self-organizing

map called counter-propagation network (cf. Section 4.9) as a learning algorithm.

Their results show that counter-propagation neural networks with a 3-dimensional

output layer combined with a set of 11 hERG relevant descriptors achieved the best

96 CHAPTER 5. APPLICATION AREAS

performance. In another study by Tobita et al. [TNN05], support vector machines

were used for both, feature reduction (as a deterministic wrapper approach) and

classification. For two different test sets, their classification models achieved re-

markable 90% and 95% accuracy, respectively. Other interesting work for hERG

classification comprises the study by Roche et al. [RTZ02], who applied feature re-

duction based on self-organizing maps (SOMs, cf. Section 4.9) in combination with

(supervised) artificial neural networks as classification process. Moreover, Dubus et

al. [DIP06] used correlation-based feature selection (a representative of multivari-

ate filter methods, cf. Section 3.2.1), and in the studies by Keserü et al. [Kes03]

and Ekins et al. [EBS06], PCA was successfully applied to reduce the number of

descriptors.

A different approach was studied by Hull et al. [HFS01, HSN01], who used latent

semantic indexing for structure indexing. In their LaSSI (latent semantic structure

indexing) approach, they used LSI for similarity searching based on chemical sub-

structure descriptors. The underlying rationale of using this method is that LSI

might represent an useful alternative to determine similarity on different descriptor

sets. Compared to an “in-house” similarity method (which uses the Dice similarity

definition (cf. [Rij79])) called TOPOSIM (cf. [HFS01]), LASSI achieves comparable

and sometimes slightly better results. Moreover, the results highlight that LaSSI

selects very different compounds than TOPOSIM.

5.3 Comparison of Areas

The data coming from these two different application areas differ strongly in several

aspects, such as the number of available training samples, the type and quality of

features, or the general characteristics (sparsity, range, type, . . .) of the data.

Concerning the number of labeled training samples, there is a big difference be-

tween the two areas mentioned before. Since labeled and unlabeled email is rather

easy to collect (for example, from TREC [NIS09] or Enron [Coh09]) the number of

training and test samples can easily reach many thousands (for all three groups, ham,

spam and phishing). Contrary to that, the number of available labeled compounds

for prediction tasks related to QSAR modeling is often relatively small (usually a few

hundred compounds). This is due to the fact, that the number of compounds that

have already undergone time- and cost-expensive clinical trials is limited. Another

possibility to gather pre-classified compounds is to collect them from the literature

(such as the national cancer institute). Unclassified compounds can be extracted

much easier, for example, from compound libraries such as SPECS [SPE09] or Chem-

Div [Che09]. The limited number of labeled training samples is a big challenge and

5.3. COMPARISON OF AREAS 97

highlights the importance of accurate sampling strategies and techniques such as

cross-validation to avoid the problem of overfitting (cf. Section 2.4).

Comparing the features of data coming from email filtering and data coming from

QSAR modeling also shows several differences for both application areas. Most post-

send email filtering methods rely on well established feature sets comprising features

extracted from the (textual) content of the email message or on special properties

of the email (such as date, size, number of html tags, etc.). Most of these features

can be extracted very fast, for example, with rule-based filtering systems such as

SpamAssassin (cf. Section 5.1.2). The fast extraction of features is very important in

this context, since the time available for classifying a single email message is strongly

limited, especially in high-load situations on the receiving SMTP server. Chemical

descriptors, on the contrary, comprise different levels of complexity and thus the

computational cost for determining them often varies significantly. Since the same

descriptors are often used to predict the pharmacological activity of compounds from

different groups of antitargets (hERG, CYP, etc.), the extraction of the ideal feature

set is usually more difficult than in the context of email filtering.

Feature sets used in the context of email filtering are usually well established and

thus the choice of good feature sets is easier than in drug discovery applications.

To give an example, the SpamAssassin system utilizes a built-in pseudo feature

ranking based on the values of each rule/test (determined using a neural network).

Contrary to that, feature sets used in the drug discovery context are often not so well

established and thus the choice of the “best” feature set (in terms of classification

accuracy) is a more difficult task than for email filtering. This issue is investigated

in detail in Chapter 6 of this thesis.

Moreover, there is a big difference in the general characteristics of the data from

both application areas. Data coming from the context of email filtering are usually

much sparser than data coming from QSAR modeling. For example, usually only a

small number of tests integrated in rule-based email filtering systems triggers for an

email message (cf. Section 5.1.2). When considering purely text-based features, the

resulting term × document matrices are usually also very sparse (cf. Section 4.7).

Moreover there is a big difference in the range and the type (nominal, numeric,

discrete, etc.) of attributes.

Due to these differences in the data and the application areas the typical accuracy

achieved with classification algorithms differs strongly. Spam filtering systems often

achieve high classification overall accuracy of 95% or more. The accuracy achieved

with data coming from the drug discovery field differs strongly and is usually much

lower. Depending on the data, the achieved classification accuracy may range from

60% up to 95% or more, but it is usually somewhere in between.

98 CHAPTER 5. APPLICATION AREAS

In Part II of this thesis, several new approaches and new algorithmic variants of

feature reduction and classification techniques will be investigated and applied to

datasets coming from the application areas of email filtering and drug discovery.

Part II

New Approaches in Feature

Reduction and Classification

99

Chapter 6

On the Relationship Between

Feature Reduction and

Classification Accuracy

6.1 Overview of Chapter

In this chapter, we investigate the relationship between several attribute space re-

duction techniques and the resulting classification accuracy for the two application

areas mentioned in Chapter 5. On the one hand, we consider email filtering, where

the feature space contains various properties of email messages, and on the other

hand, we consider drug discovery problems, where quantitative representations of

molecular structures are encoded in terms of information-preserving descriptor val-

ues. Subsets of the original attributes constructed by feature selection techniques

(such as filter and wrapper methods, cf. Section 3.2) as well as subsets of linear

combinations of the original attributes constructed by three different variants of the

principle component analysis (PCA, cf. Section 3.3.2) are compared in terms of the

classification performance achieved with various machine learning algorithms as well

as in terms of runtime performance. We successively reduce the size of the attribute

sets and investigate the changes in the classification results. Moreover, we explore

the relationship between the variance captured in the linear combinations within

PCA and the resulting classification accuracy.

Results show that the classification accuracy based on PCA is highly sensitive

to the type of data and that the variance captured by the PCs is not necessarily a

vital indicator for the classification performance.

101

102 CHAPTER 6. ON THE RELATIONSHIP BETWEEN FR AND CLASSIFICATION ACCURACY

6.2 Introduction and Related Work

As the dimensionality of the data increases, many types of data analysis and classi-

fication problems become significantly harder. The reasons for this phenomenon –

often referred to as curse of dimensionality – are outlined in Chapter 3 together with

a discussion of feature selection (FS) and dimensionality reduction (DR) methods.

Several extensive surveys of various feature selection and dimensionality reduction

approaches can be found in the literature, for example, in [MBN02] or [GE03].

There are several studies that have investigated the classification accuracy of ma-

chine learning algorithms based on feature sets extracted by PCA. [HMO06] have

investigated the effect of PCA on machine learning accuracy (for C4.5, RIPPER, lin-

ear SVM, RBF SVM, kNN and linear regression) with high-dimensional data based

on different pre-processing steps. They use the NIPALS method [GK86] to itera-

tively compute only the first n principle components (PCs) of a data sample until a

required number of PCs have been generated. Their results show that using PCA in

combination with classification may improve the classification accuracy when deal-

ing with high dimensional data. For carefully selected pre-processing techniques, the

authors show that using principal components instead of the original features results

in either the same accuracy (i. e., same error, for a C4.5 and a RIPPER classifier) or

a numerically higher accuracy (i. e., smaller error, for linear SVM, RBF SVM, kNN

and linear regression). [Pop01] has analyzed the effect of PCA on three different

machine learning methods (C5.0, instance-based learner and näıve Bayes). In one

test-run, the first n PCs (i. e., linear combinations of the original attributes) were

added to the original attributes, in the second test run, the principle components re-

placed them. The results show that adding the PCs to the original attributes slightly

improved the classification accuracy for all machine learning algorithms (mostly for

small numbers of n), whereas replacing the original attributes only increased the

accuracy for one algorithm (näıve Bayes).

6.3 Open Issues and Own Contributions

Different techniques can be applied to perform a principle component analysis, for

example, the eigenvalue decomposition of either the covariance or the correlation

matrix can be used (cf. Section 3.3.2). Another question is how the scaling of the

original data affects the PCs and the resulting classification accuracy. Attributes

resulting from these different PCA variants differ significantly in their coverage of

the variability of the original attributes. To the best of our knowledge no system-

atic studies have been carried out to explore the relationship between the variability

6.4. DATASETS 103

captured in different variants of the PCA and the accuracy of machine learning

algorithms operating on them. One of the objectives of this chapter is to sum-

marize investigations of this issue. More generally, we investigate the variation of

the achieved classification accuracy depending on the choice of specific variants for

calculating the PCA for two very different datasets. Other important aspects mo-

tivating such investigations are questions relating to how the classification accuracy

based on PCA subsets compares to classification accuracy based on subsets of the

original features of the same size, or how to identify the smallest subset of original

features which yields a classification accuracy comparable to the one of a given PCA

subset.

In the following, several feature sets (and subsets of these feature sets) are com-

pared in terms of resulting classification accuracy. The three types of feature subsets

considered are based on feature ranking (using the filter method information gain,

cf. Section 3.2.1), a wrapper subset evaluator (cf. Section 3.2.2) and three different

variants of PCA.

6.4 Datasets

The datasets used for experiments come from the two different application areas

mentioned in Chapter 5 and differ strongly in the number of instances and features

and in their characteristics.

Email data. The first dataset consists of 10 000 email messages (half of them

spam, half not spam) taken from the TREC 2005 email corpus [CL05]. The values

of the features for each message were extracted using SpamAssassin [Spa09] (cf.

Section 5.1.2), where different parts of each email message are checked by various

tests, and each test assigns a certain value to each feature (positive feature values

indicate spam messages, negative values indicate non-spam messages). Although

the number of features determined by SpamAssassin is rather large, only a relatively

small number of these features provide useful information. For the dataset used only

230 out of more than 800 tests triggered at least once, resulting in a 10 000 × 230

data matrix.

Drug discovery data. The second dataset comes from medicinal chemistry (cf.

Section 5.2). This dataset consists of 249 structurally diverse chemical compounds.

110 of them are known to be substrates of P-glycoprotein, a macromolecule which

is notorious for its potential to decrease the efficacy of drugs (“antitarget”). The

remaining 139 compounds are non-substrates. The chemical structures of these

compounds are encoded in terms of 366 information preserving descriptor values

(features). Hence, our drug discovery (DD) dataset is a 249× 366 matrix.

104 CHAPTER 6. ON THE RELATIONSHIP BETWEEN FR AND CLASSIFICATION ACCURACY

Data characteristics. Whereas the email dataset is very sparse (97.5% of all

entries are zero) the drug discovery dataset contains only about 18% zero entries.

Moreover, most of the email features have the property that they are either zero or

have a fixed value (depending on whether a test triggers or not). This is completely

different from the drug discovery dataset where the attribute values vary a lot (the

range can vary from descriptors represented by small discrete numbers to descriptors

given by floating-point values out of a theroretically contiuous range).

6.5 Feature Subsets

For both test datasets we determined different feature subsets, i. e., out of the original

data matrix D we computed a new matrix D
′
. For the FS subsets (information gain

and wrapper), D and D
′

differ only in the number of columns (attributes), for the

PCA subsets they differ in the number of columns and in their interpretation (i. e.,

the columns are linear combinations of the original attributes, cf. Section 3.3).

For extracting the wrapper subsets we used Weka’s (cf. [WF05]) wrapper subset

evaluator in combination with the best first search method. A paired t-test was

used to compute the probability if other subsets may perform substantially better

(cf. Section 3.2.2). For the investigations in this chapter, neither a maximum nor

a minimum number of features was pre-defined. The optimum number of features

was automatically determined within the wrapper subset evaluator (based on the

t-test). For our evaluations, between 4 and 18 features were selected.

As a filter approach we ranked the attributes with respect to their information

gain (IG). As mentioned in Section 3.2, this ranking is independent of a specific

learning algorithm and contains – before selecting a subset – all attributes (ranked

in desending order with respect to their IG).

For dimensionality reduction, we studied PCA. In the literature (cf., for exam-

ple, [Jol02, TSK05, WF05, Mat09b]), several variants appear. We investigated the

differences of three such variants (denoted by PCA1, PCA2 and PCA3) in terms of

the resulting classification accuracy. In all cases we first performed a mean shift of

all features such that the mean for each feature becomes 0. We denote the resulting

feature-instance matrix by M . Based on this first preprocessing step we define three

variants of the PCA computation. The resulting datasets contain min(features,

instances) linear combinations of the original attributes (out of which a subset is

selected).

PCA1: The eigenvalues and eigenvectors of the covariance matrix of M (cf. Sec-

tion 3.3) are computed. The new attribute values are then computed by multiplying

M with the eigenvectors of the covariance matrix Cov(M).

6.6. MACHINE LEARNING METHODS 105

PCA2: The eigenvalues and eigenvectors of the matrix containing the correlation

coefficients of M (cf. Section 3.3) are computed. The new attribute values are

then computed by multiplying M with the eigenvectors of the correlation coefficient

matrix Corr(M).

PCA3: Each feature of M is first normalized by its standard deviation (i. e., z-

scored). These normalized values are then used as input for the eigenvalue de-

composition (i. e., there is no difference between the correlation coefficient matrix

Corr(M) the and covariance matrix Cov(M)) and also for the computation of the

new attributes.

6.6 Machine Learning Methods

For evaluating the classification performance of the reduced feature sets we used

six different machine learning methods (see Chapter 4 for a description of these

methods). Experiments were performed with a support vector machine (SVM) based

on the sequential minimal optimization algorithm using a polynomial kernel with

an exponent of 1; a k -nearest neighbor (kNN) classifier using different values of

k (1 to 9); a bagging ensemble learner (Bagging) using a pruned decision tree as

base learner; a single J.48 decision tree (J.48) based on Quinlan’s C4.5 algorithm;

a random forest (RandF); and a Java implementation of the RIPPER rule-based

learner (JRip).

6.7 Experimental Results

For all feature sets except the wrapper subsets we measured the classification per-

formance for subsets consisting of the n “best ranked” features (n varies between

1 and 100). For the information gain method, the top n information gain ranked

original features were used. For the PCA subsets, the first n PCs capturing most

of the variability of the original attributes were used. The classification accuracy

was determined using a 10-fold cross-validation. The results are shown separately

for the two datasets described in Section 6.4. For kNN, only the kNN(1) results are

shown since k = 1 mostly yielded the best results. For comparison we also classified

completely new data (separating feature reduction and classification process). In

this setting, we performed the feature selection step (using information gain and a

wrapper approach) on a separate dataset which was then not used for building or

testing the classification model. In most cases the accuracy was similar.

For the experimental evaluation we used Matlab [Mat09b] for computing three

different variants of the PCA (cf. Section 6.5), and the Weka toolkit [WF05] for

106 CHAPTER 6. ON THE RELATIONSHIP BETWEEN FR AND CLASSIFICATION ACCURACY

computing the feature selection subsets (information gain and wrapper approach)

and for measuring the classification performance of the learning methods on each of

these feature sets.

6.7.1 Email Data

Table 6.1 shows the overall classification accuracy for the information gain subsets

and the PCA subsets. The results are shown as the average results over all subsets

of the top n features (for IG) and PCs (for PCA), respectively, for n = 1, . . . , 100.

Besides, the average classification accuracy over all algorithms is shown (AVG.).

The best and the worst average results for each learning algorithm over the feature

reduction methods are highlighted in bold and italic letters, respectively. The best

overall result over all feature sets and all learning algorithms is marked with an

asterisk. Since the wrapper subsets contain a fixed number of features, the wrapper

results are shown in Table 6.2 only.

Table 6.1: Email data – average overall classification accuracy (in %).

SVM kNN(1) Bagging J.48 RandF JRip AVG.

Infogain 99.20 99.18 99.16 99.16 99.21 99.18 99.18

PCA1 99.26 99.70 99.68 99.70 * 99.77 99.67 99.63

PCA2 99.55 99.69 99.67 99.69 99.75 99.68 99.67

PCA3 99.54 99.64 99.65 99.64 99.65 99.64 99.63

Table 6.2 shows the best classification accuracy for all feature subsets (including

the wrapper subsets) and for a classification based on the complete feature set.

Table 6.2 also contains the information how many original features (for FS) and

how many principal components (for PCA) were needed to achieve the respective

accuracy. Again, the best and worst results are highlighted.

Table 6.2: Email data – best overall classification accuracy (in %).

SVM kNN(1) Bagging J.48 RandF JRip

All features 99.75
230 attr.

99.70
230 attr.

99.71
230 attr.

99.65
230 attr.

99.73
230 attr.

99.66
230 attr.

Wrapper
fixed set

99.61
7 attr.

99.60
5 attr.

99.61
4 attr.

99.61
7 attr.

99.67
11 attr.

99.64
7 attr.

Infogain 99.76
100 attr.

99.71
50 attr.

99.70
50 attr.

99.71
100 attr.

99.78
80 attr.

99.72
90 attr.

PCA1 99.65
90 PCs

99.74
40 PCs

99.69
40 PCs

99.75
30 PCs

* 99.82
70 PCs

99.73
5 PCs

PCA2 99.67
90 PCs

99.75
40 PCs

99.72
30 PCs

99.78
60 PCs

99.80
15 PCs

99.76
40 PCs

PCA3 99.65
100 PCs

99.73
5 PCs

99.71
20 PCs

99.71
4 PCs

99.79
15 PCs

99.73
50 PCs

6.7. EXPERIMENTAL RESULTS 107

100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1
98

98.4

98.8

99.2

99.6

100

Number n of first IG ranked attributes used for classification

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

SVM
kNN (1)
Bagging
J.48
RandF
JRip

Figure 6.1: Email data – information gain subsets.

Feature subset selection. A comparison of the two feature selection methods

shows that the best accuracies achieved with IG subsets are better than the wrapper

results (see Table 6.2). Nevertheless, when looking at the size of the subsets with

the best accuracy it can be seen that the wrapper subsets are very small. Figure 6.1

shows the degradation in the classification accuracy when the number of features

in the IG subsets is reduced. Interestingly, all machine learning methods show the

same behavior without any significant differences. The accuracy is quite stable

until the subsets are reduced to 40 or less features, then the overall classification

accuracy tends to decrease proportionally to the reduction of features. Comparing

the wrapper results with the IG results with the same number of attributes (4

to 11 features, see Figure 6.1 and Table 6.2), it can be seen that the wrapper

approach clearly outperforms IG. Moreover, the classification accuracy achieved with

the wrapper subsets is only slightly worse than the accuracy achieved with the

complete feature set, but with a reduction of about 96% of the feature space.

PCA. Figures 6.2, 6.3 and 6.4 show the overall classification accuracies for the

three PCA variants. Generally, the results are very stable regardless of the number

of principle components used for classification. Surprisingly, only the accuracy of the

SVM method (using a polynomial kernel) clearly decreases with a smaller number of

principal components used, especially so for PCA1, but also for PCA2 and slightly

for PCA3.

Explaining the variance. Even though the classification results for all three PCA

variants are similar, it is very interesting to note that when the correlation matrix is

used instead of the covariance matrix to compute the eigenvectors and eigenvalues

(as it is the case for PCA2 and PCA3) the fraction of the variance captured by the

108 CHAPTER 6. ON THE RELATIONSHIP BETWEEN FR AND CLASSIFICATION ACCURACY

100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1
98

98.4

98.8

99.2

99.6

100

Number n of first PCs used for classification (PCA1)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

SVM
kNN (1)
Bagging
J.48
RandF
JRip

Figure 6.2: Email data – PCA1 subsets.

100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1
98

98.4

98.8

99.2

99.6

100

Number n of first PCs used for classification (PCA2)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

SVM
kNN (1)
Bagging
J.48
RandF
JRip

Figure 6.3: Email data – PCA2 subsets.

first n PCs (i. e., the accumulated percentage of the first n eigenvalues) decreases

remarkably (see Table 6.3).

Algorithms. Although the overall classification accuracy in Figures 6.1, 6.2, 6.3,

and 6.4 is very good in general, when comparing the different machine learning

methods it can be seen that random forest achieves the best results for all of the

reduced feature sets used, and that the SVM classifier seems to be most sensitive

to the size of the PC subsets. For the average PCA results (shown in Table 6.1

and Figure 6.2), SVM shows the lowest classification accuracy. When the complete

feature set is used, the SVM results are slightly better than the random forest results

(Table 6.2).

6.7. EXPERIMENTAL RESULTS 109

100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1
98

98.4

98.8

99.2

99.6

100

Number n of first PCs used for classification (PCA3)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

SVM
kNN (1)
Bagging
J.48
RandF
JRip

Figure 6.4: Email data – PCA3 subsets.

Table 6.3: Email data – % variance captured by first n PCs (max. dim: 230).

n 100 80 60 40 20 10 5 4 3 2 1

PCA1 99.4 98.9 97.8 95.3 87.0 75.7 62.7 58.9 54.0 48.0 38.0 %

PCA2,3 67.7 58.9 49.4 38.3 24.7 15.8 10.3 9.0 7.7 6.3 3.9 %

6.7.2 Drug Discovery Data

Tables 6.4 and 6.5 show average and best classification results over different feature

subsets for the drug discovery data.

Table 6.4: Drug discovery data – average overall classification accuracy (in %).

SVM kNN(1) Bagging J.48 RandF JRip AVG.

Infogain 69.25 67.55 70.63 68.47 68.04 70.32 69.04

PCA1 63.50 65.87 65.84 61.81 65.03 65.74 64.63

PCA2 61.05 66.39 69.27 65.27 67.16 65.92 65.84

PCA3 68.78 67.28 * 71.02 63.76 69.66 67.06 67.93

Feature subset selection. A comparison of Tables 6.4 and 6.5 (drug discovery

dataset results) with Tables 6.1 and 6.2 (email dataset results) shows that the clas-

sification accuracy achieved with the drug discovery dataset is generally much lower

than for the email dataset. Moreover, for the drug dataset, the average classification

results (Table 6.4) achieved with IG tend to be much better compared to the PCA

results than for the email dataset. For four out of the six learning algorithms used,

the best average results were achieved with the IG feature set (cf. Table 6.4) – for

the email dataset, the best average results were all achieved with PCA1 or PCA2

subsets (cf. Table 6.1).

110 CHAPTER 6. ON THE RELATIONSHIP BETWEEN FR AND CLASSIFICATION ACCURACY

Table 6.5: Drug discovery data – best overall classification accuracy (in %).

SVM kNN(1) Bagging J.48 RandF JRip

All features 70.67
367 attr.

73.89
367 attr.

74.30
367 attr.

64.24
367 attr.

73.52
367 attr.

69.09
367 attr.

Wrapper
fixed set

77.48
18 attr.

79.91
6 attr.

79.51
10 attr.

79.53
6 attr.

* 79.93
6 attr.

79.89
6 attr.

Infogain 72.70
60 attr.

73.08
80 attr.

74.31
20 attr.

71.11
1 attr.

71.89
7 attr.

73.52
2 attr.

PCA1 70.69
60 PCs

73.07
15 PCs

68.68
15 PCs

65.87
15 PCs

69.48
4 PCs

69.09
6 PCs

PCA2 65.89
60 PCs

71.89
60 PCs

73.08
15 PCs

68.29
60 PCs

73.89
40 PCs

68.69
4 PCs

PCA3 73.89
6 PCs

73.09
10 PCs

75.90
6 PCs

69.09
5 PCs

76.69
10 PCs

71.48
7 PCs

100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1
50

55

60

65

70

75

80

Number n of first IG ranked attributes used for classification

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

SVM
kNN (1)
Bagging
J.48
RandF
JRip

Figure 6.5: Drug discovery data – information gain subsets.

When looking at the best overall classification accuracy (Table 6.5), a very inter-

esting observation is that the (again very small) wrapper subsets clearly outperform

the complete feature set using all attributes and the IG subsets. In contrast to

the results for the email data, this is also true for larger IG subsets with about

30-100 features (see Table 6.5). For the email dataset, the best overall classification

accuracy (cf. Table 6.2) based on the wrapper subsets was always lower than the

best overall classification accuracy based on IG or different PCA subsets. For the

DD dataset, the three best wrapper results (achieved with kNN, random forest and

JRip) were all achieved with a feature set containing only 6 attributes. Interestingly,

only two of these attributes appear in all three subsets, the other attributes differ

throughout the feature subsets.

Figure 6.5 shows the classification performance for the IG subsets with different

sizes. There is a clear difference between this curve and the curve shown in Figure 6.1

(IG subsets for the email data). For the DD datasets, there is no proportional decline

6.7. EXPERIMENTAL RESULTS 111

in the classification accuracy compared to the size of subsets used, as it is the case

for the email datasets. For most small IG subsets the classification performance

remains acceptable compared to large IG subsets, for the J.48 the results achieved

with small IG subsets are even better than the results achieved with large subsets

(cf. Figure 6.5).

100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1
50

55

60

65

70

75

80

Number n of first PCs used for classification (PCA1)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

SVM
kNN (1)
Bagging
J.48
RandF
JRip

Figure 6.6: Drug discovery data – PCA1 subsets.

100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1
50

55

60

65

70

75

80

Number n of first PCs used for classification (PCA2)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

SVM
kNN (1)
Bagging
J.48
RandF
JRip

Figure 6.7: Drug discovery data – PCA2 subsets.

PCA. Figures 6.6, 6.7 and 6.8 show the overall classification accuracies for the three

PCA variants. The results are again very different from the results with the email

dataset. Surprisingly, the accuracy between the first 90 to 100 PCs, as well as the

results using only very few PCs tend to be much lower than the results for other PC

numbers when using feature set PCA1, and partly also when using feature set PCA3.

112 CHAPTER 6. ON THE RELATIONSHIP BETWEEN FR AND CLASSIFICATION ACCURACY

100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1
50

55

60

65

70

75

80

Number n of first PCs used for classification (PCA3)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

SVM
kNN (1)
Bagging
J.48
RandF
JRip

Figure 6.8: Drug discovery data – PCA3 subsets.

For PCA2 there is no such behavior. When comparing PCA1, PCA2 and PCA3 (see

also Tables 6.4 and 6.5), it can be seen that the results for some classifiers change

significantly. For example, the best classification accuracy for SVM decreases by 5%

even though both subsets achieved the best result with the same number of PCs

(60, see Table 6.5). On the other hand, for bagging and RF the accuracy improved

by about 4%. The best bagging results were again achieved with the same number

of PCs (15). Comparing the average results (cf. Table 6.4) and the best results (cf.

Table 6.5) of the PCA variants, it can be seen that the best PCA variant for the

DD dataset is PCA3.

Explaining the variance. The percentage of variance captured by the first n

principal components is much higher than for the email dataset (cf. Table 6.6). This

is due to the differences in size and characteristics of the datasets (see Section 6.4).

Table 6.6: DD data – % variance captured by first n PCs (max. dim: 249).

n 100 80 60 40 20 10 5 4 3 2 1

PCA1 100 99.9 99.9 99.9 99.9 99.8 98.7 98.1 97.0 94.6 87.9 %

PCA2,3 99.6 99.1 97.9 95.2 88.7 79.9 68.2 63.6 58.1 51.4 40.6 %

Algorithms. Compared to the email dataset, the overall classification accuracy

is much lower for all machine learning methods used. Comparing the six different

algorithms, it can be seen that bagging achieves the best accuracy on the average

results (Table 6.4). The best results for a given feature subset (Table 6.5) are either

achieved with kNN, bagging or RF.

6.7. EXPERIMENTAL RESULTS 113

6.7.3 Runtimes

366 100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 1
0

5

10

15

20

25

30

Number n of attributes used for classification

Ti
m

e
(s

ec
)

SVM
kNN(1)
Bagging
J.48
RandF
JRip

Figure 6.9: Email data – classification runtimes.

230 100 90 80 70 60 50 40 30 20 15 10 9 8 7 6 5 4 3 2 2
0

0.2

0.4

0.6

0.8

1

Number n of first attributes used for classification

Ti
m

e
(s

ec
)

SVM
kNN(1)
Bagging
J.48
RandF
JRip

Figure 6.10: Drug discovery data – classification runtimes.

Figures 6.9 and 6.10 show the runtimes for the classification process (training

and testing) for the email and the drug discovery dataset, respectively, for a ten-fold

cross-validation using information gain subsets with different numbers of features

and for the complete feature set. Obviously, the time needed for the classification

process decreases with fewer attributes. For all machine learning algorithms except

kNN, a big amount of the classification time is spent in the training step. Once the

model has been built, the classification (testing) of new instances can be performed

rather quickly. As kNN does not build a model but computes all distances in the

classification process, there is no training step for this approach. Comparing the

classification times, it can be seen that kNN is the slowest classifier on the larger

114 CHAPTER 6. ON THE RELATIONSHIP BETWEEN FR AND CLASSIFICATION ACCURACY

email dataset but the fastest on the smaller drug discovery dataset. The fastest

classifier on the email dataset is the support vector classifier (SVM), the slowest

classifier on the drug discovery dataset is the bagging ensemble method.

Feature reduction runtimes. Table 6.7 shows the runtimes for different feature

reduction processes, performed with Weka on the complete datasets. It is very

interesting to note the big gap between the time needed to compute the feature

ranking (IG) and the various wrapper methods. On the smaller drug discovery

dataset, the slowest wrapper (WraRF, random forest) needed more than 48 minutes,

on the email dataset more than 12 hours ! On the email dataset, the slowest wrapper

(WrakNN) needed even more than 20 hours, but was the fastest wrapper method

on the drug discovery dataset. For a fair comparison, we used Weka’s PCA routine

(which is not the fastest available routine) for computing the PCs. The computation

of the PCs is more time consuming than the computation of the information gain

ranking, but much faster than the wrapper methods. A general discussion of feature

ranking, wrapper, and dimensionality reduction methods in terms of runtime can be

found in Chapter 3.

Table 6.7: Feature reduction runtimes (in seconds).

IG PCA WraSVM WraJ48 WraBag WraRip WraRF WrakNN

Email 5.1 e+0 8.1 e+1 3.0 e+3 4.4 e+3 7.2 e+3 1.2 e+4 4.4 e+4 7.4 e+4

DD 2.0 e−1 3.0 e+0 1.8 e+3 1.3 e+3 2.2 e+3 8.1 e+2 2.9 e+3 4.1 e+2

6.8 Discussion

We have investigated the relationship between various methods for feature reduc-

tion (feature subset selection as well as dimensionality reduction) and the result-

ing classification performance. More specifically, feature subsets determined with a

wrapper method and information gain were compared to feature subsets of linear

combinations of the original features, computed with three variants of the principle

component analysis (PCA). Extensive experiments performed with datasets from

two very different application contexts, email classification and drug discovery, lead

to the following conclusions.

Datasets: When looking specifically at the two datasets investigated in this

chapter, we note that the classification accuracy achieved with different feature

reduction strategies is highly sensitive to the type of data. For the email data with

quite well established feature sets there is much less variation in the classification

accuracy than for the drug discovery data.

6.8. DISCUSSION 115

Feature reduction: Among the feature selection methods, wrapper methods tend

to produce the smallest feature subsets with very competitive classification accu-

racy – in many cases they are the best overall feature reduction methods. Wrapper

methods clearly outperform feature ranking methods based on IG on the drug dis-

covery data, and also show acceptable classification accuracy on the email dataset.

Although for the email data the best overall IG subset achieves better results than

the wrapper subsets, the wrapper subsets lead to better accuracy than IG subsets

with comparable sizes. However, wrapper methods tend to be much more expensive

computationally than the other feature reduction methods.

For dimensionality reduction based on PCA, it is important to note that the three

variants considered in this chapter tend to differ significantly in the percentage of

the variance captured by a fixed number of principal components, in the resulting

classification accuracy, and particularly also in the number of principal components

needed for achieving a certain accuracy. It has also been illustrated clearly that the

percentage of the total variability of the data captured by the principal components

used is not necessarily correlated with the resulting classification accuracy.

Classification algorithms: An investigation of the applied machine learning al-

gorithms shows that the SVM accuracy was surprisingly low on the PCA subsets.

Even though SVMs perform very well when all features or subsets of the original

features are used, they achieve only the lowest accuracy for all three PCA subsets

on the email data. On the drug discovery data, SVMs achieve a reasonable accuracy

only with a PCA3 subset. The accuracy of most classifiers tends to be much less

sensitive to the number of features when principal components are used instead of

subsets of the original features, especially so for the email data. This is not surpris-

ing, since the principal components in general contain information from all original

features. However, it is interesting to note that on the email data the SVM classifier

is an exception: Its accuracy decreases clearly when fewer PCs are used, similar to

the situation when feature subsets are used.

More generally speaking, the experimental results underline the importance of a

feature reduction process. In many cases, in particular in application contexts where

the search for the best feature set is still an active research topic (such as in the drug

discovery application), the classification accuracy achieved with reduced feature sets

is often significantly better than with the full feature set. In application contexts

where good feature sets are already well established the differences between different

feature reduction strategies are much smaller.

116 CHAPTER 6. ON THE RELATIONSHIP BETWEEN FR AND CLASSIFICATION ACCURACY

Chapter 7

Email Filtering Based on Latent

Semantic Indexing

7.1 Overview of Chapter

In this chapter, the application of latent semantic indexing (LSI, cf. Section 4.8)

to the task of detecting and filtering spam email is studied. Comparisons to the

basic vector space model (VSM, cf. Section 4.7) and to the extremely widespread,

de-facto standard for spam filtering, the SpamAssassin system (cf. Section 5.1.2),

are summarized. It is shown that both VSM and LSI achieve significantly better

classification results than SpamAssassin.

Obviously, the classification performance achieved in this special application con-

text strongly depends on the feature sets used. Consequently, the various classifica-

tion methods are also compared using two different feature sets: (i) a set of purely

textual features of email messages that are based on standard word- and token ex-

traction techniques, and (ii) a set of application-specific “meta features” of email

messages as extracted by the SpamAssassin system. It is illustrated that the lat-

ter tends to achieve consistently better classification results. A third central aspect

discussed in this chapter is the issue of problem reduction in order to reduce the com-

putational effort for classification, which is of particular importance in the context of

time-critical on-line spam filtering (for example, in combination with the greylisting

technique mentioned in Section 5.1.2). In comparison to Chapter 6, where several

explicit feature reduction methods are compared, the feature reduction step in this

chapter is mostly performed implicitly within the LSI process. In particular, the

effects of truncation of the singular value decomposition (SVD, see Section 3.3.3) in

LSI and of a reduction of the underlying feature set (feature selection) are investi-

gated and compared.

117

118 CHAPTER 7. EMAIL FILTERING BASED ON LATENT SEMANTIC INDEXING

7.2 Introduction and Related Work

Spam email tends to have several semantic elements in common, which are usually

not present in regular email. This assumption is plausible due to the economic as-

pects underlying the spam phenomenon (see, for example, [ISG06] for a discussion).

However, the common semantic elements are hard to pinpoint comprehensively, be-

cause they are not fully known, not always explicit, and may change dynamically, etc.

In other words, they are in some sense implicit or latent . Some previous approaches

tried to concentrate on specific properties of (current) spam and to design anti-spam

methods based thereon. However, due to the difficulties in identifying a comprehen-

sive set of properties which unambiguously characterize spam, these approaches did

not yet lead to fundamental and persistent anti-spam strategies. The application of

several state-of-the-art information retrieval and text-mining techniques to the tasks

of spam filtering and email classification is topic of current research (cf. related work

for email filtering as summarized in Section 5.1.2).

An approach closely related to the methods investigated in this chapter has been

proposed by Gee [Gee03], where an LSI-based classifier is used for spam filtering.

Gee’s results show that using LSI as the basis for an email classifier enjoys a very high

degree of recall as well as a high degree of precision (cf. Section 2.4.5), while other

classification methods such as Naive Bayesian classifiers (cf. Section 5.1.2) usually

show a high precision (similar to the degree of precision achieved with LSI) and

a much lower recall. In contrast to the investigations summarized in this chapter,

Gee’s approach is exclusively based on textual features of the email messages.

7.3 Open Issues and Own Contributions

One of the main motivations for this work was to investigate the influence of the

choice of different feature sets on the performance of VSM- and LSI-based spam

filtering. In particular, our objective was to extend Gee’s approach (LSI on text-

based features) to evaluate the classification performance achieved with LSI on a

set of “meta features”, such as those used in SpamAssassin, and to quantify the

influence of feature set reductions on the classification results.

The investigation of LSI for spam filtering summarized here evaluates the re-

lationship between two central aspects: (i) the truncation of the SVD in LSI and

(ii) the resulting classification performance in this specific application context. It is

shown that a surprisingly large amount of truncation is often possible without heavy

loss in classification performance. This forms the basis for good and extremely fast

approximate (pre-)classification strategies, which can be very useful in practice.

7.4. CLASSIFICATION BASED ON VSM AND LSI 119

The low-rank approximation of the feature-document matrix within LSI is one

possibility to reduce the potentially huge size of the problem. As an alternative,

we investigate strategies for reducing the feature set prior to the classification/LSI

process by using feature ranking methods introduced in Section 3.2. This pre-

selection of high-ranked features can potentially reduce the computing time as the

matrices in the time-consuming SVD computation become smaller. Classification

performance of these two approaches to problem size reduction are investigated and

compared in the following.

The approaches investigated in this chapter are shown to compare favorably to

two competing approaches, in that they achieve better classification results than the

SpamAssassin system, and they are better (in terms of classification accuracy) and

more robust than the LSI-based approach using purely textual features proposed by

Gee [Gee03].

7.4 Classification based on VSM and LSI

In text-mining applications, VSM and LSI represent a sample of documents in a

term-by-document matrix. In the context of spam filtering, each document is an

email message which is represented by a vector in the vector space model. In order

to construct this VSM, each email has to be represented by a set of feature values

determined by a feature extraction component. This leads to two central questions

arising in this context: (i) Which features of email data are (most) relevant for

the classification into spam and ham (textual features, header information, etc.) ?

(ii) Based on a certain set of features, what is the best method for categorizing email

messages into spam and ham ? In the remainder of this section, we will mainly focus

on the former question. The evaluation of VSM and LSI in Section 7.5.2 contributes

to answering the latter question.

7.4.1 Feature Sets

As already mentioned, we consider and compare two types of features which are

very important and widely used in the context of spam filtering. On the one hand,

we consider the features extracted by the state-of-the-art spam filtering system Spa-

mAssassin. This feature set is denoted by “F SA” in the following. On the other

hand, we use a comparable number of purely text-based features. This feature set is

denoted by “F TB” in the following. First, these two types of feature sets and their

extraction are discussed. Then, we discuss feature/attribute selection methods for

investigating a controlled reduction of the number of features in each set.

120 CHAPTER 7. EMAIL FILTERING BASED ON LATENT SEMANTIC INDEXING

SpamAssassin features. For feature set F SA we use the SpamAssassin system

(cf. Section 5.1.2) to extract their values from each message. SpamAssassin uses

many tests and rules (795 in the version 3.1.1) to extract these features from each

email message. Different parts of each email messages are tested, comprising the

message body (56% of all tests) and the message header (36% of the tests). Moreover,

there are URI checks (5% of the tests) as well as rawbody tests (MIME checks, 2%

of the tests) and blacklist tests (1% of the tests). Tests acting on the message body

comprise Bayesian classifiers, language specific tests, tests searching for obfuscated

words, html tests and many others.1 It should be mentioned that the SpamAssassin

feature set is “unbalanced” in the sense that about 96% of all tests check for a feature

which points to spam and only about 4% of the tests point to ham.

Each test leads to a certain feature value. This value is a positive real number

if the test points to a spam message, and a negative real number if the test points

to a ham message. The specific values (an thus weights for the features) have

been derived by the SpamAssassin team using a neural network trained with error

back propagation.2 In the SpamAssassin system, the overall rating of a message is

computed by summing up all values of the tests. If this sum exceeds a user-defined

threshold (the standard threshold in version 3.1.x is set to 5) a message is classified

as spam. Increasing the threshold will decrease the spam detection rate but will also

reduce the false positive rate, whereas decreasing it will increase the spam detection

rate but also the false positive rate.

Although the number of features extracted from each email message by the

SpamAssassin system is very large, experimental analysis shows that only a relatively

small subset of these features provides widely applicable useful information. More

specifically, for our datasets only about half of all SpamAssassin tests triggered

at least once, and only about 4% of the tests triggered for more than 10% of the

messages (see Section 7.5.1). Besides the Bayesian classifier (which returns a value

for every message) the SpamAssassin tests triggering most often for our datasets

are the “all trusted” test which checks whether a message has only passed through

trusted SMTP relays (this test points to ham), as well as the “razor2” real-time

blacklist test (this test points to spam). A more detailed list of the tests triggering

most often for the datasets used in this work can be found in [GIL05]. As already

mentioned, the SpamAssassin feature sets tends to be unbalanced. Another potential

problem is that some of the SpamAssassin tests tend to trigger incorrectly. For our

test data, eleven tests triggered wrongly for more than 2% of the messages, and

seven of them triggered wrongly more often than correctly (see [GIL05]). Obviously,

1for a complete list see http://spamassassin.apache.org/tests_3_1_x.html
2http://wiki.apache.org/spamassassin/HowScoresAreAssigned

7.4. CLASSIFICATION BASED ON VSM AND LSI 121

this tends to have a negative impact on the classification performance achieved.

However, most of these problematic tests are assigned only a low default score and

therefore their impact on the overall classification result is not too high in practice.

We selected those 377 and 299 SpamAssassin features, respectively, which trig-

gered at least once for one of the datasets used (see Section 7.5.1) as a first starting

point. We used the features in binary form and also the original values assigned by

SpamAssassin. In most cases, using binary features turned out to yield slightly bet-

ter classification results than using the original, weighted values. The experimental

results (cf. Section 7.5) are based on binary feature values. The shortcomings of the

SpamAssassin feature set mentioned above motivated our investigation of improved

feature selection and extraction strategies summarized later in this chapter.

Text-based features. The classical alternative, which is used widely, not only in

text mining, but also in the area of spam filtering, is a purely text-based feature set.

Consequently, we consider a second feature set, which consists of specific words and

tokens extracted from the email messages. Document frequency thresholding is used

for reducing the potentially prohibitive dimensionality.

Document frequency thresholding. The processing of high dimensional data

is a crucial issue when dealing with text documents or the content of textual email

messages. Tens of thousands of features are not easy to handle, therefore a reduc-

tion of the feature space plays a significant role. The basic assumption is that very

frequent terms (words, tokens) are less discriminative when trying to distinguish

between classes (a term occurring in every single spam and ham message would

not contribute to differentiate between them). Document frequency thresholding is

an unsupervised feature selection method that achieves reductions in dimensional-

ity by excluding terms having very high or very low document frequencies. Terms

which occur in almost all documents in a collection do not provide any discrimi-

nating information. A good overview of various term selection methods explaining

their advantages and disadvantages is given in [YP97]. Since document frequency

thresholding is a feature selection method that is only applicable in text-mining

applications, it is not explicitly listed in Chapter 3.

Document frequency thresholding is relatively inexpensive in terms of compu-

tational power. It proceeds as follows: First, the upper threshold is fixed to 0.5,

hence all terms that occur in more than half of the documents are omitted. Then,

the lower threshold is dynamically adapted in order to achieve a predefined desired

number of features.

Furthermore, feature ranking techniques such as information gain (cf. Sec-

tion 3.2.1) can be used to select the most important words from that “pre-selection”

in order to further reduce computational cost. In constrast to document frequency

122 CHAPTER 7. EMAIL FILTERING BASED ON LATENT SEMANTIC INDEXING

thresholding, information gain is a supervised feature selection method, i.e., the

feature selection process exploits the class label information of an object to mea-

sure if a feature is able to distinguish well between groups (classes) of objects (cf.

Section 3.2).

7.4.2 Feature/Attribute Selection Methods Used

We used various feature/attribute selection methods to reduce the number of features

within both feature sets introduced before. On that basis, we created different

feature subsets comprising only top discriminating features for both feature sets.

This feature reduction reduces the computational effort in the classification process

for each message and therefore saves computing time.

We applied information gain attribute selection to the text-based as well as to the

SpamAssassin features. The computation of the information gain for each feature

can be performed similarly to the computation stated in Equations (3.1) and (3.2).

Based on the resulting ranking of features, two subsets containing the top 50 and the

top 10 features, respectively, were selected for both feature sets, F SA and F TB.

For the SpamAssassin feature set, we used two more feature selection strategies

for comparison purposes – χ2 attribute selection and an intuitive strategy: (i) The

χ2 attribute selection (cf. Section 3.2.1) evaluates the significance of an attribute

by computing the value of the χ2 statistic with respect to the class. (ii) As an

intuitive strategy, we extracted two feature subsets containing only the top 50 and

the top 10 triggering features, respectively (i. e., those SpamAssassin tests, which

have triggered most often for all email messages within our training data). Since

the computational runtimes for wrapper methods are usually much higher than for

feature ranking methods (cf. Chapters 3 and 6), we did not use feature subsets

selected by wrapper methods. Especially in the setting of time-critical on-line spam

filtering this computationally complex feature selection step has counter-productive

effects.

For the computation of the information gain and χ2-attribute selection we used

the publicly available machine learning software Weka (cf. [WF05]). Applying the

χ2-attribute selection to the text-based features, which have already been ranked

by information gain did not change the order of the attributes/features. When

comparing the three feature selection methods for the SpamAssassin feature set,

eight SpamAssassin features occurred in all three top 10 subsets extracted. These

comprise two Bayesian classification tests (“bayes 00” and “bayes 99”, indicating

that the Bayesian spam probability is about 0% for “bayes 00” and about 99%-100%

for “bayes 99”, respectively), black- and whitelist tests (“razor2 cf range 51 100”

and “razor2 check”), tests which check whether the message body contains an URL

7.5. EXPERIMENTAL EVALUATION 123

listed in a special URL blacklist (“uribl ws surbl” and “uribl ob surbl”), a test which

checks whether all headers in the message were inserted by trusted SMTP relays

(“all trusted”), and a test which checks whether the message contains html tags

(“html message”).

7.4.3 Training and Classification

The application of VSM and LSI to spam filtering investigated here involves two

phases: a training phase and the actual classification phase. The training phase

comprises the indexing of two known datasets (one dataset consisting of spams and

one dataset consisting of hams) and, in the case of LSI, the computation of the singu-

lar value decomposition of the feature- or term-document matrix. The classification

phase comprises the query indexing and the retrieval of the closest message from

the training sets. A newly arriving message can be classified by indexing it based

on the feature set used and comparing the resulting query vector to the vectors in

the training matrices. If the closest message is contained in the spam training set,

then the query message is classified as spam, otherwise it is classified as ham. The

distance measurement used is based on the angles between the query vector and

the training vectors and is computed according to Equations (4.12) and (4.14) in

Section 3.3.3.

7.5 Experimental Evaluation

The concepts and methods discussed before have been implemented and evaluated

experimentally. The results achieved are summarized in this section.

LSI truncation. We denote the amount of approximation within the computation

of the SVD (Equation (3.11)) by LSI truncation. The amount of truncation is given

as a percentage value: If Σk contains only those k singular values of A which are

greater than p percent of the maximum singular value of A, then the approximation

is called “LSI p%” truncation. If, for example, the maximum singular value of A is

100, then for “LSI 2.5%” all k singular values which are greater than 2.5 are used

in the approximation of A. Note that as the truncation parameter p increases, the

rank of the approximation matrix decreases.

7.5.1 Datasets

We used two different datasets, one consisting of a part (25%) of the TREC 2005

spam/ham corpus. This dataset is denoted as “S1” in the following and is publicly

available [CL05]. The other dataset consists of self collected email and is denoted

124 CHAPTER 7. EMAIL FILTERING BASED ON LATENT SEMANTIC INDEXING

as “S2”. The messages in S2 have been collected over a period of several months

from various sources in order to achieve as much diversity as possible. Spam was

collected from various spam traps, and ham came from volunteers (mainly private

email). S1 contains 9 751 ham and 13 179 spam messages. S2 contains 5 502 ham

and 5 502 spam messages.

As mentioned in Section 5.1.1, the problem of filtering spam is a binary classifi-

cation problem in the sense that every incoming email has to be classified as “spam”

or not spam (“ham”). The aggregated classification accuracy as well as the true

positive (TP) and false negative (FP) rate are measured.

7.5.2 Experimental Setup

We performed two different cross validations (cf. Section 2.4.4) for our datasets,

a threefold cross validation for the larger sample S1 and a tenfold cross validation

for the smaller sample S2. The true/false positive rates and the true/false negative

rates were measured and the aggregated classification results were computed from

these results. The cross validations were performed for six different LSI truncations

using the feature sets F SA and F TB as defined in Section 7.4.

7.5.3 Analysis of Data Matrices

The average ranks k of the truncated SVD matrices for both datasets and both

feature sets are listed in Tables 7.1 and 7.2. The distribution of the singular values

Table 7.1: Rank k of the truncated SVD matrices for different cut-off values in the singular
values for S1.

truncation: 0.0% 2.5% 5.0% 10.0% 25.0% 50.0%

Features F SA

kHam: 377 24 12 5 1 1

kSpam: 377 94 47 23 6 1

Features F TB

kHam: 377 83 37 14 4 3

kSpam: 377 86 50 19 7 2

in the vector space models for sample S1 is illustrated in Figures 7.1 and 7.2. The

sharp decline in the magnitude of the singular values for both classes (ham and

spam) is very interesting. The comparable figures for sample S2 are not depicted

but show the same behavior for both feature sets, F SA and F TB.

7.5. EXPERIMENTAL EVALUATION 125

Table 7.2: Rank k of the truncated SVD matrices for different cut-off values in the singular
values for S2.

truncation: 0.0% 2.5% 5.0% 10.0% 25.0% 50.0%

Features F SA

kHam: 299 31 15 7 3 1

kSpam: 299 79 42 17 5 2

Features F TB

kHam: 299 53 26 14 4 2

kSpam: 299 55 27 11 4 2

50 100 150 200 250 300 350

-14

-12

-10

-8

-6

-4

-2

0

2

Number of singular value

Lo
g1

0
of

 s
in

gu
la

r v
al

ue

Ham
Spam

Figure 7.1: Singular values in vector space models for sample S1 using feature set F SA.

50 100 150 200 250 300 350

-14

-12

-10

-8

-6

-4

-2

0

2

4

Number of singular value

Lo
g1

0
of

 s
in

gu
la

r v
al

ue

Ham
Spam

Figure 7.2: Singular values in vector space models for sample S1 using feature set F TB.

Comparing Figures 7.1 and 7.2, it can be observed that the singular values for feature

set F TB tend to be significantly larger than the singular values for feature set F SA.

Until the sharp decline at about singular value number 250 (for both, ham and spam

features), all singular values for the feature set F TB are larger than 5, whereas the

126 CHAPTER 7. EMAIL FILTERING BASED ON LATENT SEMANTIC INDEXING

S1 - F_SA S1 - F_TB S2 - F_SA S2 - F_TB80

85

90

95

100

O
ve

ra
ll

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

VSM LSI 2.5% LSI 5.0% LSI 10% LSI 25.0% LSI 50.0% SA th=5

Figure 7.3: Aggregated classification results for S1 and S2.

majority of the singular values for feature set F SA is much smaller than 5 (93% for

the ham sample and 66% for the spam sample, respectively). Moreover, the largest

singular values for the feature set F TB are about 8 to 10 times larger than the

largest singular values for the feature set F SA. Looking at Figure 7.1, it is clearly

visible that the singular values for the ham messages are significantly smaller than

those for the spam messages.

This analysis of the data matrices forms the basis for understanding and explain-

ing the observations summarized in the following sections: when using feature set

F SA, approximations of the feature-document matrix with a very low rank (even

k = 1) still achieve a very good classification quality – partly even better than stan-

dard SpamAssassin (see the classification results in Figure 7.3 and the LSI truncation

in Tables 7.1 and 7.2 for feature set F SA and LSI 50%).

7.5.4 Aggregated Classification Results

Figure 7.3 depicts the overall (or aggregated) classification accuracy (cf. Sectio 2.4.5)

for both datasets used. Six different LSI truncations are shown for the two feature

sets F SA and F TB. As mentioned in Section 7.4.1, SpamAssassin assigns positive

values to features pointing to spam and negative values to features pointing to ham.

Classification is then performed based on a threshold value, the standard (and rather

conservative) default value being 5. To compare our results to a standard approach

the classification results of SpamAssassin using this default threshold are also shown

in Figure 7.3 (“SA th=5”). The bar for the configuration [sample S1/LSI 50.0%/fea-

ture set F TB] is not visible in the graph as in this case the overall classification

accuracy is below 80%. It should be pointed out that in Figure 7.3 even for low LSI

truncations most results are better than the overall classification results achieved by

standard SpamAssassin.

7.5. EXPERIMENTAL EVALUATION 127

When comparing the feature sets F SA and F TB, we observe that for all LSI

truncations the classification results for F SA are significantly better than the cor-

responding results for F TB. For the LSI classification, the aggregated results for

sample S2 are better than those achieved for S1. When using SpamAssassin with

the default threshold 5 we observe the opposite – here, the results achieved for S1

slightly exceed the results achieved for S2. Using feature set F SA, the aggregated

results for LSI 2.5% and LSI 5.0% are even slightly better than the results for LSI

0.0% (basic VSM), where all features are used for classification. In contrast, for fea-

tures F TB almost every increase of the LSI truncation (decrease in the rank of the

truncated SVD) causes a decrease in the classification accuracy (the only exception

being [S2/LSI 50.0%]).

7.5.5 True/False Positive Rates

VSM LSI 2.5% LSI 5.0% LSI 10% LSI 25% LSI 50%

88

92

96

100

Level of LSI truncation

Tr
ue

 p
os

iti
ve

 ra
te

 [%
]

SA (5)

88

92

96

100

Tr
ue

 p
os

iti
ve

 ra
te

 [%
]

S1 - F_SA
S2 - F_SA
S1 - F_TB
S2 - F_TB

S1 - SpamAssassin
S2 - SpamAssassin

Figure 7.4: True positive rates.

VSM LSI 2.5% LSI 5.0% LSI 10% LSI 25% LSI 50%

5

10

15

Level of LSI truncation

Fa
ls

e
po

si
tiv

e
ra

te
 [%

]

SA (5)

5

10

15

S1 - F_SA
S2 - F_SA
S1 - F_TB
S2 - F_TB

S1 - SpamAssassin
S2 - SpamAssassin

Figure 7.5: False positive rates.

128 CHAPTER 7. EMAIL FILTERING BASED ON LATENT SEMANTIC INDEXING

In contrast to Figure 7.3, Figures 7.4 and 7.5 show true and false positive rates

separately. The SpamAssassin threshold was again set to 5. Using a more aggressive

threshold for SpamAssassin (< 5) would increase both the false positive rate and

the true positive rate (e. g., for sample S1 a SpamAssassin threshold of 3 lead to a

true/false positive rate of 93.89% and 1.94%, respectively).

Both figures show a similar behavior for the true/false positive rates for F SA and

F TB and indicate a significantly higher false positive rate when using feature set

F TB. In particular, for sample S1 the false positive rate of F TB is quite high (4.91%

using VSM), although the aggregated classification accuracy reaches a respectable

96.80% (see Figure 7.3, F TB using VSM). The false positive rate for sample S2 using

feature set F TB is slightly lower but still consistently higher than when feature set

F SA is used. The false positive rates tend to remain almost constant except for

very high LSI truncations where they increase significantly.

7.5.6 Feature Reduction

The low-rank approximation of the feature-document matrix A within LSI is one

way to reduce the problem size. Alternatively, one could try to reduce the number

of features before the classification/LSI process using one of the feature selection

methods mentioned in Section 7.4.1. Compared to the LSI truncation process on

the full feature sets, this approach can significantly reduce the computing time as

the time-consuming SVD computation within LSI is done for smaller matrices.

In order to compare these two basic approaches, we evaluated the classifica-

tion results for various selected subsets of the feature sets F SA and F TB. These

subsets were extracted using the feature/attribute selection methods mentioned in

Section 7.4.1. When applying LSI on the reduced (information gain ranked, χ2

ranked, and top triggering tests) feature sets, a combination of feature ranking (in-

formation gain, χ2) followed by implicit dimensionality reduction (LSI) is performed

to select the optimal feature subsets.

Feature reduction – aggregated results. Figure 7.6 shows the aggregated clas-

sification results using only top discriminating subsets of features from F SA and

F TB, respectively, based on a ranking of features using information gain (see Sec-

tion 7.4.1). The subsets selected contained the top 50 and the top 10 discriminating

features, respectively. For classification, VSM and LSI 25% were used.

It can be observed that classification results based on a reduced number of fea-

tures are slightly worse than the results achieved with the original feature sets (ex-

cept for the top 50 F TB features for sample S1, where the classification results

are nearly equal). When applying LSI to reduced feature sets, only the results for

7.5. EXPERIMENTAL EVALUATION 129

S1 - F_SA S1 - F_TB S2 - F_SA S2 - F_TB80

85

90

95

100

O
ve

ra
ll

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

VSM (all feat.) VSM (50 f.) LSI 25.0% (on 50 f.) VSM (10 f.) LSI 25.0% (on 10 f.)

Figure 7.6: Aggregated results – VSM and LSI classification on reduced feature sets using
information gain.

feature set F SA remain acceptable. Thus, feature set F SA turns out to be more

robust in terms of feature reduction than feature set F TB. It is also very interesting

to notice that the LSI 25% classification based on ten selected features outperforms

the VSM classification based on the same ten features for all sample/feature set

combinations except S2–F TB.

Feature reduction – true/false positive rates. Figures 7.7 and 7.8 show the

true/false positive rates for samples S1 and S2 using different feature subsets from

feature set F SA. Three different attribute selection methods have been applied to

extract these subsets (see Section 7.4.1).

While the classification results for the subsets selected by information gain and

χ2 attribute selection are almost equal (except for the true positive rates for sample

S1 in Figure 7.7), the results for the subsets containing the top triggering tests (TT)

differ slightly. The true/false positive rates for features F TB are not depicted and

are generally worse than the results for F SA. Especially the false positive rates tend

to increase strongly when using the reduced feature subsets.

All curves (except the TT true positive rate for sample S2 in Figure 7.7) show

a similar behavior: When LSI 25% is applied (on the top 50 and top 10 feature

subsets, respectively) the true positive and the false positive rates tend to increase

in comparison to the basic VSM. Focussing on the classification results for VSM

based on the top 50 and the top 10 features, respectively, it can be observed that

for all subsets the false positive rates are nearly equal, whereas the true positive

rates tend to decrease when the number of features is reduced. Interestingly, the

false positive rates achieved with VSM based on 10 features are very low for both

samples and all different feature subsets used (cf. Figure 7.8). Contrary to that,

130 CHAPTER 7. EMAIL FILTERING BASED ON LATENT SEMANTIC INDEXING

VSM(all) VSM 50 f. LSI 25% (50 f.) VSM 10 f. LSI 25% (10 f

84

88

92

96

100

Level of LSI truncation

Tr
ue

 p
os

iti
ve

 ra
te

 [%
]

S1 - TT
S1 - IG
S1 - χ2

S2 - TT
S2 - IG (identical to S2 - χ2)
S2 - χ2

Figure 7.7: True positive rates for reduced feature sets using features F SA.

VSM(all) VSM 50 f. LSI 25% (50 f.) VSM 10 f. LSI 25% (10 f

2.5

5

7.5

10

Level of LSI truncation

Fa
ls

e
po

si
tiv

e
ra

te
 [%

]

S1 - TT
S1 - IG (identical to S1 - χ2)
S1 - χ2

S2 - TT
S2 - IG (identical to S1 - χ2)
S2 - χ2

Figure 7.8: False positive rates for reduced feature sets using features F SA.

the true positive rate achieved the same setting (VSM based on 10 features) tends

to be worse than for other settings (e. g., LSI 25% (50 f.) and also LSI 25% (10 f.),

cf. Figure 7.7). The results for LSI 25% based on 10 features are almost equal to

the results of the same LSI truncation based on 50 features. Only for sample S1 the

false positive rate for all three feature selection methods increases slightly when LSI

25% is based on only ten features.

7.6 Discussion

In this chapter, the application of latent semantic indexing to the task of spam fil-

tering has been investigated. The underlying vector space models are based on two

different feature sets: Purely text-based features resulting from word/token extrac-

tion (similar to the approach investigated by [Gee03]) were compared with a feature

7.6. DISCUSSION 131

set based on the widespread SpamAssassin system for spam filtering. Moreover, sev-

eral feature selection methods for extracting subsets of features containing the top

discriminating features from each of the feature sets have been investigated as an

alternative approach to reducing the size of the classification problem. Experimental

evaluations on two large datasets showed several interesting results:

1. For both feature sets (F SA and F TB), VSM and LSI achieve significantly

better classification results than the extremely widespread de-facto standard

for spam filtering, SpamAssassin.

2. The classification results achieved with both VSM and LSI based on the feature

set of SpamAssassin (F SA) are consistently better than the results achieved

with purely textual features (F FB).

3. For both feature sets, VSM achieves better classification results than LSI at

many truncation levels. However, when using LSI based on the SpamAssassin

feature set, the classification results are surprisingly robust to LSI truncations

with very low rank. Moreover, when applying VSM and LSI on reduced feature

sets, LSI is very robust in terms of classification accuracy compared to VSM

classification (see Figures 7.7 and 7.8). This indicates that LSI can provide

ways for computing good (approximate) “pre-classifications” extremely fast,

which is very useful in practice.

4. Distinguishing true and false positive rates, we observed that for all truncation

levels of LSI the false positive rate, which is a very important performance

metric in spam filtering, based on feature set F SA is much lower than the

one based on feature set F TB. Standard SpamAssassin also achieves a good

false positive rate, however, its true positive rate is rather poor compared

to VSM and LSI (for the standard setting of SpamAssassin). Changing the

SpamAssassin settings would result in a change in both true and false positive

rate (cf. Section 7.5.5).

5. Among the approaches for reducing the problem size and thus the computa-

tional effort for the classification problem, LSI truncation based on the full

feature sets turned out to be more stable than VSM classification using only

subsets of the feature sets.

6. The classification performance of LSI based on SpamAssassin features is also

quite robust if the number of features used is reduced significantly and still

achieves remarkably good aggregated classification accuracy (Figures 7.7 and

7.8) which is not the case for LSI based on purely textual features (these results

are not shown in the figures).

132 CHAPTER 7. EMAIL FILTERING BASED ON LATENT SEMANTIC INDEXING

Overall, the experiments indicate that VSM and LSI are very well suited for

spam filtering if the feature set is properly chosen. In particular, we showed that

the SpamAssassin feature set achieves better results than the commonly used purely

textual feature sets based on word- and token extraction. Both VSM and LSI based

on properly chosen small subsets of the SpamAssassin feature set are very well suited

as approximate but fast pre-classification strategies.

Chapter 8

New Initialization Strategies for

Nonnegative Matrix

Factorization

8.1 Overview of Chapter

In this chapter, we investigate new initialization strategies for nonnegative matrix

factorization algorithms (NMF, cf. Section 3.3.4) based on a ranking of the original

features. We apply the presented initialization strategies on data coming from the

email classification context and compare our approach to standard random initial-

ization and other initialization techniques for NMF described in the literature. Our

approach shows faster reduction of the approximation error than random initializa-

tion and comparable or better results to existing but often more time-consuming

approaches. Moreover, we consider the interpretability of the NMF factors in the

email classification and drug discovery context and try to take advantage of informa-

tion provided by the basis vectors in W (interpreted as basis emails or basis features,

depending on the setup). Motivated by the approaches investigated in this chapter,

we introduce new classification methods based on the NMF in Chapter 9.

8.2 Introduction and Related Work

NMF has been discussed in detail in Section 3.3.4. In short, NMF determines

reduced rank nonnegative factors W ∈ Rm×k and H ∈ Rk×n which approximate a

given nonnegative data matrix A ∈ Rm×n , such that A ≈WH.

All algorithms for computing the NMF are iterative and require initialization of

W and H (or at least of one of the factors). While the general goal – to establish

133

134 CHAPTER 8. NEW INITIALIZATION STRATEGIES FOR NMF

initialization techniques and algorithms that lead to better overall error at conver-

gence – is still an open issue, some initialization strategies can improve the NMF

in terms of faster convergence and faster error reduction. Although the benefits

of good NMF initialization techniques are well known in the literature, rather few

algorithms for non-random initializations have been published so far.

Wild et al. [Wil02, WCD03, WCD04] were among the first to investigate the

initialization problem of NMF. They used spherical k -means clustering based on

the centroid decomposition (cf. [DM01]) to obtain a structured initialization for

W . More precisely, they partition the columns of A into k clusters and select the

centroid vectors for each cluster to initialize the corresponding columns in W (the

number of clusters is identical to the NMF-parameter k). Their results show faster

error reduction than random initialization, thus saving expensive NMF iterations.

However, since this decomposition requires a clustering algorithm on the columns of

A as a preprocessing step it is rather expensive (cf. [LMA06]).

[LMA06] have also provided some new initialization ideas and compared the

aforementioned centroid clustering approach and random seeding to four new ini-

tialization techniques. While two algorithms (Random Acol and Random C) only

slightly decrease the number of iterations and another algorithm (Co-occurrence)

turns out to be very expensive computationally, the SVD-Centroid algorithm clearly

reduces the approximation error and therefore the number of NMF iterations com-

pared to random initialization. The algorithm is based on the SVD-centroid decom-

position (cf. [CF01]), which is an approximation for the singular value decomposition.

It can be formed by iteratively finding the centroid factors and their corresponding

factor loadings. Each step proceeds by finding the most significant centroid factor

and using it to perform a rank reduction on the original matrix (cf. [BC04]). More

precisely, the algorithm initializes W based on a centroid decomposition of the low

dimensional SVD factor Vn×k, which is much faster than a centroid-decomposition

on Am×n since V is much smaller than A (cf. [LMA06]). Nevertheless, the SVD fac-

tor V must be available for this algorithm, and the computation of V can obviously

be time-consuming.

[BG08] initialized W and H using a technique called nonnegative double singular

value decomposition (nndsvd) which is based on two SVD processes utilizing an

algebraic property of unit rank matrices – nndsvd is based on the Perron-Frobenius

Theorem [CHN04] which guarantees nonnegativity for the first left and right singular

vectors of a nonnegative matrix. The first SVD process approximates the data

matrix A by computing the first k singular values and corresponding singular vectors.

The second SVD process iteratively approximates positive sections of the resulting

partial SVD factors. The authors performed various numerical experiments and

8.3. OPEN ISSUES AND OWN CONTRIBUTIONS 135

showed that nndsvd initialization is better than random initialization in term of

faster convergence and error reduction in all test cases, and generally appears to

be better than the centroid initialization in [Wil02] for most algorithms. However,

results in [BG08] show that the gradient descent algorithm achieves a faster error

reduction when using the centroid initialization [Wil02] instead of nndsvd.

8.3 Open Issues and Own Contributions

Despite the fact that some initialization strategies have been published, in practice

randomized seeding of W and H is still the standard approach for many NMF

algorithms. Existing approaches, such as the ones mentioned in Section 8.2 can be

rather time consuming. Obviously, the trade-off between computational cost in the

initialization step and the computational cost of the actual NMF algorithm needs

to be balanced carefully. In some situations (for example, for most initialization

strategies introduced in Section 8.2), an expensive preprocessing step may overwhelm

the cost savings in the subsequent NMF update steps.

In this chapter, we introduce a simple and fast initialization step based on fea-

ture subset selection (FS, cf. Section 3.2) and show comparisons with random

initialization and the nndsvd approach mentioned before. More precisely, we use

information-theory based feature ranking based on information gain and gain ratio.

We use implementations of the multiplicative update (MU) algorithm and the al-

ternating least squares (ALS) algorithm (these algorithms do not depend on a step

size parameter, as it is the case for gradient descent) from the statistics toolbox v7.1

in Matlab (included since R2009a release). The MU and the ALS algorithm are

the two available algorithms included in this toolbox. A description of these NMF

algorithms can be found in Section 3.3.4. We used the same termination criteria for

both algorithms as implemented in Matlab.

8.4 Datasets

Two different datasets – coming from email classification and drug discovery prob-

lems – were used for evaluation in this chapter. The drug discovery dataset consists

of 249 structurally diverse chemical compounds and is identical to the drug discovery

dataset used for evaluation in Chapter 6.

The email dataset consist of 15 000 email messages, divided into three groups –

ham, spam and phishing (note that this is a different dataset, than the one used in

Chapters 6 and 7). The email messages were taken partly from the Phishery [Phi09]

and partly from the 2007 TREC corpus [NIS07]. The email messages are described

136 CHAPTER 8. NEW INITIALIZATION STRATEGIES FOR NMF

by 133 features (purely text-based features, online features and features extracted

by rule-based filters such as SpamAssassin (cf. Section 5.1.2)). Since the features in

this dataset are not solely computed by the SpamAssassin system and thus differ in

their range, we applied a different preprocessing step than in Chapter 7. Here we

scaled all feature values to [0,1] to ensure that they have the same range.

The structure of phishing messages tends to differ significantly from the structure

of spam messages, but it may be quite close to the structure of regular ham messages

(because for a phishing message it is particularly important to look like a regular

message from a trustworthy source). feature set has been given in [GP09].

The email corpus was split up into two sets (for training and for testing), the

training set consisting of the oldest 4 000 email messages of each class (12 000 mes-

sages in total), and the test set consisting of the newest 1 000 email messages of each

class (3 000 messages in total). This chronological ordering of historical data allows

for simulating the changes and adaptations in spam and phishing messages which

occur in practice. Both email sets are ordered by the classes – the first group in each

set consists of ham messages, followed by spam and phishing messages. Due to the

nature of the features the data matrices are rather sparse. The bigger (training) set

has 84.7% zero entries, and the smaller (test) set has 85.5% zero entries.

8.5 Interpretation of Factors

A key characteristic of NMF is the representation of basis vectors in the factor W

and the representation of basis coefficients in the factor H. With these coefficients

the columns of A can be represented in the basis given by the columns of W . In

the context of email classification, W may contain basis features or basis emails,

depending on the structure of the original data matrix A. If NMF is applied to an

email × feature matrix (i. e., every row in A corresponds to an email message), then

W contains k basis features. If NMF is applied on the transposed matrix (feature

× email matrix, i. e., every column in A corresponds to an email message), then W

contains k basis email messages.

Similarly, in the context of classifying drug molecules or compounds as substrates

or non-substrates, W may contain basis descriptors or basis compounds/molecules,

depending on the structure of the original data matrix A. If NMF is applied to a

compound × descriptor matrix (i. e., every row in A corresponds to a compound),

then W contains k basis descriptors. If NMF is applied on the transposed matrix

(compound × descriptor matrix, i. e., every column in A corresponds to an com-

pound), then W contains k basis compound.

8.5. INTERPRETATION OF FACTORS 137

8.5.1 Interpretation of Email Data

Basis features. Figure 8.1 shows three basis features ∈ R12 000 (for k=3) for the

training set of the email dataset when NMF is applied to an email × feature matrix.

The three different groups of objects – ham (first 4 000 messages), spam (middle

4 000 messages) and phishing (last 4 000 messages) – are easy to identify. The group

of phishing email tends to yield high values for basis feature 1, while basis feature

2 shows the highest values for the spam messages. The values of basis feature 3

are generally smaller than those of basis features 1 and 2, and this basis feature is

clearly dominated by the ham messages.

0 2.000 4.000 6.000 8.000 10.000 12.0000

2

4

0 2.000 4.000 6.000 8.000 10.000 12.0000

2

4

0 2.000 4.000 6.000 8.000 10.000 12.0000

2

4

Basis Feature 1

Basis Feature 2

Basis Feature 3

Figure 8.1: Basis features for k = 3.

0 20 40 60 80 100 1200

0.2

0.4

0.6

0 20 40 60 80 100 1200

0.2

0.4

0.6

0 20 40 60 80 100 1200

0.2

0.4

0.6

Basis E-mail Phishing

Basis E-mail Spam

Basis E-mail Ham

Figure 8.2: Basis email messages for k = 3.

138 CHAPTER 8. NEW INITIALIZATION STRATEGIES FOR NMF

Basis email messages. The three basis email messages ∈ R133 (again for k=3)

resulting from NMF on the transposed (feature × email) matrix are plotted in

Figure 8.2. The figure shows two features (#16 and #102) that have a relatively

high value in all basis emails, indicating that these features do not distinguish well

between the three classes of email. These tests are called “HtmlMailTest” and

“to malformed”, respectively, and check if the email is an HTML email (#16) and

if the TO field has a malformed address (#102). Other features better distinguish

between classes. For example, features 89-91 and 128-130 have a high value in

basis email 1, and are (close to) zero in the other two basis emails. Investigation

of the original data shows that these features tend to have high values for phishing

email – indicating that the first basis email represents a phishing message. These

tests are all integrated into SpamAssassin [Spa09] and are called “dc gif uno largo”,

“dc image spam html”, “dc image spam test”, “base64 lenght 79 inf”, “from local

digits”, “from local hex”, “helo lh ld”, and “spoof com2oth”.

Using the same procedure, the third basis email can be identified to represent

ham messages (indicated by features 100 and 101). These two features are again

SpamAssassin tests and are called “rcvd in dnswl med” and “spf helo pass”. Finally,

basis email 2 represents spam.

8.5.2 Interpretation of Drug Discovery Data

In this section we make some comments on the interpretability of NMF factors

W and H in the drug discovery context. Contrary to the ternary email classifica-

tion problem mentioned before, the classification of molecules into substrates/non-

substrates is a binary classification problem. Thus, we set the number of basis

descriptors/compounds under investigation equal to the number of classes (k=2).

Basis compounds. Figure 8.3 shows two basis compounds (abbreviated as BC

in the following) ∈ R366 (again for k=2) when NMF is applied to a (descriptor ×
compound) matrix. The difference of descriptor values between first and second BC

is also shown in Figure 8.3 (subfigure “Diff (BC1-BC2)”). The subfigure is scaled

such that the limits on the y-axis (+/-100%) indicate the greatest difference (abso-

lute value) between BC1 and BC2 (in this case descriptor #184). More precisely,

the values of “Diff (BC1-BC2)” are computed as (BC1i−BC2i)∗100/maxdiff, where

maxdiff is the maximum absolute value over all BC1i−BC2i. Moreover, the different

groups of chemical descriptors used in this dataset are shown.

It can be seen that several groups of descriptors show very different characteris-

tics. While some groups of descriptors tend to have higher values for BC1 (2DACorr,

most geometric descriptors,. . .), other groups tend to have higher values for BC2

8.5. INTERPRETATION OF FACTORS 139

(ACD). This indicates, that several groups of descriptors tend to represent a specific

group of compounds. In the ideal setting one basis compound represents substrates,

while the other basis compound represents non-substrates. However, unfortunately

this cannot be guaranteed. Although several groups of descriptors tend to have dif-

ferent values within different BCs, only few descriptors show a significant difference

between them. As can be seen in Figure 8.3, only 9 descriptors exceed the +/-50%

marks (which indicates that the difference of descriptor x between both BCs is larger

than 50% of the maximal difference of all descriptors.)

0 50 100 150 200 250 300 350
0

5

10

0 50 100 150 200 250 300 350
0

5

10

0 50 100 150 200 250 300 350
−100%

0

100%

Basis Compound 1

Basis Compound 2

Di� (BC1 − BC2)

A
C

D

2DACorr

ADMESibSim
VSASibSim Geometric.

descriptors

Misc.
molecular properties,
numb. rot.rings,
SlogP, ...P

EO
E

MACCS Misc

Figure 8.3: Basis compounds for k = 2.

To increase the number of descriptors having significant differences between

BCs we apply sparseness constraints for the NMF as introduced in a study by

Hoyer [Hoy04]. This study defines a sparseness measure for the NMF factors and

describes a projection operator capable of enforcing any given sparseness for both,

W and H. Figure 8.4 shows again two basis compounds ∈ R366 (for k=2), this time

applying sparseness constraints. For both NMF factors W and H the sparseness

level was set to 0.4 (i. e., 40% of all entries in W and H, respectively, are zero). As

can be seen, the BCs are very different compared to Figure 8.3. The difference of

the descriptor values “Diff (BC1-BC2)”) between the two BCs changed significantly.

The group of ACD descriptors and the group of geometrical descriptors now have

larger values in BC2, while the group of VSASibSim descriptors shows very high

values in BC1 and almost only zero entries in BC2. Moreover, there is a greater dif-

ference in the descriptor values between BC1 and BC2, compared to a factorization

without sparseness constraints. Overall, 97 descriptors exceed the +/-50% marks.

Obviously, when applying sparseness contraints, more descriptors show a significant

difference between the two basis compounds.

140 CHAPTER 8. NEW INITIALIZATION STRATEGIES FOR NMF

0 50 100 150 200 250 300 350
0

2

4

6

0 50 100 150 200 250 300 350
0

2

4

6

0 50 100 150 200 250 300 350
−100%

0

100%

Basis Compound 1

Basis Compound 2

Di� (BC1 − BC2)

A
C

D

2DACorr
ADMESibSim

VSASibSim Geometric.
descriptors

 Misc.
molecular properties,
numb. rot.rings, SlogP, ...P

EO
E

MACCS Misc

Figure 8.4: Basis compounds for k = 2 using sparseness constraints.

This rich structure observed in the basis vectors should be exploited in the context

of classification methods (cf. Chapter 9). However, the structure of the basis vectors

heavily depends on the concrete feature set used. In the following, we discuss the

application of feature selection techniques in the context of NMF initialization.

8.6 Initializing NMF

As already mentioned in Section 8.2, the initialization of the NMF factors has a

big influence on the speed of convergence and on the error reduction of NMF algo-

rithms. Existing approaches such as initialization based on spherical k -means clus-

tering [Wil02] or nonnegative double singular value decomposition (nndsvd) [BG08]

can be rather costly in terms of runtime. As an alternative, we introduce a simple

and fast initialization step based on feature subset selection and show comparisons

with random initialization and the nndsvd approach mentioned before, which has

shown to achieve the best results amongst the existing initialization strategies (cf.

Section 8.2). For experimental evaluation in this section we used the email dataset

described in Section 8.4.

8.6.1 Feature Subset Selection

As summarized in Section 3.2.1, the main idea of univariate filter methods is to rank

features according to how well they differentiate between object classes. Redundant

or irrelevant features can be removed from the dataset as they can lead to a reduction

of the classification accuracy or clustering quality and to an unnecessary increase of

8.6. INITIALIZING NMF 141

computational cost. The output of this process is a ranking of features based on the

applied filter algorithm. The two filter methods used in this chapter are based on

information gain (IG) and gain ratio (GR), both reviewed in Section 3.2.1.

8.6.2 FS-Initialization

After determining the feature ranking based on IG and GR, we use the k first

ranked features to initialize W (denoted as FS-initialization). Since feature selection

aims at reducing the feature space, our initialization is applied in the setup where

W contains basis features (i. e., every row in A corresponds to an email message,

cf. Section 8.5). FS methods are usually computationally rather inexpensive (cf.

Chapter 6 or [JGD08] for a comparison of IG and PCA runtimes) and can thus be

used as a computationally relatively cheap but effective initialization step.

8.6.3 Results

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Rank k

A
pp

ro
xi

m
at

io
n

er
ro

r |
|A

 -
W

H
|| F

random
nndsvd
infogain
gainratio
svd

Figure 8.5: Approximation error for different initialization strategies using the ALS algo-
rithm (maxiter=5).

Figures 8.5 and 8.6 show the NMF approximation error for our new initializa-

tion strategy for both information gain (infogain) and gain ratio feature ranking as

well as for nndsvd and random initialization when using the ALS algorithm. As

a baseline, the figures also show the approximation error based on an SVD of A,

which gives the best possible rank k approximation of A (cf. Section 3.3.3). For

rank k=1, all NMF variants achieve the same approximation error as the SVD, but

for higher values of k the SVD has a smaller approximation error than the NMF

variants (as expected, since SVD gives the best rank k approximation in terms of

142 CHAPTER 8. NEW INITIALIZATION STRATEGIES FOR NMF

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Rank k

A
pp

ro
xi

m
at

io
n

er
ro

r |
|A

 -
W

H
|| F

random
nndsvd
infogain
gainratio
svd

Figure 8.6: Approximation error for different initialization strategies using the ALS algo-
rithm (maxiter=30).

approximation error). Note that when the maximum number of iterations inside a

single NMF factorization (maxiter) is high (maxiter=30 in Figure 8.6), the approxi-

mation errors are very similar for all initialization strategies used and are very close

to the best approximation computed with SVD. However, with a small number of

iterations (maxiter=5 in Figure 8.5), it is clearly visible that random seeding cannot

compete with initialization based on nndsvd or feature selection. Moreover, for this

small value of maxiter, the FS-initializations (both information gain and gain ratio

ranking) show better error reduction than nndsvd with increasing rank k. With

increasing values of maxiter the gap between the different initialization strategies

decreases until the error curves become almost identical when maxiter is about 30

(see Figure 8.6).

8.6.4 Runtime

In this Section we analyze runtimes for computing rank k NMF for different ini-

tialization strategies and different values of maxiter using the ALS algorithm. We

compare the runtimes needed to achieve a specific approximation error based on a

given initialization strategy. The computational cost for computing the initializa-

tion strategies are not compared, since different initializations of the factors were

performed with different software.

The Matlab implementation of the ALS algorithm is not the best implementation

in terms of runtime. This is due to the fact that the specific algorithm used for

solving the simultaneous linear equations XA = B depends upon the structure

of the coefficient matrix A. In this work, we computed the ALS update steps (see

8.6. INITIALIZING NMF 143

Table 8.1: Runtime comparison (n.a. = not available.

||A−WH||F maxiter 5 maxiter 10 maxiter 15 maxiter 20 maxiter 25 maxiter 30

Gain ratio initialization

0.10 0.6s (k=17) 1.0s (k=11) 1.5s (k=11) 2.0s (k=11) 2.2s (k=10) 2.7s (k=10)

0.08 0.9s (k=27) 1.5s (k=22) 2.2s (k=21) 2.9s (k=19) 3.1s (k=19) 3.3s (k=19)

0.06 1.1s (k=32) 2.0s (k=30) 2.8s (k=28) 3.7s (k=28) 4.6s (k=27) 5.4s (k=26)

0.04 1.5s (k=49) 2.4s (k=40) 3.9s (k=40) 5.0s (k=40) 6.3s (k=38) 7.2s (k=38)

Information gain initialization

0.10 0.6s (k=18) 1.0s (k=12) 1.6s (k=12) 1.8s (k=10) 2.2s (k=10) 2.7s (k=10)

0.08 1.0s (k=28) 1.5s (k=22) 2.3s (k=22) 2.9s (k=19) 3.1s (k=19) 3.3s (k=19)

0.06 1.5s (k=48) 2.0s (k=30) 3.0s (k=30) 3.7s (k=28) 4.6s (k=28) 5.4s (k=26)

0.04 1.6s (k=50) 2.5s (k=42) 4.1s (k=42) 5.1s (k=41) 6.3s (k=38) 7.2s (k=38)

nndsvd initialization

0.10 0.6s(k=15) 1.0s (k=12) 1.6s (k=12) 1.8s (k=10) 2.2s (k=10) 2.7s (k=10)

0.08 n.a. 1.7s (k=25) 2.6s (k=25) 2.6s (k=18) 3.1s (k=19) 3.2s (k=18)

0.06 n.a. 2.1s (k=32) 3.1s (k=32) 3.9s (k=29) 4.6s (k=28) 5.7s (k=30)

0.04 n.a. n.a. n.a. 5.1s (k=41) 6.3s (k=38) 7.2s (k=38)

Random initialization

0.10 n.a. 0.9s (k=10) 1.4s (k=10) 1.8s (k=10) 2.2s (k=10) 2.7s (k=10)

0.08 n.a. 1.5s (k=22) 2.3s (k=22) 2.5s (k=17) 3.1s (k=19) 3.3s (k=19)

0.06 n.a. n.a. n.a. 4.1s (k=31) 4.5s (k=26) 5.4s (k=26)

0.04 n.a. n.a. n.a. 5.4s (k=45) 6.7s (k=42) 7.3s (k=39)

Algorithm 3) using an economy-size QR-factorization, i. e., only the first n columns of

the QR-factorization factors Q and R are computed (here n is the smaller dimension

of the original data matrix A). This adaptation of the Matlab ALS algorithm has

been implemented in Matlab and shows to save computation time (about 3.7 times

faster than the original ALS algorithm implemented in Matlab), while achieving the

same results.

Generally, the algorithms terminated after the number of iterations reached the

pre-defined threshold maxiter, i. e., the approximation error and the relative change

from the previous iteration were not integrated in the stopping criterion. Conse-

quently, the runtimes do not depend on the initialization strategy used (neglecting

the marginal runtime savings due to sparse initializations). In this setup, a linear

relationship between runtime and the rank of k can be observed. Consequently,

reducing the number of iterations (lower values of maxiter) brings important reduc-

tions in runtimes. This underlines the benefits of our new initialization techniques:

As Figure 8.5 has shown, our FS-initialization reduces the number of iterations re-

quired for achieving a certain approximation error compared to existing approaches.

Table 8.1 compares runtimes needed to achieve different approximation error

thresholds with different values of maxiter for different initialization strategies. It

illustrates that a certain approximation error ||A −WH||F can be achieved much

144 CHAPTER 8. NEW INITIALIZATION STRATEGIES FOR NMF

faster with small maxiter and high rank k than with high maxiter and small rank k.

As can be seen in Table 8.1, an approximation error of 0.04 or smaller can be com-

puted in 1.5 and 1.6 seconds, respectively, when using gain ratio and information

gain initialization (here, only 5 iterations (maxiter) are needed to achieve an ap-

proximation error of 0.04.). To achieve the same approximation error with nndsvd

or random initialization, more than five seconds are needed (here, 20 iterations are

needed to achieve the same approximation error). These results are highlighted

in bold font in Table 8.1. The abbreviation n.a. (not available) indicates that a

specific approximation error could not be achieved with the given value of maxiter.

8.7 Discussion

In this chapter, we have investigated a fast initialization technique for nonnega-

tive matrix factorization (NMF). Our approach is based on feature subset selection

(FS-initialization) which significantly reduces the approximation error of the NMF

compared to randomized seeding of the NMF factors W and H. More specifically, we

applied two feature ranking methods – information gain and gain ratio – and used the

k top ranked features to initialize the NMF factor W (in this setting W contains ba-

sis features). Comparison of our approach with existing initialization strategies such

as nndsvd [BG08] shows basically the same accuracy when many NMF iterations

are performed, but much better accuracy when the NMF algorithm is restricted to a

small number of iterations (based on the value of maxiter). The gap in approxima-

tion accuracy between the different initialization strategies increases with increasing

rank k, especially the results achieved with random initialization are relatively poor

for higher rank k (cf. Figure 8.5). As a consequence of the faster reduction in ap-

proximation error, the runtime needed to achieve a certain approximation accuracy

can be reduced significantly with our initialization approach.

The interpretability of the NMF factors W and H in the email classification

context was another important issue of this chapter. We tried to take advantage of

the information provided by the basis vectors in W . Depending on the structure of

the original data matrix A, the basis vectors (columns) in W represent either basis

features or basis emails. Investigations of the basis features show that – when setting

k equal to the number of distinct classes of email (3) – each basis email represents

exactly one group of email messages (ham, spam, phishing). Features with high

values in one basis email and small or zero values in the other two basis emails

can obviously distinguish very well between classes and are thus more applicable

for classifying unlabeled email than features having high values in all basis emails

(cf. Section 8.5). Consequently, this approach can be used as a NMF-based feature

8.7. DISCUSSION 145

selection method, which selects important features for discriminating between classes

of objects in an unsupervised manner.

146 CHAPTER 8. NEW INITIALIZATION STRATEGIES FOR NMF

Chapter 9

Utilizing Nonnegative Matrix

Factorization for Classification

Problems

9.1 Overview of Chapter

In this chapter, we analyze the classification accuracy and the computational cost of

different classification methods based on nonnegative matrix factorization (NMF).

Based on the four different initialization strategies discussed in Chapter 8, we inves-

tigate different classification algorithms which utilize NMF for developing a classifi-

cation model.

In the first part of this chapter, we analyze the classification accuracy achieved

with the basis features in W when initialized with the techniques explained in Chap-

ter 8. Since basis vectors (columns of W) of different NMF factorizations are difficult

to compare with each other, in this setting the NMF is computed on the complete

dataset (training and test data). Thus, this technique can only be applied on data

that is already available before the classification model is built. However, instances

of the test dataset must not be labeled prior to the NMF.

In the second part of this chapter, we introduce a new classifier based on NMF

which can be applied dynamically to new data. Here the factorization of the data

(NMF) and the classification process are separated from each other (i. e., the NMF

is performed on labeled training data – the unlabeled test data must not be available

at the time of performing the NMF). We also present a combination of NMF with

latent semantic indexing (LSI) and compare it to standard LSI based on singular

value decomposition (SVD).

147

148 CHAPTER 9. UTILIZING NMF FOR CLASSIFICATION PROBLEMS

9.2 Introduction and Related Work

The utilization of low-rank approximations in the context of email classification

has been analyzed several studies. Gee [Gee03] has investigated the classification

performance of LSI applied to the task of binary spam filtering. The results show

that LSI enjoys a very high degree of recall and also a high degree of precision.

In [GJN08], LSI was applied successfully on both purely textual features and on

features extracted by rule-based filtering systems. Especially the features from rule-

based filters allowed for a strong reduction of the dimensionality without loosing

significant accuracy in the classification process. The results of this study are also

mentioned in this thesis in Chapter 7.

NMF has been used for in combination with supervised classification methods

for several application areas, for example, the classification of images (cf. [GSV02,

GVS03]), musical instruments (cf. [BKK06]), or tumors (cf. [ZZL08]). Berry and

Browne [BB05a] have demonstrated how a specific NMF algorithm can be used for

extracting and tracking topics of discussion from corporate email. In their work

they used the gradient descent algorithm (cf. Section 3.3.4) extended with least

squares constraints. This extension of the GD algorithm was first presented in

Shahnaz et al. [SBP06]. NMF was used to cluster topics of email communication and

the authors showed how a parts-based NMF representation of corporate email can

facilitate the observations of email discussions without requiring human intervention

or the reading of individual messages.

9.3 Open Issues and Own Contributions

As mentioned before, the potential of NMF to cluster topics of textual documents

such as the content of email messages has been analyzed (cf. [BB05a]), and several

studies mentioned in Section 9.2 have investigated the application of classification

methods based on low-rank approximations achieved with NMF. Moreover, it has

been shown that low-rank approximations based on SVD are able to achieve good

classification results when applied to the task of email classification (cf. [Gee03,

GJN08, JGD08]). However, no studies can be found that analyze the classification

accuracy achieved with a classification model performing on the NMF factors W

and H. In this setting, NMF can be used as dimensionality reduction technique

without the need to recompute and store the complete approximation matrix (i. e.,

the product WH).

In this chapter, we investigate the classification accuracy achieved with the basis

vectors (features) in W when initialized with the techniques explained in Chapter 8.

9.4. CLASSIFICATION USING BASIS FEATURES 149

We use a support vector machine classifier to investigate the influence of different

initialization strategies on the classification accuracy. We analyze the classification

performance achieved with different values of maxiter (maximum number of itera-

tions within a single NMF factorization) and show that the value of maxiter has

a strong influence on the computational cost of the factorization, and also on the

classification accuracy, especially when using random initialization of the factors W

and H.

Moreover, in Section 9.5 we introduce a new classification approach based on

NMF which can be applied to a setting where new data becomes available dynami-

cally. In this setting, the NMF is computed on the training data and unlabeled data

can be classified without recomputing the factorization. Obviously, this case is more

suitable for practical systems since the computation of the NMF can be rather costly

in terms of runtime and computational cost. We also present a combination of NMF

with latent semantic indexing (LSI, cf. Section 4.8). Our LSI-based classification

approach is not based on singular value decomposition (SVD, cf. Section 3.3.3) as

it is the case for standard LSI, but on the NMF factors W and H. Besides a com-

parison of the classification accuracy achieved with different generalizations of LSI

we analyze the classification runtimes for all LSI variants. The runtimes comprise

two steps – the computation of the low-rank approximation (SVD, NMF) and the

classification process.

9.4 Classification using Basis Features

Figures 9.1 and 9.2 show the overall classification accuracy for a ternary classification

problem (same datasets discussed in Section 8.4) using different values of maxiter for

all four initialization strategies mentioned in Section 8.6. As classification algorithm

we used a support vector machine (SVM, cf. Section 4.5) with a radial basis kernel

provided by the MATLAB LIBSVM (version 2.88) interface (cf. [CL01]). For the

results shown in this section, we performed 5-fold cross validation on the larger email

corpus (consisting of 12 000 email messages, cf. Section 8.4).

The results based on the four NMF initialization techniques (infogain, gainratio,

nndsvd and random) were achieved by applying an SVM on the rows of W . If the

original data matrix A ∈ Rm×n is an email × feature matrix, then the NMF factor

W is a m×k matrix, where every email message is described by k basis features, i. e.,

every column of W corresponds to an basis feature (cf. Section 8.5). We thus built

an SVM model on the rows of W instead on the rows of A. The results are shown for

the multiplicative update algorithm (MU, cf. Section 3.3.4), but the results achieved

with other NMF algorithms are similar. For comparison with the original features,

150 CHAPTER 9. UTILIZING NMF FOR CLASSIFICATION PROBLEMS

5 10 15 20 25 30 35 40 45 50
85

90

95

100

Rank k

O
ve

ra
ll

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

infogain
gainratio
nndsvd
random
SVMinfogain

Figure 9.1: SVM (RBF-kernel) classification accuracy for different initialization methods
using the MU algorithm (maxiter=5).

we also applied a standard SVM classification on the email messages characterized

by k best ranked information gain features (denoted as “SVMinfogain” in Figures 9.1

and 9.2). The graph for SVMinfogain is identical in both figures since the maxiter

factor in the NMF algorithm has no influence on the result.

Classification results. For lower ranks (k < 30), the SVMinfogain results are

markedly below the results achieved with non-randomly initialized NMF (infogain,

gainratio and nndsvd). This is not very surprising, since W contains compressed in-

formation about all features (even for small ranks of k). Random NMF initialization

of W (random) achieves even lower classification accuracy for maxiter=5 (see Fig-

ure 9.1). The classification result with random initialization remains unsatisfactory

even for large values of k. With larger maxiter (cf. Figure 9.2), the classification

accuracy for randomly seeded W increases and achieves results comparable to in-

fogain, gainratio and nndsvd. Comparing the results of the FS-initialization and

nndsvd initialization it can be seen that there is no big gap in the classification ac-

curacy. It is interesting to notice the decline in the classification accuracy of nndsvd

for k=6 (in both figures). Surprisingly, the classification results for maxiter=5 are

only slightly worse than for maxiter=30 – which is in contrast to the approximation

error results shown in Section 8.6. Consequently, fast (and accurate) classification is

possible even for small maxiter and small k (for example, the average classification

accuracy over infogain, gainratio and nndsvd is 96.75% for k=10 and maxiter=5,

compared to 98.34% for k=50, maxiter=30).

Classification results for drug discovery problems. Experimental evalu-

ation of the classification approach when using basis features/descriptors for drug

9.4. CLASSIFICATION USING BASIS FEATURES 151

5 10 15 20 25 30 35 40 45 50
85

90

95

100

Rank k

O
ve

ra
ll

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

infogain
gainratio
nndsvd
random
SVMinfogain

Figure 9.2: SVM (RBF-kernel) classification accuracy for different initialization methods
using the MU algorithm (maxiter=30).

discovery problems also revealed interesting results. Classification results achieved

with the drug discovery dataset mentioned in Section 8.5.2 using three different

classification algorithms (SVM, J.48 and kNN, cf. Chapter 4) implemented in Weka

(cf. [WF05]) showed that for some learning algorithms the classification accuracy

could be improved significantly when applying the classification approach introduced

in this section. Table 9.1 summarizes the results and can be interpreted as follows:

The baseline is set by a classification based on the original feature set (original de-

scriptors). The results for different values of k indicate if the classification results

could be improved when classifying using the NMF factor W or not. The results

were achieved with IG initialization of W . Surprisingly, the overall classification ac-

curacy achieved with specific learning algorithm can be improved significantly when

using only 2 basis features (i. e., basis descriptors), for example, when using SVM

or the J.48 decision tree. However, for other learning algorithms such as kNN, the

classification accuracy decreased.

Table 9.1: Classification results using basis features for drug discovery problems.

SVM J.48 kNN

Original features 64.3% 60.9% 66.3%

k=2 +3.5% +7.4% -6.0%

k=4 +3.0% +5.4% -5.5%

k=8 +4.5% +3.9% -3.5%

152 CHAPTER 9. UTILIZING NMF FOR CLASSIFICATION PROBLEMS

9.5 Generalizing LSI Based on NMF

Now we take a look at the classification process in a dynamic setting where new

data have to be classified. Obviously, it is not suitable to compute a new NMF for

every new incoming data item. Instead, a classifier is constructed by applying NMF

on a training sample and using the information provided by the factors W and H

in the classification model. In the following, we present adaptions of LSI based on

NMF and compare them with standard LSI based on SVD. Note that in this section

our datasets are transposed compared to the experiments in Sections 8.6 and 9.4.

Thus, in this section, every column of A corresponds to an email message.

Review of VSM and standard LSI. A review of VSM and standard LSI based on

SVD can be found in Section 4.8. In the following, LSI based on SVD is abbreviated

as “SVD-LSI”

9.5.1 Two NMF-based Classifiers

 A

(R m x n)

n (instances)

m (features)

q

≈

W

H

LSINMF: Ak = WH

k

n

k

m

U

VT k

n

k

m

Σ

LSISVD: Ak = UΣkV
T

≈

q

q

(a)

(b)

(c)

Figure 9.3: Overview – (a) basic VSM, (b) LSI using SVD, (c) LSI using NMF

We investigate two novel concepts for using NMF as low rank approximation

within LSI (see Figure 9.3). The first approach which we call NMF-LSI simply

replaces the approximation within LSI with a different approximation. Instead of

using the truncated SVD UkΣkV
>
k , we approximate A with Ak := WkHk from the

rank k NMF. Obviously, when using NMF the value of k must be fixed prior to the

computation of W and H. The cosine of the angle between q and the i -th column

9.5. GENERALIZING LSI BASED ON NMF 153

of A can then be approximated as

(NMF-LSI) : cosϕi ≈
e>i H

>
k W

>
k q

||WkHkei||2||q||2
(9.1)

To save computational cost, the left term in the denominator (e>i H
>
k) and the

left part of the enumerator (||WkHkei||2) can be computed a priori.

The second new classifier which we call NMF-BCC (NMF basis coefficient clas-

sifier) is based on the idea that the basis coefficients in H can be used to classify

new email. These coefficients are representations of the columns of A in the basis

given by the columns of W . If W , H and q are given, we can calculate a column

vector x, that minimizes the equation

min
x
||Wx− q||2 (9.2)

Since x is the best representation of q in the basis given by W , we then search

for the column of H which is closest to x in order to assign q to one of the three

classes. We determine the distance of x to the columns of H just like in VSM. The

cosine of the angle between x (and thus of q) and the i -th column of H can be

approximated as

(NMF-BCC) : cosϕi ≈
e>i H

>x

||Hei||2||x||2
(9.3)

It is obvious that the computation of the cosines in Equation (9.3) is much faster

than for both SVD-LSI and NMF-LSI (since usually H is a much smaller matrix

than A), but the computation of x in Equation (9.2) causes additional cost. These

aspects will be discussed further at the end of this section.

9.5.2 Classification Results

A comparison of the results achieved with LSI based on SVD (SVD-LSI), LSI based

on NMF (NMF-LSI), the basis coefficient classifier (NMF-BCC) and a basic VSM

is shown in Figures 9.4 and 9.5, again for different values of maxiter. In contrast to

Section 9.4, where we performed a cross validation on the bigger email corpus, here

we used the big corpus as training set and tested with the smaller corpus consisting

of the 1 000 newest email messages of each class. For classification, we considered

the column of A with the smallest angle to q to assign q to one of the classes ham,

spam and phishing. The results shown in this section are based on random NMF

initialization. Interestingly, the classification accuracy does not increase when using

the initialization strategies mentioned in Chapter 8 (not shown in the figures).

154 CHAPTER 9. UTILIZING NMF FOR CLASSIFICATION PROBLEMS

0 10 20 30 40 50
80

85

90

95

100

Rank k

O
ve

ra
ll

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

SVD-LSI
NMF-LSI(als)
NMF-BCC(als)
NMF-LSI(mu)
NMF-BCC(mu)
VSM

Figure 9.4: Overall classification accuracy for different LSI variants and VSM (maxiter=5).

Obviously, there is a big difference in the classification accuracy achieved with

the NMF approaches for small and larger values of maxiter. With maxiter=5 (see

Figure 9.4), the NMF variants can hardly compete with LSI based on SVD and

VSM. However, when maxiter is increased to 30 all NMF variants except NMF-

BCC(mu) show comparable results (see Figure 9.5). For many values of k, the NMF

variants achieved better overall classification accuracy (cf. Section 2.4.5) than a

basic VSM with all original features. Moreover, especially the standard ALS variant

(NMF-LSI(als)) achieves very comparable results to LSI based on SVD, especially

for small values of rank k (between 5 and 10). Note that an improvement of a few

percent is substantial in the context of email classification. Moreover, as discussed

in Section 8.5, the purely nonnegative linear representation within NMF makes the

interpretation of the NMF factors much easier than the interpretation of the SVD

factors for standard LSI. As already mentioned, an initialization of the factors W

and H does not improve the classification accuracy (neither for the MU algorithm

nor the ALS algorithm) when using NMF-LSI and NMF-BCC classifiers (not shown

in the figures). This is in contrast to the prior sections – especially for small number

of maxiter, the initialization was important for support vector machine.

9.5.3 Runtimes

The computational runtime for all LSI variants comprises two steps. Prior to the

classification process, the low rank approximations (SVD or NMF, respectively)

have to be computed. Afterwards, any newly arriving email message (a single query

vector) has to be classified. For a fair comparison of runtime we used only algorithms

available in the Matlab statistics toolbox (cf [Mat09b]). These algorithms include

9.5. GENERALIZING LSI BASED ON NMF 155

0 10 20 30 40 50
80

85

90

95

100

Rank k

O
ve

ra
ll

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

SVD-LSI
NMF-LSI(als)
NMF-BCC(als)
NMF-LSI(mu)
NMF-BCC(mu)
VSM

Figure 9.5: Overall classification accuracy for different LSI variants and VSM (max-
iter=30).

the NMF algorithms MU and ALS, as well as the SVDS algorithm to compute a

thin SVD (see next paragraph). For all NMF algorithms we performed the maximal

number of iterations as defined by (maxiter) – all other convergence criteria (cf.

Section 3.3.5 were switched off.

Figure 9.6 shows the runtimes needed for computing the low rank approxima-

tions, Figure 9.7 shows the runtimes for the classification process of a singly query

vector. As already mentioned in Section 8.6.2, the NMF runtimes depend almost

linearly on the value of maxiter. Figure 9.6 shows that for almost any a given rank

k, the computation of an SVD takes much longer than a NMF factorization with

maxiter=5, but is faster than a factorization with maxiter=30. For computing the

SVD we used Matlab’s svds() function, which computes only the first k largest

singular values and associated singular vectors of a matrix. The computation of the

complete SVD usually takes much longer (but is not needed in this context). There

is only a small difference in the runtimes for computing the ALS algorithm (using

the economy-size QR factorization, cf. Section 8.6.2) and the MU algorithm, and,

of course, no difference between the NMF-LSI and the NMF-BCC runtimes (since

the NMF factorization has to be computed identically for both approaches). The

difference in the computational cost between NMF-LSI and NMF-BCC is embedded

in the classification process of query vectors, not in the factorization process of the

training data.

When looking at the classification runtimes in Figure 9.7, it can be seen that

the classification process using the basis coefficients (NMF-BCC) is faster than for

SVD-LSI and NMF-LSI (all algorithms were implemented in Matlab). Although

156 CHAPTER 9. UTILIZING NMF FOR CLASSIFICATION PROBLEMS

0 10 20 30 40 50
0

2

4

6

8

10

12

Rank k

R
un

tim
e

[s
]

alsqr(30)
mu(30)
svds
alsqr(5)
mu(5)

Figure 9.6: Runtimes for computing SVD and variants of NMF of a 12 000× 133 matrix.
(alsqr(30) refers to the ALS algorithm computed with explicit QR-factorization
cf. Section 8.6.2) and maxiter set to 30)

the classification times for a single email are modest they have to be considered for

every single email that is classified. The classification (performed in MATLAB) of

all 3 000 email messages in our test sample took about 36 seconds for NMF-LSI, 24

seconds for SVD-LSI and only 13 seconds for NMF-BCC (for rank k=50).

Rectangular vs. Square Data. Since the dimensions of the email data-matrix

used in this work are very imbalanced (12 000×133), we also compared runtime and

approximation errors for data of the same size, but with balanced dimensions. We

created square random matrices of dimension
√

133× 12000 ≈ 1 263 and performed

experiments identical to the last paragraph on them.

Figure 9.8 shows the runtime needed to compute the first k largest singular values

and associated singular vectors for SVD (again using the svds() function from

MATLAB) as well as the two NMF factorizations with different values of maxiter.

Obviously, the runtime varies significantly compared to Figure 9.6. For square A,

the computation of the SVD takes much longer than for unbalanced dimensions.

In contrast to that, both NMF approximations can be computed much faster (cf.

Figure 9.6). For example, a computation of an SVD of rank k=50 takes about eight

times as long as a computation of a NMF of the same rank.

The approximation error for square random data is shown in Figure 9.9. It is

interesting to note that the approximation error of the ALS algorithm decreases with

increasing k until k ≈ 35, and then increases again with higher values of k. Neverthe-

less, especially for smaller values of k the ALS algorithm achieves an approximation

error comparable to the SVD with much lower computational runtimes.

9.6. DISCUSSION 157

0 10 20 30 40 50
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Rank k

R
un

tim
e

[s
]

NMF-LSI
SVD-LSI
NMF-BCC

Figure 9.7: Runtimes for classifying a single query vector.

9.6 Discussion

In this chapter, the application of nonnegative matrix factorization (NMF) for su-

pervised classification tasks has been analyzed. We investigated and evaluated two

new classification methods which are based on NMF. Experimental results showed

that using the basis features of W for email classification problems (same data as

used in Chapter 8) generally achieves much better results than using the complete

data matrix containing all original features. While the number of iterations (max-

iter) in the iterative process for computing the NMF seems to be a crucial factor

for the classification accuracy when random initialization is used, the classification

results achieved with FS-initialization (as introduced in Chpater 8) and nndsvd de-

pend only weakly on this parameter, leading to high classification accuracy even for

small values of maxiter (see Figures 9.1 and 9.2). This is in contrast to the ap-

proximation error illustrated in Figures 8.5 and 8.6, where the number of iterations

is important for all initialization variants. This indicates that a fast and accurate

classification is possible for small maxiter and small k, even for imprecise low-rank

approximations of the original data matrix.

We also introduced a new classification method based on NMF to be applied on

newly arriving data without recomputing the NMF. For this purpose, we introduced

two LSI classifiers based on NMF and compared them to standard LSI based on sin-

gular value decomposition (SVD). Experiments with the email dataset mentioned in

Chapter 8 show that both new variants are able to achieve a classification accuracy

comparable with standard LSI. Moreover, the the classification process can be per-

formed faster, especially when the dimensions of the original data matrix are close

158 CHAPTER 9. UTILIZING NMF FOR CLASSIFICATION PROBLEMS

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

Rank k

R
un

tim
e

[s
]

svds
alsqr(30)
mu(30)
alsqr(5)
mu(30)

Figure 9.8: Runtimes for computing SVD and variants of NMF of a random 1263× 1263
matrix.

to each other (in this case, the computation of the SVD usually takes much longer

than a NMF factorization).

When comparing the computational cost of the LSI variants it can be seen that

the runtimes depend on the structure of the data. For the imbalanced email dataset

the gap between the different LSI variants is rather small (see Figures 9.6 and 9.7).

For datasets with balanced dimensions there is a big difference in the computational

cost for computing the low-rank approximation. In this case, all NMF variants are

markedly faster than the computation of the SVD (see Figure 9.8), and thus the

complete classification process can be performed faster when using NMF instead of

SVD for computing the low-rank approximation within LSI.

9.6. DISCUSSION 159

0 10 20 30 40 50
0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

Rank k

A
pp

ro
xi

m
at

io
n

er
ro

r |
|A

 -
W

H
|| F

mu(5)
mu(30)
als(5)
als(30)
svd

Figure 9.9: Approximation error for SVD and variants of NMF on a random 1263× 1263
matrix.

160 CHAPTER 9. UTILIZING NMF FOR CLASSIFICATION PROBLEMS

Chapter 10

Improving the Performance of

NMF

10.1 Overview of Chapter

The possibly huge size of the datasets used in the application areas mentioned in

Chapter 5 affirms the importance of efficient implementations in these research areas.

The aim of this chapter is to investigate and compare several algorithmic variants

for efficiently computing nonnegative matrix factorization (NMF) on randomly cre-

ated data and on data coming from in silico drug discovery problems on multi-core

systems. By comparing the new variants with existing implementations, we illus-

trate the complex interaction between problem size, initialization strategy, accuracy

of the factorization and computational efficiency on multi-core systems. For some

scenarios new algorithmic variants clearly outperform existing implementations, in

some cases achieving almost linear speedup on multi-core systems.

10.2 Introduction and Related Work

The goals of parallel computing are to solve given problems in less time and/or to

solve bigger problems (cf. [RRB08]). Generally, parallel computing requires that a

problem can be decomposed into sub-problems that can be solved independently.

For performing NMF computations in parallel there are thus two possibilities: On

the one hand, repetitions of the entire factorization process can be distributed and

computed in parallel (task parallelism, for example in combination with random

initialization of the factors W and H). In this case, only little effort is required

to separate the problem into a number of parallel tasks. These kinds of parallel

problems are also called embarrassingly parallel problems. On the other hand, the

161

162 CHAPTER 10. IMPROVING THE PERFORMANCE OF NMF

computations within a single factorization can be computed in parallel, for example,

when performing operations in a multithreaded fashion (data parallelism).

Task parallelism. Task parallel computation is useful in situations where many

loop iterations of independent calculations, such as a Monte Carlo simulation, need

to be performed. NMF algorithms with randomly seeded factors W and H are usu-

ally repeated several times with newly randomized W and H to avoid the algorithms

to get stuck in local minima (cf. [BG08]). This repetition of NMF is represented in

Algorithm 1 in Section 3.3.5 in line 2 (maxrepetition).

Data parallelism. For NMF, data parallel computation is especially important

when performing only one repetition of the factorization, for example, when work-

ing with pre-initialized factors (initialization strategies for NMF are discussed in

detail in Chapter 8). Single factorizations can be computed more efficiently by

spanning the computation of matrix operations (such as matrix-matrix multiplica-

tion) over multiple computational threads. On multi-core or multiprocessor systems,

all threads will generally run at the same time, with each processor or core running

a particular thread, thus decreasing the runtime for these complex operations.

Related work. One of the first studies that focused on parallel implementations

of NMF algorithms was published in [RM06]. The authors proposed a parallel im-

plementation of the MU algorithm (cf. Section 3.3.5) written in Java applied on

hyperspectral images. Their algorithm – called parallel NMF (PNMF) – divides

and distributes the NMF factors W and H among the processors. Empirical re-

sults on a multi-core machine with four processors show a good speedup when the

number of threads is set to four or less. In a subsequent study [RM07] the same

authors proposed a parallel implementation of Lin’s projected gradient method (cf.

[Lin07]) called parallel adaptive projected NMF (PAPNMF). This algorithm seeks

the best step size parameter α concurrently, thus improving the runtime of the algo-

rithm. The results of the papers [RM06, RM07] are summarized in a journal article

in [RM09].

An unpublished article [Kan07] presents parallel NMF implementations based

on openMP (cf. [OMP09]) for document clustering. The authors mention that their

parallel implementations of the three NMF algorithms presented in [LS99, XLG03,

DLP06] achieve a good speedup and efficiency when the number of clusters is much

smaller than both the number of words/tokens extracted from the documents and

the number of documents.

[MCN08] have developed a web-based tool called bioNMF that implemented the

NMF methodology in different analysis contexts to support applications in biology

(including clustering and biclustering of gene-expression data and sample classifi-

10.3. OPEN ISSUES AND OWN CONTRIBUTIONS 163

cation). The NMF factors are broken into sub-matrices, and operations between

these sub-matrices are computed in parallel. The communication of their paral-

lel implementation is based on the message passing interface (MPI, cf. [MPI09]).

Since the authors compared their algorithm with a Matlab implementation of NMF

proposed in [BTG04], the reported speedup of almost seven might be overrated. An-

other MPI-based parallel NMF implementation for large-scale biological data can

be found in [DW08].

In [ZBL09] the authors proposed a parallel implementation for nonnegative ten-

sor factorization (NTF), a natural extension of NMF to higher dimensional data.

This study exploits the NTF for multidimensional climate data. The results show

a sublinear speedup over a sequential execution when using 2 to 8 processors on a

multi-core machine with an approximate peak speedup of 6.8 (among all runs with

up to 10 processors). The authors mention that their results were achieved with

the original Matlab NTF code rewritten in C++ compiled with several libraries

including LAPACK and ScaLAPACK (cf. Section 3.3.3).

A very recent study [DZW09] focused on parallel NMF implementations to be

used explicitly on distributed memory platforms with MPI. The authors proposed

an adaption of the algorithms presented in [RM06, RM07] to distributed memory

systems. To eliminate the network consumption, a new algorithm was proposed

which divides the dataset into uncorrelated sub-blocks that are processed by different

nodes simultaneously. Experiments demonstrate that the proposed methods are

acceptable in both precision and efficiency.

10.3 Open Issues and Own Contributions

Many existing parallel NMF implementations achieve good speedup and high ef-

ficiency, but most of them are written in low-level parallel code and thus require

(at least) major modifications of the program code and the utilization of a commu-

nication protocol such as MPI (cf. [MPI09]), openMP (cf. [OMP09]), or a similar

communication protocol. Several difficulties arise when programming low-level par-

allel code. For example, communication and synchronization between the different

subtasks has to be handled. This increases the risk of potential software bugs, such

as race conditions or deadlocks. Moreover, programmers have to pay attention to

hardware and network architectures. Low-level parallel code is also harder to write,

understand, modify and debug than sequential code. Many problems that can be

solved in a couple of dozen lines of sequential code require hundreds or sometimes

thousands of lines of code to be solved efficiently in parallel.

The goal of this chapter is to investigate new algorithmic variants which may

164 CHAPTER 10. IMPROVING THE PERFORMANCE OF NMF

lead to better and more scalable parallelization, ideally without the restrictions and

problems of low-level parallel programming. One possibility to achieve this goal is

to use high-level programming language libraries that simplify parallel code develop-

ment by abstracting away the complexity of managing coordination and distribution

of computations and data between several processors. The Matlab parallel comput-

ing toolbox (cf. [Mat09a]) is an example of such a high-level library that provides

several high-level programming constructs for converting serial Matlab code to run

in parallel. The parallel processing constructs implemented in the Matlab parallel

computing toolbox allow for task- and data-parallel algorithms without forcing the

programmer to take care of specific hardware and network architectures. As a re-

sult, converting serial Matlab programs to parallel Matlab programs requires only

few code modifications and no programming in a low-level language.

In this chapter, we utilize and adapt various algorithmic variants based on Mat-

lab to exploit task- and data-parallelism for NMF. Based on these comparisons, the

complex interaction between problem size, initialization strategy, accuracy of the

factorization and computational efficiency of NMF computations on multi-core sys-

tems is illustrated. Moreover, we introduce a computationally very efficient adaption

for computing Matlab’s implementation of the ALS algorithm without any notice-

able disadvantages in the drug discovery context. This algorithm also provides the

several possibilities to be executed parallel.

10.4 Hardware, Software, Datasets

In the following, we briefly describe the three different groups of data used for the

experiments in this chapter, as well as the hardware and software architecture used.

10.4.1 Datasets

The experimental results in this chapter are based on various datasets that can be

clustered into three groups. For results in Section 10.7 we used the drug discovery

dataset (dd big), for computing runtimes and computational efficiency of the algo-

rithms in Sections 10.5 and 10.6 we used randomly created matrices of various sizes.

The three groups of datasets are summarized briefly in the following list:

• Drug discovery dataset (dd big): This dataset contains 122 000 chemical com-

pounds that are described by 268 different chemical descriptors. 200 of these

compounds are known to have a specific biological activity, the remaining ma-

jority do not have this biological activity. About 10% of all entries have zero

values.

10.4. HARDWARE, SOFTWARE, DATASETS 165

• Random small (rand small): In this group of datasets, the dense data matrices

A are square and have a size from m,n = 250 to m,n = 2 500 (with a step-size

of 250). The nonnegative factors W and H were also randomly seeded with a

fixed k = 50.

• Random big (rand big): Similar to the small random dataset, the dense data

matrices A are square. Here, their size ranges from m,n=1 000 to m,n=7 000

(with a step-size of 1 000). Contrary to the small datasets, the factors W and

H were (also randomly) seeded with different values of k ranging from 50, 150,

250, 500 to 75% of m,n (i. e., k=750 for m,n=1 000).

10.4.2 Hardware Architecture

The experiments presented in this chapter were performed a SUN Fire X4600M2 with

8 AMD quad-core Opteron 8356 processors (32 cores overall) with 2.3GHz CPU and

64GB of memory running under 64-bit Linux Ubuntu 8.10 (kernel 2.6.27-11).

10.4.3 Software Architecture

We used Matlab-based implementations of NMF algorithms to investigate the perfor-

mance of task-parallel NMF variants as well as the performance difference between

single-threaded and implicit multithreaded factorization (without any code changes).

In the following, we briefly summarize Matlab’s NMF implementation and its multi-

threading possibilities. We also describe how the Matlab NMF implementation can

be adapted to perform task-parallel NMF.

Computing NMF in Matlab. Matlab provides a built-in function for comput-

ing NMF with two of the algorithms described in Section 3.3.5, the multiplicative

update algorithm (MU) and the alternating least squares algorithm (ALS). This

function (called nnmf.m) has been included in the statistics toolbox since version

6.2 (R2008a). For experimental evaluation in this paper we used the 64-bit variants

of Matlab versions R2008b and R2009a.

Multithreading. Matlab allows for implicit multithreading since multithreaded

computations are supported for a number of linear algebra operations (e. g., matrix-

matrix multiplication). These functions automatically execute on multiple threads

without explicitly specifying commands to create threads in the code. By default,

the number of threads used by Matlab is set to the number of cores that are avail-

able on a machine. To be able to compare single- and multithreaded runtimes, we

partly switched off the multithreading capabilities and executed jobs sequentially

on one thread (i. e., only one core was used). Until Matlab 2008b, the number of

166 CHAPTER 10. IMPROVING THE PERFORMANCE OF NMF

computational threads to be used could be adjusted by the user. Since Matlab

2009a, the capability to adjust the number of threads in a single Matlab session is

no longer available. Matlab argues that “the primary reason for this change is that

products that Matlab is dependent upon have the ability to spawn threads from

the currently-executing thread. This makes it infeasible to monitor and/or limit the

number of computational threads at any given time in a Matlab process.” [Mat09b].

Task parallelism. Recent Matlab versions support task parallel processing

opportunities on multi-core and multiprocessor systems. As mentioned in Chap-

ter 8, NMF algorithms with random initializations are usually repeated several

times, which makes NMF suitable for task parallel computation. A very simple

but fast and efficient way to perform task parallel computation in Matlab proceeds

as follows: Prior to the distribution of parallel tasks, a set of Matlab workers (also

called labs) has to be defined. Like threads, workers are executed on processor cores

(the number of workers does not have to match the number of cores), but unlike

threads, workers do not share memory with each other. The workers can now either

be used to offload work to them (for example by sending a batch job to a worker)

or to execute parallel for-loops (called parfor -loops, cf. [Mat09a]). Each parfor -loop

divides the loop iterations into groups so that each worker executes some portion

of the total number of iterations. Part of the parfor body is executed on the Mat-

lab client (where the parfor is issued) and part is executed in parallel on Matlab

workers. The necessary data on which parfor operates is sent from the client to

workers, where most of the computation happens, and the results are sent back to

the client and pieced together (for details see Matlab’s documentation of the parallel

computing toolbox, cf. [Mat09a]).

Task parallel computations in Matlab are supported by two products: the parallel

computing toolbox and the distributed server. The parallel computing toolbox version

4.1 (part of Matlab 2009a) supports applications to run on up to eight local workers.

In the preceding version of the parallel computing toolbox (version 4.0, part of

Matlab 2008b), the number of workers was limited to four. The Matlab distributed

server offers the possibility to run code on workers that might be running remotely on

a cluster and do not need to run on the local machine. However, for the experiments

summarized in this chapter we did not have Matlab’s distributed server available.

The results discussed here were based on the parallel computing toolbox.

10.5 Task-Parallel Speedup

In this section, we investigate the speedup when using task-parallel NMF algorithms.

To achieve this task-parallelism, we utilized Matlab’s parallel computing toolbox’

10.5. TASK-PARALLEL SPEEDUP 167

possibility to distribute tasks across multiple Matlab workers using parfor -loops. As

mentioned before, Matlab 2008b (parallel computing toolbox 4.0) supports up to four

workers, Matlab 2009a (parallel computing toolbox 4.1) supports up to eight workers.

For evaluation in this section, we set the number of iterations (maxiter) to 100 (all

other termination criteria mentioned in Section 3.3.5 where switched off), and the

number of repetitions (maxrepetitions) to 50 (see Algorithm 1 in Section 3.3.5). All

results are based on the small randomized datasets rand small (see Section 10.4.1).

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

Number of Matlab workers

S
pe

ed
up

Task parallel 2008b
Task parallel 2009a
Linear speedup

Figure 10.1: Task-parallel speedup for MU algorithm. Baseline: Single Matlab worker.

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

Number of Matlab workers

S
pe

ed
up

Task parallel 2008b
Task parallel 2009a
Linear speedup

Figure 10.2: Task-parallel speedup for ALS algorithm. Baseline: Single Matlab worker.

The repetitions of the NMF algorithms are distributed over the Matlab workers

and are computed in parallel. Prior to this job-distribution a pool of Matlab workers

needs to be created (see Section 10.4.3). Figures 10.1 and 10.2 show the runtime

achieved with the MU and the ALS algorithm, respectively. The speedups shown

in this section are the average results over all datasets included in rand small (see

Section 10.4.1). Here, Matlab’s possibility to use thread parallelism was turned off,

168 CHAPTER 10. IMPROVING THE PERFORMANCE OF NMF

i. e., the results with only one Matlab worker were computed on one core. For each

additional worker, one additional core was used.

Results. The results on our SUN Fire (Figures 10.1 and 10.2) show very stable

speedup for both algorithms, MU and ALS. As can be seen, with increasing number

of workers the speedup increases almost linearly. The difference between the achieved

results and the (theoretical) linear speedup is caused by the overhead resulting

from creating Matlab workers, assigning jobs and data to them, and communication

between workers and the Matlab client.

10.6 Improvements for Single Factorizations

As discussed in Chapter 8, NMF algorithms strongly depend on the initialization of

W and H. Some non-random initialization strategies have shown to improve NMF

in terms of faster convergence and faster error reduction [BG08, JG09]. In the case

of non-random initialization only a single factorization has to be performed (since

the results will not change). This raises the importance to speed up the runtime for

a single factorization instead of parallelizing several NMF repetitions over several

machines or cores.

One possibility to speed up a single NMF factorization is to compute linear alge-

bra operations (such as matrix-matrix multiplication) over multiple computational

threads. As mentioned before in Section 10.2, all threads will generally run at the

same time, with each processor or core running a particular thread. Another pos-

sibility is to reduce the computational effort in each iteration. In Section 10.6.2

we introduce a computationally very efficient adaption for computing Matlab’s ALS

implementation.

10.6.1 Multithreading Improvements

Table 10.1 shows the speedup achieved with different Matlab variants using the

datasets rand small (cf. Section 10.4.1). The single threaded Matlab version 2008b

was used as a baseline. For computing the runtimes of multithreaded Matlab ver-

sions, the number of threads was set to the number of cores available on the system

(32 in our case). Some remarks on Matlab’s multithreading possibilities are given

in Section 10.4.3.

Results. As can be seen, no speedup can be achieved when using multithreaded

Matlab 2008b. Although the number of threads to be used was set to the number of

cores of each machine, computations were only performed on one core. This behavior

was also noticed on other hardware architectures. The multithreaded Matlab 2009a

shows a speedup of almost 2 with similar results for both algorithms (MU and ALS).

10.6. IMPROVEMENTS FOR SINGLE FACTORIZATIONS 169

Matlab version MU ALS

2008b single thread 1.00 1.00

2008b multithreaded 0.99 0.97

2009a single thread 1.02 1.00

2009a multithreaded 1.93 1.94

Table 10.1: NMF speedups for different Matlab’s versions using datasets rand small.
Baseline: Matlab 2008b single thread

10.6.2 Improving Matlab’s ALS Code

We also investigated several variants of the ALS algorithm. In particular, in the

following we illustrate how the computational efficiency of Matlab’s implementation

of the ALS algorithm can be improved significantly. In Algorithm 9 we depict

the central steps of Matlab’s implementation (using Matlab notation) of the ALS

algorithm (cf. Algorithm 3 in Section 3.3.5).

Algorithm 9 - Matlab ALS update step.

1: h = max(0, w0\a);
2: w = max(0, a/h);

According to the Matlab convention, the “\”-operator (left matrix division) in

Algorithm 9 (line one) is to be interpreted as follows: If A is an m-by-n matrix with

m 6= n and B is a column vector with m components, or a matrix with several such

columns, then X = A\B is the solution in the least squares sense to the potentially

underdetermined or overdetermined system of equations AX = B (i. e., X minimizes

the norm(A∗X−B)). The “/”-operator (right matrix division) in Algorithm 9 (line

two) is a compact notation for the left matrix division (A>\B>)>.

As an alternative, we experimented with the normal equations formulation of the

ALS algorithm (cf. Algorithm 3, Section 3.3.4), denoted as NEALS in the following.

The Matlab formulation of the NEALS algorithm is illustrated in Algorithm 10.

Algorithm 10 - NEALS update step.

1: temp1 = w0’ × w0;
2: temp2 = w0’ × a;
3: h = max(0, temp1\temp2);
4:

5: temp3 = h × h’;
6: temp4 = h × a’;
7: w = max(0, temp3\temp4)’;

Although it is well known that in general this formulation has numerical dis-

advantages because of the squaring of the condition numbers of the factors W and

170 CHAPTER 10. IMPROVING THE PERFORMANCE OF NMF

0 10 20 30 40 50 60 70 80 90 1000

0.1

0.2

0.3

0.4

0.5

Iteration

A
pp

ro
xi

m
at

io
n

er
ro

r |
|A

 -
W

H
||

ERR-MU
ERR-NEALS
ERR-ALS

F

Figure 10.3: Convergence history for MU, NEALS and ALS algorithm.

H, in the given context it can be very attractive for various reasons: (i) Since in

many cases we need to compute a low-rank NMF with relatively small k, the re-

sulting normal equations are much smaller than the least squares formulations in

Algorithm 9. (ii) The potential loss in numerical accuracy is usually not too severe,

because the computation of an NMF is only an approximation anyway. (iii) Obvi-

ously, the additional expense is the matrix multiplication required for forming the

normal equations. However, it is well known that this operation has a favorable

computation per communication ratio and thus can be mapped well onto multi-core

architectures.

As Figure 10.3 illustrates, the convergence properties of the ALS algorithm are

usually not dominated by the aspect of which actual algorithmic variant to be used.

As can be seen, for this selected example ALS and NEALS show identical results

until about 60 iterations. In about 95% of our test-runs, NEALS and ALS achived

numerically identical results for all iterations (always set to maxiter = 100).

The considerations mentioned before are confirmed experimentally on dataset

rand big (cf. Section 10.4.1), as Figure 10.4 shows. The normal equations formula-

tion achieves high speedups compared to the standard implementation provided in

Matlab. There results were achieved with the multitreaded Matlab 2009a version.

Parallel NEALS. Looking at lines 1 and 2 as well as lines 3 and 4 of Algo-

rithm 10 it can be seen that the computation of the help-variables tempx can be

computed independently. However, with the means currently available to us we were

not able to fully utilize the parallelization potential in the NEALS formulation in

terms of task parallelism. Investigations of this parallelization potential will be part

of our future work.

10.7. INITIALIZATION VS. TASK-PARALLELISM 171

50 150 250 500 75% of n
1

2

3

4

5

6

7

8

Size of k

S
pe

ed
up

Figure 10.4: Speedup of NEALS algorithm over standard Matlab ALS algorithm.

10.7 Initialization vs. Task-parallelism

In this section, we apply the initialization techniques introduced in Chapter 8 to our

drug discovery dataset dd big (cf. Section 10.4.1). NMF factorizations achieved with

random initialization (using task-parallel NMF algorithms), and results achieved

with information gain initialization (using data-parallel NMF algorithms) are com-

pared, and the interaction between the initialization strategy, the accuracy of the

factorization achieved with different algorithms and their computational efficiency

is discussed.

The results based on random initialization were achieved using task-parallel im-

plementations mentioned in Section 10.5. Here, the number of repetitions of the

complete factorization (maxrepetitions) was set to the number of Matlab workers

available. Since the results in this section were achieved using Matlab 2009a, eight

workers were available. Information gain results were achieved exploiting Matlab’s

data-parallel potential mentioned in Section 10.6. Here, the number of threads was

again set to the number of cores available on the system (32 in our case). All results

in this section were achieved with k=10, and the number of iterations (maxiter) was

set to 50 (all other termination criteria mentioned in Section 3.3.5 where switched

off).

Figure 10.5 shows the NMF results for the three algorithms MU, ALS and

NEALS for the dd big file when using (i) random initialization (“ERR-rand”) and

(ii) information gain-based initialization (“ERR-IG”) as described in Chapter 8.

The random initialization results shown in this figure are the average results of

eight task-parallel factorizations (using different initializations of W and H for each

repetition), i. e., the expected results using randomized initialization. Obviously, the

IG initialized factorization achieves a better accuracy (i. e., a smaller NMF error as

172 CHAPTER 10. IMPROVING THE PERFORMANCE OF NMF

0 5 10 15 20 25 30 35 40 45 500.1

0.12

0.14

0.16

0.18

Iteration

||A
 -

W
H

|| F

ERR-rand-MU
ERR-rand-ALS
ERR-rand-NEALS
ERR-IG-MU
ERR-IG-ALS
ERR-IG-NEALS

Figure 10.5: IG initialization vs. average result of eight random initializations.

0 5 10 15 20 25 30 35 40 45 500.1

0.12

0.14

0.16

0.18

Iteration

||A
 -

W
H

|| F

ERR-rand-MU
ERR-rand-ALS
ERR-rand-NEALS
ERR-IG-MU
ERR-IG-ALS
ERR-IG-NEALS

Figure 10.6: IG initialization vs. best result of eight random initialization.

stated in Equation (3.17)) than randomly initialized NMF. Especially when the num-

ber of iterations (maxiter) is small, the IG results are much better than the results

achieved with random initialization. When comparing the different NMF algorithms

used, it can be seen that a reduction of the approximation error can be achieved

with fewer iterations when using the ALS (and NEALS) algorithm compared of the

MU algorithm. However, with increasing number of iterations the MU algorithm

shows a continuous decrease in the error, while ALS and NEALS sometimes tend

to converge to local minima and are unable to further reduce the factorization error

(cf., for example, [SRG03]).

Figure 10.6 shows the results for the same algorithms as Figure 10.5, but this

time the random initialization results are shown for the best task-parallel factoriza-

tion, i. e., the factorization with the smallest approximation error after 50 iterations.

Obviously, the approximation error achieved with the best random initialization is

10.7. INITIALIZATION VS. TASK-PARALLELISM 173

better than the average results shown in Figure 10.5. Nevertheless, the results

achieved with information gain initialization are still better for a small number of

iterations. When using the MU algorithm, the IG results are better until about 35

iterations. For a larger number of iterations, the best randomly initialized NMF

achieves slightly better results. When using the ALS or the NEALS algorithm, IG

initialization is better until 23 iterations – for larger numbers the results are almost

identical.

Runtimes. Table 10.2 shows the approximation error for IG initialization after

a given number of iterations and the runtime needed to perform these numbers of it-

erations (“ERR-IG” results in Figure 10.6). The computational cost for performing

the IG initialization is not included in these runtimes. As already mentioned, the

IG runtimes were achieved exploiting Matlab’s data-parallel potential. As can be

seen, the ALS algorithm is the slowest algorithm in terms of runtime per iteration

compared to MU and NEALS. Overall it can be seen that NEALS is the fastest

algorithm and that ALS and NEALS need significantly fewer iterations than MU

to reduce the approximation error for a small number of iterations (see also Fig-

uress 10.5 and 10.6). For example, NEALS needs only 5 iterations to achieve the

same (or even better) accuracy than MU after 25 iterations (0.1268). In this case,

the runtime needed to achieve this accuracy can be decreased by a factor of five

when using NEALS (5.50s vs. 27.37s) instead of MU. Compared to ALS, NEALS

is almost three times faster. With increasing rank k, the speedup of NEALS over

the standard ALS implementation of Matlab is expected to grow even larger (cf.

Figure 10.4.

Table 10.3 also shows approximation errors and corresponding runtimes, here

for a task-parallel NMF using random initialization (“ERR-rand” results in Fig-

ure 10.6). NEALS is again the fastest algorithm (both in terms of runtime per

iteration and in terms of runtime needed to achieve a low approximation error).

When comparing the runtimes with Table 10.2 it can be seen that the computa-

tional cost needed for performing eight task-parallel NMF computations in parallel

is higher than for a single data-parallel NMF. Generally, the runtime for computing

eight task-parallel NMF factorizations increases by a factor of 2.2 compared to a sin-

gle data-parallel factorization. This indicates that a low approximation error can be

achieved faster when using pre-initialized NMF factors instead of several randomly

initialized factorizations. However, as already mentioned, the runtimes in Table 10.2

do not include the computational cost for computing the initialization of W and H.

In cases, where these cost might be very high, many task-parallel factorizations using

random initialization might be faster. Moreover, several initialization variants (such

as the IG or gain ratio initialization, cf. Chapter 8) cannot applied when unlabeled

174 CHAPTER 10. IMPROVING THE PERFORMANCE OF NMF

data is used (i. e., the class label ob items is unknown).

Iterations (MU) 5 10 25 50

Runtime (sec.) 6.08 11.29 27.37 53.51

Accuracy achieved 0.1553 0.1464 0.1268 0.1171

Iterations (ALS) 5 10 25 50

Runtime (sec.) 15.13 29.23 70.14 143.48

Accuracy achieved 0.1212 0.1188 0.1165 0.1162

Iterations (NEALS) 5 10 25 50

Runtime (sec.) 5.50 10.91 25.14 50.35

Accuracy achieved 0.1212 0.1188 0.1165 0.1162

Table 10.2: MU vs. ALS vs. NEALS concerning number of iterations, accuracy and
runtime for IG initialization (data-parallelism).

Iterations (MU) 5 10 25 50

Runtime (sec.) 13.88 25.76 62.47 122.12

Accuracy achieved 0.1671 0.1641 0.1363 0.1157

Iterations (ALS) 5 10 25 50

Runtime (sec.) 34.53 66.71 160.09 327.47

Accuracy achieved 0.1275 0.1229 0.1181 0.1169

Iterations (NEALS) 5 10 25 50

Runtime (sec.) 12.56 24.89 57.38 121.04

Accuracy achieved 0.1275 0.1229 0.1181 0.1169

Table 10.3: MU vs. ALS vs. NEALS concerning number of iterations, accuracy and
runtime for best random initialization (task-parallelism).

10.8 Discussion

Several algorithmic variants for efficiently computing the nonnegative matrix fac-

torization (NMF) on multi-core architectures have been investigated and applied on

randomly created data as well as data coming from in silico drug discovery problems.

In this application context, feature reduction and interpretation of the reduced fea-

ture sets is crucial, and thus the NMF is an interesting concept for such problems.

In particular, we investigated how to exploit task and data parallelism in NMF com-

putations on the basis of Matlab codes using Matlab’s parallel computing toolbox.

Moreover, a modification of Matlab’s implementation of the ALS algorithm has been

investigated which achieves much higher performance in the given problem context.

10.8. DISCUSSION 175

All these different variants of NMF computations have been compared in terms

of execution times and speedup on multi-core systems in order to illustrate the

complex interaction between problem size, initialization strategy, accuracy of the

factorization and computational efficiency. In particular, it has been shown that

random initialization strategies provide a high potential for task parallelism, and

almost linear speedup in the number of cores used could be achieved. The modifica-

tion of Matlab’s ALS algorithm based on the normal equations was shown to be up

to eight times faster than the standard Matlab implementation without significant

numerical disadvantages. Even higher performance gains seem possible, since its full

parallel potential has not yet been exploited.

176 CHAPTER 10. IMPROVING THE PERFORMANCE OF NMF

Chapter 11

Conclusion and Future Work

As the data grows, several data mining techniques become significantly harder and

the computational effort for data mining applications increases dramatically. More-

over, the increasing dimensionality of data (in the sense of many features) for various

application areas (such as email classification and in silico screening for drug discov-

ery) often leads to severe problems for learning algorithms, since the high dimen-

sional nature of data can have a negative influence on the classification accuracy and

also increases the computational cost for both, supervised and unsupervised learning

methods. High dimensionality of data in the sense of many instances also increases

the computational cost for the learning algorithm but has usually a positive influ-

ence on the classification accuracy. This causes the need for effective and efficient

feature selection and dimensionality reduction methods. Generally, these methods

should meet the following demands: They should be computationally efficient and

the resulting feature sets should allow for a compact representation of the original

data. Moreover, in many application areas it is very important not to loose the in-

terpretability of the original features. Finally, the feature reduction process should

have a positive (or at least no negative) effect on the classification accuracy of the

learning algorithm.

The major contributions of this thesis include (i) new efficient initialization

strategies for nonnegative matrix factorization (NMF) which lead to very fast re-

duction in approximation error and can be applied in combination with (ii) new

and very effective classification algorithms which utilize the nonnegative factors of

NMF for developing a classification model. To further speed up the runtime of NMF

we have (iii) investigated and compared several algorithmic variants for efficiently

computing NMF on multi-core systems, and have (iv) presented a computationally

very efficient adaption for Matlab’s implementation of the ALS algorithm. More-

over, we have (v) investigated the application of latent semantic indexing (LSI) to

177

178 CHAPTER 11. CONCLUSION AND FUTURE WORK

the task of email categorization and (vi) have presented a comprehensive empirical

study on the relationship between various methods for feature reduction (feature

subset selection as well as dimensionality reduction) and the resulting classification

performance.

The initialization strategies for NMF presented in this thesis allow for a faster

reduction in approximation error, thus reducing the runtime needed to achieve a

certain approximation accuracy. Moreover, the task- and data-parallel algorithmic

variants for efficiently computing NMF on multi-core architectures, and the com-

putationally very efficient adaptation of Matlab’s ALS algorithm (Matlab version

2009a) presented in this thesis are further contributions to decrease the computa-

tional cost of NMF.

Dimensionality reduction techniques allow for compact representations of the

data without losing a lot of information of the original attribute space. However,

the resulting linear combinations are usually hard to interpret since they are based on

additive and subtractive combinations of the original features. Due to the “sum-of-

parts” representation of NMF, the interpretability of how much an original attribute

contributes to the basis vectors and basis coefficients in NMF can be retained. In

this thesis, we utilize this key characteristic of NMF. By taking advantage of the

information provided in the basic vectors of NMF, important and well discriminating

features can be identified in an unsupervised manner.

Moreover, we have presented two new fast and efficient classification methods

based on NMF. The first method utilizes the nonnegative factors of the NMF for

classification, and generally achieves much better results than using the complete

data matrix containing all original features. As alternative methods, we introduced

two latent semantic indexing (LSI) classifiers based on NMF. Both new variants are

able to achieve classification accuracy comparable with standard LSI, but can be

computed much faster, especially when the dimensions of the original data matrix

are close to each other.

The strong influence of different feature reduction methods on the classification accu-

racy observed underlines the need for further investigation in the complex interaction

between features reduction and classification. Based on the results of this thesis,

the following directions for future research are identified, such as the initialization

of the basis coefficient matrix in NMF, a detailed analysis of the computational cost

of various initialization strategies, and stronger utilization of sparseness constraints

for NMF.

179

Zusammenfassung

Durch die steigende Anzahl verfügbarer Daten in unterschiedlichsten Anwen-

dungsgebieten nimmt der Aufwand vieler Data-Mining Applikationen signifikant

zu. Speziell hochdimensionierte Daten (Daten die über viele verschiedene Attribute

beschrieben werden) können ein großes Problem für viele Data-Mining Anwendungen

darstellen. Neben höheren Laufzeiten können dadurch sowohl für überwachte (su-

pervised), als auch nicht überwachte (unsupervised) Klassifikationsalgorithmen weit-

ere Komplikationen entstehen (z.B. ungenaue Klassifikationsgenauigkeit, schlechte

Clustering-Eigenschaften, . . .). Dies führt zu einem Bedarf an effektiven und ef-

fizienten Methoden zur Dimensionsreduzierung. Feature Selection (die Auswahl

eines Subsets von Originalattributen) und Dimensionality Reduction (Transforma-

tion von Originalattribute in (Linear)-Kombinationen der Originalattribute) sind

zwei wichtige Methoden um die Dimension von Daten zu reduzieren. Obwohl sich

in den letzten Jahren vielen Studien mit diesen Methoden beschäftigt haben, gibt es

immer noch viele offene Fragestellungen in diesem Forschungsgebiet. Darüber hin-

aus ergeben sich in vielen Anwendungsbereichen durch die immer weiter steigende

Anzahl an verfügbaren und verwendeten Attributen und Features laufend neue Prob-

leme. Das Ziel dieser Dissertation ist es, verschiedene Fragenstellungen in diesem

Bereich genau zu analysieren und Verbesserungsmöglichkeiten zu entwickeln.

Grundsätzlich, werden folgende Ansprüche an Methoden zur Feature Selection

und Dimensionality Reduction gestellt: Die Methoden sollten effizient (bezüglich

ihres Rechenaufwandes) sein und die resultierenden Feature-Sets sollten die Origi-

naldaten möglichst kompakt repräsentieren können. Darüber hinaus ist es in vielen

Anwendungsgebieten wichtig, die Interpretierbarkeit der Originaldaten beizubehal-

ten. Letztendlich sollte der Prozess der Dimensionsreduzierung keinen negativen

Effekt auf die Klassifikationsgenauigkeit haben - sondern idealerweise, diese noch

verbessern.

Offene Problemstellungen in diesem Bereich betreffen unter anderem den Zusam-

menhang zwischen Methoden zur Dimensionsreduzierung und der resultierenden

Klassifikationsgenauigkeit, wobei sowohl eine möglichst kompakte Repräsentation

der Daten, als auch eine hohe Klassifikationsgenauigkeit erzielt werden sollen. Wie

bereits erwähnt, ergibt sich durch die große Anzahl an Daten auch ein erhöhter

Rechenaufwand, weshalb schnelle und effektive Methoden zur Dimensionsreduzierung

entwickelt werden müssen, bzw. existierende Methoden verbessert werden müssen.

Darüber hinaus sollte natürlich auch der Rechenaufwand der verwendeten Klassi-

fikationsmethoden möglichst gering sein. Des Weiteren ist die Interpretierbarkeit

von Feature Sets zwar möglich, wenn Feature Selection Methoden für die Dimen-

180 CHAPTER 11. CONCLUSION AND FUTURE WORK

sionsreduzierung verwendet werden, im Fall von Dimensionality Reduction sind die

resultierenden Feature Sets jedoch meist Linearkombinationen der Originalfeatures.

Daher ist es schwierig zu überprüfen, wie viel Information einzelne Originalfeatures

beitragen.

Im Rahmen dieser Dissertation konnten wichtige Beiträge zu den oben genannten

Problemstellungen präsentiert werden: Es wurden neue, effiziente Initialisierungsvari-

anten für die Dimensionality Reduction Methode Nonnegative Matrix Factorization

(NMF) entwickelt, welche im Vergleich zu randomisierter Initialisierung und im Ver-

gleich zu State-of-the-Art Initialisierungsmethoden zu einer schnelleren Reduktion

des Approximationsfehlers führen. Diese Initialisierungsvarianten können darüber

hinaus mit neu entwickelten und sehr effektiven Klassifikationsalgorithmen basierend

auf NMF kombiniert werden. Um die Laufzeit von NMF weiter zu steigern wurden

unterschiedliche Varianten von NMF Algorithmen auf Multi-Prozessor Systemen

vorgestellt, welche sowohl Task- als auch Datenparallelismus unterstützen und zu

einer erheblichen Reduktion der Laufzeit für NMF führen. Außerdem wurde eine ef-

fektive Verbesserung der Matlab Implementierung des ALS Algorithmus vorgestellt.

Darüber hinaus wurde eine Technik aus dem Bereich des Information Retrieval

– Latent Semantic Indexing – erfolgreich als Klassifikationsalgorithmus für Email

Daten angewendet. Schließlich wurde eine ausführliche empirische Studie über den

Zusammenhang verschiedener Feature Reduction Methoden (Feature Selection und

Dimensionality Reduction) und der resultierenden Klassifikationsgenauigkeit unter-

schiedlicher Lernalgorithmen präsentiert.

Der starke Einfluss unterschiedlicher Methoden zur Dimensionsreduzierung auf die

resultierende Klassifikationsgenauigkeit unterstreicht dass noch weitere Untersuchun-

gen notwendig sind um das komplexe Zusammenspiel von Dimensionsreduzierung

und Klassifikation genau analysieren zu können.

List of Figures

2.1 Data mining and related fields . 19

2.2 Steps in the KDD process . 22

3.1 A simple scheme of feature selection techniques 35

3.2 Possible feature subsets for a four-feature problem 39

3.3 Data before PCA transformation . 46

3.4 Data after PCA transformation . 46

3.5 Illustration of the SVD . 48

4.1 kNN classifier . 59

4.2 Maximum margin between groups 66

4.3 Mapping to higher dimensional space 68

6.1 Email data – information gain subsets 107

6.2 Email data – PCA1 subsets . 108

6.3 Email data – PCA2 subsets . 108

6.4 Email data – PCA3 subsets . 109

6.5 Drug discovery data – information gain subsets 110

6.6 Drug discovery data – PCA1 subsets 111

6.7 Drug discovery data – PCA2 subsets 111

6.8 Drug discovery data – PCA3 subsets 112

6.9 Email data – classification runtimes 113

6.10 Drug discovery data – classification runtimes 113

7.1 Singular values in VSMs for sample S1 using feature set F SA 125

7.2 Singular values in VSMs for sample S1 using feature set F TB 125

7.3 Aggregated classification results for S1 and S2 126

7.4 True positive rates . 127

7.5 False positive rates . 127

7.6 Aggregated results on reduced feature sets 129

7.7 True positive rates for reduced feature sets using features F SA . . . 130

7.8 False positive rates for reduced feature sets using features F SA . . . 130

8.1 Basis features for k = 3 . 137

8.2 Basis email messages for k = 3 . 137

181

182 LIST OF FIGURES

8.3 Basis compounds for k = 2 . 139

8.4 Basis compounds for k = 2 using sparseness constraints 140

8.5 Approximation error for varying rank k (ALS, maxiter=5) 141

8.6 Approximation error for varying rank k (ALS, maxiter=30) 142

9.1 SVM classification accuracy (MU, maxiter=5) 150

9.2 SVM classification accuracy (MU, maxiter=30) 151

9.3 Overview of basic VSM and LSI using SVD/NMF 152

9.4 LSI and VSM classification accuracy (maxiter=5) 154

9.5 LSI and VSM classification accuracy (maxiter=30) 155

9.6 Runtimes for computing SVD and variants of NMF 156

9.7 Runtimes for classifying a single query vector 157

9.8 Runtimes for computing SVD and variants of NMF 158

9.9 Approximation error for SVD and variants of NMF 159

10.1 Task-parallel speedup for the MU algorithm 167

10.2 Task-parallel speedup for the ALS algorithm 167

10.3 Convergence history for MU, NEALS and ALS algorithm. 170

10.4 Speedup of NEALS algorithm over standard Matlab ALS algorithm. 171

10.5 IG initialization vs. average result of eight random initializations. . . 172

10.6 IG initialization vs. best result of eight random initialization. 172

List of Tables

2.1 Confusion matrix . 29

2.2 Confusion matrix . 30

6.1 Email data – average overall classification accuracy 106

6.2 Email data – best overall classification accuracy 106

6.3 Email data – % variance captured by first n PCs 109

6.4 Drug discovery data – average overall classification accuracy 109

6.5 Drug discovery data – best overall classification accuracy 110

6.6 Drud discovery data – % variance captured by first n PCs 112

6.7 Feature reduction runtimes . 114

7.1 Rank k of the truncated SVD in the singular values for S1 124

7.2 Rank k of the truncated SVD in the singular values for S2 125

8.1 Runtime comparison . 143

9.1 Classification results using basis features for DD problems 151

10.1 NMF speedups for different Matlab’s versions 169

10.2 MU vs. ALS vs. NEALS for IG initialization 174

10.3 MU vs. ALS vs. NEALS for random initalization 174

183

184 LIST OF TABLES

List of Algorithms

1 General structure of NMF algorithms 52

2 Update steps for the multiplicative update algorithm 52

3 Update steps for the alternating least squares algorithm 53

4 Update steps for the gradient descent algorithm 53

5 Pseudo-code for building decision trees 61

6 Pseudo-code for ensemble classification using bagging 71

7 Pseudo-code for random forest . 72

8 Pseudo-code for boosting . 73

9 Matlab ALS update step . 169

10 NEALS update step . 169

185

186 LIST OF ALGORITHMS

Bibliography

[AAR07] Mohammed Said Abual-Rub, Rosni Abdullah, and Nuraini Abdul Rashid. “A Modified

Vector Space Model for Protein Retrieval.” IJCSNS International Journal of Computer

Science and Network Security, 7(9):85–90, 2007.

[AB95] David W. Aha and Richard L. Bankert. “A Comparative Evaluation of Sequential

Feature Selection Algorithms.” In D. Fisher and H. Lenz, editors, In Proceedings of the

5th International Workshop on Artificial Intelligence and Statistics, pp. 1–7. Springer,

1995.

[AB98] Sarabjot S. Anand and Alex G. Büchner. Decision Support Using Data Mining. Finan-

cial Times Pitman Publishers, 1998.

[ABC08] Mohammad Assaad, Romuald Boné, and Hubert Cardot. “A New Boosting Algorithm

for Improved Time-series Forecasting with Recurrent Neural Networks.” Inf. Fusion,

9(1):41–55, 2008.

[Abe03] Shigeo Abe. “Analysis of Multiclass Support Vector Machines.” In CIMCA ’03: Inter-

national Conference on Computational Intelligence for Modelling Control and Automa-

tion, pp. 385–396, 2003.

[AC99] Aijun An and Nick Cercone. “Discretization of Continuous Attributes for Learning

Classification Rules.” In PAKDD ’99: Proceedings of the 3rd Pacific-Asia Conference

on Methodologies for Knowledge Discovery and Data Mining, pp. 509–514. Springer,

1999.

[Aha92] David W. Aha. “Tolerating Noisy, Irrelevant and Novel Attributes in Instance-based

Learning Algorithms.” Int. J. Man-Mach. Stud., 36(2):267–287, 1992.

[AKC00] Ion Androutsopoulos, John Koutsias, Konstantinos Chandrinos, and Constantine D.

Spyropoulos. “An Experimental Comparison of Naive Bayesian and Keyword-based

Anti-Spam Filtering with Personal E-mail Messages.” In SIGIR ’00: Proceedings of the

23rd Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 160–167, 2000.

[AN09] Jorge M. Arevalillo and Hilario Navarro. “Using Random Forests to Uncover Bivariate

Interactions in High Dimensional Small Data Sets.” In StReBio ’09: Proceedings of the

KDD-09 Workshop on Statistical and Relational Learning in Bioinformatics, pp. 3–6.

ACM, 2009.

[ANW07] Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang, and Suku Nair. “A Comparison of

Machine Learning Techniques for Phishing Detection.” In eCrime ’07: Proceedings of

the Anti-phishing Working Groups 2nd Annual eCrime Researchers Summit, pp. 60–69.

ACM, 2007.

[Att99] H. Attias. “Independent factor analysis.” Neural Comput., 11(4):803–851, 1999.

[BA97] Leonard A. Breslow and David W. Aha. “Simplifying Decision Trees: A Survey.” Knowl.

Eng. Rev., 12(1):1–40, 1997.

[Bac02] Adam Back. “HashCash – A Denial of Service Counter-Measure.”, 2002. Available

on-line: http://www.hashcash.org/papers/hashcash.pdf (visited 11/2009).

187

188 BIBLIOGRAPHY

[BB05a] Michael W. Berry and Murray Browne. “Email Surveillance Using Non-negative Matrix

Factorization.” Comput. Math. Organ. Theory, 11(3):249–264, 2005.

[BB05b] Michael W. Berry and Murray Browne. Understanding Search Engines: Mathematical

Modeling and Text Retrieval (Software, Environments, Tools). Society for Industrial

and Applied Mathematics, 2nd edition, 2005.

[BBL07] Michael W. Berry, Murray Browne, Amy N. Langville, Paul V. Pauca, and Robert J.

Plemmons. “Algorithms and Applications for Approximate Nonnegative Matrix Fac-

torization.” Computational Statistics & Data Analysis, 52(1):155–173, 2007.

[BC04] Jason R. Blevins and Moody T. Chu. “Updating the Centroid Decomposition with Ap-

plications in LSI.”, 2004. Unpublished manuscript, available on-line: http://jblevins.

org/research/centroid/ (visited 12/2009).

[BCF06] Andrej Bratko, Gordon V. Cormack, Bogdan Filipic, Thomas R. Lynam, and Blaz

Zupan. “Spam Filtering Using Statistical Data Compression Models.” J. Mach. Learn.

Res., 6:2673–2698, 2006.

[BDJ99] Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. “Matrices, Vector Spaces,

and Information Retrieval.” SIAM Review, 41(2):335–362, 1999.

[BDL08] Gérard Biau, Luc Devroye, and Gábor Lugosi. “Consistency of Random Forests and

Other Averaging Classifiers.” J. Mach. Learn. Res., 9:2015–2033, 2008.

[Bel61] Richard Bellman. Adaptive Control Processes: A Guided Tour. Princeton University

Press, 1961.

[Ber92] Michael W. Berry. “Large Scale Singular Value Computations.” International Journal

of Supercomputer Applications, 6:13–49, 1992.

[Ber00] Daniel J. Bernstein. “Internet Mail 2000.”, 2000. Available on-line: http://cr.yp.to/

im2000.html (visited 12/2009).

[Ber02] Pavel Berkhin. “Survey of Clustering Data Mining Techniques.” Technical report,

Accrue Software, 2002.

[BFS84] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classification and

Regression Trees. Chapman and Hall, 1984.

[BG08] Christos Boutsidis and Efstratios Gallopoulos. “SVD based Initialization: A Head Start

for Nonnegative Matrix Factorization.” Pattern Recogn., 41(4):1350–1362, 2008.

[BH08] Peter Bühlmann and Torsten Hothorn. “Boosting Algorithms: Regularization, Predic-

tion and Model Fitting.” Statistical Science, 22:477–505, 2008.

[Bis07] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer, 2007.

[BKK06] Emmanouil Benetos, Margarita Kotti, and Constantine Kotropoulos. “Applying Su-

pervised Classifiers Based on Non-negative Matrix Factorization to Musical Instrument

Classification.” Multimedia and Expo, IEEE International Conference on, 0:2105 –

2108, 2006.

[BL97] Avrim L. Blum and Pat Langley. “Selection of Relevant Features and Examples in

Machine Learning.” Artificial Intelligence, 97:245–271, 1997.

[BL04] Michael J. A. Berry and Gordon S. Linoff. Data Mining Techniques: For Marketing,

Sales, and Customer Relationship Management. Wiley Computer Publishing, 2004.

[Boy04] Jonathan de Boyne Pollard. “Fleshing out IM2000.”, 2004. Available on-line: http:

//homepages.tesco.net/~J.deBoynePollard/Proposals/IM2000/ (visited 12/2009).

[Bra02] Matthew Brand. “Incremental Singular Value Decomposition of Uncertain Data with

Missing Values.” In ECCV ’02: Proceedings of the 7th European Conference on Com-

puter Vision-Part I, pp. 707–720. Springer, 2002.

BIBLIOGRAPHY 189

[Bra07] Max Bramer. Principles of Data Mining. Springer, 2007.

[Bra08] Roger B. Bradford. “An Empirical Study of Required Dimensionality for Large-Scale

Latent Semantic Indexing Applications.” In CIKM ’08: Proceeding of the 17th ACM

Conference on Information and Knowledge Management, pp. 153–162. ACM, 2008.

[Bre96] Leo Breiman. “Bagging Predictors.” Machine Learning, 24(2):123–140, 1996.

[Bre01] Leo Breiman. “Random Forests.” Machine Learning, 45(1):5–32, 2001.

[BS03] Alti J. Benediktsson and Johannes R. Sveinsson. “Multisource Remote Sensing Data

Classification Based on Consensus and Pruning.” IEEE Transactions on Geoscience

and Remote Sensing, 41(4):932–936, April 2003.

[BTG04] J. P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov. “Metagenes and molecular

pattern discovery using matrix factorization.” Proc Natl Acad Sci U S A, 101(12):4164–

4169, 2004.

[BTH01] Robert Burbidge, Matthew Trotter, Sean Holden, and Bernard Buxton. “Drug Design

by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis.”

Comput. Chem, 26:5–14, 2001.

[Bur98] Christopher J. C. Burges. “A Tutorial on Support Vector Machines for Pattern Recog-

nition.” Data Min. Knowl. Discov., 2(2):121–167, 1998.

[BWG08] Kanishka Bhaduri, Ran Wolff, Chris Giannella, and Hillol Kargupta. “Distributed

Decision-Tree Induction in Peer-to-Peer Systems.” Stat. Anal. Data Min., 1(2):85–103,

2008.

[BZF06] Robert F. Battisti, Yanqiang Zhong, Lanyan Fang, Seth Gibbs, Jie Shen, Janos Nadas,

Guisheng Zhang, and Duxin Sun. “Modifying the Sugar Moieties of Daunorubicin

Overcomes P-gp-Mediated Multidrug Resistance.” J. Mol. Pharm, 220(4598):671–680,

2006.

[CB91] Peter Clark and Robin Boswell. “Rule Induction with CN2: Some Recent Improve-

ments.” In EWSL-91: Proceedings of the European Working Session on Learning on

Machine Learning, pp. 151–163. Springer, 1991.

[CC01] Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling. Chapman & Hall,

2001.

[CCK00] Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz,

Colin Shearer, and Rudiger Wirth. “CRISP-DM 1.0 Step-by-Step Data Mining Guide.”

Technical report, The CRISP-DM consortium, 2000.

[CCU06] Madhusudhanan Chandrasekaran, Ramkumar Chinchani, and Shambhu Upadhyaya.

“PHONEY: Mimicking User Response to Detect Phishing Attacks.” In WOWMOM’

06: Proceedings of the 2006 International Symposium on World of Wireless, Mobile and

Multimedia Networks, pp. 668–672. IEEE Computer Society, 2006.

[CF01] Moody T. Chu and Robert E. Funderlic. “The Centroid Decomposition: Relationships

between Discrete Variational Decompositions and SVDs.” SIAM J. Matrix Anal. Appl.,

23(4):1025–1044, 2001.

[CFV07] Pablo Castells, Miriam Fernandez, and David Vallet. “An Adaptation of the Vector-

Space Model for Ontology-Based Information Retrieval.” IEEE Transactions on Knowl-

edge and Data Engineering, 19(2):261–272, 2007.

[CGO06] Patricia de Cerqueira Lima, Alexander Golbraikh, Scott Oloff, Yunde Xiao, and Alexan-

der Tropsha. “Combinatorial QSAR Modeling of P-Glycoprotein Substrates.” J. Chem.

Inf. Model., 46(3):1245–1254, 2006.

[CH67] Thomas M. Cover and P. E. Hart. “Nearest Neighbor Pattern Classification.” IEEE

Transactions on Information Theory, 13(1):21–27, 1967.

190 BIBLIOGRAPHY

[CH95] Thomas M. Cover and P. E. Hart. “Nearest Neighbor Pattern Classification.” IEEE

Transactions on Information Theory, 8(6):373–389, 1995.

[Cha92] Tony Chan. “An Improved Algorithm for Computing the Singular Value Decomposi-

tion.” Trans. Math. Soft., 8:72 – 83, 1992.

[Che97] Steve Cherry. “Some Comments on Singular Value Decomposition Analysis.” Journal

of Climate, 10(7):1759–1761, 1997.

[Che09] ChemDiv. “ChemDiv: Chemical Shop.”, 2009. Available on-line: http://chemdiv.

emolecules.com (visited 12/2009).

[CHN04] M. Catral, Lixing Han, Michael Neumann, and R. J. Plemmons. “On reduced rank

nonnegative matrix factorization for symmetric nonnegative matrices.” Linear Algebra

and its Applications, 393:107 – 126, 2004. Special Issue on Positivity in Linear Algebra.

[CHS97] Peter Cabena, Pablo Hadjnian, Rolf Stadler, Jaap Verhees, and Alessandro Zanasi.

Discovering Data Mining: From Concept to Implementation. Prentice Hall, 1997.

[CKY08] Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina. “An Empirical Evaluation

of Supervised Learning in High Dimensions.” In Andrew McCallum and Sam Roweis,

editors, ICML’ 2008: Proceedings of the 25th International Conference on Machine

Learning, pp. 96–103. Omnipress, 2008.

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Ma-

chines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm (vis-

ited 12/2009).

[CL05] Gordon V. Cormack and Thomas R. Lynam. “TREC 2005 Spam Public Corpora.”,

2005. Available on-line: http://plg.uwaterloo.ca/cgi-bin/cgiwrap/gvcormac/foo

(visited 12/2009).

[Coh95] William W. Cohen. “Fast Effective Rule Induction.” In ICML’ 95: Proceedings of the

12th International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann,

1995.

[Coh09] William W. Cohen. “The Enron Email Dataset.”, 2009. Available on-line: http:

//www.cs.cmu.edu/~enron (visited 12/2009).

[Cor07] Gordon V. Cormack. “Email Spam Filtering: A Systematic Review.” Foundations and

Trends in Information Retrieval, 1(4):335–455, 2007.

[CPS07] Krzysztof J. Cios, Witold Pedrycz, Roman W. Swiniarski, and Lukasz A. Kurgan. Data

Mining: A Knowledge Discovery Approach. Springer, 2007.

[CS93] Scott Cost and Steven Salzberg. “A Weighted Nearest Neighbor Algorithm for Learning

with Symbolic Features.” Mach. Learn., 10(1):57–78, 1993.

[CS00] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines

and other Kernel-based Learning Methods. Cambridge University Press, 2000.

[CS02] Koby Crammer and Yoram Singer. “On the Algorithmic Implementation of Multiclass

Kernel-based Vector Machines.” J. Mach. Learn. Res., 2:265–292, 2002.

[Cup81] J. J. M. Cuppen. “A Divide and Conquer Method for the Symmetric Tridiagonal

Eigenproblem.” Numer. Math., 36:177–195, 1981.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks.” Machine Learning,

20(3):273–297, 1995.

[CXM05] Zhan Chuan, Lu Xianliang, Hou Mengshu, and Zhou Xu. “A LVQ-based Neural Network

Anti-spam Email Approach.” SIGOPS Oper. Syst. Rev., 39(1):34–39, 2005.

[DA06] Ramon Diaz-Uriarte and Sara Alvarez de Andres. “Gene Selection and Classification

of Microarray Data Using Random Forest.” BMC Bioinformatics, 7(1):3, 2006.

BIBLIOGRAPHY 191

[Das01] Sanmay Das. “Filters, Wrappers and a Boosting-based Hybrid for Feature Selection.”

In ICML ’01: Proceedings of the 18th International Conference on Machine Learning,

pp. 74–81. Morgan Kaufmann Publishers Inc., 2001.

[DCC05] Sarah Jane Delany, Pádraig Cunningham, and Lorcan Coyle. “An Assessment of Case-

Based Reasoning for Spam Filtering.” Artif. Intell. Rev., 24(3-4):359–378, 2005.

[DCD05] Sarah Jane Delany, Padraig Cunningham, Dónal Doyle, and Anton Zamolotskikh. “Gen-

erating Estimates of Classification Confidence for a Case-Based Spam Filter.” In IC-

CBR 05: Proceedings of the 6th International Conference on Case-Based Reasoning,

pp. 177–190, 2005.

[DDF90] Scott C. Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and

Richard A. Harshman. “Indexing by Latent Semantic Analysis.” Journal of the Amer-

ican Society for Information Science, 41:391–407, 1990.

[Dem97] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[Det04] Marcel Dettling. “BagBoosting for Tumor Classification with Gene Expression Data.”

Bioinformatics, 20(18):3583+, 2004.

[DF95] Karsten M. Decker and Sergio Focardi. “Technology Overview: a Report on Data Min-

ing.” Technical report, Swiss Federal Institute of Technology (ETH Zurich) Technical

Report CSCS TR-95-02, 1995.

[DGG07] Daniel Delling, Marco Gaertler, Robert Görke, Zoran Nikoloski, and Dorothea Wagner.

“How to Evaluate Clustering Techniques.” Technical report, University of Karlsruhe,

Facultiy of Computer Science, 2007.

[DGN03] Cynthia Dwork, Andrew Goldberg, and Moni Naor. “On Memory-Bound Functions

for Fighting Spam.” In In Proceedings of the 23rd Annual International Cryptology

Conference (CRYPTO 2003), pp. 426–444. Springer, 2003.

[DHS01] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd

Edition). Wiley-Interscience, 2001.

[Die98] Thomas G. Dietterich. “Approximate Statistical Tests for Comparing Supervised Clas-

sification Learning Algorithms.” Neural Computation, 10:1895–1923, 1998.

[Die00] Thomas G. Dietterich. “An Experimental Comparison of Three Methods for Construct-

ing Ensembles of Decision Trees: Bagging, Boosting, and Randomization.” J. Mach.

Learn. Res., 40(2):139–157, 2000.

[Die02] Thomas G. Dietterich. “Ensemble Learning.” In The Handbook of Brain Theory and

Neural Networks, pp. 405–406. MIT Press, Cambridge, MA, 2nd edition, 2002.

[DIP06] Elodie Dubus, Ismail Ijjaali, Francois Petitet, and Andre Michel. “In Silico Classification

of hERG Channel Blockers: a Knowledge-Based Strategy.” ChemMedChem, 1(7):662,

2006.

[DJT08] Michael A. Demel, Andreas G.K. Janecek, Khac-Minh Thai, Gerhard F. Ecker, and

Wilfried N. Gansterer. “Predictive QSAR Models for Polyspecific Drug Targets: The

Importance of Feature Selection.” Current Computer - Aided Drug Design, 4(2):91–110,

2008.

[DL03] Manoranjan Dash and Huan Liu. “Consistency-based Search in Feature Selection.”

Artif. Intell., 151(1-2):155–176, 2003.

[DLM00] Manoranjan Dash, Huan Liu, and Hiroshi Motoda. “Consistency-based Feature Selec-

tion.” In PADKK ’00: Proceedings of the 4th Pacific-Asia Conference on Knowledge

Discovery and Data Mining, Current Issues and New Applications, pp. 98–109. Springer,

2000.

[DLP06] Chris Ding, Tao Li, Wei Peng, and Haesun Park. “Orthogonal nonnegative matrix

t-factorizations for clustering.” In KDD ’06: Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining, pp. 126–135, 2006.

192 BIBLIOGRAPHY

[DM01] Inderjit S. Dhillon and Dharmendra S. Modha. “Concept Decompositions for Large

Sparse Text Data Using Clustering.” J. Mach. Learn. Res., 42(1):143–175, 2001.

[DMP08] James W. Demmel, Osni A. Marques, Beresford N. Parlett, and Christof Vömel. “Per-

formance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers.” SIAM J.

Sci. Comput., 30(3):1508–1526, 2008.

[Dom99] Pedro Domingos. “MetaCost: A General Method for Making Classifiers Cost-Sensitive.”

In SIGKDD ’99: Proceedings of the 5th International ACM Conference on Knowledge

Discovery and Data Mining, pp. 155–164. ACM Press, 1999.

[DS05] Inderjit S. Dhillon and Suvrit Sra. “Generalized Nonnegative Matrix Approximations

with Bregman Divergences.” Advances in Neural Information Processing Systems,

18:283–290, 2005.

[Dum91] Susan T. Dumais. “Improving the Retrieval of Information from External Sources.”

Behavior Research Methods, Instruments, & Computers, 23(2):229–236, 1991.

[Dun02] Margaret H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall,

2002.

[DW08] Karthik Devarajan and Guoli Wang. “Parallel Implementation of Nonnegative Matrix

Factorization (NMF) Algorithms using High-Performance Computing (HPC) Cluster.”

In Proceedings of the 39th Symposium on the Interface: Computing Science and Statis-

tics. Theme: Systems Biology, pp. 23–26, 2008.

[Dy07] Jennifer G. Dy. “Unsupervised Feature Selection.” In Computational Methods of Feature

Selection, pp. 19–39. in Computational Methods of Feature Selection edited by Huan

Liu and Hiroshi Motoda, Chapman and Hall/CRC Press, 2007.

[DZ04] Saso Dzeroski and Bernard Zenko. “Is Combining Classifiers with Stacking Better than

Selecting the Best One?” Mach. Learn., 54(3):255–273, 2004.

[DZW09] Chao Dong, Huijie Zhao, and Wei Wang. “Parallel Nonnegative Matrix Factorization

Algorithm on the Distributed Memory Platform.” International Journal of Parallel

Programming, 2009.

[EBS06] Sean Ekins, Konstantin V. Balakin, Nikolay Savchuk, and Yan Ivanenkov. “Insights

for Human Ether-a-go-go-related Gene Potassium Channel Inhibition using Recur-

sive Partitioning and Kohonen and Sammon Mapping Techniques.” J. Med. Chem.,

49(17):5059–71, 2006.

[Edu09] Edusoft-LC. “Molconn-Z.” Available on-line: http://www.edusoft-lc.com/molconn

(visited 12/2009), 2009.

[ES05] Roberto Esposito and Lorenza Saitta. “Experimental Comparison Between Bagging

and Monte Carlo Ensemble Classification.” In ICML ’05: Proceedings of the 22nd

international conference on Machine learning, pp. 209–216. ACM, 2005.

[EY36] Carl Eckart and Gale Young. “The Approximation of One Matrix by Another of Lower

Rank.” Psychometrika, 1(3):211–218, 1936.

[FC04] George Forman and Ira Cohen. “Learning from Little: Comparison of Classifiers Given

Little Training.” In PKDD ’04: Proceedings of the 8th European Conference on Prin-

ciples and Practice of Knowledge Discovery in Databases, pp. 161–172. Springer, 2004.

[FC08] Kai-Yao Chang Fi-John Chang and Li-Chiu Chang. “Counterpropagation Fuzzy-neural

Network for City Flood Control System.” Journal of Hydrology, 358(1-20):24–34, 2008.

[FGW01] Usama Fayyad, Georges G. Grinstein, and Andreas Wierse. Information Visualization

in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers Inc., 2001.

[FHR02] César Ferri, José Hernández-Orallo, and M. José Ramı́rez-Quintana. “From Ensemble

Methods to Comprehensible Models.” In DS ’02: Proceedings of the 5th International

Conference on Discovery Science, pp. 165–177. Springer, 2002.

BIBLIOGRAPHY 193

[FID07] Florentino Fdez-Riverola, Eva L. Iglesias, Fernando Diaz, José R. Mendez, and Juan M.

Corchado. “SpamHunting: An Instance-Rased reasoning System for Spam Labelling

and Filtering.” Decis. Support Syst., 43(3):722–736, 2007.

[FL95] Christos Faloutsos and King-Ip Lin. “FastMap: A Fast Algorithm for Indexing, Data-

Mining and Visualization of Traditional and Multimedia Datasets.” In SIGMOD ’95:

Proceedings of the 1995 ACM SIGMOD International Conference on Management of

Data, pp. 163–174. ACM, 1995.

[Fle04] Francois Fleuret. “Fast Binary Feature Selection with Conditional Mutual Information.”

J. Mach. Learn. Res., 5:1531–1555, 2004.

[FPS96] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “From Data Mining

to Knowledge Discovery: An Overview.” In Advances in Knowledge Discovery and Data

Mining, pp. 1–34. Menlo Park, AAAI Press, 1996.

[FS97] Yoav Freund and Robert E. Schapire. “A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting.” Journal of Computer and System Science,

55(1):119–139, 1997.

[FS06] Ronen Feldman and James Sanger. The Text Mining Handbook: Advanced Approaches

in Analyzing Unstructured Data. Cambridge University Press, 2006.

[FST07] Ian Fette, Norman Sadeh, and Anthony Tomasic. “Learning to Detect Phishing Emails.”

In WWW ’07: Proceedings of the 16th International Conference on World Wide Web,

pp. 649–656. ACM, 2007.

[Fue99] Johannes Fuernkranz. “Separate-and-Conquer Rule Learning.” Artif. Intell. Rev.,

13(1):3–54, 1999.

[Fuk90] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition, Second Edition.

Academic Press, 1990.

[FW94] Johannes Fürnkranz and Gerhard Widmer. “Incremental Reduced Error Pruning.” In

ICML ’94: Proceedings of the 11th International Conference of Machine Learning, pp.

70–77, 1994.

[FYS09] Weiwei Fang, Bingru Yang, Dingli Song, and Zhigang Tang. “A New Scheme on Privacy-

Preserving Distributed Decision-Tree Mining.” In ETCS ’09: Proceedings of the 2009

First International Workshop on Education Technology and Computer Science, pp. 517–

520. IEEE Computer Society, 2009.

[Gar07] Al Gardner. “defNULLspam.” http://www.defnullspam.com/, 2007.

[GCL09] Yongming Guo, Dehua Chen, and Jiajin Le. “An Extended Vector Space Model for XML

Information Retrieval.” In WKDD ’09: Proceedings of the 2009 Second International

Workshop on Knowledge Discovery and Data Mining, pp. 797–800. IEEE Computer

Society, 2009.

[GDB08] Vincent Garcia, Eric Debreuve, and Michel Barlaud. “Fast k-Nearest-Neighbor Search

Using GPU.” In Proceedings of the CVPR Workshop on Computer Vision on GPU,

2008.

[GDD01] Arthur Gretton, Manuel Davy, Arnaud Doucet, and Peter J. W. Rayner. “Nonsta-

tionary Signal Classification Using Support Vector Machines.” In IEEE Workshop on

Statistical Signal Processing Proceedings, pp. 305–308, 2001.

[GE03] Isabelle Guyon and Andre Elisseeff. “An Introduction to Variable and Feature Selec-

tion.” J. Mach. Learn. Res., 3:1157–1182, 2003.

[Gee03] Kevin R. Gee. “Using Latent Semantic Indexing to Filter Spam.” In ACM Symposium

on Applied Computing, Data Mining Track, pp. 460–464, 2003.

[GG91] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression.

Kluwer Academic Publishers, 1991.

194 BIBLIOGRAPHY

[GGM08] Michael S. Gashler, Christophe Giraud-Carrier, and Tony Martinez. “Decision Tree

Ensemble: Small Heterogeneous is Better than Large Homogeneous.” In ICMLA ’08:

Proceedings of the 7th International Conference on Machine Learning and Applications,

pp. 900–905, 2008.

[GGN06] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti Zadeh. Feature Extraction:

Foundations and Applications (Studies in Fuzziness and Soft Computing). Springer,

2006.

[GHI05] Wilfried N. Gansterer, Helmut Hlavacs, Michael Ilger, Peter Lechner, and Jürgen

Strauß. “Token Buckets for Outgoing Spam Prevention.” In CNIS ’05: Proceedings

of the IASTED International Conference on Communication, Network, and Informa-

tion Security. ACTA Press, 2005.

[GIL05] Wilfried N. Gansterer, Michael Ilger, Peter Lechner, Robert Neumayer, and Jürgen

Strauß. “Anti-Spam Methods - State of the Art.” Technical Report FA384018-1, Insti-

tute of Distributed and Multimedia Systems, Faculty of Computer Science, University

of Vienna, 2005.

[GJL07] Wilfried N. Gansterer, Andreas G.K. Janecek, and Peter Lechner. “A Reliable

Component-based Architecture for E-Mail Filtering.” In ARES ’07: Proceedings of

the 2nd International Conference on Availability, Reliability and Security, pp. 43–50.

IEEE Computer Society, 2007.

[GJN08] Wilfried N. Gansterer, Andreas G.K. Janecek, and Robert Neumayer. “Spam Filtering

Based on Latent Semantic Indexing.” In Michael W. Barry and Malu Castellanos,

editors, Survey of Text Mining II: Clustering, Classification, and Retrieval, pp. 165–

183. Springer, 2008.

[GK86] Paul Geladi and Bruce R. Kowalski. “Partial Least-squares Regression: A Tutorial.”

Analytica Chimica Acta, 185:1–17, 1986.

[GKK03] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. Introduction to

Parallel Computing (2nd Edition). Addison Wesley, 2003.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Professional, 1989.

[Gom04] Jonatan Gomez. “Evolution of Fuzzy Rule Based Classifiers.” In Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO) 2004, pp. 1150–1161,

2004.

[Goo09] Google. “Google Safe Browsing for Firefox.”, 2009. Available on-line: http://www.

google.com/tools/firefox/safebrowsing (visited 12/2009).

[Gor83] Richard L. Gorsuch. Factor Analysis. Lawrence Erlbaum, 2nd edition, 1983.

[GP09] Wilfried N. Gansterer and David Pölz. “E-Mail Classification for Phishing Defense.”

In ECIR ’09: Proceedings of the 31th European Conference on Information Retrieval

Research, Lecture Notes in Computer Science (5478), pp. 449–460. Springer, 2009.

[Gro09] Chemical Computing Group. “Molecular Operating Environment (MOE).” Available

on-line: http://www.chemcomp.com/software.htm (visited 12/2009), 2009.

[GSV02] David Guillamet, Bernt Schiele, and Jordi Vitria. “Analyzing Non-Negative Matrix

Factorization for Image Classification.” In ICPR ’02: In Proceedings of the 16th Inter-

national Conference on Pattern Recognition, pp. 116–119, 2002.

[Gup09] Satya P. Gupta. QSAR and Molecular Modeling. Springer, 2009.

[Guy08] Isabelle Guyon. “Practical Feature Selection: from Correlation to Causality.” In Mining

Massive Data Sets for Security: Advances in Data Mining, Search, Social Networks and

Text Mining, and their Applications to Security, pp. 27–43. IOS Press, 2008.

[GV96] Gene H. Golub and Charles F. Van Loan. Matrix Computations (Johns Hopkins Studies

in Mathematical Sciences). The Johns Hopkins University Press, October 1996.

BIBLIOGRAPHY 195

[GVS03] David Guillamet, Jordi Vitria, and Bernt Schiele. “Introducing a weighted non-negative

matrix factorization for image classification.” Pattern Recognition Letters, 24(14):2447

– 2454, 2003.

[GWB02] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. “Gene Se-

lection for Cancer Classification using Support Vector Machines.” Machine Learning,

46(1):389–422, 2002.

[Hal00] Mark A. Hall. “Correlation-based Feature Selection for Discrete and Numeric Class

Machine Learning.” In ICML ’00: Proceedings of the 17th International Conference on

Machine Learning, pp. 359–366. Morgan Kaufmann Publishers Inc., 2000.

[Har03] E. Harris. “The Next Step in the Spam Control War: Greylisting.” Technical

report, PureMagic Software, 2003. http://projects.puremagic.com/greylisting/

whitepaper.html.

[HDB05] Torsten Hothorn, Marcel Dettling, and Peter Bühlmann. “Ensemble Methods of Com-

putational Inference.” In Bioinformatics and Computational Biology Solutions using R

and Bioconductor, pp. 293–312. Springer, 2005.

[Hec87] Robert Hecht-Nielsen. “Counterpropagation Networks.” Applied Optics, pp. 4979–4984,

1987.

[HFS01] Richard D. Hull, Eugene M. Fluder, Suresh B. Singh, Robert B. Nachbar, Robert P.

Sheridan, and Simon K. Kearsley. “Latent semantic structure indexing (LaSSI) for

defining chemical similarity.” J Med Chem, 44(8):1177–1184, 2001.

[HHW05] Ramin Homayouni, Kevin Heinrich, Lai Wei, and Michael W. Berry. “Gene Clustering

by Latent Semantic Indexing of MEDLINE Abstracts.” Bioinformatics, 21(1):104–115,

2005.

[Hid05] José Maria Gomez Hidalgo. “Machine Learning for Spam Detection References.”, 2005.

Available on-line: http://www.esi.uem.es/~jmgomez/spam/MLSpamBibliography.htm

(visited 12/2009).

[Hir97] Sugihara Hiroshi. “What is Occam’s Razor?”, 1997. Available on-line: http://math.

ucr.edu/home/baez/physics/General/occam.html (visited 12/2009).

[HK06] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques, 2nd ed.

Morgan Kaufmann Publishers, 2006.

[HKK01] Eui-Hong Han, George Karypis, and Vipin Kumar. “Text Categorization Using Weight

Adjusted k-Nearest Neighbor Classification.” In PAKDD ’01: Proceedings of the 5th

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 53–65. Springer,

2001.

[HKK06] Te-Ming Huang, Vojislav Kecman, and Ivica Kopriva. Kernel Based Algorithms for Min-

ing Huge Data Sets: Supervised, Semi-supervised, and Unsupervised Learning (Studies

in Computational Intelligence). Springer, 2006.

[HKO01] Aapo Hyvarinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis. J.

Wiley, 2001.

[HL95] Richard J. Hanson and Charles L. Lawson. Solving Least Squares Problems. SIAM,

1995.

[HMM07] Jianping Huang, Guangli Ma, Ishtiaq Muhammad, and Yiyu Cheng. “Identifying P-

Glycoprotein Substrates Using a Support Vector Machine Optimized by a Particle

Swarm.” J. Chem. Inf. Model., 47(4):1638–1647, 2007.

[HMO06] Tom Howley, Michael G. Madden, Marie-Louise O’Connell, and Alan G. Ryder. “The

Effect of Principal Component Analysis on Machine Learning Accuracy with High-

dimensional Spectral Data.” Knowledge Based Systems, 19(5):363–370, 2006.

[Hol93] Robert C. Holte. “Very Simple Classification Rules Perform Well on Most Commonly

Used Datasets.” J. Mach. Learn. Res., 11(1):63–90, 1993.

196 BIBLIOGRAPHY

[Hoy04] Patrik O. Hoyer. “Non-negative Matrix Factorization with Sparseness Constraints.”

Journal of Machine Learning Research, 5:1457–1469, 2004.

[HP07] Xiaohua Hu and Yi Pan. Knowledge Discovery in Bioinformatics: Techniques, Methods,

and Applications (Wiley Series in Bioinformatics). John Wiley & Sons, Inc., 2007.

[HSL02] William H. Hsu, Cecil P. Schmidt, and James A. Louis. “Genetic Algorithm Wrap-

pers For Feature Subset Selection In Supervised Inductive Learning.” In GECCO ’02:

Proceedings of the Genetic and Evolutionary Computation Conference, p. 680. Morgan

Kaufmann Publishers Inc., 2002.

[HSN01] Richard D. Hull, Suresh B. Singh, Robert B. Nachbar, Robert P. Sheridan, Simon K.

Kearsley, and Eugene M. Fluder. “Chemical Similarity Searches using Latent Se-

mantic Structure Indexing (LaSSI) and Comparison to TOPOSIM.” J. Med. Chem.,

44(8):1185–1191, 2001.

[HSR08] Hans-Dieter Höltje, Wolfgang Sippl, Didier Rognan, and Gerd Folkers. Molecular Mod-

eling: Basic Principles and Applications, 3rd Edition. John Wiley & Sons, Inc., 2008.

[HTF02] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer, 2002.

[Ioa03] John Ioannidis. “Fighting Spam by Encapsulating Policy in Email addresses.” In

Proceedings of the 10th Annual Network and Distributed Systems Security Conference

(NDSS 2003), pp. 8–8, 2003.

[ISG06] Michael Ilger, Jürgen Strauß, Wilfried N. Gansterer, and Christian Proschinger. “The

Economy of Spam.” Technical Report FA384018-6, Institute of Distributed and Multi-

media Systems, Faculty of Computer Science, University of Vienna, 2006.

[Iva07] Ovidiu Ivanciuc. “Applications of Support Vector Machines in Chemistry.” Rev. Com-

put. Chem., 23:291–400, 2007.

[JC99] Jacek Jarmulak and Susan Craw. “Genetic Algorithms for Feature Selection and

Weighting.” In IJCAI ’99: Proceedings of the 1999 Workshop on Automating the Con-

struction of Case Based Reasoners, pp. 28–33, 1999.

[JCW07] Liangxiao Jiang, Zhihua Cai, Dianhong Wang, and Siwei Jiang. “Survey of Improving K-

Nearest-Neighbor for Classification.” Fuzzy Systems and Knowledge Discovery, Fourth

International Conference on, 1:679–683, 2007.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice Hall,

1988.

[Jen77] Robert I. Jennrich. “Stepwise Discriminant Analysis.” In Methods for Digital Comput-

ers, volume 3, pp. 76–96. Wiley, New York, 1977.

[JF87] William P. Jones and George W. Furnas. “Pictures of Relevance: A Geometric Analysis

of Similarity Measures.” Journal of the American Society for Information Science,

38(6):420–442, 1987.

[JG09] Andreas G.K. Janecek and Wilfried N. Gansterer. “E-Mail Classification based on

Non-Negative Matrix Factorization.” In Text Mining 2009, 2009.

[JGD08] Andreas G.K. Janecek, Wilfried N. Gansterer, Michael Demel, and Gerhard F. Ecker.

“On the Relationship Between Feature Selection and Classification Accuracy.” JMLR:

Workshop and Conference Proceedings, 4:90–105, 2008.

[JGK08] Andreas G.K. Janecek, Wilfried N. Gansterer, and K. Ashwin Kumar. “Multi-Level

Reputation-Based Greylisting.” In ARES ’08: Proceedings of the 3rd International

Conference on Availability, Reliability and Security, pp. 10–17. IEEE Computer Society,

2008.

[Jia04] Wenxin Jiang. “Boosting with Noisy Data: Some Views from Statistical Theory.”

Neural Comput., 16(4):789–810, 2004.

BIBLIOGRAPHY 197

[Joa98] Thorsten Joachims. “Text Categorization with Support Vector Machines: Learning with

Many Relevant Features.” In ECML’98, Proceedings of the 10th European Conference

on Machine Learning, pp. 137–142. Springer, 1998.

[Jol02] Ian T. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2002.

[Jon72] Karen Sparck Jones. “A Statistical Interpretation of Term Specificity and its Applica-

tion to Retrieval.” Journal of Documentation, 28(1):11–20, 1972.

[JW07] Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Analysis

(6th Edition). Prentice Hall, 2007.

[Kan07] Khushboo Kanjani. “Parallel Non Negative Matrix Factorization for Document

Clustering.”, 2007. Available on-line: http://parasol.tamu.edu/people/khush/

DocumentClustering.pdf (visited 12/2009).

[Kas80] Gordon V. Kass. “An Exploratory Technique for Investigating Large Quantities of

Categorical Data.” Journal of Applied Statistics, 29(2):119–127, 1980.

[KC00] Hillol Kargupta and Philip Chan. Advances in Distributed and Parallel Knowledge

Discovery. AAAI Press, 2000.

[Kes03] György M. Keserü. “Prediction of hERG Potassium Channel Affinity by Traditional

and Hologram qSAR Methods.” Bioorg. Med. Chem. Lett., 13(16):2773–5, Aug 18 2003.

[KGV83] Scott Kirkpatrick, Daniel C. Gelatt, and Mario P. Vecchi. “Optimization by Simulated

Annealing.” Science, 220:661–680, 1983.

[KHY08] Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, and Vipin Kumar. Next

Generation of Data Mining. Chapman & Hall, 2008.

[KJ97] Ron Kohavi and George H. John. “Wrappers for Feature Subset Selection.” Artificial

Intelligence, 97(1-2):273–324, 1997.

[KJS04] Hillol Kargupta, Anupam Joshi, Krishnamoorthy Sivakumar, and Yelena Yesha. Data

Mining: Next Generation Challenges and Future Directions. AAAI/MIT Press, 2004.

[KL93] Shigeru Katagiri and Chin-Hui Lee. “A New Hybrid Algorithm for Speech Recognition

Based on HMM Segmentation and Learning Vector Quantization.” Speech and Audio

Processing, IEEE Transactions on, 1(4):421–430, 1993.

[KLL03] Oleg Kolesnikov, Wenke Lee, and Richard Lipton. “Filtering spam using search en-

gines.” Technical report, Georgia Institute of Technology, 2003.

[Koh95] Ron Kohavi. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and

Model Selection.” In IJCAI ’95: Proceedings of the 1995 International Joint Conference

on Artificial Intelligence, pp. 1137–1145, 1995.

[Koh00] Teuvo Kohonen. Self-Organizing Maps. Springer, 3rd edition, 2000.

[KOS09] Andreas Köhler, Matthias Ohrnberger, and Frank Scherbaum. “Unsupervised Feature

Selection and General Pattern Discovery using Self-organizing Maps for Gaining Insights

into the Nature of Seismic Wavefields.” Comput. Geosci., 35(9):1757–1767, 2009.

[Kot07] Sotiris B. Kotsiantis. “Supervised Machine Learning: A Review of Classification Tech-

niques.” Informatica, 31(3):249–268, 2007.

[KP04] Sotiris B. Kotsiantis and Panayiotis E. Pintelas. “Increasing the Classification Accuracy

of Simple Bayesian Classifier.” Lecture Notes in Artificial Intelligence, 31(3192):198–

207, 2004.

[KP08] Hyunsoo Kim and Haesun Park. “Nonnegative Matrix Factorization Based on Alter-

nating Nonnegativity Constrained Least Squares and Active Set Method.” SIAM J.

Matrix Anal. Appl., 30(2):713–730, 2008.

[KR92] Kenji Kira and Larry A. Rendell. “A Practical Approach to Feature Selection.” In

Proceedings of the 9th International Workshop on Machine Learning. Morgan Kaufmann

Publishers Inc., 1992.

198 BIBLIOGRAPHY

[KR05] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction

to Cluster Analysis. Wiley, 2005.

[Kra98] Richard Kramer. Chemometric Techniques for Quantitative Analysis. Marcel-Dekker,

1998.

[KS93] Ben J.A . Kroese and Patrick P. van der Smagt. An Introduction to Neural Networks.

The University of Amsterdam, 1993.

[KS96] Daphne Koller and Mehran Sahami. “Toward Optimal Feature Selection.” Technical

report, Stanford InfoLab, 1996.

[Lab99] Paul Labute. “Binary QSAR: A New Method for the Determination of Quantitative

Structure Activity Relationships.” In Pacific Symposium on Biocomputing, pp. 444–455,

1999.

[Lai07] Chih-Chin Lai. “An Empirical Study of Three Machine Learning Methods for Spam

Filtering.” Know.-Based Syst., 20(3):249–254, 2007.

[Lan05] Amy N. Langville. “The Linear Algebra Behind Search Engines.” Journal of Online

Mathematics and its Applications (JOMA), Online Module, 2005.

[Lar07] Daniel T. Larose. Data Mining Methods and Models. John Wiley & Sons, Inc., 2007.

[LBG80] Y. Linde, A. Buzo, and Robert M. Gray. “An Algorithm for Vector Quantizer Design.”

IEEE Transactions on Communications, pp. 702–710, 1980.

[LCL07] Xin Li, William K. W. Cheung, Jiming Liu, and Zhili Wu. “A Novel Orthogonal

NMF-based Belief Compression for POMDPs.” In ICML ’07: Proceedings of the 24th

International Conference on Machine Learning, pp. 537–544. ACM, 2007.

[LDH06] Wenyin Liu, Xiaotie Deng, Guanglin Huang, and Anthony Y. Fu. “An Antiphishing

Strategy Based on Visual Similarity Assessment.” IEEE Internet Computing, 10(2):58–

65, 2006.

[LDL97] Michael L. Littman, Susan T. Dumais, and Thomas K. Landauer. “Automatic Cross-

linguistic Information Retrieval Using Latent Semantic Indexing.” In SIGIR ’97: Pro-

ceedings of the 19th ACM Conference on Research and Development in Information

Retrieval, pp. 16–23, 1997.

[Lea01] Andrew Leach. Molecular Modelling: Principles and Applications (2nd Edition). Pren-

tice Hall, 2001.

[Lev05] John R. Levine. “Experiences with Greylisting.” In CEAS ’05: Proceedings of the 2nd

Conference on Email and Anti-spam, 2005.

[Lin07] Chih-Jen Lin. “Projected Gradient Methods for Nonnegative Matrix Factorization.”

Neural Comput., 19(10):2756–2779, 2007.

[Liu07] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data-

Centric Systems and Applications). Springer, 2007.

[LL90] Thomas K. Landauer and Michael L. Littman. “Fully Automatic Cross-Language Doc-

ument Retrieval Using Latent Semantic Indexing.” In Proceedings of the 6th Annual

Conference of the UW Centre for the New Oxford English Dictionary and Text Research,

pp. 31–38, 1990.

[LLD04] Thomas K. Landauer, Darrell Laham, and Marcia Derr. “From Paragraph to Graph:

Latent Semantic Analysis for Information Visualization.” Proceedings of the National

Academy of Sciences of the United States of America, 101:5214–5219, 2004.

[LM98] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data

Mining. Kluwer Academic Publishers, 1998.

[LMA06] Amy N. Langville, Carl D. Meyer, and Russel Albright. “Initializations for the Nonnega-

tive Matrix Factorization.” In SIGKDD ’06: Proceedings of the 12th ACM International

Conference on Knowledge Discovery and Data Mining, 2006.

BIBLIOGRAPHY 199

[LS96] Huan Liu and Rudy Setiono. “A Probabilistic Approach to Feature Aelection – A Filter

Solution.” In ICML ’96: Proceedings of the 13th International Conference on Machine

Learning, pp. 319–327. Morgan Kaufmann, 1996.

[LS99] Daniel D. Lee and H. Sebastian Seung. “Learning Parts of Objects by Non-negative

Matrix Factorization.” Nature, 401(6755):788–791, October 1999.

[LS01] Daniel D. Lee and H. Sebastian Seung. “Algorithms for Non-negative Matrix Factor-

ization.” Advances in Neural Information Processing Systems, 13:556–562, 2001.

[Ltd09] Strand Life Sciences Pvt. Ltd. “Qsar World.” Available on-line: http://www.

qsarworld.com/insilico-chemistry-chemical-descriptors.php (visited 12/2009),

2009.

[LWL03] Hua Li, Xi-Zhao Wang, and Yong Li. “Using mutual information for selecting

continuous-valued attribute in decision tree learning.” In ICMLC’ 03: Proceedings

of the 2003 International Conference on Machine Learning and Cybernetics, pp. 1496–

1499, 2003.

[LY05a] Fan Li and Yiming Yang. “Using Recursive Classification to Discover Predictive Fea-

tures.” In SAC ’05: Proceedings of the 2005 ACM Symposium on Applied Computing,

pp. 1054–1058. ACM, 2005.

[LY05b] Huan Liu and Lei Yu. “Toward Integrating Feature Selection Algorithms for Classifi-

cation and Clustering.” IEEE Trans. on Knowl. and Data Eng., 17(4):491–502, 2005.

[LYU07a] H. Li, C.W. Yap, C.Y. Ung, Y. Xue, Z.R. Li, L.Y. Han, H.H. Lin, and Yu Zong Chen.

“Machine Learning Approaches for Predicting Compounds that Interact with Therapeu-

tic and ADMET Related Proteins.” Journal of Pharmaceutical Sciences, 96(11):2838–

2860, 2007.

[LYU07b] H. Li, C.W. Yap, C.Y. Ung, Y. Xue, Z.R. Li, L.Y. Han, H.H. Lin, and Yu Zong

Chen. “MODEL – Molecular Descriptor Lab: A Web-based Server for Computing

Structural and Physicochemical Features of Compounds.” Journal of Biotechnology

and Bioengineering, 2(97):389–396, 2007.

[Mat09a] The Mathworks. “Matlab Parallel Computing.” Available on-line, 2009. http://www.

mathworks.com/products/parallel-computing (visited 12/2009).

[Mat09b] The Mathworks. “Matlab Release Notes.” Available on-line, 2009. http://www.

mathworks.com/access/helpdesk/help/pdf_doc/matlab/rn.pdf (visited 12/2009).

[MBN02] Luis Carlos Molina, Llúıs Belanche, and Àngela Nebot. “Feature Selection Algorithms:

A Survey and Experimental Evaluation.” In ICDM ’02: Proceedings of the 2002 IEEE

International Conference on Data Mining, pp. 306–313. IEEE Computer Society, 2002.

[McA09] McAfee. “SiteAdvisor-Software.”, 2009. Available on-line: http://spamassassin.

apache.org/ (visited 12/2009).

[McG07] Colin McGregor. “Controlling Spam with SpamAssassin.” Linux Journal, 2007(153):9,

2007.

[McL04] G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley

Interscience, 2004.

[MCN08] E. Mejia-Roa, P. Carmona-Saez, R. Nogales, C. Vicente, M. Vazquez, X. Y. Yang,

C. Garcia, F. Tirado, and A. Pascual-Montano. “bioNMF: A Web-based Tool for

Nonnegative Matrix Factorization in Biology.” Nucleic Acids Research., 36:W523–

W528, 2008.

[Mes09] MessageLabs. “MessageLabs Intelligence.”, 2009. Available on-line: http://www.

messagelabs.com/intelligence.aspx (visited 12/2009).

[Mit98] Tom M. Mitchell. Machine Learning. McGraw-Hill Education (ISE Editions), 1998.

200 BIBLIOGRAPHY

[ML07] Zdravko Markov and Daniel T. Larose. Data Mining the Web: Uncovering Patterns in

Web Content, Structure, and Usage. Wiley-Interscience, 2007.

[Mla06] Dunja Mladenic. “Feature Selection for Dimensionality Reduction.” Subspace, Latent

Structure and Feature Selection, pp. 84–102, 2006.

[MPI09] MPI Forum MPI. “Message Passing Interface Forum.” Available on-line, 2009. http:

//www.mpi-forum.org (visited 12/2009).

[MR03] Ron Meir and Gunnar Rätsch. “An Introduction to Boosting and Leveraging.” Advanced

lectures on machine learning, pp. 118–183, 2003.

[Mur98] Sreerama K. Murthy. “Automatic Construction of Decision Trees from Data: A Multi-

Disciplinary Survey.” Data Min. Knowl. Discov., 2(4):345–389, 1998.

[NIS07] NIST. “TREC Tracks.”, 2007. Available on-line: http://trec.nist.gov/data/spam.

html (visited 12/2009).

[NIS09] NIST. “TREC Tracks.”, 2009. Available on-line: http://trec.nist.gov/tracks.html

(visited 12/2009).

[OMP09] OpenMP Architecture Review Board OMP. “OpenMP.” Available on-line, 2009. http:

//openmp.org (visited 12/2009).

[OPS09] Jie Ouyang, Nilesh Patel, and Ishwar Sethi. “Induction of Multiclass Multifeature Split

Decision Trees from Distributed Data.” Pattern Recogn., 42(9):1786–1794, 2009.

[OT08] Nikunj C. Oza and Kagan Tumer. “Classifier Ensembles: Select Real-world Spplica-

tions.” Inf. Fusion, 9(1):4–20, 2008.

[Par98] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Inc., 1998.

[PBC06] José M. Puche, José M. Beńıtez, Juan L. Castro, and Carlos J. Mantas. “Fuzzy Pairwise

Multiclass Support Vector Machines (4293).” In MICAI 2006: Advances in Artificial

Intelligence, Lecture Notes in Artificial Intelligence, pp. 562–571. Springer, 2006.

[Phi09] Phishery. “Phishery – Vendor Independent Information Security Specialists.” Available

on-line: http://phishery.internetdefence.net (visited 12/2009), 2009.

[PLT03] Simon Perkins, Kevin Lacker, James Theiler, Isabelle Guyon, and André Elisseeff.

“Grafting: Fast, Incremental Feature Selection by Gradient Descent in Function Space.”

J. Mach. Learn. Res., 3:1333–1356, 2003.

[Pop01] Lubomir Popelinsky. “Combining the Principal Components Method with Different

Learning Algorithms.” In IDDM ’01: Proceedings of the International Workshop on

Integration and Collaboration Aspects of Data Mining, Decision Support and Meta-

Learning (ECML / PDKK), 2001.

[Pow07] Warren Buckler Powell. Approximate Dynamic Programming: Solving the Curses of

Dimensionality. Wiley-Interscience, 1st edition, 2007.

[PP08] Anita Prinzie and Dirk Van den Poel. “Random Forests for Multiclass Classification:

Random MultiNomial Logit.” Expert Syst. Appl., 34(3):1721–1732, 2008.

[PT94] Pentti Paatero and Unto Tapper. “Positive Matrix Factorization: A Non-negative

Factor Model With Optimal Utilization of Error Estimates of Data Values.” Environ-

metrics, 5(2):111–126, 1994.

[PTR98] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vempala.

“Latent Semantic Indexing: A Probabilistic Analysis.” In PODS ’98: Proceedings of the

17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

pp. 159–168. ACM, 1998.

[PVR03] R. Pearlstein, R. Vaz, and D. Rampe. “Understanding the Structure-Activity Relation-

ship of the Human Ether-a-go-go-Related Gene Cardiac K+ Channel. A Model for Bad

Behavior.” J. Med. Chem., 46(11):2017–2022, 2003.

BIBLIOGRAPHY 201

[PY02] Bühlmann Peter and Bin Yu. “Analyzing Bagging.” Annals of Statistics, 30:927–961,

2002.

[Qui93] Ross J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[Rak03] Alain Rakotomamonjy. “Variable Selection Using SVM Based Criteria.” J. Mach.

Learn. Res., 3:1357–1370, 2003.

[Rid02] Greg Ridgeway. “Looking for Lumps: Boosting and Bagging for Density Estimation.”

Comput. Stat. Data Anal., 38(4):379–392, 2002.

[Rij79] C. J. van Rijsbergen. Information retrieval. Butterworths, 2nd edition, 1979.

[RK03] Marko Robnik-Šikonja and Igor Kononenko. “Theoretical and Empirical Analysis of

ReliefF and RReliefF.” Mach. Learn., 53(1-2):23–69, 2003.

[RM06] Stefan A. Robila and Lukasz G. Maciak. “A Parallel Unmixing Algorithm for Hy-

perspectral Images.” SPIE Intelligent Robots and Computer Vision XXIV, 26:6384ff,

2006.

[RM07] Stefan A. Robila and Lukasz G. Maciak. “Sequential and Parallel Feature Extraction in

Hyperspectral Data Using Nonnegative Matrix Factorization.” In Systems, Applications

and Technology Conference, 2007. LISAT 2007. IEEE Long Island, pp. 1–7, 2007.

[RM09] Stefan A. Robila and Lukasz G. Maciak. “Considerations on Parallelizing Nonnega-

tive Matrix Factorization for Hyperspectral Data Unmixing.” Geoscience and Remote

Sensing Letters, IEEE, 6(1):57–61, 2009.

[Roj96] Raul Rojas. Neural Networks - A Systematic Introduction. Springer, 1996.

[RPN06] Niall Rooney, David Patterson, and Chris Nugent. “Pruning Extensions to Stacking.”

Intell. Data Anal., 10(1):47–66, 2006.

[RRB08] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.

Kirk, and Wen mei W. Hwu. “Optimization principles and application performance

evaluation of a multithreaded GPU using CUDA.” In PPOPP ’08: Proceedings of the

13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

pp. 73–82, 2008.

[RS00] Sam T. Roweis and Lawrence K. Saul. “Nonlinear Dimensionality Reduction by Locally

Linear Embedding.” Science, 290(5500):2323–2326, 2000.

[RSD07] Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. “Precise Statements of

Convergence for AdaBoost and arc-gv.” In Proceedings of AMS-IMS-SIAM Joint Sum-

mer Research Conference: Machine Learning, Statistics, and Discovery, pp. 131–145,

2007.

[RTZ02] O. Roche, G. Trube, J. Zuegge, P. Pflimlin, A. Alanine, and G. Schneider. “A Virtual

Screening Method for Prediction of the hERG Potassium Channel Liability of Com-

pound Libraries.” ChemBioChem, 3(5):455–9, 2002.

[RW99] Vijay V. Raghavan and S. K. M. Wong. “A Critical Analysis of Vector Space Model

for Information Retrieval.” Journal of the American Society for Information Science,

37(5):279–287, 1999.

[SA06] M. Seierstad and D. K. Agrafiotis. “A QSAR Model of hERG Binding using a Large,

Diverse, and Internally Consistent Training Set.” Chem. Biol. Drug. Des., 67(4):284–

96, 2006.

[SBP06] Farial Shahnaz, Michael W. Berry, V. Paul Pauca, and Robert J. Plemmons. “Document

Clustering using Nonnegative Matrix Factorization.” Inf. Process. Manage., 42(2):373–

386, 2006.

[SC04] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.

202 BIBLIOGRAPHY

[Sch93] Cullen Schaffer. “Overfitting Avoidance as Bias.” J. Mach. Learn. Res., 10(2):153–178,

1993.

[Sch00] Gisbert Schneider. “Neural Networks are Useful Tools for Drug Design.” Neural Net-

works, 13:15–16, 2000.

[Sch03] Robert E. Schapire. “The Boosting Approach to Machine Learning: An Overview.” In

Nonlinear Estimation and Classification, chapter 8, pp. 149–173. Springer, 2003.

[Sch09] Vernon Schryver. “Distributed Checksum Clearinghouses.”, 2009. Available on-line:

http://www.rhyolite.com/dcc/ (visited 12/2009).

[SDH98] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. “A Bayesian

Approach to Filtering Junk E-Mail.” In AAAI’98: Learning for Text Categorization:

Papers from the 1998 Workshop, 1998.

[SDM06] Claudio De Stefano, Ciro D’Elia, Angelo Marcelli, and Alessandra Scotto di Frecac.

“Improving Dynamic Learning Vector Quantization.” In ICPR ’06: Proceedings of the

18th International Conference on Pattern Recognition, volume 2, pp. 804–807, 2006.

[Seg04] Mark Segal. “Machine Learning Benchmarks and Random Forest Regression.” Center

for Bioinformatics and Molecular Biostatistics, avaialbe from eScholarship; Available

on-line: http://escholarship.org/uc/item/35x3v9t4 (visited 12/2009), 2004.

[Sha51] Claude E. Shannon. “Prediction and Entropy of Printed English.” The Bell System

Technical Journal, 30:50–64, 1951.

[Sha03] Peter J. A. Shaw. Multivariate Statistics for the Environmental Sciences. Hodder-

Arnold, 2003.

[SIL07] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. “A Review of Feature Selection Tech-

niques in Bioinformatics.” Bioinformatics, 2007.

[SL98] Rasoul Safavian and David Landgrebe. “A Survey of Decision Tree Classifier Method-

ology.” IEEE Trans. Syst. Man Cybern, 22:660–674, 1998.

[SLT03] Vladimir Svetnik, Andy Liaw, Christopher Tong, J. Christopher Culberson, Robert P.

Sheridan, and Bradley P. Feuston. “A Classification and Regression Tool for Compound

Classification and QSAR Modeling.” J. Chem. Inf. Comput, 43(6):1947–1958, 2003.

[SLT04] Vladimir Svetnik, Andy Liaw, Christopher Tong, and T. Wang. “Application of

Breiman’s Random Forest to Modeling Structure-activity Relationships of Pharmaceu-

tical Molecules.” In MCS ’04: Proceedings of 5th International Workshop on Multiple

Classifier Systems, pp. 334–343, 2004.

[SM86] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, Inc., 1986.

[Spa09] Apache Software Foundation. “SpamAssassin Open-Source Spam Filter.”, 2009. Avail-

able on-line: http://spamassassin.apache.org/ (visited 12/2009).

[Spe00] Robert Spence. Information Visualization. Addison Wesley, 2000.

[SPE09] SPECS. “The Specs.net Chemistry Database.”, 2009. Available on-line: http://www.

specs.net (visited 12/2009).

[SPS05] Georgios Sigletos, Georgios Paliouras, Constantine Spyropoulos, and Michalis Hat-

zopoulos. “Combining Information Extraction Systems Using Voting and Stacked Gen-

eralization.” J. Mach. Learn. Res., 6:1751–1782, 2005.

[SRG03] Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. “On the Convergence of

Bound Optimization Algorithms.” In UAI’ 03: Proceedings of the 19th Conference in

Uncertainty in Artificial Intelligence, pp. 509–516. Morgan Kaufmann, 2003.

[SS95] Amit Singhal and Gerard Salton. “Automatic Text Browsing Using Vector Space

Model.” In Proceedings of the Dual-Use Technologies and Applications Conference,

pp. 318–324, 1995.

BIBLIOGRAPHY 203

[SS01] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[SS04] Alex J. Smola and Bernhard Schölkopf. “A Tutorial on Support Vector Regression.”

Statistics and Computing, 14(3):199–222, 2004.

[Str07] David J. Stracuzzi. “Randomized Feature Selection.” In Computational Methods of

Feature Selection, pp. 41–62. in Computational Methods of Feature Selection edited by

Huan Liu and Hiroshi Motoda, Chapman and Hall/CRC Press, 2007.

[SW07] Olivier Sigaud and Stewart Wilson. “Learning Classifier Systems: A Survey.” Soft

Computing - A Fusion of Foundations, Methodologies and Applications, 11(11):1065–

1078, 2007.

[SWY75] Gerard Salton, A. Wong, and C. S. Yang. “A Vector Space Model for Automatic

Indexing.” Commun. ACM, 18(11):613–620, 1975.

[Sym09] Symantec. “Brightmail: Email Security Appliance, Antispam, Antivirus, Content

Filtering.”, 2009. Available on-line: http://www.symantec.com/business/products/

family.jsp?familyid=brightmail (visited 12/2009).

[TC00] Roberto Todeschini and Viviana Consonni. Handbook of Molecular Descriptors. John

Wiley & Sons, Inc., 2000.

[TE08a] Khac-Minh Thai and Gerhard F. Ecker. “A Binary QSAR Model for Classification of

hERG Potassium Channel Blockers.” Bioorg Med Chem., 16(7):4107–4119, 2008.

[TE08b] Khac-Minh Thai and Gerhard F. Ecker. “Classification Models for hERG Inhibitors by

Counter-Propagation Neural Networks.” Chem. Biol. Drug. Des., 172:279–289, 2008.

[TGT05] Igor V. Tetko, Johann Gasteiger, Roberto Todeschini, Andrea Mauri, and David Liv-

ingstone. “Virtual Computational Chemistry Laboratory - Design and Description.” J.

Comput. Aid. Mol. Des, 19(6):453–463, 2005.

[TH03] Trevor Tompkins and Dan Handley. “Giving E-mail Back to the Users: Using Digital

Signatures to Solve the Spam Problem.” First Monday, 8(9), 2003.

[TH04] David A. Turner and Daniel M. Havey. “Controlling Spam through Lightweight Cur-

rency.” In Proceedings of the 37th Annual Hawaii International Conference on System

Science, pp. 1–9, 2004.

[TN06] Norikazu Takahashi and Tetsuo Nishi. “Global Convergence of Decomposition Learn-

ing Methods for Support Vector Machines.” IEEE Transactions on Neural Networks,

17(6):1362–1369, 2006.

[TNN05] Motoi Tobita, Tetsuo Nishikawa, and Renpei Nagashima. “A Discriminant Model Con-

structed by the Support Vector Machine Method for hERG Potassium Channel In-

hibitors.” Bioorg. Med. Chem. Lett., 15(11):2886–90, Jun 2 2005.

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.

Addison Wesley, 1st edition, 2005.

[TSL00] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. “A Global Geometric

Framework for Nonlinear Dimensionality Reduction.” Science, pp. 2319–2323, 2000.

[TWM04] Richard Daniel Twining, Matthew M. Williamson, Miranda Mowbray, and Maher Rah-

mouni. “Email Prioritization: Reducing Delays on Legitimate Mail Caused by Junk

Mail.” Technical report, HP Laboratories Bristol, 2004. http://www.hpl.hp.com/

techreports/2004/HPL-2004-5.pdf.

[ULY07] Choong Yong Ung, Hu Li, Chun Wei Yap, and Yu Zong Chen. “In Silico Prediction of

Pregnane X Receptor Activators by Machine Learning Approaches.” J. Mol. Pharma-

col., 71(1):158–168, 2007.

[Vap99] Vladimir Naoumovitch Vapnik. The Nature of Statistical Learning. Springer, 1999.

204 BIBLIOGRAPHY

[VD02] Ricardo Vilalta and Youssef Drissi. “A Perspective View And Survey Of Meta-

Learning.” Artificial Intelligence Review, 18:77–95, 2002.

[VJ06] P. Viswanath and Karthik Jayasurya. “A Fast and Efficient Ensemble Clustering

Method.” In ICPR ’06: Proceedings of the 18th International Conference on Pattern

Recognition, pp. 720–723. IEEE Computer Society, 2006.

[VK08] Roy J. Vaz and Thomas Klabunde. Antitargets: Prediction and Prevention of Drug

Side Effects. John Wiley & Sons, Inc., 2008.

[Vos99] Michael D. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT Press,

Cambridge, MA., 1999.

[WBS06] Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. “Distance Metric Learning

for Large Margin Nearest Neighbor Classification.” Advances in Neural Information

Processing Systems, 18:1473–1480, 2006.

[WCD03] Stefan M. Wild, James H. Curry, and Anne Dougherty. “Motivating Non-Negative

Matrix Factorizations.” In Proceedings of the 8th SIAM Conference on Applied Linear

Algebra, July 2003.

[WCD04] Stefan M. Wild, James H. Curry, and Anne Dougherty. “Improving non-negative matrix

factorizations through structured initialization.” Pattern Recognition, 37(11):2217–

2232, November 2004.

[Wei88] David Weininger. “SMILES – A Chemical Language and Information System. 1. Intro-

duction to Methodology and Encoding Rules.” J. Chem. Inf. Comput. Sci., 28(1):31–36,

1988.

[Wei03] Bill Weiman. “AMTP.” Available on-line: http://amtp.bw.org/ (visited 12/2009),

2003.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, 2nd edition, 2005.

[Wil02] Stefan M. Wild. “Seeding Non-negative Matrix Factorization with the Spherical K-means

Clustering.”. Master’s thesis, University of Colorado, 2002.

[Wol92] David H. Wolpert. “Stacked Generalization.” Neural Networks, 5:241–259, 1992.

[WTH05] Yu Wang, Igor V. Tetko, Mark A. Hall, Eibe Frank, Axel Facius, Klaus F.X. Mayer,

and Hans W. Mewes. “Gene Selection from Microarray Data for Cancer Classification

– A Machine Learning Approach.” Comput Biol Chem, 29(1):37–46, 2005.

[WWW89] David Weininger, Arthur Weininger, and Joseph L. Weininger. “SMILES 2 – Algorithm

for Generation of Unique SMILES Notation.” Journal of Chemical Information and

Computer Science, 29(2):97–101, 1989.

[WZT04] Jason T. L. Wang, Mohammed Zaki, Hannu T. T. Toivonen, and Dennis E. Shasha.

Data Mining in Bioinformatics. Springer, 2004.

[XLG03] Wei Xu, Xin Liu, and Yihong Gong. “Document clustering based on non-negative

matrix factorization.” In SIGIR ’03: Proceedings of the 26th annual international ACM

SIGIR conference on Research and development in informaion retrieval, pp. 267–273,

2003.

[XSY04] Y. Xue, L.Z. Sun, Chun Wei Yap, L.Z. Sun, X. Chen, and Yu Zong Chen. “Effect

of Molecular Descriptor Feature Selection in Support Vector Machine Classification

of Pharmacokinetic and Toxicological Properties of Chemicalagents.” J. Chem. Inf.

Comput. Sci., 44(5):1630–1638., 2004.

[XYS04] Y. Xue, Chun Wei Yap, L.Z. Sun, Z.W. Cao, J.F. Wang, and Yu Zong Chen. “Prediction

of P-glycoprotein Substrates by a Support Vector Machine Approach.” J. Chem. Inf.

Comput. Sci., 44(5):1497–1505., 2004.

BIBLIOGRAPHY 205

[YC05] Chun Wei Yap and Yu Zong Chen. “Prediction of Cytochrome P450 3A4, 2D6, and

2C9 Inhibitors and Substrates by using Support Vector Machines.” J. Chem. Inf.Model.,

45(1):982–992, 2005.

[YD07] Olcay Taner Yildiz and Onur Dikmen. “Parallel Univariate Decision Trees.” Pattern

Recogn. Lett., 28(7):825–832, 2007.

[YL03] Lei Yu and Huan Liu. “Feature Selection for High-Dimensional Data: A Fast

Correlation-Based Filter Solution.” In ICML ’03: Proceedings of the 20th International

Conference on Machine Leaning, pp. 856–863, 2003.

[YL04] Lei Yu and Huan Liu. “Efficient Feature Selection via Analysis of Relevance and Re-

dundancy.” J. Mach. Learn. Res., 5:1205–1224, 2004.

[YM07] Seongwook Youn and Dennis McLeod. “Efficient Spam Email Filtering using Adaptive

Ontology.” In ITNG, pp. 249–254, 2007.

[YP97] Yiming Yang and Jan O. Pedersen. “A Comparative Study on Feature Selection in

Text Categorization.” In ICML ’97: Proceedings of the 14th International Conference

on Machine Learning, pp. 412–420, San Francisco, CA, USA, 1997. Morgan Kaufmann

Publishers Inc.

[ZBL09] Qiang Zhang, Michael W. Berry, Brian T. Lamb, and Tabitha Samuel. “A Parallel

Nonnegative Tensor Factorization Algorithm for Mining Global Climate Data.” In

ICCS ’09: Proceedings of the 9th International Conference on Computational Science,

pp. 405–415, 2009.

[ZH00] Mohammed Zaki and Ching-Tien Ho. Large-Scale Parallel Data Mining. Springer, 2000.

[ZTD01] Bernard Zenko, L.jupco Todorovski, and Saso Dzeroski. “A Comparison of Stacking

with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods.” In

IEEE International Conference on Data Mining, p. 669. IEEE Computer Society, 2001.

[ZZL08] Ping Zhang, Chun-Hou Zheng, Bo Li, and Chang-Gang Wen. “Tumor Classification

Using Non-negative Matrix Factorization.” Communications in Computer and Infor-

mation Science, 15:236–243, 2008.

206 BIBLIOGRAPHY

Biography

Personal Name: Andreas Janecek

Born: 22. September 1979, Vienna, Austria

Nationality: Austria

Status: unmarried, no children

Affiliation Research Lab Computational Technologies and Applications

Faculty of Computer Science, University of Vienna

Lenaugasse 2/8, A-1080 Vienna, Austria

Phone.: +43 1 4277 39674

Fax: +43 1 4277 39651

Email: andreas.janecek@univie.ac.at

Academic Education

actual Ph.D. Program in Computer Science

University of Vienna, anticipated graduation: January 2010

2005 M.S. - Master Studies in Business Informatics

University of Vienna, Graduated with distinction

2004 B.S. - Bachelor Studies in Business Informatics

University of Vienna

BIBLIOGRAPHY 207

Professional Experience

Since May 2007 Research Associate

Research Lab Computational Technologies and Applications

University of Vienna

http://rlcta.univie.ac.at

02/2007-10/2009 Research Associate

Department of Distributed and Multimedia Systems

University of Vienna

http://www.cs.univie.ac.at

09/2005-10/2006 Project Assistant
“Technology for E-Mail Security”

University of Vienna

http://security.ani.univie.ac.at

Research Interests

Machine learning and data mining methods

(Un)supervised classification and clustering algorithms, feature selec-

tion, dimensionality reduction, model evaluation

Low rank approximations

Initialization, parallelization/distribution and high-performance imple-

mentations

Application areas

Drug discovery, QSAR-modeling, text mining, e-mail security and clas-

sification

December 22, 2009

