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Abstract

Evolutionary Computation (EC) algorithms have proved to work well for fea-

ture selection because they are powerful search techniques and can produce

multiple good solutions. However, they suffer from some limitations for real-

world applications. Firstly, ECs require high computation time as they eval-

uate many solutions at each iteration. Secondly, a classifier is usually used

as their fitness function which causes the selected subset to perform well only

on the utilised classifier (e.g. classifier-bias). Lastly, ECs, as stochastic search

methods, return a different final subset in different runs which poses a problem

for finding a stable set of features (e.g. stability issue). To address computa-

tion time and classifier-bias limitations, this thesis proposes a new two-stage

selection approach called filter/filter in which two filter feature selection algo-

rithms are combined. In the first stage, a ranking algorithm forms a reduced

dataset by selecting the most informative features from the original dataset.

In the second stage, the reduced dataset is fed to a novel EC algorithm to

select final feature subset. This new EC algorithm is a Tabu search hybridised

with an Asexual Genetic Algorithm called TAGA. TAGA benefits from new

search components and solution representation which can effectively reduce

computation time. To select a classifier-unbiased final subset, a statistical cri-

terion is used as the fitness function which evaluates the subset independent

of any classifier. Experiments show that the proposed filter/filter requires

an acceptable computation time and selects more classifier-unbiased features

compared to the state-of-the-arts. To find a stable set of features, a novel

Generalisation Power Index (GPI) is proposed to analyse the generalisation

power of final subsets of an EC in several runs. Generalisation power refers

to performance capability of a subset over wide range of classifiers. Compu-
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tation results confirm that GPI is able to find a stable set of features which

achieves near optimal accuracy when used to train various classifiers. To ex-

amine the suitability of the proposed methods for real-world applications, the

filter/filter approach and GPI are integrated to select a stable set of features

for METABRIC breast cancer subtype classification problem. Experimental

results show that this integration not only can address the limitations of ECs

for a real-world biomedical feature selection problem but it performs better

than alternatives methods.

ii



Acknowledgements

The completion of PhD studies is a special milestone achievement in one’s aca-

demic life of higher education. This is now the time to express my thanks and

appreciations toward the people who greatly influenced my research journey.

Primary thanks go to my director of studies Dr. Georgina Cosma because of

her dedication in guiding and supporting me throughout the course of research.

Dr Cosma has always allowed me a complete freedom to define and explore

my own directions in research. I am so grateful and proud to be guided under

her supervision as I have learnt a lot from her, not only research and academic

skills but also teamwork and managing skills which will be beneficial to both

my academic career and personal life.

I would like to thank Nottingham Trent University for awarding me a Vice

Chancellor’s scholarship to pursue my studies and for financially supporting me

to attend conferences and summer schools to develop my academic knowledge.

I also would like to thank my supervisory team Prof. David Brown, Prof.

Graham Pockley and Prof. Graham Ball for all their support and advice.

Special thanks must go to my parents for all their unconditional support and

encouragement in my whole life. I also wish to thank my brother Mohammad,

my sister Elahe, and my best friend Li Jia for supporting me during my PhD

studies.

iii



Declaration

The contents of this thesis are a result of my own work, and it contains nothing

that is based on collaborative research. No part of the work contained in

this thesis has been submitted for any degree or qualification at any other

university. Parts of chapters 4 and 5 have been submitted to journals and

they are currently under review. Parts of chapter 5 have been published in a

conference proceeding [105].

iv



Contents

Abstract i

Acknowledgements iii

Declaration iv

List of Abbreviations i

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aims of the research . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Objectives of the research . . . . . . . . . . . . . . . . . . . . . 7

1.5 Description of the work/contributions . . . . . . . . . . . . . . . 8

1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review 14

2.1 Introduction to feature selection . . . . . . . . . . . . . . . . . . 14

2.2 Feature selection methods . . . . . . . . . . . . . . . . . . . . . 15

2.3 Evolutionary computation algorithms for feature selection . . . 18

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . 19

v



CONTENTS vi

2.3.3 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Hybrid feature selection methods . . . . . . . . . . . . . . . . . 30

2.5 Methods for combining subsets of features . . . . . . . . . . . . 32

2.5.1 Aggregation methods for combining subsets of features . 32

2.5.2 Frequency-based methods for combining subset of features 33

2.6 Generalisation power analysis for feature selection . . . . . . . . 35

2.7 Mutual information for evaluating feature relevancy . . . . . . . 35

2.7.1 Mutual information estimation . . . . . . . . . . . . . . 36

2.7.2 Minimum-Redundancy Maximum-Relevance (mRMR) . . 38

2.7.3 mRMR for feature selection . . . . . . . . . . . . . . . . 39

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Problem Demonstration of Evolutionary Computation-based

Algorithms for Feature Selection 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 GA as a test case EC algorithm . . . . . . . . . . . . . . 43

3.2.2 Classifiers and validation approaches . . . . . . . . . . . 44

3.2.3 The sample dataset . . . . . . . . . . . . . . . . . . . . . 44

3.2.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . 44

3.2.5 Stability measure . . . . . . . . . . . . . . . . . . . . . . 45

3.2.6 Classifier-bias analysis approach . . . . . . . . . . . . . . 46

3.3 Computation results and discussion . . . . . . . . . . . . . . . . 46

3.3.1 Stability analysis . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Computation time analysis . . . . . . . . . . . . . . . . . 47

3.3.3 Classifier-bias analysis . . . . . . . . . . . . . . . . . . . 48

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



CONTENTS vii

4 TAGA: Tabu Asexual Genetic Algorithm Embedded in a Fil-

ter/Filter Feature Selection Approach for High-dimensional

Data 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 TAGA components . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Solution representation . . . . . . . . . . . . . . . . . . . 54

4.2.2 Proposed heuristic mutation operator . . . . . . . . . . . 54

4.2.3 Tabu list design . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 Framework of TAGA for feature selection . . . . . . . . . 58

4.3 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Benchmark methods . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Datasets and parameter settings . . . . . . . . . . . . . . 65

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Results of TAGA components . . . . . . . . . . . . . . . 67

4.4.2 Comparison of TAGA with greedy search algorithms . . 73

4.4.3 Comparison of TAGA with other feature selection algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.4 Classifier-bias analysis . . . . . . . . . . . . . . . . . . . 83

4.4.5 Running time analysis . . . . . . . . . . . . . . . . . . . 84

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 A Generalisation Power Approach for Evolutionary Computation-

based Feature Selection 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Proposed generalisation power analysis approach . . . . . . . . . 88

5.3 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 90



5.3.1 The EC algorithm adopted for the experiments and its

parameter settings . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Datasets and classifiers . . . . . . . . . . . . . . . . . . . 92

5.3.3 Benchmark methods for combining subsets of features . . 92

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Comparing the performance of GPI with benchmark al-

gorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.2 Running time analysis . . . . . . . . . . . . . . . . . . . 100

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Application of methods to Breast Cancer type classification 104

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Experiment methodology . . . . . . . . . . . . . . . . . . 107

6.2.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . 108

6.2.3 Benchmark methods . . . . . . . . . . . . . . . . . . . . 110

6.2.4 Learning algorithms and evaluation metric . . . . . . . . 112

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusions, Discussion and Future Work 117

7.1 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . 117

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 123

viii



List of Tables

3.1 EC-based algorithms stability and high computation time prob-

lem demonstration results . . . . . . . . . . . . . . . . . . . . . 47

3.2 Results for demonstrating EC-based algorithm Classifier-bias issue 49

4.1 Description of the datasets used in the experiments . . . . . . . 64

4.2 Parameters settings of the EC algorithms . . . . . . . . . . . . . 64

4.3 Results of the Tabu List performance analysis . . . . . . . . . . 69

4.4 Performance comparison of various versions of TAGA over re-

duced datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Mutation operators performance analysis adjusted ρ-value for

Wilcoxon post-hoc pairwise comparison. . . . . . . . . . . . . . 73

4.6 Comparison of TAGA with greedy search algorithms over re-

duced datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Comparison of TAGA with other feature selection algorithms

over reduced datasets . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 TAGA classifier-bias analysis (%) . . . . . . . . . . . . . . . . . 84

4.9 TAGA running time analysis in seconds . . . . . . . . . . . . . . 85

5.1 Description of datasets used in experiments . . . . . . . . . . . 92

5.2 Comparison of GPI with other algorithms over four classifiers . 97

100

ix



5.4 GPI running time analysis in seconds . . . . . . . . . . . . . . . 101

6.1 The number of samples corresponding to each subtype . . . . . 108

6.2 Comparison of TAGA-GPI with other methods over METABRIC

dataset. For each classifier and selection method, the values in

parentheses is the number of selected features by each algorithm

and the cell values are the classification accuracy. The last col-

umn reports the average of the classification accuracies for each

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

x



List of Figures

1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Three types of feature selection. (a) Filter (b) Wrapper (c) Embedded

(adopted from [123]) . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Flowchart of EC algorithms (adopted from [63]) . . . . . . . . . . . . . 18

2.3 Flowchart of a typical GA. (adopted from [87]) . . . . . . . . . . . . . 20

2.4 Two Genetic operators (a) Crossover operator, (b) Mutation operator (adopted

from [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Flowchart of the Tabu Search procedure (adopted from [3]) . . . . . . . . 28

4.1 Diagram of TAGA embedded into filter/filter framework . . . . . . . . . 53

4.2 Solution representation used in TAGA . . . . . . . . . . . . . . . . . . 54

4.3 Representation of the proposed heuristic mutation operator used in TAGA 55

4.4 Analysing the effectiveness of the proposed components. Re-

sults of the Wilcoxon tests for each classifier. The green boxes

indicate a significant difference. . . . . . . . . . . . . . . . . . . 72

4.5 Comparing TAGA with Greedy search algorithms using the Friedman test

and the Wilcoxon post-hoc analysis applied on the average of the accura-

cies. The y-axis is the classification accuracy difference and x-axis indicates

the names of the compared algorithms. . . . . . . . . . . . . . . . . . 77

xi



4.6 Comparing TAGA with Greedy algorithms. Results of the post-hoc tests

for each classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Comparing TAGA with other feature selection algorithms using the Fried-

man test and the Wilcoxon post-hoc analysis applied on the average of the

accuracies. The y-axis is the classification accuracy difference and x-axis

indicates the names of the compared algorithms. . . . . . . . . . . . . . 80

4.8 Comparing TAGA with other feature selection algorithms. Results of the

post-hoc tests for each classifier. . . . . . . . . . . . . . . . . . . . . 81

5.1 Comparing GPI with other algorithms using the Friedman test

and the Wilcoxon post-hoc analysis for each classifier. The y-

axis is the classification accuracy difference and the x-axis indi-

cates the names of the compared algorithms. . . . . . . . . . . . 98

5.2 Comparing GPI with other algorithms using the Friedman test

and the Wilcoxon post-hoc analysis applied on the average of the

accuracies. The y-axis is the classification accuracy difference

and the x-axis indicates the names of the compared algorithms. 99

5.3 Comparing GPI with OTHER algorithms using the Friedman

test and the Wilcoxon post-hoc analysis for CART classifier.

The y-axis is the classification accuracy difference and the x-

axis indicates the names of the compared algorithms. . . . . . . 99

6.1 Experimental methodology flowchart . . . . . . . . . . . . . . . . . . 107

6.2 Percentage plot of subtypes in METABRIC dataset . . . . . . . . . . . 109

xii



List of Abbreviations

ACC Accuracy

AGA Asexual Genetic Algorithm

AI Artificial Intelligence

ASU Arizona State University

ATI Average Tanimoto Index

BE Backward Elimination

CART Classification And Regression Trees

CGA a Customised Genetic Algorithm for feature selection

CPU Central Processing Unit

CSCoefficient Compactness-Separation Coefficient

EC Evolutionary Computation

GA Genetic Algorithm

GPI Generalisation Power Index

KNN K Nearest Neighbour

LDA Linear Discriminant Analysis

LOOCV Leave-One-Out Cross-Validation

LS Local Search

xiii



METABRIC Molecular Taxonomy of Breast Cancer International Consor-

tium

MI Mutual Information

ML Machine Learning

MLP Multi-Layer Perceptron

mRMR Minimum Redundancy-Maximum Relevance
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Chapter 1

Introduction

1.1 Overview

In machine learning and data mining, a dataset is usually described by a group

of features and samples. Due to availability of sophisticated data collection

tools, there are usually a large number of features to be taken into considera-

tion when building a machine learning model, including many irrelevant and

redundant features. Irrelevant and redundant features negatively influence the

performance of machine learning models in terms of training time, which is

mainly caused by the curse of dimensionality [47]. Therefore, to build up a

reliable machine learning model which is able to process the data in an accept-

able computation time, to improve learning accuracy, and to facilitate a better

understanding of the learning model, a feature selection process is needed.

Feature selection mainly focuses on selecting a subset of features which can

efficiently describe the input data, whilst reducing the effects of redundant and

irrelevant features and the impact these have when building machine learning

models – hence using a subset of features but still provide good prediction

results [51].
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Feature selection is a non-deterministic polynomial-time hardness (NP-hard)

problem with a large complex solution space [6]. Because, firstly, since the

number of features in the optimal feature subset is not known in advance, the

dimension of the search space cannot be reduced to feature subset with certain

number of features. Secondly, since the features may have complementary or

contradictory interactions with each other, the decision space is non-separable

[50].

A variety of search techniques have been applied to feature selection includ-

ing exhaustive search, greedy search, heuristic search, and random search

[31, 77, 75]. However, due to the global search potential and heuristic guide-

lines, Evolutionary Computation (EC) techniques have recently received much

attention from the feature selection community [128]. Many of EC methods

select a small number of important features, produce higher accuracy, and

generate small models that are efficient on unseen data. Consequently, EC

techniques have now become important methods for handling high dimensional

feature selection [132].

The paradigm of EC algorithms consist of stochastic search algorithms inspired

by the process of Darwinian theory of natural selection [85, 32, 39]. The EC

algorithms often start with a population of solutions. When applying EC

for feature selection, each individual of the population represents a subset of

features which is a potential solution to feature selection problem. The quality

of the subsets are evaluated using the fitness criterion and then an iterative

process is used to improve the solutions.

The motivation for applying ECs to the feature selection problems is that,

unlike conventional feature selection methods that perform a local, greedy

search in the space of candidate solutions and produce local optimal solutions,

ECs are robust, adaptive search techniques, they can perform a global search
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in the solution space, and they tend to better deal with attribute interactions

than greedy methods [44, 33, 95, 43]. However, applying EC methods on high-

dimensional data feature selection problems is still a challenge in the field of

feature selection which is the primary motivation for this research project.

1.2 Problem definition

Feature selection approaches utilise a search technique to find the best feature

subsets that optimise an evaluation criterion. Search techniques for feature

selection can be separated in three categories [128]: exhaustive, heuristic, and

EC methods. Exhaustive algorithms thoroughly search the entire subset space

and hence, they become costly in terms of computation time for datasets which

comprise a large number of features. Heuristic algorithms make locally opti-

mal choices with the aim of finding a global optimum amongst local optima.

However, heuristic methods lack of a global search strategy and consequently,

they are usually trapped into local optima [119, 26]. Therefore, EC techniques

are able to better solve feature selection problems because they benefit from a

global search strategy and heuristic guidelines.

EC algorithms are powerful search techniques that do not need domain knowl-

edge, do not make any assumptions about the search space, and can produce

multiple good solutions. However, their application to real-world feature se-

lection problems has been limited due to their high computation time and the

stability issue.

To deal with large datasets, particularly high-dimensional data, EC algorithms

require high computation time because they are iterative algorithms and in

each iteration, they need to evaluate many subsets. In terms of the stability

issue, EC algorithms are stochastic search algorithms and they reach different
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solutions whenever they are run. This poses a problem to find the best subset

of features. For more information on EC techniques for feature selection the

readers are referred to [128, 132].

To resolve the computation time limitation of EC algorithms for feature se-

lection, most of the existing EC-based large-scale feature selection approaches

employ a two-stage approach called filter/wrapper [17]. In the first stage, a

filter method, which statistically evaluates feature subsets in terms of intrinsic

correlation between features in the subset, is utilised to find most discrimi-

nating features and to reduce the dimensionality of the feature space. In the

second stage, a wrapper algorithm, in which the classification performance of

a machine learning algorithm (e.g. classifier) is used to evaluate feature sub-

sets, is employed to find the best candidate subset from the features identified

in the first stage. Filter and wrapper feature selection methods are discussed

further later in Section 2.1.

When employing a wrapper algorithm in the second stage, hybrid methods

typically are biased toward the classifiers used [91]. A wrapper method has

an embedded classifier and its objective is to find the best subset of features

that achieves highest classification accuracy for a specific classifier[91]. The

limitation of this is that the performance of the wrapper approaches depend

on the classifier. In particular, choosing a different classifier will return a

different subset of features, and this increases the complexity of finding the

optimum subset of features from those returned by the algorithm over the

various iterations. Therefore, when developing a feature selection algorithm, it

is important to develop an algorithm for which the selected features can provide

acceptable performance over a range of classifiers (herein, this is named as the

classifier-bias issue). This is of significant importance particularly in cases

where the best classifier for the data at hand is not known in advance and the
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selected subset can be used to evaluate the performance of different classifiers

without the need to repeat the feature selection process for each classifier.

Another limitation of EC algorithms for feature selection is that due to the

randomness in their nature [28], a different ‘best feature subset’

solution is returned every time they are run, and this is known as

the stability issue [128]. Stability issue can pose significant problems for

the application when a specific set of features is sought after to construct

prediction models. However, instability of EC algorithms has provided them

with an advantage over other searching strategies. Because, unlike exhaustive

and heuristic search strategies which are deterministic methods and provide a

single final subset, EC techniques are able to produce multiple high quality

final subsets in different runs which provide more options to search for an

optimal or near optimal subset [128].

A solution to stability issue is to apply a further selection process on a set

of subsets obtained from different runs of an EC algorithm to select the best

subset. Existing solutions include typical aggregation [15] (e.g. intersection

and union) and frequency-based methods [108]. However, these methods do

not consider the performance of a classifier in their selection process and they

can select a feature subset which when utilised to train a classifier can lead to

poor classification accuracy. Classifier-based aggregation [16] is an alternative

method, which uses the performance of one classifier to select the best subset of

features. This approach may result in a biased subset with poor performance

over various classifiers known as lack of generalisation power.
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1.3 Aims of the research

This thesis focuses on developing solutions for addressing the limitations of

EC algorithms for feature selection problems, specifically related to stability

and computation time. Therefore, the main goals and the challenges which

were identified during this research and need to be addressed are as follows:

• Computation time: EC algorithms are costly in terms of computation

time as they need to assess a large number of solutions at each iteration.

Therefore, this thesis investigates solutions to reducing the computation

time needed by EC algorithms in finding optimal subsets of features

from high-dimensional datasets. The selected features will be utilised

for constructing machine learning models.

• Classifier-bias: EC-based algorithms are mostly embedded into a wrap-

per framework which uses the classification performance of a classifier

(e.g. accuracy) to evaluate feature subsets. This can result in a final

selected subset of features which is classifier-biased, meaning that the

selected subset is only applicable for the specific classifier and may lead

to a poor performance if applied to other classifiers – this is also known

classifier-bias issue [91]. Hence, alternative evaluation metrics need to

be considered as the fitness function for EC-based algorithms and new

ones need to be proposed as necessary.

• New solution representations and search components: The dominant EC

solution representation in the domain of feature selection is a binary

representation which is followed by binary search operators. However,

binary representation is not applicable to all types of evaluation metrics

(e.g. information theory based metrics) and consequently new solution

representations and search operators need to be developed.
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• Stability issue: Stabilising EC algorithms involves removing their stochas-

tic components which damages their random search nature. Therefore,

this thesis rather concentrates on developing a method which is capable

to find a stable set of features amongst all final subsets of an EC-based

feature selection algorithm over several independent runs.

1.4 Objectives of the research

To address the limitations and challenges of EC techniques for feature selection

discussed above, the following objectives are defined:

• Objective O1: Develop an EC-based feature selection algorithm which

benefits from new solution representation and search components to re-

duce computation time taken by EC algorithms for finding optimal or

near optimal subsets of features within high-dimensional datasets for

building machine learning models.

• Objective O2: Develop a solution to address classifier-bias problem asso-

ciated with EC algorithm embedded into wrapper frameworks for which

the selected features are biased toward the utilised classifier. The pro-

posed solution will select the features independent of the classification

performance of any classifier and therefore, the selected feature will be

able to provide acceptable performance over wide range of classifiers.

• Objective O3: Develop a solution to the stability issue [128] associated

with the challenge of finding the best subset of features over several runs,

when EC algorithms are adopted for feature selection tasks. A solution

would be based on a Generalisation Power Index (GPI) which measures

the performance of feature subsets in terms of generalisation power over
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multiple classifiers.

• Objective 04: Evaluate the performance of the proposed algorithms

on a real-world case study in particular the METABRIC breast cancer

dataset. METABRIC dataset contains a large number of features and

many samples, and the proposed algorithms are applied to METABRIC

dataset in order to find the best biomarkers for detecting breast cancer

subtypes.

1.5 Description of the work/contributions

The first contribution of this thesis (Objective O1) proposes a solution to the

high computation time of EC algorithms as well as to the classifier-bias problem

(Objective O2) of filter/wrapper methods. This proposed solution is a two-

stage algorithm that combines a novel EC-based filter algorithm with another

filter algorithm (e.g. Fisher score [82]) to create a filter/filter approach. The

filter/filter approach here has a two-fold aim.

In the first stage, it reduces the size of the original dataset and as the result

reduce the computation time required by EC algorithm to process the reduced

dataset in the second stage. In the second stage, the EC algorithm benefits

from a statistical evaluation metric (fitness function) which leads to select a

final subset which is not classifier-biased and is able to provide high gener-

alisation power over a range of classifiers. Next, the stages of the proposed

approach are explained in detail.

In the first stage of the proposed filter/filter algorithm, the Fisher score feature

selection algorithm [82], which is computationally cost effective, is applied to

reduce the complexity of the datasets and to filter out the most promising

features which are then fed to the next stage. In the second stage, a novel
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EC-based feature selection algorithm called Tabu Asexual Genetic Algorithm

(TAGA) is developed and applied to the reduced datasets in the previous stage.

TAGA is an enhanced EC algorithm which needs considerably less computation

time compared to its type and also utilises a statistical fitness function which

obviates the limitation of wrapper/filter approaches in terms of classifier-bias.

TAGA, is a string type long-term memory Tabu Search (TS) [48], with a new

effective solution storing and restoring scheme, hybridised with an integer-

coded Asexual Genetic Algorithm (AGA) [21] as the local search in order to

provide new search directions for the algorithm. Moreover, a Sequential For-

ward Selection (SFS) procedure is added to AGA to enhance and accelerate

the performance of the algorithm. AGA benefits from a new solution represen-

tation in order to steer the searching process more efficiently and works only

based on a mutation operator and lacks a crossover operator.

The reasoning behind using AGA is the fact that a suitably designed mutation

operator is sufficient to guide the searching process in order to find high quality

solutions and therefore, removing crossover operator can increase the speed of

classical GAs. Finally, the information theory-based minimum redundancy-

maximum relevance (mRMR) [98] criterion is used as the fitness function of

TAGA (rather than the output of a classifier which is used in filter/wrapper

methods) to evaluate the subsets in terms of relevance and redundancy. In

this way, not only the selected subsets are not classifier-biased (and hence the

classifier bias issue is addressed) but also, the possibility of selecting corre-

lated features in the same subset is reduced. Experiments were carried out on

various high-dimensional datasets including image data, text data, and bio-

logical data. The quality of the selected subsets were evaluated using different

classifiers. The experimental results demonstrate that the proposed algorithm

outperforms the conventional and state-of-the-art feature selection algorithms



1.5. Description of the work/contributions 10

in most cases.

The second contribution is to address the stability limitation (Objective O3)

of existing EC algorithms when applied to feature selection. This thesis pro-

poses a novel generalisation power analysis approach based on a Generalisation

Power Index (GPI) which measures the quality of a feature subset when applied

to a range of classifiers taking into consideration classifiers optimal accuracy.

The proposed approach finds the subset which is of the highest quality in terms

of generalisation power (e.g. optimal subset) from a pool of many output fea-

ture subsets. These subsets were output by an EC algorithm in several runs

and which are considered to be stable sets of features.

In feature selection, the quality of a subset can be measured through discrim-

ination power and generalisation power. The discrimination power of a subset

provides the classifier with an ability to approximate decision boundaries in

the feature space and consequently, it results in optimal classification accuracy

achievable by the classifier. The term generalisation power refers to the per-

formance capability of a subset to achieve optimal accuracy when used to train

various classifiers. According to these two terms, an optimal subset is able to

provide enough discrimination power to any classifier in order to achieve their

optimal classification performance. Therefore, this approach is able to analyse

the output subsets of an EC algorithm in several independent runs in terms

of their generalisation power on a range of classifiers and to select the subset

with the highest generalisation power as the best subset. Computation results

confirm that GPI has outperform alternative methods in finding a stable set of

features which achieves optimal or near optimal accuracy when used to train

various classifiers.

In order to test the applicability of the proposed methods in previous ob-

jectives for real-world problem (Objective O4), the TAGA embedded into a
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filter/filter framework (objectives 1 and 2) and the GPI (objective 3) are com-

bined to select a stable set of features for METABRIC breast cancer subtype

classification problem. The results show that the combination of these two

algorithms performs better than alternatives methods and is able to cover the

limitations of ECs for a real-world biomedical feature selection problem.

1.6 Thesis outline

The thesis structure is illustrated in Fig 1.1 and an overview of the thesis

structure is also provided below.

• Chapter 2 provides an overview of concepts in feature selection, discusses

applications of EC algorithms for feature selection, identifies challenges

encountered by EC algorithms for feature selection and discusses limita-

tions of existing methods.

• Chapter 3 demonstrates the issues and limitations of EC-based algo-

rithms for feature selection using a simple GA as an EC test case algo-

rithm and a small dataset.

• Chapter 4 describes the first contribution of the thesis, a novel EC-

based feature selection algorithm called Tabu Asexual Genetic Algorithm

(TAGA). TAGA has been embedded into a new two-stage hybrid frame-

work called filter/filter approach to deal with high computation time

of EC methods as well as the classifier-bias limitation of existing fil-

ter/wrapper methods.

• Chapter 5 describes the second contribution of the thesis, a novel gener-

alisation power analysis approach based on a Generalisation Power Index
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(GPI) that measures the performance of feature subsets in terms of gen-

eralisation power over multiple classifiers.

• Chapter 6 describes the application of the proposed contributions, i.e.

the TAGA algorithm and the generalisation power analysis approach de-

veloped in Chapters 4 and 5 respectively, applied to the METABRIC

microarray dataset as a real-world case-study. The case-study is con-

cerned with using the proposed approaches for finding the best subset of

biomarkers for detecting breast cancer types.

• Chapter 7 summarises the steps which have been taken in this thesis to

address the limitation of EC algorithms for feature selection, describes

contributions and objectives of the thesis, and provides suggestions future

work.
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Chapter 2

Literature Review

This chapter provides an overview of concepts in feature selection and discusses

applications of EC algorithms for feature selection. Challenges encountered by

EC algorithms for feature selection and the limitations of existing methods to

deal with these challenges are also discussed in this chapter.

2.1 Introduction to feature selection

Real-world data has become high dimensional which, as a result, consists of a

large number of features and samples. However, not all features are essential

for constructing machine learning models (e.g. classifiers) since many of the

features are redundant or even irrelevant. Redundant and irrelevant are two

distinct notions; since one relevant feature may be redundant in the presence

of another relevant feature with which it is strongly correlated [51]. The cen-

tral premise when using a feature selection technique is that the data contains

some features that are either redundant or irrelevant, and can thus be removed

without incurring much loss of information [12]. Nevertheless, it is a challeng-

ing process for an algorithm to identify the best combinations of features from

14
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Figure 2.1: Three types of feature selection. (a) Filter (b) Wrapper (c) Embedded (adopted
from [123])

high-dimensional datasets which contain a large number of features and a small

sample size. Therefore, feature selection is the process for automatic selection

of the most relevant features required for modelling and other machine learn-

ing tasks. Feature selection reduces the inputs required to construct machine

learning models and this consequently reduces the complexity of the models

in terms of time and computational processing power required by the model

to learn the data [51]. Generally, feature selection techniques are used for four

reasons: 1) simplification of models to make them easier to interpret by users

[58], 2) shorter training times, 3) avoiding the curse of dimensionality, and 4)

enhancing generalisation by reducing overfitting [12].

2.2 Feature selection methods

Traditional feature selection methods are commonly presented in three main

categories based on how they combine the selection algorithm and the model

building. These categories are: filter, wrapper, and embedded [17], and are

illustrated in Figure 2.1.

In filter approaches, a statistical measure is applied to assign a score to each
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feature, according to their correlation with other features and the target vari-

able, and then the features with the highest scores are selected [104]. Be-

cause filter approaches are classifier-independent, the selected feature is not

classifier-biased and provides high generalisation power over a wide range of

classifiers. In addition, they have low computational complexity and they are

easily applicable to high dimensional datasets. One important limitation of

filter methods is that in highly correlated datasets, a redundant subset of fea-

tures may be selected and consequently, when the selected subset is used for

training a classifier it may prove not to be a good subset of features after all

[51].

Wrapper approaches search through the space of all possible feature subsets

and use the performance of a classifier to evaluate the usefulness of feature

subsets and select the one that maximises the accuracy of the classifier [68].

Compared to filter approaches, the performance of wrapper approaches is often

higher in terms of accuracy, but they require high computational efforts for high

dimensional data as they may need to check all possible combination of feature

subsets. Moreover, the selected subset is biased toward the particular classifier

used and may show poor classification performance over other classifiers [24].

Embedded approaches [17] rank features during the training process of a clas-

sifier and thus simultaneously determine both the optimal features and the

parameter tuning of the classifier to achieve higher accuracy. In fact, embed-

ded methods learn which features best contribute to the accuracy of the model

while the model is being constructed and therefore, the feature selection al-

gorithm is integrated as part of the learning algorithm. Embedded strategies

are computationally less expensive than wrapper approaches as they do not

require running exhaustive search over all subsets and they mostly evaluate

each feature individually based on the score calculated during tuning classifier
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parameters. However, similar to wrapper methods, embedded methods are

dependent on the performance of a classifier and thus they may still be com-

putationally expensive for high dimensional data and the selected subset may

be biased toward the particular classifier used.

Hybrid feature selection approaches have recently emerged and these are known

to be more suitable for high dimensional problems, compared to the traditional

approaches (filter, wrapper, and embedded) [17]. Hybrid methods combine the

best properties of filters and wrappers [61] and benefit from sub-algorithms and

therefore are considered more robust when compared to traditional approaches

[17, 78].

A typical hybrid feature selection method, also called filter/wrapper, consists

of two stages. In the first stage, a filter method is used in order to find most

discriminating features and to reduce the dimensionality and complexity of the

feature space. In the second stage, a wrapper algorithm is employed to find

the best candidate subset from the features identified in first stage. Employ-

ing a wrapper algorithm in the second stage, typical hybrid methods inherit

classifier-bias property of wrappers. In particular, choosing a different classi-

fier will return a different subset of features, and this increases the complexity

of finding the optimum subset of features. Therefore, when developing a fea-

ture selection algorithm, it is important to develop an algorithm for which

the selected features can provide acceptable performance over wide range of

classifiers.
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2.3 Evolutionary computation algorithms for

feature selection

2.3.1 Overview

EC techniques have recently received much attention from the feature selection

community [128] as many EC methods select a small number of important

features, produce higher accuracy, and generate small models that are efficient

on unseen data. Consequently, EC techniques have now become important

methods for handling high dimensional feature selection [132]. As shown in

Figure 2.2, EC algorithms often start with an initial population of solutions.

When EC algorithms are applied for feature selection, each individual of the

population represents a subset of features which is a potential solution to

feature selection problem. The quality of the subsets are evaluated using a

fitness criterion and then an iterative process is used to improve the solutions.

Figure 2.2: Flowchart of EC algorithms (adopted from [63])
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2.3.2 Genetic algorithms

Genetic algorithms (GAs) are categorized as a part of EC which is an area

of Artificial Intelligence (AI). GAs are inspired by Darwin theory of natural

selection, and were first introduced and developed by Holland [54]. The GAs

are population-based optimisation algorithms and each individual of the pop-

ulation is a solution for the problem. The variables of the solution are encoded

into the chromosomes which are formed by a list of genes. A fitness func-

tion is also needed to measure the fitness of the encoded solutions. The GA

starts with an initial population and the chromosomes compete against each

other to survive. In each generation, some chromosomes are randomly selected,

with a tendency towards fitter chromosomes, as the parents for reproduction

and recombination to generate offspring (new solutions) which comprise the

next generation. The mechanism by which the GAs generate offspring are:

Crossover and Mutation. By the means of crossover operator, GAs typically

search for advantageous patterns in the existing elite solutions to improve the

quality of solutions even further. Furthermore, mutation operators are usually

used to diversify the pool of solutions. In Figures 2.3 and 2.4 the search-

ing process flowchart of a typical GA and its genetic operators are presented

respectively.

Genetic Algorithm Solution Representations for Feature Selection

The dominant GA solution representation in the literature is binary string in

which 1 shows the corresponding feature is selected and 0 means not selected

[128]. Accordingly, binary search operators have been proposed in order to

steer the search process. Many different approaches have been proposed in

order to improve the performance of the GA in terms of solution representation

and search operators. Li et al. [73] proposed a dynamic Adaboost learning
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Figure 2.3: Flowchart of a typical GA. (adopted from [87])

Figure 2.4: Two Genetic operators (a) Crossover operator, (b) Mutation operator (adopted
from [4])
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with feature selection based on parallel GA. The proposed algorithm uses a

bio-encoding scheme in which the chromosomes are composed of two strings,

one binary-encoded string to show selected features and the second one is a

real-number encoding method which represents the weight of the features.

Genetic operators consist of two parts: operators for the binary-coded chro-

mosome part and for the real-valued coded one, which are typical both binary

and real-valued swap mutation and two-point crossover operators. Winkler et

al. [126] developed a new representation for GA composed of one binary part

for feature selection and a real-valued part for parameter optimisation which

is able to discover optimal feature subset and optimal parameter values for a

Support Vector Machine (SVM) classier using typical binary and real-valued

genetic operators.

Souza et al. [112] developed a co-evolutionary Genetic Multilayer Perceptron

(MLP) for feature selection which used three-level representation. The layers

indicate feature selection, the neurons pruning, and the MLP architecture, re-

spectively. Typical binary genetic operators are applied to guide the search

process. It appears that the binary coded representation is the most common

GA solution representation in the literature, followed by binary genetic opera-

tors. In binary representation, the selected features are determined by binary

values and therefore subsets with different number of features are generated

and compared. However, binary representation may not be applicable in cases

when mRMR is used as GA fitness function because mRMR value is highly

size-dependent and is comparable for the subsets with the same number of

features. Therefore integer-coded solution representation seems more suitable

for mRMR.

Integer-coded solution representations have also been studied for feature

selection. Jeong et al. [59] suggested a new GA with an integer-coded solu-
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tion representation which is able to further reduce the dimensionality of high

dimensional data. In this representation, the length of each chromosome is

equal to the number of desired features. In cases where the index of a feature

appears more than once, a SFS operator is used to find alternative features. A

similar approach was used by Ludwig et al. [79] where a GA with an integer-

coded representation is combined with mRMR as fitness function. A potential

limitation in [79] and [59] is that both algorithms work based on the crossover

operator and suffer from the absence of a proper mutation operator which is

important in generating diverse solutions. Because most of feature indexes are

not present in the solutions, designing a swap mutation is difficult and conse-

quently, the mutation is replaced with a SFS-like procedure to repairs faulty

solutions. This SFS-like procedure however is only used to repair the solutions

and therefore is unable to provide the search process with diverse solutions.

Consequently, to address the limitation of the available integer-coded repre-

sentation for GA, a novel representation that can reduce the dimensionality of

the search space as well as a new genetic operators which are able to effectively

steer the search process will be needed.

Asexual genetic algorithm

There is another version of GA in which the algorithm lacks of crossover opera-

tor and works only based on mutation operator which is called Asexual Genetic

Algorithm (AGA) [22]. The AGA employs the survival of the fittest principle

in an asexual reproduction scheme [7]. The development of this type of GA

has been based on three assumptions [7]. Firstly, the success of any type of

metaheuristic, from point-based to population-based, depends on the trade-off

which it makes between intensification and diversification, with diversification

aiming at exploring new regions, and intensification aiming at searching the
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high quality regions already distinguished. Secondly, the mechanism of mu-

tation by which the population is manipulated as well as the combinations of

different mutation operators can highly affect the trade-off between intensifi-

cation and diversification. Thirdly, biased-mutations with a tendency towards

fitter solutions can play a twofold role in the sense of contributing to both

intensification and diversification. In other words, using a biased-mutation

not only can diversify the search process, but it also can guide the search to-

wards high quality solutions. The application of AGA in different scientific

fields has shown its advantages over the classical version of GA. Canto′ et al.

[21] presented an AGA and applied the algorithm in finding the global max-

imum in functions composed of two variables and also parameter estimation

in astronomy by minimisation of the chi-square. The results show that their

algorithm needs less parameter tuning effort and is computationally less ex-

pensive than the standard version of GA and can converge to optimal or near

optimal solutions in just a few generations. Chakroborty and Mandal [23] used

a mutation-based GA to solve various types of the vehicle routing problem.

The computation results reveal that their algorithm is fast and gives optimal

or near optimal solutions with minimal computation effort. Amirghasemi and

Zamani [7] developed a hybrid algorithm of AGA and TS for solving job shop

scheduling problem called TGA. The effectiveness measurement of TGA indi-

cates its coverage of the search space and its intensification on exploring high

quality solutions. However, there are some limitations in their work. Firstly,

they have used a short-term memory tabu list which length is randomly set

in each iteration. One drawback of short-term memory tabu list is that the

length of the tabu list may significantly affect the performance of the algorithm

which necessities tuning the length of the tabu list. Nevertheless, there is still

no effective method to properly determine the length of the tabu list [38]. Fur-
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thermore, even if the length is properly tuned, the short-term memory tabu

list may still trap into local optima. Secondly, their proposed tabu list storing

strategy stores both the solutions and the moves. This storing strategy may

require high computational effort to check whether a solution is in the tabu

list. Thirdly, in the proposed algorithm, the new solutions are first generated

and their fitness values are calculated through the fitness function and finally,

their existence in the tabu list is check. However, a better strategy is to first

check if the solutions are in the tabu list before calculating their fitness values

which may significantly reduce the computational efforts. Lastly, the mutation

operator is only applied on the best solution in the generation to explore its

neighbourhood only. However, this results in exploring limited regions of the

search space. Sometimes, mutating bad solutions will lead the search process

into the regions with higher quality solutions [35].

As explained in subsection 2.3.2, integer-encoded solution representation is

the suitable representation for GA when mRMR is the fitness function. Un-

like other combinatorial problems with integer-encoded representation (e.g.

scheduling and routing problems) for which the entire sequence of integers is

the solution, part of the sequence is the solution for feature selection problems.

In a crossover operator, information obtained from two parents are combined to

generate new offspring. For feature selection, the parents are the subsets (part

of the sequence) which contain small portion of entire features, few features

in some cases. Therefore, recombination of the parents with limited feature

diversity will most likely result in generating new solutions which are already

discovered or are faulty containing the same features. Because these repeti-

tive and faulty solutions will require high computational effort to be fixed or

tabued (in cases if a tabu list is used), removing the crossover operator from

GA may reduce the computation time of the entire algorithm without having
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negative impact on the its performance.

Parallel GA for feature selection

GAs are computationally time consuming because they search through a large

set of solutions to find optimal solutions. Parallel processing techniques can

be used to improve the efficiency of GAs by exploiting the simultaneity of cal-

culations performed in genetic algorithms [116]. Parallelising a GA for feature

selection necessities parallelising other comparing algorithms in the same man-

ner for a fair performance comparison. However, algorithm parallelisation is

part of the parallel processing and its impact for feature selection needs to be

investigated in the context of parallel processing. Because of the importance

of algorithm parallelisation in terms efficiency, the application of Parallel GA

(PGA) and its advantages and challenges are briefly explained in this section.

The main idea of Parallel GA (PGA) is to split the entire population into

several subpopulations and evolve all the subpopulations simultaneously on

multiple processors [27]. A PGA actually uses various GAs running on sep-

arate processors to process one part of the population (subpopulation), with

or without communication between the processors. PGAs divide the popu-

lation into a few large subpopulations and genetic operators are carried out

within the subpopulation on multiple processors. After several generations,

individuals from different subpopulations will be exchanged and form the new

subpopulations for further evolution. The following are some works which have

applied PGA in the context of feature selection.

Chen et al. [27] developed a coarse-grained parallel genetic algorithm to si-

multaneously optimise the feature subset and parameters for SVM. The com-

putation results demonstrates that the developed algorithm has been able to

find optimal feature subset and parameters for SVM in significantly shorter
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time when compared to a generic GA. Mokshin et al. [88] proposed a parallel

genetic algorithm is to solve feature selection problem of production enter-

prise functioning. Their proposed PGA was implemented to search for the

best number of parallel evolutionary paths. The effectiveness of the proposed

approach was examined in comparison with results of typical feature selection

algorithm including Fisher score and multiple determination coefficient. The

computation results confirmed the superiority of the proposed algorithm over

other algorithms in terms of prediction and speed. However, their computation

experiments appear to have been performed unfairly as the other competing

algorithms were not of state-of-the-art and most likely, a generic GA would also

outperform them. Furthermore, the other algorithms were not parallelised in

the same manner as their proposed PGA, and their computation results were

obtained from a standard version.

Soufan et al. [111] developed an online filter/wrapper feature selection plat-

form based on the parallel GA to reduce the computation time required for

feature selection. The performance of the proposed platform was compared

with other available feature selection tools both parallel and non-parallel ones

(such as WEKA [52], and FST3 [109]). The computation results show superi-

ority of their platform over other tools in terms of classification performance.

However, in terms of computation time, the platform has not been able to

compete against other tools (some of which were non-parallel) for some cases.

PGAs can increase the diversity of population and significantly reduce compu-

tation time [118]. However, there exist some limitations in their applications

which need to be taken into account. Algorithm parallelisation may need a

complicated programming because it needs deep understanding of the algo-

rithm procedures to find the parts that can actually be parallelised [14]. PGA

may include redundant computation in which processors explore the same re-
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gions of the search space. To avoid redundant computation, a communication

process is needed for synchronising processors tasks. However, synchronisation

is a sequential component which may impose significant limit on the amount

of parallelisation [113]. Parallelisation may be less efficient when the iterations

are less expensive in terms of processing time [106]. It may be because the

time spent to manage redundant computation is much higher than the time if

the algorithm is run sequentially.

2.3.3 Tabu search

Tabu Search (TS) was introduced by Fred Glover [48] as a general iterative

metaheuristic that guides a local heuristic search procedure to explore the solu-

tion space for solving combinatorial optimization problems. Local Search (LS)

algorithms take a potential solution to a problem and generate its immediate

neighbours (i.e. the solutions that are similar to the original solution except

for very few minor details) with the aim of finding an improved solution. How-

ever, LS methods have a tendency to become stuck in suboptimal regions or

on plateaus where many solutions are equally fit.

A unique characteristic of TS is embodied in its exploitation of a memory,

which records information about solutions and guides the moves from one

solution to another. Therefore, the objective of TS is to prevent an embedded

local search procedure from returning to recently visited areas (i.e. cycling)

and escapes from local optima by using a Tabu List (TL) which incorporates

attributes of explored solutions and therefore are forbidden to search in the

future.

Two important components of TS are intensification strategies and diversifica-

tion strategies [124]. Intensification strategies are based on modifying choice

rules to encourage moves to the solutions previously found good in order to
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search the attractive regions more thoroughly. Diversification strategies, on

the other hand, encourage the search process to examine unvisited regions and

to generate solutions that differ in various, significant ways from those seen

before. Figure 2.5 present the procedure of a typical TS algorithm.

Figure 2.5: Flowchart of the Tabu Search procedure (adopted from [3])

There are several recent works which have applied TS in the context of feature

selection. Huerta et al. [56] proposed a two stage gene selection approach for

microarray datasets. At the first stage, several statistical filter methods are

combined to select most informative genes and then, these genes are fed to the

second stage.

In the second stage, a hybrid algorithm composed of Tabu Search, Genetic

Algorithm and SVM is used to find the best feature subset. Wang et al. [122]

developed a hybrid wrapper feature selection algorithm for gene expression

data which incorporates imperialist competition algorithm to perform global



2.3. Evolutionary computation algorithms for feature selection 29

search, Tabu Search to conduct fine-tuned search, and Support Vector Machine

as the classifier. Cui et al. [29] suggested an optimisation technique based on

Tabu search and Compactness-Separation Coefficient(CS Coefficient) to per-

form dimensionality reduction and calculate optimal feature reduction number

for image data. To verify the accuracy of classification,SVM and Relevance

Vector Machine (RVM) classifiers were used.

Various types of tabu lists for feature selection

The memory structures also know as Tabu List (TL) used in TS can roughly be

divided into three categories [48]: short-term, intermediate-term, long-term.

Short-term and intermediate-term TS have been applied in different applica-

tions of feature selection [56, 124, 29]. Nevertheless, one drawback of using

short-term and intermediate-term memory TL is to determine the number of

maintained recent moves also known as the length of TL.

The length of the TL must be delicately tuned. However, existing theoretical

research to determine the length of the TL is still insufficient in practice [38].

Even if the length of the TL is properly tuned, a TL with a finite size still

cannot guarantee that the search procedure will not be trapped into local

optima.

In fact, short-term and intermediate-term structures tend to be too local and

spend most, if not all, of their time in a restricted portion of the search space.

The negative consequence of this fact is that, although good solutions may be

obtained, one may fail to explore the most interesting parts of the search space

and thus end up with solutions that are still quite far from optimal solutions.

Therefore, a long-term memory TS can relieve the problems caused by the

short-term and intermediate-term memory.

The diversification of TS is usually based on some form of long-term memory
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TL [46], such as a frequency memory, in which one records the entire solu-

tions or moves generated during the search process. Long-term memory TSs

are computationally expensive. It is mainly because in Long-term TS, unlike

short-term and intermediate term in which TL is reset periodically, TL length

is set on infinite and consequently becomes huge during the search process.

Therefore, checking whether a move is in the TL is a time consuming task.

To the best of our knowledge, application of long-term TS in the context of

feature selection is limited.

Wang et al. [124] developed a hybrid feature selection approach using a long-

term memory TS and probabilistic neural networks. In their algorithm, the

TL length is set to infinite and the best solution in each iteration is added

to TL. The results on various datasets show the superiority of their algorithm

compared to previous works. However, their computation results show that

the running time of the algorithm for small size datasets is expensive which

makes the algorithm infeasible for high dimensional data. To cope with the

complexity problem of long-term structures, one approach could be saving the

solutions in the TL using an effective encoding scheme which accelerates the

storing and restoring process. However, the proposed method by Wang et al.

[124] lacks of any encoding scheme and the solutions are stored in their original

binary representation.

2.4 Hybrid feature selection methods

In a hybrid method, two or more feature selection algorithms are sequentially

combined which are usually of different conceptual origin [17]. Although in

theory, combining two feature selection algorithms from the same type (e.g.

filter/filter) is practical, the proposed approaches in the literature have mainly



2.4. Hybrid feature selection methods 31

focused on combination of filter methods with wrapper ones. Dowlatshahi et

al. [36] proposed a three-stage filter/wrapper feature selection algorithm for

microarray data.

In the first stage, multiple filter algorithms are used in order to find high

ranked features according to their relevance. In the second stage, the features

are ranked again and the ranking is used to weight the probability of selecting

each feature. In the third stage, Competitive Swarm Optimization algorithm

which uses the performance of K nearest neighbours (KNN) classifier as the

fitness function is applied to find optimal subset from the weighted features.

Lu et al. [78] developed a feature selection algorithm hybridisation of mu-

tual information maximisation as the filter stage and an adaptive GA as the

wrapper algorithm which uses extreme learning machine classifier as the fitness

function. Hancer [53] suggested a hybrid differential evolution approach which

combines filter and wrapper approaches through an improved information the-

oretic and local search-KNN mechanism in a fuzzy framework in order to deal

with both continuous and discrete data. Mafarja and Mirjalili [81] proposed

a hybrid algorithm in which two incremental hill-climbing techniques as filter

methods are hybridised with the Binary Ant Lion optimiser combined with

KNN classifier as the wrapper method. Adair et al. [1] developed a hybrid

filter/wrapper based on Mutual Information and Iterated Local Search called

MRMR-ILS which uses KNN and SVM classifiers as fitness function to eval-

uate the performance of the proposed algorithm over three Brain Computer

Interface datasets.

Filter/wrapper approaches accelerate the feature selection process and ben-

efit from the advantages of both filter and wrapper methods [57]. However,

wrapper-based algorithms suffer from lack of generalisation power and the

selected subset is biased toward the classifier used (See section 2.6). The lim-



2.5. Methods for combining subsets of features 32

itation of wrapper approaches is that choice of feature set is dependent on

the performance of the classifier. Using the wrapper approach, the selected

feature subset may not be suitable when changing the classifier embedded in

the wrapper approach, and therefore, the feature selection process will need to

be repeated as it is in integral stage of the wrapper approach. The feature se-

lection approaches should not only concentrate on classification performance,

but also on finding stable and robust subsets [17].

2.5 Methods for combining subsets of features

This section provides an overview of the existing methods in the literature

which combine several feature subsets into a single subset.

2.5.1 Aggregation methods for combining subsets of fea-

tures

Aggregation methods are one type of ensemble methods for feature selection

that are able to combine the output subsets of one or multiple feature selection

algorithms [15]. Typical methods to combine subsets of features are Union and

Intersection [15]. Intersection selects the features which appear in all subsets,

whereas Union combines the unique features in a set of subsets. Both methods

have been applied in the context of feature selection.

Viegas et al. [121] proposed a Genetic Programming approach for feature se-

lection of high dimensional data in which several metrics are independently

employed to measure the quality of subsets and at the end, Intersection and

Union methods combine the subset of features obtained using each of those

metrics as fitness function. Hsu et al. [55] developed a hybrid feature selection

in which a filter algorithm is independently combined with an EC-based wrap-
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per. In this approach, several filter algorithms are independently employed

in the hybrid framework and at the end, Intersection is used to combine out-

puts. Tsai and Hsiao [117] combined multiple feature selection methods for

stock prediction using Union, Intersection, and multi-intersection approaches.

In this approach, three well-known feature selection methods including Princi-

pal Component Analysis (PCA), GA and Classification And Regression Trees

(CART) are executed independently and the outputs are combined.

Although Intersection might seem a logical approach (if a feature appears in

all subsets, it must be highly relevant), it can lead to very restrictive sets

of features (an empty set in the worst case) which may result in removing

most informative features. On the other hand, Union selects a subset with a

large number of features. This approach produces better results than Inter-

section [5] however; the selected subset may still contain noisy and redundant

features. Another important issue associated with both the Intersection and

Union methods is that they do not consider classification performance of the

features as a subset member [15]. The simplest approach to this would be

to randomly choose a subset as the baseline and then add to the baseline

the features which would improve classification performance [16]. However,

this approach requires high computational cost for large data. Moreover, the

subset selected by this approach is biased to the classifier used and lacks of

generalisation over other classifiers.

2.5.2 Frequency-based methods for combining subset of

features

In a set of feature subsets, the frequency of a feature indicates total number of

occurrence of the feature in the subsets [108]. The frequency of a feature across
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subsets can be an indicator of the relevance of a feature, such that features

with higher frequency are considered to be more relevant than others given

that they have frequently appeared in the subsets. In a set of subsets obtained

from the outputs of an EC in different runs, it can be inferred that the features

with higher frequency have been good quality features and that is why the EC

algorithm has consistently selected them.

Few works in the literature have applied frequency-based approach to combine

feature subsets. Bonilla-Huerta et al. [18] developed a two stage feature selec-

tion algorithm for microarray data in which statistical methods are combined

a hybrid EC-based composed of GA and TS. At the end, a frequency analysis

is applied on final subsets in different runs to generate a subset with most

frequent features. Yousefpour et al. [130] proposed a frequency-based inte-

gration approach for sentiment analysis problem which integrates the subsets

obtained through a hybrid algorithm composed of a filter and an EC-based

wrapper in several runs. Pan [94] proposed a frequency-based approach for

feature selection in which several ranking algorithms are employed to initially

rank the feature and based on the rankings, a frequency list is created. The

frequency list is then used to select most frequent features as the final subset.

However, the main problem with frequency-based approaches is that these

approaches do not consider the classification performance of the features in

conjunction with other features in a subset. Hence, a subset of features that

consists of highly frequent features might not result in good classification per-

formance after all.
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2.6 Generalisation power analysis for feature

selection

Generalisation power enables the selected subset to be trainable over wide

range of classifiers [91] without having to repeat the feature selection process

to find the best subset for each classifier. Despite the importance of this topic,

to the best of our knowledge, only one paper has investigated the application

of generalisation power in the context of feature selection. Naghibi et al. [91]

proposed an approach to analyse the generalisation power of the subsets in

which multiple classifiers are used to obtain the classification performance of

the subsets and optimal subset of one classifier is used to train other classifiers.

However, this approach only examines and cannot measure the generalisation

power of subsets. There is a need for methods which can measure the gener-

alisation power of subsets over multiple classifiers. Good generalisation power

will facilitate the selection of an optimal or near optimal subset which can

achieve optimal or near optimal accuracy when used to train any classifier.

2.7 Mutual information for evaluating feature

relevancy

The features of a dataset can be considered to fall into one of three different

categories: strongly relevant features, weakly relevant features and irrelevant

features [131]. While the strongly relevant features must be included in the

optimal subset, the weakly relevant features are not always necessary but may

become necessary for an optimal subset at certain conditions. To determine the

relevance properties of the feature space, the Mutual Information (MI) concept

was first introduced in [19]. In probability theory and information theory [107],
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the mutual information of two random variables is a measure of the mutual

dependence between the two variables. More specifically, it quantifies the

amount of information obtained about one random variable through observing

the other random variable. Given two random variables X and Y , their mutual

information I(X;Y ) is defined in terms of their probability density functions

p(x), p(y) and p(x,y) for x ∈ X and y ∈ Y :

I(X;Y ) =

∫ ∫

p(x, y)log(p(x, y))

p(x)p(y)
dxdy (2.1)

I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y)log(p(x, y))

p(x)p(y)
(2.2)

where 2.1 and 2.2 are for continuous and discrete data, respectively. In the

case of discrete x and y, it is easy to calculate I(x, y). However, when at

least one of the variables is continuous, it becomes difficult to compute their

mutual information. To overcome this problem, a data discretisation method

needs to be incorporated in the process. A density estimation method such as

Parzen window [97] (e.g. kernel density estimation) is one of the commonly

used alternatives to estimate mutual information. Parzen window is a non-

parametric way for estimating the probability density function of a random

variable.

2.7.1 Mutual information estimation

Margolin et al. [83] proposed an mutual information estimator using Gaus-

sian Parzen window and copula-transformation method which is employed for

mutual information estimation in this thesis. Parzen method requires two im-

portant definitions: window (kernel function) and window width (bandwidth).
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Let R be a hypercube centred at z where the length of the edge of the hy-

percube is denoted by h, called bandwidth. Hence, the volume V is defined

as V = h2 for a 2-dimensional square, and V = h3 for a 3-dimensional cube

and so on for n-dimensional space. The kernel function characterises the local

probability density function around each observation. There is a variety of

kernel functions but for the sake of speed, a computationally efficient Gaus-

sian kernel function [11] is used. Given a set of two-dimensional samples,

~zi ≡
{

xi, yi
}

, i = 1, ..., n. Let G(.) denote the kernel function with bandwidth

h so that:

G(
~z − ~zi
h

) =











1 |~z−~zi|
h

≤ 1
2
,

0 otherwise.
(2.3)

Further, k, the total number observations falling within the region R is ex-

pressed as:

k =
n

∑

i=1

G(
~z − ~zi
h

) (2.4)

Then the kernel density approximation of the probability density function of

~z is calculated as follows:

p(~z) =
1

n

n
∑

i=1

1

h2
G(

~z − ~zi
h

) =
k

V n
(2.5)

With p(x) and p(y) being the marginal of p(~z), the MI is:

I(X, Y ) =
1

n

n
∑

i=1

log
p(xi, yi)

p(xi)p(yi)
(2.6)

The MI is re-parameterisation invariant [83] therefore, the copula-transformation

(i.e., rank-order) [60] is employed to transform x and y before MI estimation

task. The range of the transformed variables is between 0 and 1, and their

marginal probability distributions are uniform. This decreases the influence
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of arbitrary transformations involved in data pre-processing and removes the

need to consider position-dependent kernel widths, h, which might be prefer-

able for non-uniformly distributed data [83].

2.7.2 Minimum-Redundancy Maximum-Relevance (mRMR)

Peng et al. [98] proposed information theory based relevance and redundancy

criteria to determine the characteristics of a feature subset. In particular they

defined the relevance of a feature subset S as:

Rel =
1

| S |

∑

xi∈S

I(xi;C) (2.7)

Where | S | denotes the number of features in the subset S and I(xi;C) is mu-

tual information between target class C and the ith variable in feature subset

S. When the features are selected such that the relevance Rel is maximised, it

is possible to have a high dependency (i.e., redundancy) amongst the selected

features. Given two highly dependent features, removing one of them from the

set S would not change the class-discriminative power. Hence, the redundancy

of a feature subset S is defined as:

Red =
1

| S |2

∑

xi,xj∈S

I(xi; xj) (2.8)

Where I(xi; xj) indicates the mutual information between ith and jth feature

in subset S. The purpose of feature selection therefore, is to find a feature

subset S with N features that jointly have the largest dependency on the

target class C and have the minimal redundancy amongst themselves [98]. The

mRMR score of a feature set is obtained by maximising the condition in Eq.

2.7 and minimising the condition in Eq. 2.8. Optimisation of both conditions

simultaneously requires combining them into a single criterion function. The
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simplest combination is the difference of Eq. 2.7 and 2.8 [98]. Consequently,

this leads to a bi-criteria objective which is defined as follows:

mRMR = max(Rel −Red) (2.9)

2.7.3 mRMR for feature selection

Feature selection can be defined as the process of selecting the most relevant

features from an initial feature set [10] which can approximately be solved by

mRMR approach [98].

The capability of mRMR to select most informative features has widely been

reported in many applications. Ju and He [62] developed a predictor called

GlutPred for glutarylation sites prediction using mRMR and the incremental

feature selection algorithm. Tint and Mikami [115] used mRMR to reduce

redundant and irrelevant data for multicollinearity problem within causal fac-

tor analysis and prediction and compared the results with other two meth-

ods namely the maximum relevance (MaxRel) and the minimum redundancy

(MinRed).

Chen et al. [25] proposed a prediction method to identify metabolic pathways

of compounds. In their method, mRMR and incremental feature selection

are employed to extract key features and the effectiveness of their method is

proven in comparison with the random forest, Dagging and a method that

integrates chemical-chemical interactions and chemical-chemical similarities.

Ma et al. [80] presented an accurate method to predict RNA-binding proteins

from amino acid sequences. In this method, they used mRMR combined with

incremental feature selection to reduce the dimension of the features space and

to improve the performance of the random forest classifier.

Fan et al. [40] designed a real-time static voltage stability assessment system
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for large-scale power systems based on mRMR to explore the invisible as-

sociation between operation variables and the voltage stability margin in bus

systems. Liu et al. [76] developed a hybrid algorithm composed of mRMR and

a fast classifier extreme learning machine for diagnosing erythemato-squamous

diseases. In this algorithm, mRMR is employed as a feature selection tool for

dimensionality reduction in order to further improve the diagnostic accuracy

of the extreme learning machine classifier.

Bouzgou and Gueymard [20] proposed a framework for forecasting solar irra-

diance time series dataset. The proposed method is composed of two steps. In

the first step, mRMR is used as the dimensionality reduction method to en-

hance the quality of the original time series dataset for the second step which

is based on extreme learning machine classifier to forecast the outcome of the

solar series representation. However, the application of the mRMR as the fit-

ness function of the EC-based algorithms for feature selection has not been

widely studied in literature and, to the best of our knowledge, is limited to one

paper in which Ludwig et al. [79] developed a GA-based mRMR algorithm

to predict air flow. This is mainly because computing MI between all pairs

of the features in high-dimensional datasets is impractical when the number

of features is very large and the Central Processing Unit (CPU) time required

becomes prohibitive.

2.8 Conclusion

This chapter presents a comprehensive overview of feature selection methods

and EC techniques for feature selection and revealed that the main challenges

with EC feature selection are as follows.

Firstly, EC techniques suffer from the problem of being computationally ex-
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pensive since they usually involve a large number of evaluations and each

evaluation in a wrapper approach usually takes a relatively long time, espe-

cially when the number of instances is large. Secondly, EC techniques mostly

are embedded in a wrapper approach and this causes the selected subset to be

biased toward the utilised classifier.

Therefore, different classifiers will return different final subsets which makes

finding a best subset of features core complex. Finally, EC techniques are

random search techniques and they have random factors in their search process.

Consequently, they select a different final subset every time they are run. This

can pose a problem known as stability issue and requires a further subset

selection process for real-world applications.

The next chapter, Chapter 3, demonstrates the issues and limitations of EC-

based algorithms for feature selection using a simple GA as an EC test case

algorithm and a small dataset.



Chapter 3

Problem Demonstration of

Evolutionary

Computation-based Algorithms

for Feature Selection

3.1 Introduction

There are two important issues associated with EC-based feature selection

algorithms [128]. Firstly, these algorithms require a high computation time

since they usually involve a large number of evaluations [128, 28]. The second

issue is that upon each run (or execution), EC-based algorithms return different

feature subsets as the best solution, and finding the best solution out of all

solutions returned can be a challenge. This is known as the stability issue [128,

28]. In addition to those two main issues, there is a limitation associated with

evaluation metrics of EC algorithm for feature selection. EC algorithms are

mostly embedded in a wrapper framework in which classification performance

42
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of a specific classifier is employed to evaluate feature subsets and it causes the

selected subset to be biased toward the specific classifier used and may results

in poor performance over other classifiers [24]. This chapter demonstrates

the issues and limitations when a simple EC algorithm is applied for feature

selection in a sample dataset.

3.2 Methodology

This section, describes the methodology adopted to obtain computation results

for demonstrating the issues and limitations when a simple EC algorithm is

applied for feature selection in a sample dataset.

3.2.1 GA as a test case EC algorithm

In order to demonstrate the issues of EC algorithms for feature selection, the

GA algorithm [54] is chosen as a test case EC algorithm. The reason for

choosing GAs as opposed to other EC algorithms, is because GAs have been

widely applied to feature selection problems [128]. The reason for choosing

GAs as opposed to other EC algorithms, is because GAs have been widely

applied to feature selection problems [128]. However, experiments in this

chapter can be easily performed for other EC algorithms. The adopted

GA is a standard version of GA (see subsection 2.3.2) with a fixed length binary

representation, typical two-point crossover, and Bit Flip mutation operators.

For subset evaluations, the GA is embedded in a wrapper feature selection

framework for which the fitness function is the classification performance of a

classifier (i.e. SVM).
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3.2.2 Classifiers and validation approaches

For this experiment, three conventional machine learning classifiers are used,

namely SVM, KNN, and Näıve Bayes (NB). The hyper parameters of the

classifiers are experimentally tuned as follows: the number of K for the KNN

classifier is set to 5, the kernel function for SVM classifier is set to linear

function and data distribution for NB classifier is set to normal distribution.

A 10-fold cross-validation is adopted for evaluating the performance of the

algorithm in which the data samples are divided into roughly 10 equal folds

and in each of 10 validation processes, one fold is taken as testing set and

the remaining nine folds are used to train the learning algorithm. At the end

of the k-fold validation process, a mean accuracy value is obtained for each

validation set of each fold, and hence the ten values are averaged to provide

overall classification performance.

3.2.3 The sample dataset

Heart disease dataset [2], a relatively small dataset, is chosen as sample dataset

for this experiment which is publicly available on University California Irvine

(UCI) machine learning repository [8]. Properties of this dataset are as follows:

the dataset contains 44 features and 267 samples where the samples are divided

into 2 classes.

3.2.4 Experimental setup

To analyse the problems of EC algorithms for feature selection task, a set of

subsets of features obtained from multiple runs of an EC algorithm is needed.

Therefore, the GA algorithm (see subsection 3.2.1) is independently run 20

times and at the end of each run the best subset is saved in a pool for analy-
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sis. The parameters of the GA are experimentally set to the following values:

population size is set to 50 individuals, mutation rate to 0.02, crossover rate to

0.8, and each run is repeated for 50 iterations to evolve the initial population.

3.2.5 Stability measure

The Average Tanimoto Index (ATI) approach proposed by Kalousis et al.

[64] is used to measure the stability value of set of subsets in this chapter.

Given S = {S1;S2; ...;Sω} to be a system of ω feature subsets obtained from

ω independent runs of a feature selection algorithm, similarity measure SS

between two subsets Si and Sj is calculated using:

SS(Si, Sj) =
| Si ∩ Sj |

| Si ∪ Sj |
(3.1)

where | Si ∩ Sj | presents the number of common features in both subsets and

| Si ∪ Sj | stands for total number of all features in both subsets. To calculate

ATI value for system S, the similarity index (Equation 3.1) is computed over

all subset pairs and then is averaged using the following equation:

ATI(S) =
2

ω(ω − 1)

ω−1
∑

i=1

ω
∑

j=i+1

SS(Si, Sj) (3.2)

The ATI value is in the range of [0,1] where 0 means high instability and 1

indicates a stable algorithm. The closer the ATI value to 1, the more stable

the feature selection algorithm. Clearly, for deterministic algorithm, including

exhaustive search methods and greedy search algorithms, the ATI value is

equal to 1.
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3.2.6 Classifier-bias analysis approach

To analyse the computation result in terms of classifier-bias of the selected

subset, the approach proposed by Naghibi et al. [91] is used in which the

optimum subset (the subset which achieves the highest possible accuracy for

the classifier) of a classifier is used to train the other classifiers and the results

are compared to the optimal classifiers’ accuracies. If the obtained accuracies

over other classifiers using the subset are not close enough to the classifiers’

optimal accuracy, it can be concluded that the subset is biased toward a specific

classifier and performs poorly over other classifiers.

3.3 Computation results and discussion

The GA is independently run 20 times over the Heart dataset [2], with initial

conditions set in 3.2.4, using each of classifier separately as the fitness

function and the results are presented in Table 3.1. In Table 3.1, the first

column shows a combination of GA with a classifier as the fitness function

denoted by GA + the name of the classifier, eg., GA+SVM. The other columns

present computed values where ATI shows measured stability, T total and

T Avg (in seconds) stand for total computation time for 20 runs and the

average computation time over 20 runs respectively, Acc Avg is the average

accuracy of 20 final subsets obtained during 20 runs, and Acc max and Acc min

presents the maximum and minimum accuracies of the subsets.

3.3.1 Stability analysis

The EC-based algorithms are stochastic in nature and have random factors

in their searching process and this makes the algorithms unstable in terms of

returned solutions in different runs. To measure the stability of GA (as a test
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case EC algorithm), the stability value for a set of subsets composed of 20 final

subsets obtained from different runs of the GA is calculate using Equation 3.2.

The result are shown in Table 3.1. Taking a look at the ATI values calculated

for each of the algorithms, this is clear that the GA has performed highly

unstably for this small dataset with ATI value of 0.3. The instability of the

GA for high-dimensional data can become worse as the number of features

increases, and the probability of selecting totally different subsets of features

in different runs will increase – which as a result will lead to poor stability

performance.

Table 3.1: EC-based algorithms stability and high computation time problem
demonstration results

Algorithm ATI T total T Avg Acc Avg Acc max Acc min
(%) (%) (%)

GA+SVM 0.35 1858.5 92.92 79.0 81.7 76.4
GA+NB 0.34 1720.3 86.02 66.8 70.4 62.2
GA+KNN 0.32 1199.7 59.98 74.3 80.2 70.8

3.3.2 Computation time analysis

For a wrapper approach feature selection algorithm, the required computation

time highly depends on the classifier used as fitness function because each clas-

sifier uses different strategy to classify the data. For this experiment, three

classifiers are used to: firstly demonstrate how different classifiers affect the

computation time required by EC algorithms for feature selection; and sec-

ondly to analyse the computation time required by the GA as an EC test case

algorithm embedded in a wrapper framework.

As can be seen in Table 3.1, amongst these three classifiers, the SVM classifier

has required the highest computation time, and KNN has required the lowest.

KNN is the simplest classifier amongst those three as it classifies a sample by

considering the majority vote of its neighbours’ classes, and SVM is the most



3.3. Computation results and discussion 48

sophisticated one as uses a mathematical model to map the data into a higher

dimension and uses hyper-planes to separate different classes. Therefore, these

results imply that more sophisticated classifiers may lead to a higher compu-

tation time when used as the fitness function of a EC-based feature selection

wrapper algorithm.

The average computation time over 20 runs has also been reported in Table

3.1 which shows computation time per run. As can be seen, KNN classifier

has required the least computation time of 60 seconds however, this computa-

tion time for such a small dataset implies that an EC-based wrapper feature

selection algorithm may become prohibitive for high-dimensional data because

the computation time exponentially increases as the size of the data becomes

higher.

3.3.3 Classifier-bias analysis

EC-based algorithms embedded into a wrapper framework provide a final se-

lected subset which may be classifier-biased and consequently the selected sub-

set is only trainable on a specific classifier employed for subset evaluation dur-

ing the feature selection process. If the selected subset is used to train the

other classifiers, it may lead to a poor performance since the features were

selected based on the performance of a different classifier (which was used to

initially build the wrapper framework).

To analyse classifier-bias problem, the approach proposed by Naghibi et al. [91]

explained in subsection 3.2.6 is used. For this analysis, the classifiers’ optimal

accuracies over Heart dataset [2] are needed. Therefore the highest obtained

accuracy for each classifier is considered as optimal accuracy for the classifier

(Column Acc max in Table 3.1). For each classifier, its optimal accuracy is

used to train the other two classifiers and the results are shown in Table 3.2.
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Table 3.2: Results for demonstrating EC-based algorithm Classifier-bias issue
Classifier SVM (%) NB (%) KNN (%)

Subset
SVM Opt 81.7 63.9 (9.3) 75 (6.5)
NB Opt 76.3 (6.6) 70.4 73.8 (8.0)
KNN Opt 75.7 (7.3) 65.9 (6.4) 80.2

In Table 3.2, each cell value presents the classification accuracy obtained when

the optimal subset of one classifier is used to train the other classifiers, the

values in bold show the optimal accuracy of the classifiers, and the values

parenthesis present the error rate percentage compared to the classifier optimal

accuracy. For example, value 63.9 (9.3%) indicates that when the optimal

subset of the SVM classifier was used to train the NB classifier, a classification

accuracy of 63.9% has been obtained and the percentage error rate of 9.3%

has been obtained compared to NB optimal accuracy (70.4%).

The computation results show that the percentage error rates for such small

dataset have been relatively high and consequently the subsets are biased to-

ward the specific classifier and therefore, if the algorithm is used for selecting

the features of a high-dimensional data, the error rate may increase even fur-

ther.

3.4 Conclusion

EC algorithms are powerful search algorithms for combinatorial optimisation

problems because of they benefit from a global search strategy and a heuris-

tics search guidelines. However, the application of these algorithms for fea-

ture selection has been limited mainly because of issues associated with their

stochastic nature.

Firstly, EC algorithms are random search algorithms meaning that they have

random factors involved during their search procedure and this leads them
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to select different subsets of features whenever they are run. This problem

which is known as stability issue, and it is a significant problem particularly

for applications that a specific set of features is sought after to implement

machine learning models. Furthermore, having different final subsets raises the

problem of finding the optimal subset from the various subsets. Secondly, EC-

based algorithms require a high computation time for feature selection because

they are iterative searching methods, meaning that they iteratively discover

the searching space to evolve an initial population. Finally, embedding EC-

based algorithms into a wrapper framework may lead to the selection of final

subsets which are biased toward the classifier used for subset evaluation. A

classifier-biased subset may only perform well on one specific classifier in terms

of classification performance but shows a poor performance if used to train the

other classifiers.

To clearly demonstrate the issues associated with the application of EC al-

gorithm for feature selection to readers, this chapter employed a simple GA

algorithm as the test case EC algorithm to solve Heart dataset [2], which is a

relatively a small sample dataset and performed series of analyses to observe

the issues. The analyses were performed in term of stability issue, computation

time, and classifier-bias.

The computation results confirmed that the employed GA required high com-

putation time, performed relatively unstable, and has selected classifier-biased

subsets for this small subsets. This suggests that the algorithm may be im-

practical in terms of computation time or may perform weakly in terms of

stability and classifier-bias for datasets with larger size and particularly high-

dimensional-data. The experiments in this chapter can be performed for other

EC algorithms and similar results can expected as stability and computation

time are common issues amongst EC algorithms [128] and embedding EC al-
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gorithms into a wrapper framework will result in the classifier-bias issue [91].

The following chapter, Chapter 4 proposes a solution to deal with the high

computation time of EC algorithms for feature selection as well as the classifier-

bias limitation of existing filter/wrapper methods. A novel EC-based feature

selection algorithm is developed and embedded into a new two-stage hybrid

framework called filter/filter approach.



Chapter 4

TAGA: Tabu Asexual Genetic

Algorithm Embedded in a

Filter/Filter Feature Selection

Approach for High-dimensional

Data

4.1 Introduction

Feature selection is the process of selecting an optimal subset of features re-

quired for building, maintaining or improving the performance of machine

learning models. Recently, hybrid filter/wrapper feature selection methods

have shown promising results for high-dimensional data. However, the selected

feature subset by a filter/wrapper method is only optimal for the particular

classifier used (classifier-biased), and may show poor generalisation perfor-

mance over other classifiers. A subset which is not classifier-biased is trainable

52
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over different classifiers without having to repeat the feature selection process.

To address the classifier-bias problem of typical filter/wrapper methods, this

chapter proposes a novel EC-based filter feature selection algorithm

which is sequentially hybridised with Fisher score filter algorithm (the result

of the Fisher score algorithm in the first stage is fed to the EC-based algo-

rithm in the second stage for further processing) in a new hybrid framework

called filter/filter (see Figure 4.1). The proposed algorithm is based on a long-

term memory Tabu Search combined with a mutation-based Genetic Algorithm

(TAGA). TAGA benefits from a new integer-coded solution representation, a

novel mutation operator, and a new Tabu List encoding scheme and uses a

maximum relevance minimum redundancy information theory-based criterion

as fitness function. Experiments were carried out on various high-dimensional

datasets including image data, text data, and biological data. The goodness

of the selected subsets were evaluated using different classifiers to develop a

goal-independent evaluation. The experimental results demonstrate that the

proposed algorithm outperforms other feature selection algorithms in most

datasets.

Figure 4.1: Diagram of TAGA embedded into filter/filter framework
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4.2 TAGA components

This section presents the proposed Tabu Asexual Genetic Algorithm (TAGA)

and its components.

4.2.1 Solution representation

As explained in subsection 2.3.2, mRMR is a highly size-dependent value and

must be compared for the subset with the same number of features. In this

chapter, an integer-coded representation is proposed which enables TAGA to

produce and compare subsets with the same size as follows. Given the dataset

D with N features and subset cardinality P (1 ≤ P < N), each feature is

assigned a unique ID from 1 to N . To produce solutions, random vectors

composed of all N IDs are generated and P first features of each vector are

selected as the selected subset. Figure 4.2 presents one possible solution for

a dataset composed of 10 features to select 4 features, where the numbers in

grey correspond to IDs of selected features. Then, the selected subset is input

into the fitness function.

Figure 4.2: Solution representation used in TAGA

4.2.2 Proposed heuristic mutation operator

Mutation alters one or more gene values in a chromosome from its initial

state. Mutation operators are used to maintain diversity in the population

and help the population to escape from poor local optima. Hence, a GA can

obtain better solutions using a mutation operator. A mutation method for

combinatorial problems is the swap mutation in which two randomly selected

genes of the solution are swapped [9]. Diversification in the feature selection
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Figure 4.3: Representation of the proposed heuristic mutation operator used in TAGA

means to explore the regions of subsets which have not been discovered yet.

Therefore, a swap mutation for the proposed solution representation is designed

in such way that a feature from unselected features of the solution is swapped

with one from selected features. Figure 4.3 indicates this procedure for the

solution example in Figure 4.2. Two approaches are considered for swapping

features in the candidate solution. In the first approach, one feature from the

selected part and another feature from the unselected part of the solution are

randomly chosen and the two features are swapped. The second approach is

to choose the feature with the lowest mutual information value between the

feature and the target from the selected part of the solution, and swap it with

the feature with the highest mutual information value between the feature and

target from the unselected part. This help to the mutual information between

the target and features to be utilised for swapping. This mutation operator

has been explained in Algorithm 1.

It should be mentioned that experiments were carried out with a two-point

crossover operator integrated within TAGA in which both points were ran-

domly selected from selected part of candidate solutions. However, due to

poor performance of the crossover, utilisation of a crossover operator was ig-

nored and only mutation was used.
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Algorithm 1: Pseudocode of the proposed heuristic mutation operator

1 begin

2 With equal probability, randomly choose one of the swap criteria
(Random or mutual information-based)

3 if mutual information-based criterion is chosen then

4 Find the feature with lowest mutual information with the target from
selected features

5 Find the feature with highest mutual information with the target
from unselected features

6 Swap the features

7 end

8 if random criterion is chosen then

9 Randomly select a feature from selected features
10 Randomly select a feature from unselected features
11 Swap the features

12 end

13 end

4.2.3 Tabu list design

The TL represents the memory structure by which TS prevents the search pro-

cedure from possible cycling and trapping into local optima. The TL consists of

a list of previous solutions that must be avoided or the list of forbidden moves.

There are three main considerations which should be taken into account while

designing a TL, and these are: the length, the data storing strategy, and the

encoding scheme.

List length

The length of TL specifies the maximum number of moves that can be stored

in the TL, which is basically determined by memory type of the TS. A long-

term memory TS is proposed, and thus the length of the TL is set to indefinite

and therefore, all the moves are stored.
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Data structure strategy

In TS, new solutions are generated by applying a move mechanism on the

current solutions. A move can be defined as replacing the nodes of the current

solution with other nodes in its neighbour solutions (e.g. the solutions which

are the similar to the original solution with minor changes) or swapping the

nodes of the current solution with each other. In order to prevent the algorithm

from returning to previously visited solutions, these moves need to be recorded

in the TL in an efficient way. The most commonly used TL data structure

for combinatorial optimisation problem is to store a partial range of the new

solution [100]. For this reason, when a node or set of adjacent nodes s of

the current solution S are swapped or replaced with another node or set of

nodes, the set s is stored in the TL. Unlike combinatorial problems, such as

scheduling and vehicle routing, for which the order of the variables (nodes)

in the sequence significantly influences the fitness of the solution, the order

of features is not important for feature selection problems and thus different

combinations of the same feature IDs are still the same subsets and achieve

the same fitness value when passed to the fitness function. Therefore, storing

a partial range of solutions in the TL is not a very effective approach for the

proposed solution representation. For this reason, complete visited solutions,

in this case the selected feature IDs (grey part of Figure 4.2), are stored.

The encoding scheme

A new long term-memory TS with a new encoding scheme is proposed, to

overcome the existing limitations of the long-term memory TSs. The proposed

TL encoding scheme is implemented as follows. The selected feature IDs are

separated from the original solution and are sorted in ascending order. In

feature selection problems, the order of the features is not important and
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therefore, sorting feature IDs in the subsets facilitates identifying tabus when

the TL becomes very large. Next, the ordered subset is transformed into string

format in such a way that the feature IDs are placed one after another. For

instance, the encoded tabu solution for the example in Figure 4.2 is ‘25610’

(note that the quotation mark indicates that the solution is represented in

string format).

Transforming subsets into string format is beneficial as it decreases the di-

mension of the TL. Given that the subset cardinality is m and TL length is

l, storing the subsets as the vectors of feature IDs requires m × l checks to

determine whether a subset is tabu. However, the checks will decrease to l

for the proposed string encoding scheme as each encoded tabu solution is a

single set of characters. The performance of the proposed TL is analysed in

subsection 4.4.1.

4.2.4 Framework of TAGA for feature selection

Algorithm 3 provides the pseudocode of the proposed two stage filter/filter

approach composed of Fisher score algorithm in the first stage and TAGA

in the second stage. In the first stage of the algorithm (line 1), the Fisher

score feature ranking algorithm is applied to dataset D and Nf elite features

are selected to form the reduced dataset. The main idea of Fisher score is

to construct a subset of features such that in the data space spanned by the

features in the subset, the distances between samples from different classes are

as large as possible, while the distances between samples from the same class

are as small as possible [49]. In particular, when m features are selected, the

original data matrix X ∈ R(d×n) will be represented by Z ∈ R(m×n) Then, the

Fisher score is computed as follows:
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f(Z) =
tr(Sb)

tr(St)
(4.1)

where tr(.) denotes the trace of a matrix; Sb is the between-class scatter matrix;

and St is the within-class scatter matrix, which is defined as:

Sb =
c

∑

k=1

nk(µk − µ)(µk − µ)T (4.2)

St =
n

∑

i=1

(zi − µ)(zi − µ)T (4.3)

where µk and nk are the mean and sample number of the kth class, respectively,

in the reduced data space and µ =∑c
k=1

nkµk is the overall mean vector of the

reduced data. The number of candidate subsets is combination of
(

m

d

)

so

the optimal feature subset selection problem can be solved by combination

optimisation, but this is highly challenging and computationally prohibitive

for high dimensional data [49]. To reduce the difficulty, a heuristic strategy

is often used to calculate a score for each feature independently using some

criterion [49]. Specifically, let µj
k and σj

k be the mean and deviation of samples

from the kth class, corresponding to the jth feature. Let µj and σj denote the

mean and deviation of the entire samples in the dataset corresponding to the

jth feature. Then, the Fisher score of the jth feature is calculated as follows:

f(j) =
∑c

k=1
nk(µ

j

k
−µj)2

∑c
k=1

nk(σ
j)2

(4.4)

where (σj)2 =∑c
k=1

nk(σ
j

k
)2. After obtaining the the Fisher score for all features,

m first features with highest scores are selected to construct the final reduced

feature subset. This procedure is shown in Algorithm 2.

Fisher score is one of the most widely used supervised feature selection methods
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Algorithm 2: Pseudocode of Fisher score algorithm

1 begin
2 for all features do
3 Calculate mean and deviation of the samples from each class
4 Calculate mean and deviation of all samples
5 Calculate Fisher score using eq. 4.4

6 end
7 Arrange features in descending order based on their Fisher score
8 Select m first features

9 end

[49] and its performance and robustness to data containing noisy features for

different applications have widely been discussed in the literature [82, 93, 127].

However, it selects each feature independently according to their scores under

the Fisher criterion [49] regardless of interaction between the features. This

leads to select a suboptimal subset of features which may perform weakly for

some datasets. Therefore, for some specific datasets, the Fisher score algorithm

can be replaced with other ranking algorithms for a better performance.

In the second stage, the reduced dataset from the first stage is fed to TAGA

algorithm. Let D be an m×n case-by-dimension dataset where m is the total

number of records and n is the total number of features. Let Nf be the number

of features passed through the first stage to the second stage, C be the range

of the subset cardinalities (size) from 1 to c to be explored, Popsize be the

population size, and µr be the mutation rate. Also, Let MIxy = ∅ be a 1× n

matrix and MIxx = ∅ be an n × n matrix containing mutual information be-

tween the features and the target and pair of features, respectively. As TAGA

is a random search algorithm and explore limited regions of the search space,

it is very possible that some pairs of mutual information between the feature

never are used during the search process. Therefore, the mutual information

matrices are initialised with empty values and wherever needed these values
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are calculated and stored in the matrices. This will help to reduce compu-

tation time specially for high dimensional data feature selection rather than

calculating all mutual information values in advance.

Before feeding the reduced dataset to the second stage, the initial population

is generated (line 2). The initial population, Pop, are in fact random vectors

composed of integer numbers from one to Nf (total number of features in the

reduced dataset). In the second stage (lines 3-5), a range of subset cardinalities

(number of selected features to be explored) from 1 feature to c features is

explored to find the best subset for each cardinality. For this, the selected part

for individuals (the grey part in Figure 4.2) of the population is set to c, the

size of subset cardinality (e.g. the number of features to be selected). Then,

the number of individuals to be mutated is calculated as follows:

Nmut = (µr × Popsize ×Nsel)/2 (4.5)

In the next step, the Nsel first features of each individual are specified to be the

selected features (line 6). Line 7 calculates the fitness of the individuals based

on their selected part using Equation (2.9). In lines 8 and 9, the necessary

updates for the MIxy and MIxx matrices and the TL are performed. Then, the

proposed mutation operator (Algorithm 1) is executed Nmut times to generate

new solutions. The new solutions which are not in the TL are evaluated using

the fitness function and replaced with least-fit individual in population. The

MIxy and MIxx matrices and the TL are also updated whenever necessary

(lines 11-26). This process continues until the stop criterion is reached. At the

end, the best subset for the cardinality is saved for further evaluations through

the classifiers (lines 27-29).

The population that evolved in the search process of the previous cardinality
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is not discarded, but it is preserved for the next cardinality exploration. The

next cardinality contains one more feature than the previous cardinality. Be-

fore the algorithm starts searching for the next subset cardinality, a SFS is

applied on the selected part (see Figure 4.2.1) of each individual in evolved

population to find the next suitable feature (line 30). This procedure helps the

algorithm to obtain high quality solutions for searching the next cardinality

which accelerates the convergence to an optimal solution (possibly the global

one). In search process of the SFS, the features cannot be replaced with higher

quality features once they are selected. However, in the proposed TAGA, none

of the features are guaranteed to remain in the final subset because they might

be replaced with higher quality features during the search process.

4.3 Experimental design

4.3.1 Benchmark methods

Commonly, the goodness of the feature subsets is evaluated through the per-

formance of one specific classifier known as goal-dependent evaluation [91].

The goal-dependant evaluation, however, cannot evaluate if the subsets are

classifier-biased. The aim of this experiment is to develop a goal-independent

evaluation proposed by Naghibi et al. [91], which is to compare the perfor-

mance of the feature selection algorithms over several datasets using multiple

classifiers. Therefore, the goodness of the selected subsets are evaluated using

5 classifiers, namely SVM, KNN, CART, NB, and Linear Discriminant Anal-

ysis (LDA). The performance of the proposed TAGA is compared with the

following greedy search and mMRM-based algorithms:

• Sequential forward selection (SFS): starts from an empty set and se-
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Algorithm 3: Pseudocode of TAGA
input : D labelled dataset, Nf Number of filter stage features, C

Cardinality range, Popsize Population size, µr Mutation rate,
MIxy = ∅ Mutual information Matrix between features and target,
MIxx = ∅ Mutual information matrix between pairs of features

output: The best feature sets for cardinalities
1 Apply filter algorithm Select Nf first features
2 Generate Popsize random vectors including 1 to Nf as initial population
3 for each cardinality in C do

4 Set Nsel to size of cardinality number of features to be selected Set
Nmut=(µr × Popsize ×Nsel) ÷ 2 number of genes to be mutated

5 for each individual in population do

6 Set the first Nsel features as the selected features
7 Calculate the fitness of each individual based on selected features

using mRMR Equation 2.9

8 Update MIxy and MIxx matrices
9 Update Tabu List

10 end

11 while stop criterion do

12 for Nmut do

13 Randomly select a solution from population with a tendency to
fitter individuals

14 Mutate the solution and generate two new solutions Algorithm 1

15 for each new solution do

16 if the new solution is not Tabu listed then

17 Calculate the fitness using mRMR Equation 2.9 Update
MIxy and MIxx matrices

18 Update Tabu List
19 Add the solution into new solution pool

20 else

21 Dispose the solution
22 end

23 end

24 end

25 Replace least-fit individuals in the population with fitter solutions in
new solution pool

26 end

27 Sort individuals in population in descending order based on their fitness
28 Find the best individual
29 Save selected features part of the best individual
30 Apply SFS on population to find the next suitable feature for each

individual
31 end



4.3. Experimental design 64

Table 4.1: Description of the datasets used in the experiments
Dataset Name Colon Cancer GLI 85 NCI9 SMK CAN 187 TOX 171
Abrreviation CLN GLI NCI SMK TOX

Type Biological Biological Biological Biological Biological
# Features 2000 22283 9712 19993 5748
# Instances 62 85 60 187 171
# Classes 2 2 9 2 4

Dataset Name Lymphoma DBWorld e-mails Dexter Orlraws10P Pixraw10P
Abrreviation LYM DBE DEX ORP PIW

Type Biological Text Text Image Image
# Features 4026 4702 20000 10304 10000
# Instances 96 64 300 100 100
# Classes 9 2 2 10 10

Table 4.2: Parameters settings of the EC algorithms
Parameter TAGA CGA

Population size 100 300
µr 0.03 -
µc - 0.8

Stop Criterion 500×P 500×P
Range of cardinalities C [1 50] [1 50]

Tabu List length Infinite -

µc and µr are crossover and mutation rates respectively, and P is the size of the

cardinality.

quentially adds the feature that maximises the objective function when

combined with the other features in the set that have already been se-

lected.

• Backward Elimination (BE): unlike SFS, BE starts from the full set

of features and sequentially removes one feature so that the remaining

features in the set maximise the objective function.

• ReliefF algorithm [69]: is the multi-class version of the original Relief

algorithm [66] which scores the features based on the identification of

feature value differences between nearest neighbour instance pairs. The

feature scores are ranked and the top scoring features are selected.

• Fisher score algorithm: score the features such that the distances be-
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tween samples from different classes become as large as possible, while

the distances between samples from the same class become as small as

possible [49].

• mRMR-mid [98]: is an optimal first-order incremental feature selection

algorithm. It is a two-stage feature selection algorithm combining mRMR

and other more sophisticated feature selection algorithms (e.g. wrap-

pers).

• Quadratic Programming-based Feature Selection (QPFS)[103]: is based

on optimising a quadratic function which is reformulated in a lower-

dimensional space using the Nyström approximation method.

• Spectral relaxation Conditional Mutual Information (SPECCMI) [92]:

is a global MI-based feature selection algorithm in which the quadratic

optimisation problem is formulated based on the conditional mutual in-

formation and information theoretic relevancy and redundancy and it is

solved via spectral relaxation.

• An integer-encoded version of GA customised for feature selection (de-

noted as CGA in the text for comparison purpose) [79]: search for the

best subset of features within a range of subset cardinalities using the

mRMR criterion. Unlike most of the GAs in the context of feature se-

lection which use a binary solution representation, CGA has an integer-

encoded solution representation.

4.3.2 Datasets and parameter settings

Table 4.1 shows the properties of the 10 datasets used in the experiments.

All the datasets are available on the Arizona State University (ASU) feature



4.3. Experimental design 66

selection repository [71], except the Dexter [70] and DBWorld e-mails [41]

datasets which are available on the UCI machine learning repository [8]. The

datasets have been widely used in previous feature selection studies and include

image data, text data, and biological data. One of the most important issues

associated with EC-based feature selection algorithms for large-scale problems

[128] is that these algorithms require a high computational cost since they

usually involve a large number of evaluations. To resolve the computational

cost issue, a popular approach is to employ a filtering stage to select elite

features as the inputs of the EC algorithms [128]. Therefore, the Fisher score

algorithm, which is computationally cost effective, is applied to reduce the

number of input features.

The Fisher score algorithm is set to select top 100 features for all the datasets

except for DBE and DEX for which 500 top features are selected (first step of

TAGA, line 3 of Algorithm 3) and then, new reduced datasets are generated

using those elite features. For a fair comparison, Fisher score was embedded in

the filter/filter approach in the same way as other competing algorithms in this

chapter. To assess how the results of feature selection algorithms will generalise

to an independent dataset, the leave-one-out cross-validation (LOOCV) was

adopted. LOOCV is suitable for assessing model performance in small sam-

ple size datasets when taking into consideration model bias and estimation

variance [67, 89].

The common approach for finding the optimal subset cardinality when mRMR

is used as metric criterion, which is to search for the best subsets over a range of

cardinalities from 1 to a user-defined value [34, 79, 98, 91] is followed herein.

The subset cardinalities ranged from 1 to 50, and this range was obtained

experimentally.

Amongst the algorithms used in the experiments, TAGA and CGA are EC-
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based algorithms and their parameter settings are summarised in Table 4.2.

The other algorithms are deterministic, and besides a predefined cardinality

number (i.e. number of desired features) they do not require any other param-

eter settings. The stop criterion for TAGA and CGA is defined when specific

numbers of function evaluation are counted for which the algorithms perform

an equal number of function evaluations. As the algorithms search for the

best subsets within a range of cardinalities, the stop criteria depends on the

size of cardinality with a constant weight which is experimentally set to 500

(500×P ). Since TAGA and CGA perform stochastic decision, it is possible to

obtain different feature subsets over independent runs with different classifica-

tion performances. Therefore, the algorithms are independently run 30 times

for each dataset. In each run, the range of subset cardinalities is explored

and the best subset found for each subset cardinality is saved and sent to 5

classifiers to gain prediction accuracy. According to these accuracies, the best

subset for each classifier is obtained. At the end, the average of the accuracies

of the best subsets over 30 runs is calculated for each classifier. All the exper-

iments are carried in MATLAB 2017 on a Lenovo Thinkpad P50 laptop with

Intel Core i7, 2.6 Ghz processor and 64 GB of RAM.

4.4 Results and discussion

4.4.1 Results of TAGA components

To examine the contribution of the proposed components, two experiments

are performed. In the first experiment, the effectiveness of the proposed TL

(see Section 4.2.3) is analysed. In the second experiment, the performance

of the proposed heuristic mutation operator (see Section 4.2.2) is examined

to understand its effect on the search process. For this, two variations of
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TAGA are further defined, i.e., TAGANoTabu and TAGANoHeuristic. The former

variation of TAGA omits the TL, but uses the proposed heuristic mutation

operator. The latter variation of TAGA uses the TL but the proposed heuristic

mutation operator is replaced with a simple swap mutation operator.

Effectiveness of the tabu list

What makes the proposed TL different from other TLs in the literature is

its string encoding scheme to store the tabu solutions. Therefore, the effec-

tiveness of the proposed TL must be learnt from two aspects: effectiveness of

the proposed string encoding scheme (see Section 4.2.3) in identifying already

visited solutions, and the effect of the proposed TL on the search process as a

part of TAGA. For this reason, two sub-experiments are designed as follows.

In the first sub-experiment, Algorithm 4 is used to compare the performance

of TL using proposed encoding scheme against when the solutions are simply

stored as the vectors of feature IDs in terms of the number of correctly tabued

solutions, running time, and the occupied memory space (see Table 4.3). In

this algorithm, an initial solution is generated using the proposed solution rep-

resentation and then, a specific number of its neighbour solutions is generated.

Next, each solution is checked to determine whether the solution has been

previously visited. The pseudocode of this procedure is outlined in Algorithm

4.

Suppose a dataset with 100 features, the initial solution is generated in such

a way that 20 feature IDs are randomly selected out of 100 and then 20000

neighbour solutions are generated using different local search methods. Clearly,

the same neighbour solutions are used for both methods. The results are

presented in Table 4.3, where the second column stands for the number of

unique solutions (#UnqSol) generated, the third column shows the number of
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Algorithm 4: Pseudocode of Tabu List performance analysis

1 begin

2 Generate initial solution S0

3 Generate n neighbours of S0

4 Set TL to ∅
5 for all neighbour solutions do

6 Arrange the IDs in ascending order
7 if the solution is not in TL then

8 Add ordered IDs to TL
9 else

10 Ignore the solution
11 end

12 end

13 Count the number of previously visited solutions
14 Calculate the time

15 end

Table 4.3: Results of the Tabu List performance analysis
Method #UnqSol #RepSol Time (s) Space (MB)

Vector of IDs 16048 3952 31.5 2.6
Encoding scheme 16048 3952 3.2 3.0

solutions previously visited (#RepSol), the fourth column indicates running

time in seconds, and the last column is the memory space occupied by TLs in

megabytes. As shown in Table 4.3, the proposed encoding scheme has correctly

identified all tabu solutions, has occupied comparable memory space, and has

performed the job almost 10 times faster.

In the second sub-experiment, the effect of the TL is analysed when it is used

as a component of TAGA. For doing this, both TAGA and its TAGANoTabu

variation are implemented over 10 datasets to obtain the classification accuracy

for five classifiers. Table 4.4 presents the results when the algorithms are run

30 times and the best accuracies found over subset cardinality range from 1 to

50 are averaged for each classifier. The Wilcoxon post-hoc pairwise analysis is

then applied on the average accuracies (last column of Table 4.4) to find out

whether the results are significantly different. Table 4.5 presents the adjusted
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ρ-values for the Wilcoxon test. As can be seen in Table 4.5, TAGA shows

superiority over TAGANoTabu algorithm. As the only difference between TAGA

and TAGANoTabu is the TL element, it can be concluded that the TL has

effectively guided the search process into undiscovered areas which has led to

higher performance.
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Effectiveness of heuristic mutation

In order to evaluate the performance of the proposed heuristic mutation, it

needs to be compared with other mutation operators. The proposed mutation

operator uses an integer-encoded representation. However, most of the existing

mutation operators in the literature are following a binary representation which

cannot be compared with the proposed mutation in this chapter. Therefore,

the proposed heuristic mutation operator is compared with a simple swap

mutation operator in which two feature IDs are selected and swapped from

any part of the solution without taking into consideration if the chosen feature

IDs are part of the final subset.

A similar set of experiments are performed for TAGANoHeuristic algorithm,

and as in the previous experiment, the results are compared with TAGA.

The accuracy results of five classifiers and the Wilcoxon post-hoc pairwise

analysis are available in Tables 4.4 and 4.5 respectively. Observing the tables,

it can be seen that TAGA has outperformed TAGANoHeuristic. In the proposed

solution representation, the final subset is composed of few features of the

entire features. Consequently, when a simple mutation operator is applied,

it is highly possible for the two swapped features to have been chosen from

unselected part of the solution representation in Figure 4.2. Therefore the

outcome will be a repetitive final subset which is already in the TL.

Figure 4.4: Analysing the effectiveness of the proposed components. Results
of the Wilcoxon tests for each classifier. The green boxes indicate a significant
difference.
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Table 4.5: Mutation operators performance analysis adjusted ρ-value for
Wilcoxon post-hoc pairwise comparison.

Algorithms TAGA TAGANoTabu TAGANoHeuristic

TAGA - 0.005 0.005
TAGANoTabu - - 0.005

Similarly, the same test was performed for each classifier and Figure 4.4 depicts

the results. The existence of significant differences has been highlighted using

the green box. In Fig. 4.4, when TAGA is compared with TAGANoHeuristic,

TAGA has outperformed TAGANoHeuristic for all classifiers. It is because the

proposed mutation operator has properly designed for the feature selection

problem and it is able to correctly drive the search process toward good quality

solutions. Comparing TAGA with TAGANoTabu, TAGA performance has been

significantly different from TAGANoTabu for most of classifiers which indicates

that the designed TL has successfully avoided TAGA to explore already visited

regions. Considering Table 4.5 and Figure 4.4, the results demonstrate the

effectiveness of the proposed TAGA components.

4.4.2 Comparison of TAGA with greedy search algo-

rithms

Table 4.6 shows the results obtained for 10 datasets and 5 classifiers using

TAGA compared to four greedy search algorithms, namely: SFS, BE, Fisher

score, and ReliefF to find the best subset over subset cardinality range from 1 to

50 features. To detect a statistically meaningful significant difference amongst

the algorithms, the Friedman test is applied on the average accuracies (last

column of Table 4.6).

Next, Wilcoxon post-hoc Pairwise Algorithm Comparison Analysis is carried

out to determine which pairs of algorithms had significantly different perfor-
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Table 4.6: Comparison of TAGA with greedy search algorithms over reduced
datasets
Classifier SVM (%) LDA (%) NB (%) KNN (%) CART (%) Average (%)

CLN Dataset
TAGA 97.4±1.3 (13.9±1.0) 90.3±0.3 (8.9±4.7) 90.3±0.0 (3.9±2.1) 94.03±0.8 (10.6±8.1) 90.1±1.6 (9.3±6.4) 92.43
SFS 93.5 (7.0) 90.3 (10.0) 90.3 (7.0) 91.9 (2.0) 90.3 (6.0) 91.26
BE 90.3 (8.0) 90.3 (11.0) 90.3 (8.0) 93.5 (8.0) 87.1 (2.0) 90.32

Fisher 82.3 (4.0) 79.0 (4.0) 85.5 (37.0) 85.5 (24.0) 82.3 (37.0) 82.92
ReliefF 87.1 (20.0) 88.7 (14.0) 88.7 (49.0) 96.8 (45.0) 90.3 (18.0) 90.32

GLI Dataset
TAGA 100.0±0.0 (10.6±0.9) 98.8±0.0 (10.3±0.9) 98.2±0.8 (10.1±1.6) 98.8±0.0 (14.8±4.3) 92.8±0.8 (14.4±11.9) 97.73
SFS 98.8 (11.0) 98.8 (8.0) 98.8 (10.0) 98.8 (16.0) 90.6 (11.0) 97.16
BE 100.0 (9.0) 97.6 (6.0) 97.6 (9.0) 95.3 (24.0) 91.8 (10.0) 96.46

Fisher 96.5 (11.0) 94.1 (5.0) 92.9 (2.0) 89.4 (10.0) 85.9 (1.0) 91.67
ReliefF 95.3 (45.0) 90.6 (6.0) 94.1 (9.0) 92.9 (35.0) 89.4 (18.0) 92.46

NCI Dataset
TAGA 84.2±1.4 (34.1±2.2) 78.1±0.5 (35.8±5.6) 83.5±0.6 (37.9±3.7) 79.5±0.4 (40.5±3.5) 60.1±1.3 (22.3±13.1) 77.08
SFS 80.0 (31.0) 75.0 (46.0) 81.7 (49.0) 76.7 (40.0) 58.3 (40.0) 74.0
BE 73.0 (34.0) 75.0 (33.0) 81.7 (45.0) 75.0 (41.0) 58.3 (8.0) 72.6

Fisher 70.0 (27.0) 66.7 (41.0) 71.7 (25.0) 73.3 (22.0) 58.3 (6.0) 68.0
ReliefF 55.0 (23.0) 53.3 (32.0) 63.3 (44.0) 53.3 (36.0) 48.3 (23.0) 54.64

SMK Dataset
TAGA 81.9±2.0 (19.2±4.9) 79.7±0.4 (15.1±5.0) 79.6±0.7 (9.8±5.2) 75.2±0.5 (13.1±4.4) 77.8±1.1 (16.4±4.0) 78.88
SFS 79.1 (9.0) 80.2 (9.0) 78.6 (24.0) 75.9 (11.0) 71.7 (12.0) 77.1
BE 79.1 (37.0) 78.6 (16.0) 79.7 (38.0) 75.9 (13.0) 77.0 (17.0) 78.07

Fisher 80.2 (11.0) 79.1 (11.0) 78.6 (14.0) 73.3 (11.0) 72.7 (9.0) 76.78
ReliefF 77.5 (36.0) 72.7 (40.0) 77.0 (45.0) 70.1 (26.0) 62.6 (9.0) 71.98

TOX Dataset
TAGA 82.4±0.7 (30.7±3.0) 81.6±1.0 (27.1±1.5) 74.9±0.8 (21.5±2.8) 77.7±0.8 (23.6±6.5) 68.4±0.9 (19.2±8.8) 77.00
SFS 78.9 (20.0) 72.5 (22.0) 75.2 (17.0) 71.3 (19.0) 64.3 (7.0) 72.44
BE 78.4 (39.0) 73.1 (11.0) 73.7 (17.0) 72.5 (32.0) 64.9 (27.0) 72.51

Fisher 83.6 (35.0) 64.3 (5.0) 66.16 (5.0) 67.8 (33.0) 64.3 (15.0) 69.22
ReliefF 98.8 (45.0) 70.8 (50.0) 81.3 (48.0) 93.6 (36.0) 65.5 (48.0) 82.0

LYM Dataset
TAGA 96.7±0.4 (33.5±1.5) 96.9±0.0 (40.5±0.6) 94.8±0.0 (30.6±1.8) 94.3±0.5 (20.3±3.7) 84.4±0.4 (43±2.3) 93.42
SFS 94.8 (31.0) 94.8 (15.0) 93.8 (19.0) 93.8 (43.0) 82.3 (38.0) 91.9
BE 95.8 (27.0) 94.8 (31.0) 91.7 (28.0) 92.7 (31.0) 79.2 (21.0) 90.83

Fisher 91.7 (48.0) 84.4 (45.0) 83.3 (39.0) 88.5 (46.0) 82.3 (50.0) 86.04
ReliefF 94.8 (36.0) 95.8 (44.0) 95.8 (42.0) 95.8 (49.0) 79.2 (20.0) 92.28

DBE Dataset
TAGA 90.6±0.0 (10.3±5.0) 90.3±1.0 (10.3±5.0) 89.1±0.0 (19.9±8.1) 90.6±0.4 (8.2±1.1) 90.3±0.7 (6.6±1.4) 90.18
SFS 87.5 (5.0) 89.1 (28.0) 89.1 (5.0) 90.6 (10.0) 89.1 (7.0) 89.08
BE 89.1 (7.0) 89.1 (32.0) 89.1 (5.0) 89.1 (7.0) 87.5 (5.0) 88.78

Fisher 68.8 (40.0) 76.6 (44.0) 73.4 (39.0) 54.7 (1.0) 68.8 (39.0) 68.46
ReliefF 92.2 (17.0) 90.6 (12.0) 90.6 (6.0) 89.1 (6.0) 85.9 (1.0) 89.68

DEX Dataset
TAGA 93.3±0.3 (46.7±1.5) 84.5±0.2 (39.0±2.6) 91.4±0.2 (49.3±1.6) 89.2±0.3 (37.0±6.4) 86.3±0.5 (32.7±5.7) 88.94
SFS 93.0 (49.0) 83.3 (33.0) 90.7 (42.0) 88.3 (28.0) 86.3 (33.0) 88.32
BE 92.7 (43.0) 83.3 (3.0) 91.0 (48.0) 89.3 (49.0) 87.3 (32.0) 88.72

Fisher 83.7 (47.0) 75.0 (47.0) 72.0 (44.0) 76.0 (42.0) 77.3 (47.0) 76.8
ReliefF 87.0 (13.0) 84.3 (48.0) 73.3 (2.0) 85.3 (16.0) 84.7 (16.0) 82.92

ORP Dataset
TAGA 97.4±0.5 (15.7±2.3) 92.3±1.2 (13.7±2.3) 94.7±0.5 (18.2±1.7) 99.8±0.4 (13.4±4.7) 86.3±2.1 (14.0±8.3) 94.1
SFS 97.0 (14.0) 92.0 (12.0) 94.0 (16.0) 99.0 (14.0) 85.0 (15.0) 93.4
BE 97.0 (13.0) 93.0 (13.0) 95.0 (16.0) 100.0 (45.0) 83.0 (22.0) 93.6

Fisher 94.0 (45.0) 91.0 (42.0) 87.0 (49.0) 98.0 (49.0) 78.0 (35.0) 89.6
ReliefF 81.0 (50.0) 48.0 (11.0) 66.0 (40.0) 73.0 (5.0) 69.0 (5.0) 67.4

PIW Dataset
TAGA 97.6±0.5 (6.1±1.7) 96.8±0.4 (8.0±5.4) 95.8±0.4 (15.3±6.3) 97.0±0.0 (8.1±0.7) 98.6±0.5 (9.8±4.8) 97.16
SFS 97.0 (6.0) 95.0 (8.0) 95 (8.0) 97.0 (8.0) 98.0 (14.0) 96.4
BE 98.0 (6.0) 96.0 (47.0) 96.0 (21.0) 97.0 (6.0) 97.0 (19.0) 96.8

Fisher 97.0 (27.0) 97.0 (23.0) 97.0 (28.0) 97.0 (28.0) 97.0 (23.0) 97.0
ReliefF 96.0 (50.0) 85.0 (36.0) 93.0 (45.0) 94.0 (45.0) 91.0 (33.0) 91.8

For each classifier and algorithm, the first value is the classification accuracy,
the values in parenthesis show the number of selected features, and the sign
± indicates standard deviation. The last column presents the average of the

classification accuracies for each algorithm.

mance. Figure 4.5 depicts the results of this statistical test analysis. The

adjusted ρ-values for Wilcoxon analysis have also been reported in Figure 4.5.
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The smaller the ρ-value, the stronger the evidence against the null hypothesis.

The proposed algorithm shows meaningful superiority over greedy search al-

gorithms. The reason resides in the fact that greedy algorithms make locally

optimal choices with the aim of finding a global optimum amongst local op-

tima. This weakens the performance of greedy search algorithms and in many

problems, they are usually unable to produce an optimal solution. The main

disadvantage of SFS is that in each iteration of the algorithm, the usefulness

of a single feature is examined in the limited context of the previously selected

features only.

Consequently, while selecting the final subset, the interaction between limited

numbers of features is considered. Contrary to SFS and BE, TAGA can eval-

uate the contribution of a given feature in the context of all other features.

However, BE overemphasises on feature interactions which may lead to a sub-

optimal solution [91]. Given that Relief and Fisher score are greedy search

methods, the score of each feature is computed independently and therefore,

the algorithms fail to consider the interaction between the features in a subset

and as a consequence, fail to remove redundant features [49]. TAGA however,

is a global search algorithm which directly searches for global optima.

The embedded SFS provides TAGA with local optimal solutions which facili-

tate the search process however, the features in the subset provided by SFS are

not guaranteed to be in the final subset as they continuously are replaced with

other feature for better solutions. In addition, TAGA evaluates the subsets

and not the features individually, and each subset is composed of a portion of

all features which avoids the algorithms from overemphasising feature interac-

tions.

The same set of experiments were performed for obtaining the accuracy results

of each classifier and the results with the corresponding adjusted ρ-values are
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reported in Figure 4.6. As shown in Figure 4.6, for most of the classifiers, the

proposed TAGA has either outperformed greedy algorithms (the points higher

than zero line) or has performed comparably (the points near zero line), and

this is because greedy algorithms look for global optimal solutions amongst

immediate available local optimal solutions. Nevertheless, they are usually

unable to reach a global optimum and they are stuck into a local optimum. It

also can be seen in Figure 4.6 that the Relief algorithm has performed better

than TAGA for most of the classifiers when both algorithms were applied on

TOX dataset. Relief is a ranking algorithm, and the results presented in Table

4.6 were obtained when applying Relief without applying Fisher score filtering.

The Fisher score algorithm measures the quality of the features independently

without considering the interaction between the features in the subsets. There-

fore, using Fisher score to filter out elite features for some datasets may result

in suboptimal subsets with poor classification performance. Hence, Fisher

score can be replaced with other ranking algorithms for better results. Since

the Relief algorithm has achieved better results when applied to the TOX

dataset, it can be concluded that Relief can filter out higher quality features

for this specific dataset. Consequently, if Fisher score is replaced by Relief in

the first stage of TAGA, better results for TOX dataset can be obtained.

4.4.3 Comparison of TAGA with other feature selection

algorithms

Table 4.7 shows the results obtained for ten datasets and five classifiers using

TAGA in comparison with four other algorithms, mRMR-mid [98], QFPS [103],

SPECCMI [92], and CGA [79].

Table 4.7 at a glance shows that overall performance of TAGA has not been
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Figure 4.5: Comparing TAGA with Greedy search algorithms using the Friedman test and
the Wilcoxon post-hoc analysis applied on the average of the accuracies. The y-axis is the
classification accuracy difference and x-axis indicates the names of the compared algorithms.

better than the other competing algorithms when NB is the classifier, but it

has performed better when the LDA is employed as the classifier. When TAGA

performance over the datasets is considered, it has been the best method over

GLI, SMK, DBE, and ORP but not over NCI, LYM, DEX, and PIW. To sta-

tistically analyse the results, the same statistical tests as in section 4.4.2 were

applied. The results of the average performance (i.e. accuracy) of the methods

across the various classifiers, and the accuracy of each individual classifier are

provided in Figure 4.7 and Figure 4.8, respectively. The adjusted ρ -values

have also been reported in the figures and the existence of a significant dif-

ference is highlighted with green colour. Looking at Figure 4.8, TAGA has

outperformed midmRMR, SPECCMI, and CGA algorithms for most of the

classifiers. However, no significant difference is observed when TAGA is com-

pared with QPFS. The classification performance of the final subset selected

by a feature selection algorithm may significantly vary from one classifier to

another. Consequently, comparing the feature selection algorithms for a spe-

cific classifier will result in a goal-dependent analysis (see Section 4.3). As the

aim of this thesis is to analyse the subsets in terms of classifier-bias using a

goal-independent approach [91], a more critical analysis is performed on the
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Figure 4.6: Comparing TAGA with Greedy algorithms. Results of the post-hoc tests for
each classifier.
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Table 4.7: Comparison of TAGA with other feature selection algorithms over
reduced datasets
Classifier SVM (%) LDA (%) NB (%) KNN (%) CART (%) Average (%)

CLN Dataset
TAGA 97.4±1.3 (13.9±1.0) 90.3±0.3 (8.9±4.7) 90.3±0.0 (3.9±2.1) 94.03±0.8 (10.6±8.1) 90.1±1.6 (9.3±6.4) 92.43

mRMR-mid 90.3 (15.0) 88.7 (16.0) 90.3 (6.0) 98.4 (1.0) 90.3 (4.0) 91.61
QPFS 90.3 (2.0) 88.7 (1.0) 91.9 (7.0) 91.9 (3.0) 88.7 (1.0) 90.3

SPECCMI 90.3 (21.0) 90.3 (23.0) 90.3 (24.0) 93.5 (32.0) 87.1 (21.0) 90.3
CGA 91.5±2.6 (13.2±7.9) 90.2±0.5 (9.3±4.7) 90.8±0.8 (8.1±4.5) 95.2±1.3 (7.9±3.9) 87.4±2.0 (7.6±4.1) 91

GLI Dataset
TAGA 100.0±0.0 (10.6±0.9) 98.8±0.0 (10.3±0.9) 98.2±0.8 (10.1±1.6) 98.8±0.0 (14.8±4.3) 92.8±0.8 (14.4±11.9) 97.73

mRMR-mid 96.5 (25.0) 94.1 (13.0) 95.3 (19.0) 95.3 (5.0) 95.3 (7.0) 95.29
QPFS 94.1 (8.0) 95.3 (4.0) 96.5 (5.0) 94.1 (12.0) 92.9 (23.0) 94.6

SPECCMI 98.8 (22.0) 95.3 (7.0) 97.6 (16.0) 96.5 (16.0) 90.6 (18.0) 95.8
CGA 97.8±1.0 (11.7±4.1) 96.7±1.1 (6.5±2.8) 97.2±0.6 (13.6±6.1) 95.9±0.6 (16.2±7.0) 92.0±1.8 (6.2±5.9) 95.91

NCI Dataset
TAGA 84.2±1.4 (34.1±2.2) 78.1±0.5 (35.8±5.6) 83.5±0.6 (37.9±3.7) 79.5±0.4 (40.5±3.5) 60.1±1.3 (22.3±13.1) 77.08

mRMR-mid 66.7 (49.0) 65.0 (24.0) 65.0 (50.0) 65.0 (43.0) 58.3 (34.0) 64
QPFS 83.3 (26.0) 81.7 (14.0) 90.0 (17.0) 83.3 (39.0) 75.0 (3.0) 82.7

SPECCMI 85.0 (31.0) 78.3 (17.0) 83.3 (22.0) 80.0 (38.0) 68.3 (6.0) 79
CGA 83.0±2.0 (38.0±8.2) 75.7±2.6 (31.9±9.7) 79.7±2.0 (36.9±6.3) 78.8±2.4 (39.0±5.8) 59.5±3.5 (22.1±13.4) 75.33

SMK Dataset
TAGA 81.9±2.0 (19.2±4.9) 79.7±0.4 (15.1±5.0) 79.6±0.7 (9.8±5.2) 75.2±0.5 (13.1±4.4) 77.8±1.1 (16.4±4.0) 78.88

mRMR-mid 77.0 (30.0) 74.3 (27.0) 74.9 (16.0) 68.4 (7.0) 76.5 (11.0) 74.22
QPFS 79.7 (18.0) 78.6 (7.0) 82.4 (16.0) 74.3 (17.0) 71.7 (6.0) 77.3

SPECCMI 77.5 (22.0) 77.5 (21.0) 79.7 (17.0) 71.1 (13.0) 70.6 (2.0) 75.3
CGA 80.4±0.8 (16.3±6.0) 79.2±0.7 (12.9±4.7) 80.1±0.7 (18.0±5.1) 72.7±1.5 (8.8±6.3) 72.8±0.9 (12.8±3.5) 77.02

TOX Dataset
TAGA 82.4±0.7 (30.7±3.0) 81.6±1.0 (27.1±1.5) 74.9±0.8 (21.5±2.8) 77.7±0.8 (23.6±6.5) 68.4±0.9 (19.2±8.8) 77.00

mRMR-mid 81.3 (24.0) 78.9 (35.0) 74.3 (35.0) 72.5 (28.0) 67.8 (34.0) 74.97
QPFS 86.0 (29.0) 78.4 (14.0) 74.9 (13.0) 72.5 (15.0) 67.3 (34.0) 75.8

SPECCMI 78.4 (30.0) 77.8 (19.0) 75.4 (16.0) 77.2 (24.0) 63.7 (33.0) 74.5
CGA 82.2±1.4 (26.2±4.5) 79.8±1.0 (27.5±4.0) 73.0±1.0 (23.0±8.1) 74.3±2.6 (28.8±3.9) 64.0±2.1 (18.7±8.2) 74.64

LYM Dataset
TAGA 96.7±0.4 (33.5±1.5) 96.9±0.0 (40.5±0.6) 94.8±0.0 (30.6±1.8) 94.3±0.5 (20.3±3.7) 84.4±0.4 (43±2.3) 93.42

mRMR-mid 95.8 (39.0) 92.7 (26.0) 92.7 (37.0) 97.9 (22.0) 85.4 (26.0) 92.92
QPFS 99.0 (26.0) 97.9 (25.0) 94.8 (15.0) 97.9 (23.0) 85.4 (22.0) 95

SPECCMI 96.9 (28.0) 94.8 (17.0) 93.8 (19.0) 93.8 (36.0) 88.5 (28.0) 93.5
CGA 95.7±0.8 (33.7±6.9) 93.9±1.0 (22.8±8.8) 92.8±0.8 (23.8±4.9) 94.1±1.0 (30.3±7.0) 82.7±2.5 (22.5±6.9) 91.83

DBE Dataset
TAGA 90.6±0.0 (10.3±5.0) 90.3±1.0 (10.3±5.0) 89.1±0.0 (19.9±8.1) 90.6±0.4 (8.2±1.1) 90.3±0.7 (6.6±1.4) 90.18

mRMR-mid 81.3 (19.0) 85.9 (15.0) 82.8 (17.0) 89.1 (16.0) 84.4 (16.0) 84.69
QPFS 89.1 (16.0) 87.5 (10.0) 87.5 (5.0) 87.5 (13.0) 85.9 (10.0) 87.5

SPECCMI 85.9 (23.0) 89.1 (25.0) 92.2 (23.0) 87.5 (23.0) 84.4 (30.0) 87.8
CGA 88.8±1.9 (12.2±4.9) 88.4±1.3 (8.6±4.7) 93.1±1.5 (17.9±4.8) 90.6±1.3 (12.5±5.1) 87.3±1.6 (10.6±7.1) 89.66

DEX Dataset
TAGA 93.3±0.3 (46.7±1.5) 84.5±0.2 (39.0±2.6) 91.4±0.2 (49.3±1.6) 89.2±0.3 (37.0±6.4) 86.3±0.5 (32.7±5.7) 88.94

mRMR-mid 92.7 (49.0) 84.3 (42.0) 89.7 (49.0) 88.3 (43.0) 85.0 (40.0) 88
QPFS 93.3 (49.0) 83.0 (48.0) 87.0 (48.0) 87.3 (48.0) 84.3 (30.0) 87

SPECCMI 94.0 (49.0) 84.0 (34.0) 92.3 (49.0) 89.3 (47.0) 86.3 (36.0) 89.2
CGA 88.1±0.8 (42.2±7.1) 76.8±0.6 (30.2±15.0) 84.0±1.3 (32.2±10.1) 82.8±1.3 (37.2±9.5) 82.3±0.6 (24.4±9.5) 82.81

ORP Dataset
TAGA 97.4±0.5 (15.7±2.3) 92.3±1.2 (13.7±2.3) 94.7±0.5 (18.2±1.7) 99.8±0.4 (13.4±4.7) 86.3±2.1 (14.0±8.3) 94.1

mRMR-mid 95.0 (20.0) 86.0 (20.0) 90.0 (7.0) 97.0 (20.0) 84.0 (4.0) 90.4
QPFS 97.0 (12.0) 90.0 (12.0) 91.0 (17.0) 98.0 (9.0) 85.0 (14.0) 92.2

SPECCMI 88.0 (17.0) 77.0 (16.0) 87.0 (26.0) 94.0 (21.0) 81.0 (15.0) 85.4
CGA 97.5±0.7 (14.0±3.6) 91.4±1.6 (13.4±3.3) 94.3±1.3 (14.3±3.5) 98.5±1.0 (13.6±3.6) 84.2±2.5 (5.6±5.3) 93.18

PIW Dataset
TAGA 97.6±0.5 (6.1±1.7) 96.8±0.4 (8.0±5.4) 95.8±0.4 (15.3±6.3) 97.0±0.0 (8.1±0.7) 98.6±0.5 (9.8±4.8) 97.16

mRMR-mid 98.0 (5.0) 99.0 (5.0) 96.0 (5.0) 96.0 (7.0) 99.0 (10.0) 97.6
QPFS 98.0 (3.0) 98.0 (20.0) 95.0 (3.0) 97.0 (20.0) 98.0 (3.0) 97.2

SPECCMI 95.0 (15.0) 97.0 (17.0) 95.0 (19.0) 95.0 (11.0) 96.0 (29.0) 95.6
CGA 97.7±0.7 (6.8±4.1) 98.4±0.7 (11.3±6.2) 96.5±0.7 (10.4±4.6) 97.2±0.4 (10.2±5.1) 98.4±0.7 (5.9±4.5) 97.64

For each classifier and algorithm, the first value is the classification accuracy,
the values in parenthesis show the number of selected features, and the sign
± indicates standard deviation. The last column presents the average of the

classification accuracies for each algorithm.

average accuracies of all classifiers.

As can be seen from Table 4.7, TAGA has outperformed other other algorithms

in terms of average accuracy (last column of Table 4.7) for most of datasets
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Figure 4.7: Comparing TAGA with other feature selection algorithms using the Friedman
test and the Wilcoxon post-hoc analysis applied on the average of the accuracies. The y-
axis is the classification accuracy difference and x-axis indicates the names of the compared
algorithms.

and for the other datasets identical results have been obtained. However,

the statistical analysis tests revealed that the performance of TAGA has been

significantly different from all other feature selection methods except QPFS.

The superiority of TAGA over mRMR-mid was predictable as the searching

strategy of mRMR-mid algorithm is greedy in nature and similar to other

greedy search algorithms discussed in subsection 4.4.2, it searches only amongst

local optima. QPFS and SPECCMI are both quadratic programming-based

algorithms and use the Nyström approximation method.

Interestingly, the statistical results revealed that TAGA has only outperformed

SPECCMI when compared to quadratic programming-based algorithms, pos-

sibly due to the strategy of the two algorithms in employing Nyström ap-

proximation. In QPFS, a two level approximation is proposed to cast the

quadratic programming problem into a lower dimensional subspace. This two

level approximation provides acceptable approximation for small size datasets

however, it might not yield a precise enough approximation for large datasets

[91]. As opposed to QPFS, in SPECMI, only one level of approximation with

a fixed sampling rate is applied. This strategy leads to a better approxima-

tion when high redundancy exists in the dataset [92]. Before applying the
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Figure 4.8: Comparing TAGA with other feature selection algorithms. Results of the
post-hoc tests for each classifier.
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feature selection algorithms, a filtering step is applied to the datasets. This

filtering step reduces the size of the datasets and results in less redundancy

in the datasets. Therefore, it can be concluded that the filtering step has en-

hanced the performance of the QFPS and has worsened the performance of

SPECMI. Although the statistical analysis does not show any significant dif-

ference between the results of TAGA and QPFS, TAGA has performed better

than QPFS, in terms of average accuracies, for many datasets and for the rest,

comparable results have been obtained except for the NCI dataset for which

QPFS has highly outperformed TAGA. QPFS approximates mutual informa-

tion values using Nyström method which are less accurate than the values es-

timated by TAGA’s mutual information estimator and therefore, the features

selected by QPFS are of lower quality than the ones selected by TAGA. NCI

is a highly correlated and redundant dataset and for such a dataset, features

with lower quality may in fact be better for classification [91]. This might be

the reason that is why the results of QPFS is considerably better than TAGA

for NCI dataset. However, when NCI is removed from the statistical analysis,

TAGA shows significant difference over QPFS with the p-value of 0.03.

TAGA has performed better than CGA, in terms of average accuracies (see

Table 4.7). The statistical analysis has also revealed the superiority of TAGA

over CGA (see Figure 4.7). CGA is an EC algorithm similar to TAGA. TAGA

and CGA both use an integer-encoded solution representation and search for

the best subsets in a range of subset cardinalities. However, with TAGA each

solution contains all the features of the dataset and only part of the solution is

considered as the final subset (Figure 4.2), whereas CGA uses an integer-coded

solution representation in which the solutions contain the selected features

only. Based on this solution representation, designing a proper mutation oper-

ator is a non-trivial task. Therefore, CGA works only on a designed crossover
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operator and in cases that one feature appears more than once in the solu-

tions, a SFS-like mutation operator repairs the solutions. To compensate the

absence of an effective mutation operator in generating diverse solutions, the

algorithm needs a large amount of individuals. To compare fairly the two algo-

rithms, the stop criterion is set when a specific number of function evaluation is

counted. This stop criterion makes CGA stop working at early generations as

a large amount of individuals are evaluated at each generation and therefore,

the initial population cannot be completely evolved.

4.4.4 Classifier-bias analysis

It is important to examine the subset selected by TAGA to understand if

they are not classifier-biased and consequently, can provide high generalisa-

tion power over a range of classifiers. As can be seen in Table 4.7, the number

of features in the subset with which the classifiers reach their highest perfor-

mance (optimum subset) varies noticeably. However, it has been observed that

the optimum subset of any classifier usually achieves optimal or near optimal

accuracy when used to train other classifiers [91]. According to this observa-

tion, Naghibi et al. [91] proposed an approach to analyse the classifier-bias

of a feature selection algorithm in which the optimum subset of a classifier is

used to train the other classifiers and the results are compared to the optimal

classifiers’ accuracies.

The closer the obtained accuracies are to the classifiers’ optimal accuracies,

the less classifier-biased the subset and the higher the generalisation power.

A prior knowledge of optimal accuracies of the classifiers over datasets would

be useful for this analysis. However, this prior knowledge is not available. To

solve the problem, the highest accuracy obtained for each classifier during the

feature selection process is considered as the classifier’s optimal accuracy and
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the corresponding subset is considered as the optimal subset.

TAGA’s classifier-bias analysis is shown in Table 4.8 for 4 classifiers and 4

datasets. The KNN optimal subset is used to train the other classifiers. As

can be seen, optimal or near optimal accuracy has been obtained by most of

classifiers using the best features subset of KNN provided by TAGA.

Table 4.8: TAGA classifier-bias analysis (%)
Classifier SVM LDA NB CART

GLI
KNN optimum subset 96.47 96.44 94.12 91.76
Classifier Optimum Acc. 100 98.8 98.82 94.12

DEX
KNN optimum subset 92.33 84.7 90.33 86.67
Classifier Optimum Acc. 94 84.7 91.67 87.67

PIW
KNN optimum subset 97 97 95 99
Classifier Optimum Acc. 98 97 97 99

ORL
KNN optimum subset 97 92 95 82
Classifier Optimum Acc. 98 93 96 89

4.4.5 Running time analysis

In the last experiment, the running time of TAGA is analysed. Table 4.9 shows

the comparison of TAGA against SFS, BE, and CGA in terms of running time

needed to search for the best subset over subset cardinality range from 1 to

50. The cell values provide the running time of the algorithms in seconds. The

last column shows the average running times over the 10 datasets.

As shown in Table 4.9, TAGA has been the second fastest algorithm when

the average running time is considered. TAGA has outperformed the other

algorithms when applied to the SMK, TOX, DBE, and DEX datasets. SFS has

outperformed TAGA for the datasets which have a small sample size including

CLN, GLI, NCI, LYM, ORP, and PIW.

However, for datasets with a larger sample size such as SMK, TOX or the

datasets for which more feature are extracted through the first filtering stage

(DBE and DEX) TAGA has shown better performance. This could be due to
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Table 4.9: TAGA running time analysis in seconds
Dataset

Algorithm CLN GLI NCI SMK TOX LYM DBE DEX ORP PIW Avg.

SFS 34 48 33 140 123 59 242 323 62 63 112.7
TAGA 123 122 127 139 132 117 154 202 129 148 139.3
CGA 158 181 168 183 174 161 229 286 199 183 192.2
BE 183 223 162 649 587 294 1208 1486 288 301 538.1

the reason that TAGA calculates the mutual information between the features

wherever necessary but the SFS need to calculated mutual information values

whenever a new feature is added to the pool. Therefore, SFS needs a bigger

portion of mutual information values between the features for those datasets

which requires higher computations.

It should be mentioned that the Relief, Fisher, mRMR-mid, QPFS, and SPEC-

CMI algorithms are eliminated from this comparison. Although Relief and

the Fisher algorithms are fast, they have shown poor performance compared

against TAGA (see Table 4.6). Regarding mRMR-mid, QPFS, and SPECCMI,

these algorithms have partly been coded into another programming languages

which makes a fair comparison impossible. Nevertheless, the current running

time analysis still provides a good sense to readers of how fast TAGA can

perform.

4.5 Conclusion

This chapter proposed a novel EC-based feature selection algorithm called

TAGA which is embedded into a new two-stage hybrid framework called fil-

ter/filter approach. The filter/filter approach was designed to address classifier-

bias limitations of existing filter/wrapper methods. In the first-stage, Fisher

score was used to select the most informative features which were used as input

into the second stage.
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In the second stage, TAGA, a mutation-based GA hybridised with a long-

term memory TL and guided by a SFS procedure, was applied in order to

select the final subset of features. TAGA benefits from a novel integer-coded

representation and mutation operator. In addition, a new TL encoding scheme

was proposed in order to make the solution storing and restoring processes

computationally more effective.

Exhaustive experiments were performed using five classifiers and ten datasets

selected from wide range of applications to evaluate the performance of TAGA.

The proposed TAGA was compared with greedy search and other algorithms

found in the literature. All the other algorithms used in the comparison were

also embedded in a filter/filter framework. The computation results confirmed

that TAGA outperformed other feature selection algorithms. The filter/filter

approach with the embedded TAGA feature selection algorithm can be adopted

when developing predictive models for biomedical or other tasks.

The next chapter, Chapter 5 discusses Generalisation Power in detail and

proposes a novel approach to measure the performance of feature subsets in

terms of generalisation power over multiple classifiers.



Chapter 5

A Generalisation Power

Approach for Evolutionary

Computation-based Feature

Selection

5.1 Introduction

Feature selection is the process of selecting an optimal subset of features re-

quired for maintaining or improving accuracy of data mining models. EC

algorithms, with their efficient global search capabilities, are good approaches

to feature selection. However, the main limitation of EC algorithms for feature

selection is that due to their stochastic nature, different ‘best feature subset’

solutions are returned every time they are run.

Existing solutions to the stability issue include typical aggregation (e.g. inter-

section and union) and frequency-based methods, but because these methods

do not consider the performance of a classifier in their selection process, the

87
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methods can select a feature subset which when utilised to train a classifier

can lead to poor classification accuracy.

Classifier-based aggregation is an alternative method, which uses the perfor-

mance of one classifier to select the best subset of features, and this approach

may result in a biased subset with poor performance over various classifiers

known as lack of generalisation power. A subset with high generalisation power

is able to achieve optimal or near optimal accuracy over multiple classifiers.

To address limitations of existing methods, this chapter proposes a novel ap-

proach called generalisation power analysis that measures the performance of

feature subsets in terms of generalisation power over multiple classifiers.

5.2 Proposed generalisation power analysis ap-

proach

Generalisation power refers to the classification performance capability of a

feature subset over wide range of classifiers. From a generalisation perspec-

tive, an optimal subset is able to achieve optimal accuracy if applied over

any classifier. Nevertheless, such an optimal subset does not exist in practice

but there are near-optimal subsets which are able to closely follow optimal

accuracies when used to train multiple classifiers.

In order to discover those near-optimal subsets, a method is needed which can

measure the value of generalisation power for subsets. Consequently, this chap-

ter proposes a Generalisation Power Index (GPI) in which the generalisation

power of subset s over set of classifiers C can be defined as follows:

GPICs =

∑

c∈C(OptDc − Acccs)

| C |
(5.1)
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Where, | C | is the number of classifiers in C, OptDc stands for the optimal

accuracy of the classifier c over the dataset D, Acccs represents the accuracy of

the classifier c when trained using feature subset s.

To apply GPI on the output solutions of an EC algorithm, algorithm 5 is

proposed.

Algorithm 5: Pseudocode of Generalisation Power Analysis Algorithm

1 begin
2 for n times do
3 Run the EC feature selection algorithm
4 Save the best subsets in subset pool S

5 end
6 Remove repetitive subsets from S
7 for each classifier in C do
8 for each subset in S do
9 Train the classifier using the subset and save the accuracy

10 end

11 end
12 for each classifier do
13 Consider the highest obtained accuracy as optimal accuracy
14 end
15 for each subset in S do
16 Calculated GPI using Eq. 5.1
17 end
18 Choose the subset with lowest GPI value as the best subset

19 end

In algorithm 5, the EC feature selection algorithm is run n times (the typical

value for n in the literature is 30 times) and in each run the best subsets in

terms of EC fitness function are saved in subset pool S. It should be noticed

that in a single run of an EC algorithms, it is likely that more than one best

subset (optimal or near optimal subsets) is generated therefore, all of the best

subsets are saved in the pool and the repetitive subsets are removed later (lines

1-6). Then, all the remaining subsets in S are used to train the classifiers in

C and the corresponding accuracies are obtained using a suitable validation
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method (lines 7-11). To calculate GPI, the optimal accuracies of the classifiers

over datasets are needed.

A prior knowledge of classifiers optimal accuracy over a dataset can be a great

help for calculating GPI. However, obtaining optimal accuracies is an arduous

task if not impossible. Thus, to tackle this problem, one approach is to consider

the highest obtained accuracy for each classifier over each dataset as optimal

accuracy of the classifier over the dataset.

In the next step, the GPI value is calculated for all subsets in the pool. Fi-

nally, the subsets are sorted according to their GPI value and the subset with

the lowest GPI value is considered to be the subset which provides highest

generalisation power over the classier used.

5.3 Experimental design

5.3.1 The EC algorithm adopted for the experiments

and its parameter settings

In order to examine the performance of the proposed approach, a set of subsets

obtained in multiple independent runs of an EC feature selection algorithm is

needed. For this purpose, a hybrid EC-based feature selection algorithm was

implemented which is composed of two stages: 1) filtering stage 2) EC-based

selection stage.

In the filtering stage, the Fisher score ranking feature selection algorithm [82],

which is computationally cost effective, is applied to reduce the complexity of

the dataset and to filter out the most promising features. The Fisher score

algorithm is set to select the top 100 features of the datasets. The selected

features are then used to form reduced datasets which are then fed to the
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second stage.

In the second stage, the reduced dataset from previous stage is fed to a stan-

dard GA with a fixed length binary representation, typical two-point crossover,

and Bit Flip mutation operators which selects the final subset out of 100 fea-

tures. To evaluate the fitness of the subsets, Equation 5.2 is used. It is a two

criteria fitness function considering both the number of selected features and

the classification performance as proposed in [105].

f = ((1− α) ∗
ACC

100
)− (α ∗

n

N
) (5.2)

where, α is the weighting parameter, n is the number of features in the subset,

N presents total number of features in the dataset, and ACC stands for the

KNN average classification accuracy over a 10-fold cross-validation test. Both

ACC and n are normalised to their highest possible values. The parameter α

is set to a small value of 0.01. This small value gives priority to the subsets

with highest accuracy but in cases that two subsets with different number of

features have the same accuracy, the subset with fewer features is selected as

the best subset. The crossover and mutation rates are set to typical values of

0.7 and 0.01, respectively. The stop criteria is set when 100 generations are

counted and the GA is independently run 20 times.

At the end of each run, the best subset is saved for one further selection process

using the proposed GPI and benchmark methods. It should be noticed that

in a single run of an EC algorithms, it is likely that more than one best subset

is generated therefore; all of the best subsets are extracted and saved.
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Table 5.1: Description of datasets used in experiments
Dataset Name Abbrev. Type # Features # Instances # Classes
GLI 85 GLI Biological 22283 85 2
TOX 171 TOX Biological 5748 171 4
SMK CAN 187 SMK Biological 19993 187 2
GLA-BRA-180 GLA Biological 49151 180 4
CLL-SUB-111 CLL Biological 11340 111 3
COIL20 COI Image 1024 1440 20
Yale 64x64 YALE Image 1024 165 15
RELATHE REL Text 4322 1427 2
BASEHOCK BAS Text 4862 1993 2
PCMAC PCM Text 3289 1943 2
Arcene ARC Mass Spec-

trometry
10000 200 2

5.3.2 Datasets and classifiers

Table 5.1 shows the properties of the 11 datasets used in the experiments.

All the datasets are available on the ASU feature selection repository [72].

The datasets are of most up-to-date datasets available publicly and cover wide

range of applications including image data, text data, and biological data.

During the experiments, the subsets are evaluated using 5 classifiers, namely

SVM, KNN, CART, NB, LDA. The number of K in KNN classifier is set to 5

for all classifiers and the hyper parameters for other classifiers, such as: kernel

function for SVM, data distribution type for NB, discrimination type for LDA,

are experimentally set for each dataset. To guarantee valid results for making

a reliable predictions, the k-fold cross-validation (the value for is set to k=10

as there are enough samples) was adopted.

5.3.3 Benchmark methods for combining subsets of fea-

tures

Assuming S = {s1, s2, ..., sn} a set of n final subsets, the proposed generalisa-

tion power analysis approach is compared with the following methods:

• Union: this method combines unique features in the set to generate the
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best subset using the following formula.

Sbest = {s1 ∪ s2∪, ...,∪sn} =
n
⋃

i=1

si (5.3)

It must be mentioned that intersection were removed from computational

experiments because it led to an empty set for most of the cases.

• Classifier-based aggregation: As proposed in [16] the first subset in set

S is selected as sbaseline baseline subset and its accuracy over a desired

classifier is calculated. The features in sbaseline will always become part of

the final selection sfinal. For selecting other features, the unique features

in S - sbaseline will become part of the sfinal only if they improve sfinal

accuracy. For this experiment, four classifiers including SVM, LDA,

NB, and KNN are used to develop several classifier-based aggregation

methods.

• Frequency-based measure: frequency-based approaches consider how con-

sistently a feature has appeared in a set of subsets. Somol and Novovi-

cova [108] defined C(f) the consistency of feature f in a set of subsets

of features S as:

C(f) =
Ff − Fmin

Fmax − Fmin

(5.4)

where, Ff is the frequency of feature f , and Fmin and Fmax present min-

imum and maximum frequencies in S, respectively. In order to measure

the consistency of subsets in this chapter, the consistency of subset s ∈ S

is defined as the average of consistencies over all features in s:

C(s) =
1

| s |

∑

f∈s

C(f) (5.5)
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5.4 Results and discussion

5.4.1 Comparing the performance of GPI with bench-

mark algorithms

This section describes the experiments carried out to compare the perfor-

mance of the GPI compared to alternative methods used in the literature

in terms of classification accuracy of the selected subset. These methods are

Union, four classifier-based methods [16] including SVM-based, LDA-based,

NB-based, KNN-based (see subsection 5.3.3), and Frequency-based [108].

For each dataset, the set of subsets obtained in several runs of the GA (ex-

plained in subsection 5.3.1) was input into the GPI and other benchmark

methods to find a single best subset. The best subsets obtained from each

method are then evaluated using classifiers.

Table 5.2 shows the classification accuracy results obtained for 4 classifiers

over 11 datasets using GPI selected subset compared to the subsets selected

by other six methods. In Table 5.2, the results of datasets are separated by

lines and for example, the value of 94.12 in GLI dataset part corresponds

to Union(79) and SVM, meaning that the final subset selected by Union for

GLI dataset contains 79 features and when the subset was used to train SVM

classifier, 94.12% accuracy was achieved.

To detect a statistically meaningful significant difference amongst the algo-

rithms, the Friedman test [45] is applied on the results of each classifier

(columns two to five in Table 5.2).

Next, Wilcoxon signed-rank post-hoc pairwise comparison analysis is carried

out to determine which pairs of algorithms have had significantly different

performance. The results are presented in Figure 5.1 which consists of four

sub-figures each of which depicts the results of statistical test analysis for one
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classifier in boxplots. Each boxplot compares GPI with another method in

which classification accuracy differences between GPI and other algorithms

across 11 datasets are plotted. The adjusted ρ-values for Wilcoxon analysis

have also been reported in Figure 5.1. The smaller the ρ–value, the stronger

the evidence against the null hypothesis. The existence of a significant at level

of ρ = 0.05 has been spotted with green boxes.

As can be seen, the proposed GPI shows superiority over Union for all classifier.

The reason resides in the selection strategy of Union algorithm in which the

features with at least one appearance in the set of subsets are selected. This

strategy leads to a subset with large number of features (as obvious in Table

5.2) which, as a results, contains noisy and irrelevant features. Regarding

classifier-based methods, as expected, when GPI is compared with classifier-

based methods for their corresponding classifier (for example when the final

subset of SVM-based method is used to train SVM classifier) GPI has not been

able to outperform classifier-based methods (Figure 5.1). The reason is that

the classifier-based method directly search for the features which maximise the

classification performance of a desired classifier when added to the baseline.

However, the selected subset is biased toward the classifier used and may not

perform well when used to train other classifiers.

For frequency-based method, GPI has outperformed frequency-based method

for SVM, LDA, and NB classifiers but has not been able to perform better

over KNN classifier. This is mainly because in the initial features selection

process through GA (see subsection 5.3.1), KNN classifier was used as the

fitness function and therefore, the most frequent features are more likely to

provide good classification performance over the same classifier. However,

these results shows a subset that contains highly frequent features does not

necessarily result in a good classification performance over different classifier
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(lack of generalisation power).

The goodness of a feature subset is usually evaluated based on its classification

performance over a single classifier. This type of evaluation, known as goal-

dependent, is clearly unable to analyse the generalisation power of the subset

over several classifiers. In order to analyse the subsets from a generalisation

power perspective, Naghibi et al. [91] proposed a goal-independent method in

which the goodness of a subset is measured based on its average classification

performance over multiple classifiers. In this experiment, a goal-independent

analysis is performed to understand which method provides a final subset with

highest generalisation power. Therefore, the Friedman test following with

Wilcoxon signed-ranked post-hoc analysis is applied on the last column in

Table 5.2 which provides average accuracies for four classifiers. Figure 5.2

depicts the results for all six methods with reported ρ-values. As expected,

GPI has shown superior performance over other algorithms when significant

level is set at ρ = 0.05.

In the next experiment, a new classifier, which has never been involved in

computation results for both GPI and classifier-based methods, is trained using

the final subsets of seven methods. This experiment follows a two-fold aim.

Firstly, GPI employs classification performance of several classifiers to select

the best subset and consequently, it may seem unfair to compare it with other

methods in terms of generalisation power only. Secondly, it has been observed

that optimal and near optimal feature subset of any classifier, usually achieves

optimal or near-optimal classification performance in conjunction with other

classifiers [91].

As GPI tries to find the subset which performs well over multiple classifiers,

this experiment investigates that whether the subset selected by GPI, as a

near-optimal subset for the classifiers involved in GPI, will provide acceptable
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Table 5.2: Comparison of GPI with other algorithms over four classifiers
Classifier SVM (%) LDA (%) NB (%) KNN (%) Average (%)

GLI Datasets
Union (79) 94.12 95.29 94.12 91.76 93.82
GPI (17) 97.65 95.29 94.12 97.65 96.18
SVM based (16) 97.65 91.76 90.59 97.65 94.41
LDA based (16) 95.29 92.94 90.59 96.47 93.82
NB based(16) 96.47 92.94 91.76 97.65 94.70
KNN based (15) 96.47 91.76 90.59 97.65 94.12
Freq based (21) 95.29 94.12 90.59 96.47 94.12

SMK Datasets
Union (100) 74.33 64.71 70.05 66.31 68.85
GPI (48) 79.14 79.68 77.01 78.07 78.48
SVM based (55) 79.14 71.12 75.4 75.4 75.27
LDA based (58) 71.66 76.47 73.26 71.12 73.13
NB based (56) 77.54 72.19 76.47 73.8 75
KNN based (51) 70.59 70.05 72.19 80.21 73.26
Freq based (51) 78.07 78.07 73.26 80.75 77.54

TOX Datasets
Union (99) 76.02 67.25 60.82 69.01 68.28
GPI (38) 83.04 82.46 64.33 83.63 78.37
SVM based (51) 89.47 85.38 63.74 69.01 76.9
LDA based (52) 81.87 88.89 63.74 67.25 75.44
NB based (47) 79.53 78.36 71.35 77.78 76.76
KNN based (40) 75.44 78.36 65.5 81.29 75.15
Freq based (29) 77.19 82.46 68.42 77.78 76.46

BAS Datasets
Union (93) 94.03 91.72 93.23 90.22 92.3
GPI (59) 94.53 93.53 94.38 94.53 94.24
SVM based (53) 94.48 94.23 93.53 87.86 92.53
LDA based (64) 94.58 93.03 94.03 93.73 93.84
NB based (60) 94.43 93.33 94.33 89.31 92.85
KNN based (51) 94.48 94.23 93.43 86.25 92.1
Freq based (43) 94.48 94.48 93.08 86.1 92.04

COI Datasets
Union (98) 95.42 89.58 65.62 94.65 86.32
GPI (46) 95.07 89.93 78.06 96.6 89.92
SVM based (59) 95.21 89.37 74.58 95.9 88.77
LDA based (62) 95.14 90.62 74.17 95.56 88.87
NB based (57) 95 84.72 78.06 95.83 88.4
KNN based (52) 94.65 84.93 77.15 96.81 88.39
Freq based (47) 94.58 89.79 74.37 97.01 88.94

ARC Datasets
Union (89) 67.5 65 72.5 62.5 66.88
GPI (24) 67.5 65.5 75 75 70.75
SVM based (21) 69 66 69 61.67 66.42
LDA based (25) 68.5 65 72.5 68 68.5
NB based (24) 68.5 65 72.5 63.57 67.39
KNN based (18) 68 66 69 61.11 66.03
Freq based (11) 68 65.5 69 64 66.63

REL Datasets
Union (96) 83.04 80.59 79.96 76.8 80.1
GPI (51) 84.02 82.69 81.64 80.31 82.18
SVM based (56) 84.09 81.5 81.15 79.54 81.57
LDA based (62) 82.55 82.69 80.66 78.49 81.1
NB based (61) 84.09 81.22 81.5 78.84 81.41
KNN based (51) 82.2 79.12 79.33 80.38 80.26
Freq based (39) 80.87 77.65 78.77 79.82 79.28

YALE Datasets
Union (100) 67.88 69.09 62.42 66.06 66.36
GPI (53) 72.73 72.73 64.85 69.7 70
SVM based (50) 73.33 67.27 61.82 72.12 68.64
LDA based (55) 69.09 71.52 60.61 69.09 67.58
NB based (52) 70.3 69.09 64.24 69.09 68.18
KNN based (47) 70.91 66.06 60.61 73.94 67.88
Freq based (49) 64.85 63.03 58.18 72.73 64.7

GLA Datasets
Union (96) 45.56 63.33 62.78 73.33 61.25
GPI (37) 68.89 73.89 65 76.67 71.11
SVM based (41) 62.22 66.11 61.11 75.56 66.25
LDA based (49) 62.78 77.22 62.78 75 69.45
NB based (41) 52.22 67.78 63.33 77.78 65.28
KNN based (38) 57.22 67.78 61.11 78.33 66.11
Freq based (29) 57.78 66.11 61.67 78.33 65.97

CLL Datasets
Union (98) 55.86 45.05 54.05 63.06 54.51
GPI (38) 55.86 67.57 67.57 76.58 66.9
SVM based (27) 56.76 63.96 56.76 68.47 61.49
LDA based (32) 51.35 72.07 57.66 60.36 60.36
NB based (33) 54.05 62.16 66.67 68.47 62.84
KNN based (26) 55.86 64.86 57.66 73.87 63.06
Freq based (19) 52.25 63.06 58.56 77.48 62.84

PCM Datasets
Union (87) 90.17 88.16 84.3 88.11 87.69
GPI (63) 90.27 88.78 89.5 89.24 89.45
SVM based (42) 90.22 81.78 88.73 89.66 87.6
LDA based (55) 90.22 87.03 89.6 88.68 88.88
NB based (44) 90.07 83.69 89.76 89.19 88.18
KNN based (38) 89.86 81.68 88.63 89.66 87.46
Freq based (41) 90.02 80.34 88.42 90.17 87.24
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Figure 5.1: Comparing GPI with other algorithms using the Friedman test and
the Wilcoxon post-hoc analysis for each classifier. The y-axis is the classifica-
tion accuracy difference and the x-axis indicates the names of the compared
algorithms.
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Figure 5.2: Comparing GPI with other algorithms using the Friedman test
and the Wilcoxon post-hoc analysis applied on the average of the accuracies.
The y-axis is the classification accuracy difference and the x-axis indicates the
names of the compared algorithms.

performance if used to train other classifiers. For this, the CART classifier is

used and the results presented in Figure 5.3 reveal that GPI has significantly

performed better than the other methods when the subsets are used to train

the CART classifier. This is mainly because the subset provided by GPI has

a higher generalisation power over different classifiers.

Figure 5.3: Comparing GPI with OTHER algorithms using the Friedman test
and the Wilcoxon post-hoc analysis for CART classifier. The y-axis is the
classification accuracy difference and the x-axis indicates the names of the
compared algorithms.
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Table 5.3: Comparing the classification performance of the subset selected
by GPI with subsets selected by other algorithms over the CART classifier (%)

Methods Union GPI SVM basedLDA basedNB based KNN basedFreq based
GLI 80.00 88.24 87.06 87.06 87.06 87.06 84.71
SMK 63.64 70.05 64.71 64.71 63.64 62.57 67.38
TOX 59.65 59.65 59.65 55.56 53.22 60.82 56.73
BAS 94.38 94.43 93.68 94.23 93.93 93.53 93.13
COI 91.32 91.67 91.87 91.39 90.90 89.03 90.00
ARC 66.00 67.50 68.00 66.50 66.00 66.00 67.00
REL 81.50 83.04 82.76 81.71 82.41 82.20 81.29
YALE 56.97 56.97 55.15 57.58 55.76 55.76 59.39
GLA 52.78 66.67 59.44 61.67 60.00 60.00 58.33
CLL 52.25 64.86 54.05 59.46 58.56 54.95 58.56
PCM 89.71 90.27 90.53 90.38 90.63 90.53 90.12

5.4.2 Running time analysis

In the last experiment, the running time of GPI is analysed. Table 5.4 shows

the comparison of TAGA against classifier-based methods in terms of running

time needed to select the best subset out of set of output subsets obtained

from several runs of an EC algorithm. The cell values provide the running

time of the algorithms in seconds.

For GLI, SMK, BAS, ARC, REL, and PCM datasets, the running times of

all methods are roughly comparable. However, for TOX, COIL, YALE, GLA,

and CLL, GPI has required high running time. This is mainly because GPI

uses multiple classifiers to determine the best subset and therefore the running

time of all involved classifiers affects the running time of GPI. The datasets

for which GPI has required high running time are of multiclass datasets. As

can be seen in Table 5.4, for those datasets, the running time of the SVM

classifier increased significantly. SVMs are inherently two-class classifiers. The

most common way to convert SVMs into multiclass classifiers is one-against-all

method that is to build up SVM classifiers equal to the number of classes and
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Table 5.4: GPI running time analysis in seconds
Dataset

Method GLI SMK TOX BAS COIL ARC REL YALE GLA CLL PCM
GPI 6.3 8.4 111.7 19.7 257.9 6.4 22.9 133.1 72.2 68.5 21.3
SVM-based 4.6 4.4 412.2 17.7 543.4 5.7 25.2 308 215.1 678 24.3
LDA-based 3.3 3.4 3.9 4.5 6.1 3.7 4.7 3.8 2.9 7.9 5.5
NB-based 5 6.8 10.4 8.8 48.3 6.9 8.7 27.9 21.2 58.1 9.3
KNN-based 3.3 2.6 3.2 4.9 4.6 3.9 4.1 3 2.3 6.1 5.3

to choose the class with highest score. Consequently, OAA is a time consuming

method which has reflected in running time of GPI.

It must be mentioned that in this chapter one filtering step has applied prior

to running the EC algorithm to reduce the complexity of the datasets (see

subsection 5.3.1). GPI, unlike classifier-based methods, select a subset from a

set of subsets and does not produce a new subset. Classifier-based methods

take one subset as the baseline and add other features to the baseline if the

classification performance of a desired classifier is improved.

This combination strategy is similar to sequential forward selection and in

cases that the datasets contain large number of features; it requires a high

computational cost, which can be even higher than the time necessary for the

feature selection process. With filtering step, the dimension of the datasets

has been reduced to 100 features which has helped classifier-based method to

keep their running times low.

5.5 Conclusion

This chapter proposes a novel approach toward addressing the stability issue

when using EC feature selection algorithms. In the proposed approach a se-

lection process based on the generalisation power analysis of the subsets is

adopted to select the best feature subset out of many subsets obtained from

the output of an EC algorithm when executed several times (given that a
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different feature set may be selected whenever the algorithm is run).

The proposed approach works based on an index called Generalisation Power

Index (GPI) that measures the generalisation power of the subsets over mul-

tiple classifiers. GPI measures the quality of a feature subset using GPI index

(Eq. 5.1) when applied on wide range of classifiers taking into account the

optimal accuracy of the classifiers over the dataset.

A simple GA, which optimises the accuracy of theKNN classifier over a 10-fold

cross-validation, was developed and adopted to select the best feature subsets.

To validate the performance of the proposed approach, GPI was applied on

the set of subsets obtained from the GA in different runs for eleven datasets

and the goodness of GPI outputs were evaluated using five classifiers.

The proposed GPI was compared with various aggregation methods and a

frequency-based method. The computation results confirmed that GPI has

outperformed other methods for most of the cases, and for other cases similar

results have been obtained.

EC algorithms are powerful search techniques that do not need domain knowl-

edge, do not make any assumptions about the search space, and can produce

multiple good solutions. However, their application to real-world has been

limited due to their stability issue. EC algorithms reach different solutions

whenever they are run and this is a problem, particularly in the biomedical

domains, when a specific set of features is sought after to construct prediction

models.

The proposed approach can help EC algorithms to be more applicable to real-

world problems. Moreover, a subset with high generalisation power can guar-

antee near optimal classification performance over various classifiers. This can

obviate the choice of classifier in cases that the best classifier for the data at

hand is not known in advance and the selected subset can be used to eval-
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uate the performance of different classifiers without having to repeat a fea-

ture selection process for each classifier. This solution can be of importance

to researchers with limited combinatorial optimisation and machine learning

knowledge.

The next chapter, Chapter 6 discusses the application of the proposed TAGA

and GPI methods (these we described in Chapters 4 and 5 respectively), to

a real-world large-scale microarray dataset for the task of breast cancer type

classification.



Chapter 6

Application of methods to

Breast Cancer type classification

6.1 Introduction

In recent years, microarray-based gene expression profiling has provided a bet-

ter understanding of breast cancer [102]. Breast cancer consists of a group of

different diseases characterized by distinct molecular aberrations rather than

a specific disease with different histological characteristics and clinical results

[102]. Breast tumor analysis using microarray data has significantly improved

the taxonomy of disease and the discovery of new biomarkers for clinical prac-

tice [120, 101, 65, 37]. In this case, the prediction of intrinsic subtypes of

breast cancer has known as a valuable strategy for determining the diagnosis

and prognosis of patients and their response to therapy [86]. Moreover, the

high quality of the microarray gene expression dataset processed by the Molec-

ular Taxonomy of Breast Cancer International Consortium (METABRIC) [30]

offers a unique chance to discover biomarkers that best discriminate against

intrinsic subtypes.
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However, such a high-dimensional dataset makes computing expensive and can

complicate a predictive model’s interpretation. To address these issues, feature

selection methods are applied on the METABRIC dataset to extract the most

informative biological information (e.g. biomarkers) to reduce the expression

dataset into the smallest possible subset of genes predictors. Mucaki et al. [90]

used various feature selection and machine learning methods including SVM,

BE, and mRMR to identify optimal subsets of genes that can accurately predict

therapeutic response of patients.

Milioli [86] analysed the application of a ranking feature method based on

newly propose evaluation metric called CM1 score [84] to identify novel biomark-

ers for subtype individuation that naturally appears from the METABRIC

breast cancer data set. Yang et al. [129] designed a forward selection-like fea-

ture selector for molecular subtype classification in which the features are se-

quentially added to the subset and prognostic score of the subset is maximised

as measure function and the algorithm stops adding new feature to the subset

when overfitting occurs. Firoozbakht et al. [42] used a chi-square feature selec-

tion algorithm to select the most informative genes for developing a predictive

model to predict breast cancer subtypes of METABRIC dataset. Selecting a

subset of relevant features is crucial to the analysis of high-dimensional data.

In fact, feature selection has three main advantages: it reduces computational

costs, mitigates the possibility of overfitting due to high inter-variable corre-

lations, and makes the model easier to interpret clinically [13].

In terms of selecting final subset, feature selection algorithms can be divided

into two categories: deterministic algorithms and non-deterministic algorithms.

In a deterministic algorithm including greedy search algorithms and score-

based ranking methods, for a given particular input, the algorithm will always

select the same final subset but in case of a non-deterministic algorithm (such
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as EC algorithms), for the same input, the algorithm may produce different

final subsets in different runs which is known as the stability issue (discussed in

Chapter 3). However, for some domains of application, particularly biomedical

data, a set of specific features is sought after to construct predictive models

which ensures optimum results in terms of both predictive performance and

stability (i.e. robustness to changes in parameters and input data). This could

be a reason as to why EC techniques have not been widely applied in real-world

datasets, particularly METABRIC dataset.

To deal with the stability issue of EC algorithms, a generalisation power ap-

proach was developed in chapter 5 in which a further selection process based

on the generalisation power analysis of the subsets is adopted to select a best

subset out of many subsets obtained from the output of an EC algorithm

in several runs. The proposed approach works based on GPI that measures

generalisation power of the subsets over multiple classifiers.

In fact, GPI measures how closely a subset has been able to follow optimal sub-

sets of multiple classifiers in terms of classification performance. For applying

GPI analysis to the METABRIC dataset, TAGA embedded in a Filter/filter

hybrid framework, developed in chapter 4, is run several times and the final

subsets are saved for further processing through the GPI approach.

TAGA, is a string type long-term memory TS hybridised with an integer-coded

AGA [21] as the LS in order to provide new search directions for the algorithm.

TAGA uses mRMR criterion [98] to evaluate the subset and therefore the

selected subset is not classifier-biased.
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Figure 6.1: Experimental methodology flowchart

6.2 Experimental design

6.2.1 Experiment methodology

Figure 6.1 shows the flowchart of steps adopted to obtain experimental results.

In the first step, the raw METABRIC data is extracted and appropriate data

pre-processing methods are applied to prepare the data.

In the next step, TAGA is applied on the data to discover the most informative

features for predicting cancer subtypes. TAGA is an EC algorithm it and

produces a different solution in different runs, and for this reason TAGA was

executed multiple times (i.e. multiple runs) and at the end of each run the

best selected subset of features was saved into a pool of elite subsets. After

that, a generalisation power analysis is performed on the elite subsets available

in the pool to find the best subset.

Finally, the performance of final subset is compared with the other subsets

obtained through other available benchmark feature selection methods in the

literature namely: CM1 score [84], Chi-squared [74], mRMR [98], and BE-SVM

[90]. These steps are elaborated in the following subsections.
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Subtype Basal Her2 LumA LumB Normal N/A
# Samples 331 239 715 490 199 6

Table 6.1: The number of samples corresponding to each subtype

6.2.2 Data preparation

Dataset description

The breast cancer microarray dataset integrated by Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC), known as METABRIC

dataset, is used in this study which is hosted by the European Bioinformat-

ics Institute (EBI) and stored in the European Genome-Phenome Archive

(EGA)1, under the EGAS00000000083 accession number. It consists of tran-

scriptomic information processed on the Illumina HT-12 v3 platform (cDNA

microarray profiling), as described in [125]. METABRIC divided the log2-

normal gene expression values of primary tumors into two subsets: training

(997 samples) and validation (989 sample) and each sample contains expression

information of 48,803 probe IDs (features).

METABRIC dataset contains information on the long-term clinical and patho-

logical outcomes of patients,, including the sample assignment into intrin-

sic subtypes. In the early 2000s, five molecular subtypes were proposed for

breast cancer: luminal A, luminal B, HER2-enriched, normal-like and basal-

like breast tumours [99, 110]. Later, Parker et al. [96] proposed a list of 50

genes for identifying subtypes of METABRIC samples known as PAM50 in

conjunction with the Prediction Analysis for Microarrays (PAM) classification

algorithm [114]. The numbers and the percentage of samples corresponding to

each subtype are listed in Table 6.1 and Figure 6.2 respectively.

1http:// www.ebi.ac.uk/ega/
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Figure 6.2: Percentage plot of subtypes in METABRIC dataset

Data pre-processing

There are 22 missing values in the data and there are 6 samples for which the

subtype of cancer is not available. To pre-process the data, the samples with

unavailable subtype are removed from the data and then the missing values

are imputed using mean imputation method. Mean imputation is a method in

which a certain variable’s missing value is replaced by the mean of the available

cases. After pre-processing the data, the number of samples is reduced to 1980

with 48803 probe values (e.g. variables).

Data normalization

z-score method is employed to normalise the data. Z-score is a data normal-

isation strategy that handle outlier issue in the data. The advantage of the

transformation of the Z-score is that in a set of raw scores it takes into account

both the mean value and the variability. Z-score indicates how much a value
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deviates from the mean of using the following equation.

Z − score =
value− µ

σ
(6.1)

where, µ stands for the mean value of the feature, and σ presents the standard

deviation. If a value is exactly the same as the mean value of the feature, it

will be normalised to 0. If it is lower than the mean, it is normalised to a

negative value, and if it is greater than the mean it is normalised to a positive

value. The magnitude of these negative and positive values is determined by

the original feature’s standard deviation. If the unnormalised data has a high

standard deviation, the normalised values are closer to 0.

6.2.3 Benchmark methods

CM1

The CM1 score is a supervised univariate method utilised for measuring the

difference of samples’ expression levels in two or more different classes [84]. For

each breast cancer intrinsic subtype, CM1 ranks the features to select highly

discriminative ones. Let X and Y be a partition of a set of samples into two

classes, with X the class of interest and Y all other classes. A sample belongs

either to class X or to class Y . For each probe i the CM1 score is calculated

using Equation 6.2.

CM1i(X, Y ) =
x̄i − ȳi

1 + (max{yi} −min{yi})
(6.2)

where, x̄i is probe i mean expression value for the samples in class X, ȳi shows

probe i mean expression value for samples in class Y , max{yi} and min{yi}

are probe i minimum and maximum expression values for samples in the class
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Y .

Equation 6.2 can be interpreted as the normalised difference between the mean

expression values in the class X and the class Y . The normalisation is pro-

portional to the range of values in class Y . To find the most discriminative

probes (e.g. features), as proposed by [86], for each breast cancer subtype, the

CM1 score of the probes for each 5 subtypes is calculated using Equation 6.2

which results in 5 lists of CM1 scores. Then, for each subtype, the 10 most

important probes (5 with the greatest positive CM1 score values and 5 with

the smallest negative CM1 score values) are chosen. As one probe might be

chosen for more than one subtype, only unique probes are selected as final

subset of probes.

Chi-squared Method

Chi-squared is an efficient method for numerical data feature selection that

automatically and adaptively discretises and selects numerical features [74].

Chi-squared is a univariate filter-based on the c2 statistic [74]. This method

evaluates the godness of each feature by calculating the the chi-squared statistic

value taking into account the classes. The higher the chi-squared statistic

value is, the more relevant the feature will be. This method evaluates the

relevance of each feature independently an therefore, it is usually fast in terms

of computation time.

mRMR

Peng et al. [98] proposed a sequential forward selection algorithm in which

information theory-based definitions of mRMR is maximised to select those

features that have the highest relevance with the target class and the lowest

redundancy. The mRMR equation is explianed as follows.
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mRMR = max
j∈Q−S

[

I(fi, y)−
1

S

∑

s∈S

I(fj, fs)

]

(6.3)

where fj is the jth feature in the initial F-dimensional feature space, fs is

a variable that has already been selected in the feature subset S, s is an

individual feature and Q contains all the features in the initial feature space,

S contains the selected features and Q−S contains those features that are not

selected. The features are sequentially added to the features subset starting

from an empty set and only those features are kept that maximise mRMR

value of the entire subset. This process continues until the stop criterion is

met.

Backward Elimination-SVM (BE-SVM)

Backward elimination feature selection is a greedy algorithm in which one

feature of the set is left out in a reduced feature set and the classification is

then assessed using SVM classifier; features that maintain or lower the miss-

classification rate are kept in the subset and the rest are discarded. The

procedure is repeated until the subset with the lowest miss-classification rate

is selected as the optimal subset of features.

6.2.4 Learning algorithms and evaluation metric

During the experiments, the subsets are evaluated using five conventional ma-

chine learning classifiers, namely SVM, KNN, CART, NB, and LDA. For clas-

sifying the METABRIC dataset, the number of k for the KNN classifier was

set to K = 5, the kernel function for SVM classifier was set to linear function,

the discrimination type for LDA was set to diagonal co-variance, and data dis-

tribution for NB classifier was set to normal distribution. All the parameters
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were chosen experimentally.

To guarantee valid results for making reliable predictions, 10-fold cross-validation

was adopted in which the data samples are divided into roughly 10 equal folds

and in each of 10 validation processes, one fold is taken as testing set and the

other nine folds are used to train the learning algorithm. At the end of the

k-fold validation process, a mean accuracy value was obtained for each valida-

tion set of each fold, and hence the ten values were averaged to provide overall

classification performance.

6.3 Results and discussion

This section brings together the proposed methods, TAGA (chapter 4) and

GPI (chapter 5), and describes the experiments carried out to determine the

effectiveness of combining TAGA embedded into a filter/filter framework with

GPI to select the most informative features from the METABRIC dataset

for the breast cancer subtype classification task. The proposed approach is

compared to other existing methods in the literature, namely CM1 [86], Chi-

squared [42], mRMR [90], and BE-SVM [90].

For obtaining computation results, in the first stage of the TAGA, Fisher

score algorithm is experimentally set to select the top 100 features of the

METABRIC dataset and a reduced dataset is formed. Then, TAGA is exper-

imentally set to run 30 times on the reduced dataset to select the best subset.

At the end of each run, the best subset is transferred into a pool of elite sub-

sets. After the 30th run when there are enough elite subsets in the pool, GPI

analysis is applied on the subsets to choose the best final subset. The best

subset is then evaluated using various classifiers and compared with the sub-

sets obtained from alternative methods in terms of classification performance
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using a 10-fold cross validation method. It must be mentioned that in order to

have a fairer comparison, Fisher score was also applied on the dataset for other

competing algorithms in the same way as TAGA and the subset cardinality

range for all the algorithms is experimentally set to 50 features which allows

the algorithm to select up to 50 features in their final subset.

Table 6.2 shows the 10-fold cross validation classification accuracy results ob-

tained for 5 classifiers over the METABRIC dataset using combination of

TAGA with GPI (denoted by TAGA-GPI in Table 6.2) selected subset com-

pared to the subsets selected by other four methods. In Table 6.2, the values

in parenthesis show the number of selected features for each algorithm, the cell

values present the percentage of classification accuracy for a pair of classifier-

algorithm, the last column presents the average of four classification accuracies

for each algorithm, and the highlighted values show the best classification per-

formances.

As can be seen in Table 6.2, TAGA-GPI has outperformed other methods

for LDA, NB, and KNN and for CART classifier TAGA-GPI has also per-

formed better than the other algorithms except Chi-squared method for which

comparable accuracy has been obtained. TAGA-GPI has also had the best

average accuracy over five classifiers (last column of Table 6.2) which indicates

the selected features provide better generalisation power over wide range of

classifiers.

However, for SVM classifier, BE-SVM algorithm has had the best performance.

For SVM classifier, TAGA has not had the best performance and BE-SVM

has outperformed it. This result is predictable because in BE-SVM, the BE

algorithm directly searches for a subset of features which optimise the classifi-

cation performance of the SVM classifier. Therefore, it is not surprising that

the selected subset has had the best performance over SVM classifier. On the
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other hand, TAGA-GPI tries to find a subset which has the highest generali-

sation power over a range of classifiers. Therefore, the selected subset through

TAGA-GPI might not achieve an optimal accuracy over a specific classifier but

it achieves near optimal accuracy for all classifiers. That is why the average

accuracy for five classifiers (last column of Table 6.2) is higher for TAGA-GPI

compared to BE-SVM.

Classifier SVM LDA NB KNN CART Average
(%) (%) (%) (%) (%) (%)

BE-SVM (50) 83.69 74.11 74.87 77.46 71.28 76.28
CM1 (31) 80.55 74.77 76.19 75.94 71.28 75.75
mRMR (50) 76.85 65.55 68.24 73.66 64.84 69.83
Chi-Squared (50) 81.00 73.51 75.08 78.82 72.59 76.20
TAGA-GPI (18) 81.76 78.88 79.03 78.98 71.63 78.10

Table 6.2: Comparison of TAGA-GPI with other methods over METABRIC
dataset. For each classifier and selection method, the values in parentheses is
the number of selected features by each algorithm and the cell values are the
classification accuracy. The last column reports the average of the classification
accuracies for each algorithm.

6.4 Conclusion

In this chapter, the application of the developed TAGA embedded into a fil-

ter/filter framework and GPI approach described in chapters 4 and 5 respec-

tively on the METABRIC cancer subtype classification problem was investi-

gated. The METABRIC dataset contains expression profiles to identify breast

cancer subgroups in an effort to help physicians provide better treatment rec-

ommendations to patients.

The feature selection methods which have been used used so far in the litera-

ture to select the most informative features for METABRIC dataset are deter-

ministic greedy search algorithms [84, 74, 98, 90] which make locally optimal

choices with the aim of finding a global optimum amongst local optima and
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therefore, usually are stuck into local optimum. However, EC-based feature

selection algorithms which have powerful global search capability and have not

been considered as an option for METABRIC dataset in the literature thus far

to the best of the author’s knowledge. This is mainly because, for biomedical

and healthcare classification purposes a specific subset of features is sought

after to build up machine learning algorithms upon however, EC algorithms

are random search algorithms meaning that they provide stochastic solutions

rather than deterministic solutions.

To employ an EC algorithm in real-world application, in this chapter TAGA

and GPI methods which were previously developed in chapters 4 and 5 are

combined to select the best subset of features for METABRIC dataset. In the

experiments described in this chapter, TAGA was firstly run independently

multiple times and the final subsets in each run were further analysed using the

GPI approach to select the best subset. Finally, the selected subset was com-

pared against the subset selected by greedy feature selection methods which are

currently being used for METABRIC dataset in terms of classification perfor-

mance over various classifiers. experimental results on the METABRIC show

that the proposed approach of combination of TAGA and GPI is promising

for the biomedical feature selection task of finding the most stable subset of

features for building future proof prediction models.

In Chapter 7, the solutions to address EC-based algorithms limitations for

feature selection are summarised, the contribution and the objectives of the

thesis are reviewed, and suggestions for future work are provided.



Chapter 7

Conclusions, Discussion and

Future Work

7.1 Conclusions and discussion

This thesis proposes solutions to deal with the problem of EC-based feature

selection algorithms for selecting a set of features for building machine learning

models. For this purpose, four objectives were defined and for each of which

a solution was proposed. Each of these objectives, achievements, and future

work are described in the discussion that follows.

• Objective O1: Develop an EC-based feature selection algorithm which

benefits from new solution representation and search components to re-

duce computation time taken by EC algorithms for finding optimal or

near optimal subsets of features within high-dimensional datasets for

building machine learning models.

• Objective O2: Develop a solution to address classifier-bias problem as-

sociated with EC algorithm embedded into wrapper frameworks, par-

ticularly filter/wrapper approaches, for which the selected features are
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biased toward the utilised classifier. The proposed solution will select

the features independent of the classification performance of any classi-

fier and therefore, the selected feature will be able to provide acceptable

performance over wide range of classifiers.

Objectives 1 and 2 are related and therefore the contribution for both ob-

jectives is discussed below. To resolve the computation time limitation of

EC algorithms for feature selection (Objective 1) as well as the classifier-bias

problem of filter/wrapper approaches (Objective 2), a novel hybrid feature se-

lection framework called filter/filter approach was proposed (see Chapter 4).

The filter/filter is a two-stage feature selection approach which combines two

filter feature selection algorithms. In the first stage, Fisher score was used

to reduce the search space by selecting the most informative features which

were fed as input into the second stage. The first stage reduces the size of

the original dataset and as a result reduces the computation time required by

EC algorithm to process the reduced dataset in the second stage. Fisher score

has shown robust and promising performance [82, 93, 127] for feature selection

problems. However, Fisher score can be replaced with other ranking algorithm

for a better performance on specific datasets if needed.

In the second stage, a new EC-based feature selection algorithm was devel-

oped which is called TAGA. TAGA is a mutation-based GA hybridised with a

long-term memory TL and guided by a SFS procedure. TAGA benefits from

new solution representation and search components which are able to signif-

icantly reduce the computation time. The solution representation for TAGA

is an integer-encoded one which is composed of two parts for both selected

features of the subset and unselected features which are used to explore new

regions of the search space through a novel mutation operator (see Fig. 4.2).

The proposed mutation swaps the features in the selected part of the solu-
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tion with the features from unselected part taking into account the quality

of features in terms of the mutual information between the features and the

target. In addition, a new TL encoding scheme was proposed in order to

make the solution storing and restoring processes computationally more effec-

tive. The new encoding scheme converts the solutions into string values, which

need less computation time to be processed. To overcome classifier-bias issue,

the mRMR evaluation metric was employed as the fitness function for TAGA

which statistically evaluates the subsets and therefore, the selection process is

independent of any classifier and the selected subsets are not biased toward a

specific classifier.

Exhaustive experiments were carried out and the proposed TAGA was com-

pared with greedy search and the state-of-the-art algorithms found in the lit-

erature. To have a fair performance comparison, the Fisher score was used

to reduce the datasets for all comparing algorithms. The computation results

confirmed that TAGA outperformed most of the algorithms in terms of clas-

sification performance. In terms of the computation time, TAGA performed

relatively fast and required comparable computation time to the alternative

algorithms.

• Objective O3: Develop a solution to the stability issue [128] associated

with the challenge of finding the best subset of features over several runs,

when EC algorithms are adopted for feature selection tasks. A solution

would be based on a Generalisation Power Index (GPI) which measures

the performance of feature subsets in terms of generalisation power over

multiple classifiers.

In order to stabilise an EC algorithm, its random factors need to be removed

from the search process which is against stochastic nature of EC algorithm. To
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address stability issue of EC algorithms for feature selection (Objective 3), this

thesis propose a further subset selection to find the most stable set of features

based on based on the generalisation power analysis. The proposed approach

works based an index called GPI that measures the generalisation power of

the subsets in a pool of subsets obtained from the output of an EC algorithm

when executed several times over multiple classifiers (see Chapter 5). In fact,

GPI measures the quality of a feature subset when applied on wide range of

classifiers taking into account the optimal accuracy of the classifiers over the

dataset. Therefore, GPI select the best subset which is able to achieve optimal

or near optimal accuracy when applied over wide range of classifiers. The

features of the best subset are considered a stable set of feature representing

the final output of the EC algorithm. To validate the performance of the

proposed approach, GPI was applied on the set of subsets obtained from a

test case EC algorithm in different runs and the proposed GPI was compared

with various alternative methods. The computation results confirmed that

GPI outperformed other algorithms in finding a stable set of features which

are able to provide acceptable classification performance over wide range of

classifiers. The proposed GPI approach can help EC algorithms to be more

applicable to real-world problems which applications is currently limited due

to their stability issue.

• Objective 04: Evaluate the performance of the proposed algorithms

on a real-world case study in particular the METABRIC breast cancer

dataset. METABRIC dataset contains a large number of features and

many samples, and the proposed algorithms are applied to METABRIC

dataset in order to find the best biomarkers for detecting breast cancer

subtypes.
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To evaluate the performance of the proposed TAGA and GPI (Chapters 4 and

5) on a real-world case study (Objective 4), the algorithms were employed to

select most informative biomarkers for METABRIC cancer subtype classifica-

tion problem. For this purpose, TAGA and GPI were sequentially combined

in such a way that TAGA was firstly run independently multiple times and

the final subsets in each run were stored in a pool and then were analysed

further using GPI approach to select the best subset. The subset selected

by the combination of TAGA and GPI was compared against the subset se-

lected by other feature selection methods which are currently being used for

METABRIC dataset in terms of classification performance over various clas-

sifiers. The computation results proved that not only, the combination of

TAGA embedded into a filter/filter framework and GPI was able to address

the limitations of EC algorithms for a biomedical real-world problem but, it

also performed better than alternatives methods in terms of finding a stable set

of features which achieves optimal or near optimal accuracy when applied on

various classifiers. Therefore, the proposed approaches are promising for the

biomedical feature selection tasks of finding the most stable subset of features

for building future proof prediction models.

7.2 Future work

In this thesis some limitations and challenges of EC algorithms for feature

selection were addressed. However, during the research, other challenges were

identified which can be the topic of future studies.

Firstly, hybrid feature selection algorithms employ an algorithm to filter out

the most informative features. However, it was observed that the number

of features filtered out affect classification performance and therefore in this
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thesis a set of experiments were performed to empirically adjust the number

of features to be filtered out. The question which arises here is:

• what methods or algorithms can be implemented to efficiently adjust

the number of features to be filtered out in the filtering stage in order

to identify the features which achieve optimum machine learning perfor-

mance?

Secondly, another observation was that applying filtering algorithms in the

filtering stage would boost the overall classification performance compared to

when the feature selection process is applied on the original dataset. However,

using a different filtering algorithm for a different dataset may lead to better

results. Consequently, another question is:

• how to efficiently choose the best filtering algorithm for a specific dataset,

and/or is there any way to develop a filtering algorithm which performs

well when applied on any dataset?

Thirdly, TAGA benefits from a novel integer-encoded solution representation

which allows statistical evaluation metrics (such as mRMR) to be applied as

fitness functions for EC algorithms as opposed to when binary solution repre-

sentation is employed. However, the integer-encoded representation requires

the user to define the size of cardinality to be discovered in advance. In this

thesis, the cardinality size was defined experimentally. Two questions arise

here:

• what methods can be implemented to identify the optimum cardinality

size of feature subsets from high-dimensional datasets which contain a

large number of features?
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• is it possible that an algorithm automatically finds the optimum cardi-

nality size rather than it to be user or experimentally defined?

Fourthly, TAGA is an enhanced EC algorithm which addresses the limitations

of EC algorithms for feature selection, particularly in terms of computation

time. Furthermore, the designed TL for TAGA helps it to have high diversity

amongst solutions. However, algorithm parallelisation can significantly im-

prove the performance of an EC algorithm in terms of solution diversity and

computation time. The question that arises here is:

• what is the best approach to parallelising TAGA and what is the impact

of the parallelised TAGA on high-dimensional data which is of low or

high sample size?

Finally, the effectiveness of the proposed approaches was confirmed on a large-

scale breast cancer type classification problem. The proposed approaches are

promising for various tasks which concern finding the most stable subset of

features for building future proof prediction models. Further future work in-

volves investigating the effectiveness of the proposed approaches for other tasks

that require building machine learning models using a stable set of features

including those for biomedical, engineering, clinical and other applications.
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