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Abstract

Bioinformatics and computational biology are relatively new areas that involve the use of

different techniques including computer science, informatics, biochemistry, applied math

and etc., to solve biological problems.

In recent years the development of new molecular genetics technologies, such as DNA

microarrays led to the simultaneous measurement of expression levels of thousands and

even tens of thousands of genes. Microarray gene expression technology has facilitated the

study of genomic structure and investigation of biological systems. Numerical output of

this technology is shown as microarray gene expression data sets. These data sets contain

a very large number of genes and a relatively small number of samples and their precise

analysis requires a robust and suitable computer software. Due to this, only a few existing

algorithms are applicable to them, so more efficient methods for solving clustering, gene

selection and classification problems of gene expression data sets are required and those

methods need to be computationally applicable and less expensive. The aim of this thesis

is to develop new algorithms for solving clustering, gene selection and data classification

problems on gene expression data sets.

Clustering in gene expression data sets is a challenging problem. The increasing use of

DNA microarray-based tumour gene expression profiles for cancer diagnosis requires more

efficient methods to solve clustering problems of these profiles. Different algorithms for

clustering of genes have been proposed, however few algorithms can be applied to the clus-

tering of samples. k-means algorithm, among very few clustering algorithms is applicable

to microarray gene expression data sets, however these are not efficient for solving cluster-

ing problems when the number of genes is thousands and this algorithm is very sensitive

to the choice of a starting point. Additionally, when the number of clusters is relatively

large, this algorithm gives local minima which can differ significantly from the global solu-

tion. Over the last several years different approaches have been proposed to improve global
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search properties of k-means algorithm. One of them is the global k-means algorithm, how-

ever this algorithm is not efficient when data are sparse. In this thesis we developed a new

version of the global k-means algorithm, the modified global k-means algorithm which is

effective for solving clustering problems in gene expression data sets.

In a microarray gene expression data set, in many cases only a small fraction of genes

are informative whereas most of them are non-informative and make noise. Therefore the

development of gene selection algorithms that allow us to remove as many non-informative

genes as possible is very important. In this thesis we developed a new overlapping gene

selection algorithm. This algorithm is based on calculating overlaps of different genes. It

considerably reduces the number of genes and is efficient in finding a subset of informative

genes.

Over the last decade different approaches have been proposed to solve supervised data

classification problems in gene expression data sets. In this thesis we developed a new

approach which is based on the so-called max-min separability and is compared with the

other approaches. The max-min separability algorithm is an equivalent of piecewise linear

separability. An incremental algorithm is presented to compute piecewise linear functions

separating two sets. This algorithm is applied along with a special gene selection algorithm.

In this thesis, all new algorithms have been tested on 10 publicly available gene expres-

sion data sets and our numerical results demonstrate the efficiency of the new algorithms

that were developed in the framework of this research.
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Introduction

In recent years the development of new molecular genetics technologies, such as DNA mi-

croarrays led to the simultaneous measurement of expression levels of tens of thousands

of genes. This event opened the possibility of obtaining data sets of molecular informa-

tion to represent many systems of biomedical and clinical interest. DNA microarray allows

to measure expression levels of thousands of genes which results in investigation of bio-

logical systems. This technology facilitates the study of genomic structure, function, and

interaction related with expression levels of thousands of genes.

Microarrays can be used to find the genes with different expression levels under dif-

ferent experimental conditions, find genes with correlated expression patterns that show

functional relationship, and classify and predict subtypes of samples with gene profiling.

By identifying genes and their expression, biological systems can be investigated that will

help us to understand life processes and prevent harmful diseases. For this reason, DNA

microarray-based tumour gene expression profiles are increasingly used for cancer diagno-

sis.

Although measurement of thousands of gene expression simultaneously is very effi-

cient, success of microarray technology depends on the precision of the measurement, ef-

fectiveness of computational tools and statistical modelling. Microarray experiments raise

questions in areas like image processing, clustering, machine learning, discriminant analy-

sis, principal component analysis, multidimensional scaling, analysis of variance models,

random effects models, multiplicative models, multiple testing, models with measurement

errors, models to handle missing values, mixture models, Bayesian methods and sample

size and power determination [30, 83].

The increasing use of DNA microarray-based tumour gene expression profiles for can-

cer diagnosis requires efficient methods with high accuracy for solving clustering, gene se-

lection and classification problems in gene expression data sets. They can help a researcher
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to discover hidden relationships between tumours and genes, to discover hidden sources of

different tumours, to increase the understanding of difference between normal and disease

states, to identify the informative genes and to classify cancer tumours.

The aim of this study is to develop new algorithms for solving clustering, gene selection

and supervised data classification problems on gene expression data sets.

Clustering in gene expression data sets is a challenging problem. Clustering deals

with the problems of organisation of a collection of patterns into clusters based on similarity.

It is also known as the unsupervised classification of patterns. Different algorithms for

clustering of genes have been proposed.

Some of the algorithms for solving clustering problems are agglomerative and divisive

hierarchical clustering algorithms, heuristics like k-means algorithms and their variations

(h-means, j-means etc.), mathematical programming techniques including dynamic pro-

gramming, branch and bound, cutting plane, interior point methods, the variable neigh-

bourhood search algorithm and metaheuristics like simulated annealing, tabu search, ge-

netic algorithms that have been applied to solve it [1, 33, 44, 48, 59–61, 115, 120, 123, 134].

However due to the large number of genes and relatively small number of samples,

which leads to the sparsity of data, only a few algorithms can be applied for the clustering

of samples.

The k-means algorithm is known to be very fast for solving clustering problems on large

data sets, however this algorithm is very sensitive to the choice of a starting point. Another

drawback of this algorithm is that when the number of clusters is relatively large it gives

local minima which can be significantly different from the global one. Over the last several

years different approaches have been proposed to improve global search properties of k-

means algorithm and its performance on large data sets. One of them is the global k-means

algorithm. The global k-means algorithm proposed in [89] is a significant improvement

over the k-means algorithm. This algorithm calculates clusters incrementally and the results

of numerical experiments presented, show that this algorithm locates a better solution than

the k-means algorithm. However, results also show that a drawback of the global k-means

algorithm is that this algorithm is not efficient in finding clusters in sparse data sets.

In this research a new version of the global k-means algorithm for solving clustering

problems is developed, the modified global k-means algorithm, which is effective for solv-

ing clustering problems in gene expression data sets. This algorithm calculates clusters
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incrementally and has better global search properties. Computational results are presented

using gene expression data sets.

The gene selection approach deals with the problems of selection of the most informa-

tive genes in a data set. Gene selection is an important step for tumour classification in gene

expression data sets. There are many reasons for the selection of a minimal subset of genes.

Gene expression data sets contain thousands and even tens of thousands of genes. Many of

them generate noise and do not provide any information about cancer tumours. Only very

few genes are informative in distinguishing different types of cancer tumours and normal

tissues. Therefore the identification of the most informative genes is very important. Iden-

tification of the informative genes is beneficial in that those genes may reveal insights into

the biological process [69].

Large numbers of genes increase computational complexity and many classifiers cannot

deal with such a huge number of genes, which leads to the loss of valuable information. In

general, in gene expression data sets the number of genes is two or even three orders of

magnitude more than the number of tumours, that is we have too sparse a set of points in

very high dimensional space. This circumstance worsens the generalisation capabilities of

many classification algorithms. The gene selection algorithms may allow to find a subset

of genes which might help clarify how cancer is developing [69].

Therefore the development of gene selection algorithms that allow us to remove as many

non-informative genes as possible is very important. Different algorithms can be used for

finding the subset of most informative genes [3], [40, 132].

In this research a new gene selection algorithm for gene expression data sets is devel-

oped. This algorithm essentially uses the overlaps for gene expression between different

classes. The proposed algorithm is compared with two other gene selection algorithms,

using results of numerical experiments. Results show that the algorithm works more effi-

ciently than the other algorithms for finding the most informative genes.

Supervised classification of new cancer tumours is very important, however it can-

not be done efficiently in whole gene expression data sets due to the very large number of

genes and relatively small number of tumour samples. Therefore most conventional clas-

sification algorithms cannot be directly applied to these data sets. Over the last decade

different approaches have been proposed to solve supervised data classification problems

in gene expression data sets [7, 12, 27]. In this thesis, a new classification algorithm based
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on a combination of max-min separability and overlapping gene selection algorithms is

developed.

The concept of max-min separability was introduced in [13]. In this approach two sets

are separated using a piecewise linear function. Because a piecewise linear can be repre-

sented as a max-min of linear functions, such a separability is called max-min separability.

Max-min separability is an equivalent of piecewise linear separability. The max-min sepa-

rability algorithm is applied to solve supervised data classification problems in microarray

gene expression data sets.

This thesis consists of 4 chapters. Chapter 1 presents an overview of molecular biology

including cells, chromosomes, DNA, RNA, amino acids, proteins and genes followed by

genetic engineering. In regards to microarray, its history, types, technology and applications

are discussed, followed by microarray data analysis and microarray gene expression.

Chapter 2 presents the main concepts of data mining, in particular clustering. In this

chapter k-means and global k-means algorithms are described first and the modified global

k-means algorithm that is developed through this research is discussed later. We demon-

strate the numerical results of application of the algorithm over 10 microarray gene expres-

sion data sets and the conclusion part concludes the chapter.

Chapter 3 presents another main concept of data mining which is gene selection. We de-

scribe some gene selection algorithms such as one-dimensional overlaps, multi-dimensional

overlaps and gene selection with multi-dimensional overlaps. The new gene selection al-

gorithm that is developed through this research is discussed as well. This algorithm uses

the overlaps for gene expression between different classes. We demonstrate the numerical

results of application of the algorithm over 10 microarray gene expression data sets and the

conclusion summarises the content of the chapter.

Chapter 4 presents supervised classification which is another main concept of data min-

ing. We will describe supervised microarray data analysis and max-min separability con-

cept. Later in the chapter we will discuss the new classification algorithm that is developed

through this research. This algorithm is an incremental algorithm for computing a piecewise

linear function separating two sets. We demonstrate the numerical results of application of

the algorithm over 10 microarray gene expression data sets and the conclusion summarises

the contect of the chapter.

The conclusion section discusses the possibility of the future optimization based re-
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search for clustering, gene selection and classification of the microarray gene expression

data sets and outlines the contribution made by this thesis.
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Chapter 1

Background and Literature Review

Microarray is an ordered array of microscopic elements on a planar substrate that allows the

specific binding of genes or gene products. Understanding microarray and microarray gene

expression, requires some knowledge in biochemistry, and for this reason we will briefly

consider some aspects of bio-molecules such as cells, chromosomes, deoxyribonucleotide

(DNA) within the chapter. Gene expression is the cellular process by which genetic infor-

mation flows from gene to messenger ribonucleic acid (mRNA) to protein. The necessity

of creating huge databases brought some disciplines together and bioinformatics was born.

This chapter starts with definitions of the main concepts of bioinformatics that are relevant

to this research. Later some definitions and descriptions of bio-molecules will be presented

followed by microarray, microarray analysis and microarray gene expression.

1.1 Bioinformatics

The purpose of this section is to provide a brief overview of the main concepts of bioinfor-

matics that are relevant to this research.

Bioinformatics as a discipline tries to predict biological functions using only sequence

data. Most predictions in bioinformatics are made by comparing the unknown sequence

against the biological knowledge base [4].

In bioinformatics, scientists of biological and computational sciences and contributors

from other disciplines work together to understand the biological processes [5]. Some

activities of bioinformatics includes the following:
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1. Creation and maintenance of databases

The size and complexity of the data have led to the creation of relational databases to

store and organise the data. At the moment, DNA sequences comprise the majority

of these data. A DNA sequence or genetic sequence is a succession of letters repre-

senting the primary structure of a real or hypothetical DNA molecule or strand with

the capacity to carry information. Gen Bank, SWISS-PROT and PDB are examples

of databases that have been created to store the data.

2. Analysis of sequence information

Analysis of sequence information might include methods for finding genes in the

DNA sequence of different organisms, clustering sequences into the clusters of sim-

ilar sequences, aligning similar genes and proteins, and examining the relationships

[5]. In parallel with the development of large sequence databases, tools such as Ba-

sic Local Alignment Search Tool (BLAST) are used to search, view, and analyse the

data in databases. BLAST can be used for comparing primary biological sequence

information, such as amino-acid sequences of different proteins or the nucleotides of

DNA sequences.

3. Prediction of three-dimensional structure

Information gathered from molecules is being used to obtain a three-dimensional

structure of proteins and other large molecules.

4. Expression analysis

Expression analysis involves pattern analysis of gene expression data using data min-

ing tools.

5. Modelling dynamic life processes

As a key challenge, bioinformatics aims to develop ways of putting together the in-

formation gathered from all the diverse areas of research to facilitate understanding

of the fundamental life processes.
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1.1.1 Databases in bioinformatics

There are primary and secondary types of databases in bioinformatics [4]. Primary data-

bases include original biological data like databases of DNA sequence which determines

the primary nuclear sequence of a DNA molecule. Secondary databases try to add some

more information to the primary databases and make them more useful for particular appli-

cations.

1.1.2 Pattern discovery

In the microarray literature data are considered as a gene expression matrix [5]. A G × p

matrix, X = {xgi} whose G rows and p columns represent the G genes and p samples. In

some experiments the p samples might represent p tissue types, cell lines, times, patients,

treatments, experimental conditions, and so on. The values xgi that comprise the gene

expression matrix could be either the measured gene expression level for the gth gene

in the ith sample, or the log of the ratio of the normalized gene expression level for the

gth gene in the ith sample. If analysis wants to identify groups of genes with similar

regulatory mechanisms, the columns will be considered as the variables and the rows as the

observations. If the analysis wants to classify the samples according to the gene expression

profiles, the rows are considered as variables and the columns as observations.

1.2 Cells

Understanding bio-molecules is crucial in bioinformatics. This section briefly describes

one of the bio-molecular elements which is cell and its structure.

Every living thing is made up of cells [131]. A cell is a single unit or compartment,

enclosed by a border, wall or membrane. Each of us is made up of 100 trillion cells. Cells

carry a copy of a ‘master plan’. Genes build cells and organise them to form a body. Genes

in turn are made up of DNA. DNA is the biopolymeric molecule that constitutes the genetic

blueprint of virtually every organism in the biosphere. Human beings are one of millions

of species living on Earth. Each member of every species inherits genes from its parents

which are needed to build it and make it an individual. Cells consist of many components

that cooperate to make a cell work. The nucleus is a cell’s control centre. Mitochondria is a
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cell’s membrane and it provides the energy the cell needs. Every cell has a structure called

endoplasmic reticulum that makes essential substances.

1.2.1 Nucleotide and its structure

Nucleotides are biochemical building blocks that make up DNA and ribonucleic RNA [112].

Since DNA and RNA carry the genetic information, nucleotides are considered as the most

important biochemical building blocks of a cell. Nucleotides have three biochemical com-

ponents: base, sugar and phosphate. These three components are connected by bonds to

form a nucleotide.

DNA nucleotides contain one of four different bases: adenine (A), guanine (G), cytosine

(C), thymine (T). RNA nucleotides contain the same bases except thymine which is replaced

by uracil (U). In other words, DNA and RNA bases are similar except that DNA contains

A,G,C,T and RNA contains A,G,C and U. Chemically T and U are the same except that T

has a methyl group and U has a hydrogen atom in one of the ring positions.

These five bases are divided into two chemical groups. A and G are known as purines

and C, T and U are known as pyrimidines. The purines include two chemical rings and

pyrimidines include single ring structure. Formation of a double helix occurs through inter-

actions between purines and pyrimidines. A,G,C,T and U are known as bases and contain

multiple nitrogen (N) atoms in the rings and are called nitrogenous base because nitrogen

is present in their heterocycle. A and G contain five nitrogen atoms, C contains three and T

and U contain two nitrogen atoms. See Fig 1.1. [112].

Each nucleotide has a five-carbon sugar part which is known as a pentose molecule.

This name comes from the presence of five carbon atoms in the ring structure. The DNA

sugar is called deoxyribose because it lacks an oxygen atom (deoxy) at the position that

contains the OH group in the ribose RNA sugar.

RNA and DNA nucleotides contain a single phosphate group, which is known as nu-

cleotide monophosphate. The nucleotide, present in enzymatically synthesized DNA or

RNA, contains three phosphates and is known as a nucleotide triphosphate. Nucleotides are

often written as GMP for guanosine monophosphate or dCTP for deoxycytidine triphos-

phate. A complete DNA nucleotide includes a deoxyribose molecule a phosphate mole-

cule, and one of the four bases of A,G,C and T. A complete RNA nucleotide includes a

phosphate, a ribose and one of the four bases of A,G,C and U. Because DNA and RNA are
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located in the nucleus and a nucleotide has an acidic nature, the term nucleic acid is used as

a term to describe DNA and RNA.

Figure 1.1: Chemical structures for the nucleotide bases.

1.2.2 Cell division

Each cell has genes, but cells do not last forever. In cell division process, each cell splits to

produce two identical cells. “Nuclear division, or mitosis, divides a cell’s nucleus exactly,

parcelling out identical packs of gene-carrying chromosomes to each new cell” [131]. Each

new cell created by mitosis has the same genes as the old ones.

1.3 Chromosomes

Chromosome is another bio-molecular element that is a long, thread-like structure inside

the cell. This section briefly describes chromosomes.

In the 1880s scientists discovered long, thread-like structures inside the cells, which

they named chromosomes [131]. By the early 1900s they found that chromosomes carry

genes, that control the features we inherit from our parents and they contain the instructions

that a cell needs to function. Chromosomes are packed inside the nucleus of a cell. They

are long, very thin threads. When a cell divides to make a new cell, the long threads shorten

to make chromosomes.
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In 1903, Walter Sutton discovered that most cells have two sets of chromosomes. In

the two sets, chromosomes come in matching pairs. Matching chromosomes have the same

genes at the same positions along their length. Each species has its precise chromosome

number [131], e.g. a human cell contains 23 pair of chromosomes and each pair is com-

posed of maternal and paternal chromosomes.

1.3.1 Chromosomal alterations in cancer

Cancerous conditions are usually related to chromosomal abnormalities, specially the dele-

tion of some parts of the chromosome and translocation in which some parts of non-

homologous chromosomes are exchanged [64]. Normally deletions are related to solid

tumours and translocations could be observed in leukaemia and lymphomas in which the

cancerous production of leukocytes occurs. Leukaemia is a cancer of the blood or bone

marrow and lymphoma is a variety of cancer that originates in lymphocytes.

1.4 Prokaryotes and Eukaryotes

Prokaryote cells have a single chromosome including circular double-stranded DNA. Eu-

karyote cells posses a nucleus that is separated from the rest of the cell by a membrane, and

contains the gene’s genetic material. This section briefly explains Prokaryote and Eukaryote

cells.

Prokaryote cells: These cells have a single chromosome [64]. E.coli is an example of a

prokaryotes chromosome. E. coli is one of the main species of bacteria living in the lower

intestines of mammals, known as ‘gut flora’. If this chromosome were in a linear form it

would be about 1 mm long, but due to supercoiling of the DNA it has a compact structure.

Eukaryote cells: The nucleus of a eukaryote cell is separated from the rest of the cell.

Nuclear DNA is organised in linear chromosomes. Higher plants, amphibia and fish, hu-

mans and other mammals are examples of eukaryote. Many higher plants, amphibia and

fish have a larger genome than humans and other mammals.
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1.5 DNA

This section contains a brief explanation of DNA, its discovery and structure, DNA se-

quencing and its applications and cDNA.

In 1869 Johan Friedrich Miescher was studying white blood cells. He isolated the nu-

clei of these cells and whilst analysing them he discovered a new substance that he called

nuclein. This substance was later called DNA [131]. In 1944 Oswald Avery proved that

DNA, not proteins, carries genes.

1.5.1 Discovery of DNA

For decades, nobody knew what comprised the code. On 28th February 1953, Francis Crick

and James Watson discovered the structure of DNA, and the double helix was born [131].

“Rosalind Franklin’s senior colleague, Maurice Wilkins, showed Watson and Crick-

without her knowledge- Franklin’s X-ray diffraction photograph of DNA.” [131]. They

realised that it would help them to find the structure of DNA. Eventually they completed

their model of DNA successfully. DNA has been carrier of the genetic information inside

Earth’s living things for nearly four billion years. Within 50 years between 1953 and 2003,

many secrets of life were revealed. In this period, discovery of the structure of DNA, the

material from which genes are made, took place. Once the structure of DNA was known

scientists found out that it contains the library of genes that controls the cells that make our

body.

1.5.2 DNA molecules

Macromolecules (DNA, proteins, polysaccharides) control most of the activities of life.

DNA molecules store information about the structure of the macromolecules. Each cell

contains a complete copy of its genetic material in the form of DNA molecules. DNA can

be copied and passed on to cells through replication [83]. Replication is a cellular process

by which DNA is copied from a DNA template to produce an exact copy of the genome.

Genetic information is encoded in DNA by a sequence of nucleotides. The carbon

atoms in deoxyribose sugar group of a nucleotide have numbers followed by a prime (1′, 2′,

etc). In DNA the nucleotides are connected to each other through a link of the 5′ hydroxyl

phosphate group of one pentose ring of the deoxyribose sugar to the 3′ OH group of the
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next pentose ring. Each chain makes a polarity with a 5′ end and a 3′ end. Two nucleotide

chains are held together by hydrogen bonds between nitrogenous bases.

Millions of nucleotides link to each other to make up a DNA. “The deoxyribose and

phosphate groups form a ‘back bone’ on the outside” [131]. 46 chromosomes inside the

nucleus of a cell contain two metres of DNA in total.

1.5.3 Structure of DNA

The genetic map of every organism is stored in the molecule known as DNA [112]. Nu-

cleotides join together to make up linear DNA sequences. Nucleotide bonds are made up

of the enzymatic joining of nucleotide triphosphates, where 3′ hydroxyl group of one nu-

cleotide is attached to the 5′ phosphate group of another nucleotide. A short synthetic DNA

chain will contain 10-100 nucleotides, a human gene 20,000, and a human chromosome

about 100,000,000 nucleotides.

A DNA chain has a different chemical group on each end of the molecule which is

known as chemical polarity. The “top” end of a DNA chain contains a terminal phosphate

group located on the 5′ carbon atom of deoxyribose and is known as the 5′ end. The “bot-

tom” end of a DNA chain contains a terminal hydroxyl group located on the 3′ carbon atom

of deoxyribose and this end is known as the 3′ end of the chain. [112].

Genes, chromosomes, and other DNA molecules are double-stranded. In a DNA double

helix, hydrogen bonds between complementary bases hold the two helices containing the

sugar and phosphate moieties together tightly. DNA chains are anti-parallel, meaning that

one strand runs in the 3′ to 5′ direction and the other strand runs in the 5′ to 3′ direction. See

Fig 1.2. Base pairing happens between A and T and G and C, but no other combinations

of bases [112]. DNA chains that bond to each other through A-T and G-C interaction are

called complementary strands. A double helix with perfect A-T and G-C base pairs is

perfect match, whereas a double helix that contains one or more mismatches in the base

pairing weakens a double helix. The number of different DNA sequences that can be built

with four nucleotide is 4n , where n is the number of nucleotides in the DNA chain.

Number of DNA sequences= 4n

A total of 16 (42 ) different nucleotide DNA sequences can be built from the four bases,

and if a DNA chain contains only 20 nucleotides (420), more than one trillion (1 × 1012)

different sequences are possible.
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Figure 1.2: A DNA double helix.

1.5.4 DNA replication (copying DNA)

DNA is the only molecule in living things that can make a copy of itself. This happens

just before mitosis in the process of cell division [131]. After cell division, the two new

cells have duplicate sets of identical genes. The two strands of the DNA open up like a zip

and then each unzipped piece of DNA functions like a template. Unattached nucleotides in

the cell which contain one of the four bases of A,T,C,G, line up opposite their partner on

the template. By linking bases to each other, a new back bone emerges and the new twin

strands start to twist. This process continues along the DNA until two new double-stranded

DNA are produced.

In this process when chromosomal DNA is opened to prepare a single-stranded template

for replication, DNA polymerase copies both strands by storing polynucleotide chains in a

5′ to 3′ manner. [112]. DNA ligase closes the breaks in the newly formed chains, which

produce two identical copies of DNA. See Fig 1.3.
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Figure 1.3: Chromosomal DNA is opened to prepare single-stranded template for replica-
tion.

1.5.5 DNA sequencing and its methods

Fredrick Sanger in the late 1940s determined the amino acid sequence of insulin, which is a

protein that is used to treat diabetes [104]. The computational aspects of protein sequencing

at that time were very similar to the computational aspects of modern DNA sequencing. In

1977, DNA sequencing technology was developed independently by Maxam and Gilbert at

Harvard and Sanger and co-workers. Gilbert and Sanger shared the Nobel Prize in 1980 “for

their contributions concerning the determination of base sequences in nucleic acids” [112].

Determination of all or a fragment of the nucleotide sequence of a DNA molecule

is called DNA sequencing. Molecular biology revolution makes it possible to sequence

DNA [4]. The main reasons for identifying the sequence of a DNA molecule are to pre-

dict its function and to facilitate manipulation of the molecule. RNA sequencing methods
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were developed before DNA sequencing methods, however nowadays RNA is rarely se-

quenced and instead a complementary DNA (cDNA) copy is synthesized and sequenced.

The sequence of this cDNA will show the sequence of the original RNA.

DNA information is encoded in the order of the bases (A,C,G,T). DNA sequencing

determines the order or sequence of these bases in a given DNA molecule. Knowing the

DNA sequence of a gene does not necessarily identify what that gene does. To do this

requires much complementary information regarding the biological system that interprets

the information.

DNA sequencing methods were invented in different places [104]. In 1974 Andrey

Mirzabekov was visiting Walter Gilbert’s lab and found a way to break DNA at A and G.

Later Maxam and Gilbert found a method to break DNA at C and T and then they were able

to sequence DNA.

There are two main DNA sequencing techniques (1) “Chain termination” known as

“The Sanger method” and (2)“Chemical degradation” known as “Maxam and Gilbert’s

method” [4]. These two methods are briefly explained below.

Chain termination or Sanger method

A primer is an oligonucleotide that hybridizes to a complementary nucleic acid template

and expedites enzymatic synthesis by providing a starting point for polymerase [64].

In this method fragments of a primer on a template of the DNA are obtained and DNA

is enzymatically synthesized. The synthesis of new fragments is terminated randomly by

a nucleotide that blocks further additions of nucleotides. For each of the four nucleotides,

four reaction mixtures are set up.

Cells copy DNA, letter by letter, adding one base at a time [104]. Sanger found a method

that replaced A,T,G,C by chemicals and this stopped a DNA’s growth.

Chemical degradation or Maxam and Gilbert’s method

This method is based on the base specific chemical degradation of a DNA molecule labelled

at one end [4]. For DNA sequencing, single-stranded DNA is better than a double-stranded

one. Although polymerase chain reaction (PCR) produces double-stranded DNA, it can be

adapted to create a single-stranded one.
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Sequencing by hybridization and DNA array technology

Hybridization is the chemical process by which two complementary DNA or RNA strands

zipper up to form a double-stranded molecule [104]. Sequencing by hybridization (SBH)

was suggested in 1988. SBH includes building a miniature DNA array or DNA chips in-

cluding thousands of DNA fragments attached to a surface. Each fragment has some in-

formation about unknown DNA fragment and when this information is combined it should

sequence DNA fragments. In 1991 Fodor et al. created an approach that is based on light-

directed polymer synthesis. Based on this method, a company known as Affymetrix built

the first DNA array. DNA array is now one of the most important biotechnologies and it has

revolutionised medical diagnostics and functional genomics. A probe is a labelled molecule

in solution that reacts with a complementary target molecule on the substrate. A target is a

molecule tethered to a microarray substrate that reacts with a complementary probe mole-

cule in solution. Every probe p in a DNA array queries a target which is an unknown DNA

fragment by answering the question of whether p hybridizes with this fragment.

1.5.6 Application of DNA sequencing

The main application of DNA sequencing is to re-sequence the fragments of DNA whose

sequence is known or can be predicted [4]. The sequence might be required to check that a

PCR product has the expected sequence or to determine the sequence of an allelic variant

of a known sequence. Another application of DNA sequencing is clinical diagnosis of

mutations responsible for genetic diseases. The sequence variation in the abnormal allele

of many disease genes has been identified. It is much easier to examine the presence of

these known alleles rather than determining the complete sequence of both copies of the

gene from each patient.

1.5.7 Sequence variants

A change in the primary nucleotide sequence of DNA is known as a sequence variant [112].

There is a variety of sequence variant. Single nucleotide polymorphism (SNP) is a common

sequence variant containing a one-base-pair change relative to the normal gene. Insertion

is a mutation that results in the addition of one or more nucleotides to a DNA sequence and

deletion is a mutation that results in the removal of one or more nucleotides from a DNA
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sequence. A sequence variant produces a gene variant called an allele. A human gene that

has 15 different variants would contain 15 different alleles of that gene. Mutation, insertion,

and deletion are three main types of sequence variant. A mutation might happen during

the life span of an organism and a mutagen, which is a chemical agent, is able to change

the primary DNA sequence and cause mutation that leads to uncontrolled cell growth and

cancer. Cancer-causing mutagen are called carcinogen.

1.5.8 Methods of investigation

DNA can be obtained for investigation through three main methods [64].

1. By enzymic synthesis on a RNA template by using the enzyme reverse transcriptase

to obtain cDNA.

2. By chemical synthesis to create nucleotides. This can create nucleotide as short as

50-100 (nt).

3. By restricting endonucleases for hydrolytic divisions at specific sites. DNA produced

in this way is combined with the DNA of an independent replication vector, which results

in clones of cells. This method is called DNA cloning. The artificially produced DNA is

called recombinant DNA, because it is a result of combination of two sources.

1.5.9 cDNA

Collections of cDNAs are useful for gene expression analysis. They only have the exon

content of a gene, not introns. “Microarrays of cDNAs allow profiling of mRNA levels

in hybridization-based assays such that the fluorescence intensity at each cDNA location

provides a quantitative measure of the corresponding mRNA” [112]. Reverse transcriptase

is a DNA polymerase that is used to synthesise cDNA molecules from mRNA.

1.6 RNA

RNA is one of the biomolecules in the microarray gene expression process. This section

briefly explains RNA, its structure and types and sequencing history.
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1.6.1 Structure of RNA

The genetic map is encoded by DNA and by using RNA as an intermediary so that in-

formation is converted to protein information [112]. Certain classes of RNA play a role

in protein synthesis. In the same manner that deoxyribonucleotides are used to make up

DNA, ribonucleotides are assembled to make RNA. Most RNA molecules have 70-10,000

ribonucleotides and, unlike DNA that is double-stranded, most RNAs are single-stranded.

RNA is chemically identical to DNA but due to presence of a 2′ hydroxyl group on

ribose, it is much less stable. The enzymatic instability of RNA allows the rapid turnover

of RNA molecules and dynamic changes in gene expression.

1.6.2 Types of RNA

There are three main types of RNA known as messenger RNA (mRNA), ribosomal RNA

(rRNA), and transfer RNA (tRNA) [112]. These are single-stranded, however rRNA and

tRNA form double-stranded via intra-molecular hydrogen bonding.

mRNA is an informational intermediate between gene (DNA) and protein. mRNA car-

ries the genetic information from the nucleus (location of DNA) to the cytoplasm (location

of protein synthesis) [112].

Each mRNA sequence is associated with a specific gene in DNA. Approximately 35,000

genes in the human genome correspond with 35,000 different mRNA sequences, each con-

taining a specific string of condons specified by the DNA. mRNA has 1,000- 10,000 ribonu-

cleotides and is read by tRNA to make protein. mRNA makes up about 1− 5% of the total

RNA in the cell and tRNA and rRNA make up the other 95− 99%.

tRNA molecules bind to amino acids and mRNA codon and facilitate protein synthesis

from mRNA templates. Each tRNA contains about 75 ribonucleotides. tRNA molecules

make up about 10− 15% of the total cellular RNA.

rRNA comprises a part of protein synthesis molecule which is called ribosome. Ribo-

some is the large cytoplasmic structure that facilitates protein synthesis. rRNA facilitates

protein synthesis by providing a piece of molecular scaffold that binds mRNA and tRNA to

the ribosome. Each type of rRNA may contain 100-5,000 ribonucleotides. rRNA comprises

75− 85% of the total cellular RNA.
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1.6.3 RNA sequencing history and chemical difference of DNA and

RNA

RNA was first sequenced in 1965 with “break-read the fragments-assemble” method [104].

Pevzner, Holley and collaborators at Cornell University took seven years to determine the

sequence of 77 nucleotides in tRNA. Many years later DNA sequencing was carried out

by transcribing DNA to RNA and then sequencing RNA [104]. The chemical difference

between DNA and RNA is that the nucleotide of DNA has deoxyribose which has one

more oxygen and the nucleotide of RNA has sugar ribose [83]. Moreover, RNA has uracil

(U), instead of thymine (T).

1.7 Amino Acids

Amino acids are the building blocks that make up protein. This section includes a very brief

description of amino acids.

1.7.1 Amino Acids

The biochemical building blocks that make up cellular protein are called amino acids [112],

of which there are twenty types. Amino acids all have the same core structure but the side

chain is unique for each. Amino acids are classified in several different classes according

to the chemical characteristics of the side chains. The non-polar class includes amino acids

with hydrophobic side chains, including alanine (ala), valine (val), leucine (leu), isoleucine

(ile), methionine (met), phenylalanine (phe), proline (pro), and tryptophan (trp).

The polar amino acids have hydrophilic side chains and include glycine (gly), serine

(ser), threonine (thr), cysteine (cys), asparagines (asn), glutamine (gln), and tyrosine (tyr).

The charged amino acids are hydrophilic and have side chains that carry a positive or nega-

tive charge at neutral pH and include the negatively charged aspartate (asp), and glutamate

(glu), and the positively charged lysine (lys), arginine (arg) and histidine (his).
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1.8 Proteins

Proteins are made up of amino acids and it is possible for them to exist in a variety of

structures and types. This section will outline the various structures of proteins as well as

protein arrays.

Living organisms are composed of proteins [5] which perform life’s basic functions.

Structural proteins form part of the cellular structure. Enzymes catalyse biochemical reac-

tions within a cell, regulatory proteins control the activity of other proteins or expression of

genes, and transport proteins carry other molecules across membranes or around the body.

The DNA sequence of a gene determines a protein’s sequence of amino acid. Proteins be-

long to a class that is called polypeptides. The variety of proteins generated by a genome

of an organism is called its proteome and study of protein structure and behaviour is called

proteomics.

1.8.1 Proteins’ structure

DNA makes up the genetic map, however proteins perform the functional instructions en-

coded by genes [112]. Amino acids link together into protein chains to make up proteins,

in the same way that nucleotides link to make up DNA or RNA. A peptide bond is an amide

linkage that links amino acids to each other. This connects the carboxyl group of the first

amino acid to the amino group of the second amino acid. Series of peptide bonds link

hundreds or thousands of amino acids to form a protein.

A total of 20 amino acids make up proteins, whereas four nucleotides make up DNA

and RNA. The number of proteins that can be built from 20 amino acids is 20 to the nth

power, where n is the number of amino acids in the protein chain.

The number of different proteins=20n

400 dipeptides (202) can be made by 20 amino acids. If the polypeptide contains 10

amino acids, it is possible for more than 10 trillion (1× 1013) different proteins to be made.

A cell can create enormous numbers of proteins from 20 amino acids.

The cellular process of protein synthesis reads mRNA codons in a succes-

sive and non-overlapping manner, such that a protein sequence is co-linear

with the DNA and mRNA. A DNA sequence containing three codons (5′ TTT

CAC GGT 3′) would specify an mRNA containing three codons (5′UUU CAC
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GGU3′) and a three amino acid protein (NH+
3 ) phe his gly (COO− ) [112].

The two ends of a protein molecule known as amino (NH+
3 ) and carboxy (COO−)

termini, contain an amino and carboxy group, respectively. See Fig 1.4.

A specific cellular gene encodes each protein, therefore the approximately 35000 genes

in the human genome encode about 35,000 different proteins.

Figure 1.4: The order and identity of amino acids in proteins are the same as the codons
specified in the mRNA and DNA.

1.8.2 Protein arrays

A protein array experiment can be designed similar to a DNA microarray experiment [5].

In this process a protein sample is obtained from a cell, labelled with dye and incubated

with an array containing a large number of proteins bound on a glass slide. After removing

any unbound protein sample, the array is scanned to measure the amount of bound sample

protein. There are some differences between a protein array and a DNA microarray. The

amino acid sequence and the three-dimensional structure into which the protein folds, are

the main determinants of its function. Proteins cannot be printed on a two-dimensional

surface to be studied as is done with DNA.

Some differences between protein arrays and DNA arrays are as follows [5]:

1. Protein arrays not only want to detect proteins but also want to measure the protein

abundance, whereas most DNA microarrays want to see which genes are expressed

or differentially expressed.

2. Methods like PCR, which is used in DNA microarray experiments, cannot be used

in protein array experiments. It is possible to amplify the signal by three orders of

magnitude using enzyme catalysers in single dye experiments. The detection level

is important and a protein present in a sample with low concentration might not be

detected.
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3. Cross detection is an issue because some antigens might bind to more than one pro-

tein.

4. Protein population is much more diverse and involves many interactions, e.g. there

are more than two thousand proteins in a human cell which are responsible for con-

trolling gene expression.

Additionally, a protein array wants to study the functions of proteins. A typical experi-

ment includes study of interaction between two proteins. The aim is to enable study of the

functionality of many proteins at the same time in a single experiment.

There is an opportunity to use microarray technology to study proteins and their func-

tion [112]. This technology provides a platform for analysis of protein-protein interac-

tions. Protein microarrays can be prepared from different sources like purified preparation,

synthetic peptide and native cellular extracts. If proteins are removed from their original

environment they can lose their shape.

1.9 Genes

This section briefly outlines gene’s structure, gene conversion and prediction.

Our genes are what we inherit from our parents and pass on to our children, and they

are the instruction set for life itself [131]. In 1861 Mendel, an Austrian monk, found that

we inherit sets of instructions from each parent through a code. As body develops, it reads

the code contained in the set of instructions. This set of instructions was later called genes.

Mendel proved that characteristics remain separate when they are passed on from parents

to the new generation. His work was unknown when he died in 1884, but scientists who

were researching inheritance in the early 20th century discovered it.

Mendel’s work became the basis of the science of genetics. Each set of chromosomes

include between 30,000 and 40,000 genes. In every pair of chromosomes, genes appear in

exactly the same order along the lengths of both chromosomes.
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1.9.1 The structure of genes

Genes are continuous segments of DNA and are constructed from four nucleotide building

blocks. Each gene encodes a specific mRNA and protein, and a gene is composed of DNA.

An average human gene includes about 10,000 nucleotides (nt) and each nucleotide contains

one of the four bases A,T,G and C.

Genes are made up of double-stranded DNA and they are measured by a unit that is

called the base pair. In higher eukaryotes, genes contain exons and introns. An intron is a

segment of a gene removed from the messenger RNA during processing and not represented

in proteins, however an exon is not removed form the mRNA.

Fig 1.5 shows three hypothetical genes drawn to scale. The four exons (hatched boxes)

in the human gene are separated by three introns (lines) and the yeast and bacterial genes

each contain a single exon [112]. Exon is a segment of a gene that is copied to mRNA and

maintained after mRNA processing. An intron is a segment of gene that is copied to mRNA

and is removed from the mature mRNA before protein synthesis. Genes are illustrated from

left to right. The left end of a gene is the 5′ end, and the right end is the 3′ end. A human

gene might include 6 exons and 8 introns including 100-200 base pairs for exons and 1,000

base pairs for introns.

Figure 1.5: Three hypothetical genes. Exons (boxes) are separated by introns (lines).

Scientists have paid more attention to DNA sequences than to any other type.
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1.9.2 Structure of prokaryotic and eukaryotic genes

“Both prokaryotic and eukaryotic genes have promoter sequences 5′ - to the sites of ini-

tiation of transcription with a TATA box. This generally starts about 10 nucleotide (nt) 5′

-to this site in prokaryotes and about 30 nt from this site in eukaryotes, though in yeast it

is usually further away, at 40-100 nt” [64]. A promoter is an element that decides about

the start site for RNA polymerase, which is an enzyme that makes mRNA from the DNA

template. Many promoters have an AT-rich promoter sequence which is called TATA box.

Generally the more a TATA box differs from the normal sequence, the fewer mRNA

transcripts will be made. As a result very low levels of the encoded protein will be made.

Eukaryotic genes normally have a number of upstream sequences and trans-acting pro-

tein factors bind to them to regulate transcription. The untranslated sequences 5′ - to the

initiation codon is shorter in prokaryotic than in eukaryotic. Codon is any one of 64 three-

nucleotide sequences or triplets in mRNA that specify one of the 20 amino acids used for

protein synthesis.

The main difference between prokaryotic and eukaryotic genes is the presence of introns

in the eukaryotic. This might be a sign of a very early evolutionary stage. Introns might

have been eliminated from prokaryotic by pressures resulting in more compact genome.

1.9.3 Mutation and gene conversion

Human beings have 99.9% of genes in common [131]. It is the remaining 0.1% and its

surrounding effects that make us individuals. Each chromosome in a pair of chromosomes

is almost the identical image of the other. Alleles are genes that control particular features

and they come in two or more versions. They produce difference between people such as

eye colour. Alleles appear through mutation which can happen naturally or as a result of

being exposed to radiation or harmful chemicals. Everyone has several mutations in their

genes.

Changes in human DNA base sequences happen very slowly [64]. These changes are

known as mutations. Organisms have the means to correct changes in DNA bases. Point

mutation happens by chemical reactions that affect one of the functional groups on a single

base in DNA. Highly reactive free radicals which are formed by ultra-violet radiation or

X-rays can cause chemical changes in the bases of DNA and break DNA chains. The

25



Background and Literature Review 1.9. Genes

enzymes responsible for repairing do not always act perfectly and sometimes make deletion

or insertion of one or more nucleotides.

Gene conversion happens when two genes interact and as a result a part of the nucleotide

sequence of one gene combines with the other. Both genes keep their location, however a

non-reciprocal change happens to one of them. Gene conversion can occur between genes

on different chromosomes or between genes in the same chromosome. The second situation

is more likely, particularly if families of genes with repetitive and similar structure exist.

1.9.4 Gene prediction

In the 1960s it was discovered that a gene and its protein products have relations with the

nucleotides in the gene and amino acids in the protein [104]. Overlapping genes and genes

within genes were discovered in late 1960s when it was revealed that the computational

problem of gene prediction is too complicated. Eukaryotic genomes are more complex

than prokaryotic ones. Eukaryotes contain not only genes but also a large amount of DNA

that does not code for any proteins. This is called “junk DNA”. Most human genes are

interrupted by junk DNA and are broken into exons.

In 1978 it was discovered that mammalian genes also have a split structure. When a

new DNA fragment is sequenced, biologists try to find genes in this fragment. Knowing the

location of a gene does not necessarily lead to the identification of the gene itself. In simple

organisms like bacteria, genes are arranged in continuous DNA-like strings. In mammals,

the situation is much more complicated. In a human gene that has roughly 2,000 letters,

exons could be shuffled randomly into a section of DNA with a length of even a million

letters. A typical human gene might have 10 or more exons, eg. the BRCA1 gene linked to

breast cancer has 27 exons.

An analogy of this situation is having a magazine article that begins on page 1 then

jumps to page 10 then goes to pages 41, 58,74,83,97 and so on with all pages of advertise-

ment and other articles appearing between the pages of the article of the interest. Nobody

knows yet why this happens. 97% of the human genome is advertising, which is called

“junk DNA”.

Prediction of a new gene in a new sequence is not easy. Many statistical methods deter-

mine which part of DNA is advertising and which part is the story. In terms of the magazine

analogy, it is not expected when reading the human gene “story” to come across terms like
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“for sale” or “telephone number” and so on. A combinatorial method for gene prediction

uses templates of previously sequenced genes to recognize newly sequenced genes.

1.10 Genetic engineering and human genomes

Genetic code, genetic engineering and the Human Genome Project (HGP) are discussed in

this section.

1.10.1 Genetic code

The genetic code is the cellular alphabet that specifies one of the 20 common cellular amino

acids or stop codons from the 64 triplets in messenger RNA [112].

A codon or triplet includes three nucleotides that are read by cellular machinery to

specify an amino acid. Four nucleotides might make 64 possible combinations (43).

The sequence of nucleic acid in DNA is important because it codes the sequence of

amino acid in proteins [83]. The relationship between the sequence of DNA and the se-

quence of corresponding protein is called genetic code. The primary structure of a protein

is a linear chain of building blocks called amino acids.

Genetic code is a cellular “conversion table” between codon and amino acid [112]. Of

the 64 combinations, 61 are used to specify amino acids and the other 3 are known as stop

codons which are genetic signals in the code that signal protein termination. [112]. See

Table 1.1

1.10.2 Genetic engineering

Genetic engineering is a term for the process of manipulating genes, usually outside the

organism’s natural reproductive process [131].

Genetic engineering works on the organism’s DNA. This happens by introducing a new

gene from an organism of a totally different species. For this, scientists first select an

organism with useful genes to create a desired feature. By using chemical ‘scissors’, they

cut out the gene and insert it into the DNA of the other organism.

Recombinant DNA technology (or gene splicing) uses enzymes to cut and paste DNA

into a “recombinant molecule” [112]. Since recombinant molecules spliced in the labora-

tories are identical clones of each other, it is also known as cloning.
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Second Position (Middle)
First Position (5′) A G C T Third Position (3′)

A lys arg thr lle A
lys arg thr met G
asn ser thr lle C
asn ser thr lle T

G glu gly ala val A
glu gly ala val G
asp gly ala val C
asp gly ala val T

C gln arg pro leu A
gln arg pro leu G
his arg pro leu C
his arg pro leu T

T stop stop ser leu A
stop trp ser leu G
tyr cys ser phe C
try cys ser phe T

Table 1.1: The Genetic Code

1.10.3 Human Genome Project (HGP)

The genome defines the genetic construction of a cell or genotype [83]. Genotype is the

genetic makeup of an organism, and the complete set of characteristics expressed by an

organism is called its phenotype.

The genome of a cell consists of one or more molecules of DNA inside a chromosome.

For bacteria the cell contains only one copy of the genetic material and is called haploid.

Higher organisms have two copies and are called diploid.

Human genome project and its aims

The human genome is all the DNA in one set of chromosomes [131]. Fifty years after James

Watson and Francis Crick found the structure of DNA in 1953, scientists researching the

human genome succeeded in reading the sequence of bases in the DNA in human cells. A

draft was published in 2000. They found the order of the“letters” A,T,C,G that compose

the coded messages of genes. These coded messages determine how our body is assembled

and how it works and shows if we are predisposed to suffer certain kind of diseases. The

first aim of the human genome project is to find the precise sequence of bases in DNA that

make up a genome. The second aim is to construct a complete map of genomes that will
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show where the genes are located.

Human genome project importance

Sequencing of the human genome has been acclaimed as the greatest achievement in biol-

ogy [101]. Completion of the human genome project is not the end of technology develop-

ment related to DNA sequencing. There are many genomes to be sequenced and there are

many individuals to be compared with the standard sequence.

The working draft of entire human genome, involved with the sequences of 85% to 90%

of 3 billion DNA bases. This is the construction map of humans and has potential in the

discovery of functional genes, distinguishing gene mutations responsible for diseases and

development of methods and procedures for detection, treatment and prevention of variety

of diseases. One of the objectives of human genome project is clinical use of genomic in-

formation. This might help pharmaceutical companies to produce medications compatible

with the patient’s genetic profile to increase efficiency and effectiveness, and to decrease

the side effects.

1.10.4 Structural and functional genomics

A branch of biology that studies the structure and function of genes is called genomics [5].

Structural genomics is the application of sequencing technologies to create representative

genome sequences for different organisms, specially humans.

Functional genomics is the study of the functions of genes to understand the behaviour

of all the genes in a genome. Knowing the sequence of a gene does not mean that its

function is known as well.

1.10.5 Genome analysis

Cytogenetics is the study of the structure of chromosomal material [101]. Biophysics is an

interdisciplinary science that applies the theories and methods of physics to questions in

biology. Biochemistry is the field of study that endeavours to understand the chemical basis

of life by focusing on the study of DNA, RNA, proteins, and other biomolecules. Molecular

biology is the study of biology at a molecular level. The field overlaps with other areas of

biology and chemistry, particularly genetics and biochemistry. All these disciplines have
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helped to develop genome analysis and have helped us to understand inheritance and the

gene’s role in an organism’s phenotype. It can be said that a genome is a complete set of

DNA instructions for a given organism organised into chromosomes. Genome sequenc-

ing can act as a base for analysis of transcription, gene regulation, chromosome structure,

genetic pathologies and evolution.

1.11 Microarray

Microarrays may have a variety of types depending upon the samples they use and the

technology upon which they are based on. They have a range of different applications.

This section explores the concept of microarrays and microarray history, microarray struc-

ture and types, microarray technology and applications, microarray experiment process and

nanoarrays.

1.11.1 Definition of Microarray

“Microarray is a new scientific word derived from the Greek word mikro (small) and the

French word arayer (arranged)” [112].

A microarray includes an array of spots in columns and rows. An analytical device will

be called a microarray if it is ordered, planar, microscopic and specific.

A Microarray is normally made of a planar and unbending substrate such as glass, plas-

tic, or silicon, all of which are solids. Nitrocellulose and nylon filters, which were developed

in 1970s and 1980s, are also considered to be solids.

1.11.2 History of Microarray

Schena and colleagues developed the microarrays at Stanford University in the 1990s [112].

The idea arose after a talk with one of his colleagues regarding the development of a new

technology to study plant gene expression. He supported the idea of producing glass chips

to study plant transcription factors. At the beginning it was difficult to answer the questions

regarding the manufacturing of the chips, reading them, hybridizing cDNA on the glass,

labelling the probes and so on. These problems were solved by Davis’ laboratory and

the Stanford Biochemical department. The research goal was to manufacture microarrays
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containing plant gene sequences and measure plant gene expression by fluorescent labelling

mRNA and hybridizing them to cDNA on the substrate. The fluorescent signals provide a

quantitative measure of each gene on the substrate.

Three main approaches were considered for microarray manufacturing including pho-

tolithography, ink jetting and contact printing. Photolithography or optical lithography is a

process used in semiconductor device fabrication to transfer a pattern from a photo-mask

(also called reticle) to the surface of a substrate. The development of microarray technol-

ogy was facilitated by cooperation of six major disciplines including biology, chemistry,

physics, engineering, mathematics and computer science.

The first microarrays (printed in 1995) had 96 genes with 200-µm features, whereas the

high-density microarrays manufactured in 2001 contained 30000 genes with 16µm features.

1.11.3 Microarray structure and function

A microarray is an array of microscopic elements on a substrate that allows binding of

genes or gene products. Fig 1.6 shows that circles on the microarray contain target DNA

molecules attached to a glass substrate (top inset). The single-stranded target molecules

hybridize to fluorescent labelled probes in the solution (bottom inset). Spots glow with

different intensities determined by the expression level of each gene. [112].

A microarray enables exploration of genomics. Fig 1.7 shows another figure of mi-

croarray analysis. In microarray analysis that uses mRNA as a probe, mRNA is extracted

from cell and labelled with fluorescent and hybridized to the microarray containing gene

sequences. Each spot on the chip links specifically with the labelled molecules in the solu-

tion and glows differently. Glowing intensities can be coded and then quantitative data can

be obtained by determining the intensity level at each spot. A microarray enables scientists

to examine the entire human genome in one experiment [112].

Microarray elements are collections of target molecules that allow specific

binding of probe molecules including genes and gene products and a typical

printed DNA spot contains approximately one billion molecules attached to

the glass substrate [112].

Targets can be extracted from whole genes or parts of genes and can appear as genomic

DNA, cDNA, mRNA, protein, small molecules, tissues, or any type of molecules that allow
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Figure 1.6: A microarray is an array of microscopic elements on a substrate that allows
binding of genes or gene products.

quantitative gene analysis. Targets can be derived from a variety of sources such as cells

and enzymatic reactions. Chemical synthesis provides an excellent source of target material

that produces single-stranded oligonucleotide.

1.11.4 Types of microarray

Nucleic acid microarrays include DNA microarray and oligonucleotide microarrays. They

contain DNA or RNA as the target material.

1. DNA microarrays

A DNA microarray consists of a solid surface, usually a microscope slide [122]. DNA

molecules are bonded to the slides.

Classification of DNA microarrays is based on the type of probes they use on the array,

their generation and immobilisation [100]. This will create cDNA arrays, oligonucleotide

arrays and genomic arrays.

DNA microarray allows to measure expression of thousands of genes which results in

understanding of complex biological systems [30]. Its high density and small size allow
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Figure 1.7: Microarrays are used to examine samples by fluorescently labelling messenger
RNA (mRNA) from cells or tissues.

researchers to examine different samples in parallel. This technology facilitates the study

of genomic structure, function and interaction related to the expression levels of thousands

of genes.

Microarrays can be used to find the genes with different expression levels under differ-

ent experimental conditions. This might include finding genes with correlated expression

patterns that show a functional relationship, detecting target genes to create new research

hypotheses, and classifying and predicting subtypes of samples with gene profiling.

Substrates to be used in microarrays must have some specific physical and chemical

attributes [95]. A variety of techniques exist to attach probes to cDNA or oligonucleotides

to substrates. Two main strategies include In-situ synthesis strategy (which is synthesis of

oligonucleotides on the substrate) and attachment strategy (which is attachment of cDNA

or presynthesized oligonucleotides to the substrate).

2. Oligonucleotide microarray

In this method many different, single-stranded DNA oligonucleotide of varied sequences

are attached to a microarray [37]. A sample of single-stranded cellular DNA or RNA is

added and allows the two single strands to form specific Watson-Crick base-pairs with
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any matching oligonucleotide on the chip. If any DNA or RNA sample is labelled with a

fluorescent dye, each cell-derived sample will give a pattern of fluorescent light signals on

the biochip.

Oligonucleotide microarrays have been useful in measuring the amounts of mRNA

present in any living cell. This enables the comparison of the relative transcription of DNA

into RNA for thousands of different genes in biological samples. This comparison would

be possible for example before and after giving a patient a therapeutic drug or before and

after certain cells have turned cancerous.

1.11.5 Microarray technology

After genome sequencing, microarray technology has been used widely in genomic studies

in biology and other corresponding sciences [83]. Microarray technology provides facilities

to measure molecular biology, resulting in information for gene control, and the results of

controlling gene transcriptions. Microarray technology facilitates the examination of DNA

and RNA variations. Grouping genes with similar expression patterns helps to identify

genes with the same function or genes that are likely to be co-regulated. By comparing

gene expression in normal and abnormal cells, microarray technology can help to discover

biological processes for cures.

The success of microarray technology depends on the precision of the measurement,

using tools for data mining and statistical modelling. The strength of the microarray tech-

nology depends on data mining and analytical methods.

Genomics provide biologists with all the genes to be used to assemble life. Microarray

technology provides high measurement in molecular biology which leads to information

for the reconstruction of gene control networks.

Microarray technologies can be classified in two main groups: spotted microarray and

In-situ microarrays.

1. Spotted cDNA and spotted oligonucleotide microarrays

In spotted cDNA and spotted oligonucleotide microarrays samples might be spotted onto

glass slides in which laser fluorescence may be used to detect two-colour hybridization

from two samples at once [28]. Alternatively they may be spotted cheaply onto filters, in

which case radio-labelled material is used for hybridization of one sample at a time.
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Spotted microarrays consist of a solid surface and nucleotide sequences are placed on

them. Each spot represents a specific gene, an expressed sequence tag (a partial gene se-

quence which provides a tag for a gene); a clone (a population of identical DNA sequences)

derived from cDNA libraries; or an oligonucleotide (a short sequence specifically syntyh-

esised for experiment). The spots act as probes against which target and reference mRNA

is hybridized [28]. Probes are deposited on the array through a process called contact spot-

ting or printing. The spotting machinery prints nucleotide spots on the array. In cDNA

approach, DNA is prepared from cDNA clones.

Spotted cDNA experiments include four steps as follows [30]:

1. DNA clones with known sequences are spotted and immobilized onto a glass slide.

2. Pools of mRNA from tissue or cell population are transcribed to cDNA and labelled

with one of the two fluorescence dyes (e.g.Cy3 “Green” and Cy5 “Red”).

3. Two pools of mRNA are mixed and applied to a microarray with many spots. In this

stage strands of cDNA will hybridize to the complementary sequences on the glass

slide and any unhybridized cDNA will be washed off.

4. The microarray will be scanned and the red and green colours will be read by com-

puter to measure the expression level of genes. The ratio of red to green signals is

used for data analysis.

Spotted oligonucleotide experiments are similar to spotted cDNA experiments, ex-

cept that synthetic oligonucleotides are used as probes instead of cDNA [83].

2. In-situ synthesized oligonucleotide arrays

This method uses a combination of photolithography and solid phase oligonucleotide chem-

istry to synthesize short oligonucleotide probes directly on the solid support surface [83]. In

this method the test and reference samples (treatment and control samples) are hybridized

separately on different chips. Unlike the two previous methods, a test and a reference sam-

ple labelled with two different fluorescent dyes are simultaneously hybridized on the same

array.

In in-situ synthesised oligonucleotide arrays method, oligos are built up base-by-base

on the surface of the array instead of presynthesising oligonucleotides [122]. In-situ syn-

thesised oligonucleotide arrays use Affymetrix GeneChip Technology for experiment [30].
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The Affymetrix Gene chips is one of the most popular microarray platforms. This has some

advantages over spotted arrays. The main advantage is start-up time.

Affymetrix chips are manufactured in a unique way and can be read by the special

Affymetrix machine [28]. Affymetrix gene chips use oligonucleotide of 25 bases per probe.

Affymetrix uses 22 probes per gene and up to 23,000 genes per chips. Each gene is iden-

tified by a collection of probes called a probe set. Multiple probe genes make up the gene

(11 probe pairs per gene). Each probe pair consists of one probe called the perfect match

and another called a mismatch. The perfect match has a sequence similar to the sequence

of the gene of interest, however, a mismatch has a different sequence.

1.11.6 Microarrays based on the samples they use

In a classification, microarrays can be classified according to the molecule they utilise in

experiments. The following classification is based on the type of samples that each of the

microarrays might utilise including cDNA, oligonucleotide, tissue and protein [112].

1. cDNA microarray

The first microarray experiments were performed by complementary DNA microarrays.

cDNA is a nucleic acid molecule derived from mRNA. cDNAs normally include 500 to

2,500 base pairs [112]. Approximately 65% of all the researches into microarrays includes

cDNA microarray research. See Fig 1.8.

2. Oligonucleotide microarray

Oligonucleotides are single-stranded molecules including 15-70 nucleotides that are made

by chemical synthesis. These targets provide a high specificity of binding and good signal

strength in hybridization reactions. About 26% of all the published experiments have used

oligonucleotides as target molecules in the hybridization process.

3. Tissue microarray

Tissue microarray contains parts of human tumour samples or other tissues of interest. This

kind of microarray experiment comprises about 6.6% of all the published experiments. This

microarray is more recent than nucleic acid microarrays.
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Figure 1.8: Microarray papers published since 1995, categorized according to target type
and organism.

4. Protein microarray

Protein microarrays contain pure proteins or cell extracts. This kind of microarrays accounts

for approximately 1.4% of all the published experiments. This microarray is more recent

than nucleic acid microarrays.

1.11.7 Reasons for using arrays

There are three main reasons for using arrays. These are as follows [95]:

1. Arrays to identify patterns

The GeneChip array is an excellent “survey array” developed by Affymetrix. According to

the company, the two arrays in the “Human Genome U133 Set” contain more than 1 million

oligonucleotide features that enable expression observation of 39,000 varieties of 33,000

different human genes in a single sample. cDNA and oligonucleotide array of GeneChips

are commonly used for expression observation of genes in diseased tissues or during treat-

ment with a drug. Experiment with DNA arrays show that the vast majority of the genes

are either not expressed or not affected by disease. Normally a pattern of gene expression

or ‘signature’ is characterised that involves fewer than 50 genes.
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2. Arrays to measure patterns

‘Scan arrays’ normally measure specific patterns. They are appropriate for diagnosis and

drug discovery. In array-based diagnostic tests, tests occur at different sites like reference

laboratories, hospital laboratories, and physicians offices. In drug discovery, after target

validation, the results show how collections of chemical compounds can be tested to identify

the compounds that are responsible for the desired effect.

3. Arrays for parallel processing

The experiment of adopted array formats can be found in combinatorial chemistry theory.

Synthesis of chemical compound libraries has been performed in an array format. By us-

ing combinatorial chemistry, the photolithographic process which is used by Affymetrix to

create its DNA chips is possible.

1.11.8 Microarray applications

Microarrays have a variety of applications. Although the first application was to monitor

gene expression, these days an array of ordered bio-molecules on the chip to examine a

sample biochemically is widely used [110]. In addition to gene expression, hybridization

based arrays have been used for mutation detection, and other types of microarrays have

been used for polymorphism analysis, mapping and evolutionary studies.

One application of microarray is in pharmaco-genomics, which is a new area in bio-

medicine and an interdisciplinary area involving pharmacology and genomics.

Schena has discussed some of the main microarray applications as the following [112]:

1. Development

Microarrays can be used to build a database of gene expression levels resulting from

the function of the cell and tissue type. This will be facilitated by examining gene

expression patterns on a genomic scale. These databases can provide a profound

understanding of the basic mechanisms that are responsible for controlling multi-

cellular development, and clarify the pathological cellular events in terms of how

human diseases start and progress.
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2. Human disease

Genetics, diet, environment and presence of infectious agents are some of the com-

plex set of factors that are responsible for the onset and progression of human dis-

eases. Microarrays have a unique ability to detect each of these contributing factors.

Cancer has accounted for 83% of published experiments on human diseases to date.

Diabetes, cardiovascular disease, Alzheimer, stroke, AIDS, cystic fibrosis, Parkin-

son, autism, and anaemia are investigated using microarray analysis. As an example,

by comparing gene expression patterns in brain tissues from normal individuals with

those from Alzheimer patients, it should be possible to determine the genetic basis of

this disease. All human illness can be studied by microarray analysis and the aim is

to develop a treatment or cure for every human disease by 2050.

3. Genetic Screening and Diagnostics

Any small error in genetic code can lead to the production of faulty proteins that

are not capable of functioning normally and so cause human disease. Many sequence

variants that are responsible for disease are known. In a microarray screening process,

patient samples are amplified by PCR, printed into microarrays and hybridized with

synthetic nucleotides.

Microarrays are scanned for fluorescent intensity detection and data are represented

in a two-colour image. This screening process allows normal, carrier, and diseased

genotypes to be detected and distinguished. The acquisition of such information

regarding genetic diseases should improve the quality of health care and reduce its

costs.

Amaratunga et al. have described other applications for microarrays as the following

[5]:

4. Complex diseases

There are some diseases that are caused by the combination of small genetic vari-

ations (polymorphisms). Coronary artery disease, multiple sclerosis, diabetes and
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schizophrenia are complex diseases where genetic make-up plays an important role

in causing disease.

5. Tissue-specific Gene expression

Cells from different tissues serve different functions and the reason is as yet un-

known. Since different proteins, particularly enzymes, control the biochemical reac-

tions within a cell, a cell’s functions are determined by which proteins are produced

by the cell, and this in turn will depend on which genes are expressed by the cell.

Microarray experiments can show which genes are expressed in which tissues. This

can give scientists crucial information about mechanisms that are responsible for the

functioning of cells and genes.

6. Pharmacological agents

Expression levels of some genes are changed when the organism is exposed to exter-

nal factors such as pharmacological agents in the environment. Microarray experi-

ments can be used to identify genes that express differently when they are exposed to

external agents.

7. Plant breeding

Microarray experiments can be used to identify genes responsible for various traits

of interest and determine the conditions under which these traits are expressed. This

will enable scientists to create plants with a desired combination of traits.

8. Environmental monitoring

It is important to assess how environmental stressors (such as combination of food,

water, and air) might impact on the genome-level. Microarrays can compare and

contrast gene expression patterns across affected and unaffected organisms.

1.11.9 Microarray experiment process

A microarray analysis cycle (see Fig 1.9) may include five basic steps as follows [112]:
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1. A biological question

A question must be formulated before starting any kind of microarray experiment.

For example if the research topic is to understand the gene expression in different

tissues, the research question could be formulated as “How do the patterns of gene

expression compare in lung and bladder tissues?” Formulating the question will help

in focusing the research, identifying potential pitfalls, selecting controls and stream-

lining data analysis and modelling.

2. Sample preparation

This phase might include DNA and RNA extraction and purification, target synthesis,

probe amplification and preparation, and microarray manufacture.

3. Biochemical reaction

This is hybridization of the fluorescent sample with the microarray which leads to bio-

chemical interactions of target and probe molecules. If the experiment uses protein

microarrays, this phase will utilise protein-protein interaction rather than hybridiza-

tion.

4. Detection

In this stage a microarray image is created using a scanning or imaging instrument.

5. Data analysis and modelling

In this stage the images are analysed and modelled. This might include quantitating

data, calculating the ratios and clustering the results.

1.11.10 Nanoarrays

Microarray technology has advantages and disadvantages [95]. Microelectronics and nano-

electronics deal with electrons, however lithography prints features of tens of nanometres.

The reasons that we need nanoarrays are as follows:
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Figure 1.9: The five steps of microarray analysis cycle with specific examples of the exper-
imental activities performed at each step.

1. To decrease the size of the feature

Decreasing the size of features from one hand will increase the capability of mi-

croarrays as a result of the decrease in cost and on the other hand will increase the

efficiency and reliability by increasing the number of bio-molecules in the same chip.

2. The ability to deal with single biomolecules facilitates the imagination of differ-

ent microarrays and nanoarrays

Current arrays are ‘passive’ and ‘one use’. If there are ‘active’ and ‘multiple-use’ ar-

rays then biomolecules will have different functionality, e.g., they will be calculable.

Nowadays arrays are ‘static’ as biomolecules are probed on one location. Imagine

‘dynamic’ arrays in which biomolecules will be able to move across the array from

side to side or circulatory, in order to perform different functions such as sensing,

power generation and computation.
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Normally microarrays spotted by robots contain spots as small as 100 microns with up

to 10,000 different spots on a chip. In-situ synthesis is capable of producing up to 400,000

oligonucleotides on a chip using 20µm2 spots. Reducing the size of features from 20-

200µm down to microns or sub-microns would massively increase the volume of genetic

information that could be observed simultaneously on one chip. Achieving such high reso-

lution will facilitate the study of binding and detection in arrays that are up to 10,000 times

more complex. A decrease in feature size will provide assays in which a particular number

of targets will be observable using a smaller volume of samples. This scale will facilitate

high throughput and high-resolution screening tools to be developed.

1.12 Microarray analysis

The process of using microarrays for scientific exploration is called microarray analysis

and even though this field has experienced a huge expansion since early 1990s, the general

strategies and approaches remain the same [112]. This section will outline microarray data,

processing of raw data and data analysis, statistical analysis, normalization and variance,

empty and missing values and microarray analysis process.

1.12.1 Quantitative analysis

Quantitative analysis is the process of measuring the amount, number or intensity of mole-

cules in a sample. Numerical output from microarrays enables quantitative analysis of

microarray data. Accurate patient genotyping requires methods that are able to differentiate

homozygotes from heterozygotes that only differ by 50% in gene concentration.

1.12.2 Microarray data

Microarray data contains two basic aspects: biological significance and statistical signifi-

cance. The biological significance tells to what extent the expression of a gene is influenced

by the conditions of the study [83]. The statistical significance quantifies how trustworthy

the biological significance is. Because of the sources of variability in microarray experi-

ments, the statistical analysis is vital for the interpretation of the phenomena under study.
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Processing of raw data into gene expression data matrix and data analysis

Every major experiment might consist of two stages: data collection and information process-

ing [38]. In microarray experiments, the data collection stage can be broken into five small

stages. These stages will be array manufacturing, preparation of biological samples, extrac-

tion and labelling RNA, hybridization of the labelled extracts to the array, and scanning of

the hybridized arrays.

The information processing stage might be broken into stages such as image quantita-

tion (which is measuring the fluorescence intensity of spots in the array), data normalization

and integration, gene expression, data mining and analysis and generating new hypotheses

regarding the underlying biological processes. Digital images are considered to be raw data

in microarray processing. These images are analysed and the intensity of each spot is mea-

sured. This is normally done by image analysing software. The main purpose of image

analysis is to process the images, extract the data and tabulate them. The output from this

process is called the spot quantitation matrix [38]. In this process images are quantified

then normalized and combined. In the matrices rows normally represent measurements and

columns represent genes. See Fig1.10.

Figure 1.10: Processing of raw data into a gene expression matrix.

Generation of the spot quantitation matrices is an intermediate stage. The data must

be transformed and organised in a gene expression data matrix. Normally after generation

of a gene expression data matrix, data analysing and mining begin. The simplest way of

analysing gene expression data is to identify the genes that are expressed differently in two
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given samples. Data analysis starts with the hypothesis that there might be biologically rel-

evant patterns to be discovered in the data. For example, there might be genes with different

expression patterns that allow samples to be classified differently. Reverse engineering of

gene regulatory networks is one of the approaches used in data analysis. This is based on

the hypothesis that genes with similar expressions under different conditions might have

been regulated by the same mechanism.

A gene expression database includes three major parts: the gene expression data matrix,

gene annotation, and sample annotation. The data are meaningful only in the context of the

underlying biology, so gene annotation and sample annotation are important [38]. There

are many-to-many relationships between genes in the gene expression matrix and samples

or features on the array, so it is crucial to have a detailed description of each of the features

on the array.

Figure 1.11: Three parts of a gene expression data matrix include gene expression data
matrix, gene annotation and sample annotation.

In a gene expression data matrix, rows represent genes and columns represent exper-

imental conditions or samples or features. See Fig1.11. The values at each position of

the matrix show the expression level of a particular gene under a particular experimental

condition. These values are called gene expression levels.

Rows of values in the matrix are gene expression profiles and the columns are sample

expression profiles. Gene and sample annotations add some more biological information to
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the matrix. Gene annotation may include gene names and sequence information, location

in the genome, description of the functional roles for known genes. Sample annotation may

include the information about the part of the organism from which the sample was taken or

which cell type was used. The gene expression matrix together with the annotation is called

an annotated gene expression data matrix.

1.12.3 Statistical analysis

Statistical stages for data analysis include data standardization and normalization, statistical

testing and exploratory analysis and interpretation of the biological functions. [30].

Moreover the corresponding stages are:

1. Data standardization and normalization

The raw data obtained by the computer after scanning the images are noisy and messy.

After pre-processing of the images, normalization and transformation are needed.

2. Statistical testing and exploratory analysis

Following this, statistical testing and/or data mining are applied. This might in-

clude preliminary analysis and a scatter-plot of the data (which help to detect unusual

genes/arrays and systematic variances), hypothesis testing, exploratory analysis (like

clustering analysis), classification and prediction.

3. Interpretation of the biological functions

Statistical analysis usually ends up with lists of genes of interest, which must be

interpreted biologically.

There are several analytical methods including: methods based on P value adjustment,

Bonferroni correction, Sidak single-step procedure, Holm’s step-down method, Duncan’s

procedure and modified Duncan’s procedure, Sidak step-down and modified Sidak step-

down procedures.
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1.12.4 Normalization

The main goal of analysing the microarray is to identify the genes and gene groups that

are different because their expression patterns are functions of biological differences [30].

This would be easy to do if the gene expression measurement were accurate and consis-

tent, however it is subject to technical errors, linear and non-linear biases, and biological

variances.

The purpose of normalization is to minimise the extraneous variation in the measured

gene expression levels of hybridized mRNA samples so that biological differences (differ-

ential expression) are easily distinguished [83].

In a quantitative estimation, normalization is used to measure the systematic errors due

to imperfection of equipment. Considering experimental processes, potential sources of

systematic error include [28]:

1. Sample preparation:

The processes of mRNA extraction, reverse transcription, cDNA amplification and

labelling can affect the sample.

2. Variability in hybridization:

Temperature, uneven hybridization and DNA quantity on the array can cause system-

atic error.

3. Spatial effects:

Pin geometry and print tip problems can play a significant role in spotted microarrays.

4. Scanner setting:

If parameters are subject to change, they can lead to bias.
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5. Experimenter bias:

Results from hybridization carried out by the same experimenter often cluster to-

gether. This is one source of systematic variation.

1.12.5 Variance

There are two sources of variance: technological variation and biological variation [30].

Technological variation can be divided into systematic and measurement errors. System-

atic errors refer to sources of difference resulting from procedural variation (e.g. sample

preparation, RNA extraction, etc). This can be reduced by becoming familiar with the cor-

responding steps of each process. Measurement error refers to errors resulting from the

limitations of the tools used (e.g. printer, amplifier, etc). Biological variation refers to the

difference in the subjects being examined.

1.12.6 Empty and missing values

Empty values have no corresponding values [30]. If there are missing values they show that

some values were not captured. Missing values are common in a microarray study and can

be caused due to deletion in data entry, equipment malfunction, scanning resolution, and

dust or scratches on microarray glass surface. Missing values can affect negatively many

analysis methods and can lead to false assumptions or conclusions about the biological

process.

There are alternative strategies that can deal with the treatment of missing values [28].

The first is to remove the affected expression profile (gene or array profile) from the

matrix altogether. This is a very radical approach and many useful values could be lost in

the presence of some missing values.

The second is just to ignore the problem and leave the matrix as it is. This approach is

acceptable if the proportion of missing values is within an acceptable tolerance.

The third way is to substitute a reasonable value for the missing values. In this method

an average value is assigned in place of the missing value. Another approach is to use a level

representing balanced expression (red-green ratio equals 1) in place of a missing value.

Imputation methods replace missing values by estimates derived from the observed data,

and convert an incomplete data set into a complete one [83]. Some examples of imputation
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methods include row average, k-nearest neighbours method, regression estimate method

and principal component method.

1.12.7 Microarray analysis process

The process of microarray analysis includes: identifying scientific aims or tasks, designing

experiments, making arrays, hybridizing or scanning spots, processing images, deriving

data matrix and pre-processing the matrix [28].

1.13 Microarray gene expression

In this section microarray gene expression (or the so-called “fundamental dogma of mole-

cular biology”) will be explained. Additionally, this section includes a discussion of the

microarray gene expression matrix and gene expression analysis.

Gene expression is the process by which mRNA and protein are synthesised from the

DNA template of each gene [83].

Through the process of fundamental dogma of molecular biology, genetic information

is carried from DNA into RNA and from RNA into protein. See Fig 1.12 [112].

Figure 1.12: Fundamental dogma of molecular biology.

The paired-bases sequence allows DNA to encode information and replicate it by using

strands. A cell’s genome contains information that is necessary to synthesise (construct)

proteins, and for proteins to perform all the functions that a cell needs. In the structure of a

cell’s genome, there is a mechanism for self-replication and transforming gene information

to protein. This happens through transcription and translation. In a cellular process, cells
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express their genes, so expressed genes under different physiological conditions provide

important information about gene function [112].

1.13.1 Transcription process

The first stage of making protein is transcribing the information in the DNA of the genes

into single-stranded RNA. The synthesis of RNA from DNA is called transcription, because

this process is similar to the process of copying written words. The DNA is transcribed into

RNA and the RNA is called a transcript. Through transcription the RNA copy of one strand

of DNA is produced [83].

”When a gene is copied, first the stretch of DNA containing that gene ’unzips’

just like it does during replication. Then, free RNA nucleotides line up with the

unzipped section, pairing up with matching bases on one of the DNA strands.

The bases link up to form an RNA strand called messenger RNA or mRNA.

Once it has copied the message contained on the gene, the mRNA molecule

travels through a hole in the nuclear membrane and into the cytoplasm, ready

for the next stage in the process” [131].

Transcription happens in genes where their DNA sequences are composed of coding se-

quences, non coding sequences and regulatory elements. Coding sequences (exons) specify

protein information and non coding sequences (introns) are removed or do not have cod-

ing information. Regulatory elements are short DNA sequences of 10-100 base pairs and

they control the expression of genes. As Fig 1.13 shows, the transcription process (wavy

arrow), which results in the synthesis of single-stranded cellular mRNA, is mediated by

specific DNA sequences or regulatory elements located adjacent to cellular genes. An en-

hancer (solid rectangle) modulates the efficiency of transcription, and a promoter (thick

line) provides a start site for the RNA polymerase enzyme. [112].

There are varieties of regulatory elements including promoters and enhancers and they

are located near the genes that they regulate. A promoter is an element that decides about

the start site for RNA polymerase, which is an enzyme that makes mRNA from the DNA

template. Many promoters have an AT-rich promoter sequence, which is called a TATA

box.
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Figure 1.13: The transcription process is mediated by specific DNA sequences or regulatory
elements.

An enhancer is an element that alters a promoter’s efficiency by increasing or decreas-

ing the rate of transcription. An increase in the rate of transcription is called activation

(or up-regulation) and a decrease in the rate of transcription is called repression (or down-

regulation). Cellular proteins known as transcription factors mediate the activity of promot-

ers, enhancers and other gene regulatory elements [112]. They bind to specific nucleotide

sequences within regulatory elements and modulate transcription by a variety of mecha-

nisms. See Fig1.14.

1.13.2 mRNA processing

During the transcription of cellular genes, mRNA molecules are synthesised from DNA

templates [112]. mRNA processing occurs after transcription through which mRNAs are

edited. See Fig1.15. In mRNA processing, an unprocessed mRNA with exons and in-

trons undergoes capping, which adds a single G residue to the 5′ end and increases mRNA

stability. Splicing removes introns from the mRNA to create a functional coding sequence.

Polyadenylation results in the addition of a poly A tail to the 5′ end, which increases mRNA

stability and the efficiency of protein synthesis (translation). The process of cap addition,

poly A addition and intron removal are known as capping, polyadenylation and splicing

respectively.

1.13.3 Translation

Translation is a process in which proteins are synthesised according to the RNA information

[83]. The process of reading mRNA sequence and converting it into amino acid is similar
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Figure 1.14: Transcription of cellular genes is regulated by activators (oval) and repressors
(diamond), functioning through enhancer regulatory elements (solid rectangles).

to translating from one language to another and this is why it is called translation. The

four-letter alphabet of the genes is translated into the 20 amino acid alphabet of proteins in

ribosome. Translation of genetic code into a protein is achieved with the help of tRNA.

In the process of gene expression, RNA provides mRNA, tRNA, and rRNA. cDNA is

complementary to a given mRNA and is made by reverse transcription. Reverse transcrip-

tion allows mRNA to be retrieved as cDNA. Existence of mRNA and cDNA shows that the

information in either type of nucleic acid is convertible.

Like messages in the gene, mRNA’s instructions are composed of words such as ACC or

UAC (called codons) and each include three letters or bases. mRNA’s message is decoded

according to the genetic code. By using genetic code, the cell translates the language of
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Figure 1.15: mRNA processing. An unprocessed mRNA undergoes capping, splicing and
polyadenylation.

DNA written in words or codons to the language of proteins written in amino acids [131].

Translation is the synthesis of a polypeptide chain from processed mRNA. Translation

happens on cytoplasmic structures which are called ribosomes [112].

In the translation process, a ribosome attaches itself to the capped (5′) end of the mRNA

and moves in a 5′ to 3′ manner until it meets a start codon (AUG) and translation starts

immediately. Methionine (MET) is added as the first amino acid. The ribosome coordinates

interactions between the mRNA and tRNA molecules. For each codon one amino acid is

added to the polypeptide chain. Translation terminates when the ribosome meets a stop

codon (UAA, UGA OR UAG) in the mRNA sequence for which no tRNA exists and causes

the release of a fully synthesised polypeptide (wavy line). See Fig1.16.

1.13.4 mRNA and protein abundance

Proteins are the last product of a gene expression process and proteins synthesised by a

cell’s genome are called proteome [28].

Measuring real gene expression means measuring the abundance of proteins. DNA

microarray experiments measure the abundance of mRNA but not protein abundance. A

specific gene (genomic DNA sequence) always produces the same amino acid sequence of

the related protein which folds to assume its native state. Measuring mRNA abundance will

give accurate information about protein abundance. It will also reveal the primary structure
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Figure 1.16: Translation including initiation, elongation and termination stages.

of the proteins related to the measured mRNA. There are three ways by which proteins are

formed and the genome might be subject to alterations.

Firstly, genomic DNA might change due to a replication machinery error that causes it

to copy damaged DNA.

Secondly, difference might occur due to differences in promoter selection, because

genes may have different promoters. It is also possible that one mRNA will be edited before

translation, or one base in mRNA will be replaced by another base, altering one amino acid.

There is no connection between the amount of mRNA and the amount of protein translated

from it. There is a correlation between mRNA abundance and protein abundance, but the

control of rates of translation can be quite different.

Finally, structure-modifying alterations might occur after translation. DNA gene mi-

croarrays actually measure mRNA transcript abundances. DNA microarray studies are pre-

ferred to protein expression and modification studies, which are still very expensive and

need high-level techniques.
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1.13.5 Microarray gene expression matrix

Microarray gene expression matrix measures the expression of many genes with a number

of conditions and represents this in a table [30]. This table shows the function of each gene

in the genome measuring gene expression levels at different stages, tissues or different

conditions [72]. Rows in this table would correspond to genes and columns would show

different variables such as tissues, treatments and so on. Each position in the table will

represent values showing the expression level of a particular gene in a particular sample.

This table is known as microarray gene expression matrix (GEM). Thus GEM=g X n, in

which g is number of genes whose expression is measured in each n array.

A database of gene expression matrices composed of different microarray experiments

will help to understand gene regulation, the genetic mechanism of diseases and reactions of

cells to drug treatments. This can help to predict gene function for genes whose functions

are unknown (and this prediction would be based on the expression similarity to the known

genes); to identify which genes are important in diseases or cellular process; to discover

how cells respond to various compounds; and to learn gene regulation by studying groups

of co-regulated genes. By showing the status quo of gene expression levels of known genes,

microarrays are transforming a black box of a cell to a transparent box.

“Microarrays measure the relative or absolute mRNA abundance indirectly by measur-

ing the intensity of the fluorescence of the labelled mRNA bound to spots on the array” [72].

The intensities of each fluorescent dye is measured on a separate channel, and the raw data

produced by microarrays are monochrome images for each channel. ScanAlyze is the most

popular software package for image analysis from spotted arrays. It is important to know

not only the value of the measurement, but also the standard error for each data point.

1.13.6 Gene expression outliers

In a gene expression matrix we come across certain values that are called outliers [30].

Outliers are measurements that are inconsistent, compared with the other members of the

same matrix. Outliers can affect some analysis tools by their presence. These values can

be created by experimental handling and can account for up to 15% of the variation in a

microarray experiment.
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1.13.7 Gene expression analysis

In a DNA microarray experiment, a probe of one DNA strand that matches a particular

mRNA in a cell is used to measure the concentration of mRNA in the cell [77]. Concentra-

tion of a particular mRNA is a result of expression of its corresponding gene. This appli-

cation is normally called expression analysis. If different probes matching all mRNAs in a

cell are used, a snapshot of the total mRNA pool of a living cell or tissue can be obtained.

This is called the expression profile, because it reflects the expression of every single mea-

sured gene at that moment. This can sometimes be used to show the expression of a simple

gene over different conditions. Expression analysis can be performed by a method that is

called serial analysis of gene expression (SAGE). SAGE uses traditional DNA sequencing

to identify and count the number of mRNAs in a cell.

With microarray technology, large sets of gene expression data can be created. These are

called gene expression profiles (or transcriptional profiles) and gathering is called profiling.

Transcriptional profiling can be either sequencing-based or hybridization-based.

1.13.8 Gene expression profile

This term explains the expression value for a single gene across many samples or experi-

mental conditions, and for many genes under a single condition or sample [28].

One gene over multiple samples

A gene profile is a gene expression profile that describes expression values for a single gene

across many samples or conditions.
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Many genes over one samples

An array profile is a gene expression profile that explains the expression values for many

genes under a single condition or sample.

E = (Xij) =


x11 x12 . . . x1M

x21 x22 . . . x2M

. . . .

xN1 xN2 . . . xNM



where xij denotes the expression level of sample j for gene i, such that j = 1,. . .M,

and i = 1,. . .N.

1.13.9 Measuring and reporting expression

Estimation of the expression for each gene is the starting point for each analysis [38]. In

analysis we try to see the expression based on measured hybridization intensities. Hy-

bridization is looking for the relative RNA representation from which expression can be

inferred.

In a gene expression measurement process, each gene is represented by some features

on the array for which fluorescence intensities are measured. From these measurements,

we attempt to determine the expression level of a gene. In the array a range of diverse

information such as selected samples, collection condition, RNA extraction and labelling

conditions, hybridization conditions and others could be tracked. Ultimately what is mea-

sured is RNA representation, not expression, and each step of the process can affect the

final result. See Fig1.17. Hybridization measurement and report method can have a crucial

effect on the conclusion of an experiment. [38].

After identifying the features, microarray image analysis software measures the inten-

sities in each channel for each pixel that comprises the image of each feature and reports

a variety of statistics. These normally include the total intensity for each feature and some

statistical facts. The main goal of each microarray is to identify the expression difference
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C1 C2
A 2 3
B 3 4
C 4 2

Table 1.2: Gene expression matrix of three genes under two conditions. The gene expres-
sion measurements are in arbitrary units.

for each gene. There are some methods for measuring the fluorescent intensity for the

arrayed features. Most microarrays use either the background-subtracted median or total

intensities as the statistic representing each feature.

Figure 1.17: A gene expression measurement diagram.

1.13.10 Expression data as a vector space

In a data matrix, we can talk about gene space and sample space [38]. Each gene may

be considered as a point in m-dimensional space where m is the number of samples and

each sample can be assumed as a point in an n-dimensional space where n is the number

of genes. Here we give an example of three genes A,B,C and two conditions C1 and C2.

(m = 2 and n = 3). See Table 1.2 [38].

This can be visualised either as 3 two-dimensional vectors in the condition space or 2

three-dimensional vectors in the gene space. See Fig1.18 [38].

In a multidimensional space each point defines a vector. Representing genes and sam-

ples as vectors allows the use of linear algebra and data analysis methods.
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Figure 1.18: Visualizing genes in condition space (a) and conditions in genes space (b) for
the gene expression matrix of Table1.2

Let X be the gene expression matrix with m columns and n rows. Let Xij be the
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expression value in the ith row and the jth column. i.e.

X =


x11 x12 x13 . . . x1m

x21 x22 x23 . . . x2m

. . . . . . . . . . . . . . .

xn1 xn2 xn3 . . . xnm



As an example the expression of the three genes under two conditions is represented by

the 3× 2 matrix.


2 3

3 4

4 2

 [4] [21] [74] [28] [131] [5] [112] [64] [104] [83] [98] [101] [37] [76] [100]

[110] [30] [122] [95] [38] [72] [77] [19] [137] [15] [92] [25] [26] [35] [129] [126] [12] [13]

[132] [88] [79] [80] [109]

[?] [?] [?] [52] [?] [68] [75] [?] [?] [119] [120] [?] [67] [1] [7] [9] [10] [11] [?] [16]

[17] [14] [27] [31] [32] [?] [33] [47] [48] [?] [44] [50] [58] [59] [60] [61] [62] [70] [78]

[89] [?] [?] [115] [123] [117] [71] [91] [134] [135]

[3] [?] [?] [20] [29] [?] [40] [46] [55] [57] [65] [63] [102] [103] [107] [54] [69] [18]

[?] [?] [?] [?] [?] [?] [?] [?] [?] [?] [?] [?] [?] [?] [2] [?] [?] [81] [125] [66]

[8] [39] [49] [56] [73] [82] [84] [85] [86] [87] [116] [118] [124] [133] [136] [138]

[139] [23] [41] [93] [34] [108] [106] [127] [?] [?] [?] [43] [51] [113] [114] [111] [94] [36]

[45] [22] [96] [97] [6] [] [105] [121] [42] [99] [90] [128] [53]
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Chapter 2

Clustering in gene expression data sets

In this chapter we develop a new algorithm to solve cluster analysis problems in gene ex-

pression data sets. We start with an explanation of the main concepts of data mining.

2.1 Introduction

2.1.1 Data mining

Data mining is the process of automatically searching large volumes of data for patterns. In

a data mining process, analytical tools are used to correlate any kind of data under survey

and to present them in a meaningful way. If there are any hypotheses, statistical analy-

sis might be applied to examine them [83]. Data mining has developed to facilitate the

identification of useful information within data reservoirs, and it involves the application of

discovery algorithm to the data [74]. Data mining aims may include prediction, classifica-

tion and description.

Knowledge discovery in databases (KDD) is the process of extracting models and pat-

terns from large databases [109]. The terms KDD and data mining (DM) have often been

used interchangeably, however, strictly speaking KDD is the umbrella of the mining process

and DM is only a step in KDD. One main objective of KDD is to simplify the underlying

model in the data for use and make it understandable for a decision maker.
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Steps of Knowledge Discovery in Databases (KDD)

Sarker et al. [109] argued that the literature contains many descriptions of the steps involved

in KDD. However, they described 13 steps in KDD as the following:

1. Problem definition and determining the mining task: This step identifies if the

mining task should take place or not and, if so, the aims of the mining task.

2. Data description and selection: In this step suitable data fields and files are se-

lected.

3. Data conversion: The database file system suitable for the mining process is identi-

fied and the data are converted from the original format to the selected one.

4. Data cleaning: Reduces or removes noise and errors in the data.

5. Data transformation: The logical relation between probable existing tables is re-

flected in a single table that contains all the information necessary for the mining

process.

6. Data reduction and projection: In projecting the data, information is condensed

into a smaller number of attributes.

7. Domain-specific data pre-processing: A set of operations using domain-specific

knowledge that makes the attributes valid from the domain point of view.

8. Feature selection: Identifies a subset of features that significantly contribute to the

discrimination or prediction problem.

9. Choosing the mining algorithm: Chooses one or more computational techniques

that are efficient.

10. Algorithm-specific data pre-processing: Does not alter the database and a view of

the data would be available to each algorithm with the pre-processing taking place on

the view level.

11. Applying the main algorithm: Includes the application of one or more computa-

tional techniques that are efficient and can produce particular patterns or models over

the data.
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12. Analysing and refining the results: This is to analyse the outcomes and refine them.

Data Mining Process

In practice the data mining process includes the following steps [74]:

1. State the problem and formulate the hypothesis: The experience domain needs to

be identified to enable the development of a meaningful problem statement. In this

step the researcher specifies a set of variables with unknown dependency or variables

with only a general idea about the dependency of them. This step uses the application

domain and a data mining model.

2. Collect the data: This step refers to how the data are generated and collected. There

are two possibilities. The first one is when a modeller controls the data generation

process. This is called a designed experiment. The other possibility is when the

modeller does not have any control over data generation, which is known as the ob-

servational approach or random data generation.

3. Pre-processing the data: This includes the following tasks:

3.1. Outlier detection (and removal): Outliers are unusual data values. The re-

searcher may choose to detect and remove outliers or to develop modelling

methods that are insensitive to outliers.

3.2. Scaling, encoding, and selecting features: In this stage variable scaling or data

encoding might be used. It is recommended that the features are scaled to bring

them to the same weight for further analysis.

3.3. Estimate the model: Selection and implementation of an appropriate data min-

ing technique occurs.

3.4. Interpret the model and draw conclusions: Data mining models are used for

decision making, so they need to be interpretable. In order to obtain accurate

results, modern data-mining methods using high-dimensional models might be

utilised.
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2.2 Cluster analysis problems

Cluster analysis is one of the important data mining tasks. Clustering (or cluster analysis)

aims to partition a set of objects (genes or samples) into the groups that are relatively similar

[100]. This means that objects in the same group will be more similar than the objects in

different groups.

Clustering is also called unsupervised classification of the patterns [19]. Cluster analysis

is involved with the problem of organizing a collection of patterns into clusters based on

similarity. Different similarity measures can be used in cluster analysis and the squared

Euclidean distance is one of the most widely used similarity measures:

‖ x− y ‖2=
n∑

i=1

(xi − yi)
2.

Another similarity measure can be absolute or city block metric, which is defined as

‖x− y‖1 =
n∑

i=1

|xi − yi|

Euclidean distance will be used as a similarity measure. Each cluster is identified by its

centre (or centroid). In cluster analysis, we assume that we have been given a finite set of

points A in the n-dimensional space Rn, that is

A = {a1, . . . , am}, where ai ∈ Rn, i = 1, . . . ,m.

There are different types of clustering. Here we consider the hard unconstrained partition

clustering problem, that is the distribution of the points of the set A into a given number k

of disjoint subsets Aj, j = 1, . . . , k with respect to predefined criteria such that:

1) Aj 6= ∅, j = 1, . . . , k;

2) Aj
⋂
Al = ∅, j, l = 1, . . . , k, j 6= l;

3) A =
k⋃

j=1

Aj.

4) no constraints are imposed on the clusters Aj, j = 1, . . . , k.

The sets Aj, j = 1, . . . , k are called clusters. We assume that each cluster Aj can be

identified by its centre (or centroid) xj ∈ Rn, j = 1, . . . , k. Then the clustering problem
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can be reduced to the following optimization problem [31, 119]:

minimize ψ(x,w) =
1

m

m∑
i=1

k∑
j=1

wij‖xj − ai‖2 (2.1)

subject to

x = (x1, . . . , xk) ∈ Rn×k, (2.2)

k∑
j=1

wij = 1, i = 1, . . . ,m, (2.3)

and

wij = 0 or 1, i = 1, . . . ,m, j = 1, . . . , k (2.4)

where wij is the association weight of pattern ai with cluster j, given by

wi,j =

 1 if pattern ai is allocated to cluster

0 otherwise

and

xj =

∑m
i=1wija

i∑m
i=1wij

, j = 1, . . . , k.

Here ‖·‖ is a Euclidean norm and w is anm×k matrix. The problem (2.4) is also known as

the minimum sum-of-squares clustering problem. Different algorithms have been proposed

to solve the clustering problem. Jain et al. [70] provided a survey of the most existing

algorithms. Among clustering algorithms we can mention here heuristics like k-means

algorithms and their variations (h-means, j-means etc.), mathematical programming tech-

niques (including dynamic programming, branch and bound, cutting plane, interior point

methods), the variable neighbourhood search algorithm and metaheuristics like simulated

annealing, tabu search and genetic algorithms [1, 33, 44, 48, 50, 58–61, 78, 115, 119, 123].

Since the number of genes in gene expression data sets are very large, most of these algo-

rithms cannot be applied to the clustering of samples in such data sets.

The problem (2.1)–(2.4) is a global optimization problem and the objective function ψ

in this problem has many local minima. However clustering algorithms based on global

optimization techniques are not applicable to even relatively large data sets. Algorithms

that are applicable to such data sets can locate only local minima of the function ψ and, as

the number of clusters increases, these local minima can differ significantly from the global
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solutions. Another difficulty is that the number of clusters, as a rule, is not known a priori.

Over the last several years different incremental algorithms have been proposed to address

these difficulties. Results of numerical experiments show that an incremental approach

allows one, as a rule, to locate a local solution close to the global one. Consequently it can

produce a better cluster structure of a data set. Bagirov et al. [19] developed an incremental

algorithm based on nonsmooth optimization approaches to clustering. The global k-means

algorithm was developed in [89]. The incremental approach is also discussed in [62].

Here a new version of the global k-means algorithm for solving clustering problems in

gene expression data sets is being proposed. In this algorithm a starting point for the k-th

cluster center is computed by minimizing the so-called auxiliary cluster function.

2.2.1 Clustering algorithms

Clustering in gene expression data sets is a challenging problem. One can consider two

types of clustering in gene expression data sets: clustering of genes and clustering of sam-

ples.

Clustering of genes

Most of methods were designed to solve gene clustering problems. In unsupervised meth-

ods, current knowledge regarding the functional role of different genes is not considered

[30]. Hence, unsupervised microarray data analysis introduces a process in which the sys-

tem shows existing gene categories and ignores an imposed structure. The system uses a

data set to find regularities, patterns or groups.

It is assumed that each gene belongs to a category that is associated with a function or

co-regulation. In this case it is expected that unsupervised analysis will introduce a new

explanation regarding gene expression association that has not been evident previously.

Clustering invokes unsupervised methods that can be used to determine if the elements

of a gene expression matrix belongs to a special group. It is assumed that similar expres-

sion levels must indicate the same biological function or co-regulation. Clustering helps to

determine the function of the unknown genes. In the clustering process, expression values

are grouped according to the distance function.

The members of each gene expression cluster are similar to other members in the same

cluster, but they are different from the members in the other clusters. The first step in
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clustering is describing similarity and dissimilarity by a distance function.

Different algorithms for clustering of genes have been proposed [47,91,134,135]. Some

of the main techniques are described in further detail below.

Hierarchical clustering Hierarchical clustering is used to identify genes with similar

profiles and thus similar functions [30]. In the clustering process, each gene expression

value is expressed as coordinates, which represent the distance from the other genes, by

using pair-wise similarity measures. Hierarchical clustering is divided into two sub groups

according to the criterion of dissimilarity (divisive) and similarity (agglomerative). A divi-

sive approach (top-down) starts with all gene expression values in a single cluster and starts

splitting until a criterion is met. An agglomerative approach (bottom-up) begins with each

gene expression value in different (singleton) sets, and merges the clusters until a criterion

is met.

The result of hierarchical clustering is a tree-shaped graph called a dendrogram. This

represents a visual summary of the clustering process. A dendrogram is a colour-coded

graph in which each gene expression value is a leaf. Red indicates an increase in gene

expression levels and green indicates a decrease in gene expression levels. The intensity of

the colour is a measure of the difference between other values and clusters. The length of

the horizontal line that connects two clusters (nodes) shows the relative closeness.

Bi-clustering (or two way clustering) is a technique that is capable of clustering genes

and microarray subsets simultaneously. Hierarchical clustering employs different meth-

ods [30] including: single-linkage method, complete-linkage method, average-linkage clus-

tering, centroid-linkage method, median-linkage clustering, and Ward’s clustering method.

Partitional clustering Partitional clustering divides gene expression values g into k

groups until each group presents a cluster and k ≤ g [30]. This process has two require-

ments.

Firstly, each cluster must contain at least one gene expression value. Secondly, each

gene expression value must belong to a cluster.

k-means clustering This is one of the most popular unsupervised methods applied to

microarray data [30]. It is said that k-means methods give better results in microarray data

sets where the clusters have similar gene expression values and they are expected to be

compact and therefore have similar biological functions. In microarray data analysis, the k-

means algorithm represents each gene expression value as a point. The algorithm identifies
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k-points (seed points) and assumes them as centroids. For a pass through a data set, k-

points are assumed to be fixed at any iteration. In the next iteration, the remaining points

are assigned to the nearest k-points so as to minimize the sum of the distance between seed

points and all the other points.

Fuzzy clustering In ’fuzzyfication’, numbers such as gene expression levels are changed

to qualitative descriptors [30]. The difference between fuzzy k-clustering and standard k-

clustering is that fuzzy k-clustering assumes each gene point as a member of each cluster

with certain degree. This allows a fuzzy k-means algorithm to identify overlapping groups

of genes and identify the role of a gene in different pathways.

Clustering of samples

VizCluster technique for sample clustering Zhang et al. [137] present the VizCluster

technique, which is a visualization approach to cluster analysis. The aim of clustering

and classification is to find out the pattern or structure of data sets. Visualizing these pat-

terns or structures can help in exploratory data analysis. This technique uses graphical

visualization methods to show the data structure or underlying data pattern. Using both

high-dimensional scatterplot and parallel coordinate plots helps to produce a non-linear

projection and changes n-dimensional vectors into two dimensional points.

Zhang et al. have developed two approaches:

1. Supervised maximum entropy approach, which uses pre-known classes of samples

as a training set, then applies the maximum entropy model to generate the optimal

pattern model which can be used on new samples.

2. Unsupervised interrelated two-way clustering method, which dynamically uses the

relationship between the groups of genes and samples while clustering through both

gene-dimension and sample-dimension to identify important genes and classify sam-

ples simultaneously.

VizCluster supports three types of data analysis including cluster/class discovery in both

supervised and unsupervised analysis, class prediction and class assessment. Here the goal

is the classification of samples in gene expression data.

Due to the large number of genes only a few algorithms can be applied to the clustering

of samples [13]. As the number of clusters increases the number of variables in the cluster-
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ing problem increases drastically and most clustering algorithms become inefficient. The

k-means algorithm and its different variations are among those algorithms which are still

applicable to the clustering of samples in gene expression data sets. However as the num-

ber of clusters increase, the k-means algorithms in general converge only to local minima

and these local minima may be significantly different from the global solutions. Recently

the global k-means algorithm has been proposed to improve global search properties of

k-means algorithms [89].

In their work Bagirov et al. [15] propose a new clustering algorithm which is based on

methods of non-smooth optimization. In this algorithm, clusters are calculated incremen-

tally. The algorithm calculates as many clusters as exist in a data set, with respect to a given

tolerance.

2.2.2 k-means and the global k-means algorithms

In this section we give a brief description of the k-means and the global k-means algorithms.

The k-means algorithm proceeds as follows:

Algorithm 1. The k-means algorithm.

Step 1. Choose a seed solution consisting of k centres (not necessarily belonging to A);

Step 2. Allocate data points ai ∈ A to its closest centre and obtain k-partition of A;

Step 3. Recompute centres for this new partition and go to step 2 until no more data points

change cluster.

The effectiveness of this algorithm is highly dependent upon the starting point. It con-

verges only to a local solution, which can differ significantly from the global solution in

many large data sets.

The global k-means algorithm proposed in [89] computes clusters successively. At the

first iteration of this algorithm, the centroid of the setA is computed and in order to compute

the k-partition at the k-th iteration this algorithm uses centres of k − 1 clusters from the

previous iteration. The global k-means algorithm for the computation of q ≤ m clusters in

a data set A can be described as follows.
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Algorithm 2. The global k-means algorithm.

Step 1. (Initialization) Compute the centroid x1 of the set A:

x1 =
1

m

m∑
i=1

ai, ai ∈ A, i = 1, . . . ,m

and set k = 1.

Step 2. Set k = k + 1 and consider the centres x1, x2, . . . , xk−1 from the previous iteration.

Step 3. Consider each point a of A as a starting point for the k-th cluster centre, thus

obtaining m initial solutions with k points (x1, . . . , xk−1, a); apply k-means algorithm to

each of them; keep the best k-partition obtained and its centres x1, x2, . . . , xk.

Step 4. (Stopping criterion) If k = q then stop, otherwise go to Step 2.

This version of the algorithm is not applicable for clustering in middle-sized or large

data sets. Two procedures were introduced to reduce its complexity [89]. We mention here

only one of them because the second procedure is applicable to low-dimensional data sets.

Let di
k−1 be a squared distance between ai ∈ A and the closest cluster centre among the

k − 1 cluster centres obtained so far. For each ai ∈ A we calculate the following:

ri =
m∑

j=1

min{0, ‖ai − aj‖2 − dj
k−1}

and we take the data point al ∈ A for which

l = arg min
i=1,...,m

ri

as a starting point for the k-th cluster centre. Then k-means algorithm is applied starting

from the point x1, x2, . . . , xk−1, al to find k cluster centres. We used this procedure in our

numerical experiments.

It should be noted that the k-means algorithm and its variants tend to produce only

spherical clusters and they are not always appropriate for solving clustering problems.

However applying k-means algorithms, we assume that clusters in a data set can be ap-

proximated by n-dimensional balls.
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2.2.3 Computation of starting points

The clustering problem (2.1)–(2.4) can be reformulated in terms of nonsmooth, nonconvex

optimization as follows [15, 17]:

minimize f(x) (2.5)

subject to

x = (x1, . . . , xk) ∈ Rn×k, (2.6)

where

f(x1, . . . , xk) =
1

m

m∑
i=1

min
j=1,...,k

‖xj − ai‖2. (2.7)

We call f a cluster function. If k > 1, the function f is nonconvex and nonsmooth. The

number of variables in problem (2.1)–(2.4) is (m+ n)× k whereas in problem (2.5)–(2.6)

this number is only n × k and the number of variables does not depend on the number of

instances. It should be noted that in many real-world data sets, the number of instances

m is substantially greater than the number of features n. On the other hand, in the hard

clustering problems the coefficients wij are integer, that is the problem (2.1)–(2.4) contains

both integer and continuous variables. In the nonsmooth optimization formulation of the

clustering, all problem variables are continuous. All these circumstances can be consid-

ered as advantages of the nonsmooth optimization formulation (2.5)–(2.6) of the clustering

problem.

Let us consider the problem of finding k-th cluster centre assuming that the centres

x1, . . . , xk−1 for k − 1 clusters are known. Then we introduce the following function:

f̄k(y) =
1

m

m∑
i=1

min
{
di

k−1, ‖y − ai‖2
}

(2.8)

where y ∈ Rn stands for k-th cluster centre and

di
k−1 = min

{
‖x1 − ai‖2, . . . , ‖xk−1 − ai‖2

}
.

The function f̄k is called an auxiliary cluster function. It has only n variables.

Consider the set

D =
{
y ∈ Rn : ‖y − ai‖2 ≥ di

k−1

}
.
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D̄ is the set where the distance between any point y and any data point ai ∈ A is no less than

the distance between this data point and its cluster centre. We also consider the following

set

D0 = Rn \D ≡ {y ∈ Rn :

∃I ⊂ {1, . . . ,m}, I 6= ∅ : ‖y − ai‖ < di
k−1 ∀i ∈ I}.

The function f̄k is a constant on the set D and its value in this set is

f̄k(y) = d0 ≡
m∑

i=1

di
k−1, ∀y ∈ D.

It is clear that xj ∈ D for all j = 1, . . . , k − 1 and ai ∈ D0 for all ai ∈ A, ai 6= xj, j =

1, . . . , k − 1. It is also clear that f̄k(y) < d0 for all y ∈ D0.

Any point y ∈ D0 can be taken as a starting point for the k-th cluster centre. The

function f̄k is a nonconvex function with many local minima and one can assume that the

global minimum of this function would be a good candidate as the starting point for the

k-th cluster centre. However it is not always possible to find the global minimum of f̄k in

a reasonable time. Therefore we propose an algorithm for finding a local minimum of the

function f̄k.

For any y ∈ D0 we consider the following sets:

S1(y) =
{
ai ∈ A : ‖y − ai‖2 = di

k−1

}
,

S2(y) =
{
ai ∈ A : ‖y − ai‖2 < di

k−1

}
,

S3(y) =
{
ai ∈ A : ‖y − ai‖2 > di

k−1

}
.

The set S2(y) 6= ∅ for any y ∈ D0.

The following algorithm is proposed to find a starting point for the k-th cluster centre.

Algorithm 3. An algorithm for finding the starting point.

Step 1. For each ai ∈ D0

⋂
A compute the set S2(a

i), its centre ci and the value f̄k
ai = f̄k(ci)

of the function f̄k at the point ci.
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Step 2. Compute

f̄k
min = min

ai∈D0
⋂

A
f̄k

ai ,

aj = arg min
ai∈D0

⋂
A
f̄k

ai ,

the corresponding centre cj and the set S2(c
j).

Step 3. Recompute the set S2(c
j) and its centre until no more data points escape or return

to this cluster.

Let x̄ be a cluster centre generated by Algorithm 3. Then the point x̄ is a local minimum

of the function f̄k.

2.2.4 An incremental clustering algorithm

In this subsection we describe an incremental algorithm for solving cluster analysis prob-

lems.

Algorithm 4. An incremental algorithm for clustering problems.

Step 1. (Initialization). Select a tolerance ε > 0. Compute the centre x1∗ ∈ Rn of the set A.

Let f 1∗ be the corresponding value of the objective function (2.7). Set k = 1.

Step 2. (Computation of the next cluster centre). Let x1∗, . . . , xk∗ be the cluster centres for

the k-partition problem. Apply Algorithm 3 to find a starting point yk+1,0 ∈ Rn for the

(k + 1)-st cluster centre.

Step 3. (Refinement of all cluster centres). Take xk+1,0 = (x1∗, . . . , xk∗, yk+1,0) as a new

starting point, apply the k-means algorithm to solve the (k + 1)-partition problem. Let

u1∗, . . . , uk+1,∗ be a solution to this problem and fk+1,∗ be the corresponding value of the

objective function (2.7).

Step 4. (Stopping criterion). If
fk∗ − fk+1,∗

f 1∗ < ε

then stop, otherwise set xi∗ = ui∗, i = 1, . . . , k + 1, k = k + 1 and go to Step 2.

It is clear that fk∗ ≥ 0 for all k ≥ 1 and the sequence {fk∗} is decreasing, that is,

fk+1,∗ ≤ fk,∗ for all k ≥ 1.
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This implies that after k̄ > 0 iterations, the stopping criterion in Step 4 will be satisfied.

Thus Algorithm 4 computes as many clusters as the data set A contains with respect to the

tolerance ε > 0.

The choice of the tolerance ε > 0 is crucial for Algorithm 4. Large values of ε can result

in the appearance of large clusters, whereas small values can produce small and artificial

clusters. The recommended values for ε are ε ∈ [10−2, 10−1].
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2.3 Results of numerical experiments

To verify the effectiveness of the proposed clustering algorithm and to compare it with

similar algorithms, several numerical experiments with ten gene expression data sets have

been carried out on a Pentium-4, 2.0 GHz, PC. We use multi-start k-means (MSKM) and

the global k-means (GKM) algorithms for comparison. 100 randomly generated starting

points are used in MSKM. In the tables below, MGKM stands for the modified global k-

means algorithm. In the tables we present the number of clusters, values of the clustering

function (fval) obtained by different algorithms and CPU time.

2.3.1 Data set 1

For description of this data set, refer to Appendix A, SectionA.1.

Results for this data set are presented in Table 2.1. We can see from these results that

the MSKM algorithm produces better results than two other algorithms when the number

of clusters N ≤ 15. It outperforms the GKM algorithm in all cases and produces worse

results than the MGKM algorithm only when N = 20. The MGKM algorithm outperforms

the GKM algorithm. For this data set the MSKM is the most time consuming and the GKM

is the least time-consuming algorithms.

Table 2.1: Results for Data set 1

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 4.100 · 1011 33.609 4.381 · 1011 7.156 4.377 · 1011 9.609
5 3.276 · 1011 127.187 3.383 · 1011 28.688 3.362 · 1011 38.250

10 2.804 · 1011 164.859 3.031 · 1011 65.391 2.879 · 1011 91.250
15 2.519 · 1011 229.500 2.716 · 1011 103.312 2.541 · 1011 158.172
20 2.270 · 1011 263.109 2.410 · 1011 143.828 2.207 · 1011 241.094

2.3.2 Data set 2

For description of this data set, refer to Appendix A, Section A.2.

Results for this data set are presented in Table 2.2. Results presented demonstrate that

the MSKM algorithm produces better results when the number of clusters N ≤ 10. How-

ever as the number of clusters increases, MGKM outperforms the other two algorithms.
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GKM requires less CPU time however its solutions are not good. MGKM requires signifi-

cantly less CPU time than MSKM.

Table 2.2: Results for Data set 2

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 8.441 · 1010 542.812 8.441 · 1010 59.312 8.441 · 1010 102.469
5 6.644 · 1010 1652.078 6.769 · 1010 240.391 6.712 · 1010 415.578

10 5.703 · 1010 2714.593 6.094 · 1010 545.188 5.696 · 1010 962.938
15 5.467 · 1010 4086.984 5.556 · 1010 862.453 5.177 · 1010 1543.297
20 4.900 · 1010 5016.281 5.041 · 1010 1199.984 4.812 · 1010 2150.469

2.3.3 Data set 3

For description of this data set, refer to Appendix A, Section A.3.

Results for this data set are presented in Table 2.3. One can see from these results

that the MSKM algorithm outperforms two other algorithms when the number of clusters

N ≤ 5. For the number of clusters N = 10, 15 the MGKM algorithm outperforms others

and for N = 20 the GKM algorithm achieved the best result. For this data set the MGKM

is the most time consuming and the GKM is the least time-consuming algorithms.

Table 2.3: Results for Data set 3

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 4.429 · 1010 0.031 4.527 · 1010 0.047 4.527 · 1010 0.062
5 2.611 · 1010 0.203 2.919 · 1010 0.109 2.784 · 1010 0.172

10 1.935 · 1010 0.796 2.025 · 1010 0.234 1.883 · 1010 0.625
15 1.409 · 1010 1.546 1.373 · 1010 0.375 1.334 · 1010 1.953
20 1.085 · 1010 2.000 9.168 · 109 0.547 9.392 · 109 4.234

2.3.4 Data set 4

For description of this data set, refer to Appendix A section A.4.

Results for this data set are presented in Table 2.4. One can see from this table that

algorithms produce almost the same results when the number of clusters N ≤ 5. However

GKM requires significantly less CPU time. As the number of clusters increases, MGKM
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produces better solutions than the other two algorithms. Again, MGKM requires less CPU

time than MSKM.

Table 2.4: Results for Data set 4

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 9.212 · 1010 0.812 9.212 · 1010 0.188 9.212 · 1010 0.297
5 5.024 · 1010 3.296 5.032 · 1010 0.609 5.032 · 1010 1.031

10 3.424 · 1010 6.703 3.408 · 1010 1.359 3.351 · 1010 2.875
15 2.849 · 1010 10.125 2.897 · 1010 2.156 2.812 · 1010 5.984
20 2.470 · 1010 11.421 2.556 · 1010 3.000 2.422 · 1010 10.234

2.3.5 Data set 5

For description of this data set, refer to Appendix A section A.5.

Results are presented in Table 2.5. We calculate maximum 10 clusters because this

data set contains only 38 samples. Results from Table 2.5 show that MSKM produces

better solutions than the other two algorithms, however it requires more computational time.

MGKM produces better solutions than the GKM algorithm.

Table 2.5: Results for Data set 5

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 7.880 · 1010 3.062 8.137 · 1010 0.578 7.880 · 1010 0.672
5 5.537 · 1010 8.171 5.837 · 1010 2.016 5.729 · 1010 2.641

10 4.104 · 1010 10.468 4.399 · 1010 4.594 4.271 · 1010 8.188
15 2.954 · 1010 13.578 3.291 · 1010 7.344 3.002 · 1010 19.188

77



Clustering in gene expression data sets 2.3. Results of numerical experiments

2.3.6 Data set 6

For description of this data set, refer to Appendix A, Section A.6.

Computational results for this data set are presented in Table 2.6. We can see the MSKM

algorithm outperforms other two algorithm when the number of clusters N ≤ 5. However,

the MGKM algorithm outperforms two other algorithms as the number of clusters increase.

The GKM algorithm requires less computational time than two other algorithms and the

MGKM is the most time-consuming among three algorithms.

Table 2.6: Results for Data set 6

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 3.622 · 1010 5.140 3.885 · 1010 0.656 3.885 · 1010 0.891
5 2.667 · 1010 8.218 2.707 · 1010 2.328 2.684 · 1010 3.453

10 1.894 · 1010 14.343 1.962 · 1010 5.328 1.893 · 1010 11.109
15 1.371 · 1010 20.312 1.370 · 1010 8.594 1.332 · 1010 25.078
20 9.986 · 109 25.578 9.325 · 1010 12.094 9.153 · 109 45.281

2.3.7 Data set 7

For description of this data set, refer to Appendix A section A.7.

Computational results for this data set are presented in Table 2.7. For this data set, all

three algorithms give the same solutions when the number of clusters N ≤ 5. However for

larger number of clusters, MGKM outperforms two other algorithms. The GKM algorithm

requires the least CPU time and the MSKM algorithm requires the maximum CPU time.

Table 2.7: Results for Data set 7

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 2.777 · 1013 7.468 2.777 · 1013 0.969 2.777 · 1013 1.812
5 1.939 · 1013 20.437 1.939 · 1013 3.547 1.939 · 1013 6.812

10 1.671 · 1013 36.437 1.685 · 1013 7.859 1.626 · 1013 15.203
15 1.570 · 1013 51.671 1.555 · 1013 12.344 1.480 · 1013 25.141
20 1.534 · 1013 60.359 1.473 · 1013 17.016 1.364 · 1013 36.094
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2.3.8 Data set 8

For description of this data set, refer to Appendix A, Section A.8.

Results for this data set are given in Table 2.8. Results presented demonstrate that the

three algorithms produce almost the same solutions when the number of clusters N ≤ 5.

As the number of clusters increases, the MGKM algorithm significantly outperforms the

other algorithms. Again the GKM algorithms is the least time-consuming and the MSKM

algorithm is the most time-consuming.

Table 2.8: Results for Data set 8

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 1.588 · 1010 5.281 1.589 · 1010 0.703 1.589 · 1010 1.234
5 1.068 · 1010 24.296 1.067 · 1010 2.328 1.067 · 1010 4.469

10 8.698 · 109 39.937 8.797 · 109 5.266 8.620 · 109 10.047
15 8.595 · 109 50.671 8.191 · 109 8.234 7.813 · 109 15.609
20 8.242 · 109 53.453 7.656 · 109 11.234 7.259 · 109 22.469

2.3.9 Data set 9

For description of this data set, refer to Appendix A section A.9.

Results for this data set are presented in Table 2.9. These results demonstrate that the

MSKM algorithm outperforms other two algorithms when the number of clusters N ≤ 5

and the MGKM algorithm outperforms two other algorithms for larger number clusters.

Again the GKM algorithms is the least time-consuming and the MSKM algorithm is the

most time-consuming.

Table 2.9: Results for Data set 9

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 2.073 · 1011 0.671 2.168 · 1011 0.047 2.168 · 1011 0.062
5 1.307 · 1011 1.718 1.417 · 1011 0.125 1.322 · 1011 0.188

10 1.040 · 1011 2.890 8.599 · 1010 0.281 8.505 · 1010 0.844
15 8.800 · 1010 3.750 5.885 · 1010 0.453 5.690 · 1010 2.609
20 8.975 · 1010 5.171 4.009 · 1010 0.656 4.015 · 1010 5.609
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2.3.10 Data set 10

For description of this data set, refer to Appendix A section A.10.

Computational results for this data set are presented in Table 2.10. Results from Table

2.10 demonstrate that for small number of clusters (N ≤ 5) MSKM outperforms the other

algorithms, however as the number of clusters increases GKM and MGKM produce better

solutions. The MGKM algorithm is the best for larger numbers of clusters (N ≥ 10). The

MSKM algorithm is computationally more expensive and the GKM algorithm requires the

least CPU time among all three algorithms.

Table 2.10: Results for Data set 10

No of MSKM GKM MGKM
clusters fval CPU time fval CPU time fval CPU time

2 1.554 · 1011 2.156 1.589 · 1011 0.203 1.582 · 1011 0.359
5 1.040 · 1011 7.062 1.064 · 1011 0.688 1.065 · 1011 1.234

10 6.553 · 1010 14.281 6.509 · 1010 1.516 6.327 · 1010 2.688
15 5.258 · 1010 23.578 4.614 · 1010 2.438 4.529 · 1010 4.859
20 4.760 · 1010 29.781 3.515 · 1010 3.375 3.489 · 1010 8.266

2.3.11 Content of clusters

In order to compare clusters generated by different algorithms we use the notion of the

cluster purity. The cluster purity is defined as follows:

P (Ai) = 100
1

nAi

max
j=1,...,l

nj
Ai ,

where nAi = |Ai| is the cardinality of the cluster Ai, nj
Ai is the number of samples in the

cluster Ai that belong to the true class j and l is the number of true classes. Then the total

purity P (A) for the data set A can be calculated as:

P (A) =
nAiP (Ai)

m
.

We used the data set 10. This data set contains 13 cancer types and therefore we calculated

30 clusters. Results are as follows.

• The MSKM algorithm produced 13 empty, 6 mixed and 11 pure clusters with total
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purity P (A) = 64.44;

• The GKM algorithm produced 27 pure and 3 mixed clusters with the total purity

P (A) = 83.33. In mixed clusters the results were as follows:

– Cluster 1 - 17 tumors: breast(1), lung(2), colon(2), germinal center cells (1),

bladder(1), uterus(2), kidney(3), pancreas(5);

– Cluster 2 - 4 tumors: bladder(1), uterus(3);

– Cluster 3 - 5 tumors: whole brain(2), cerebellum(3).

• The MGKM algorithm produced 27 pure and 3 mixed clusters with the total purity

P (A) = 85.56. In mixed clusters the results were as follows:

– Cluster 1 - 14 tumors: breast(1), lung(2), colon(1), bladder(2), kidney(3), pan-

creas(5);

– Cluster 2 - 3 tumors: colon(1), germinal center cells (1), bladder(1).

– Cluster 3 - 5 tumors: bladder(1), uterus(3), whole brain(1).

We can see that the MGKM algorithm generates better cluster structure than other two

algorithms. Thus, we can say that the MGKM algorithm is efficient at solving cluster

analysis problems in gene expression data sets and it produces better cluster structure of

such data sets.
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2.4 Conclusion

In this chapter we discussed the problems of cluster analysis in gene expression data sets.

We considered the clustering problems in a sample space. Only a few clustering algorithms

can be applied to solve such problems, including the k-means algorithm. However, this

algorithm is inefficient and very sensitive to the choice of a starting point. The global k-

means algorithm which has been introduced recently, is a significant improvement over

the k-means algorithm. However, results of our computational experiments show that this

algorithm cannot find a proper cluster structure in gene expression data sets. The main

reason for this is the sparsity of the data in the sample space.

We developed a new version of the global k-means algorithm; the modified global k-

means algorithm. This algorithm is very efficient for solving clustering problems in gene

expression data sets.

We presented the results of numerical experiments on ten gene expression data sets

to support this claim. These results clearly demonstrate that the modified global k-means

algorithm outperforms the other two algorithms: the multi-start k-means and global k-

means algorithms. However the modified global k-means algorithm is computationally

more expensive than the global k-means algorithm.

82



Chapter 3

Gene selection algorithms

In this chapter we develop new gene selection algorithms for gene expression data sets. All

these algorithms are based on the computation of overlaps between classes for a given gene

or for a given group of genes.

3.1 Introduction

The gene expression patterns in microarray data have already provided some valuable in-

sights into a variety of problems, and it is expected that the knowledge gleaned from mi-

croarray data will contribute significantly to advances in fundamental questions in biology

as well as in clinical medicine. Microarrays provide large amounts of data about the inner

life of a cell. These data sets contain thousands of genes. There are only a few genes that

have features describing the cell and the rest of the genes have only very little informa-

tion any at all. One can call those few genes as informative ones and the aim of the gene

selection is to identify such genes. These informative genes can then be used to classify

unknown tumours.

Feature (gene) selection can be applied to both supervised and unsupervised learning.

Feature selection for unsupervised learning (clustering) is an interesting and complex issue

(for more details, see [130]). In this thesis we do not consider this problem, but will con-

centrate on the problem of feature (gene) selection for supervised classification, where the

class labels are known beforehand.

There are many reasons for the selection of a minimal subset of genes. We list here

some of them:
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1. A microarray might generate high dimensional data containing thousands or even

tens of thousands of genes [122]. In general, in gene expression data sets the num-

ber of genes is two or even three orders of magnitudes more than the number of

tumours and most genes are not relevant. Gene selection helps to reduce the number

of non-informative genes and genes which contribute only noise [13]. This enables

the development of cost-effective models.

2. The presence of the large number of genes in gene expression data sets reduces the

generalization abilities of many classifiers. A large number of genes increases com-

putational complexity. Many pattern recognition techniques were originally not de-

signed to cope with large numbers of irrelevant features.

The gene selection allows one to avoid overfitting and to improve model performance,

that is prediction performance in the case of supervised classification and better clus-

ter detection in the case of clustering [108].

3. The gene selection algorithms also may allow finding a subset of genes which might

help to clarify how cancer is developing [69]. These genes can help us to gain a

deeper insight into the underlying processes that generated the data [108].

Thus dimensionality reduction is a key to developing efficient tumour classification al-

gorithms. Many gene selection algorithms have been proposed in the context of microarray

data analysis over the last decade. These algorithms can be classified into three different

groups: filter algorithms, wrapper algorithms and embedded algorithms. Currently there

are a large number of gene selection algorithms. A review of some of these algorithms can

be found in [108]. We now mention here some of those algorithms.

In the paper [132], the author develops a gene selection algorithm in gene expression

based tumour classification. The authors suggest the use of a simple Fisher linear method

for classification and heuristic stepwise and Monte Carlo methods for selecting the opti-

mal subset of genes. Additionally, the authors of this paper compare the accuracy of four

statistical procedures, in classifying tumours. These procedures are Stepwise discriminant

analysis, Monte Carlo methods, t statistic and a PS statistic suggested in [55]. The results

obtained show that the stepwise and Monte Carlo methods work similarly and both methods

work better than t-statistic or PS statistics methods. Of the two previously mentioned meth-

ods, the stepwise method needs much less computational time, so stepwise discriminant
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analysis provides a better method for tumour classification using gene expression profiles.

In [88] the authors propose a gene selection criterion for discriminant microarray data

analysis based on extreme value distribution. Discriminant microarray data analysis com-

pares and classifies expression levels of samples from two groups.

The paper [79] proposes a joint classifier and feature optimization algorithm (JCFO)

for cancer diagnosis using gene expression data. This algorithm uses a sparse Bayesian

approach to identify both the optimal non-linear classifier for diagnosis and the optimal

subset of genes on which this diagnosis should be based. The algorithm is designed to

automatically identify the small subsets of genes which have the highest discriminative

information.

In the paper [80] the authors develop a gene selection algorithm using random forest

approach and the scatter search methods. They apply a three-step process in order to select

features and evaluate them:

1. Feature space reduction;

2. Feature subset optimization in order to select a small subset of near optimal features;

3. Evaluating the selected features in order to measure their efficiency and accuracy in

classifying the samples in data set.

This approach uses a randomized process and consequently we get a forest of decision

trees for feature selection. The more a feature appears in the nodes of the trees, the more

informative it is in classifying the samples and it is assumed to be a more relevant gene.

The paper [13] introduces a gene selection algorithm for multi-class cancer diagnosis

which is based on the notion of an overlap of a gene for all possible pairs of tumour classes.

Genes that have the smallest overlaps for as many pairs as possible are chosen as informa-

tive genes.

The papers [8] and [82] propose hierarchical Bayesian models, the paper [39] considers

a gene selection algorithm based on sparse logistic regression with Bayesian regularization

and the paper [133] develops a Bayesian averaging method.

The papers [49] and [73] introduce algorithms based on clustering. An algorithm, which

uses a hybrid of Pearson correlation coefficient and signal-to-noise ratio methods combined

with an evolving classification function, is developed in the paper [54]. A semi-parametric

two-sample test is proposed in [56] to find the most informative genes.
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In the paper [69] different gene selection algorithms are proposed where genes of in-

terest are selected by ranking them according to a test-statistic and then choosing the top

k genes. A multivariate gene selection algorithm is developed in [84]. A recursive sup-

port vector machines approach is discussed in [85]. A combined genetic algorithm and the

k-NN algorithm approach is proposed in [86]. An algorithm for gene selection using maxi-

mum likelihood is developed in [88]. The paper [116] introduces a gene selection algorithm

based on logistic regression whereas the paper [124] proposes a mixed integer programming

model which simultaneously selects genes and constructs a classification model.

A kernel-based framework for gene selection based on the Hilbert-Schmidt indepen-

dence criterion and backward elimination, called BAHSIC, is defined in [118]. Gene se-

lection algorithms based on support vector machines are proposed in [136] and [139]. The

paper [138] proposes an algorithm based on least squares support vector machines and using

least squares bounds. A comparative study of some gene expression algorithms is presented

in [87].

One of the interesting areas in application of the mathematical methods in bioinformat-

ics is the study of gene networks. Gene networks have been extensively studied in [53,128].

The parameter estimation on these networks is of Chebyshev approximation type, hence it

is a semi-infinite optimization problem. See [53, 128] for more details.

In the next section we present new gene selection algorithms that are based on the use of

hyperboxes containing classes. For a given gene or group of genes, we compute hyperboxes

containing each class and then we compute overlaps between hyperboxes from different

classes. Genes or groups of genes providing the smallest overlaps are identified as the

most informative genes. The algorithms are the extension of the gene selection algorithm

proposed in [13]. The new algorithms are filter algorithms which are fast and independent

of the classifiers. This means they should be applied before the use of classifiers.

3.2 Definition of overlaps

In this section we define one-dimensional and multi-dimensional overlaps between different

tumour types using expression levels of genes. Overlaps can be defined between two classes

as well as between a given class and the rest of a data set. We start with the definition of

overlaps between two classes.
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3.2.1 Binary univariate overlaps

Suppose we are given a data set A which contains m ≥ 2 classes, ni tumours in the i-th

class and p genes. We denote by di
kj the j-th gene expression value for k-th sample in the

i-th class, where i = 1, . . . ,m, j = 1, . . . , p, k = 1, . . . , ni and introduce the following

numbers:

amin
ij = min

k=1,...,ni

di
kj, a

max
ij = max

k=1,...,ni

di
kj,

j = 1, . . . , p, i = 1, . . . ,m.

Here amin
ij and amax

ij are the minimum and maximum expression values for the j-th gene

in the i-th class, respectively. Then the j-th gene in the i-th class can be identified by a

segment [amin
ij , amax

ij ]. We call this segment the expression level segment of the j-th gene in

the i-th class. For a given gene j = 1, . . . , p and two different classes i and l we define:

c1j(i, l) = max(amin
ij , amin

lj ), c2j(i, l) = min(amax
ij , amax

lj ),

e1j(i, l) = min(amin
ij , amin

lj ), e2j(i, l) = max(amax
ij , amax

lj ).

It is clear that the interval [e1j(i, l), e2j(i, l)] contains expression levels of the j-th gene

of all samples from classes i and l and the interval [c1j(i, l), c2j(i, l)], if it is not empty,

contains samples from both classes. Overlaps for the j-th gene between these two classes

can be defined either using the length of both intervals or the number of samples whose the

expression level of the j-th gene are in these intervals.

The use of the length of intervals.

Consider

b1(i, l) = max {0, c2(i, l)− c1(i, l)} , b2(i, l) = e2(i, l)− e1(i, l).

One can note that b1(i, l) = 0 if the expression level segment of the j-th gene in classes i and

l either has no intersection or their endpoints coincide. Always b2(i, l) ≥ 0 and b2(i, l) = 0

if and only if amax
ij = amax

lj = amin
ij = amin

lj . Consider the following number

z =
(
amin

lj − amin
ij )(amax

ij − amax
lj

)
.
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If z ≥ 0 then either

[amin
lj , amax

lj ] ⊆ [amin
ij , amax

ij ]

or

[amin
ij , amax

ij ] ⊆ [amin
lj , amax

lj ].

In particular, if b2(i, l) = 0 then z = 0.

The number

Oj
il =

 1, z ≥ 0,

b1(i,l)
b2(i,l)

, otherwise.

is said to be the overlap of the j-th gene between classes i and l.

The use of the number of samples.

Overlaps can also be defined using the number of samples in the interval [c1j(i, l), c2j(i, l)].

Consider the following sets:

Qt =
{
k = 1, . . . , nt : c1j(i, l) ≤ dt

kj ≤ c2j(i, l)
}
, t = i, l.

Let q = |Qi|+ |Ql| where |Qt| is the cardinality of the set Qt, t = i, l. Then the number

Oj
il =

 1, z ≥ 0,

q
ni+nl

, otherwise.

is said to be the overlap of the j-th gene between classes i and l.

It is clear that Oj
il = Oj

li, O
j
il ∈ [0, 1] and Oj

il = 1 for any j = 1, . . . , p and i, l =

1, . . . ,m. Thus, we can define the following m×m matrix for the gene j:

Oj =


1 Oj

12 Oj
13 . . . Oj

1m

Oj
21 1 Oj

23 . . . Oj
2m

. . . . . . . . . . . . . . .

Oj
m1 Oj

m2 Oj
m3 . . . 1

 .

Oj is a symmetric matrix.
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3.2.2 One-Vs-All univariate overlaps

For a given class i ∈ {1, . . . ,m} and gene j ∈ {1, . . . , p} we define

āmin
ij = min

l=1,...,m,l 6=i
amin

lj , āmax
ij = max

l=1,...,m,l 6=i
amax

lj ,

c̄1j(i) = max
(
amin

ij , āmin
ij

)
, c̄2j(i) = min

(
amax

ij , āmax
ij

)
,

ē1j(i) = min
(
amin

ij , āmin
ij

)
, ē2j(i) = max

(
amax

ij , āmax
ij

)
,

b̄1(i) = max {0, c̄2(i)− c̄1(i)} , b̄2(i) = ē2(i)− ē1(i),

z̄ =
(
āmin

ij − amin
ij )(amax

ij − āmax
ij

)
.

Q0
ti =

{
k = 1, . . . , nt : c̄1j(i) ≤ dt

kj ≤ c̄2j(i)
}
, t = 1, . . . ,m,

Q̄i =
m⋃

t=1

Q0
ti, q̄ = |Q̄i|, n =

m∑
i=1

ni.

Then we can define the overlap between the class i and the rest of the data set by

Ōj
i =

 1, z̄ ≥ 0,

b̄1(i)

b̄2(i)
, otherwise.

or by

Ōj
i =

 1, z ≥ 0,

q̄
n
, otherwise.

Then we can define a vector of overlaps for a given gene j as follows:

Ōj =
(
Ōj

1, . . . , Ō
j
m

)
.

3.2.3 Multi-dimensional overlaps

A hyperbox B = [x, y], x, y ∈ Rn in n-dimensional space Rn is defined as follows:

B = {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n} . (3.1)
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The volume of the hyperbox B is defined as:

V (B) =
n∏

i=1

(xi − yi).

Assume that we are given two hyperboxes B1 = [x1, y1] and B2 = [x2, y2]. Their

intersection is empty if and only if there exists at least one i ∈ {1, . . . , n} such that either

x1
i > y2

i or x2
i > y1

i . In other words the intersection of two boxes B1 and B2 is empty if and

only if

max
i=1,...,n

max
{
x1

i − y2
i , x

2
i − y1

i

}
> 0.

This means that two hyperboxes B1 and B2 have an intersection if and only if:

max
i=1,...,n

max
{
x1

i − y2
i , x

2
i − y1

i

}
≤ 0.

Then we get that x1
i ≤ y2

i and x2
i ≤ y1

i for all i ∈ {1, . . . , n}which implies that max{x1
i , x

2
i } ≤

min{y1
i , y

2
i } for all i ∈ {1, . . . , n}. Two hyperboxes do not intersect if and only if max{x1

i , x
2
i } >

min{y1
i , y

2
i } for at least for one i ∈ {1, . . . , n}.

The intersection of two hyperboxesB1 andB2 is also a hyperbox and it can be described

as follows:

B12 = [α, β], α, β ∈ Rn

where αi = max{x1
i , x

2
i } and βi = min{y1

i , y
2
i }, i = 1, . . . , n.

Binary multi-dimensional overlaps

First we define the multi-dimensional overlaps between two classes i and l, i, l ∈ {1, . . . ,m}.

Let J ⊂ {1, . . . , p} be a subset of genes and J{j1, . . . , jn}, 0 < n ≤ p. Then the group of

genes J in class t can be identified by the following n-dimensional hyperbox:

BJ
t = [xt, yt], xt, yt ∈ Rn, xt

k = amin
tjk

, yt
k = amax

tjk
,

k = 1, . . . , n, t = i, l.
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Let BJ
il = BJ

i

⋂
BJ

l . We assume that V 0
il = max{V (BJ

t ), t = i, l} > 0. The overlap for

the subset J between classes i and l is defined as

OJ
il =

 1, BJ
i ⊆ BJ

l or BJ
l ⊆ BJ

i ,

V (BJ
il)

V 0
il
, otherwise.

We can also define the multi-dimensional overlaps using the number of samples in hyperbox

BJ
il . Consider the set

QJ
t = {k = 1, . . . , ni : uk = (dt

kj1
, . . . , dt

kjn
) ∈ BJ

il}.

Let q = |QJ
i |+ |QJ

l |. Then

OJ
il =

 1, BJ
i ⊆ BJ

l or BJ
l ⊆ BJ

i ,

q
ni+nl

, otherwise.

It is again clear that OJ
il = OJ

li, O
J
il ∈ [0, 1] and OJ

il = 1 for any J ⊂ {1, . . . , p}, J 6= ∅ and

i, l = 1, . . . ,m. Thus, we can define the following m×m matrix for the subset of genes J :

OJ =


1 OJ

12 OJ
13 . . . OJ

1m

OJ
21 1 Oj

23 . . . OJ
2m

. . . . . . . . . . . . . . .

OJ
m1 OJ

m2 OJ
m3 . . . 1

 .

OJ is a symmetric matrix.

One-Vs-All multi-dimensional overlaps

We can define overlaps between a given class i ∈ {1, . . . ,m} and the rest of the data set for

a subset of genes J in a similar way as in the case of univariate overlaps. First we define

the following hyperboxes:

BJ
i = [xi, yi], xi, yi ∈ Rn, xi

k = amin
ijk

, yi
k = amax

ijk
,

B̄J
i = [x̄i, ȳi], x̄i, ȳi ∈ Rn, x̄i

k = āmin
ijk

, ȳi
k = āmax

ijk
,

91



Gene selection algorithms 3.3. Computation of informative genes

B̄0 = BJ
i

⋂
B̄J

i .

QJ0
t =

{
k = 1, . . . , nt : uk = (dt

kj1
, . . . , dt

kjn
) ∈ B̄0

}
,

Q̄J
i =

m⋃
t=1

QJ0
t , q̄ = |Q̄J

i |.

Let V 0 = max{V (BJ
t ), t = 1, . . . ,m} > 0. Then we can define the overlap for the subset

J between the class i and the rest of the data set by

ŌJ
i =

 1, BJ
i ⊆ B̄J

i or B̄J
i ⊆ BJ

i ,

V (B̄0)
V 0 , otherwise.

or by

ŌJ
i =

 1, BJ
i ⊆ B̄J

l or B̄J
l ⊆ BJ

i ,

q̄
n
, otherwise.

Then we can define a vector of overlaps for a given subset of genes J as follows:

ŌJ =
(
ŌJ

1 , . . . , Ō
J
m

)
.

3.3 Computation of informative genes

In this section we consider three different algorithms to compute the informative genes.

It is clear that the smaller the overlap the better a gene or a group of genes is for sepa-

ration of different tumour types. Let

I(n) = {J ∈ {1, . . . , p} : |J | = n} , 0 < n ≤ p

be the set of all possible subsets of genes that contain n different genes.

The following algorithms can be used to determine the most informative genes. In all

algorithms we will consider binary and one-vs-all overlaps.

Algorithm 5. The use of minimum overlaps

Binary overlaps. For any J ∈ I(n) we define the following numbers

rJ = max
i=1,...,m

max
l=i+1,...,m

OJ
il
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and

R = min
J∈I(n)

rJ .

We assume that R ∈ [0, 1). The subset of genes J ∈ I(n) is said to be the most informative

subset if rJ = R.

One can take any tolerance ε > 0 such that ε ≤ 1−R and define a subset of informative

genes with respect to this tolerance. A subset of genes J ∈ I(n) is a subset of informative

genes with respect to the tolerance ε > 0 if

rJ ≤ R + ε.

If ε = 0 we get the most informative genes and we get all genes as informative ones if

ε = 1 − R. Increasing ε from 0 to 1 − R we can get a sequence of subsets with the

increasing number of genes.

One-vs-all overlaps. Here we define

r̄J = max
i=1,...,m

ŌJ
i , R̄ = min

J∈I(n)
r̄J .

and assume that R̄ ∈ [0, 1). The subset of genes J ∈ I(n) is said to be the most informative

subset if

r̄J = R̄.

Again we can take any tolerance ε > 0 such that ε < 1 − R̄ and define a subset of in-

formative genes with respect to this tolerance. A subset of genes J ∈ I(n) is a subset of

informative genes with respect to the tolerance ε > 0 if

r̄J ≤ R̄ + ε.

Increasing ε from 0 to 1 − R̄ we get a sequence of subsets with the increasing number of

genes, where ε = 0 corresponds to the subset of the most informative genes and ε = 1− R̄

corresponds to the whole set of genes.

Algorithm 6. The use of the sum of overlaps.
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Binary overlaps. For each subset J ∈ I(n) of genes we compute

fJ =
m∑

i=1

m∑
k=i+1

OJ
il,

and

F = min
J∈I(n)

fJ .

The subset of genes J ∈ I(n) is called the most informative subset if fJ = F.

Let ε > 0 be a given tolerance. Then a subset of genes J ∈ I(n) is called a subset of

informative genes with respect to ε > 0 if

fJ ≤ F + ε.

One-vs-all overlaps. Here for given J ∈ I(n) we compute

f̄J =
m∑

i=1

ŌJ
i .

Let

F̄ = min
J∈I(n)

f̄J .

The subset J ∈ I(n) is called the subset of most informative genes if

f̄J = F̄ .

Let ε > 0 be a any positive number. A subset J ∈ I(n) is called a subset of informative

genes with respect to ε > 0 if

f̄J ≤ F̄ + ε.

In both cases 0 ≤ ε < ∞ and increasing ε from 0 to ∞ we get a sequence of subsets

with the increasing number of genes, where we get the subset of the most informative genes

if ε = 0 and the set of all of genes if ε is sufficiently large.

Algorithm 7. The use of the number of well-separated classes.

Binary overlaps. Let

θ = min
i=1,...,m

min
l=i+1,...,m

OJ
il.
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and α ∈ [θ, 1]. For the subset J ∈ I(n) of genes we define the following set:

NJ(α) =
{
(i, l) : i = 1, . . . ,m, l = i+ 1, . . . ,m, OJ

il ≤ α
}
.

Let

N0 = max
J∈I(n)

|NJ(α)|,

where |Q| is the cardinality of the set Q. The subset J is called the subset of most informa-

tive genes if

|NJ(α)| = N0.

It is clear that N0 ≤ m(m−1)
2

. Let q > 0 be any integer such that 0 ≤ q ≤ N0. A subset of

genes J ∈ I(n) is called a subset of informative genes with respect to the number q if

|NJ(α)| ≥ q.

One-vs-all overlaps. Let

θ̄ = min
i=1,...,m

ŌJ
i ,

and ᾱ ∈ [θ̄, 1]. For the subset J ∈ I(n) of genes we define the following sets:

N̄J(ᾱ) =
{
i ∈ {1, . . . ,m} : ŌJ

i ≤ ᾱ
}
.

Let

N̄0 = max
J∈I(n)

|N̄J(ᾱ)|.

The subset of genes J is called the most informative subset if

|N̄J(α)| = N̄0.

It is clear that N̄0 ≤ m. Let q̄ > 0 be any integer such that q̄ ≤ N̄0. A subset J ∈ I(n) of

genes is called a subset of informative genes with respect to the number q̄ if

|N̄J(α)| ≥ q.

We can get a sequence of subsets with increasing numbers of genes by increasing α (ᾱ)
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from 0 to 1 and by decreasing q(q̄) from N0(N̄0) to 0.

It should be noted that for m = 2 all algorithms coincide, that is they produce the same

results. Furthermore, Algorithms 5 and 6 are the same in this case. However, for larger

numbers of classes they may differ, sometimes significantly. If Algorithm 5 determines

genes which are good for separation of a few classes only, Algorithms 6 and 7 are effi-

cient in finding genes for the separation of all classes. Since most gene expression data

sets contain more than two classes Algorithms 6 and 7 are more effective for computing

informative genes in such data sets. Therefore in our computational experiments in the next

section we will use only these two algorithms. Algorithm 6 tries to find genes with least

overall overlaps and Algorithm 7 finds genes that are good for separating as many classes

as possible.
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Gene selection algorithms 3.4. Results of numerical experiments

3.4 Results of numerical experiments

To verify the effectiveness of the proposed algorithms we carried out numerical experiments

using ten gene expression data sets. Numerical experiments have been carried out on a

Pentium-4, 2.0 GHz, PC.

In numerical experiments we use only Algorithms 6 and 7 with both binary and one-

vs-all overlaps. We consider subsets of genes with n = 1, 2, assuming that only pairs of

genes may interact with each other. To compute overlaps we use the number of samples.

Algorithm 5 does not give satisfactory results if the number of classes is large. Also the

use of volumes of hyperboxes for the computation of overlaps in gene expression data sets

is not always good since the volume of overlaps can quickly go to 0, while still containing

relatively large number of samples.

We apply Algorithms 6 and 7 to find a sequence of subsets with increasing numbers

of genes using different values of ε > 0 in Algorithm 6 and α, ᾱ, q and q̄ in Algorithms 7.

Then we apply the k-NN algorithm to data sets with the reduced number of genes to perform

classification. Since the number of samples is not large the leave-one-out estimates are used

in all data sets and we take k = 1.

The following versions of Algorithms 6 and 7 are applied in numerical experiments:

1. A2B - Algorithm 6 with binary overlaps and with |J | = 1, 2. (n=1,2)

2. A2O - Algorithm 6 with one-vs-all overlaps and with |J | = 1, 2. (n=1,2)

3. A3B - Algorithm 7 with binary overlaps and with |J | = 1, 2. (n=1,2)

4. A3O - Algorithm 7 with one-vs-all overlaps and with |J | = 1, 2. (n=1,2)

In all tables below we present the number of genes (Ng) and the classification accuracy

on test sets. In these tables the best results for a number of genes are given in bold font and

overall best results are given in italic bold font.

3.4.1 Data set 1

For description of this data set refer to Appendix A section A.1. Results for this data set are

presented in Table 3.1.

97



Gene selection algorithms 3.4. Results of numerical experiments

Table 3.1: Results for Data set 1

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
1 97.9 - 97.9 - 97.9 - 97.9 -
2 99.0 96.9 99.0 96.9 99.0 91.7 99.0 91.7
3 99.0 - 99.0 - 99.0 - 99.0 -
4 97.9 99.0 97.9 99.0 97.9 94.8 97.9 94.8
5 100.0 - 100.0 - 100.0 - 100.0 -
6 100.0 100.0 100.0 100.0 100.0 93.8 100.0 93.8

10 100.0 99.0 100.0 99.0 100.0 94.8 100.0 94.8
3000 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0
7129 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0

One can see from Table 3.1 that algorithms with one-dimensional overlaps could find

two genes that provide the same accuracy as the use of all 7129 genes. Moreover, they found

5 genes that give 100 % accuracy for supervised classification. They are genes MYRL2,

SMARCA3, XDH, FHL3 and RHAG. However, algorithms with two-dimensional overlaps

(except algorithms A3B with n = 2 and binary overlaps) could find 6 genes with the same

results. We can conclude that algorithms with n = 1 and binary overlaps are more efficient

in finding informative genes in this data set.

3.4.2 Data set 2

For description of this data set refer to Appendix A, Section A.2. Results for this data set

are presented in Table 3.2.

Results presented in Table 3.2 show that Algorithm A2B with both n = 1 and n = 2 is

quite effective in finding the most informative genes. We can see that they can find 50 genes

which have greater accuracy than the use all 12625 genes. The most informative genes are

among those 50 genes, because further increase of the number of genes does not lead to

significant improvement in accuracy. The greatest accuracy was achieved using 150 genes

that were found by Algorithm A2B with n = 2. This means the use of multi-dimensional

overlaps may produce better results.
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Table 3.2: Results for Data set 2

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
1 70.8 - 61.9 - 59.9 - 65.3 -
2 71.3 78.2 67.3 78.2 70.3 68.8 67.3 74.8
4 76.7 80.2 73.8 83.2 79.7 70.8 73.3 76.2
10 80.2 84.7 79.2 85.1 83.2 87.1 73.3 86.1
50 92.1 93.6 91.6 89.6 92.1 90.6 82.2 91.1
80 95.5 94.6 90.6 93.1 94.1 88.6 87.1 89.6

100 96.0 94.6 90.6 94.1 94.1 86.1 83.2 89.6
150 93.1 96.5 89.6 92.1 89.6 89.6 82.2 93.1
250 92.1 93.6 92.6 94.6 92.1 87.6 81.7 91.1
500 93.1 94.1 92.1 94.1 92.1 84.7 84.7 92.6

1000 93.6 93.6 94.6 93.6 94.1 87.6 85.6 92.6
12625 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1

3.4.3 Data set 3

For description of this data set refer to Appendix A section A.3. Results for this data set are

presented in Table 3.3.

Table 3.3: Results for Data set 3

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
1 73.7 - 73.7 - 76.3 - 76.3 -
2 55.3 94.7 55.3 84.2 65.8 78.9 65.8 65.8
3 76.3 - 76.3 - 68.4 - 68.4 -
4 76.3 92.1 71.1 89.5 94.7 60.5 94.7 81.6
6 86.8 97.4 89.5 97.4 92.1 78.9 86.8 86.8

10 86.8 94.7 100.0 97.4 92.1 84.2 94.7 78.9
14 97.4 100.0 100.0 94.7 97.4 86.8 97.4 81.6
18 100.0 94.7 100.0 94.7 100.0 92.1 94.7 89.5
20 100.0 94.7 94.7 94.7 100.0 89.5 94.7 89.5

100 97.4 100.0 100.0 100.0 92.1 94.7 89.5 89.5
999 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

We can see from Table 3.3 that for this data set algorithms with univariate overlaps are

also successful in finding the most informative genes. A3B and A3O with n = 1 could

find 4 genes that provide very high (94.7 %) classification accuracy. However, Algorithm

A2B with n = 2 found two genes with the same accuracy. Algorithm A2O could achieve
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100 % classification accuracy with only 10 genes. These genes are No. 164, 309, 391,

548, 600, 603, 606, 686, 769 and 925 in the list of genes of this data set. We can conclude

that algorithms with both binary and one-vs-all overlaps are efficient in finding informative

genes in this data set.

3.4.4 Data set 4

For description of this data set refer to Appendix A section A.4. Results for this data set are

presented in Table 3.4.

Table 3.4: Results for Data set 4

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
1 47.6 - 51.5 - 43.7 - 43.7 -
2 74.8 77.7 57.3 71.8 52.4 67.0 52.4 62.1
3 80.6 - 58.3 - 59.2 - 59.2 -
4 86.4 91.3 68.0 86.4 57.3 72.8 57.3 86.4
6 91.3 92.2 73.8 83.5 59.2 77.7 59.2 87.4
10 93.2 95.1 68.9 88.3 77.7 78.4 64.1 89.3
20 94.2 98.1 86.4 89.3 92.2 92.2 85.4 96.1
50 97.1 99.0 91.3 96.1 91.3 96.1 99.0 99.0

100 99.0 98.1 97.1 98.1 97.1 98.1 96.1 98.1
200 99.0 98.1 98.1 98.1 98.1 99.0 98.1 98.1

1000 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0

Results presented in Table 3.4 show that Algorithm A2B with n = 2 could find the

smallest number of most informative genes. 10 genes found by this algorithm can be con-

sidered as the most informative genes since they can produce quite high classification ac-

curacy. These genes are No. 189, 242, 407, 451, 560, 631, 684, 800, 984 and 989 in the

list of genes of this data set. However, the comprehensive list of most informative genes is

among the first 50 genes found by Algorithm A2B as well as by Algorithm A3O with both

n = 1 and n = 2.

3.4.5 Data set 5

For description of this data set refer to Appendix A section A.5. Results for this data set are

presented in Table 3.5.

100



Gene selection algorithms 3.4. Results of numerical experiments

Table 3.5: Results for Data set 5

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
1 65.8 - 65.8 - 65.8 - 65.8 -
2 76.3 84.2 76.3 84.2 71.1 52.6 71.1 52.6
4 76.3 78.9 76.3 78.9 76.3 73.7 76.3 73.7
10 81.6 81.6 81.6 81.6 63.2 55.3 63.2 55.3
30 84.2 76.3 84.2 76.3 60.5 57.9 60.5 57.9
50 78.9 71.1 78.9 71.1 60.5 57.9 60.5 57.9

200 76.3 78.9 76.3 78.9 68.4 71.1 68.4 71.1
500 71.1 84.2 71.1 84.2 63.2 63.2 63.2 63.2

5000 68.4 68.4 68.4 68.4 68.4 68.4 68.4 68.4

We can see from Table 3.5 that Algorithms A2B and A2O with both n = 1 and n = 2

were effective in finding the most informative genes for Data set 5. Just two genes found by

these algorithms have greater classification accuracy than the use of all 5000 genes. These

genes are No. 1332 and 1851. Recall that in these algorithms we use the sum overlaps

between classes whereas in Algorithms A3B and A3O we use the number of well separated

classes. Although 10 genes found by Algorithms A2B and A2O can provide very good

classification accuracy the most genes are among the first 30 genes.

3.4.6 Data set 6

For description of this data set refer to Appendix A section A.6. Computational results for

this data set are presented in Table 3.6.

One can see from Table 3.6 that results for this data set are mixed. However, we can

see that algorithms with the sum of overlaps (A2B and A2O) work better than algorithms

with hihgest number of well-separated classes (A3B and A3O). Algorithm A2O could find

200 most informative genes with highest classification accuracy reducing the number of

genes almost 30 times. The classification accuracy is significantly better than that for 5893

genes. Algorithms could find 2 genes (Genes No. 3539 and 4412) which give the same

classification accuracy as the use of all 5893 genes.
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Table 3.6: Results for Data set 6

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
1 61.8 - 61.8 - 26.5 - 26.5 -
2 52.9 52.9 41.2 52.9 52.9 32.4 52.9 50.0
10 44.1 44.1 47.1 52.9 23.5 32.4 32.4 61.8
50 52.9 50.0 61.8 61.8 50.0 52.9 44.1 67.6

100 55.9 58.8 58.8 64.7 50.0 55.9 41.2 47.1
200 61.8 55.9 76.5 58.8 50.0 44.1 41.2 47.1
300 70.6 55.9 73.5 55.9 50.0 38.2 41.2 47.1
400 64.7 58.8 76.5 58.8 47.1 44.1 35.3 41.2
500 67.6 58.8 73.5 55.9 41.2 41.2 32.4 41.2

1000 70.6 52.9 70.6 52.9 32.4 41.2 35.3 38.2
2000 67.6 58.8 58.8 55.9 47.1 41.2 41.2 32.4
5893 52.9 52.9 52.9 52.9 52.9 52.9 52.9 52.9

3.4.7 Data set 7

For description of this data set refer to Appendix A section A.7. Results for this data set are

presented in Table 3.7.

Table 3.7: Results for Data set 7

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
1 50.8 - 48.4 - 41.5 - 41.5 -
2 70.2 71.0 66.5 71.0 53.6 62.1 53.6 61.3
4 80.2 82.3 81.0 85.1 62.5 74.6 72.6 74.6

10 91.1 92.7 88.7 96.0 79.8 76.2 85.1 85.5
20 94.0 97.2 90.7 96.0 91.5 85.5 85.9 88.3
50 98.0 99.2 96.0 98.4 98.4 96.8 93.1 96.0

100 99.2 99.2 98.8 98.8 98.4 98.4 96.4 96.8
200 99.2 100.0 99.2 100.0 98.4 98.4 98.0 96.4
250 99.2 100.0 99.6 99.6 99.2 98.4 98.4 96.4
300 99.2 100.0 100.0 100.0 98.8 98.0 98.4 96.4
985 98.8 98.8 98.8 98.8 98.8 98.8 98.8 98.8

Results presented in Table 3.7 show that algorithms with the sum of overlaps (A2B and

A2O with n = 2) work better than algorithm with the highest number of well-separated

classes. It is likely that the most informative genes are among the first 20 genes found by

Algorithm A2B with n = 2. However, 100 % classification accuracy was achieved by 200
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genes found by both Algorithm A2B with n = 2 and Algorithm A2O with n = 2.

3.4.8 Data set 8

For description of this data set refer to Appendix A section A.8. Results for this data set are

presented in Table 3.8.

Table 3.8: Results for Data set 8

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
2 80.2 87.8 77.7 87.3 73.6 80.2 73.6 82.7
4 86.8 90.7 78.7 88.8 80.2 80.2 80.2 82.2
10 86.8 94.4 85.8 92.4 86.3 84.3 86.3 86.8
20 91.9 91.4 91.4 93.4 86.8 91.4 87.3 88.8
50 92.4 94.4 90.4 95.4 90.9 92.9 91.4 90.4

100 93.4 92.4 95.4 94.4 95.9 95.9 94.9 94.4
150 94.9 96.4 96.4 94.9 95.9 95.4 94.9 93.9
200 96.4 98.0 97.0 94.9 94.9 96.4 94.9 94.4
250 95.9 96.4 96.4 95.4 94.9 94.9 94.9 95.9
500 95.9 95.4 94.4 96.4 97.0 94.4 93.9 95.4

1000 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9

We can see from Table 3.8 that Algorithms A2B and A2O with n = 2 are the most

successful in finding the most informative genes. Although the best classification accuracy

was achieved using 200 genes found by Algorithm A2B with n = 2 it is likely that the

most informative genes are among the first 10 genes found by this algorithm. These genes

provide better classification accuracy than the use of all 1000 genes and this result is close

to the best accuracy for 200 genes. The ten most informative genes are genes No. 166,

291, 437, 563, 608, 616, 624, 867, 986 and 991. Again for this data set algorithms that use

the sum overlaps performed better than algorithms that used the number of well-separated

classes.

3.4.9 Data set 9

For description of this data set please refer to Appendix A section A.9. Results for this data

set are given in Table 3.9.

Results presented in Table 3.9 show that Algorithm A2B and A2O with n = 2 could

find informative genes. Algorithm A2B found 20 most informative genes and these genes
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Table 3.9: Results for Data set 9

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
1 38.1 - 38.1 - 35.7 - 45.2 -
2 61.9 52.4 57.1 52.4 54.8 69.0 66.7 47.6
4 66.7 76.2 61.9 76.2 66.7 73.8 57.1 64.3
10 88.1 88.1 76.2 88.1 59.5 69.0 66.7 73.8
20 90.5 97.6 83.3 88.1 73.8 90.5 66.7 90.5
50 90.5 97.6 88.1 95.2 71.4 90.5 66.7 92.9

100 92.9 92.9 85.7 95.2 73.8 90.5 81.0 92.9
150 92.9 92.9 88.1 92.9 73.8 88.1 76.2 92.9
200 90.5 90.5 88.1 95.2 78.6 92.9 85.7 88.1
500 88.1 92.9 90.5 92.9 81.0 85.7 83.3 85.7
989 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0

produce significantly better classification accuracy than the use of all 989 genes. Again

we can see that these algorithms can substantially reduce the number of genes and signifi-

cantly improve the performance of the k-NN algorithm. Again algorithms using the sum of

overlaps performed better than algorithms using the number of well-separated classes.

3.4.10 Data set 10

For description of this data set refer to Appendix A section A.10. Results for this data set

are presented in Table 3.10.

One can see from Table 3.10 that for Data set 10 Algorithms A2B with n = 2 and A3B

with both n = 1 and n = 2 outperform other algorithms. We also note that the results for

Algorithm A2B with n = 2 are also consistent and good. Fifthy genes found by Algorithm

A2B with n = 2 and Algorithm A3B with n = 1 produce better classification accuracy

than the use of all 1277 genes. However, the most informative genes are among 200 genes

found by Algorithm A2B with n = 2.

104



Gene selection algorithms 3.4. Results of numerical experiments

Table 3.10: Results for Data set 10

A2B A2O A3B A3O
Ng 1 2 1 2 1 2 1 2
1 12.2 - 14.4 - 12.2 - 22.2 -
2 42.2 27.8 25.6 27.8 42.2 35.6 25.6 20.0
4 57.8 46.7 36.7 55.6 52.2 61.1 23.3 25.6
10 72.2 75.6 50.0 73.3 71.1 84.4 38.9 54.4
20 77.8 85.6 58.9 80.0 74.4 85.6 51.1 52.2
50 85.6 88.9 66.7 86.7 88.9 86.7 75.6 65.6

100 88.9 91.1 81.1 89.8 91.1 90.0 73.3 74.4
150 91.1 92.2 84.4 91.1 92.2 90.0 85.6 83.3
200 94.4 95.6 88.9 94.4 92.2 93.3 84.4 82.2
250 93.3 92.2 85.6 92.2 91.1 93.3 86.7 87.8
500 92.2 93.3 87.8 93.3 90.0 92.2 85.6 86.7

1277 87.8 87.8 87.8 87.8 87.8 87.8 87.8 87.8
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3.5 Conclusion

In this chapter we developed new gene selection algorithms. These algorithms are based on

the use of the overlaps between different tumour types (classes). We introduced different

types of the overlaps: the univariate and multi-dimensional overlaps as well as the binary

and one-vs-all overlaps. In the case of the univariate overlaps we consider genes separately

and compute segments of the expression levels of genes for each class. For each gene the

overlap between classes is computed as the overlap between these segments.

Multi-dimensional overlaps are defined for the subsets of genes. In this case for each

subset of genes we compute the hyperboxes of expression levels and then overlaps are com-

puted as the overlaps between these hyperboxes. One can compute the overlaps between

two classes (binary overlaps) as well as between a given class and the rest of a data set

(one-vs-all).

We ranked genes or group of genes using either the total sum of overlaps or the number

of “well-separated” classes. The definition of “well-separated” classes depends on a data

set. Genes or groups of genes with small overlaps can be considered as the informative

genes. The use of different overlaps leads to the different gene selection algorithms.

We tested our algorithms on ten publicly available gene expression data sets. The k-

NN algorithm was applied to validate the results obtained by gene selection algorithms. It

is well know that this algorithm is one of the most efficient classification algorithms. We

considered the genes separately (in this case n = 1) or pairs of genes (in this case n = 2),

assuming that the genes may interact pairwise or not interact at all. Results of the numerical

experiments clearly demonstrate that the proposed algorithms are able to find a subset with

a small number of genes and with a high classification accuracy. Results also show that the

use of the sum of overlaps leads to the design of better gene selection algorithms. Results

obtained by these algorithms are more consistent. They can significantly reduce the number

of genes and substantially improve performance of the k-NN algorithm. However, for some

gene expression data sets, algorithms with use of the number of “well-separated” classes

can be also useful.

It should be noted that univariate versions of the overlapping algorithms are very fast.

It requires only a few seconds on PC Pentium 4 with CPU of 1.83 GHZ and RAM of 1

GB to compare a subset of the most informative genes. The overlapping algorithm with

two-dimensional bases, requires a reasonable CPU time, however, as the dimension of the
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hyperboxes increase, CPU time increases drastically too, and the algorithm is not applicable

with high dimensional hyperboxes in large scale gene expression data sets.
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Chapter 4

Classification algorithm for gene

expression data sets

In this chapter we introduce an algorithm for solving supervised data classification problems

in gene expression data sets. This algorithm is especially effective when the number of

genes is very small. Therefore we will apply the new algorithm to gene expression data sets

together with gene selection algorithms from the previous chapter.

4.1 Introduction

The aim of classification or supervised learning is to determine whether an object belongs to

a certain class. Classification of patients into existing disease classes using gene expression

information is a typical application. In microarray analysis, classification is used to predict

sample phenotypes based on gene expression patterns. Classifiers based on gene expression

normally predict that a certain percentage of individuals that have a given expression profile

will also have the phenotype of interest [100]. When working with complex data variables

(features), such as what might be seen in large, noisy and incomplete microarray data sets,

supervised methods are more efficient than the unsupervised ones.

The term classification in its broadest sense covers any context in which some decision

or forecast is made according to currently available information [92]. Classification pro-

cedures include some formal methods in order to make judgment in new situations. More

strictly, classification is constructing a procedure that will be applied to continuing cases,

and the aim is to assign each new case to one of pre-defined classes on the basis of observed
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attributes or features. The construction of a classification procedure using a set of data for

which the true classes are known is called pattern recognition, or supervised learning. An

example of this is assigning a credit status to an individual on the basis of financial and

personal information.

Three main approaches that historically have been applied in this area include: statistical

approaches, machine learning and neural networks.

Statistical approaches are generally characterised by inclusion of a probability model.

This model provides the classification as well as the probability of belonging to a particular

class. Since techniques are used by humans, some intervention in variable selection or

structuring the problem is expected.

Classification within the statistical community has occurred in two main phases. The

first phase is the classical phase which focuses on derivatives of Fisher’s early work on

linear discrimination. The second phase known as the modern phase, uses more classes of

models which try to provide an estimation of the joint distribution of the features within

each class, which in turn can be used for developing a classification rule.

Machine learning includes computing procedures that are based on logical or binary

operations, and which learn a task from a series of examples. Machine learning tries to make

classifying expressions simple enough to be understood by the human. They try to mimic

human reasoning in order to provide insight into the decision process. Machine learning

uses background knowledge, as statistical approaches use, however operation is conducted

without human intervention. Machine learning focuses on decision-tree approaches, in

which classification is a result of a sequence of logical steps.

Neural networks have different applications ranging from understanding and imitating

the human brain, to practical scientific, commercial and engineering disciplines of pattern

recognition, modelling, and prediction.

Neural networks might include different techniques however they all include layers of

interconnected nodes, where each node produces a non-linear function of its input. The

input to a node might come from the input data or from other nodes. A complete network

represents a complex set of interdependencies that may incorporate any degree of nonlin-

earity, which allows general functions to be modelled. It has been argued that to a certain

extent neural networks mirror the behaviour of networks of neurons in the brain.

Optimization based classification algorithms are based on the separation of known
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classes by means of certain, not necessarily linear, functions. Classification algorithms

based on linear separability have been developed in work by Bennet and her colleagues

work [24, 25].

Over the last decade different approaches have been proposed to find piecewise linear

functions separating two sets. Bennet et al. [27] develop the bilinear separability concept

where two hyperplanes are used to separate sets. Astorino et al. [7] introduce the concept of

polyhedral separability. In the latter case, one of the sets is approximated by a polyhedral set

and the rest of the space is used to approximate the second set. The number of hyperplanes

is not restricted, however the piecewise linear function is polyhedral, that is it is convex.

However in many real situations, sets cannot be separated using only a few hyperplanes nor

by using convex piecewise linear functions.

Support Vector Machines algorithms have been developed by Burges [35], Vapnik [129]

and Thorsten [126].

An algorithm based on polyhedral separability has been introduced by Astorino and

colleagues [7] and another algorithm based on max-min separability has been developed by

Bagirov [18].

It should be mentioned that among these algorithms, only Support Vector Machines

algorithms have been applied to gene expression data sets.

Supervised microarray data analysis (like any supervised data analysis process) includes

four stages:

1. Construction of a classifier or model: We need a set of genes (training set), functional

classes to which these genes belong (dependent variables), and independent variables

that describe characteristics of the genes.

2. A learning phase: Training data are analysed by a classification algorithm.

3. A testing phase: The test data are used to assess the accuracy of the classifier.

4. An application phase: Classifier predicts the class label of the unknown gene ex-

pression values. There are other methods to analyse microarray data including linear

discriminant analysis, decision trees, nearest neighbours, support vector machine.

Validation will require the use of data other than those used to develop the classifier.

Validation issues arise including questions regarding the applicability of the new algorithms
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to new individuals. [122]. The use of training and test sets and cross validation are the

methods that are used to overcome this problem.

Training and test sets are not very good for validating classifiers with small data sets.

Cross validation or leave-one-out estimators can be used in such cases.

The use of one training set and one test sets is the most commonly used method for

validating the results of a classification algorithm. In this method, for example, two thirds

of the data are used to train the algorithm. An algorithm is optimized to classify the train-

ing data. After training, the remaining part of the data might be used for verification and

quantification of the success of the algorithm.

For middle-sized data sets, the most commonly used validation method is cross- val-

idation. This method has a fold associated with it that determines how the algorithm is

implemented. k-fold cross validation divides the data randomly into k equal parts. By run-

ning the algorithm k times, k− 1 of the parts are used as a training set, and the other part as

a test set. Every time the algorithm is run, a different test set is used so over k runs of the

algorithm, all data are used as a test set.

For small data sets (with several hundred samples or fewer) leave-one-out validation

method is used. In this method each time one data point is used as a test set and the rest of

the data set is used as a training set. This procedure is repeated for all possible samples.

4.2 Supervised data analysis

Because the expression data sets contain a large number of genes, not all of the above

mentioned classification algorithms can be directly applied to them. However, most of the

algorithms can be applied along with gene selection algorithms. Over the last decade a

large number of papers were devoted to the design of algorithms for solving problems of

supervised data classification in gene expression data sets. It is not possible to cover all

these papers here. We will concentrate only on those which are widely applied. Due to

some similarities between support vector machines algorithms (SVM) and the algorithm

proposed in this chapter, we will mention papers which apply SVM to gene expression data

sets. Review of some of these algorithms can be found in [106].

One of the methods for tumour classification is molecular diagnostics, which offers the

promise of precise, objective, and systematic cancer classification. However, these tests are
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not widely applied because characteristic molecular markers for most solid tumours have

yet to be identified [40]. The second method is the use of DNA microarray-based tumour

gene expression profiles. Recently, they have been used for cancer diagnosis. In Alizadeh et

al. [3], Bittner et al. [29], Dhanasekaran et al. [46], Golub et al. [55], Hedenfalk [65], Perou

et al. [103] studies have been limited to a few cancer types and have spanned multiple

technology platforms thereby complicating comparison among different data sets.

The paper [36] proposes Pattern Classification Program (PCP), which is an open-source

machine learning program for supervised classification of patterns. The implementation of

this program integrates gene selection and tumour prediction stages.

The paper [42] shows that the modified t-statistics and shrunken centroids employed

by The Prediction Analysis of Microarrays tend to increase misclassification error when

compared with their simpler counterparts. Based on these observations, the author pro-

poses a classification method called Classification to Nearest Centroids, which ranks genes

by standard t-statistics, does not shrink centroids and uses a class-specific gene-selection

procedure.

In the paper [99] the authors present the classification algorithm based on partial least

squares. This algorithm was applied to four gene expression data sets with multiple classes:

a hereditary breast cancer data set with BRCA1-mutation, BRCA2-mutation and sporadic

breast cancer samples; an acute leukaemia data set with: acute myeloid leukaemia (AML),

T-cell acute lymphoblastic leukemia (T-ALL) and B-cell acute lymphoblastic leukaemia (B-

ALL) samples; a lymphoma data set with: diffuse large B-cell lymphoma, B-cell chronic

lymphocytic leukemia and follicular lymphoma (FL) samples; and the NCI60 data set with

cell lines derived from cancers of various sites of origin.

The paper [45] proposes a modification of the generic boosting algorithm to improve

its classification accuracy in the context of gene expression data. In particular, the au-

thors present a feature pre-selection method, a more robust boosting procedure and a new

approach for multi-categorical problems. This leads to significant improvement in the per-

formance of the boosting algorithm.

In the paper [94] an approach called VizRank is applied to score and rank point-based

visualizations according to the degree of separation of data instances of different classes.

The paper [90] proposes an algorithm where a simultaneous reduction of genes and clas-

sification of tumours is applied. This algorithm tries to identify genes that are able to
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distinguish between two different classes of tissue samples.

In [22] six machine learning techniques have been investigated for their classification

accuracy focusing on two metabolic disorders, phenylketo nuria and medium-chain acyl-

CoA dehydrogenase deficiency. The paper [105] considers spectral pattern comparison

methods for tumour classification. In [97] the kernel-based Naive Bayesian algorithm is

developed for breast cancer prediction.

Support vector machines algorithms are among the most commonly applied algorithms

based on optimization techniques. In [107] a support vector machines algorithm has been

applied to solving the classification of tumorus based on gene expression data gathered

from microarray analysis. The paper [121] proposes a new multi-category support vec-

tor machines algorithm. Results presented demonstrate that this algorithm outperforms a

number of popular machine learning algorithms, including the k-NN algorithm. In the pa-

per [96] the SVM algorithm with automatic kernel selection was applied to tumour classifi-

cation. The paper [51] discusses the computational complexity of the SVM algorithms and

presents an algorithm to reduce the number of support vectors. In the paper [43] presents a

comparison of different kernels in the SVM algorithms.

4.3 Max-min separability concept

The concept of max-min separability was introduced in [12]. In this approach two classes

are separated using a piecewise linear function. Since a continuous piecewise linear func-

tion can be represented as a max-min of linear functions, such separability is called max-

min separability. This function need not to be convex. It is proved that any two finite point

sets can be separated by a piecewise linear function. Results presented in [18] demonstrate

that an algorithm based on max-min separability is an efficient algorithm for solving super-

vised data classification problems in many large scale data sets. We summarise papers [12]

and [18] to describe the concept of max-min separability. We start with the definition of

linear and polyhedral separability. The max-min separability is the generalisation of both

linear and polyhedral separability.
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4.3.1 Linear separability

Let A and B be given sets containing m and p n-dimensional vectors, respectively:

A = {a1, . . . , am}, ai ∈ Rn, i = 1, . . . ,m,

B = {b1, . . . , bp}, bj ∈ Rn, j = 1, . . . , p.

The sets A and B are linearly separable if there exists a hyperplane {x, y}, with x ∈

Rn, y ∈ R1 such that

1) for any j = 1, . . . ,m

〈x, aj〉 − y < 0,

2) for any k = 1, . . . , p

〈x, bk〉 − y > 0.

The sets A and B are linearly separable if and only if co A
⋂

co B = ∅.

In practice, it is unlikely for the two sets to be linearly separable. Therefore it is impor-

tant to find a hyperplane that minimizes some misclassification cost. In [26] the problem of

finding this hyperplane is formulated as the following optimization problem:

minimize f(x, y) subject to (x, y) ∈ Rn+1 (4.1)

where

f(x, y) =
1

m

m∑
i=1

max
(
0, 〈x, ai〉 − y + 1

)
+

1

p

p∑
j=1

max
(
0,−〈x, bj〉+ y + 1

)
is an error function. Here 〈·, ·〉 stands for the scalar product inRn. An algorithm for solving

this problem (4.1) was described in [26] . It was shown that the problem (4.1) is equivalent

to the following linear program:

minimize
1

m

m∑
i=1

ti +
1

p

p∑
j=1

zj

subject to

ti ≥ 〈x, ai〉 − y + 1, i = 1, . . . ,m,
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zj ≥ −〈x, bj〉+ y + 1, j = 1, . . . , p,

t ≥ 0, z ≥ 0,

where ti is nonnegative and represents the error for the point ai ∈ A and zj is nonnegative

and represents the error for the point bj ∈ B.

The sets A andB are linearly separable if and only if f ∗ = f(x∗, y∗) = 0 where (x∗, y∗)

is the solution to the problem (4.1). It is proved that the trivial solution x = 0 cannot occur.

4.3.2 Polyhedral separability

The concept of h-polyhedral separability was developed in [7]. The sets A and B are h-

polyhedrally separable if there exists a set of h hyperplanes {xi, yi}, with

xi ∈ Rn, yi ∈ R1, i = 1, . . . , h

such that

1) for any j = 1, . . . ,m and i = 1, . . . , h

〈xi, aj〉 − yi < 0,

2) for any k = 1, . . . , p there exists at least one i ∈ {1, . . . , h} such that

〈xi, bk〉 − yi > 0.

It is proved in [7] that the sets A and B are h-polyhedrally separable, for some h ≤ p if and

only if

co A
⋂

B = ∅.

The problem of polyhedral separability of the sets A and B is reduced to the following

problem:

minimize f(x, y) subject to (x, y) ∈ R(n+1)×h (4.2)

where

f(x, y) =
1

m

m∑
j=1

max

[
0, max

1≤i≤h

{
〈xi, aj〉 − yi + 1

}]
+
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1

p

p∑
k=1

max

[
0, min

1≤i≤h

{
−〈xi, bk〉+ yi + 1

}]
is an error function. Note that this function is a nonconvex piecewise linear function. It is

proved that xi = 0, i = 1, . . . , h cannot be the optimal solution. Let {x̄i, ȳi}, i = 1, . . . , h

be a global solution to the problem (4.2). The sets A and B are h-polyhedrally separable

if and only if f(x̄, ȳ) = 0. If there exists a nonempty set Ī ⊂ {1, . . . , h} such that xi =

0, i ∈ Ī , then the sets A and B are (h − |Ī|)-polyhedrally separable. In [7] an algorithm

for solving problem (4.2) is developed. The calculation of the descent direction at each

iteration of this algorithm is reduced to a certain linear programming problem.

4.4 Max-min separability

In this section we describe the concept of max-min separability and introduce an error

function [12].

4.4.1 Definition and properties

Let H = {h1, . . . , hl}, where hj = {xj, yj}, j = 1, . . . , l with xj ∈ Rn, yj ∈ R1,

be a finite set of hyperplanes. Let J = {1. . . . , l}. Consider any partition of this set

Jr = {J1, . . . , Jr} such that

Jk 6= ∅, k = 1, . . . , r, Jk

⋂
Jj = ∅,

r⋃
k=1

Jk = J.

Let I = {1, . . . , r}. A particular partition Jr = {J1, . . . , Jr} of the set J defines the

following max-min-type function:

ϕ(z) = max
i∈I

min
j∈Ji

{
〈xj, z〉 − yj

}
, z ∈ Rn. (4.3)

Let A,B ⊂ Rn be given disjoint sets, that is A
⋂
B = ∅.

Definition 1. The sets A and B are max-min separable if there exist a finite number of

hyperplanes {xj, yj} with xj ∈ Rn, yj ∈ R1, j ∈ J = {1, . . . , l} and a partition Jr =

{J1, . . . , Jr} of the set J such that
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1) for all i ∈ I and a ∈ A

min
j∈Ji

{
〈xj, a〉 − yj

}
< 0;

2) for any b ∈ B there exists at least one i ∈ I such that

min
j∈Ji

{
〈xj, b〉 − yj

}
> 0.

Remark 1. It follows from Definition 1 that if the sets A and B are max-min separable

then ϕ(a) < 0 for any a ∈ A and ϕ(b) > 0 for any b ∈ B, where the function ϕ is defined

by (4.3). Thus the sets A and B can be separated by a function represented as a max-min

of linear functions. Therefore this kind of separability is called a max-min separability.

Remark 2. Linear and polyhedral separability can be considered as particular cases of the

max-min separability. If I = {1} and J1 = {1} then we have the linear separability and if

I = {1, . . . , h} and Ji = {i}, i ∈ I we obtain the h-polyhedral separability.

Proposition 1. [12]. The sets A and B are max-min separable if and only if there exists

a set of hyperplanes {xj, yj} with xj ∈ Rn, yj ∈ R1, j ∈ J and a partition Jr =

{J1, . . . , Jr} of the set J such that

1) for any i ∈ I and a ∈ A

min
j∈Ji

{
〈xj, a〉 − yj

}
≤ −1;

2) for any b ∈ B there exists at least one i ∈ I such that

min
j∈Ji

{
〈xj, b〉 − yj

}
≥ 1.

Proposition 2. [12]. The sets A and B are max-min separable if and only if there exists a

piecewise linear function separating them.

Remark 3. It follows from Proposition (2) that the notions of max-min and piecewise linear

separability are equivalent.

Proposition 3. [12]. The sets A and B are max-min separable if and only if they are

disjoint: A
⋂
B = ∅.
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In the next proposition we show that in most cases the number of hyperplanes necessary

for the max-min separation of the sets A and B is limited.

Proposition 4. [12]. Assume that the set A can be represented as a union of sets Ai, i =

1, . . . , q and the set B as a union of sets Bj, j = 1, . . . , d such that

A =

q⋃
i=1

Ai, B =
d⋃

j=1

Bj

and

co Ai

⋂
co Bj = ∅ for all i = 1, . . . , q, j = 1, . . . , d. (4.4)

Then the number of hyperplanes necessary for the separation of the sets A and B is at most

q · d.

Remark 4. Proposition 4 demonstrates that in most cases the cardinality of all sets of

indices Ji, i ∈ I are the same. If the assumptions of Proposition 4 are satisfied then the

cardinality of all these sets is either p or q. We will use this fact for the design of an

incremental algorithm.

4.4.2 Error function

Given any set of hyperplanes {xj, yj}, j ∈ J = {1, . . . , l} with xj ∈ Rn, yj ∈ R1 and a

partition Jr = {J1, . . . , Jr} of the set J , we say that a point a ∈ A is well separated from

the set B if the following condition is satisfied:

max
i∈I

min
j∈Ji

{
〈xj, a〉 − yj

}
+ 1 ≤ 0.

Then we can define the separation error for a point a ∈ A as follows:

max

[
0,max

i∈I
min
j∈Ji

{
〈xj, a〉 − yj + 1

}]
. (4.5)

Analogously, a point b ∈ B is said to be well separated from the set A if the following

condition is satisfied:

min
i∈I

max
j∈Ji

{
−〈xj, b〉+ yj

}
+ 1 ≤ 0.
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Then the separation error for a point b ∈ B can be written as

max

[
0,min

i∈I
max
j∈Ji

{
−〈xj, b〉+ yj + 1

}]
. (4.6)

Thus, an averaged error function can be defined as

f(x, y) = (1/m)
m∑

k=1

max

[
0,max

i∈I
min
j∈Ji

{
〈xj, ak〉 − yj + 1

}]

+(1/p)

p∑
t=1

max

[
0,min

i∈I
max
j∈Ji

{
−〈xj, bt〉+ yj + 1

}]
(4.7)

where x = (x1, . . . , xl) ∈ Rl×n, y = (y1, . . . , yl) ∈ Rl. It is clear that f(x, y) ≥ 0 for all

x ∈ Rl×n and y ∈ Rl.

Proposition 5. [12]. The sets A and B are max-min separable if and only if there exists

a set of hyperplanes {xj, yj}, j ∈ J = {1, . . . , l} and a partition Jr = {J1, . . . , Jr} of the

set J such that f(x, y) = 0.

Proposition 6. [12]. Assume that the sets A and B are max-min separable with a set of

hyperplanes {xj, yj}, j ∈ J = {1, . . . , l} and a partition Jr = {J1, . . . , Jr} of the set J .

Then

1) xj = 0, j ∈ J cannot be an optimal solution;

2) if

(a) for any t ∈ I there exists at least one b ∈ B such that

max
j∈Jt

{
−〈xj, b〉+ yj + 1

}
= min

i∈I
max
j∈Ji

{
−〈xj, b〉+ yj + 1

}
, (4.8)

(b) there exists J̃ = {J̃1, . . . , J̃r} such that J̃t ⊂ Jt, ∀t ∈ I, J̃t is nonempty at least

for one t ∈ I and xj = 0 for any j ∈ J̃t, t ∈ I .

Then the sets A and B are max-min separable with a set of hyperplanes {xj, yj}, j ∈

J0 and a partition J̄ = {J̄1, . . . , J̄r} of the set J0 where

J̄t = Jt \ J̃t, t ∈ I and J0 =
r⋃

i=1

J̄i.
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Remark 5. The error function (4.7) is nonconvex and if the sets A and B are max-min

separable with a certain number of hyperplanes, then the global minimum of this function

f(x∗, y∗) = 0 and the global minimizer is not unique.

The problem of the max-min separability is reduced to the following mathematical pro-

gramming problem:

minimize f(x, y) subject to (x, y) ∈ R(n+1)×l (4.9)

where the objective function f has the following form:

f(x, y) = f1(x, y) + f2(x, y)

and

f1(x, y) =
1

m

m∑
k=1

max

[
0,max

i∈I
min
j∈Ji

{
〈xj, ak〉 − yj + 1

}]
, (4.10)

f2(x, y) =
1

p

p∑
t=1

max

[
0,min

i∈I
max
j∈Ji

{
−〈xj, bt〉+ yj + 1

}]
. (4.11)

In order to solve this problem, we will apply the discrete gradient method. Figure

4.1 shows max-min separability for two classes and figure 4.2 shows multi-class max-min

separability.

4.5 An incremental algorithm

The number of hyperplanes l necessary to separate two sets is not known a priori. In this

section we suggest an algorithm for the computation of a piecewise linear function separat-

ing two sets and this algorithm computes hyperplanes incrementally. It computes as many

hyperplanes as necessary for separating the sets with respect to a given tolerance.

There are some difficulties when one applies max-min separability to solve supervised

data classification problems. The first is that the number of hyperplanes necessary to sepa-

rate two sets is not known a priori. The second is that the number of variables in an error

function increases as the number of hyperplanes increases and as a result the problem of

minimization of an error function becomes a large scale optimization problem. The third is

that the number of local minimizers of the error function drastically increases as the number
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Figure 4.1: Max-min separability

Figure 4.2: Classification

of hyperplanes and the number of data points increase. The problem of minimization of an

error becomes a complicated global optimization problem.

In the incremental algorithm we start with one hyperplane, that is, with the one affine
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function. In this case the problem is quite a simple convex optimization problem which can

be easily transformed to a certain linear programming problem. If the separation is satis-

factory with respect to some tolerance, we stop. Otherwise, we compute the error function

for both sets. Depending on the value of this function, we increase the number of minimum

functions (under maximum) or the number of affine functions (under minimum). We define

a starting point for a new problem using the final results from the previous problem. Such

an approach allows us to find either a global or near global solution and to significantly re-

duce computational efforts. It also allows us to compute as many hyperplanes as necessary

for the separation of the two sets.

Following Proposition 4 we assume that the sets Ji, i ∈ I have the same cardinality.

Let ε1 > 0 and ε2 > 0 be tolerances.

Algorithm 8. An incremental algorithm

Step 0. (Initialization) Select any starting point (x1, y1), x
1 ∈ Rn, y1 ∈ R1. Set X1 =

(x1, y1), I1 = {1}, J1
1 = {1}, f1 = f(x1, y1), r1 = |I| = 1, d1 = |J1| = 1, the number of

hyperplanes l = 1 and k = 1.

Step 1. (Computation of a piecewise linear function) Solve Problem (4.9) starting from

the point Xk ∈ R(n+1)×l. Let Xk,∗ be a solution to this problem, F ∗
k is the corresponding

objective function value, f ∗1,k and f ∗2,k are the values of functions f1 and f2, respectively.

Step 2. (The first stopping criterion) If f ∗1,k ≤ ε1 and f ∗2,k ≤ ε1 then stop. Xk,∗ is a final

solution.

Step 3. (The second stopping criterion) If k ≥ 2,

f ∗1,k−1 − f ∗1,k ≤ ε2

and

f ∗2,k−1 − f ∗2,k ≤ ε2

then stop. Xk,∗ is a final solution.

Step 4. (Adding new hyperplanes)

1. If f ∗1,k > ε1, then set dk+1 = dk + 1, Jk+1
i = Jk

i

⋃
{dk+1} for all i ∈ Ik. Set

xij = xi,j−1,∗, i ∈ Ik, j = dk+1.
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2. If f ∗2,k > ε1, then set rk+1 = rk + 1, Ik+1 = Ik
⋃
{rk+1}, Jk

rk+1
= Jk

rk
. Set xij =

xi−1,j,∗, i = rk+1, j ∈ Jk
rk

.

Step 5. (New starting point) Set Xk+1 =
(
xij, j ∈ Jk+1

i , i ∈ Ik+1

)
, k = k + 1 and go to

Step 1.

Explanations of Algorithm 8. The algorithm starts by computing one hyperplane to

separate sets (Steps 0 and 1). There are two different stopping criteria in this algorithm. The

stopping criterion in Step 2 means that the computed piecewise linear function separates

two sets with the tolerance ε1 > 0. The stopping criterion in Step 3 implies that adding new

hyperplanes cannot significantly decrease the value of the error function. This may happen

when a large number of hyperplanes are needed to separate sets. Such a criterion allows

one to avoid problems with overfitting in supervised data classification problems. However,

this stopping criterion does not mean that a piecewise linear function separating two sets

has been computed. Step 4 provides rules for adding new hyperplanes and defining their

normal vectors. These vectors are defined to guarantee a decrease of the error function in

the next iteration compared with the current iteration. Step 5 defines a starting point for the

minimization of the error function for the next iteration. Since the problem of minimization

of the error function is a global optimization problem, such a strategy allows us to find the

“near” global solution.

We use the discrete gradient method to minimize the error functions. The discrete gra-

dient method was introduced in [9, 10], see also [11]. This method is modified to take

advantage of the special structure of the problem and thus to reduce computational effort.

This modification of the discrete gradient method can be found in [12] and in more detail

in [18].

4.6 Results of numerical experiments

In order to verify the effectiveness of the proposed incremental algorithm we conducted

numerical experiments using 5 gene expression data sets. The incremental algorithm was

applied along with the gene selection algorithm from Chapter 3. The incremental algorithm

is applicable to the entire gene expression data sets because the number of genes is too

large. Moreover, the incremental algorithm based on max-min separability is not efficient
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when data are sparse. We compare results obtained by using the incremental algorithm

with those obtained by the k-NN algorithm. We used the best results obtained by the k-NN

algorithm in this comparison.

The code of the incremental algorithm was written in Lahey Fortran 95 and the numer-

ical experiments were carried out on a PC Pentium IV with CPU 1.83 and 1GB RAM. In

numerical experiments we used only five gene expression data sets. They were chosen to

demonstrate the strengths and weaknesses of the proposed algorithm. Similar results can

be obtained for other data sets. In tables we present the accuracy on test sets for both the

k-NN algorithm and the max-min separability based algorithm, as well as CPU time for

both algorithms.

4.6.1 Data set 4

For description of this data set please refer to Appendix A, Section A.4. Results for this

data set are presented in Table 4.1.

Table 4.1: Results for Data set 4

Test set accuracy CPU time
Ng k-NN Max-min k-NN Max-min
2 77.7 88.3 0.02 46.19
4 91.3 92.2 0.05 11.81
6 92.2 94.2 0.06 6.16
8 94.2 96.1 0.07 8.83

10 95.1 95.1 0.08 12.83
20 98.1 100.0 0.13 6.55
50 99.0 98.1 0.25 2.08

100 99.0 99.0 0.53 27.45

One can see from Table 4.1 that for a small number of genes (Ng ≤ 20) the incremental

algorithm is more accurate than the k-NN algorithm. However, as the number of genes

increases, the accuracy of the incremental algorithm is no better than that of the k-NN algo-

rithm. In this case the data becomes more and more sparse and the incremental algorithm

fails to achieve good accuracy on the test set due to the problem of overfitting. We can

see that the incremental algorithm requires much more CPU time than the k-NN algorithm.

We can also see that the CPU time with a small number of genes is greater than that for a

large number of genes. This is not unexpected, because when the data become sparse the
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number of hyperplanes necessary for their separation decreases which leads to a decrease

in computational effort.

4.6.2 Data set 5

For description of this data set refer to Appendix A, Section A.5. Results for this data set

are presented in Table 4.2.

Table 4.2: Results for Data set 5

Test set accuracy CPU time
Ng k-NN Max-min k-NN Max-min
2 84.2 89.5 0.00 0.39
4 78.9 78.9 0.00 1.02
6 78.9 78.9 0.00 0.13
8 86.8 89.5 0.02 0.09

10 81.6 94.7 0.00 0.09
20 73.7 92.1 0.02 0.09
50 78.9 84.2 0.02 0.16

Results from Table 4.2 show that the incremental algorithm performs better than the

k-NN algorithm for a small number of genes (Ng ≤ 50). We can also see that in some

cases the difference between the k-NN and the incremental algorithm is significant (for

Ng = 10, 20, 50). For this data set the CPU time used by the incremental algorithm is

reasonable.

4.6.3 Data set 6

For description of this data set refer to Appendix A, Section A.6. Computational results for

this data set are presented in Table 4.3.

One can see from Table 4.3 that for a small number of genes (Ng ≤ 30), the incremental

algorithm is more accurate than the k-NN algorithm. However, as the number of genes

increases, the accuracy of the incremental algorithm is becoming worse than that of the

k-NN algorithm. Again for this data set the CPU time used by the incremental algorithm is

reasonable.
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Table 4.3: Results for Data set 6

Test set accuracy CPU time
Ng k-NN Max-min k-NN Max-min
2 52.9 55.9 0.00 0.77
4 50.0 64.7 0.00 0.99
6 70.6 73.5 0.00 0.25
8 67.6 76.5 0.00 0.50

10 61.8 79.4 0.00 0.16
20 67.6 79.4 0.00 0.17
30 58.8 67.6 0.00 0.16
50 67.6 55.9 0.02 0.73

4.6.4 Data set 7

For description of this data set refer to Appendix A, Section A.7. Results for this data set

are presented in Table 4.4.

Table 4.4: Results for Data set 7

Test set accuracy CPU time
Ng k-NN Max-min k-NN Max-min
2 71.0 80.6 0.31 1060.19
4 85.1 88.7 0.58 1737.97
6 90.7 92.3 0.70 231.00
8 92.3 91.9 0.81 579.21

10 96.0 95.6 0.98 1406.08
20 97.2 96.8 1.69 62.95
20 99.2 99.2 3.84 121.92

One can see from Table 4.4 that for a small number of genes (Ng ≤ 6) the incremental

algorithm is more accurate than the k-NN algorithm. However, as the number of genes

increases the k-NN algorithm outperforms the incremental algorithm. Again in this case

the data become more and more sparse and the incremental algorithm fails to achieve good

accuracy on the test set due to the problem of overfitting. The incremental algorithm re-

quires significantly more CPU time than the k-NN algorithm. Again, the CPU time with

a small number of genes is greater than that for a large number of genes. This means the

algorithm computes significantly more hyperplanes for a small number of genes, which

increases computational effort.
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4.6.5 Data set 8

For description of this data set refer to Appendix A, Section A.8. Results for this data set

are presented in Table 4.5.

Table 4.5: Results for Data set 8

Test set accuracy CPU time
Ng k-NN Max-min k-NN Max-min
2 87.8 88.8 0.19 349.82
4 90.7 94.4 0.28 442.84
6 90.9 93.4 0.34 473.45
8 92.4 93.4 0.38 177.50

10 94.4 91.4 0.47 726.83
20 93.4 94.9 0.81 189.11
50 95.4 95.4 1.89 27.41

Results from Table 4.5 demonstrate that for a small number of genes (Ng ≤ 8) the

incremental algorithm outperforms the k-NN algorithm. However, as the number of genes

increases, the k-NN algorithm outperforms the incremental algorithm. The incremental

algorithm requires significantly more CPU time than the k-NN algorithm. The CPU time for

the incremental algorithm is variable for different numbers of genes, because the algorithm

computes different numbers of hyperplanes.

Thus, based on results presented in this section we can conclude that the max-min sepa-

rability incremental algorithm is very effective when the number of genes is not large. This

algorithm is not effective at solving classification problems in sparse data sets. The new

algorithm requires much more CPU time than the k-NN algorithm.

4.7 Conclusion

In this chapter we developed a new algorithm for solving supervised data classification

problems in gene expression data sets. This algorithm computes a piecewise linear function

separating a given tumour type from all of the others. Since the number of hyperplanes in

this case is not known a priori, we proposed an incremental approach to compute hyper-

planes separating two sets. The problem of computation of these hyperplanes is formulated

as an optimization problem where the objective function is a nonconvex piecewise linear

function. The discrete gradient method is applied to solve this optimization problem.
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We tested the new algorithm on five gene expression data sets and compared the results

with those obtained using the k-NN algorithm, which is known to be an efficient algorithm

for supervised data classification. Results show that the proposed algorithm outperforms the

k-NN algorithm when the number of genes is not large, however it suffers from overfitting

when the number of genes increases and the data become sparse.

Gene expression data sets have many genes and the use of all genes allows one to sep-

arate different tumour types with one hyperplane only. However, the use of all genes leads

to overfitting problems, meaning that the classification of the new tumours will be very

difficult. The combination of gene selection and separation algorithms allows us to design

more efficient classification algorithms, however, in this case our hyperplane is not any

more sufficient for separation of tumour types. Therefore we develop a classification al-

gorithm based on the combination of overlapping gene selection and max-min separability

algorithms.
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The purpose of this research was to develop new algorithms for solving clustering, gene se-

lection and supervised data classification problems on gene expression data sets. To design

these algorithms we used optimization techniques, more specifically, nonsmooth optimiza-

tion techniques.

In Chapter 1 of this research we presented an overview of molecular biology including

cells, chromosomes, DNA, RNA, amino acids, proteins and genes followed by genetic

engineering. In regards to microarray, its history, types, technology and applications were

discussed, followed by microarray data analysis and microarray gene expression.

In Chapter 2 we presented a new algorithm for solving clustering problems in gene ex-

pression data sets. It should be noted that one can consider two types of clustering problems

in gene expression data sets: clustering with respect to samples and clustering with respect

to genes. The first type of clustering can help to find similar samples whereas the second

type of clustering can help to find similar genes and to reduce the number of genes in a

data set. In this thesis we considered the clustering problem with respect to samples. A few

clustering algorithms can be applied to solve such clustering problems in gene expression

data sets. The k-means algorithm is among those algorithms. However, it is well known

that this algorithm is very sensitive to the choice of the starting points and fails to find good

cluster structure if the number of features is large and the number of clusters is relatively

large (in many cases more than five).

The global k-means algorithm is a significant improvement over the k-means algorithm.

In this thesis we developed a new version of the global k-means algorithm: the modified

global k-means algorithm. The problem of computation of the starting point in this al-

gorithm is reduced to a certain nonsmooth optimization problem. The latter problem is

solved using the k-means algorithm. Our numerical results on ten publicly available gene

expression data sets show that the modified global k-means algorithm outperforms both the
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multi-start k-means and the global k-means algorithms when the number of clustersN > 5.

However , the modified global k-means algorithm is computationally more expensive than

the global k-means algorithm.

In Chapter 3 we presented new gene selection algorithms. Gene selection is a very

important step in the analysis of gene expression data sets. Because these data sets contain

thousands or even tens of thousands of genes and most of them contribute noise, these

genes should be detected and removed from a data set to improve the performance of the

supervised data classification algorithms. We developed the new gene selection algorithms

which are based on the use of the overlaps between different tumour types (classes). We

introduced the univariate and multi-dimensional overlaps as well as the binary and one-vs-

all overlaps. To find the most informative genes we considered the sum of overlaps over all

classes and also the number of “well-separated” classes. We applied these algorithms to ten

gene expression data sets. The k-NN algorithm was applied to validate the results obtained

by gene selection algorithms. Our results demonstrate that the developed algorithms find

a subset with a small number of genes and with high classification accuracy. These results

also show that the use of binary overlaps and the sum of overlaps over classes lead to the

design of better gene selection algorithms.

In Chapter 4 we developed a new algorithm for solving the supervised data classification

problems in gene expression data sets. This algorithm is based on max-min separability. It

allows one to find a continuous piecewise linear function separating two sets. Since any

continuous piecewise linear function can be represented as a max-min of linear functions,

we call such a separation, max-min separation. We formulated the classification problem as

an optimization problem and we applied the discrete gradient method to solve this problem.

Since the number of linear functions separating two sets is not known a priori we developed

a new incremental algorithm to compute piecewise linear functions. This cannot be applied

to whole gene expression data sets due to the large number of genes. We applied this algo-

rithm along with the gene selection algorithms introduced in Chapter 3. We presented the

results of numerical experiments on five gene expression data sets and compared them with

those obtained by the k-NN algorithm. These results show that the new algorithm is very

efficient when the number of genes is not large and it outperforms, sometimes significantly,

the k-NN algorithm. However, as the number of genes increases and the data set becomes

more sparse the k-NN algorithm outperforms the max-min separability based on the incre-
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mental algorithm. The incremental algorithm is computationally more expensive than the

k-NN algorithm.

In brief we can outline the results of this thesis as follows:

1. The new clustering algorithm for gene expression data sets was developed. This

algorithm outperforms other k-means algorithms, however it is computationally more

expensive than the other algorithms.

2. The new gene selection algorithm was developed and this algorithm is very efficient

in finding the subset of most informative genes. The algorithm is based on the compu-

tation of the overlaps between different tumour types and it is very easy to implement.

3. The new algorithm was developed to solve the supervised data classification problems

in gene expression data sets. This algorithm can only be applied along with the gene

selection algorithms. The algorithm produces very good results when the number of

genes is not large.

In this thesis our aim was to develop new tools based on nonsmooth optimization tech-

niques for solving clustering, gene selection and supervised classification problems in gene

expression data sets. Currently, Bioinformatics is a rapidly developing area and many al-

gorithms have been proposed to solve similar problems. The comparative study of all these

algorithms is very interesting, however, it is not within the topic of this thesis and it will be

the subject of our future research. The biological interpretation of results obtained by these

algorithms is also very interesting, however this is not within the topic of this thesis either

and will be considered in our future research.
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Data sets

A.1 Data set 1

This data set is the Ann Arbor Lung cancer data set and was generated at the University of

Michigan by Beer et al. [23]. It consists of 7129 genes, 67 stage 1 and 19 stage 3 tumours, as

well as 10 non-neoplastic lung samples which were hybridized to the Affymetrix GeneChip

Hu6800. A full description of the data set can be accessed at:

http://dot.ped.med.umich.edu:2000/ourimage/pub/Lung/index.html

A.2 Data set 2

This data set is the Boston Lung Cancer data set and was generated at the Dana Farber

Cancer Institute. The data set consists of 12625 genes, 17 normal lung samples and 185 lung

tumour samples. Of these, there are 138 lung adenocarcinoma, 6 small-cell lung cancer, 20

carcinoid lung cancer and 21 squamous cell. Expression profiles were generated using the

Affymetrix GeneChip HG U95Av2 [41] .This data set can be accessed at:

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

A.3 Data set 3

This data set is a leukaemia data set. This data set includes 999 genes and 38 samples.

Bone marrow samples were obtained from acute leukaemia patients at the time of diagnosis:

11 acute myeloid leukaemia (AML) samples; 8 T-lineage acute lymphoblastic leukaemia
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(ALL) samples; and 19 B-lineage (ALL) samples. The leukaemia data set is from the

previous-generation Human Genome HU6800 Affymetrix microarray [93]. This data set is

available at: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

A.4 Data set 4

This is the Novartis multi-tissue data set. There are 103 samples all together and 1000 genes

[93]. The data set includes tissue samples from four cancer types with 26 breast, 26 prostate,

28 lung, and 23 colon samples. This data set is available at: http://www.broad.mit.edu/cgi-

bin/cancer/datasets.cgi.

A.5 Data set 5

This is a leukaemia data set with 5000 genes and 38 samples including 11 acute myeloid

leukaemia (AML) and 27 acute lymphoblastic leukaemia (ALL) samples [34]. The original

data set is retrievable from: http://www.broad.mit.edu/cgi-bin/cancer/ datasets.cgi.

A.6 Data set 6

This data set is a medulloblastomas gene expression data which includes a set of 34 samples

with 25 classic and 9 Desmoplastic (Brain-MD) samples and 5893 genes [34]. The original

data set is available at: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

A.7 Data set 7

This data set is the St.Jude leukaemia data set which includes 985 genes and 248 samples.

Diagnostic bone narrow samples were taken from paediatric acute leukaemia patients cor-

responding to 6 prognostically important leukaemia subtypes: 43 T-lineage ALL, 27 E2A-

PBX1, 15 BCR-ABL, 79 TEL-AML1, 20 MLL rearrangements and 64 “hyperdiploid>50”

chromosomes [93]. The data set is available at: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.
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A.8 Data set 8

This is a lung cancer data set which includes 1000 genes and 197 samples including 139

adenocarcinomas (AD), 21 squamous cell carcinomas (SQ), 20 carcinoids (COID) and 17

normal (NL) lung samples [93]. This data set is available at: http://www.broad.mit.edu/cgi-

bin/cancer/datasets.cgi.

A.9 Data set 9

This data set is a CNS tumours data set including 42 samples and 989 genes. The samples

are embryonal tumours of the central nervous system (CNS) including 10 medulloblastomas

(MD), 8 primitive neuroectodermal tumours (PNET), 10 atypical teratoid/rhabdoid tumours

(Rhab), 10 malignant gliomas (Glio), and 4 normal cerebellums (Ncer) [93]. This data set

is available at: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

A.10 Data set 10

This data set has 1277 genes and 90 samples. It contains 13 distinct tissue types: 5 breast,

9 prostate, 7 lung, 11 colon, 6 germinal centre cells, 7 bladder, 6 uterus, 5 peripheral blood

monocytes, 12 kidney, 10 pancreas, 4 ovary, 5 whole brain and 3 cerebellum [93]. This data

set is available at: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.
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Glossary

Activation An increase in the rate of transcription is called activation or up-regulation.

Affymetrix Affymetrix is the world’s leading manufacturer of DNA microarrays.

Affymetrix GeneChips Affymetrix GeneChip is one of the most popular microarray plat-

forms. They are manufactured in a unique way and can be read by the special Affymetrix

machine.

Allele Alternative forms of a gene. They occur at the same position on the paired chromo-

somes.

Allelic The state of being alleles.

Amino Acid A biochemical building block that makes up cellular protein.

Amplification Increasing the number of copies of a specific DNA molecule.

Annealing The hybridization of a single-stranded DNA molecule to another single stranded

DNA molecule of complementary sequence.

Array profile A gene expression profile that explains the expression values for many genes

under a single condition or sample.

Basic alignment search tool Basic Local Alignment Search Tool is an algorithm for com-

paring primary biological sequence information, such as the amino acid sequences of dif-

ferent proteins or the nucleotides of DNA sequences.

Biochemistry The field of study that endeavours to understand the chemical basis of life

by focusing on the study of DNA, RNA, proteins, and other bio-molecules.

Bioinformatics Specialised field of computer science focused on the analysis of biological

data.

Bio-molecule A bio-molecule is a chemical compound that naturally occurs in living or-
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ganisms. Bio-molecules consist primarily of carbon and hydrogen, along with nitrogen,

oxygen, phosphorus and sulphur.

Biophysics Biophysics is an interdisciplinary science that applies the theories and methods

of physics, to questions of biology.

Carcinogen A substance that causes cancer in a body.

Cell A cell is a single unit or compartment, enclosed by a border, wall or membrane.

Chromosome Large segment of genomic DNA that replicates autonomously in the cell and

segregates during cell division.

Codon Any one of 64 three-nucleotide sequences or triplets in messenger RNA that specify

one of the 20 amino acids used for protein synthesis.

Complementary DNA Is produced from messenger RNA using the enzyme reverse tran-

scriptase.

Cytogenetics Cytogenetics is the study of the structure of chromosomal material.

Deletion Mutation that results in the removal of one or more nucleotides from a DNA se-

quence.

DNA The biopolymeric molecule that constitutes the genetic blueprint of virtually every

organism in the biosphere.

DNA cloning Isolation and manipulation of a piece of DNA by incorporating it into a spe-

cially modified phage or plasmid and introducing it into a bacterial cell.

DNA sequence A DNA sequence or genetic sequence is a succession of letters representing

the primary structure of a real or hypothetical DNA molecule or strand, with the capacity

to carry information.

DNA sequencing The experimental process of determining the primary nuclear sequence

of a DNA molecule.

E.Coli This is one of the main species of bacteria living in the lower intestines of mammals,

known as gut flora.

Enhancer An enhancer is an element that alters a promoter’s efficiency by increasing or

decreasing the rate of transcription.

Enzyme A protein that carries out a biochemical reaction in the cell.

Eukaryote cell Has a nucleus which is separated from the rest of the cell by a membrane

and contains the gene’s genetic material.

Exon Segment of a gene retained in the messenger RNA after procession, and often con-
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taining the codons represented as amino acids in proteins.

Expression profile If different probes matching all mRNAs in a cell are used, a snapshot

of the total mRNA pool of a living cell or tissue can be obtained and this is known as the

expression profile.

GenBank The GenBank sequence database is an open access, annotated collection of all

publicly available nucleotide sequences and their protein translations. This database is

produced at the National Center for Biotechnology Information (NCBI) as part of the Inter-

national Nucleotide Sequence Database Collaboration, or INSDC.

Gene Segment of genomic DNA that encodes a specific cellular mRNA and protein.

Genetic code The cellular alphabet that specifies one of the 20 common cellular amino

acids or stop codons from the 64 triplets in messenger RNA.

Genetic engineering Genetic engineering is a term for the process of manipulating genes,

usually outside the organism’s natural reproductive process.

Gene expression The cellular process by which genetic information flows from gene to

messenger RNA to protein.

Gene expression data matrix In this matrix rows represent genes and columns represent

experimental conditions, samples or features.

Gene profile A gene profile is a gene expression profile that describes expression values

for a single gene across many samples or conditions.

Genome The complete set of different genes carried by an organism or virus.

Genomics The development and application of mapping, sequencing, computational and

other procedures for the analysis of entire genomes, in turn providing an understanding of

the structure, function and evolution of genes and genomes.

Genotype The genetic constitution of an individual, usually referring to specific characters

under consideration.

Human genome All the DNA in one set of chromosomes.

Human genome project The Human Genome Project is a project to map and sequence the

3 billion nucleotides contained in the human genome and to identify all the genes present

in it.

Hybridization The chemical process by which two complementary DNA or RNA strands

zipper up to form a double-stranded molecule.

Intron Segment of a gene removed from the messenger RNA during processing and not
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represented in proteins.

Insertion Mutation that results in the addition of one or more nucleotides to a DNA se-

quence.

Leukaemia Is a cancer of the blood or bone marrow and is characterised by an abnormal

proliferation of blood cells, usually white blood cells (leukocytes).

Leukocytes White blood cells that form a component of the blood.

Lymphomas Lymphoma is a variety of cancer that originates in lymphocytes or, more

rarely, of histiocytes.

Macromolecule A very large molecule, composed of many atoms and having a very high

molecular weight.

Microarray An ordered array of microscopic elements on a planar substrate that allows the

specific binding of genes or gene products.

Microarray data Contains two basic aspects: biological and statistical. The biological as-

pect refers to the expression of a gene influenced by conditions, and the statistical aspect

says how trustworthy the biological significance is.

Microarray gene expression data matrix Measures the expression of many genes with a

number of conditions in a table. Rows in the table corrspond to genes and columns corre-

spond to different tissues or treatments.

Mitochondria Is a cell’s membrane and it provides the energy the cell needs.

Molecular biology Molecular biology is the study of biology at a molecular level. The field

overlaps with other areas of biology and chemistry, particularly genetics and biochemistry.

Messenger RNA or mRNA The class of cellular RNA that undergoes extensive editing,

contains the protein coding sequences of genes, and functions as an informational interme-

diate between DNA and protein.

Mutagen Chemical agent that alters the primary nucleotide sequence of DNA.

Mutation Any change in a DNA sequence, but typically acquired during the life span of an

organism.

Nucleus An organelle of eukaryotic cells that is bounded by a nuclear membrane and con-

tains the chromosomes whose genes control the structure of proteins within the cell.

Nucleotide A complex organic molecule forming the basic unit of nucleic acids, with a

structure made up of three components: a pentose sugar, an organic base, and a phosphate

group.
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Outlier In a gene expression matrix outliers are inconsistent values.

Polymerase chain reaction Polymerase chain reaction allows production of millions of

copies of DNA from a small amount of genetic material and is used in microarray manu-

facture.

Protein Data Bank The Protein Data Bank is a repository for 3-D structural data of pro-

teins and nucleic acids.

Phenotype The total set of characteristics expressed by an organism is called its phenotype.

Polymerase Polymerase transcribes the genes for precursors to ribosomal RNA.

Primer Oligonucleotide that hybridizes to a complementary nucleic acid template and ex-

pedites enzymatic synthesis by providing a starting point for polymerase.

Probe Labelled molecule in solution that reacts with a complementary target molecule on

the substrate.

Prokaryote cell This cell has a single chromosome including circular double-stranded

DNA.

Promoter Genomic location upstream of a cellular gene that determines the start site for

RNA polymerase.

Protein Any member of the major family of cellular biomolecules encoded by a unique

cellular gene and consisting of a repeating series of amino acids linked together by peptide

bonds.

Protein sequence The order of amino acid in a protein chain.

Proteome The variety of proteins generated by a genome of an organism is called its pro-

teome.

Proteomics Study of protein structure and behaviour is called proteomics.

Recombinant DNA Revolutionary technology developed in the 1970s that allows genes

from different organisms to be spliced together.

Replication Cellular process by which DNA is copied from a DNA template to produce an

exact copy of the genome.

Repression A decrease in the rate of transcription is called repression or down-regulation.

Ribosomal RNA Specialized class of cellular RNA, located in ribosomes, that plays struc-

tural and catalytic roles during protein synthesis.

Ribosome Large cytoplasmic structure that facilitates protein synthesis.

RNA Nucleic acid comprising the nucleotides adenosine, cytidine, guanosine and uri-
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dine; it is closely related to DNA. Principal differences are the use of ribose instead of

2′-deoxyribose and rudine in place of theymidine. Some RNA molecules encode proteins,

others are components of the protein synthesis machinery.

Serial analysis of gene expression This method uses a traditional DNA sequencing to iden-

tify and count the number of mRNAs in a cell.

Sequencing by hybridization This is building a miniature DNA array or DNA chips in-

cluding thousands of DNA fragments attached to a surface.

Sequence variant A change in the primary nucleotide sequence of DNA is known as a

sequence variant.

Single nucleotide polymorphism Common sequence variant containing a one-base-pair

change relative to the normal gene.

Target Molecule tethered to a microarray substrate that reacts with a complementary probe

molecule in solution.

TATA box A promoter is an element that determines the starting site for RNA polymerase,

which is an enzyme that makes mRNA from the DNA template. Many promoters have an

AT-rich promoter sequence which is called a TATA box.

Transfer RNA Specialised class of cellular RNA that binds specific amino acids and facil-

itates protein synthesis by mediating codon recognition.
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