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Algorithms for Internal Validation Clustering Measures in the

Post Genomic Era

Abstract: Inferring cluster structure in microarray datasets is a fundamental task for
the so-called -omic sciences. It is also a fundamental question in Statistics, Data Analysis
and Classification, in particular with regard to the prediction of the number of clusters in a
dataset, usually established via internal validation measures. Despite the wealth of internal
measures available in the literature, new ones have been recently proposed, some of them
specifically for microarray data.
In this dissertation, a study of internal validation measures is given, paying particular
attention to the stability based ones. Indeed, this class of measures is particularly prominent
and promising in order to have a reliable estimate of the correct number of clusters in a
dataset. For this kind of measures, a new general algorithmic paradigm is proposed here that
highlights the richness of measures in this class and accounts for the ones already available in
the literature. Moreover, some of the most representative data-driven validation measures
are also considered. Extensive experiments on twelve benchmark microarray datasets are
performed, using both Hierarchical and K-means clustering algorithms, in order to assess
both the intrinsic ability of a measure to predict the correct number of clusters in a dataset
and its merit relative to the other measures. Particular attention is given both to precision
and speed. The main result is a hierarchy of internal validation measures in terms of
precision and speed, highlighting some of their merits and limitations not reported before
in the literature. This hierarchy shows that the faster the measure, the less accurate it is. In
order to reduce the time performance gap between the fastest and the most precise measures,
the technique of designing fast approximation algorithms is systematically applied. The end
result is a speed-up of many of the measures studied here that brings the gap between the
fastest and the most precise within one order of magnitude in time, with no degradation
in their prediction power. Prior to this work, the time gap was at least two orders of
magnitude.

Finally, for the first time in the literature, a benchmarking of Non-negative Matrix
Factorization as a clustering algorithm on microarrays is provided. Such a benchmarking
is novel and sheds further light on the use of Non-negative Matrix Factorization as a data
mining tool in bioinformatics. Given the increasing popularity of Non-negative Matrix
Factorization for data mining in biological data, the results reported here seem to contribute
to the proper use of the technique, being well aware of its limitations, in particular the
extensive use of computational resources it needs.

Keywords: Algorithms and Data Structures, Experimantal Analysis of Algorithms,
General Statistics, Analysis of Massive Datasets, Machine Learning, Computational Biol-
ogy, Bioinformatics.
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Introduction

In the past 15 years, a paradigm shift in Life Sciences research has taken place, thanks to the
availability of genomic and proteomic data on an unprecedented scale. Such a revolutionary
change has posed new challenges to Mathematics, Statistics and Computer Science, since
the conceptual tools proper of those three disciplines are fundamental for the study of
biological questions via computational tools, on a genomic scale. In the following, by way
of example, the converging views of Hood and Galas, two authorities in the Life Sciences,
and Knuth, an authority in Computer Science, are summarized.

In the Fifty Years Commemorative Issue of Nature on the discovery of DNA, Hood
and Galas [81] conclude their contribution by clearly stating that a mathematical notion of
“biological information” readily usable for the development of computational tools for -omic
investigations is lacking and that such a notion would be a fundamental contribution of
the Exact Sciences to the Life Sciences. Moreover, Knuth [11] assert that the contributions
given by Mathematics, Statistics and Computer Science to Molecular Biology would have
been unpredictable, both in depth and breadth, only at the end of the 90s. Yet, those
contributions are only a small fraction of the challenges faced by the Computer and In-
formation Sciences in strategic junctions of this domain. Therefore, the development of a
new core area of Mathematics and Computer Science is taking place. Although the topics
discussed in this dissertation are classical, they will be developed having well in mind such
an important new direction. In particular, this dissertation focuses on various aspects of
clustering when used in conjunction with microarray data.

Microarrays are a useful and, by now, well established technology in genomic investi-
gation. Indeed, experiments based on that technology are increasingly being carried out in
biological and medical research to address a wide range of problems, including the classi-
fication of tumors [8, 10, 48, 65, 135, 138, 146], where a reliable and precise classification
is essential for successful diagnosis and treatment. By allowing the monitoring of gene ex-
pression levels on a genomic scale, microarray experiments may lead to a more complete
understanding of the molecular variations among tumors and hence to a finer and more
reliable classification. An important statistical problem associated with tumor classifica-
tion is the identification of new tumor classes using gene expression profiles, which has
revived interest in cluster analysis. However, the novelty, noisiness and high dimensionality
of microarray data provide new challenges even to a classic and well studied area such as
clustering. More in general, new methodological and computational challenges are proposed
daily [47, 48, 96, 115]. As a results, there has been a “malthusian growth” of new statistical
and computational methods for genomic analysis. Unfortunately, many papers for -omic
research describe development or application of statistical methods for microarray data that
are questionable [118]. In view of this latter peril, in this dissertation an effort has been
made to use a methodology that is sound and coherent for the experimental validation of
the computational methods proposed here.

In microarray data analysis there are two essential aspects of clustering: finding a “good”
partition of the datasets and estimating the number of clusters, if any, in a dataset. The for-
mer problem is usually solved by the use of a clustering algorithm. In the Literature, a large
number of clustering algorithms has been proposed and many of these have been applied
to genomic data [42], the most famous are: K-means [87], fuzzy c-means, self-organizing
maps [136, 148, 153], hierarchical clustering [87], and model-based clustering [154, 155].
Some of those studies concentrate both on the ability of an algorithm to obtain a high
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quality partition of the data and on its performance in terms of computational resources,
mainly CPU time (see [27, 55, 100, 150] and references therein).

However, the most fundamental issue is the latter problem, i.e., the determination of
the number of clusters. Despite the vast amount of knowledge available in the general data
mining literature, e.g., [29, 49, 67, 68, 79, 87, 93, 95], gene expression data provide unique
challenges, in particular with respect to internal validation indices. Indeed, they must
predict how many clusters are really present in a dataset, an already difficult task, made
even worse by the fact that the estimation must be sensible enough to capture the inherent
biological structure of functionally related genes. Despite their potentially important role,
both the use of classic internal validation indices and the design of new ones, specific for
microarray data, do not seem to have great prominence in bioinformatics, where attention
is mostly given to clustering algorithms. The excellent survey by Handl et al. [73] is a big
step forward in making the study of those techniques a central part of both research and
practice in bioinformatics, since it provides both a technical presentation as well as valuable
general guidelines about their use for post-genomic data analysis. Although much remains
to be done, it is, nevertheless, an initial step.

For instance, in the general data mining literature, there are several studies, e.g., [119],
aimed at establishing the intrinsic, as well as the relative, merit of an index. To this end,
the two relevant questions are:

(i) What is the precision of an index, i.e., its ability to predict the correct number of
clusters in a dataset? That is usually established by comparing the number of clusters
predicted by the index against the number of clusters in the true solution of several
datasets, the true solution being a partition of the dataset in classes that can be
trusted to be correct, i.e., distinct groups of functionally related genes.

(ii) Among a collection of indices, which is more accurate, less algorithm dependent,
etc.,?.

Precision versus the use of computational resources, primarily execution time, would be an
important discriminating factor.

Contributions and Thesis Outline

From the previous brief description of the state of the art it is evident that, for the special
case of microarray data, the experimental assessment of the “fitness” of a measure has been
rather ad hoc and studies in that area provide only partial and implicit comparison among
measures. Moreover, contrary to research in the clustering literature, the performance of
validation methods in terms of computational resources, again mainly CPU time, is hardly
assessed both in absolute and relative terms. This dissertation is an attempt to tackle the
stated limitations of the state of the art in a homogeneous way. It is organized as follows:

• Chapter 1 provides the background information relevant to this thesis. Indeed, a
formal definition of the clustering problem and the notation used in this dissertation
is given. Moreover, the two main classes of clustering algorithms proposed in the
Literature, some methods for the assessment and evaluation of cluster quality, and
data generation/perturbation methods, are also detailed.

• Chapter 2 provides a presentation of some basic validation techniques. In detail,
external and internal indices are outlined. In particular, three external indices that
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assess the agreement between two partitions are presented. Moreover, four internal
measures useful to estimate the correct number of clusters present, if any, in a dataset
are detailed. They are based on: compactness, hypothesis testing in statistics and
jackknife techniques. The described measures have been selected since they are par-
ticularly prominent in the clustering literature. Moreover, they are all characterized
by the fact that, for their prediction, they make use of nothing more than the dataset
available, i.e., they are all data-driven. It is worth pointing out that another class
of measure is based on Bayesian Model and it is an aproach both to cluster analysis
and the estimation of the “best” number of clusters in a dataset. In order to keep
this thesis focus it will not be discussed in this dissertation. The interested reader
is referred to [141] and references therein for an in depth treatment of the relevant
topics regarding Bayesian Model Based Clustering.

• Chapter 3 provides one of the main topics of this thesis. Indeed, for the first time in
the Literature, a general algorithmic paradigm of stability internal validation measure
is introduced. It can be seen as a generalization of earlier works by Breckenridge and
Valentini. Moreover, it is shown that each of the known stability based measures
is an instance of such a novel paradigm. Surprisingly, also the Gap Statistics falls
within the new paradigm. Moreover, from this general algorithmic paradigm it is
simple to design new stability internal measure combining the building blocks of the
measures detailed. As will be evident in this dissertation, this particular category of
internal validation measure obtains excellent results in terms of estimation of number
of clusters in a dataset. In fact, prior to this study, they were perceived as a most
promising avenue of research in the development of internal validation measures.
Therefore, the identification of an algorithmic paradigm describing the entire class
seems to be a substantial methodological contribution to that area.

• Chapter 4 provides a formal description of one of the methodologies that has gained
prominence in the data analysis literature: Non-negative Matrix Factorization. In
particular, of relevance for this thesis, is the use of Non-negative Matrix Factorization
as a clustering algorithm.

• Chapter 5 describes the experimental methodology used in this thesis. The experi-
mental setup include, to the best of our knowledge, the most complete representative
collection of datasets used in the Literature. In particular, this collection is composed
of nine microarray datasets that seem to be a de facto standard in the specialistic
literature and three artificial dataset generated in order to evaluate specific aspects
of the clustering methodology, when used on microarray data. Moreover, this chapter
provides an exhaustive study of the three external indices detailed in this dissertation.
Furthermore, a benchmarking of Non-negative Matrix Factorization as a clustering
algorithm on microarrays data. Such a benchmarking is novel and sheds further light
on the use of Non-negative Matrix Factorization as a data mining tool in bioinfor-
matics.

• Chapter 6 provides a benchmarking of some of the most prominent internal valida-
tion measures in order to establish the intrinsic, as well as the relative, merit of a
measure taking into account both its predictive power and its computational demand.
This benchmarking shows that there is a natural hierarchy, in terms of the trade-off
time/precision, for the measures taken into account. That is, the faster the measure,
the less accurate it is. Although this study has been published only recently, it is
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already being referenced, even “back to back” to fundamental studies on clustering
such as the papers by D’haeseleer [42] and Handl et al. [73].

• Chapter 7, based on the benchmarking in Chapter 6, investigates systematically the
application of the idea of algorithmic approximation to internal validation measures
in order to obtain speedups. That is, the development of new methods that closely
track the behavior of existing methods, but that are substantially faster in time. Such
a systematic study seems to be quite novel. In this chapter, several approximation
algorithms and two general approximation schemes are proposed. In particular, an
approximation of a “star” of the area as Gap Statistics is proposed and it is shown that
it grants clearly superior results. Indeed, depending on the dataset, it is from two to
three orders of magnitude faster than the Gap Statistics, with a better prediction of
the correct number of clusters in a datasets. Finally, an approximation of Consensus
Clustering it is also proposed. In terms of the trade-off time/precision, it turns out to
be the best among all measures studied in this dissertation. Even more remarkably, it
reduces the time performance gap between the fastest measures and the most precise
to one order of magnitude. Prior to this work, the gap was at least two orders of
magnitude.

• Chapter 8 offers some conclusions as well as some future lines of research for further
development of the ideas presented in this dissertation.



Chapter 1

Background on Cluster Analysis

In this chapter, some fundamental aspects of cluster analysis are presented. In par-
ticular, the two main classes of clustering algorithms proposed in the literature are
described. Moreover, methods for the assessment and evaluation of cluster quality are dis-
cussed as well as data generation/perturbation methods which can be applied to the former.

1.1 Basic Mathematical Problem Formulations

Consider a set of n items Σ = {σ1, . . . , σn}, where σi, with 1 ≤ i ≤ n, is defined by m

numeric values, referred to as features or conditions. That is, each σi is an element in a
m-dimensional space. Let Ck = {c1, c2, . . . , ck} be a partition of Σ, i.e., a set of subsets
of Σ such that

⋃k
i=1 ci = Σ and ci ∩ cj = ∅ for 1 ≤ i 6= j ≤ k. Each subset ci, where

1 ≤ i ≤ k, is referred to as a cluster, and Ck is referred to as a clustering solution. The
aim of cluster analysis is to determine a partition of Σ according to a similarity/distance
S, which is referred to as similarity/distance metric. It is defined on the elements in Σ. In
particular, one wants that items in the same cluster have “maximal similarity”, while items
in different clusters are “dissimilar”. For instance, an example comes from molecular data
analysis [158], in which a set of genes are the items and the features are the expression
level measurements in m different experimental conditions or in m different time periods.
Clustering would highlight groups of genes that are, for instance, functionally correlated or
that have the same response to medical treatments.

Usually, the set Σ containing the items to be clustered is represented in one of two
different ways: (1) a data matrix D, of size n×m, in which the rows represent the items and
the columns represent the condition values; (2) a similarity/dissimilarity matrix S, of size
n× n, in which each entry Si,j , with 1 ≤ i 6= j ≤ n, is the value of similarity/dissimilarity
of the pair (i, j) of items. Specifically, the value of Si,j can be computed using rows i

and j of D. Hence, S can be derived from D, but not viceversa. The specification and
formalization of a similarity metric, via mathematical functions, depends heavily on the
application domain and it is one of the key steps in clustering, in particular in the case of
microarray data. The state of the art, as well as some relevant progress in the identification
of good distance functions for microarrays, is presented in [139].

1.2 Clustering Algorithms

Usually, the partition of the items in Σ is accomplished by means of a clustering algorithm A.
In this chapter, only the class of clustering algorithms that takes as input D and an integer
k and return a partition Ck of Σ into k subsets is taken in account. There is a rich literature
about clustering algorithms, and there are many different classifications of them [87, 93]. A
survey of classic as well as more innovative clustering algorithms, specifically designed for
microarray data, is given in [152]. A classical classification is hierarchical versus partitional
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algorithms. The hierarchical clustering algorithms produce a partition by a nested sequence
of partitions and they are outlined in Section 1.2.1, where three of them are detailed [87],
referred to as Average Link (Hier-A for short), Complete Link (Hier-C for short), and
Single Link (Hier-S for short). The partitional clustering algorithms directly decompose
the dataset into a partition Ck. One of the most prominent in that class, i.e., K-means [87],
is detailed in Section 1.2.2.

1.2.1 Hierarchical Algorithms

In hierarchical clustering, items are related by a tree1 structure, referred to as dendogram

such that similar items are at the leaves of the same subtree. Each internal node represents a
cluster and the leaves correspond to the items. These algorithms can be either agglomerative
(“bottom-up”), in which one starts at the leaves and successively merges clusters together;
or divisive (“top-down”) in which one starts at the root and recursively splits the clusters.
For instance, in Fig. 1.1, a dendogram obtained by a run of Hier-A on a dataset of 24
elements according to the Euclidean distance is given. The partition C4 is marked. In what
follows, only the agglomerative approach is outlined. In particular, the Hier-A, Hier-C and
Hier-S clustering algorithms are considered in this thesis. Each of them is an instance of
the Hierarchical paradigm described in Fig. 1.2 as a procedure. The interested reader is
referred to [52, 77, 87] for an in depth treatment of the hierarchical clustering algorithms.

� �� � � �� �� � �� �� � � � �� �� �� 	 �� �	 �� A �� �A �� �� ��

Figure 1.1: Example of a dendogram. The nodes in red indicate the partition C4 where the
leafs (e.g. items) in the same subtree are in the same cluster.

Hierarchical takes as input a data matrix D and the desired number k of clusters.
In step 1, a similarity matrix S is computed from the data matrix D. In step 2, each item
is considered as a cluster, i.e., this step corresponds to the leaf level of the dendogram.

1One assumes that the reader is familiar with that general concepts of graph theory such as trees and
planar graphs. The reader is referred to standard references for an appropriate background [26].
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Hierarchical(D, k)

1. Compute a similarity matrix S

2. Initialize each item as a cluster

for i← 1 to n− k do

begin

3. Select the two most “similar” clusters

4. Merge them.

end

return (clustering_solution)

Figure 1.2: The Hierarchical procedure.

One single iteration of the for loop is discussed, which is repeated until n − k steps are
performed, i.e., until k clusters are obtained. In step 3, the most “similar” clusters ci and
cj are selected. The “similarity” between two clusters is measured by a distance function
Dist. Therefore, if ci and cj are the most similar Dist(ci, cj) is minimum. In step 4, ci and
cj are merged. Finally, the clustering solution obtained is given as output.

The three hierarchical clustering algorithms differ one from the other only for the dis-
tance function used to select the two clusters in step 3.
Hier-A computes the distance between two clusters ci and cj as the average of the values
of the similarity metric between the items of ci and cj , respectively. Formally:

Dist(ci, cj) =
1

|ci||cj |
∑

x∈ci

∑

y∈cj

Sx, y

where |ci| and |cj | are the sizes of the clusters ci and cj , respectively.
Hier-C computes the distance between two clusters as the maximal item-to-item similarity
matric value. Formally:

Dist(ci, cj) = max
x∈ci, y∈cj

Sx, y.

Finally, in Hier-S, the distance between two clusters is computed as the minimal item-to-
item similarity matric value Formally:

Dist(ci, cj) = min
x∈ci, y∈cj

Sx, y.

1.2.2 Partitional Algorithms

The goal of partitional clustering algorithms is to decompose directly the dataset into
a set of disjoint clusters, obtaining a partition which should optimize a given objective
function. Intuitively, the criteria one follows are to minimize the dissimilarity between
items in the same cluster and to maximize the dissimilarity between items of different
clusters. Therefore, clustering can be seen as an optimization problem, where one tries
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to minimize/maximize an objective function. Unfortunately, it can be shown to be NP-
Hard [57]. For completeness, the number of possible partitions can be computed via the
Stirling numbers of the second kind [87]:

1

k!

k∑

i=0

(−1)k−i

(
k

i

)
in.

Even for small k and n, it is such a substantially large number to discourage exhaustive
search. Therefore, existing algorithms provide different heuristics to solve the various ver-
sions of clustering as an optimization problem [75]. Here, K-means [113] is detailed. The
interested reader is referred to [87, 93] for an in depth treatment of the partitional clustering
algorithm.

In K-means, a cluster is represented by its “center”, which is referred to as centroid.
The aim of the algorithm is to minimize a squared error function, i.e., an indicator of the
distance of the n data points from their respective cluster centers. Formally:

k∑

j=1

∑

x∈cj

‖x− cj‖2,

where cj is the centroid of cluster cj .
The procedure summarizing K-means is reported in Fig. 1.3. In addition to the input

parameters of the Hierarchical procedure, K-means takes also the maximum number of
iterations allowed to the algorithm, which is referred to as Niter.

In steps 1 and 2, the dataset D is partitioned into k clusters, by a random selection
of the k centroids. One single iteration of the while loop is discussed, which is repeated
until at least one of the following two conditions is satisfied: (i) the clustering solution
has not changed or (ii) the maximum number of iterations has been reached. The former
condition is indicates in the procedure with H, while the latter condition prevents endless
oscillations [87]. The main part of the algorithm consists of steps 5-7, where each item in D

is assigned to the centroids with minimum distance. Indeed, for each i ∈ D, with 1 ≤ i ≤ n,
the distance between i and each centroid is computed in step 5. In step 6, item i is assigned
to the cluster whose distance from i is minimal. Finally, the clustering solution is given
as output. Figs. 1.4(b)-(d) report an example of successive iterations of K-means, where
the points in red are the two centroids. The algorithm is applied to the dataset, with two
well-separated clusters, reported in Fig. 1.4(a).
Moreover, it is worth pointing out that a clustering solution obtained by another clustering
algorithm (e.g. hierarchical) can be used as an initial clustering solution, instead of the
random partition generated in steps 1 and 2, by the K-means procedure. Accordingly,
when K-means starts the clustering from a random partition it is referred to as K-means-
R, while when it starts from an initial partition produced by one of the chosen hierarchical
methods it is referred to as K-means-A, K-means-C and K-means-S, respectively.

1.3 Assessment of Cluster Quality: Main Problems

Statement

In bioinformatics, a sensible biological question would be, for instance, to find out how
many functional groups of genes are present in a dataset. Since the presence of “statistically
significant patterns” in the data is usually an indication of their biological relevance [109],
it makes sense to ask whether a division of the items into groups is statistically significant.
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K-means(D, k,Niter)

1. Extract, at random, k items from D and use them as centroids

2. Assign each item of D to the centroid with minimum distance

3. step← 0

while (H or step > Niter) do

begin

4. step← step+ 1

for each i ∈ D do

begin

5. Compute the distance between i and each centroid

6. Assign i to the centroid with minimum distance

7. Compute the new k centroids

end

end

return (clustering_solution)

Figure 1.3: The K-means procedure.
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Figure 1.4: (a) Dataset. (b) Cluster membership after the first step. (c) Cluster membership
after the second step. (d) Cluster membership after the last step.

In what follows, the three problem statements in which that question can be cast [87] are
detailed.

Let Cj be a reference classification for Σ consisting of j classes. That is, Cj may either
be a partition of Σ into j groups, usually referred to as the gold standard, or a division of the
universe generating Σ into j categories, usually referred to as class labels. An external index

E is a function that takes as input a reference classification Cj for Σ and a partition Pk of Σ
and returns a value assessing how close the partition is to the reference classification. It is
external because the quality assessment of the partition is established via criteria external
to the data, i.e., the reference classification. Notice that it is not required that j = k. An
internal index I is a function defined on the set of all possible partitions of Σ and with values
in R. It should measure the quality of a partition according to some suitable criteria. It is
internal because the quality of the partition is measured according to information contained
in the dataset without resorting to external knowledge. The first two problems are:

(Q.1) Given Cj , Pk and E, measure how far is Pk from Cj , according to E.

(Q.2) Given Pk and I, establish whether the value of I computed on Pk is unusual and
therefore surprising. That is, significantly small or significantly large.

Notice that the two questions above try to assess the quality of a clustering solution Pk

consisting of k groups, but they give no indication on what the “right number” of clusters
is. In order to get such an indication, one is interested in the following:

(Q.3) Given: (Q.3.a) A sequence of clustering solutions P1, . . . , Ps, obtained for instance
via repeated application of a clustering algorithm A; (Q.3.b) a function R, usually
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referred to as a relative index, that estimates the relative merits of a set of clustering
solutions. One is interested in identifying the partition Pk∗ among the ones given
in (Q.3.a) providing the best value of R. In what follows, the optimal number of
clusters according to R is referred to as k∗.

The clustering literature is extremely rich in mathematical functions suited for the
three problems outlined above [73]. The crux of the matter is to establish quantitatively
the threshold values allowing one to say that the value of an index is significant enough.
That naturally leads to briefly mention hypothesis testing in statistics, from which one can
derive procedures to assess the statistical significance of an index. As will be evident in the
following sections, those procedures are rarely applied in microarray data analysis, being
preferred to less resource-demanding heuristics that are validated experimentally.

1.4 Cluster Significance for a Given Statistic: a General

Procedure

A statistic T is a function of the data capturing useful information about it, i.e., it can be
one of the indices mentioned earlier. In mathematical terms, it is a random variable and
its distribution describes the relative frequency with which values of T occur, according
to some assumptions. In turn, since T is a random variable, one implicitly assumes the
existence of a background or reference probability distribution for its values. That implies
the existence of a sample space. A hypothesis is a statement about the frequency of events
in the sample space. It is tested by observing a value of T and by deciding how unusual it
is, according to the probability distribution one is assuming for the sample space. In what
follows, one assumes that the higher the value of T , the more unusual it is, the symmetric
case being dealt with similarly.

The most common hypothesis tested for in clustering is the null hypothesis H0: there
is no structure in the data (i.e. k = 1). Testing for H0 with a statistic T in a dataset
D means to compute T on D and then decide whether to reject or not to reject H0. In
order to decide, one needs to establish how significant is the value found with respect
to a background probability distribution of the statistic T under H0. That means one
has to formalize the concept of “no structure” or “randomness” in the data. Among the
many possible ways, generally referred to as null models, the most relevant proposed in
the clustering literature [25, 68, 87, 149] are introduced, together with an identification of
which one is well suited for microarray data analysis [48, 164]:

Unimodality Hypothesis. A new dataset D′ is generated as follows: the variables
describing the items are randomly selected from a unimodal distribution (e.g. normal).
This null model typically is not applied to microarray data, since it gives a high probability
of rejection of the null hypothesis. For instance, that happens when the data are sampled
from a distribution with a lower kurtosis than the normal distribution, such as the uniform
distribution [149]. Fig. 1.5(a) reports an example of a dataset generated via the unimodality
hypothesis.

Random Graph Hypothesis. The entries of the dissimilarity/distance matrix S are
random. That is, one assumes that, in terms of a linear order relation capturing proximity,
all the entries of the lower triangular part of S are equally likely, i.e., Si,j =

1
[n(n−1)/2]! for

1 ≤ i ≤ n and 1 ≤ j ≤ i. This null model is not applied to microarray data, since it does
not preserve the distances that may be present among items.
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Random Label Hypothesis. All permutations of the items are equally likely with
respect to some characteristic, such as a priori class membership. In order to use this
model, one needs to specify the a priori classification of the data. Each permutation
has a probability 1

n! . In particular, for microarray data, it coincides with the so called
Permutational Model, detailed in what follows.

• Permutational Model (Pr for short), it generates a random data matrix by randomly
permuting the elements within the rows and/or the columns of D. Some variants of
this model have been studied for binary pattern matrices [76, 160, 168]. In order to
properly implement this model, care must be taken in specifying a proper permu-
tation for the data, since some similarity and distance functions are insensitive to
permutations of coordinates. That is, although D′ is a random permutation of D,
it may happen that the distance or similarity among the points in D′ is the same
as in D, resulting in indistinguishable datasets for clustering algorithms. This latter
model may not be suitable for microarray data with very small sample sizes (condi-
tions), since one will not obtain enough observations (data points) to estimate the
null model, even if one generates all possible permutations.

Random Position Hypothesis. The items can be represented by points that are ran-
domly drawn from a region R in m-dimensional space. In order to use this model, one
needs to specify the region within which the points have to be uniformly distributed. Two
instances applied to microarray data [48, 62, 164] are distinguished:

• Poisson Model (Ps for short), where the region R is specified from the data. The
simplest regions that have been considered are the m-dimensional hypercube and hy-
persphere enclosing the points specified by the matrix D [68]. Another possibility, in
order to make the model more data-dependent, is to choose the convex hull enclosing
the points specified by D. Fig. 1.5(b) reports an example of a dataset D′ generated
by Ps, where the region R (the box in red) is obtained from the dataset D reported
in Fig.1.4(a).

• Poisson Model Aligned with Principal Components of the Data (Pc for short), where
Tibshirani et al. [164], following Sarle [149], propose to align the region R with the
principal components of the data matrix D. In detail, assuming that the columns
of D have mean zero, let D = UXV T be its singular value decomposition . Let
D̂ = DV . One uses D̂ as in Ps to obtain a dataset D̂′. Then one back transforms via
D′ = D̂′V T to obtain the new dataset. Fig. 1.5(c) reports an example of a dataset
D′ generated by Pc, where the region R (the box in red) is obtained from the dataset
D reported in Fig.1.4(a).

It is worth pointing out that in a multivariate situation, one is not able to choose a
generally applicable and useful reference distribution: the geometry of the particular null
distribution matters [149, 164]. Therefore, in two or more dimensions, and depending on
the test statistic, the results can be very sensitive to the region of support of the reference
distribution [48, 149].

Once a null model has been agreed upon, one would like to obtain formulas giving the
value of T under the null model and for a specific set of parameters. Unfortunately, not too
many such formulae are available. In fact, in most cases, one needs to resort to a Monte
Carlo simulation applied to the context of assessing the significance of a partition of the
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Figure 1.5: Dataset generated via (a) the Unimodality Hypothesis; (b) the Poisson Null
Model; (c) the Poisson Null Model Aligned with Principal Components of the Data.

data into k clusters. In technical terms, it is a p-value test assessing whether in the dataset
there exist k clusters, based on T and the null model for H0. It is referred to as MECCA,
an abbreviation for Monte Carlo Confidence Analysis, and it is described in Fig. 1.6. The
procedure is also a somewhat more general version of a significance test proposed and
studied by Gordon [67, 68] for the same problem. It takes as input an integer ℓ (the
number of iterations in the Monte Carlo simulation), a clustering algorithm A, a dataset
D, the function T , a partition Pk of D obtained via algorithm A and a parameter α ∈ [0, 1]

indicating the level of “significance” for the rejection of H0. It returns a value p ∈ [0, 1]. If
p < α, the null hypothesis of no cluster structure in the data is to be rejected at significance
level α. Else, it cannot be rejected at that significance level.

A few remarks are in order. As pointed out by Gordon, significance tests aiming at
assessing how reliable is a clustering solution are usually not carried out in data analysis.
Microarrays are no exception, although sophisticated statistical techniques specific for those
data have been designed (e.g. [49]). One of the reasons is certainly their high computational
demand. Another, more subtle, reason is that researchers expect that “some structure” is
present in their data. Nevertheless, a general procedure, like MECCA, is quite useful as a
paradigm illustrating how one tries to assess cluster quality via a null model and a statistic
T . Indeed, one computes the observed value of T (on the real data). Then, one computes,
via a Monte Carlo simulation, enough values of T , as expected from the formalization of H0

via the null model. Finally, one checks how “unusual” is the value of the observed statistic
with respect to its expected value, as estimated by a Monte Carlo simulation. In Chapters
2 and 3, two methods that one describes in this thesis resort to the same principles and
guidelines of MECCA, although they are more specific about the statistic that is relevant
in order to identify the number of clusters in a dataset.
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MECCA(ℓ, A,D, T, Pk, α)

for i← 1 to ℓ do

begin

1. Compute a new data matrix Di, by using the chosen null model.

2. Partition Di into a set of k clusters Pi,k by using the algorithm A.

end

for i← 1 to ℓ do

begin

3. Compute T on Pi,k.

4. Let SL be the non-decreasing sorted array of T values.

end

5. Let V denote the value of T computed on Pk.

6. Let p be the proportion of the values in SL larger than V.

return (p)

Figure 1.6: The MECCA procedure.

1.5 Data Generation/Perturbation Techniques

The null models described in Section 1.4 can be seen as an instance of a very general
procedure, in what follows referred to as DGP, that generates new datasets from a given
one. Such a procedure takes as input a dataset D, of size n × m, together with other
parameters and returns a new dataset D′ of size n′ × m′, with n′ ≤ n and m′ ≤ m. In
this section, additional instances of DGP are detailed. They are used in microarray data
analysis to generate data points in order to compute a cluster quality measure. Each of
them can be thought of as a paradigm in itself and therefore in this section only an outline
is provided.

1.5.1 Subsampling

The simplest way to generate a new dataset D′ from D is to take random samples from it.
Although simple, this approach critically depends on whether the sampling is performed
without or with replacement. The first type of method is referred to as subsampling. It
is widely used in clustering and briefly discussed here. The second method is referred to
as bootstrapping and, although fundamental in statistics [50], it is hardly used in cluster
validation as pointed out and discussed in [87, 122].

Formally, a subsampling procedure takes as input a dataset D and a parameter β, with
0 < β < 1, and gives as output a percentage β of D, i.e., the dataset D′ has size n′ ×m,
with n′ = ⌈βn⌉. D′ is obtained via the extraction of n′ items (i.e. rows) from D, which are
usually selected uniformly and at random.
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The aim of subsampling procedures is to generate a reduced dataset D′ that captures
the structure (i.e. the right number of clusters) in the original data. Intuitively, both the
chances to achieve that goal and the time required by procedures using D′ increase with β.
In order to have a good trade-off between the representativeness of D′ and the speed of the
methods using it, a value of β ∈ [0.6, 0.9] is used in the literature (e.g. [16, 48, 63, 122]).

The subsamping technique does not guarantee that each cluster of D is represented in
D′, i.e., the random extraction could not select any elements of a given cluster. Therefore,
Hansen et al. [74] propose a heuristic referred to as proportionate stratified sampling as an
alternative that may take care of the mentioned problem. In that case, D′ is generated
first by clustering D and then by selecting a given percentage β of the elements in each
cluster. Proportionate stratified sampling gives no formal guarantee that the entire cluster
structure of D is present in D′.

1.5.2 Noise Injection

Noise injection is a widely applied perturbation methodology in computer science (see
[17, 24, 95, 117, 143, 175] and reference therein). However, it is not widely applied in
clustering. The main idea is to generate D′ by adding a random value, i.e., a “perturbation”,
to each of the elements of D. Perturbations are generated via some random process, i.e.,
a probability distribution whose parameters can be directly estimated from D. In a study
about melanoma patients, Bittner et al. [24] propose to perturb the original dataset by
adding Gaussian noise to its elements in order to assess cluster stability. Following up,
Wolfinger et al. [175] report that perturbing the data via a Gaussian distribution provides
good stability results for several microarray datasets. As for parameter estimation, McShane
et al. [117] propose to compute the variance of experiments in each row of D and then to
use the median of the observed distribution as the variance in the Gaussian distribution.

1.5.3 Dimensionality Reduction Methods

The methodology described in this section is, in most cases, the dual of subsampling,
since the main idea is to obtain D′ by reducing the number of columns of D while trying to
preserve its cluster structure. Since each element, i.e. row, of D is a point in m-dimensional
space, one has a dimensionality reduction in the data.

A well established dimensionality reduction method in data analysis is the Princi-

pal Component Analysis (PCA for short) [87]. Although it is a standard method for di-
mensionality reduction from a statistical point of view, it is not used in conjunction with
stability-based internal validation measures (detailed in Chapter 3) because of its determin-
ism in generating D′. Note, however, that the main idea of principal components is used in
conjunction with null models (see for example the (M.2) model described in Section 1.4).

The following three techniques of dimensionality reduction seem to be of use in this
area. The first one is rather trivial since it consists of randomly selecting the columns
of D (cf. [156]). However, the cluster structure of D is unlikely to be preserved and this
approach may introduce large distortions into gene expression data, which then result in
the introduction of biases into stability indices (detailed in Chapter 3), as reported in [20].
More sensible approaches for dimensionality reduction are Non-negative Matrix Factoriza-
tion (NMF for short) and randomized dimensionality reduction techniques reported in the
following. This latter is discussed next, while discussion of the former is given in Chap-
ter 4, while an exhaustive benchmarking of NMF as a clustering algorithm is provided in
Chapter 5.
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1.5.3.1 Randomized Dimensionality Reduction

The technique consists of the use of a family of transformations that try to preserve the
distance with an “ε distortion level” between the elements of D. Intuitively, if two elements
are “close” in D, according to some distance function d, they should be “close” in D′. Let
f be a transformation from D in D′, f(σi) and f(σj) be the projections of two elements σi

and σj of D into D′. Let

df (σi, σj) =
d(σi, σj)

d(f(σi), f(σj))
.

If df = 1 the distance of the two elements is preserved. When 1 − ε ≤ df (σi, σj) ≤
1 + ε, one says that the function f preserves the distance with an “ε distortion level”. The
Johnson-Lindenstrauss Lemma and random projections are the keys to all the randomized
dimensionality reduction based techniques. Intuitively, for a fixed distortion level ε, the
Johnson-Lindenstrauss Lemma gives nearly optimal bounds to the value of m′ (cf. [9]),
formally:

Lemma 1 (Johnson-Lindenstrauss [89]). For any 0 < ε < 1 and any integer n, let m′ be a

positive integer such that

m′ > 4(ε2/2− ε2/3)−1 log n.

For any set V of n points in Rm there is a map function f : Rm → R
m′

such that for

all u, v ∈ V

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

The interested reader will find two independent simplified versions of the proof of the
above Lemma in [39, 85] and extensions to other spaces and distances in [6, 22, 37, 90]. It
is possible to determine a function f that satisfies the Lemma with high probability, e.g.,
at least 2/3, in randomized polynomial time [39, 85].

Since the projection into the new smaller space is a time consuming task, several heuris-
tics have been proposed in the literature. Some of them are based on sparse projection ma-
trices [5, 23], while a more innovative and recent approach has been proposed by Ailon and
Chazelle [6] with the addition of the Fast Fourier Transform to the Johnson-Lindenstrauss
Lemma. In conclusion, it is also worthy of mention that the dimensionality reduction
techniques described here are tightly connected to problems as approximate nearest neigh-
bor [12, 85] of relevance also for clustering.
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Fundamental Validation Indices

In this chapter, some basic validation techniques are presented. In detail, external and
internal indices are outlined. In the scholarly literature, the terms index is also referred to
as measure. Following the literature, in this dissertation both nomenclatures are used. The
external and internal indices differ fundamentally in their aims, and find application in dis-
tinct experimental settings. In particular, three external indices that assess the agreement
between two partitions are presented. Moreover, four internal measures useful to estimate
the correct number of clusters present in a dataset, based on: compactness, hypothesis
testing in statistics and jackknife techniques are also discussed. One of the topics of this
thesis is the study of a relevant paradigm of internal validation measure based on the notion
of cluster stability. For this reason this paradigm and the relative instances are thoroughly
discussed in Chapter 3.

2.1 External Indices

In this section three external indices, namely formulae, are defined. Such measures establish
the level of agreement between two partitions. Usually, for a given dataset, one of the
partitions is a reference classification of the data while the other one is provided as output
by a clustering algorithm.

Let C = {c1, . . . , cr} be a partition of the items in Σ into r classes and P = {p1, . . . , pt}
be another partition of Σ into t clusters. With the notation of Section 1.3, C is an external
partition of the items, derived from the reference classification, while P is a partition
obtained by some clustering method. Let ni,j be the number of items in both ci and pj ,
1 ≤ i ≤ r and 1 ≤ j ≤ t. Moreover, let |ci| = ni. and |pj | = n.j . Those values can be
conveniently arranged in a contingency table (see Table 2.1).

2.1.1 Adjusted Rand Index

Let a be the number of pairs of items that are placed in the same class in C and in the
same cluster in P ; let b be the number of pairs of items placed in the same class in C but
not in the same class in P ; let c be the number of pairs of items in the same cluster in P

but not in the same cluster in C; let d be the number of pairs of items in different classes
and different clusters in both partitions. The information needed to compute a, b, c and d

can be derived from Table 2.1. One has:

a =
∑

i,j

(
ni,j

2

)
, (2.1)

b =
∑

i

(
ni.

2

)
− a, (2.2)

c =
∑

j

(
n.j

2

)
− a. (2.3)
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Class \ Cluster p1 p2 . . . pt Sums

c1 n1,1 n1,2 . . . n1,t n1.

c2 n2,1 n2,2 . . . n2,t n2.

...
...

...
...

...

cr nr,1 nr,2 . . . nr,t nr.

Sums n.1 n.2 . . . n.t n.. = n

Table 2.1: Contingency table for comparing two partitions

Moreover, since a+ b+ c+ d =
(
n
2

)
, one has:

d =

(
n

2

)
− (a+ b+ c). (2.4)

Based on those quantities, the Rand index R is defined as [142]:

R =
a+ d

a+ b+ c+ d
(2.5)

Notice that, since a + d is the number of pairs of items in which there is agreement
between the two partitions, R is an index of agreement of the two partitions with value
in [0, 1]. The main problem with R is that its value on two partitions picked at random
does not take a constant value, say zero. So, it is difficult to establish, given two partitions,
how significant (distant from randomness) is the concordance between the two partitions,
as measured by the value of R. In general, given an index, it would be appropriate to take
an adjusted version ensuring that its expected value is zero when the partitions are selected
at random and one when they are identical. That can be done according to the following
general scheme:

index− expected index

maximum index− expected index
(2.6)

where maximum index is the maximum value of the index and expected index is its ex-
pected value derived under a suitably chosen model of random agreement between two
partitions, i.e. the null hypothesis. The Adjusted Rand Index RA is derived from (2.5)
and (2.6) using the generalized hypergeometric distribution as the null hypothesis. That is,
it is assumed that the row and column sums in Table 2.1 are fixed, but the two partitions
are picked at random. One has [84]:

RA =

∑
i,j

(
ni,j

2

)
−

[

∑

i
(ni.

2
)
∑

j
(n.j

2
)

]

(n2)

1
2

[
∑
i

(
ni.

2

)
+
∑
j

(
n.j

2

)
]
−

[

∑

i
(ni.

2
)
∑

j
(n.j

2
)

]

(n2)

RA has a maximum value of one, when there is a perfect agreement between the two
partitions, while its expected value of zero indicates a level of agreement due to chance.
Moreover, RA can take on a larger range of values with respect to R and, in particular,
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Class \ Cluster p1 p2 p3 p4 v5 Sums

c1 1 4 2 1 2 10

c2 0 1 1 0 1 3

c3 1 2 0 2 0 5

c4 2 1 0 1 2 6

c5 1 0 1 0 3 5

Sums 5 8 4 4 8 n = 29

Table 2.2: Contingency table example

may be negative [180]. Therefore, the two partitions are in significant agreement if RA

assumes a non-negative value, substantially away from zero. Notice that RA is a statistic
on the level of agreement of two partitions of a dataset (see Section 1.4) while R is a simple
indication of percentage agreement. To illustrate this point, consider two partitions of a
set of 29 items giving rise to Table 2.2. Then R = 0.677, indicating a good percentage
agreement while RA = −0.014 and, being close to its expected value under the null model,
it indicates a level of significance in the agreement close to the random case. In fact, the
entries in the table have been picked at random. RA is a statistic recommended in the
classification literature [120] to compare the level of agreement of two partitions.

2.1.2 Fowlkes and Mallows Index

The FM-index [54] is also derived from the contingency Table 2.1, as follows:

FMk =
Tk√

Uk · Vk

(2.7)

where:

Tk =

k∑

i=1

k∑

j=1

n2
ij − n (2.8)

Uk =
k∑

i=1

n2
i. − n (2.9)

Vk =
k∑

j=1

n2
.j − n (2.10)

The index has values in the range [0, 1], with an interpretation of the values in that interval
analogous to that provided for the values of R. An example can be obtained as in Sec-
tion 2.1.1. Indeed, for Table 2.2, one has FM5 = 0.186 indicating a low level of agreement
between the two partitions.

2.1.3 The F-Index

The F-index [145] combines notions from information retrieval, such as precision and recall,
in order to evaluate the agreement of a clustering solution P with respect to a reference
partition C. Again, its definition can be derived from the contingency Table 2.1.
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Given ci and pj , their relative precision is defined as the ratio of the number of elements
of the class ci within cluster pj , and by the size of the cluster pj . That is:

Prec(ci, pj) =
ni,j

n.j
(2.11)

Moreover, their relative recall is defined as the ratio of the number of elements of the class
ci within cluster pj , divided by the size of the class ci. That is:

Rec(ci, pj) =
ni,j

ni.
. (2.12)

The F-index is then defined as an harmonic mean that uses the precision and recall values,
with weight b:

F (ci, pj) =
(b2 + 1) · Prec(ci, pj) ·Rec(ci, pj)

b2 · Prec(ci, pj) +Rec(ci, pj)
. (2.13)

Equal weighting for precision and recall is obtained by setting b = 1. Finally, the overall
F-index is:

F =
∑

ci∈C

ni.

n
· max
pk∈P

F (ci, pk). (2.14)

F is an index with value in the range [0, 1], with an interpretation of the values in that
interval analogous to that provided for the values of R. An example can be obtained as in
Section 2.1.1. Indeed, for Table 2.2, one has F = 0.414, indicating low level of agreement
between the two partitions.

2.2 Internal and Relative Indices

Internal indices should assess the merits of a partition, without any use of external infor-
mation. Then, a Monte Carlo simulation can establish if the value of such an index on the
given partition is unusual enough for the user to gain confidence that the partition is good.
Unfortunately, this methodology is rarely used in data analysis for microarrays, as stated
in [73]. Internal indices are also a fundamental building block in order to obtain relative
indices that help to select, among a given set of partitions, the “best” one.

In this section, four relative indices are presented, starting with the ones based on com-
pactness. Then methods that are based on hypothesis testing and the jackknife approach
are presented.

2.2.1 Methods Based on Compactness

The measures presented here assess cluster compactness. The most popular compactness
measures are based on the sum-of-squares. In what follows, two of the prominent measures
in that class are detailed.

2.2.1.1 Within Cluster Sum-of-Squares

An internal measure that gives an assessment of the level of compactness of each cluster
in a clustering solution is the Within Cluster Sum of Squares (WCSS for short). Let C =

{c1, . . . , ck} be a clustering solution, with k clusters. Formally, let
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Dr =
∑

j∈cr

||σj − σr||2 (2.15)

where σr is the centroid of cluster cr. Then, one has:

WCSS(k) =

k∑

r=1

Dr. (2.16)

By analyzing the behavior of WCSS in [1, kmax], as a function of k, one can estimate the
correct number of cluster k∗ in the dataset. Intuitively, for values k < k∗, the compactness
of each cluster should substantially increase, causing a substantial decrease in WCSS. In
other words, one should observe in the WCSS curve a decreasing marginal improvement in
terms of cluster compactness after the value k∗. The following heuristic approach comes
out [79]: Plot the values of WCSS, computed on the given clustering solutions, in the range
[1, kmax]; choose as k∗ the abscissa closest to the “knee” in the WCSS curve. Fig. 2.1 provides
an example of the WCSS curve computed on the dataset of Fig. 1.4(a) with K-means-R (see
Section 1.2.2) for k ∈ [1, 10]. Indeed, the dataset has two natural clusters and the plot
of the WCSS curve in Fig. 2.1 indicates k∗ = 2. As it will be clear in Section 6.2.1, the
prediction of k∗ with WCSS is not so easy on real datasets, since the behavior of WCSS is not
so regular as one expects.
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Figure 2.1: Plot of the values of WCSS.

2.2.1.2 Krzanowski and Lai Index

By elaborating on an earlier proposal by Marriot [114], Krzanowski and Lai [101] proposed
an internal measure, which is referred to as KL. It is based on WCSS, but it is automatic, i.e.,
a numeric value for k∗ is returned. Let
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DIFF (k) = (k − 1)2/mWCSS(k − 1)− k2/mWCSS(k). (2.17)

with 2 ≤ k ≤ kmax.
Recall from Section 2.2.1.1 the behavior of WCSS, with respect to k∗. Based of those

considerations, one expects the following behavior for DIFF (k):

(i) for k < k∗, both DIFF (k) and DIFF (k + 1) should be large positive values.

(ii) for k > k∗, both DIFF (k) and DIFF (k+1) should be small values, and one or both
might be negative.

(iii) for k = k∗, DIFF (k) should be large positive, but DIFF (k+1) should be relatively
small (might be negative).

Based on these considerations, Krzanowski and Lai propose to choose the estimate on
the number of clusters as the k maximizing:

KL(k) =

∣∣∣∣
DIFF (k)

DIFF (k + 1)

∣∣∣∣ . (2.18)

That is,
k∗ = argmax

2≤k≤kmax

KL(k). (2.19)

Notice that KL(k) is not defined for the important special case of k = 1, i.e., there is no
cluster structure in the data. Figure 2.2(a) reports an example of DIFF (k) computation
with K-means-R (see Section 1.2.2) on the dataset of Fig. 1.4(a); the corresponding KL

values are reported in Fig.2.2(b). Notice that the KL curve has a local maximum on k = 3

(value close to the correct number of classes) but based on (2.19) the prediction is k∗ = 5.
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Figure 2.2: (a) Plot of the values of DIFF . (b) Plot of the values of KL.

2.2.2 Methods Based on Hypothesis Testing in Statistics

The measures presented so far are either useless or not defined for the important special
case k = 1. In this thesis, two methods based on hypothesis testing proposed by Dudoit and
Fridlyand [48] and Tibshirani et al. [164] are considered. The former is a clever combination
of the MECCA hypothesis testing paradigm (see Section 1.4) and stability techniques, and
for this reason is detailed in Chapter 3.

Tibshirani et al. [164] brilliantly combine the ideas of Section 1.4 with the WCSS heuristic,
to obtain an index that can deal also with the case k = 1. It is referred to as the Gap
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Statistics and, for brevity, it is denoted as Gap.
The intuition behind the method is brilliantly elegant. Recall, from the previous subsection
that the “knee” in the WCSS curve can be used to predict the real number of cluster in the
dataset. Unfortunately, the localization of such a value may be subjective. Consider the
curves in Fig. 2.3. The curve in green at the bottom of the figure is the WCSS given in
Fig. 2.1. The curve in red at the top of the figure is the average WCSS, computed on ten
datasets generated from the original data via the Ps null model. As it is evident from the
figure, the curve on the top has a nearly constant slope: an expected behavior on datasets
with no cluster structure in them. The vertical lines indicate the gap between the null
model curves and the curve computed by K-means-R, which supposedly captures “cluster
structure” in the dataset. Since WCSS is expected to decrease sharply up to k∗, on the real
dataset, and it has a nearly constant slope on the null model datasets, the length of the
vertical segments is expected to increase up to k∗ and then to decrease. In fact, in the
figure, if one takes as the prediction for k∗ the first local maximum of the gap values (data
not shown), one has k∗ = 2, the correct number of classes in the dataset. Normalizing the
WCSS curves via logs and accounting also for the simulation error, such an intuition can be
given under the form of a procedure in Fig. 2.4, which is strikingly similar to MECCA,
as discussed shortly (see Section 1.4). The first three parameters are as in that procedure,
while the last one states that the search for k∗ must be done in the interval [1, kmax].
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Figure 2.3: A geometric interpretation of the Gap Statistics.

Now, log(WCSS(k)) is the statistic T used to assess how reliable is a clustering solution
with k clusters. The value of that statistic is computed on both the observed data and
on data generated by the chosen null model. Then, rather than returning a p-value, the
procedure returns the first k for which “the gap” between the observed and the expected
statistic is at a local maximum. With reference to step 7 of procedure GP (see Fig. 2.4),
it is worth pointing out that the adjustment due to the s(k + 1) term is a heuristic meant
to account for the Monte Carlo simulation error in the estimation of the expected value of
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GP(ℓ, A,D, kmax)

for i← 1 to ℓ do

1. Compute a new data matrix Di, using the chosen null model.

Let D0 denote the original data matrix.

for i← 1 to ℓ do

begin

for k ← 1 to kmax do

2. Compute a clustering solution Pi,k on Di using algorithm A.

end

for i← 1 to ℓ do

begin

for k ← 1 to kmax do

3. Compute log(WCSS(k)) on Pi,k and store the result in matrix SL[i, k].

end

for k ← 1 to kmax do

begin

4. Gap(k)← 1
ℓ

ℓ∑
i=1

SL[i, k]− SL[0, k].

5. Compute the standard deviation sd(k) of the set of numbers

{SL[1, k], . . . , SL[ℓ, k]}
6. s(k)←

(√
1 + 1

ℓ

)
sd(k).

end

7. k∗ is the first value of k such that Gap(k) ≥ Gap(k + 1)− s(k + 1).

return (k∗)

Figure 2.4: The Gap Statistics procedure.
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log(WCSS(k)) (cf. [164]).
As discussed in Chapter 6, the prediction of k∗ is based on running a certain number

of times the procedure GP. Then one takes the most frequent outcome as the prediction.
It is worth pointing out that further improvements and generalizations of Gap have been
proposed in [178].

2.2.3 Methods Based on Jackknife Techniques: FOM

Figure of Merit (FOM for short) is a family of internal validation measures introduced by
Yeung et al. [181], specifically for microarray data. Such a family is based on the jackknife
approach and it has been designed for use as a relative index assessing the predictive power of
a clustering algorithm, i.e., its ability to predict the correct number of clusters in a dataset.
It has also been extended in several directions by Datta and Datta [40]. Experiments
by Yeung et al. show that the FOM family of measures satisfies the following properties,
with a good degree of accuracy. For a given clustering algorithm, it has a low value in
correspondence with the number of clusters that are really present in the data. Moreover,
when comparing clustering algorithms for a given number of clusters k, the lower the value
of FOM for a given algorithm, the better its predictive power. In what follow, a review of
this work is given, using the 2-norm FOM, which is the most used instance in the FOM family.

Assume that a clustering algorithm is given the data matrix D with column e excluded.
Assume also that, with that reduced dataset, the algorithm produces k clusters c1, . . . , ck.
Let D(σ, e) be the expression level of gene σ and mi(e) be the average expression level
of condition e for genes in cluster ci. The 2-norm FOM with respect to k clusters and
condition e is defined as:

FOM(e, k) =

√√√√ 1

n

k∑

i=1

∑

x∈ci

(D(x, e)−mi(e))2. (2.20)

Notice that FOM(e, k) is essentially a root mean square deviation. The aggregate 2-norm

FOM for k clusters is then:

FOM(k) =
m∑

e=1

FOM(e, k). (2.21)

Both formulae (2.20) and (2.21) can be used to measure the predictive power of an
algorithm. The first one offers more flexibility, since one can pick any condition, while the
second one offers a total estimate over all conditions. So far, (2.21) is the formula used the
most in the literature. Moreover, since the experimental studies conducted by Yeung et
al. show that FOM(k) behaves as a decreasing function of k, an adjustment factor has been
introduced to properly compare clustering solutions with different numbers of clusters. A
theoretical analysis by Yeung et al. provides the following adjustment factor:

√
n− k

n
. (2.22)

When (2.22) divides (2.20), (2.20) and (2.21) are referred to as adjusted FOMs. The
adjusted aggregate FOM is used for the experiments in this thesis and, for brevity, it is
referred to as FOM.

The use of FOM in order to establish how many clusters are present in the data follows
the same heuristic methodology outlined for WCSS, i.e., one tries to identify the “knee” in
the FOM plot as a function of the number of clusters. Fig. 2.5 provides an example, where
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the FOM curve is computed on the dataset of Fig. 1.4(a) with K-means-R. In this case, it is
easy to see that the predicted value is k∗ = 6, that is a value very far to the correct number
of clusters in the dataset.
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Figure 2.5: Plot of the values of FOM.



Chapter 3

The Stability Measure Paradigm

and Its Instances

In this chapter, internal validation measures based on the notion of stability are presented.
First, a general algorithmic paradigm is introduced, which can be seen as a generalization
of earlier work by Breckenridge and Valentini. Then, it is shown that each of the known
stability based measures is an instance of such a novel paradigm. Surprisingly, also Gap

falls within the new paradigm.

3.1 An Intuitive Description

All the methods described in this chapter for model selection in clustering are related to the
concept of stability which is now discussed in intuitive terms. A “good” algorithm should
produce clustering solutions that do not vary much from one sample to another, when data
points are repeatedly sampled and clustered. That is, the algorithm must be stable with
respect to input randomization. Therefore, the main idea to validate a clustering solution
is to use a measure the self-consistency of the data instead of using the classical concepts
of isolation and compactness [73, 87].

The stability framework can be applied to problems (Q.2) and (Q.3), detailed in Sec-
tion 1.3, and for convenience of the reader reported here again:

• (Q.2) compute a partition of D and assess the confidence of cluster assignments for
individual samples;

• (Q.3) estimate the number of clusters, if any, in a dataset.

These two problems are strongly related, since it is possible to use the former problem to
solve the latter.

In order to obtain a stability internal validation method, one needs to specify the
following “ingredients”:

1. a data generation/pertubation procedure;

2. a similarity measure between partitions;

3. a statistics on clustering stability;

4. rules on how to select the most reliable clustering(s).

Points 1 and 2 have been addressed in Sections 1.4-1.5 and 2.1, respectively. Points 3 and
4 are the main subject of study of this chapter. For problem (Q.2) and (Q.3) a first effort
to formalize the steps and the ingredients of a solution based on “stability” are due to
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Breckenridge [29] and Valentini [167], respectively. In particular, this latter formalization is
done via a software library for the statistical computing environment R, which is referred to
as mosclust. Indeed, this tool provides several macro operations in order to implement a
stability internal measure. However, mosclust focuses its attention on similarity measures
between only two partitions (see point 2) obtained from the same clustering algorithm and
it does not provide any macro that takes into account a more general similarity measure.

Extensive experimental results (see [49, 62] and Chapter 6) show that this class of
measures has an excellent predictive power. However there are some drawbacks and open
problems associated with their use:

(a) As shown in [73], a given clustering may converge to a suboptimal solution owing to
the shape of the data manifold and not to the real structure of the data. Thus, some
bias in the stability indices are introduced.

(b) Ben-David et al. [15] show that stability methods based on resampling techniques,
when cost-based clustering algorithms are used, may fail to estimate k∗, if the data
is not symmetric.

(c) Stability methods have various parameters that a user needs to specify [62]. Those
choices may affect both their time performance and their estimation of k∗.

Whit respect to the problem (b), it is unclear if these results may be extended to other
stability based methods or to other more general classes of clustering algorithms. In this
dissertation, one focuses on problem (c). Indeed, as it will be shown in Chapter 6, repeatedly
generating and clustering data, i.e., the main cycle of the stability based methods, has a
drastic influence on time performance. Therefore, design of fast approximation algorithms
is needed in order to use these measures for large datasets. It is worth pointing out that in
Chapter 7 an approximation scheme of the stability internal validation measures is proposed.

In this chapter a generalization of the efforts of Breckenridge and Valentini is proposed
via two novel paradigms in order to solve the problems (Q.2) and (Q.3). The former is
described in Section 3.2.1 and it is referred to as Stability Statistic. The latter is described
in Section 3.2.2 is referred to as Stability Measure. Finally, in Section 3.3 several stability
measure are presented as instances of the novel paradigm.

3.2 The Stability Statistic and the Stability Measure

Paradigms

Recall from [87] that a statistic is a function of the data capturing useful information
about it. A statistic assessing cluster stability is, intuitively, a measure of consistency of a
clustering solution. In turn, information obtained from the statistic is used by the Stability
Measure in order to estimate k∗. Since Stability Statistic is a “subroutine” of the Stability
Measure paradigm, it is presented first. In what follows, a statistic is represented by a set
S of records. For instance, in its simplest form, a statistic consists of a single real number,
while in other cases of interest, it is a one or two-dimensional array of real numbers.

3.2.1 The Stability Statistic Paradigm

The paradigm for the collection of a statistic on cluster stability is best presented as a
procedure, reported in Fig. 3.1. Its input parameters and macro operations are described
in abstract form in Figs. 3.2 and 3.3, respectively, while its basic steps are described below.
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Stability_Statistic(D0, H, α, β,< C1, C2, . . . , Ct >, k)

Sk = ∅
while H do

begin

1. < D1, D2, . . . , Dl >←< DGP(D0, β),DGP(D0, β), . . . ,DGP(D0, β) >

2. < DT,0, DT,1, . . . , DT,l, DL,0, DL,1, . . . , DL,l >← Split(< D0, D1, . . . , Dl >,α)

3. < G >← Assign(< DT,0, DT,1, . . . , DT,l >,< C1, C2, . . . , Ct >)

4. < Ci1 , Ci2 , . . . , Ciq >← Train(< G >)

5. < Ĝ >← Assign(< DL,0, DL,1, . . . , DL,l >,< C1, C2, . . . , Ct >)

6. < P1, P2, . . . , Pz >← Cluster(Ĝ, k)

7. u← Collect_Statistic(< P1, P2, . . . , Pz >)

8. Sk ← Sk
⋃{u}

end

return (Sk)

Figure 3.1: The Stability_Statistic procedure.

Input

- D0: it is the input dataset.

- H: it is a test on the “adequacy” of a statistic S, i.e., it evaluates whether S

contains enough information. Note that H could simply be a check of as to
whether a given number c of iterations has been reached. In what follows, this
simple test is denoted as Ĥc.

- α: it is a number in the range [0, 1].

- β: it is a sampling percentage, used by the DGP procedure (described in Sec-
tion 1.5).

- < C1, C2, . . . , Ct >: it is a set of procedures, each of which is either a classifier
or a clustering algorithm.

- k: it is the number of clusters in which a dataset has to be partitioned.

Figure 3.2: List of the input parameters used in the Stability_Statistic procedure.
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Macro Operations

- Split: it takes as input a family of datasets F1, F2, . . . , Fw and a real number
α in the range [0,1]. The procedure splits each Fi, 1 ≤ i ≤ w, into two parts
according to α, referred to as learning and training dataset and denoted with
FL,i and FT,i, respectively. That is, from each Fi, ⌈αni⌉ and ⌊(1−α)ni⌋ rows are
selected in order to obtain the corresponding FT,i and FL,i, respectively, where
ni is the number of rows of Fi. Each FT,i and FL,i is given as output.

- Assign: it takes as input a family of datasets and a set of procedures, each of
which is either a classifier or a clustering algorithm. It returns a finite set of pairs
in which the first element is a dataset and the second one is either a classifier
or a clustering algorithm. Such an association is encoded via a bipartite graph
G, where the datasets are represented by nodes in one partition and procedures
in the other partition. Notice that the graph is not a matching, i.e., the same
dataset can be assigned to different procedures and viceversa.

- Train: it takes as input a set of pairs <dataset, classifier>, encoded as a bipartite
graph, analogous to the one just discussed. For each pair, it gives as output the
classifier trained with the corresponding dataset. Notice that the number q of
trained classifiers returned as output is equal to the number of edges in the input
graph.

- Cluster: it takes as input a set of pairs <dataset, classifier/clustering
algorithm> and a positive integer k. Again, the set is encoded as a bipartite
graph. For each pair, it gives as output a partition in k clusters obtained by the
classifier/clustering algorithm on the corresponding input dataset. Notice that
the number z of partitions returned as output is equal to the number of edges in
the input graph.

- Collect_Statistic: it takes as input a set of partitions. It returns as output
the statistic computed on the input set.

Figure 3.3: List of the macro operations used in the Stability_Statistic procedure.
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A single iteration of the while loop is discussed. The loop is repeated until the
condition H is satisfied, i.e., until enough information about the given statistic has been
collected. In step 1, a set of perturbed datasets is generated from D0 by a DGP procedure
(see Section 1.5). In step 2, D0 and all the datasets generated in the previous step are split
in a learning and training dataset, according to the input parameter α. The next two steps
train a subset of the classifiers on a subset of the training sets. In step 5, the bipartite
graph Ĝ encodes the association between learning datasets and clustering procedures.
In step 6, based on the association encoded by Ĝ, the learning datasets are partitioned.
Finally, in step 7, a statistic Sk is computed from those partitions and is given as output.

In the next subsection, some instances of this paradigm are discussed.

3.2.1.1 Instances

Here three incarnations of the Stability Statistic paradigm are provided. The first is repli-

cating analysis, a ground-breaking method due to Breckenridge [29]. The other two are
BagClust1 and BagClust2, due to Dudoit and Fridlyand [49]. In all three cases, the pro-
cedures were proposed to improve a clustering solution for a fixed value of k (see problem
(Q.2)), rather than to estimate the “true” number of clusters in D. However, as one will see
in Section 3.3, replicating analysis and BagClust2 play a key role in many internal stability
methods.
The presentation of methods in this section is organized as follows: for each example, the
input parameters setup is first described (see Fig. 3.2), then the Stability_Statistic is
detailed.

• Replicating analysis.

- The input parameters setup: β is not relevant and the simple test Ĥ1 is used
to allow only one iteration of the while loop. Moreover, the set of procedures
< C1, C2, . . . , Ct > has size two, i.e., it contains one classifier and one clustering
algorithm, referred to as C1 and C2, respectively.

- The Statistics_Stability procedure: step 1 is not performed. In step 2, the
Split procedure is applied to D0 only and it gives as output the training and
learning dataset DT,0 and DL,0, respectively. Then, in steps 3-5, DT,0 is used to
train the classifier C1. In steps 5 and 6, two partitions P1 and P2 of DL,0 are pro-
duced, by C1 and C2, respectively. Finally, in step 7, the Collect_Statistic

procedure measures the agreement between the two partitions P1 and P2 via
an external index (see Section 2.1) in order to assess the stability structure of
the dataset. For convenience of the reader the replicating analysis procedure is
given in Fig. 3.4.

• BagClust1.

- The input parameters setup: Ĥc is used as test, for a given number of iterations
c. The set of procedures < C1, C2, . . . , Ct > consists only of one clustering
algorithm, α = 0 and β = 1. Moreover, each DGP is an instance of the same
bootstrapping subsampling method (see Section 1.5.1). Since α = 0, the Split

procedure gives as output only the learning datasets, which are copies of the
corresponding input dataset.
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Replicating_Analysis(D0, α,< C1, C2 >, k)

1. Split the input dataset in DL and DT , the learning and training sets,

respectively.

2. Train the classifier C1on DT .

3. Let P1 and P2 be the partitions of DL

into k cluster with the use of C1 and C2, respectively.

4. Let e be the agreement measure between P1 and P2 obtained

via an external index.

return (e)

Figure 3.4: The replicating analysis procedure.

- The Statistics_Stability procedure: in step 1, a single DGP procedure
is executed to generate D1. Then, the Split procedure takes as input D0

and D1 and it gives as output DL,0 = D0 and DL,1 = D1. In steps 5 and
6, the clustering procedure is applied to both D0 and D1 in order to obtain
the partitions P1 and P2, respectively. The Collect_Statistic procedure
permutes the elements assigned to the partition P2 so that there is the maximum
overlap with P1. For each iteration of the while loop, the number of overlapping
elements are counted and given as output of the method. From that statistic,
a new partition is obtained by assigning each element of D0 to a cluster via a
majority vote system. That is, each element is assigned to the cluster for which
it expressed the maximum of number of preferences. For convenience of the
reader theBagClust1 procedure is given in Fig. 3.5.

• BagClust2.

- The input parameters setup: as in BagClust1.

- The Statistics_Stability procedure: in step 1, a single DGP procedure is
executed to generate D1. Then, the Split procedure takes as input D0 and
D1 and it gives as output DL,0 = D0 and DL,1 = D1. In step 5, the bipartite
graph Ĝ consists of only one node per partition, encoding the dataset D1 and the
clustering procedure, respectively. In step 6, a clustering partition is obtained
from it. Finally, in steps 7 and 8, a dissimilarity matrixM is computed. Each
entryMi,j of M is defined as follows:

Mi,j = 1− Mi,j

Ii,j
, (3.1)

where Mi,j is the number of times in which items i and j are in the same cluster
and Ii,j is the number of times in which items i and j are in the same learning
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BagClust1(D0, Hc, β,< C1 >, k)

for i← 0 to Hc do

begin

1. Generate (via a bootstrap) a data matrix D1

2. Let P1 and P2 be the corresponding partitions of D0 and D1

into k cluster with the use of C1.

3. Permute the elements assigned to the partition P2 so that there is

maximum overlap with P1

4. Let Oc be the number of overlapping elements

end

return (Oc)

Figure 3.5: The BagClust1 procedure.

dataset. The dissimilarity matrix M is then used as input to a clustering
procedure in order to obtain a partition. For convenience of the reader the
BagClust2 procedure is given in Fig. 3.6.

3.2.2 The Stability Measure Paradigm

In this section, the main paradigm of internal stability methods is described. It is best
presented as a procedure, reported in Fig. 3.7. Its macro operations are described in
abstract form in Fig. 3.8, while its basic steps are described below.
For each k in the range [kmin, kmax] the paradigm collects the statistics Sk computed by

the Stability_Statistic procedure, then a concise description Rk of the statistic Sk is
computed via the Synopsis procedure. Finally, an explicit or implicit prediction of the
value of k∗ is computed by Significance_Analysis and it is given as output.

In the remaining part of this section, only two examples of the Stability Measure
paradigm are detailed. The other incarnations proposed in the literature are discussed
in the remaining part of the chapter.

3.2.2.1 Instances

The presentation of methods in this section is organized as follows: for each method, the
input parameters setup is first described (see Fig. 3.2), then the Stability_Statistic and
the Stability_Measure procedures are detailed.

• Model Explorer by Ben-Hur et al. [16] (ME for short) is the simplest incarnation of
the Stability Measure paradigm and it can be derived in the following way.
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BagClust2(D0, Hc, β,< C1 >, k)

for i← 0 to Hc do

begin

1. Generate (via a bootstrap) a data matrix D1

2. Let P1 be the partition of D1 into k clusters with the use of C1

3. Compute M as in (3.1)

end

return (M)

Figure 3.6: The BagClust2 procedure.
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Stability_Measure(kmin, kmax, D,H, α, β,< C1, C2, . . . , Ct >)

for k ← kmin to kmax do

begin

1. Sk ← Stability_Statistics(D,H,α, β,< C1, C2, . . . , Ct >, k)

2. Rk ← Synopsis(Sk)

end

3. k∗ ← Significance_Analysis(Rkmin , . . . , Rkmax)

return (k∗)

Figure 3.7: The Stability_Measure procedure.
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Macro Operations

- Synopsis: it takes as input a statistic and returns as output a concise description
of it.

- Significance_Analysis: it takes as input all the statistics/information col-
lected as returned by the Synopsis procedure. It computes the significance level
of each statistic. It returns as output, explicitly or implicitly, a prediction about
k∗. For instance, an implicit prediction of the value of k∗ can be the plot of a
histogram or of a curve, as in many methods described in the next section.

Figure 3.8: List of the macro operations used in Stability_Measure procedure.

– Input parameters setup: Ĥc is used as test, for a given number of iteration c,
α = 0, β ∈ [0.6, 0.9] and the set of procedures < C1, C2, . . . , Ct > consists only
of one clustering algorithm C1.

– The Statistics_Stability procedure: in step 1, D1 and D2 are generated by
two DGP procedures, where each procedure is an instance of subsampling (see
Section 1.5.1). Since α = 0, the Split procedure copies those datasets into
the corresponding learning datasets, while steps 3 and 4 are not performed. In
step 5, the graph Ĝ, obtained as output of the Assign procedure, encodes two
relations: < DL,1, C1 > and < DL,2, C1 >. In step 6, two clustering solutions
P1 and P2 are obtained from < DL,1, C1 > and < DL,2, C1 >, respectively.
The Collect_Statistic procedure computes the level of agreement between
the two partitions via an external index (see Section 2.1), but restricted to the
common elements of D1 and D2. In step 8, this level of agreement is stored into
a one dimensional array Sk. That is, for each iteration of the while loop, the
value returned by the external index is stored in the corresponding entry of Sk.

– The Stability_Measure procedure: for each k, it computes the array Sk via
the Statistic_Stability procedure while the Synopsis procedure performs
a copy of the collected statistic. Finally, the Significance_Analysis proce-
dure provides an implicit estimation of k∗: each k ∈ [kmin, kmax], Rk and its
values are histogrammed separately. Then, the optimal number of clusters k∗ is
predicted to be the lowest value of k such that the Rk value distribution is close
to one and Rk+1 value distribution is in a wider range of values. An example
of the number of clusters prediction is given in Fig. 3.10, where ME is computed
on the dataset of Fig. 1.4(a) with K-means-R (see Section 1.2.2) for k ∈ [2, 5].

For convenience of the reader the ME procedure is given in Fig. 3.9.

• MOSRAM by Bertoni and Valentini [21] is strongly related to ME, where the most
significant change is in the Significance_Analysis procedure. Indeed, it estimates
automatically the “true” number of clusters, and in addition, it detects significant
and possibly multi-level structures simultaneously present in D (e.g. hierarchical
structures - see Fig. 3.12). It can be derived from the Stability Measure paradigm as
follows.
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ME(Hc, < C1 >,D, kmax)

for k ← 2 to kmax do

begin

for i← 1 to Hc do

begin

1. Generate (via subsampling) two data matrices D1 and D2

2. Let P1 and P2 be the corresponding partitions of D1 and D2

into k cluster with the use of C1, respectively

3. Let Sk(i) be the level of agreement between P1 and P2 via an

external index but restricted to the common elements of D1 and D2

end

end

4. Plot separately the histogram of Sk values and return a prediction for k∗

Figure 3.9: The ME procedure

– The input parameters setup: as in ME.

– The Statistics_Stability procedure: it is the same proposed in ME, except
that the two DGP procedures performed in step 1 are both an instance of
randomized mapping (see Section 1.5.3).

– The Stability_Measure procedure: in step 2, each Rk given as output by
the Synopsis procedure is an average of the statistics Sk computed in step 1.
Intuitively, if the value of Rk is close to 1, then the clustering solution is sta-
ble. Moreover, in order to detect significant and possibly multi-level structures
that are simultaneously present in D, a statistical hypothesis test is applied.
The Significance_Analysis procedure performs a χ2-based test in order to
estimate k∗ as follows. Let R = {Rkmin , . . . , Rkmax} and let τ be a significance
level. The null hypothesis H0 considers the set of k-clusterings as equally re-
liable, while the alternative hypothesis H1 considers the set of k-clusterings as
not equally reliable. When H0 is rejected at τ significance level, it means that
at least one k-clustering significantly differs from the others. The procedure
sorts the values in R, and a χ2-based test is repeated until no significant dif-
ference is detected or the only remaining clustering is the top-ranked in R. At
each iteration, if a significant difference is detected, the bottom-ranked value
is removed from the set R. Therefore, the Significance_Analysis gives as
output the set of the remaining (top sorted) k-clusterings that corresponds to
the set of the estimate “true” number of clusters (at τ significance level). For
convenience of the reader the MOSRAM procedure is given in Fig. 3.11.
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Figure 3.10: The histograms plotting the Rk values distribution for increasing values of k.
The prediction of k∗ correspond to correct number of cluster, i.e., k∗ = 2.

3.3 Further Instances of the Stability Measure Paradigm

In this section several incarnations of the Stability Measure paradigm are detailed, describ-
ing for each method the input parameters and macro operations listed in Figs. 3.2, 3.3
and 3.8. The section follows the same organization of Section 3.2.2.1.

3.3.1 Consensus Clustering

Consensus Clustering by Monti et al. [122] (Consensus for short) is a reference method
in internal validation measures, with a prediction power far better than other established
methods [62, 122].

- The input parameters setup: it uses the same input parameters setup of ME for the
Statistic_Stability procedure (see Fig. 3.2). Moreover, as in ME, the DGP pro-
cedure is an instance of subsampling (see Section 1.5.1).

- The Statistics_Stability procedure: it is strongly related to BagClust2, where the
most significant change is that the matrixM is a similarity instead of a dissimilarity
matrix.

- The Stability_Measure procedure: as in ME, the Synopsis procedure performs a
copy of the collected statistic and the Significance_Analysis procedure provides
an implicit estimation of k∗, as detailed next. Based on the collected statistics, for
each k, Monti et al. define a value A(k) measuring the level of stability in cluster
assignments, as reflected by the matrix M. Formally,
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MOSRAM(Hc, < C1 >,D, kmax)

for k ← 2 to kmax do

begin

for i← 1 to Hc do

begin

1. Generate (via randomized mapping) two data matrices D1 and D2

2. Let P1 and P2 be the corresponding partitions of D1 and D2

into k cluster with the use of C1, respectively

3. Let Sk(i) be the level of agreement between P1 and P2 via an

external index but restricted to the common elements of D1 and D2

end

end

4. Perform a χ2-based test in order to estimate k∗

Figure 3.11: The MOSRAM procedure

Figure 3.12: An example of hierarchical structures in a dataset.
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A(k) =

n∑

i=2

[xi − xi−1]CDF (xi)

where CDF is the empirical cumulative distribution defined over the range [0, 1], as
follows:

CDF (c) =

∑
i<j

l{Mi,j ≤ c}

n(n− 1)/2

with l equal to 1 if the condition is true and 0 otherwise. Finally, based on A(k), one
can define:

∆(k) =

{
A(k) k = 2,
A(k+1)−A(k)

A(k) k > 2.

Moreover, Monti et al. suggest the use of the function ∆′ for non-hierarchical algo-
rithms. It is defined as ∆ but one uses A′(k) = max

k′∈[2,k]
A(k′). The reason is the following:

A(k) is a value that is expected to behaves like a non-decreasing function of k, for hierarchi-
cal algorithms. Therefore ∆(k) would be expected to be positive or, when negative, not too
far from zero. Such a monotonicity of A(k) is not expected for non-hierarchical algorithms.
Therefore, another definition of ∆ is needed to ensure a behavior of this function analogous
to the hierarchical algorithms.

Assuming that one has computed the ∆ curve for a given dataset, the value of k∗ can
be obtained by using the following intuitive idea, also based on experimental observations.

(i) For each k ≤ k∗, the area A(k) markedly increases. This results in an analogous
pronounced decrease of the ∆ curve.

(ii) For k > k∗, the area A(k) has no meaningful increases. This results in a stable plot
of the ∆ curve.

From this behavior, the “rule of thumb” to identify k∗ is: take as k∗ the abscissa
corresponding to the smallest non-negative value where the curve starts to stabilize; that
is, no big variation in the curve takes place from that point on. However, the behavior of
the ∆ curve could give an ambiguous estimation of k∗. Therefore, it is advisable to combine
the information given by the ∆ curve with an estimation provided by the plot of the CDF

curves. In this latter estimation, k∗ is the value of k where the area under the CDF curves
does not change more, i.e., the gap between the curves stay almost constant. An example
is given in Fig. 3.14.

The same considerations and rule applies to the prediction of k∗ via ∆′. However,
as the experiments performed in Chapter 6 bring to light, for the partitional algorithms
used in this dissertation, ∆′ displays nearly the same monotonicity properties of ∆, when
used on hierarchical algorithms. The end result is that ∆ can be used for both types of
algorithms. It is worth pointing out that, to the best of our knowledge, Monti et al. defined
the function ∆′, but they did not experiment with it, since their experimentation was
limited to hierarchical algorithms. For convenience of the reader the Consensus procedure
is given in Fig. 3.13.

For completeness, it may be of interest to the reader to report that Brunet et al. [30]
propose a different approach to estimate k∗ based on the dispersion of the matrix M.
Indeed, Brunet et al. compute the cophenetic correlation coefficient ρ [87] for each k.
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Consensus(Hc, < C1 >,D, kmax)

for k ← 2 to kmax do

begin

for i← 1 to Hc do

begin

1. Generate (via a subsampling) a data matrix D1

2. Let P1 be the partition of D1 into k clusters with the use of C1

3. Based on P1 compute the connectivity matrix Mk
i

end

4. Compute the consensus matrix Mk

end

5. Based on the kmax − 1 consensus matrices, return a prediction for k∗

Figure 3.13: The Consensus procedure

Based on the observation on how the value of ρ changes as k increases, the “rule of thumb”
to identify k∗ is: take as k∗ the abscissa corresponding to the value where the curve starts
to fall.

Finally, it can be useful to observe that the matrix M can be naturally thought of as
a similarity measure. Accordingly, via standard techniques, it can be transformed into a
(pseudo) distance matrix that can be used by clustering algorithms as in BagClust2 in order
to solve problem (Q.2).

3.3.2 Levine and Domany

This method is due to Levine and Domany [110].

- The input parameters setup: as in ME.

- The Statistics_Stability procedure: it is strongly related to BagClust2. Indeed,
for each iteration, the method computes as statistic a connectivity matrix in which
each entry is 1, if the two elements are in the same cluster and 0 otherwise. Moreover,
the collected statistic Sk is a set of matrices, Sk = {Sk

0 , . . . , S
k
c }. Matrix Sk

0 corre-
sponds to the connectivity matrix for D0, and matrix Sk

i , for 1 ≤ i ≤ c, corresponds
to the connectivity matrix for the dataset D1 generated by the DGP procedures at
the corresponding iteration.

- The Stability_Measure procedure: the Synopsis procedure compares the col-
lected statistic, via the following formula:

Rk =≪ δSk
0
,Sk

i
≫ (3.2)
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Figure 3.14: An example of number of cluster prediction with the use of Consensus. The
experiment is derived from the dataset of Fig. 1.4(a) with k∗ = 2, with use of the K-means-R
clustering algorithm. The plots of the CDF curves is shown in (a), yielding a monotonically
increasing value of A, as a function of k. The plot of the ∆ curve is shown in (b), where the
flattening effect corresponding to k = 4, while the gap of the area under the CDF curves is
evident for k ≥ k∗ = 2.

where ≪ · ≫ is a twofold averaging. That is, for each Sk
i , an average is computed

over all pairs which are in the same cluster in the original dataset and have been
both selected in the same resample. Then, an average for all Sk

i is computed. The
Significance_Analysis procedure gives as output k∗ as the value of k with the
local maximum of Rk, for k ∈ [kmin, kmax].

For convenience of the reader the procedure proposed by Levine and Domany is given in
Fig. 3.15.

3.3.3 Clest

Clest, proposed by Dudoit and Fridlyand [48], generalizes in many aspects replicating

analysis by Breckenridge (see Section 3.2.1). It can be regarded as a clever combination of
hypothesis testing and resampling techniques. It estimates k∗ by iterating the following:
randomly partition the original dataset in a learning set and training set. The learning
set is used to build a classifier C for the data, then to be used to derive “gold standard”
partitions of the training set. That is, the classifier is assumed to be a reliable model for
the data. It is then used to assess the quality of the partitions of the training set obtained
by a given clustering algorithm.

- The input parameters setup: it uses the same input parameters of replicating analysis,
except for the test condition H, where in this case c iterations of the while loop are
allowed, for a given integer c > 1.

- The Statistics_Stability procedure: it corresponds to the replicating analysis.
Therefore, the set Sk of records is a one dimensional array, in which each entry stores
the value of the external index for the corresponding iteration.

- The Stability_Measure procedure: the Synopsis procedure computes Rk as the
median of the values stored in Sk. The Significance_Analysis procedure pro-
posed in Clest is best presented as a procedure which is given in Fig. 3.16 and it
is outlined next. The first step of the procedure generates a new dataset via the
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LD01(H,< C1 >,D, kmax)

for k ← 2 to kmax do

begin

1. Let P1 be the partition of D into k clusters with the use of C1

2. Based on P1 compute the connectivity matrix Sk
0

for i← 1 to H do

begin

3. Generate (via a subsampling) a data matrix D1

4. Let P1 be the partition of D1 into k clusters with the use of C1

5. Based on P1 compute the connectivity matrix Sk
i

end

6. Compute Rk, as defined in (3.2)

end

Figure 3.15: The Levine and Domany procedure

DGP procedure that in this case it is an instance of null models (see Section 1.4),
the pmax is a “significance level” threshold and dmin is a minimum allowed differ-
ence between “computed and expected” values. It is worth pointing out that the
Significance_Analysis procedure provides an explicit prediction of k∗.

For convenience of the reader the Clest procedure is given in Fig. 3.17. It is worth pointing
out that steps 1-7 correspond to the Stability_Statistics detailed above. Step 8 is the
Synopsis call in the Stability_Measure procedure, and the next steps corresponds to
the Significance_Analysis procedure described above (see Fig. 3.16).

3.3.4 Roth et al.

In analogy with Clest, this method, by Roth et al. [147], also generalizes replicating anal-

ysis.

- The input parameters setup: as in Clest.

- The Statistics_Stability procedure: steps 1-6 that are the same as in repli-

cating analysis. Recall from that latter procedure, that P1 and P2 are two par-
titions obtained by a classifier and a clustering algorithm, respectively. The
Collect_Statistic procedure takes as input P1 and P2 and generates a new parti-
tion by computing a minimum weighted perfect bipartite matching [129]. Therefore,
assuming P1 as a correct solution, Collect_Statistic gives as output the number
of misclassified elements, normalized with respect to the case in which the prediction
is random.
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Significance_Analysis(Rkmin , . . . , Rkmax)

for i← 0 to B0 do

begin

1. Di ← DGP(D)

2. for k ← kmin to kmax do

begin

3. Sk ← Stability_Statistics(Di, H, β,< C1, C2, . . . , Ct >, k)

4. Rk
i ← Synopsis(Sk)

end

end

5. for k ← kmin to kmax do

begin

6. t0k ← Compute the average of the Rk
i values

7. pk ← Compute the p-value of Rk

8. dk ← Rk − tk0

end

9. Define a set K = {kmin ≤ k ≤ kmax : pk ≤ pmax and dk ≥ dmin}
10. if K = ∅
then k∗ ← 1

else k∗ ← argmax
k∈K

dk

return (k∗)

Figure 3.16: Implementation of the Significance_Analysis procedure proposed by Du-
doit and Fridlyand for Clest.
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Clest(B0, Hc, < C1, C2 >,E,D, kmax, pmax, dmin)

for k ← 2 to kmax do

begin

1. for h← 1 to Hc do

begin

2. Split the input dataset in DL and DT , the learning and training sets,

respectively

3. Train the classifier C1on DT

6. Partition DL into k clusters by C1 and C2 in order to obtain

P1 and P2, respectively.

7. mk,h = E(P1, P2)

end

8. tk ← median(mk,1, . . . ,mk,H)

for b← 1 to B0 do

begin

9. Generate (via a null model), a data matrix Db

10. Repeat steps 1-8 on Db

end

11. Compute the average of these H statistics, and denote it with t0k
12. Compute the p-value pk of tk
13. dk ← tk − t0k
end

14. K ← {2 ≤ k ≤ kmax : pk ≤ pmax and dk ≥ dmin}
if K = ∅
then k∗ ← 1

else k∗ ← argmax
k∈K

dk

return (k∗)

Figure 3.17: The Clest procedure.
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RLBB02(Hc, < C1, C2 >,D, kmax)

for k ← kmin to kmax do

begin

for i← 0 to Hc do

begin

1. Split the input dataset in DL and DT , the learning and training sets,

respectively.

3. Train the classifier C1on DT

5. Partition DL into k clusters by C1 and C2 in order to obtain

P1 and P2, respectively.

6. Find the correct permutation by the minimum

weighted perfect bipartite matching

7. Normalize w.r.t. the random

8. Compute the expected (in)-stability value

end

end

Figure 3.18: The Roth et al. procedure.

- The Stability_Measure procedure: the Synopsis procedure computes the av-
erage over the assignment cost and it computes the “expected (in)-stability” value
defined as the expectation with respect to the two different datasets. Finally, the
Significance_Analysis procedure gives as output the value of k with the mini-
mum “expected (in)-stability” value as k∗.

For convenience of the reader, the procedure proposed by Roth et al. is given in Fig. 3.18.

3.3.5 A Special Case: the Gap Statistics

Although Gap (see Section 2.2.2) is not an internal stability measure, the GP procedure
(see Fig. 2.4) can be derived from the Stability Measure paradigm as follows.

- The input parameters setup: Ĥ1, α = 0, β is not relevant and the set of clustering
procedures < C1, C2, . . . , Ct > consists of only one clustering algorithm C1.

- The Statistics_Stability procedure: only steps 2 and 5-8 are performed. The
Collect_Statistic procedure takes as input a partition P1 relative to the dataset
D and it gives as output the WCSS value (see Section 2.2.1.1).

- The Stability_Measure procedure: the Synopsis procedures return a copy of the
WCSS values. Finally, the Significance_Analysis procedure is best presented as a
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Significance_Analysis(Rkmin , . . . , Rkmax)

for k ← kmin to kmax do

begin

for i← 0 to B0 do

begin

Di ← DGP(D)

Rk
i ← Stability_Statistics(Di, H, β,< C1 >, k)

end

Compute Gap(k) = 1
B0

∑B0

i=1 R
k
i −Rk.

Compute the standard deviation sd(k)of the set of numbers {Rk
1 , . . . , R

k
B0
}

s(k) =
(√

1 + 1
B0

)
sd(k).

end

k∗ is the first value of k such that Gap(k) ≥ Gap(k + 1)− s(k + 1).

return (k∗)

Figure 3.19: Implementation of the Significance_Analysis procedure for Gap.

procedure which is given in Fig. 3.19, where in the first step the procedure generates
a new dataset via the DGP procedure that in this case it is an instance of null models
(see Section 1.4). Intuitively, in the remaining steps, it compares the value of WCSS
obtained for D and for the null model datasets. The prediction of k∗ is based on
running a certain number of times the procedure Stability_Measure taking then
the most frequent outcome as the prediction.



Chapter 4

Non-negative Matrix Factorization

This chapter describes one of the methodologies that has gained prominence in the data
analysis literature: Non-negative Matrix Factorization (NMF for short). In particular,
the mathematical formulation of NMF and some algorithms that have been developed to
compute it are presented. Moreover, some applications of NMF are also discussed. It is
worth pointing out that, for this dissertation, NMF is of interest as a clustering algorithm.
In fact, in the next chapter, its first benchmarking on microarray data is presented.

4.1 Overview

One common ground on which many data analysis methods rest is to replace the
original data by a lower dimensional representation obtained via subspace approxima-
tions [32, 79, 144, 158, 174]. The goal is to explain the observed data using a limited
number of basis components, which when combined together, approximate the original
data as accurately as possible. This concise description of the data allows to find possible
structure in them. Indeed, a meaningful dimensionality reduction can be achieved only if
the data has common underlying regularities and patterns. Matrix factorization and prin-
cipal component analysis are two of the many classical methods used to accomplish both
the goals of reducing the number of variables and detecting structure underlying the data.
While some of those techniques have been reviewed in Section 1.5.3, NMF is singled-out in
this chapter since it is a substantial contribution to this area: the pioneering paper by Lin
and Seung has been followed-up by extensions and uses of NMF in a broad range of domains.
In particular, molecular biology applications, as described in the survey of Devarajan [41],
image processing [70, 107] and text mining [107, 123].

This chapter is organized as follows. Section 4.2 provides a formalization of matrix
factorization. Sections 4.3 and 4.4 provide the general scheme and different algorithms for
NMF, respectively. Finally, in Section 4.4, several applications of NMF to image processing,
text mining and molecular biology are briefly described.

4.2 Matrix Factorization: A Basic Mathematical For-

mulation

In this section, a general statement of Matrix Factorization (MF for short) is given, then
two restricted versions of it are presented: Positive Matrix Factorization (PMF for short)
and the already mentioned NMF.

MF. Let V be matrix of size m × n. Usually, when V is a data matrix, m denotes the
number of features and n denotes the number of items in Σ. Given V and an integer
r < min {n,m}, one wants to find two matrix factors W and H of size m × r and r × n,
respectively, such that:
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V ≈W ×H. (4.1)

One has that v ≈Wh, where v and h are homologous columns in V and H, respectively.
That is, each column v is approximated by a linear combination of the columns of W ,
weighted by the components of h. Therefore, W can be regarded as containing a basis.

PMF. It is a variant of MF, by Paatero and Tapper [128], since V is constrained to be a
positive matrix. One possible solution can be obtained by computing a positive low-rank
approximation of W ×H, via an optimization of the function:

min
W,H≥0

‖A ◦ (V −W ×H)‖F ,

where A is a weighted matrix whose elements are associated to the elements of V , ◦ is the
Hadamard product and ‖‖F denotes the Frobenious norm [64]. Paatero and Tapper also
proposed an alternative least squares algorithm in which one of the two matrices is fixed
and the optimization is solved with respect to the other one and viceversa. Later, Paatero
developed a series of algorithms [125, 126, 127] using a longer product of matrices to replace
the approximate W ×H.

NMF. A variant of PMF, NMF allows V to be non-negative, this latter being a constraint
much more suitable for data analysis tasks. It also offers several advantages [58, 107]:

1. The constraint that the matrix factors are non-negative allows for their intuitive
interpretation as real underlying components within the context defined by the
original data. The basis components can be directly interpreted as parts or basis
samples, present in different proportions in each observed sample.

2. NMF generally produces sparse results, implying that the basis and/or the mixture
coefficients have only a few non-zero entries.

3. Unlike other decomposition methods such as singular value decomposition [165] or
independent component analysis [14, 34], the aim of NMF is not to find components
that are orthogonal or independent, therefore allowing overlaps among the compo-
nents.

4.3 The General NMF Scheme

In order to compute an NMF, all the methods proposed in the literature use the same
simple scheme, reported in Fig. 4.1, where the following “ingredients” have to be specified:

(i) an initialization for matrices W and H;

(ii) an update rule;

(iii) a stopping criterion.
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NMF(V )

Initialize W and H

while H do

begin

update W and H

end

Figure 4.1: The basic NMF procedure.

The scheme is iterative: it starts from the two initial matrices W and H, which are
repeatedly updated via a fixed rule until the stopping criterion is satisfies.

For point (i), the matrices W and H are initialized at random. In that case, different
runs of NMF, with the same input, are likely to produce different results. However, it
is worth pointing out that sophisticated deterministic initialization methods have been
proposed to choose appropriate initial values referred to as “seed NMF algorithms” [7, 28,
173]. When one uses the same initial seed, the procedure is deterministic, i.e., it always
produces the same output on a given input.

With respect to points (ii) and (iii), quite many numerical algorithms have been devel-
oped for NMF [106, 108, 111, 112, 137].

For (ii), the most popular follow at least one of the following principles and tech-
niques: alternating direction iterations, projected Newton, reduced quadratic approxima-
tion, and descent search. Correspondingly, specific implementations can be categorized
into alternating least squares algorithms (ALS for short) [128], multiplicative update algo-
rithms [107, 108] combined with gradient descent search, and hybrid algorithms [19, 137].
For the interested reader, it is worth pointing out that a general assessments of these meth-
ods can be found in [103, 166]. In the next section, a brief description of the gradient
descent and ALS methods is provided.

As for (iii), the most “popular” stopping criteria are: a fixed number of iterations, of
a suitably defined matrix, referred to as consensus (see [30] for formal definitions) and
stationarity of the objective function value.

4.4 The NMF Procedure and Its Variants

As anticipated, two of the most popular strategies for the NMF computation are detailed
here. Moreover, other approaches specific to particular applications are briefly described.
Finally, a list of the software available for the computation of NMF is reported.

4.4.1 Multiplicative Update Rules and Gradient Descent

Gradient descent is an optimization strategy widely used in the literature [157, 162, 177].
Let F be a function to be minimized. Unfortunately, it is possible that the computation of
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the absolute minimum of F may be practically unfeasible. In that case, a local minimum is
an “acceptable solution”. With reference to Fig. 4.2, the gradient descent approach tries to
compute such a local minimum as follows: the algorithm starts from a random point and
moves to a successive point by minimizing along the local downhill gradient between the
two points. This process is iterated until a minimum of the objective function is reached.

Lee and Seung propose the following optimization function :

f(W,H) =
1

2
‖V −W ×H‖2 (4.2)

as a convergence criterion.
In order to optimize that function, Lee and Seung propose “multiplicative update rules”

in conjunction with gradient descent. As discussed in [108], the use of a multiplicative
update strategy as opposed to an additive one is that the latter does not guarantee a
systematic decrease in the cost function.

The algorithm starts with a random initialization of the two matrices W and H and
then, at each iteration, updates them as follows:

Ha,µ ← Ha,µ ×
(W t × V )a,µ

(W t ×W ×H)a,µ

and

Wi,a ←Wi,a ×
(V ×Ht)i,a

(W ×H ×Ht)i,a

where 1 ≤ a ≤ n, 1 ≤ i, µ ≤ r and At denotes the transpose of a matrix A.
Letting ∇Hf(W,H) = W t × (W ×H − V ) and ∇W f(W,H) = (W ×H − V )×Ht, the

above update rules can be rewritten as follows:

Ha,µ ← Ha,µ −
Ha,µ

(W t ×W ×H)a,µ
×∇Hf(W,H) (4.3)

and

Wi,a ←Wi,a −
Wi,a

(W ×H ×Ht)i,a
×∇W f(W,H) (4.4)

It is worth pointing out that the optimization function (4.2) in the general NMF model
can be modified in several ways, depending on the application at hand. For instance, some
penalty terms can be added in order to gain more localization or enforce sparsity, and more
constraints such as sparseness can be imposed.

Two drawbacks of the multiplicative algorithms are that: (1) the denominator of the
step size may be zero and (2) once an element in W or H becomes zero, it remains zero
and this fact should have some effects on the correct convergence of the algorithm.

Although Lee and Seung [108] claimed the convergence of the above algorithm, Gonzalez
and Zhang [66] and Lin [111, 112] independently presented numerical counter-examples,
where the Lee and Seung algorithm fails to approach a stationary point, i.e., to converge
to a local minimum.

Moreover, Lin [112] proposed to modify the Lee and Seung method, in order to solve
the convergence problem, by keeping the same objective function, while update rules (4.3)
and (4.4) become:

Ha,µ ← Ha,µ −
Ha,µ

(W t ×W ×H)a,µ + δ
×∇Hf(W,H)
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Figure 4.2: An example of gradient descend. Part of this figure is taken from [108].

and

Wi,a ←Wi,a −
W i,a

(W ×H ×Ht)i,a + δ
×∇W f(W,H)

Both ε and δ are pre-defined small positive constants,

Ha,µ =

{
Ha,µ if ∇Hf(W,H)a,µ ≥ 0,

max(Ha,µ, ε) otherwise,

and W i,a is defined in analogy with Ha,µ.
Moreover, Lin also proposed to normalize W so that the sum of its columns is one. With

respect to the Lee and Seung method, this modified version requires same extra operations
(e.g. to compute H and W ), but that has no substantial effect on the complexity of the
procedure.

Lin [112] proves the convergence of this modified algorithm, via the following theorem.

Theorem 2. The update sequence of W and H has at least one limit point.

Proof. Let W k and Hk be the matrices at iteration k. It suffices to prove that (W k, Hk),
k = 1, . . . ,∞, are in a closed and bounded set. Since W k is normalized, one needs to show
that Hk is bounded. Otherwise, there is a component Ha,µ and an infinite index set κ such
that

lim
k∈κ

Hk
a,µ →∞, Hk

a,µ < Hk+1
a,µ , ∀k ∈ κ, (4.5)

and exist ∀i
lim

k∈κ,k→∞
W k

i,a.

One must have that Wi,a = 0, ∀i. Otherwise, there is an index i such that

lim
k∈κ,k→∞

(W k ×Hk)i,j ≥ lim
k∈κ,k→∞

W k
i,aH

k
a,j =∞.
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Then,

lim
k→∞

f(W k, Hk) ≥ lim
k∈κ,k→∞

∥∥Vi,j − (W k ×Hk)i,j
∥∥2 =∞

contradicting that f(W k, Hk) is strictly decreasing. Since the sum of the columns of W k

is either one or zero, Wi,a = 0, ∀i implies

Wi,a = 0, ∀i ∀k ∈ κ large enough. (4.6)

Then,

∇Hf(W k, Hk)a,µ = 0, ∀k ∈ κ, so Hk,n
a,µ = Hk

a,µ, ∀k ∈ κ. (4.7)

Moreover, by (4.6), one can prove that

lim
k∈κ,k→∞

W k,n
i,a = lim

k∈κ,k→∞
W k

i,a = 0, ∀i

Thus, in normalizing (W k,n, Hk,n), Hk,n’s a-th row is either unchanged or decreased.
With (4.7),

Hk+1
a,µ ≤ Hk

a,µ, ∀k ∈ κ

an inequality contradicting (4.5). Thus, Hk is bounded. Therefore, {W k, Hk} is in a
compact set, so there is at least one convergent sub-sequence.

4.4.2 Alternating Least Squares Algorithms

In this class of algorithms, a least squares step is followed by another least squares step in
an alternating way. That is, the algorithm updates in alternation W and H by solving a
distinct matrix equations for each, as detailed in procedure ALS reported in Fig. 4.3. In
that procedure, in order to keep non-negativity, a simple projection step is performed to set
all negative elements resulting from the least squares computation to zero. Moreover, some
additional flexibility, not available in other algorithms-especially those of the multiplicative
update class- is also available. For instance, as detailed above, in the multiplicative algo-
rithms, if an element in W or H becomes 0, it must remain 0. This is restrictive, since
once the algorithm starts heading down a path towards a fixed point, even if it is a poor
fixed point, it must continue in that vein. The ALS algorithms is more flexible, allowing
the iterative process to escape from a poor path. It is worth pointing out that some im-
provements to the basic ALS algorithm scheme appear in [19, 127] and that, depending on
the implementation, ALS algorithms can be very fast.

4.4.3 NMF Algorithms with Application-Dependent Auxiliary

Constraints

A great deal of work has been devoted to the analysis, extension, and application of NMF
algorithms in science, engineering and medicine. The NMF has been cast into alternate
formulations by various authors. In this section a brief survey on the state of the art is
provided. One of the main improvements is to develop the algorithms by using different
objective functions. Lee and Seung [108] provided an information theoretic formulation
based on the Kullback-Leibler divergence [102] of V from W × H. Dhillon and Sra [44]
generalized the NMF methods with Bregman divergence. Cichocki et al. [36] have proposed
cost functions based on Csiszár’s ϕ-divergence. Wang et al. [171] propose a formulation
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ALS(V )

while convergence is not reached do

begin

1. Initialize W at random

2. Solve for H in matrix equation W t ×W ×H = W t × V

and set all negative elements in H to zero

3. Solve for W in matrix equation H ×Ht ×W t = H × V t

and set all negative elements in W to zero

end

Figure 4.3: The basic ALS procedure

that enforces constraints based on Fisher linear discriminant analysis for improved deter-
mination of spatially localized features. Guillamet et al. [69] have suggested the use of
a diagonal weight matrix Q in a new factorization model, V × Q ≈ W × H × Q, in an
attempt to compensate for feature redundancy in the columns of W . Other approaches
propose alternative cost function formulations. Smoothness constraints have been used to
regularize the computation of spectral features in remote sensing data [133, 137]. Chen and
Cichocki [33] used temporal smoothness and spatial correlation constraints to improve the
analysis of EEG data for early detection of Alzheimer’s disease. Hoyer [82, 83] employed
sparsity constraints on either W or H to improve local rather than global representation of
data. The extension of NMF to include such auxiliary constraints is problem dependent and
often reflects the need to compensate for the presence of noise or other data degradations
in V .

4.4.4 Software Available

Several algorithms performing NMF have been implemented and published. The interested
reader will find a compendium of them in [19]. In this dissertation, some of them are
mentioned next.

Hoyer [82] provided a package that implements five different algorithms. Cichocki and
Zdunek [35] produced an appealing NMFLAB package that implements a wide range of
NMF algorithms, which can be combined, tested and compared via a graphical inter-
face. However, availability only in MATLAB, a proprietary software, limits access to
these packages within the scientific community. Some C/C++ implementations are also
available [169], including a parallel implementation using the MPI. Recently, Gaujoux
and Seoighe [58] propose a completely open-source package for the R/BioConductor plat-
form [59], which is a well established and extensively used standard in statistical and bioin-
formatics research.
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4.5 Some Applications

In this section, the spectrum of possible applications of NMF is highlighted. In particular,
the ones in image analysis and text mining, originally used to Lee and Seung to show the
validity of NMF, are detailed. Moreover, a short summary of the more recent applications
of NMF in bioinformatics is also provided.

4.5.1 Image Analysis

In this domain, the use of NMF is a natural choice, since an image can be represent as a non-
negative matrix. Moreover, when it is desirable to process datasets of images represented
by column vectors, as composite objects or as separated parts, it is suggested that an
NMF would enable the identification and classification of intrinsic “parts” that make up the
object being imaged by multiple observations [46, 107]. An example is provided in Fig. 4.4,
which is taken from [107]. Other work on face and image processing applications of NMF
includes [69, 70, 71, 72, 104, 105, 170].

Figure 4.4: The NMF is applied to a database of 2.429 facial images, each consisting of
19×19 pixels, and constituting a matrix V . The NMF learns to represent a face as a linear
combination of basis images. The NMF basis and encodings contain a large fraction of
vanishing coefficients, so both the basis images and image encodings are sparse. The basis
images are sparse because they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different locations or forms.

4.5.2 Text Mining

The use of NMF on text documents has highlighted its ability to tackle semantic issues such
as synonymy or even to cluster data. An example is given in Fig. 4.5, where NMF is used to
discover semantic features of 30.991 articles from the Grolier encyclopedia. For each word
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in a vocabulary of size 15.276, the number of occurrences is counted in each article and it
is used to form the matrix V . Each column of V contains the word counts for a particular
article, whereas each row of V contains the counts of a particular word in different articles.
Upper left, four of the r = 200 semantic features (columns of W ). As they are very high-
dimensional vectors, each semantic feature is represented by a list of the eight words with
highest frequency in that feature. The darkness of the text indicates the relative frequency
of each word within a feature. With reference to Fig. 4.5 the bottom of the figure exhibits
the two semantic features containing “lead” with high frequencies. Judging from the other
words in the features, two different meanings of “lead” are differentiated by NMF. Right, the
eight most frequent words and their counts in the encyclopedia entry on the “Constitution
of the United States”. This word count vector was approximated by a superposition that
gave high weight to the upper two semantic features, and none to the lower two, as shown
by the four shaded squares in the middle indicating the activities of H.

Other work on text mining applications of NMF includes [13, 18, 43, 134, 151, 176].

Figure 4.5: Example of NMF on text. This figure is takes from [107].

4.5.3 Bioinformatics

NMF is a very versatile pattern discovery technique that has received quite a bit of attention
in the computational biology literature, as discussed in the review by Devarajan [41]. In
this section, some of them are detailed.
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Class Comparison and Prediction. Recently, the NMF is used in this domain. For
instance, Fogel et al. [53] apply NMF to identify ordered sets of genes and utilize them
in sequential analysis of variance procedures in order to identify differentially expressed
genes. Okun and Priisalu [124] apply NMF, successfully, as a dimension reduction tool in
conjunction with several classification methods for protein fold recognition. They report
superior performance, in terms of misclassification error rate, of three classifiers based on
nearest neighbor methods when applied to NMF reduced data relative to the original data.
Similar approaches have been proposed in [91] and [94] for fold recognition and magnetic
resonance spectroscopic imaging, respectively.

Cross-Platform and Cross-Species Characterization. The rapid advances in high-
throughput technologies have resulted in the generation of independent large-scale biological
datasets using different technologies in different laboratories. In this scenario, it is impor-
tant to assess and interpret potential differences and similarities in these datasets in order
to enable cross-platform and cross-species analysis and the possible characterization of the
data. Tamayo et al. [163] describe an approach referred to as metagene projection in order
to reduce noise and technological variation, while capturing invariant biological features in
the data. Furthermore, this approach allows the use of prior knowledge based on exist-
ing datasets in analyzing and characterizing new data [86]. In metagene projection, the
dimensionality of a given dataset is reduced using NMF, based on a pre-specified rank k

factorization.

Molecular Pattern Discovery. One of the most common applications of NMF in bion-
formatics, and of great interest for this thesis, is in the area of molecular pattern discovery.
In particular, for gene and protein expression microarray studies, where there is lack of a
priori knowledge of the expected expression patterns, for a given set of genes or phenotypes.
In this area, NMF is successfully applied in order to discover biologically meaningful classes,
i.e., clusters.

For instance, Kim and Tidor [98] apply NMF as a tool to cluster genes and predict
functional cellular relationships in Yeast, while Heger and Holm [80] use it for the recognition
of sequence patterns among related proteins. Brunet et al. [30] apply it to cancer microarray
data for the elucidation of tumor subtypes. Moreover, they developed a model selection
for NMF based on the consensus matrix (see Section 3.3.1) that enables the choice of the
appropriate number of clusters in a dataset. Following the same notation as in Brunet et
al. [30] and Devarajan [41], let V represent the outcome of a microarray experiment, where
there are m samples, each composed of measurements of n genes. In this case, W and H

assume two very intuitive roles. W is a matrix whose columns are “metagenes” and H is
a matrix whose rows are “meta expression patterns”. If one is interested in clustering the
samples in r groups, as we do here, then one can place sample i in cluster j if the expression
level of sample i is maximum in metagene j. That is, Hi,j is maximum in the i-th column
of H. An example is given in Figure 4.6.

Other approaches of molecular pattern discovery that use NMF [31, 38, 56, 97, 130,
131, 132], or its sparse version, have been proposed in the literature.
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Figure 4.6: A rank-2 reduction of a DNA microarray of n genes and m samples is obtained
by NMF, V ≈ W ×H. For better visibility, H and W are shown with exaggerated width
compared with original data in V , and a white line separates the two columns of W .
Metagene expression levels (rows of H) are color coded by using a heat color map, from
dark blue (minimum) to dark red (maximum). The same data are shown as continuous
profiles below. The relative amplitudes of the two metagenes determine two classes of
samples, class 1 and class 2. Here, samples have been ordered to better expose the class
distinction. This figure is taken from [30].





Chapter 5

Experimental Setup and

Benchmarking of NMF as a

Clustering Algorithm

In this chapter, the experimental framework used in this dissertation is detailed, i.e.,
datasets, algorithms and hardware. Moreover, a benchmarking of NMF as a clustering
algorithms on microarray data is proposed. To the best of our knowledge, it is the first one
that takes into account both its ability to identify cluster structure in a dataset and the
computational resources it needs for that task. A comparative analysis with some classic
algorithms is also provided.

5.1 Datasets

It is useful to recall the definition of “gold solution” that naturally yields a partition of
the datasets in two main categories. Technically speaking, a gold solution for a dataset is
a partition of the data in a number of classes known a priori. Membership in a class is
established by assigning the appropriate class label to each element. In less formal terms, the
partition of the dataset in classes is based on external knowledge that leaves no ambiguity
on the actual number of classes and on the membership of elements to classes. Although
there exist real microarray datasets for which such an a priori division is known, in a few
previous studies of relevance here, a more relaxed criterion has been adopted to allow also
datasets with high quality partitions that have been inferred by analyzing the data, i.e.,
by the use of internal knowledge via data analysis tools such as clustering algorithms. In
strict technical terms, there is a difference between the two types of “gold solutions”. For
their datasets, Dudoit and Fridlyand [48] elegantly make clear that difference and a closely
related approach is used here.

Each dataset is a matrix, in which each row corresponds to an element to be clustered
and each column to an experimental condition. In this dissertation, both microarray and
simulated datasets are used. In what follows, a brief description of them is given.

5.1.1 Gene-Expression Microarray Data

The nine datasets from gene-expression microarray, together with the acronyms used in
this dissertation, are reported next. For conciseness, only some relevant facts about them
are mentioned. The interested reader can find additional information in Handl et al. [73],
for the Leukemia dataset, in Dudoit and Fridlyand [48] for the Lymphoma and NCI60
datasets, in Monti et al. [122] for the Normal, Novartis and St.Jude datasets, finally in
Di Gesú et al. [45], for the remaining ones. In all of the referenced papers, the datasets
were used for validation studies. Moreover, in those papers, the interested reader can find
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additional pointers to validation studies using the same datasets. For completeness, it is
worth reporting that they have also been used for benchmarking in the context of clustering
analysis of microarray data [32, 62, 122, 139].

Particularly relevant is their use in two studies strictly related to this thesis: Giancarlo
et al. [62] and Monti et al. [122]. Indeed, Giancarlo et al. use the following six datasets:
CNS Rat, Leukemia, Lymphoma, NCI60, Yeast and PBM, while the remain three datasets
are used by Monti et al.. The choice to use all nine is motivated as follows: the datasets of
Giancarlo et al. allow to make an accurate and uniform benchmarking of several internal
validation measures, taking into account both time and precision as well as to compare our
results with extant ones in the Literature. This study is reported in Chapter 6 and it is
quite unique in literature. The datasets of Monti et al. are used to complete the study of
Consensus and to compare it with a speedup proposed in Chapter 7.

Although the Giancarlo et al.’s datasets have relatively few items to classify and rela-
tively few dimensions, it is worth mentioning that Lymphoma, NCI60 and Leukemia have
been obtained by Dudoit and Fridlyand and Handl et al., respectively, via an accurate sta-
tistical screening of the three relevant microarray experiments that involved thousands of
conditions (columns). That screening process eliminated most of the conditions since there
was no statistically significant variation across items (rows). Indeed, one would hardly at-
tempt the clustering of microarray experiments without a preliminary statistical screening
aimed at identifying the “relevant parts” of the experiment [51]. It is also worth pointing
out that the three mentioned datasets are quite representative of microarray cancer stud-
ies. The CNS Rat and Yeast datasets come from gene functionality studies. The sixth one,
PBM, is a dataset that corresponds to a cDNA with a large number of items to classify
and it is used to show the current limitations of existing validation methods (see Giancarlo
et al. for additional details). Indeed, they have been established with PBM as input. In
particular, when given to Consensus as input, the computational demand is such that all
experiments were stopped after four days, or they would have taken weeks to complete. It
is also worth pointing out that the remain three datasets are very high dimension (≃ 1000

features). Therefore, they naturally complement the first six since they all have relatively
few features (less than 200). In summary, the nine datasets used for the experimentation
in this dissertation seem to be a reliable sample of microarray studies, where clustering is
used as an exploratory data analysis technique.

CNS Rat: It is a 112 × 17 data matrix, obtained from the expression levels of 112 genes
during a rat’s central nervous system development. The dataset is studied by Wen et
al. [172], where they suggest a partition of the genes into six classes, four of which are
composed of biologically, functionally-related genes. This partition is taken as the gold
solution, which is the same one used for the validation of FOM.

Leukemia: It is a 38 × 100 data matrix, where each row corresponds to a patient with
acute leukemia and each column to a gene. The original microarray experiment consists of
a 72× 6817 matrix, due to Golub et al. [65]. In order to obtain the current dataset, Handl
et al. [73] extracted from it a 38 × 6817 matrix, corresponding to the “learning set” in the
study of Golub et al. and, via preprocessing steps, they reduced it to the current dimension
by excluding genes that exhibited no significant variation across samples. The interested
reader can find details of the extraction process in Handl et al.. For this dataset, there is a
partition into three classes and it is taken as gold solution. It is also worthy of mention that
Leukemia has become a benchmark standard in the cancer classification community [30].

Lymphoma: It is a 80 × 100 data matrix, where each row corresponds to a tissue sample
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and each column to a gene. The dataset comes from the study of Alizadeh et al. [8] on the
three most common adult lymphoma tumors. There is a partition into three classes and it
is taken as the gold solution. The dataset has been obtained from the original microarray
experiments, consisting of an 80×4682 data matrix, following the same preprocessing steps
detailed in Dudoit and Fridlyand [48].

NCI60: It is a 57×200 data matrix, where each row corresponds to a cell line and each col-
umn to a gene. This dataset originates from a microarray study in gene expression variation
among the sixty cell lines of the National Cancer Institute anti-cancer drug screen [2], which
consists of a 61×5244 data matrix. There is a partition of the dataset into eight classes, for
a total of 57 cell lines, and it is taken as the gold solution. The dataset has been obtained
from the original microarray experiments as described by Dudoit and Fridlyand [48].

Normal: It is a 90× 1277 data matrix, where each row corresponds to a tissue sample and
each column to a gene. The dataset comes from the study of Su et al. [161] on four distinct
cancer types. There is a partition into four classes and it is taken as the gold solution.

Novartis: It is a 103 × 1000 data matrix, where each row corresponds to a tissue sample
and each column to a gene. The dataset comes from the study of Ramaswamy et al. [140]
on 13 distinct tissue types. There is a partition into 13 classes and it is taken as the gold
solution.

PBM: It is a 2329 × 139 data matrix, where each row corresponds to a cDNA with a fin-
gerprint of 139 oligos. According to Hartuv et al. [78], the cDNAs in the dataset originated
from 18 distinct genes, i.e., the classes are known. The partition of the dataset into 18
groups was obtained by lab experiments at Novartis in Vienna. Following that study, this
partition is taken as the gold solution.

St.Jude: It is a 248 × 985 data matrix, where each row corresponds to a tissue sample
and each column to a gene. The dataset comes from the study of Yeoh et al. [179] on
diagnostic bone marrow samples from pediatric acute leukemia patients corresponding to
6 prognostically important leukemia sub-types. There is a partition into 6 classes and it is
taken as the gold solution.

Yeast: It is a 698×72 data matrix, studied by Spellman et al. [159] whose analysis suggests a
partition of the genes into five functionally-related classes which is taken as the gold solution
and which has been used by Shamir and Sharan for a case study on the performance of
clustering algorithms [152].

In this dissertation, it is referred to as Benchmark 1 the following group of datasets:
CNS Rat, Leukemia, Lymphoma, NCI60, PBM and Yeast. While the remaining three
datasets are referred to as Benchmark 2.

5.1.2 Simulated Data

In order to compare some of the algorithms of this thesis, in particular in the speedup of
Consensus proposed in Chapter 7, with the work of Monti et al. [122] on Consensus, some
artificial datasets from that study are used. These datasets have known characteristics,
typical of microarray data, but since they have no “noise”, they are “easy” to classify.
Therefore, the experimental results involving them are considered as complementary to
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those on real microarray datasets. The three datasets, together with the acronyms used in
this dissertation, are reported next.

Gaussian3: It is a 60× 600 data matrix. It is generated by having 200 distinct features out
of the 600 assigned to each cluster. There is a partition into three classes and that is taken
as the gold solution. The data simulates a pattern whereby a distinct set of 200 genes is
up-regulated in one of the three clusters, and down-regulated in the remaining two.

Gaussian5: It is a 500× 2 data matrix, and it is show in Fig. 5.1. It represents the union of
observations from 5 bivariate Gaussians, 4 of which are centered at the corners of the square
of side length λ, with the 5th Gaussian centered at (λ/2, λ/2). A total of 250 samples,
50 per class, were generated, where two values of λ are used, namely, λ = 2 and λ = 3,
to investigate different levels of overlapping between clusters. There is a partition into five
classes and that is taken as the gold solution.

0 1 2 3 4 5

Figure 5.1: The Gaussian5 dataset.

Simulated6: It is a 60 × 600 data matrix. It consists of a 600-gene by 60-sample dataset.
It can be partitioned into 6 classes with 8, 12, 10, 15, 5, and 10 samples respectively, each
marked by 50 distinct genes uniquely up-regulated for that class. Additionally, 300 noise
genes (i.e., genes having the same distribution within all clusters) are included. The genes
for the different clusters are of varying “sharpness”. That is, the 50 genes marking the first
class are the sharpest- with highest differential expression and lowest variation-followed by
the 50 genes for the second cluster, etc. Fig. 5.2 depicts the expression profile of the 600
genes within each cluster. This partition into 6 classes is taken as the gold solution.

This three datasets are also included in the Benchmark 2.



5.2. Clustering Algorithms and Their Stability 63

Figure 5.2: Expression profiles for each gene within each cluster on the Simulated6 dataset.
This figure is takes from [122]

5.2 Clustering Algorithms and Their Stability

In this dissertation, a suite of clustering algorithms is used. Among the hierarchical meth-
ods [87] Hier-A (Average Link), Hier-C (Complete Link), and Hier-S (Single Link) (see
Section 1.2.1).

Moreover, both K-means [87] and NMF are used (see Section 1.2.2 and Chapter 4) , both
in the version that starts the clustering from a random partition of the data and in the
version where each takes, as part of its input, an initial partition produced by one of the
chosen hierarchical methods. For K-means, the acronyms of those versions are K-means-R,
K-means-A, K-means-C and K-means-S, respectively. An analogous notation is followed
for NMF.

It is worth pointing out that K-means-R is a randomized algorithm that may provide
different answers on the same input dataset. That might make the values of many of the
measures studied in this dissertation to depend critically on the particular execution of
the algorithm. Such a dependance is important for WCSS, KL and FOM. For those measures
and their approximations, the computation of the relevant curves, on all datasets, with
K-means-R is repeated five times. Only negligible differences from run to run is observed.
Therefore, in what follows, all reported results refer to a single run of the algorithms, except
for the cases in which an explicit Monte Carlo simulation is required.

For completeness, it is also reported that in this thesis a C/C++ implementation of the
NMF is used, which is based on the Matlab script available at the Broad institute [1]. Indeed,
it was converted to a C/C++ version that was then validated by ensuring it produced
the same results as for the Matlab version, in a number of simulations. Notice that this
implementation also allows for NMF to start from two matrices W and H that actually
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correspond to a partition of the data into clusters, rather than choosing W and H at
random. Such an option is analogous to the well known one offered by K-means, which can
start from a given solution rather than randomly. As with K-means, NMF also has a faster
convergence to a solution when not initialized at random, although the improvement seems
not to be significant.

5.3 Similarity/Distance Functions

All of the algorithms use Euclidean distance in order to assess similarity of single elements
to be clustered. Such a choice is natural and conservative, as now explained. It places
all algorithms in the same position without introducing biases due to distance function
performance, rather than to the algorithm. Moreover, time course data have been properly
standardized (mean equal to zero and variance equal to one), so that Euclidean distance
would not be penalized on those data. This is standard procedure, e.g., [181], for those
data. The results obtained are conservative since, assuming that one has a provably much
better similarity/distance function, one can only hope to get better estimates than ours
(else the used distance function is not better than Euclidean distance after all). As it is
clear from the upcoming results presented in the next chapters, such better estimates will
cause no dramatic change in the general picture of our findings. The choice is also natural,
in view of the debate regarding the identification of a proper similarity/distance function
for clustering gene expression data and the number of such measures available. The state of
the art as well some relevant progress in the identification of such measure is well presented
in [60, 61, 139].

5.4 Hardware

All experiments for the assessment of the precision of each measure were performed in part
on several state-of-the-art PCs and in part on a 64-bit AMD Athlon 2.2 GHz bi-processor
with 1 GB of main memory running Windows Server 2003. All the timing experiments
reported were performed on the bi-processor, using one processor per run. The usage of
different machines for the experimentation was deemed necessary in order to complete the
full set of experiments in a reasonable amount of time. Indeed, as detailed later, some
measures require weeks to complete execution on large datasets. It is worth pointing out
that all the Operating Systems supervising the computations have a 32 bits precision.

5.5 NMF Benchmarking

In this section a benchmarking of NMF as a clustering algorithms is described. In order to
perform it, the performance of NMF is measured via the three external indices described
in Section 2.1: Adjusted Rand Index, FM-Index and F-Index.

External indices can be very useful in evaluating the performance of algorithms and
internal/relative indices, with the use of datasets that have a gold standard solution. A
brief illustration is given of the methodology for the external validation of a clustering
algorithm, via an external index that needs to be maximized. The same methodology
applies to internal/relative indices, as discussed in [181]. For a given dataset, one plots the
values of the index computed by the algorithm as a function of k, the number of clusters.
Then, one expects the curve to grow to reach its maximum close or at the number of classes
in the reference classification of the dataset. After that number, the curve should fall.
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CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 875 219 500 921 594 4.4× 105

Hier-C 865 250 469 750 625 4.6× 105

Hier-S 860 296 516 641 609 4.3× 105

K-means-R 3.2× 103 2.1× 103 3.2× 103 7.2× 103 1.1× 105 1.1× 106

K-means-A 3.2× 103 1.1× 103 4.2× 103 4.4× 103 1.1× 105 1.7× 106

K-means-C 2.9× 103 1.1× 103 4.0× 103 4.2× 103 1.0× 105 1.3× 106

K-means-S 3.3× 103 1.3× 103 5.2× 103 5.4× 103 1.2× 105 1.4× 106

NMF-R 9.0× 106 8.6× 104 3.9× 105 5.2× 105 2.9× 108 -

NMF-A 3.0× 106 2.4× 104 7.9× 104 1.1× 105 5.5× 107 -

NMF-C 2.4× 106 2.5× 104 7.4× 104 1.1× 105 5.9× 107 -

NMF-S 5.7× 106 2.3× 104 6.9× 104 1.1× 105 4.5× 107 -

Table 5.1: Time results in millisecond for all the algorithms on Benchmark 1 datasets. For
PBM, the experiments were terminated due to their high computational demand (weeks to
complete).

In what follows, the results of the experiments are presented, with the use of the indices.
The experiments summarized here refer to the Benchmark 1 datasets and the simulated
datasets in Benchmark 2. For each dataset and each clustering algorithm, each index is
computed for a number of cluster values in the range [2, 30]. Moreover, the time perfor-
mance of NMF on the microarray datasets is compared with that of the classical clustering
algorithms. To this end the execution time in millisecond of each algorithm on each datasets
is reported in Table 5.1. A dash indicates that the experiment was stopped because of its
high computational demand. Indeed, given the dimension of the PBM datasets, NMF is
stopped after four days, for this reason the results on this dataset are not reported here.
From the results in Table 5.1, it is possible to see that NMF is very slow, at least four order
of magnitude of difference with the other clustering algorithms. Moreover, NMF is not able
to complete the experiment on PBM dataset.

Adjusted Rand Index For those experiments, the relevant plots are in Fig. 5.3-5.4 for
Benchmark1 and simulated datasets, respectively. Based on the results on Benchmark1

datasets (see Fig. 5.3), it is possible to see that all the algorithms perform very well on
Leukemia and NCI60 datasets. For the remain three datasets, their performance is some-
what mixed, and sometimes they are not precise. In particular, the Hier-S, NMF-R, and
NMF-S algorithms. From the results on the simulated datasets (see Fig. 5.4), it is pos-
sible to see that, except for Hier-S and K-means-S, all the algorithms perform very well
on Gaussian3 and Gaussian5. Whereas, on Simulated6 all the algorithms give an useless
indication.

FM-Index For those experiments, the relevant plots are in Fig. 5.5-5.6. Based on them,
Hier-S, NMF-S are still the worst among the algorithms, however now there is no consistent
indication given by the other algorithms. Moreover, on Gaussian5 and Simulated6 NMF,
both with random and hierarchical initialization, does not perform very well.
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F-Index For those experiments, the relevant plots are in Figs. 5.7-5.8. On Benchmark1

datasets, Hier-S and NMF-S are still the worst among the algorithms and the indications
in this case about the other algorithms are essentially the same as in the case of Adjusted
Rand Index. Whereas, on simulated dataset all the algorithms have a disappointing
performance.

In Conclusion, from all the results proposed in this section, it should be mentioned
that although all of the three indices have solid statistical justifications, the Adjusted

Rand Index seems to be the best performer while the FM-index is somewhat disappointing.
Moreover, the use of NMF as a clustering algorithm is not suggested, in particular for large
datasets. Indeed, given the steep computational price (see Table 5.1) one has to afford, its
use does not seem to be justified since Hier-A is at least four orders of magnitude faster
and with a better precision. In fact, the main power of NMF rests on its pattern discovery
ability, and its use as a clustering algorithm seems to be very limiting for this technique.
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Figure 5.3: The Adjusted Rand Index curves, for each of the Benchmark1 datasets. In each
figure, the plot of the index, as a function of the number of clusters, is plotted differently
for each algorithm. For PBM, the experiments on NMF were terminated due to their high
computational demand and the corresponding plots has been removed from the figure.
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Figure 5.4: The Adjusted Rand Index curves, for each of the simulated dataset in
Benchmark 2. In each figure, the plot of the index, as a function of the number of clusters,
is plotted differently for each algorithm.
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Figure 5.5: The FM-Index curves, for each of the Benchmark1 datasets. In each figure,
the plot of the index, as a function of the number of clusters, is plotted differently for
each algorithm. For PBM, the experiments on NMF were terminated due to their high
computational demand and the corresponding plots has been removed from the figure.



70
Chapter 5. Experimental Setup and Benchmarking of NMF as a

Clustering Algorithm

� � � � � � � � 	 A �� �� �� �� �� �� �� �� �	 �A �� �� �� �� �� �� �� �� �	 �A ��
�B�

�B�

�B�

�B�

�B�

�B�

�B�

�B	

�BA

�

��������	�AB�CD��C

EF
��
��
��

���CC����

� � � � � � � � 	 A �� �� �� �� �� �� �� �� �	 �A �� �� �� �� �� �� �� �� �	 �A ��
�B�

�B�

�B�

�B�

�B�

�B�

�B	

�BA

�

��������	�AB�CD��C

E
F
��
�
�
�
�

���CC����

� � � � � � � � 	 A �� �� �� �� �� �� �� �� �	 �A �� �� �� �� �� �� �� �� �	 �A ��
�B��

�B��

�B��

�B�	

�B�

�B��

�B��

�B��

�B�	

�B�

�B��

��������	�AB�CD��C

E
F
��
�
�
�
�

����B�D���

CDEF��

CDEF��

CDEF��

���E�����

���E�����

���E�����

���E�����

�����

�����

�����

�����

Figure 5.6: The FM-index curves, for each of the simulated dataset in Benchmark 2. In each
figure, the plot of the index, as a function of the number of clusters, is plotted differently
for each algorithm.
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Figure 5.7: The F-Index curves, for each of the Benchmark1 datasets. In each figure,
the plot of the index, as a function of the number of clusters, is plotted differently for
each algorithm. For PBM, the experiments on NMF were terminated due to their high
computational demand and the corresponding plots has been removed from the figure.
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Figure 5.8: The F-Index curves, for each of the simulated dataset in Benchmark 2. In each
figure, the plot of the index, as a function of the number of clusters, is plotted differently
for each algorithm.



Chapter 6

An Experimental Assessment of

Internal Validation Measures

In this chapter, a benchmarking of some of the internal validation measures described in
the previous chapters is presented. In particular, all measures presented in Chapter 2 are
considered, while only ME, Consensus and Clest are studied here, since they seem to be the
most representative of the stability based ones. This study tries to establish the intrinsic,
as well as the relative, merit of a measure taking into account both its predictive power and
its computational demand. To the best of our knowledge, this is the first study of this kind
available in the Literature. It is worthy to anticipate that, based on the results reported
here, a speedup of some of the measure presented here becomes a very natural and well
motivated problem, that is addressed in the next chapter.

6.1 Problems Statement and State of the Art

An established and rich research area in bioinformatics is the design of new internal valida-
tion measures that should assess the biological relevance of the clustering solutions found.
Despite the vast amount of knowledge available in this area in the general data mining
literature [52, 75, 77, 79, 88, 93, 121, 144], gene expression data provide unique challenges.
Indeed, the internal validation measure must predict how many clusters are really present
in a dataset, an already difficult task, made even worse by the fact that the estimation
must be sensible enough to capture the inherent biological structure of functionally related
genes. The excellent survey by Handl et al. [73] is a big step forward in making the study
of internal validation measures a central part of both research and practice in bioinformat-
ics, since it provides both a technical presentation as well as valuable general guidelines
about their use for post-genomic data analysis. Although much remains to be done, it is,
nevertheless, an initial step.

In order to establish the intrinsic and relative merit of a measure, the two relevant
questions are:

(A) What is the precision of a measure, i.e., its ability to predict the correct number
of clusters in a dataset? That is usually established by comparing the number of
clusters predicted by the measure against the number of clusters in the gold solution
of several datasets. It is worth recalling from Chapter 5 that the gold solution is
a partition of the dataset in classes that can be trusted to be correct, i.e., distinct
groups of functionally related genes.

(B) Among a collection of measures, which is more accurate, less algorithm-dependent,
etc.,?. Precision versus the use of computational resources, primarily execution time,
would be an important discriminating factor.
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Measures

Although the classic studies in the general data mining Literature, mentioned earlier,
are also of great relevance for bioinformatics, there is an acute need for analogous studies
conducted on internal measures introduced recently and specifically designed for analysis
of microarray data. In this chapter both of the stated questions are addressed for several
measures. They are all characterized by the fact that, for their prediction, they make
use of nothing more than the dataset available (see Chapters 2 and 3): WCSS, KL, Clest,
Consensus , FOM, Gap and ME. In order to perform this study, as anticipated in Chapter 5,
only the Benchmark1 datasets is used, i.e.: CNS Rat, Leukemia, Lymphoma, NCI60, Yeast
and PBM.

Initial studies of the mentioned measures, in connection with both Questions (A) and
(B), have been done, primarily, in the papers in which they were originally proposed. This
study carries further those studies by providing more focused information about using those
measures for the analysis of gene expression data. For Question (A), that analysis provides
further insights into the properties of the mentioned measures, with particular attention to
time. For Question (B), a first comparative analysis involving all of those measures that
accounts for both precision and time is provided. This is particularly relevant in regard to
the “stability-based” methods, i.e., Clest, Consensus and ME. In fact,

(1) those three measures are excellent representatives of methods in the class (see Handl
et al. and [92, 116]);

(2) Dudoit and Fridlyand mention that it would be desirable to relate Clest and ME but
no comparison seems to be available in the literature;

(3) although it is quite common to include Clest and Gap in comparative analysis for
novel measures, Consensus is hardly considered. However, the experiments presented
here show that it should definitely be included.

Finally, it is worth pointing out that the results and conclusion of this chapter are also
available to Giancarlo et al. [62].

6.2 Intrinsic Precision of the Internal Measures

In this section, the experiments with the aim to shed some light on Question (A) are pre-
sented. As discussed in Chapters 2 and 3, for most measures, the prediction of the “optimal”
number k∗ of clusters is based on the visual inspection of curves and histograms. For con-
ciseness, all the relevant material is provided in the following supplementary material web
site [3] (Figures section). Here only summary tables are given, based on the corresponding
analysis of the relevant curves and experiments. In this section, two separate tables for
each measure are reported, one for the precision and the other for timing results.

It is worthy to anticipate that the next section addresses the relative merits of each
measure and two global summary tables are reported, but only for the best performers. That
is, for each measure, the experimental parameters are reported (e.g., clustering algorithm)
only if in that setting the prediction of k∗ has been reasonably close to the gold solution
(at most an absolute value difference of one between the predicted number and the real
number) in at least four of the six datasets used in this chapter.

Moreover, in what follows, for each cell in a table displaying precision results, a number
in a circle with a black background indicates a prediction in agreement with the number
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 10 ¸ 3 6 º -

Hier-C 10 ¸ ² 8 9 -

Hier-S 8 10 ² 9 - -

K-means-R 4 ¸ 3 8 ¯ -

K-means-A 4 ¸ ² 6 º -

K-means-C ° ¸ ½ 8 ¯ -

K-means-S 3 ¯ ² 8 24 -

Gold solution 6 3 8 3 5 18

Table 6.1: A summary of the precision results for WCSS on all algorithms and Benchmark 1

datasets. Cells with a dash indicate that WCSS did not give any useful indication.

of classes in the dataset, while a number in a circle with a white background indicates a
prediction that differs, in absolute value, by 1 from the number of classes in the dataset;
when the prediction is one cluster, i.e. Gap statistics, this symbol rule is not applied
because the prediction means no cluster structure in the data; a number not in a circle
indicates the remaining predictions. As detailed in each table displaying timing or precision
results, cells with a dash indicate that either the experiment was stopped, because of its
high computational demand, or that the measure gives no useful indication. The timing
results are reported only on the four smallest datasets. Indeed, for Yeast and PBM, the
computational demand is such on some measures that either they had to be stopped or
they took weeks to complete. For those two datasets, the experiments reported here were
done using more than one machine.

6.2.1 WCSS

For each algorithm, and each dataset, WCSS is computed for a number of cluster values in the
range [2, 30]. The relevant plots are in the Figures section at the following supplementary
material web site [3]: Fig. S1 for the K-means algorithms and Fig. S2 for the hierarchical
algorithms.

As outlined in the Section 2.2.1.1, given the relevant WCSS curve, k∗ is predicted as the
abscissa closest to the “knee” in that curve. The values resulting from the application of
this methodology to the relevant plots are reported in Table 6.1, while the timing results
for the relevant datasets are reported in Table 6.2.

One has that WCSS performs well with K-means-C and K-means-A (see Table 6.1), on
the first five datasets, while it gives no reasonably correct indication on PBM. It is a poor
performer with the other clustering algorithms. Those facts give strong indication that
WCSS is algorithm-dependent. Finally, the failure of WCSS, with all algorithms, to give a
good prediction for PBM indicates that WCSS may not be of any use on large datasets
having a large number of clusters.

Overall, the best performer is K-means-C. The relative results are reported in Ta-
bles 6.15 and 6.16, for comparison with the performance of the other measures.

6.2.2 KL

Following the same experimental setup of WCSS, the KL measure is computed, for each
dataset and each algorithm. The results, summarized in Tables 6.3 and 6.4, are rather
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Measures

Timing

CNS Rat Leukemia NCI60 Limphoma

Hier-A 1.1× 10
3

4.0× 10
2

2.1× 10
3

1.9× 10
3

Hier-C 7.0× 10
2

4.0× 10
2

1.7× 10
3

1.4× 10
3

Hier-S 2.6× 10
3

6.0× 10
2

3.2× 10
3

3.8× 10
3

K-means-R 2.4× 10
3

2.0× 10
3

8.4× 10
3

8.4× 10
3

K-means-A 2.3× 10
3

1.3× 10
3

5.4× 10
3

5.8× 10
3

K-means-C 1.7× 10
3

1.3× 10
3

5.0× 10
3

4.0× 10
3

K-means-S 2.6× 10
3

1.6× 10
3

7.3× 10
3

7.4× 10
3

Table 6.2: A summary of the timing results for WCSS.

Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A ² ¸ 3  17 12

Hier-C 10 ¸ 2  16 15

Hier-S 21 7 ² 9 15 25

K-means-R 4 27 3 22 29 24

K-means-A 25 ¸ 3  7 16

K-means-C 2 ¸ ²  26 24

K-means-S 4 ¯ 12 8 13 16

Gold solution 6 3 8 3 5 18

Table 6.3: A summary of the precision results for KL on all algorithms and on Benchmark

1 datasets.

disappointing: the measure provides some reliable indication, across algorithms, only on
the Leukemia and the Lymphoma datasets. Due to such a poor performance, no results
are reported in Tables 6.15 and 6.16, for comparison with the performance of the other
measures.

6.2.3 Gap

For each dataset and each clustering algorithm, three versions of Gap are computed, namely
Gap-Ps, Gap-Pc and Gap-Pr, for a number of cluster values in the range [1, 30]. Gap-Ps

uses the Poisson null model, Gap-Pc the Poisson null model aligned with the principal

Timing

CNS Rat Leukemia NCI60 Limphoma

Hier-A 1.9× 10
3

6.0× 10
2

2.1× 10
3

2.5× 10
3

Hier-C 1.6× 10
3

1.1× 10
3

2.5× 10
3

2.1× 10
3

Hier-S 3.4× 10
3

1.3× 10
3

3.7× 10
3

4.9× 10
3

K-means-R 2.7× 10
3

3.4× 10
3

9.3× 10
3

9.0× 10
3

K-means-A 2.3× 10
3

2.4× 10
3

5.7× 10
3

6.2× 10
3

K-means-C 3.0× 10
3

2.6× 10
3

5.0× 10
3

5.8× 10
3

K-means-S 4.0× 10
3

2.9× 10
3

8.0× 10
3

8.5× 10
3

Table 6.4: A summary of the timing results KL on all algorithms.
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Gap-Ps-Hier-A 1 ¯ 1 6 3 1

Gap-Ps-Hier-C 1 or 2 ¯ 2 1 or 25 7 15

Gap-Ps-Hier-S 1 1 1 1 1 1

Gap-Ps-K-means-R » or ² ¯ or 5 3 8 9 7

Gap-Ps-K-means-A ² ¸ 1 8 7 9

Gap-Ps-K-means-C ² ¯ 2 1 or 25 12 6

Gap-Ps-K-means-S 9 ¸ 1 1 7 8

Gap-Pc-Hier-A 1 ¸ or ¯ 1 1 1 or 2 or 3 -

Gap-Pc-Hier-C 1 ¯ 1 1 3 -

Gap-Pc-Hier-S 1 1 1 1 1 -

Gap-Pc-K-means-R 2 1 1 1 ¯ -

Gap-Pc-K-means-A 2 ¯ 1 1 3 -

Gap-Pc-K-means-C 2 1 1 1 ¯ -

Gap-Pc-K-means-S 3 1 1 1 1 -

Gap-Pr-Hier-A 3 ¯ 1 6 3 1

Gap-Pr-Hier-C ² ¯ 1 1 or 25 16 1

Gap-Pr-Hier-S 1 or » 1 2 1 1 2

Gap-Pr-K-means-R » ¯ 5 8 8 8

Gap-Pr-K-means-A 8 ¯ 1 8 13 4

Gap-Pr-K-means-C ° 6 1 1 or 25 8 1

Gap-Pr-K-means-S ² ¸ 2 1 11 1

Gold solution 6 3 8 3 5 18

Table 6.5: A summary of the precision results for Gap on all algorithms and Benchmark 1

datasets, with use of three null models. For Gap-Pc, on PBM, the experiments were stopped
due to their high computational demand.

components of the data while Gap-Pr uses the permutational null model (see Section 1.4).
For each of them, a Monte Carlo simulation is performed, 20 steps, in which the measure
returns an estimated number of clusters for each step. Each simulation step is based on
the generation of 10 data matrices from the null model used by the measure. At the end
of each Monte Carlo simulation, the number with the majority of estimates is taken as the
predicted number of clusters. Occasionally, there are ties and both numbers are reported.
The relevant histograms are displayed at the following supplementary material web site [3]
(Figures section): Figs. S3-S8 for Gap-Ps, Figs. S9-S13 for Gap-Pc and Figs. S14-S19
for Gap-Pr. The results are summarized in Tables 6.5 and 6.6. For PBM and Gap-Pc,
each experiment was terminated after a week, since no substantial progress was being made
towards its completion.

The results for Gap are somewhat disappointing, as Table 6.5 shows. However, a few
comments are in order, the first one regarding the null models. Tibshirani et al. find
experimentally that, on simulated data, Gap-Pc is the clear winner over Gap-Ps (they did not
consider Gap-Pr). The results reported here show that, as the dataset size increases, Gap-Pc
incurs into a severe time performance degradation, due to the repeated data transformation
step. Moreover, on the smaller datasets, no null model seems to have the edge. Some of
the results are also somewhat puzzling. In particular, although the datasets have cluster
structure, many algorithms return an estimate of k∗ = 1, i.e., no cluster structure in the
data. An analogous situation was reported by Monti et al.. In their study, Gap-Ps returned
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Measures

Timing

CNS Rat Leukemia NCI60 Limphoma

Gap-Ps-Hier-A 2.7× 10
5

1.4× 10
5

6.1× 10
5

6.4× 10
5

Gap-Ps-Hier-C 2.3× 10
5

1.1× 10
4

3.4× 10
5

3.2× 10
5

Gap-Ps-Hier-S 6.1× 10
5

1.9× 10
5

1.1× 10
6

1.4× 10
6

Gap-Ps-K-means-R 8.4× 10
5

5.0× 10
5

1.1× 10
6

1.0× 10
6

Gap-Ps-K-means-A 6.1× 10
5

4.7× 10
5

1.1× 10
6

1.0× 10
6

Gap-Ps-K-means-C 6.0× 10
5

6.1× 10
5

8.8× 10
5

7.6× 10
5

Gap-Ps-K-means-S 9.1× 10
5

6.5× 10
5

2.1× 10
6

1.8× 10
6

Gap-Pc-Hier-A 3.2× 10
5

3.7× 10
5

8.1× 10
5

6.1× 10
5

Gap-Pc-Hier-C 1.9× 10
5

1.9× 10
5

7.1× 10
5

5.8× 10
5

Gap-Pc-Hier-S 7.7× 10
5

3.1× 10
5

1.4× 10
6

1.3× 10
6

Gap-Pc-K-means-R 4.9× 10
5

8.0× 10
5

1.8× 10
6

1.8× 10
6

Gap-Pc-K-means-A 3.8× 10
5

7.0× 10
5

1.3× 10
6

1.4× 10
6

Gap-Pc-K-means-C 4.1× 10
5

5.8× 10
5

1.3× 10
6

1.2× 10
6

Gap-Pc-K-means-S 6.5× 10
5

7.6× 10
5

2.4× 10
6

2.0× 10
6

Gap-Pr-Hier-A 2.5× 10
5

1.6× 10
5

3.3× 10
5

3.8× 10
5

Gap-Pr-Hier-C 1.3× 10
5

1.4× 10
5

3.2× 10
5

3.7× 10
5

Gap-Pr-Hier-S 6.8× 10
5

1.9× 10
5

1.1× 10
6

1.4× 10
6

Gap-Pr-K-means-R 8.6× 10
5

5.4× 10
5

1.5× 10
6

9.4× 10
5

Gap-Pr-K-means-A 7.4× 10
5

5.0× 10
5

8.7× 10
5

1.0× 10
6

Gap-Pr-K-means-C 6.7× 10
5

4.6× 10
5

8.6× 10
5

1.0× 10
6

Gap-Pr-K-means-S 1.2× 10
6

5.4× 10
5

1.8× 10
6

2.3× 10
6

Table 6.6: A summary of the timing results for Gap on all algorithms, with use of three null
models. For Gap-Pc, on PBM, the experiments were stopped due to their high computa-
tional demand.
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k∗ = 1 on two artificial datasets. Fortunately, an analysis of the corresponding Gap curve
showed that indeed the first maximum was at k∗ = 1 but a local maximum was also present
at the correct number of classes, in each dataset. An analogous analysis of the relevant
Gap curves is also performed here to find that, in analogy with Monti et al., most curves
show a local maximum at or very close to the number of classes in each dataset, following
the maximum at k∗ = 1. An example curve is given in Fig. 6.1. From the above, one
can conclude that inspection of the Gap curves and domain knowledge can greatly help in
disambiguating the case k∗ = 1. It is worth pointing out that experiments conducted by
Dudoit and Fridlyand and, independently by Yan and Ye [178], show that Gap tends to
overestimate the correct number of clusters, although this does not seem to be the case for
the datasets and algorithms used in this dissertation. The above considerations seem to
suggest that the automatic rule for the prediction of k∗ based on Gap is rather weak.

6.2.4 Clest

For CNS Rat and Yeast and each clustering algorithm, Clest is computed for a number of
cluster values in the range [2, 30] while, for Leukemia, NCI60 and Lymphoma, the ranges
[2, 10], [2, 15] and [2, 15] are used, respectively, due to the small size of the datasets. More-
over, although experiments have been started with PBM, no substantial progress was made
after a week of execution and, for each clustering algorithm, the corresponding experiment
was terminated. Following the same experimental setup of Dudoit and Fridlyand, for each
cluster value k, 20 resampling steps and 20 iterations are performed. In each step, 66% of
the rows of the data matrix are extracted, uniformly and at random, to create a learning
set, to be given to the clustering algorithm to be clustered in k groups. As one of its input
parameters, Clest requires the use of an external index E to establish the level of agree-
ment between two partitions of a dataset. Here each of the following are used: the FM (the
FM-Index), Adj (the Adjusted Rand Index) and F (the F-Index) (see Section 2.1).

The precision results are summarized in Table 6.7, while the timing results are reported
in Table 6.8. The Leukemia, NCI60 and Lymphoma datasets were excluded since the
experiments were performed on a smaller interval of cluster values with respect to CNS
Rat. This latter interval is the standard one used in this dissertation to make consistent
comparisons across measures and algorithms.

The results show that Clest has severe time demand limitations on large datasets. It
also seems to achieve a better performance, across algorithms with Adj and F. Moreover, it
is clearly algorithm-dependent, with K-means-R being the best performer with both FM and
F. Those results are reported in Tables 6.15 and 6.16 for comparison with the performance
of the other measures.

6.2.5 ME

For each of the first five datasets and each clustering algorithm, ME is computed for a number
of cluster values in the range [2, 30]. Following the same experimental setup of Ben-Hur et
al., for each cluster value k, 100 iterations are performed. In each step, two datasets to be
given to the algorithm to be clustered in k groups are computed. Each dataset is created
by extracting uniformly and at random 80% of the rows. The prediction of k∗ is based on
the plot of the corresponding histograms, as illustrated in Chapter 3. As for the external
indices that are used, they are the same three used for Clest. The histograms obtained from
such an experimentation are reported at the following supplementary material web site [3] in
Figs. S20-S124. As for PBM, the computations were stopped because of their computational
demand. A summary of the results is given in Tables 6.9 and 6.10. Indeed, the performance
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Measures

Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast

Clest-FM-Hier-A 10 6 10 13 24

Clest-FM-Hier-C 10 ¯ ´ 15 8

Clest-FM-Hier-S 20 10 15 15 1

Clest-FM-K-means-R 8 ¯ ½  ¯

Clest-FM-K-means-A 18 7 12 15 13

Clest-FM-K-means-C 12 5 12 11 ¯

Clest-FM-K-means-S 24 8 13 15 1

Clest-Adj-Hier-A 13 ¸ 3  11

Clest-Adj-Hier-C 9 ¯ 2  ¯

Clest-Adj-Hier-S 4 7 ´ 7 26

Clest-Adj-K-means-R ° ¯ 3  2

Clest-Adj-K-means-A 12 ¸ 3  º

Clest-Adj-K-means-C 9  2  ¯

Clest-Adj-K-means-S 20 6 13 6 10

Clest-F-Hier-A ² 7 10 15 27

Clest-F-Hier-C 9 ¸ 13 ¸ º

Clest-F-Hier-S 28 10 15 15 1

Clest-F-K-means-R » ¸ 15  ¯

Clest-F-K-means-A 8 6 10 14 11

Clest-F-K-means-C 9 5 12 ¸ ¯

Clest-F-K-means-S 21 10 15 15 1

Gold solution 6 3 8 3 5

Table 6.7: A summary of the precision results for Clest on all algorithms and the first four
datasets, with use of three external indices. For PBM, the experiments were terminated
due to their high computational demand (weeks to complete).
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Timing

CNS Rat

Clest-FM-Hier-A 1.1× 10
6

Clest-FM-Hier-C 1.1× 10
6

Clest-FM-Hier-S 1.1× 10
6

Clest-FM-K-means-R 1.2× 10
6

Clest-FM-K-means-A 1.4× 10
6

Clest-FM-K-means-C 1.5× 10
6

Clest-FM-K-means-S 1.8× 10
6

Clest-Adj-Hier-A 1.1× 10
6

Clest-Adj-Hier-C 1.1× 10
6

Clest-Adj-Hier-S 1.1× 10
6

Clest-Adj-K-means-R 1.1× 10
6

Clest-Adj-K-means-A 1.4× 10
6

Clest-Adj-K-means-C 1.4× 10
6

Clest-Adj-K-means-S 1.8× 10
6

Clest-F-Hier-A 1.1× 10
6

Clest-F-Hier-C 1.1× 10
6

Clest-F-Hier-S 1.1× 10
6

Clest-F-K-means-R 1.2× 10
6

Clest-F-K-means-A 1.4× 10
6

Clest-F-K-means-C 1.5× 10
6

Clest-F-K-means-S 1.8× 10
6

Table 6.8: A summary of the timing results for Clest on all algorithms, with use of three
external indices. For PBM, the experiments were terminated due to their high computa-
tional demand (weeks to complete). Therefore, the resulting column is omitted from the
table. For the Leukemia, NCI60 and Lymphoma datasets, the timing experiments are not
reported because incomparable with those of CNS Rat and of the other measures. The
corresponding columns are eliminated from the table.
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Measures

Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

ME-FM-Hier-A 4  2  1 -

ME-FM-Hier-C 2  2  1 -

ME-FM-Hier-S 8  2  - -

ME-FM-K-means-R 2  2  3 -

ME-FM-K-means-A 2  4  2 -

ME-FM-K-means-C 2  2  3 -

ME-FM-K-means-S 2  3  ¯ -

ME-Adj-Hier-A 3 1 4 1 1 -

ME-Adj-Hier-C 1 1 2  1 -

ME-Adj-Hier-S 1 1 1 1 1 -

ME-Adj-K-means-R 1 1 1 2 1 -

ME-Adj-K-means-A 1  1  1 -

ME-Adj-K-means-C 1  2  1 -

ME-Adj-K-means-S 1 1 1 1 1 -

ME-F-Hier-A 4 1 3 1 1 -

ME-F-Hier-C 3 1 2  1 -

ME-F-Hier-S ² 1 2 ¸ - -

ME-F-K-means-R 1  2  2 -

ME-F-K-means-A 2 ¸ 4  2 -

ME-F-K-means-C 2  2  2 -

ME-F-K-means-S 2 1 2 ¯ ¯ -

Gold solution 6 3 8 3 5 18

Table 6.9: A summary of the precision results for ME on all algorithms and Benchmark 1

datasets, with use of three external indices. For PBM, the experiments were stopped due
to their high computational demand (weeks to complete).

of ME was rather disappointing, with the exception of Leukemia and Lymphoma, across
algorithms and external indices.

6.2.6 Consensus

For each of the first five datasets and each clustering algorithm, Consensus is computed for
a number of cluster values in the range [2, 30]. Following the same experimental setup of
Monti et al., for each cluster value k, 500 resampling steps are performed. In each step, 80%
of the rows of the matrix are extracted uniformly and at random to create a new dataset,
to be given to the clustering algorithm to be clustered in k groups. The prediction of k∗ is
based on the plot of two curves, ∆(k) and ∆′(k), as a function of the number k of clusters.
Both curves are defined in Chapter 3. As suggested by Monti et al., the first curve is suitable
for hierarchical algorithms while the second suits non-hierarchical ones. The experiment
for PBM were aborted since Consensus was very slow (execution on each algorithm was
terminated after a week). Contrary to Monti et al. indication, the ∆(k) curve is computed
for all algorithms on the first five datasets, for reasons that will be self-evident shortly.
The corresponding plots are available at the following supplementary material web site [3]
(Figures section) as Figs. S125-S134. Moreover, the ∆′(k) curve is also computed for the
K-means algorithms, on the same datasets. Recall from Chapter 3 the recommendation
to use the ∆′ curve instead of the ∆ curve for non-hierarchical algorithms as suggested by
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Timing

CNS Rat Leukemia NCI60 Limphoma

ME-FM-Hier-A 2.8× 10
5

2.3× 10
5

7.6× 10
5

6.5× 10
5

ME-FM-Hier-C 2.9× 10
5

2.3× 10
5

7.6× 10
5

6.5× 10
5

ME-FM-Hier-S 2.9× 10
5

2.3× 10
5

7.7× 10
5

6.5× 10
5

ME-FM-K-means-R 3.6× 10
5

3.9× 10
5

1.3× 10
6

1.1× 10
6

ME-FM-K-means-A 4.6× 10
5

3.6× 10
5

1.1× 10
6

9.8× 10
5

ME-FM-K-means-C 4.4× 10
5

3.7× 10
5

1.1× 10
6

9.8× 10
5

ME-FM-K-means-S 5.3× 10
5

3.7× 10
5

1.2× 10
6

1.0× 10
6

ME-Adj-Hier-A 2.7× 10
5

2.3× 10
5

7.6× 10
5

6.4× 10
5

ME-Adj-Hier-C 2.7× 10
5

2.3× 10
5

7.6× 10
5

6.5× 10
5

ME-Adj-Hier-S 2.7× 10
5

2.3× 10
5

7.5× 10
5

6.5× 10
5

ME-Adj-K-means-R 3.4× 10
5

3.8× 10
5

1.3× 10
6

1.1× 10
6

ME-Adj-K-means-A 4.4× 10
5

3.5× 10
5

1.1× 10
6

9.8× 10
5

ME-Adj-K-means-C 4.2× 10
5

4.2× 10
5

1.1× 10
6

9.9× 10
5

ME-Adj-K-means-S 5.1× 10
5

3.7× 10
5

1.2× 10
6

1.0× 10
6

ME-F-Hier-A 2.8× 10
5

2.1× 10
5

7.3× 10
5

6.4× 10
5

ME-F-Hier-C 2.8× 10
5

2.2× 10
5

7.4× 10
5

6.4× 10
5

ME-F-Hier-S 2.8× 10
5

2.1× 10
5

7.4× 10
5

6.4× 10
5

ME-F-K-means-R 3.6× 10
5

3.8× 10
5

1.3× 10
6

1.0× 10
6

ME-F-K-means-A 4.5× 10
5

3.5× 10
5

1.1× 10
6

9.5× 10
5

ME-F-K-means-C 4.3× 10
5

3.5× 10
5

1.1× 10
6

9.6× 10
5

ME-F-K-means-S 5.2× 10
5

3.5× 10
5

1.1× 10
6

1.0× 10
6

Table 6.10: A summary of the timing results for ME on all algorithms, with use of three
external indices. For PBM, the experiments were stopped due to their high computational
demand (weeks to complete).
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast

Hier-A ² ¸ ½ ¸ º

Hier-C » ¯ ½ 5 ±

Hier-S 2 8 10 ¸ 10

K-means-R » ¯ ² Ì ±

K-means-A ² ¸ ½ Ì ±

K-means-C » ¸ ½ ¯ ±

K-means-S ² ¯ 10  ±

Gold solution 6 3 8 3 5

Table 6.11: A summary of the precision results for Consensus on all algorithms and the
first five datasets in Benchmark 1. For PBM, the experiments were terminated due to their
high computational demand and the corresponding column has been removed from the
table.

Monti et al.. Briefly, the reason is the following: A(k) is a value that is expected to behaves
like a non-decreasing function of k, for hierarchical algorithms. Therefore, ∆(k) would be
expected to be positive or, when negative, not too far from zero. Such a monotonicity of
A(k) is not expected for non-hierarchical algorithms. Therefore, another definition of ∆

is needed to ensure a behavior of this function analogous to the hierarchical algorithms.
However, from the experiments reported in Table 6.11, for the K-means algorithms, A(k)

displays nearly the same monotonicity properties of the hierarchical algorithms. The end
result is that ∆ can be used for both types of algorithms. Consequently, since the ∆′ curves
are nearly identical to the ∆(k) ones, they are omitted. In order to predict the number of
clusters in the datasets, for all curves, the rule reported and explained in the Section 3.3.1
is used: take as k∗ the abscissa corresponding to the smallest non-negative value where the
curve starts to stabilize; that is, no big variation in the curve takes place from that point
on. An analysis on the ∆(k) curves is performed and the precision results are summarized
in Table 6.11 and the corresponding timing results in Table 6.12.

As for the precision of Consensus, all algorithms perform well, except for Hier-S.

In conclusion, Consensus seems to be limited by time demand that makes it not ap-
plicable to large datasets. However, on small and medium sized datasets, it is remarkably
precise across algorithms. In fact, except for Hier-S, the performance of Consensus is among
the best and reported in Tables 6.15 and 6.16, for comparison with the performance of the
other measures.

6.2.7 FOM

For each algorithm, and each dataset, the same methodology outlined for WCSS is followed.
The relevant plots are in Figs. S135-S136 at the following supplementary material web
site [3] (Figures section). The values resulting from the application of this methodology to
the relevant plots are reported in Table 6.13 and 6.14 together with timing results for the
relevant datasets. From those results, it is possible to see as FOM is algorithm-dependent
and gives no useful indication on large datasets. The best performing settings are reported
in Tables 6.15, and 6.16 for comparison with the performance of the other measures.



6.2. Intrinsic Precision of the Internal Measures 85

Timing

CNS Rat Leukemia NCI60 Lymphoma

Hier-A 9.2× 10
5

7.9× 10
5

2.0× 10
6

1.9× 10
6

Hier-C 8.7× 10
5

6.9× 10
5

2.0× 10
6

2.0× 10
6

Hier-S 9.4× 10
5

8.0× 10
5

2.0× 10
6

1.7× 10
6

K-means-R 1.0× 10
6

1.3× 10
6

3.4× 10
6

3.0× 10
6

K-means-A 1.3× 10
6

1.6× 10
6

3.0× 10
6

2.6× 10
6

K-means-C 1.3× 10
6

1.8× 10
6

2.9× 10
6

2.6× 10
6

K-means-S 1.5× 10
6

1.8× 10
6

3.2× 10
6

2.8× 10
6

Table 6.12: A summary of the timing results for Consensus on all algorithms and the first
five datasets in Benchmark 1. For PBM, the experiments were terminated due to their high
computational demand and the corresponding column has been removed from the table.

Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A ² ¸ ² 6 ± -

Hier-C 10 ¯ ² 7 º -

Hier-S 3 7 ² 9 - -

K-means-R ² ¸ 6 9 ¯ -

K-means-A ² ¸ 6 6 ¯ -

K-means-C ² 8 ½ ¯ ¯ -

K-means-S » ¸ ½ 8 ¯ -

Gold solution 6 3 8 3 5 18

Table 6.13: A summary of the precision results for FOM on all algorithms and on Benchmark

1 datasets. Cells with a dash indicate that FOM did not give any useful indication.

Timing

CNS Rat Leukemia NCI60 Lymphoma

Hier-A 1.6× 10
3

7.5× 10
3

5.1× 10
4

1.8× 10
4

Hier-C 1.6× 10
3

7.7× 10
3

4.5× 10
4

1.8× 10
4

Hier-S 1.6× 10
3

7.4× 10
3

4.9× 10
5

1.7× 10
4

K-means-R 2.9× 10
4

1.9× 10
5

1.3× 10
6

6.7× 10
5

K-means-A 2.2× 10
4

9.3× 10
4

5.5× 10
5

2.7× 10
5

K-means-C 1.9× 10
4

9.4× 10
4

5.5× 10
5

2.6× 10
5

K-means-S 2.9× 10
4

1.0× 10
5

7.1× 10
5

3.6× 10
5

Table 6.14: A summary of the timing results for FOM on all algorithms and on Benchmark

1 datasets.
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6.3 Relative Merits of Each Measure

The discussion here refers to Tables 6.15 and 6.16. It is evident that the K-means algorithms
have superior performance with respect to the hierarchical ones, although Hier-A has an
impressive and unmatched performance with Consensus.

However, Consensus and FOM stand out as being the most stable across algorithms.
In particular, Consensus has a remarkable stability performance across algorithms and
datasets.

For large datasets such as PBM, the experiments show that all the measures are severely
limited due either to speed (Clest, Consensus, Gap-Pc) or to precision as well as speed (the
others). Therefore, this fact stresses even more the need for good data filtering and dimen-
sionality reduction techniques since they may help reduce such datasets to sizes manageable
by the measures studied in this chapter.

It is also obvious that, when one takes computer time into account, there is a hierarchy
of measures, with WCSS being the fastest and Consensus the slowest. It is worth point-
ing out that from Table 6.16 that there is a natural division of methods in two groups:
slow (Clest, Consensus, Gap) and fast (the other measures). Since there are at least two
orders of magnitude of difference in time performance between the two groups, it seems
reasonable to use one of the fast methods to limit the search interval for k∗. One can then
use Consensus in the narrowed interval. Although it may seem paradoxical, despite its
precision performance, FOM does not seem to be competitive in this scenario. Indeed, it is
only marginally better than the best performing setting of WCSS but at least an order of
magnitude slower in time.

When one does not account for time, Consensus seems to be the clear winner since it
offers good precision performance across algorithms at virtually the same price in terms of
time performance.

It is also important pointing out that the three instances of the Stability Measure
paradigm have quite diverging performances. Such a fact gives evidence that care must be
exercised in taking full advantage of such a powerful paradigm. Indeed, only Consensus

seems to take full advantage of the repeated data generation. A possible reason for this is
in the different implementation of the Stability Statistic paradigm to collect the statistic.
In fact, Consensus builds a matrix, the consensus matrix, that contains very punctual and
global information about the cluster structure of the dataset, while the other two measures
try to infer that structure by first splitting the dataset in two subsets and then by using a
synoptic function (an external index) to assess the similarity between the partitions. That
is, those latter two measures use a coarse assessment of consistency. Moreover, ME uses the
same algorithm for both of the datasets generated. Probably that induces a big dependency
of the measure on the clustering algorithm.

Considering the results of Tables 6.15 and 6.16, a promising avenue of research is to
design fast approximation algorithms for the computation of the slowest measures, in par-
ticular Consensus. Finally, it is worth pointing out that Gap, Clest, ME and Consensus

have various parameters that a user needs to specify. Those choices may affect both time
performance and precision. However, no parameter tuning is available in the Literature.

The next chapter addresses those issues. Indeed, a first study of the best parameter
setting for Consensus is provided. Moreover, an approximation of several measures is pre-
sented, with particular focus on Gap and Consensus. Moreover, a general scheme speeding
up the Stability Statistic paradigm is also provided.
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast

WCSS-K-means-C ° ¸ ½ 8 ¯

FOM-Hier-A ² ¸ ² 6 ±

FOM-K-means-C ² 8 ½ ¯ ¯

FOM-K-means-S » ¸ ½ 8 ¯

Clest-F-K-means-R » ¸ 15  ¯

Clest-FM-K-means-R 8 ¯ ½  ¯

Consensus-Hier-A ² ¸ ½ ¸ º

Consensus-Hier-C » ¯ ½ 5 ±

Consensus-K-means-R » ¯ ² ¸ ±

Consensus-K-means-A ² ¸ ½ ¸ ±

Consensus-K-means-C » ¸ ½ ¯ ±

Consensus-K-means-S ² ¯ 10  ±

Gold solution 6 3 8 3 5

Table 6.15: A summary of the precision for the best performances obtained by each mea-
sure. The PBM dataset has been excluded because no measure gave useful information
about its cluster structure.

Timing

CNS Rat Leukemia NCI60 Lymphoma

WCSS-K-means-C 1.7× 10
3

1.3× 10
3

5.0× 10
3

4.0× 10
3

FOM-Hier-A 1.6× 10
3

7.5× 10
3

5.1× 10
4

1.8× 10
4

FOM-K-means-C 1.9× 10
4

9.4× 10
4

5.5× 10
5

2.6× 10
5

FOM-K-means-S 2.9× 10
4

1.0× 10
5

7.1× 10
5

3.6× 10
5

Clest-F-K-means-R 1.2× 10
6 - - -

Clest-FM-K-means-R 1.2× 10
6 - - -

Consensus-Hier-A 9.2× 10
5

7.9× 10
5

2.0× 10
6

1.9× 10
6

Consensus-Hier-C 8.7× 10
5

6.9× 10
5

2.0× 10
6

2.0× 10
6

Consensus-K-means-R 1.0× 10
6

1.3× 10
6

3.4× 10
6

3.0× 10
6

Consensus-K-means-A 1.3× 10
6

1.6× 10
6

3.0× 10
6

2.6× 10
6

Consensus-K-means-C 1.3× 10
6

1.8× 10
6

2.9× 10
6

2.6× 10
6

Consensus-K-means-S 1.5× 10
6

1.8× 10
6

3.2× 10
6

2.8× 10
6

Table 6.16: A summary of the timing for the best performances obtained by each measure.
The PBM dataset has been excluded because no measure gave useful information about its
cluster structure.
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Figure 6.1: The Gap-Pc curve on the Leukemia dataset, with use of the Hier-S algorithm.
At each point, error bars indicate the variation of the curve across simulations. The curve
shows a first maximum at k = 1, yielding a prediction of k∗ = 1, the next maximum is at
k = 4, which is very close to the number of classes k∗ = 3.



Chapter 7

Speedups of Internal Validation

Measures Based on

Approximations

One open question that was made explicit by the study of the previous chapter is the design
of a data-driven internal validation measure that is both precise and fast, and capable of
granting scalability with dataset size. Such a lack of scalability for the most precise internal
validation measures is one of the main computational bottlenecks in the process of cluster
evaluation for microarray data analysis. Its elimination is far from trivial [99] and even
partial progress on this problem is perceived as important. In the research area embodying
the design and analysis of algorithms, when a problem is computationally difficult, a usual
approach to its solution is to design fast heuristics and/or provably good approximation
algorithms, in order to obtain solution that are “close” to the ones that would be produced
by the exact algorithms.

In this chapter, the algorithmic approach just outlined is investigated in a systematic
way in the realm of internal validation measures, with the goal of narrowing the time per-
formance gap, identified in the previous chapter, between the most precise and the fastest
measures. In particular, several algorithmic approximations and two general approxima-
tions schemes are presented.

7.1 An Approximation of WCSS

The approximation of WCSS proposed here is based on the idea of reducing the number of
executions of a clustering algorithm C for the computation of WCSS(k), for each k in a given
interval [1, kmax]. In fact, given an integer R > 0, which is referred to as refresh step, the
approximate algorithm to compute WCSS uses algorithm C to obtain a clustering solution
with k clusters, only for values of k multiples of R. For all other k’s, a clustering solution
is obtained by merging two clusters in a chosen clustering solution already available. The
procedure in Fig. 7.1 gives the high level details. It takes as input R,C,D and kmax.
Algorithm C must be able to take as input a clustering solution with k clusters and refine
it to give as output a clustering solution with the same number of clusters.

Technically, the main idea in the approximation scheme is to interleave the execution of
a partitional clustering algorithm C with a merge step typical of agglomerative clustering.
The gain in speed is realized by having a fast merge step, based on k+1 clusters, to obtain
k clusters instead of a new full fledged computation, starting from scratch, of the algorithm
C to obtain the same number of clusters. The approximation scheme would work also for
hierarchical algorithms, provided that they comply with the requirement that, given as
input a dataset, they will return a partition into k groups. However, in this circumstance,
the approximation scheme would be a nearly exact replica of the hierarchical algorithm. In
conclusion, a general approximation scheme is proposed, where the gain is realized when the
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WCSS-R(R,C,D, kmax)

1. Let Pkmax
be the partition of D into kmax cluster with the use of C

2. Compute WCSS(kmax) using Pkmax

for k ← kmax − 1 downto 1 do

begin

comment: Merge

3. Merge the two clusters in Pk+1 with minimum Euclidean distance

between centroids to obtain a temporary clustering solution

P ′
k with k clusters

comment: Refresh

4. if (R = 0) or (k mod R > 0)

then Pk ← P ′
k

else Compute new Pk based on P ′
k. That is, P ′

k is given as input to C, as an

initial partition of D in k clusters, and Pk is the result of that computation.

5. Compute WCSS(k) using Pk

end

Figure 7.1: The WCSS-R procedure
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 10 ¸ 3 6 º -

Hier-C 10 ¸ ² 8 9 -

Hier-S 8 10 ² 9 - -

R-R0 ° ¯ ´ ¸ ¯ -

R-R2 ² 5 15 ¯ ¯ -

R-R5 » 5 ´ 5 ¯ -

K-means-R 4 ¸ 3 8 ¯ -

K-means-A 4 ¸ ² 6 º -

K-means-C ° ¸ ½ 8 ¯ -

K-means-S 3 ¯ ² 8 24 -

Gold solution 6 3 8 3 5 18

Table 7.1: A summary of the precision results for WCSS of Table 6.1 with the addition of its
approximation. Cells with a dash indicate that WCSS did not give any useful indication.

Timing

CNS Rat Leukemia NCI60 Limphoma

Hier-A 1.1× 10
3

4.0× 10
2

2.1× 10
3

1.9× 10
3

Hier-C 7.0× 10
2

4.0× 10
2

1.7× 10
3

1.4× 10
3

Hier-S 2.6× 10
3

6.0× 10
2

3.2× 10
3

3.8× 10
3

R-R0 1.2× 10
3

8.0× 10
2

4.1× 10
3

3.0× 10
3

R-R2 1.3× 10
3

8.0× 10
2

5.3× 10
3

3.2× 10
3

R-R5 1.2× 10
3

8.0× 10
2

4.6× 10
3

3.2× 10
3

K-means-R 2.4× 10
3

2.0× 10
3

8.4× 10
3

8.4× 10
3

K-means-A 2.3× 10
3

1.3× 10
3

5.4× 10
3

5.8× 10
3

K-means-C 1.7× 10
3

1.3× 10
3

5.0× 10
3

4.0× 10
3

K-means-S 2.6× 10
3

1.6× 10
3

7.3× 10
3

7.4× 10
3

Table 7.2: A summary of the timing results for WCSS of Table 6.2 with the addition of its
approximation.

merge step is faster than a complete computation of a clustering algorithm C. In this thesis,
experiments have been conducted with K-means-R on Benchmark 1 datasets, and with
values of the refresh step R = 0, 2, 5, i.e., the partitional clustering algorithm is used only
once, every two and five steps, respectively. The corresponding results are summarized in
Tables 7.1 and 7.2, together with the results of WCSS already reported in Tables 6.1 and 6.2.
As is self-evident from the results in the former tables, the approximation has a better
predicting power than the original WCSS curve (obtained via all other clustering algorithms
one has experimented with). In fact, the approximation is among the best performers.
Moreover, depending on the dataset, it is from a few times to an order of magnitude faster
than the K-means algorithms (see Table 7.2).
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7.2 A Geometric Approximation of Gap Statistics: G-

Gap

The geometric interpretation of Gap given in Chapter 2 and the behavior of the WCSS curve
across null models suggests a fast approximation, which it is referred to as G-Gap. The
intuition, based on experimental observations, is that one can skip the entire simulation
phase of Gap, without compromising too much the accuracy of the prediction of k∗. Indeed,
based on the WCSS curve, the plot of the log WCSS curve one expects, for a given clustering
algorithm and null model, is a straight line with a slope somewhat analogous to that of
the log WCSS curve and dominating it (see Fig. 2.3). Therefore, one can simply identify the
“knee” in the WCSS by translating the end-points of the log WCSS curve on the original dataset
by a given amount a, to obtain two points gs and ge. Those two points are then joined by a
straight line, which is used to replace the null model curve to compute the segment lengths
used to predict k∗, i.e, the first maximum among those segment lengths as k increases. An
example is provided in Fig. 7.2 with the WCSS curve of Fig. 2.1. The prediction is k∗ = 3,
which is very close to the correct k∗ = 2. It is worth pointing out that the use of the WCSS

curve in the figure is to make clear the behavior of the segment lengths, which would be
unnoticeable with the log WCSS curve, although the result would be the same.
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Figure 7.2: The G-Gap Heuristic. The curve in green is a WCSS curve obtained on the
dataset of Fig. 1.4(a) with the use of the K-means algorithm. The line in red is obtained
by projecting upward the end points of the WCSS curve by a units and then joining them.
It is a heuristic approximation of WCSS for a null model. The vertical lines have the same
role as in Gap and the rule to identify k∗ is the same, yielding a value k∗ = 3, a value very
close to the correct number of classes (two) in the dataset.

As for G-Gap, the geometric approximation of Gap, each algorithm and each dataset, the
corresponding WCSS curve and its approximations has been computed in the interval [1, 30]
on Benchmark 1 datasets. The rule described above has been applied to get the value of k∗.
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The corresponding results are summarized in Tables 7.3 and 7.4 with the addition of the
results of Gap reported in Tables 6.5 and 6.6. As it is evident from Tables 7.3, the overall
performance of G-Gap is clearly superior to Gap, irrespective of the null model. Moreover,
depending on the dataset, it is from two to three orders of magnitude faster (see Table 7.4).

7.3 An Approximation of FOM

Recalling from Chapter 2 that both WCSS and FOM use the same criteria that is used in order
to infer k∗. Such an analogy between FOM and WCSS immediately suggest to extend some of
the knowledge available about WCSS to FOM, as follows:

• The approximation of FOM is based on exactly the same ideas and schemes presented
for the approximation of WCSS. Indeed, FOM(e, k) in equation (2.20) can be approx-
imated in exactly the same way as WCSS(k). Then, one uses equation (2.21) to
approximate FOM. We denote those approximations as FOM-R.

• The G-Gap idea can be extended verbatim to FOM to make it automatic and to obtain
G-FOM.

• The KL technique can be extended to FOM, although the extension is subtle. Indeed,
a verbatim extension of it would yield poor results (experiments not shown). Rather,
consider formula (2.17), with WCSS(k) substituted by FOM(k). As k increases towards
k∗, DIFF (k) increases to decrease sharply and then assume nearly constant values
as it moves away from k∗. Fig. 7.3 provides a small example of this behavior. So,
one can take as k∗ the abscissa corresponding to the maximum of DIFF (k) in the
interval [3, kmax]. This method is referred to as DIFF-FOM.

For each algorithm, each of the FOM approximations (denoted FOM-R-R0, FOM-R-R2,
FOM-R-R5, respectively) and each dataset in Benchmark 1, the same methodology outlined
for WCSS and its approximation has been followed. The relevant plots are in Figs. S135-
S136 at the following supplementary material web site [3] (Figures section). The values
resulting from the application of this methodology to the relevant plots are reported in
Table 7.5, while the timing results for the relevant datasets are reported in Table 7.6 with
the addition of the results for FOM reported in Tables 6.13 and 6.14, respectively. Using the
same experimental setting, G-FOM and DIFF-FOM, the extensions of FOM proposed here, are
computed in order to predict k∗. The results are in Tables 7.7-7.8 and 7.9-7.10, respectively.
As those results show, G-FOM does not perform as well as the other two. Moreover, both
FOM and DIFF-FOM are algorithm-dependent and give no useful indication on large datasets.
As for the approximations of FOM, i.e., FOM-R-R0, FOM-R-R2, FOM-R-R5, they compare very
well with the K-means algorithms in terms of precision and they are an order of magnitude
faster.

7.4 An Exhaustive Study of the Consensus Parameters

It is helpful for the discussion to highlight, here, some key facts about Consensus, sum-
marizing the detailed description of the procedure presented in Chapter 3. For a given
number of clusters, Consensus computes a certain number of clustering solutions (resam-
pling step), each from a sample of the original data (subsampling). The performance of
Consensus depends on two parameters: the number of resampling steps H and the percent-
age of subsampling p, where p states how large the sample must be. From each clustering
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

G-Gap-Hier-A ² ¸ 1  3 1

G-Gap-Hier-C ² ¸ 2  7 4

G-Gap-Hier-S ° ¸ 1 1 1 5

G-Gap-R-R0 2 7 2 ¯ º 4

G-Gap-R-R2 3  2  º 6

G-Gap-R-R5 ° ¯ 2  ¯ 6

G-Gap-K-means-R ² ¸ 4 ¯ ± 5

G-Gap-K-means-A 4 ¸ 1  ± 4

G-Gap-K-means-C ° ¸ 2 8 ± 5

G-Gap-K-means-S 3 ¸ 1 1 1 1

Gap-Ps-Hier-A 1 ¯ 1 6 3 1

Gap-Ps-Hier-C 1 or 2 ¯ 2 1 or 25 7 15

Gap-Ps-Hier-S 1 1 1 1 1 1

Gap-Ps-K-means-R » or ² ¯ or 5 3 8 9 7

Gap-Ps-K-means-A ² ¸ 1 8 7 9

Gap-Ps-K-means-C ² ¯ 2 1 or 25 12 6

Gap-Ps-K-means-S 9 ¸ 1 1 7 8

Gap-Pc-Hier-A 1 ¸ or ¯ 1 1 1 or 2 or 3 -

Gap-Pc-Hier-C 1 ¯ 1 1 3 -

Gap-Pc-Hier-S 1 1 1 1 1 -

Gap-Pc-K-means-R 2 1 1 1 ¯ -

Gap-Pc-K-means-A 2 ¯ 1 1 3 -

Gap-Pc-K-means-C 2 1 1 1 ¯ -

Gap-Pc-K-means-S 3 1 1 1 1 -

Gap-Pr-Hier-A 3 ¯ 1 6 3 1

Gap-Pr-Hier-C ² ¯ 1 1 or 25 16 1

Gap-Pr-Hier-S 1 or » 1 2 1 1 2

Gap-Pr-K-means-R » ¯ 5 8 8 8

Gap-Pr-K-means-A 8 ¯ 1 8 13 4

Gap-Pr-K-means-C ° 6 1 1 or 25 8 1

Gap-Pr-K-means-S ² ¸ 2 1 11 1

Gold solution 6 3 8 3 5 18

Table 7.3: A summary of the precision results for Gap of Table 6.5 with the addition of
its approximations. For Gap-Pc, on PBM, the experiments were stopped due to their high
computational demand.
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Timing

CNS Rat Leukemia NCI60 Limphoma

G-Gap-Hier-A 1.1× 10
3

4.0× 10
2

2.0× 10
3

1.9× 10
3

G-Gap-Hier-C 7.0× 10
2

4.0× 10
2

1.7× 10
3

1.4× 10
3

G-Gap-Hier-S 2.6× 10
3

6.0× 10
2

3.2× 10
3

3.8× 10
3

G-Gap-R-R0 1.2× 10
3

8.0× 10
2

4.0× 10
3

3.0× 10
3

G-Gap-R-R2 1.3× 10
3

8.0× 10
2

5.2× 10
3

3.2× 10
3

G-Gap-R-R5 1.2× 10
3

8.0× 10
2

4.5× 10
3

3.2× 10
3

G-Gap-K-means-R 2.4× 10
3

2.0× 10
3

8.3× 10
3

8.4× 10
3

G-Gap-K-means-A 2.3× 10
3

1.3× 10
3

5.3× 10
3

5.8× 10
3

G-Gap-K-means-C 1.7× 10
3

1.3× 10
3

5.0× 10
3

4.0× 10
3

G-Gap-K-means-S 2.6× 10
3

1.6× 10
3

7.3× 10
3

7.4× 10
3

Gap-Ps-Hier-A 2.7× 10
5

1.4× 10
5

6.1× 10
5

6.4× 10
5

Gap-Ps-Hier-C 2.3× 10
5

1.1× 10
4

3.4× 10
5

3.2× 10
5

Gap-Ps-Hier-S 6.1× 10
5

1.9× 10
5

1.1× 10
6

1.4× 10
6

Gap-Ps-K-means-R 8.4× 10
5

5.0× 10
5

1.1× 10
6

1.0× 10
6

Gap-Ps-K-means-A 6.1× 10
5

4.7× 10
5

1.1× 10
6

1.0× 10
6

Gap-Ps-K-means-C 6.0× 10
5

6.1× 10
5

8.8× 10
5

7.6× 10
5

Gap-Ps-K-means-S 9.1× 10
5

6.5× 10
5

2.1× 10
6

1.8× 10
6

Gap-Pc-Hier-A 3.2× 10
5

3.7× 10
5

8.1× 10
5

6.1× 10
5

Gap-Pc-Hier-C 1.9× 10
5

1.9× 10
5

7.1× 10
5

5.8× 10
5

Gap-Pc-Hier-S 7.7× 10
5

3.1× 10
5

1.4× 10
6

1.3× 10
6

Gap-Pc-K-means-R 4.9× 10
5

8.0× 10
5

1.8× 10
6

1.8× 10
6

Gap-Pc-K-means-A 3.8× 10
5

7.0× 10
5

1.3× 10
6

1.4× 10
6

Gap-Pc-K-means-C 4.1× 10
5

5.8× 10
5

1.3× 10
6

1.2× 10
6

Gap-Pc-K-means-S 6.5× 10
5

7.6× 10
5

2.4× 10
6

2.0× 10
6

Gap-Pr-Hier-A 2.5× 10
5

1.6× 10
5

3.3× 10
5

3.8× 10
5

Gap-Pr-Hier-C 1.3× 10
5

1.4× 10
5

3.2× 10
5

3.7× 10
5

Gap-Pr-Hier-S 6.8× 10
5

1.9× 10
5

1.1× 10
6

1.4× 10
6

Gap-Pr-K-means-R 8.6× 10
5

5.4× 10
5

1.5× 10
6

9.4× 10
5

Gap-Pr-K-means-A 7.4× 10
5

5.0× 10
5

8.7× 10
5

1.0× 10
6

Gap-Pr-K-means-C 6.7× 10
5

4.6× 10
5

8.6× 10
5

1.0× 10
6

Gap-Pr-K-means-S 1.2× 10
6

5.4× 10
5

1.8× 10
6

2.3× 10
6

Table 7.4: A summary of the timing results for Gap of Table 6.6 with the addition of its
approximations. For Gap-Pc, on PBM, the experiments were stopped due to their high
computational demand.
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A ² ¸ ² 6 ± -

Hier-C 10 ¯ ² 7 º -

Hier-S 3 7 ² 9 - -

R-R0 10 5 ² ¯ 7 -

R-R2 8 5 ½ 5 º -

R-R5 » ¸ ² 5 º -

K-means-R ² ¸ 6 9 ¯ -

K-means-A ² ¸ 6 6 ¯ -

K-means-C ² 8 ½ ¯ ¯ -

K-means-S » ¸ ½ 8 ¯ -

Gold solution 6 3 8 3 5 18

Table 7.5: A summary of the precision results for FOM of Table 6.13 with the addition of
its approximations. Cells with a dash indicate that FOM did not give any useful indication.

Timing

CNS Rat Leukemia NCI60 Lymphoma

Hier-A 1.6× 10
3

7.5× 10
3

5.1× 10
4

1.8× 10
4

Hier-C 1.6× 10
3

7.7× 10
3

4.5× 10
4

1.8× 10
4

Hier-S 1.6× 10
3

7.4× 10
3

4.9× 10
5

1.7× 10
4

R-R0 2.6× 10
3

3.1× 10
4

1.7× 10
5

5.3× 10
4

R-R2 3.4× 10
3

3.8× 10
4

2.2× 10
5

7.2× 10
4

R-R5 3.9× 10
3

3.7× 10
4

2.1× 10
5

7.6× 10
4

K-means-R 2.9× 10
4

1.9× 10
5

1.3× 10
6

6.7× 10
5

K-means-A 2.2× 10
4

9.3× 10
4

5.5× 10
5

2.7× 10
5

K-means-C 1.9× 10
4

9.4× 10
4

5.5× 10
5

2.6× 10
5

K-means-S 2.9× 10
4

1.0× 10
5

7.1× 10
5

3.6× 10
5

Table 7.6: A summary of the timing results for FOM of Table 6.14 with the addition of its
approximations.
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 3 ¸ ²  8 2

Hier-C 10 ¯ 2 ¯ 8 2

Hier-S ²  2  2 2

R-R0 2 7 2 5 7 4

R-R2 ² 5 2 5 8 4

R-R5 4 ¯ 2 6 ± 4

K-means-R ² 5 6 8 ± 7

K-means-A 2 ¸ ²  ± 6

K-means-C 2 ¯ 2 ¯ 7 6

K-means-S 3 5 2  ± 8

Gold solution 6 3 8 3 5 18

Table 7.7: A summary of the results for G-FOM on all algorithms and on all datasets. The
columns under the label precision indicate the number of clusters predicted by G-FOM, while
the remaining four indicate the timing in milliseconds for the execution of the corresponding
experiment. Cells with a dash indicate that G-FOM did not give any useful indication.

Timing

CNS Rat Leukemia NCI60 Lymphoma

Hier-A 1.6× 10
3

7.5× 10
3

5.1× 10
4

1.8× 10
4

Hier-C 1.6× 10
3

7.7× 10
3

4.5× 10
4

1.8× 10
4

Hier-S 1.6× 10
3

7.4× 10
3

4.9× 10
5

1.7× 10
4

R-R0 2.6× 10
3

3.1× 10
4

1.7× 10
5

5.3× 10
4

R-R2 3.4× 10
3

3.8× 10
4

2.2× 10
5

7.2× 10
4

R-R5 3.9× 10
3

3.7× 10
4

2.1× 10
5

7.6× 10
4

K-means-R 2.9× 10
4

1.9× 10
5

1.3× 10
6

6.7× 10
5

K-means-A 2.2× 10
4

9.3× 10
4

5.5× 10
5

2.7× 10
5

K-means-C 1.9× 10
4

9.4× 10
4

5.5× 10
5

2.6× 10
5

K-means-S 2.9× 10
4

1.0× 10
5

7.1× 10
5

3.6× 10
5

Table 7.8: A summary of the precision results for G-FOM on all algorithms and on all
datasets. Cells with a dash indicate that G-FOM did not give any useful indication.
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

K-means-R 4 ¸ 4 ¸ 3 4

K-means-A ² ¸ 3 6 3 8

K-means-C Æ ¸ ² ¯ 3 5

K-means-S ² ¸ 12 8 3 10

R-R0 10 ¯ 17 ¯ 3 3

R-R5 4 ¸ 11 ¸ 3 4

R-R2 ² ¸ 17 ¸ 3 7

Hier-A ² ¸ 3 6 3 25

Hier-C 9 ¸ ² 7 3 7

Hier-S 20 7 22 9 7 20

Gold solution 6 3 8 3 5 18

Table 7.9: A summary of the precision results for DIFF-FOM on all algorithms and on all
datasets. Cells with a dash indicate that DIFF-FOM did not give any useful indication.

Timing

CNS Rat Leukemia NCI60 Lymphoma

Hier-A 1.6× 10
3

7.5× 10
3

5.1× 10
4

1.8× 10
4

Hier-C 1.6× 10
3

7.7× 10
3

4.5× 10
4

1.8× 10
4

Hier-S 1.6× 10
3

7.4× 10
3

4.9× 10
5

1.7× 10
4

R-R0 2.6× 10
3

3.1× 10
4

1.7× 10
5

5.3× 10
4

R-R2 3.4× 10
3

3.8× 10
4

2.2× 10
5

7.2× 10
4

R-R5 3.9× 10
3

3.7× 10
4

2.1× 10
5

7.6× 10
4

K-means-R 2.9× 10
4

1.9× 10
5

1.3× 10
6

6.7× 10
5

K-means-A 2.2× 10
4

9.3× 10
4

5.5× 10
5

2.7× 10
5

K-means-C 1.9× 10
4

9.4× 10
4

5.5× 10
5

2.6× 10
5

K-means-S 2.9× 10
4

1.0× 10
5

7.1× 10
5

3.6× 10
5

Table 7.10: A summary of the timing results for DIFF-FOM on all algorithms and on all
datasets. Cells with a dash indicate that DIFF-FOM did not give any useful indication.
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Figure 7.3: The FOM curve computed on the Leukemia dataset with K-means-R. As for
WCSS, the “knee” in the plot indicates the correct number of clusters in the dataset: k∗ = 3.

solution, a corresponding connectivity matrix is computed: each entry in that matrix in-
dicates whether a pair of elements is in the same cluster or not. For the given number of
clusters, the consensus matrix is a normalized sum of the corresponding H connectivity
matrices. Intuitively, the consensus matrix indicates the level of agreement of clustering
solutions that have been obtained via independent sampling of the dataset.

Monti et al., in their seminal paper, set H = 500 and p = 80%, without any experimental
or theoretical justification. For this reason and based also on an open problem mentioned
in Chapter 6 and in [62], here several experiments with different parameter settings of H
and p are performed, in order to find the “best” precision-time trade-off, when Consensus

is regarded both as an internal validation measure and as a procedure that computes a
similarity/distance matrix. In particular, using the hierarchical algorithms and K-means,
experiments with H = 500, 250, 100 and p = 80%, 66% have been performed, respectively,
reporting the precision values and times. The choice of the value of p is justified by the
results reported in [16, 48]. Intuitively, a value of p smaller then 66% would fail to capture
the entire cluster structure present in the data. The results in this section will show, it is
worthy to anticipate, that a simple reduction in terms of H and p is not enough to grant
a good precision-time trade-off. Such a finding, together with the state of the art outlined
in Chapter 6, motivates a strong interest in the design of alternative methods, such as fast
heuristics that are discussed in depth in Section 7.5. As for datasets in Benchmark 2, only
the experiments with H = 250 and p = 80% are performed, reporting precision results for
all and timing only for the microarray data, since the timing results for the artificial datasets
are redundant. The choice for this parameter setting for Consensus is justified when the
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results of the experiments on the datasets in Benchmark 1 are discussed. Moreover, the
study of a proper parameter setting for Consensus is limited only to the Benchmark 1

datasets for pragmatic reasons: that choice allows to complete the (rather high) required
number of experiments in a reasonable amount of time.

Due to its high computational demand (see Chapter 5), experiments only with H = 250

and p = 80% for NMF have been performed. They are reported in the relevant Table
together with the results of the other algorithms, but they are discussed separately. The
choice for this parameter setting for Consensus when used in conjunction with NMF is
justified when the results of the experiments are discussed.

7.4.1 Consensus as an Internal Validation Measure

The experiments summarized here refer to the Benchmark 1 datasets. Separate tables for
each experimental setup are reported: they are Tables 7.11-7.22. For each dataset and
each clustering algorithm, Consensus for a number of cluster values in the range [2, 30] is
computed, while, for Leukemia, the range [2, 25] is used when p = 66%, due to the small
size of the dataset. The prediction value, k∗, is based on the plot of the ∆(k) curve (defined
in Chapter 3) as indicated in Chapter 6 and in [62]. The corresponding plots are available
at the following supplementary material web site [4], in the Figures section, as Figs. S1-S10
for p = 80% and H = 500, and Figs. S11-S24 for p = 80% and H = 250, Figs. S25-S34 for
p = 80% and H = 100. For p = 66% the relevant figures are Figs. S35-S44, S45-S54 and
S55-S64 for H = 500, H = 250 and H = 100, respectively.

For p = 80%, the precision results reported in Tables 7.11-7.16 show there is very little
difference between the results obtained for H = 500 and H = 250. That is in contrast with
the results for H = 100, where many prediction values are very far from the gold solution for
the corresponding dataset, e.g., the Lymphoma dataset. Such a finding seems to indicate
that, in order to find a consensus matrix which captures well the inherent structure of the
dataset, one needs a sensible number of connectivity matrices. The results for a subsampling
value of p = 66% confirms that the number of connectivity matrices one needs to compute
is more relevant than the percentage of the data matrix actually used to compute them.
Indeed, although it is obvious that a reduction in the number of resampling steps results in
a saving in terms of execution time, it is less obvious that for subsampling values p = 66%

and p = 80%, there is no substantial difference in the results, both in terms of precision
and of time.

In regard to NMF, only the parameter setting H = 250 and p = 80% for this experi-
ments is used, since it seems to be the most promising (as determined by the use of the other
algorithms). The results are reported in Table 7.13. Even so, the inefficiencies of Consensus
compound with those of NMF; that is, the relatively large number of connectivity matrices
needed by Consensus and the well-known slow convergence of NMF for the computation
of a clustering solution, since connectivity matrices are obtained from clustering solutions.
The end-result is a slow-down of one order of magnitude with respect to Consensus used
in conjunction with other clustering algorithms. As a consequence, NMF and Consensus

can be used together on a conventional PC only for relatively small datasets. In fact, the
experiments for Yeast and PBM, the two largest datasets with which one has experimented,
were stopped after four days.

It is also worth to point out that, although the parameter setting H = 250 and p = 80%

grants a faster execution of Consensus with respect to the original setting by Monti et al.,
the experiments on the PBM dataset were stopped after four days on all algorithms. That
is, the largest of the datasets used here is still “out of reach” of Consensus even with a
tuning of the parameters aimed at reducing its computational demand.
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A � � � � � -

Hier-C � � � 5 � -

Hier-S 2 8 10 � 10 -

K-means-R � � � � � -

K-means-A � � � � � -

K-means-C � � � � � -

K-means-S � � 10 � � -

Gold solution 6 3 8 3 5 18

Table 7.11: A summary of the precision results for Consensus with H = 500 and p = 80%,
on all algorithms, except NMF, and for the Benchmark 1 datasets. Cells with a dash
indicate that the experiments were terminated due to their high computational demand.

Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 9.2× 10
5

7.9× 10
5

2.0× 10
6

1.9× 10
6

7.7× 10
7 -

Hier-C 8.7× 10
5

6.9× 10
5

2.0× 10
6

2.0× 10
6

8.2× 10
7 -

Hier-S 9.4× 10
5

8.0× 10
5

2.0× 10
6

1.7× 10
6

8.2× 10
7 -

K-means-R 1.0× 10
6

1.3× 10
6

3.4× 10
6

3.0× 10
6

5.5× 10
7 -

K-means-A 1.3× 10
6

1.6× 10
6

3.0× 10
6

2.6× 10
6

1.1× 10
8 -

K-means-C 1.3× 10
6

1.8× 10
6

2.9× 10
6

2.6× 10
6

9.3× 10
7 -

K-means-S 1.5× 10
6

1.8× 10
6

3.2× 10
6

2.8× 10
6

9.7× 10
7 -

Table 7.12: A summary of the timing results for Consensus with H = 500 and p = 80%, on
all algorithms, except NMF, and for the Benchmark 1 datasets. Cells with a dash indicate
that the experiments were terminated due to their high computational demand.

In conclusion, this experiments show that an effective parameter setting for Consensus
is H = 250 and p = 80%: in fact Table 7.13 displays the best trade-off between precision and
time. Moreover, the experiments also show that inefficiencies of the Consensus methodology
are due to the large number of connectivity matrices that are required to compute a reliable
consensus matrix, rather than to the size of the sample taken from the data matrix that is
then used to compute them. This is particularly important since a slow clustering algorithm,
e.g., NMF, used in conjunction with the methodology makes it worthless on conventional
computers.

7.4.2 Consensus and Similarity Matrices

One concentrates on two experiments that, together, assess the ability of Consensus to
produce a similarity/distance matrix that actually improves the performance of clustering
algorithms. In particular, following Monti et al., this thesis concentrates on hierarchical
algorithms. As in the previous section, only the Benchmark 1 datasets are used.

The first experiment is as follows: for each dataset and each hierarchical algorithm
considered here, one takes the consensus matrix corresponding to the number of clusters k∗

predicted by Consensus. That matrix is transformed into a distance matrix, which is then
used by the clustering algorithm to produce k∗ clusters. The agreement of that clustering
solution with the gold solution of the given dataset is measured via the Adjusted Rand
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A � � � � � -

Hier-C � � � 5 � -

Hier-S 2 � 10 � 10 -

K-means-R � � � � � -

K-means-A � � � � � -

K-means-C � � � � � -

K-means-S � 5 	 � � -

NMF-R � � � � - -

NMF-A � � 2 � - -

NMF-C � � � � - -

NMF-S 2 8 	 � - -

Gold solution 6 3 8 3 5 18

Table 7.13: A summary of the precision results for Consensus with H = 250 and p = 80%,
on all algorithms and for the Benchmark 1 datasets. Cells with a dash indicate that the
experiments were terminated due to their high computational demand.

Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 8.9× 10
5

6.0× 10
5

1.4× 10
6

1.3× 10
6

5.0× 10
7 -

Hier-C 8.1× 10
5

6.0× 10
5

1.3× 10
6

1.3× 10
6

4.8× 10
7 -

Hier-S 4.3× 10
5

6.2× 10
5

1.0× 10
5

1.2× 10
6

4.8× 10
7 -

K-means-R 5.6× 10
5

3.7× 10
5

1.2× 10
6

1.1× 10
6

2.7× 10
7 -

K-means-A 1.0× 10
6

6.4× 10
5

1.8× 10
6

1.7× 10
6

5.6× 10
7 -

K-means-C 9.8× 10
5

6.5× 10
5

1.7× 10
6

1.3× 10
6

5.3× 10
7 -

K-means-S 1.2× 10
6

4.7× 10
5

1.2× 10
6

1.2× 10
6

5.7× 10
7 -

NMF-R 1.1× 10
8

1.3× 10
7

6.4× 10
7

7.7× 10
7 - -

NMF-A 3.0× 10
7

3.0× 10
7

1.3× 10
7

1.6× 10
7 - -

NMF-C 3.0× 10
7

4.4× 10
6

1.3× 10
7

1.7× 10
7 - -

NMF-S 3.6× 10
7

4.7× 10
6

1.3× 10
7

1.6× 10
7 - -

Table 7.14: A summary of the timing results for Consensus with H = 250 and p = 80%,
on all algorithms and for the Benchmark 1 datasets. Cells with a dash indicate that the
experiments were terminated due to their high computational demand.
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A � � � � � -

Hier-C � � � 6 � -

Hier-S 2 9 	 10 2 -

K-means-R � � - � � 6 � -

K-means-A � � � 6 � -

K-means-C � � � 6 � -

K-means-S 8 8 	 8 � -

Gold solution 6 3 8 3 5 18

Table 7.15: A summary of the precision results for Consensus with H = 100 and p = 80%,
on all algorithms, except NMF, and for the Benchmark 1 datasets. Cells with a dash
indicate that the experiments were terminated due to their high computational demand.

Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 3.5× 10
5

2.6× 10
5

4.2× 10
5

3.8× 10
5

2.9× 10
7 -

Hier-C 3.3× 10
5

2.7× 10
5

3.9× 10
5

3.9× 10
5

2.9× 10
7 -

Hier-S 3.5× 10
5

2.8× 10
5

3.9× 10
5

4.2× 10
5

2.8× 10
7 -

K-means-R 3.6× 10
5

3.4× 10
5

7.4× 10
5

6.2× 10
5

2.3× 10
7 -

K-means-A 4.2× 10
5

1.9× 10
5

7.2× 10
5

5.2× 10
5

7.5× 10
6 -

K-means-C 4.4× 10
5

2.6× 10
5

6.7× 10
5

5.5× 10
5

3.3× 10
7 -

K-means-S 4.8× 10
5

2.8× 10
5

6.2× 10
5

5.8× 10
5

3.7× 10
7 -

Table 7.16: A summary of the timing results for Consensus with H = 100 and p = 80%, on
all algorithms, except NMF, and for the Benchmark 1 datasets. Cells with a dash indicate
that the experiments were terminated due to their high computational demand.

Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A � � � � � -

Hier-C � � � 5 � -

Hier-S 2 8 	 � 10 -

K-means-R � � � � � -

K-means-A � � � � � -

K-means-C � � � � � -

K-means-S � 5 	 � 7 -

Gold solution 6 3 8 3 5 18

Table 7.17: A summary of the precision results for Consensus with H = 500 and p = 66%,
on all algorithms, except NMF, and for the Benchmark 1 datasets. Cells with a dash
indicate that the experiments were terminated due to their high computational demand.
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Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 1.5× 10
6 - 2.4× 10

6
2.0× 10

6
5.9× 10

7 -

Hier-C 1.5× 10
6 - 2.3× 10

6
1.6× 10

6
5.9× 10

7 -

Hier-S 1.6× 10
6 - 1.5× 10

6
1.6× 10

6
5.8× 10

7 -

K-means-R 1.5× 10
6 - 3.4× 10

6
2.7× 10

6
4.7× 10

7 -

K-means-A 1.8× 10
6 - 3.4× 10

6
2.0× 10

6
7.9× 10

7 -

K-means-C 1.0× 10
6 - 2.4× 10

6
2.0× 10

6
7.5× 10

7 -

K-means-S 1.3× 10
6 - 2.5× 10

6
2.8× 10

6
4.8× 10

7 -

Table 7.18: A summary of the timing results for Consensus with H = 500 and p = 66%, on
all algorithms, except NMF, and for the Benchmark 1 datasets. For the Leukemia dataset,
the timing experiments are not reported because incomparable with those of the remaining
datasets. Cells with a dash indicate that the experiments were terminated due to their high
computational demand.

Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A � � � � � -

Hier-C � � � � � -

Hier-S 2 8 	 � 10 -

K-means-R � � � 6 � -

K-means-A � � � 5 � -

K-means-C � � 	 5 � -

K-means-S � 8 10 � � -

Gold solution 6 3 8 3 5 18

Table 7.19: A summary of the precision results for Consensus with H = 250 and p = 66%,
on all algorithms, except NMF, and for the Benchmark 1 datasets. Cells with a dash
indicate that the experiments were terminated due to their high computational demand.

Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 3.8× 10
5 - 8.0× 10

5
1.1× 10

6
3.7× 10

7 -

Hier-C 3.8× 10
5 - 8.2× 10

5
1.1× 10

6
3.7× 10

7 -

Hier-S 7.9× 10
5 - 8.2× 10

5
7.0× 10

5
3.7× 10

7 -

K-means-R 5.2× 10
5 - 1.4× 10

6
1.4× 10

6
3.1× 10

7 -

K-means-A 5.7× 10
5 - 1.2× 10

6
1.2× 10

6
4.8× 10

7 -

K-means-C 5.3× 10
5 - 1.2× 10

6
1.3× 10

6
4.4× 10

7 -

K-means-S 6.2× 10
5 - 1.2× 10

6
1.1× 10

6
5.1× 10

7 -

Gold solution 6 3 8 3 5 18

Table 7.20: A summary of the timing results for Consensus with H = 250 and p = 66%, on
all algorithms, except NMF, and for the Benchmark 1 datasets. For the Leukemia dataset,
the timing experiments are not reported because incomparable with those of the remaining
datasets. Cells with a dash indicate that the experiments were terminated due to their high
computational demand.
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 8 � � � � -

Hier-C � � � � � -

Hier-S 2 8 	 9 2 -

K-means-R � � � 6 � -

K-means-A � � � 5 � -

K-means-C � � � 5 � -

K-means-S � 8 10 � � -

Table 7.21: A summary of the precision results for Consensus with H = 100 and p = 66%,
on all algorithms, except NMF, and for the Benchmark 1 datasets. Cells with a dash
indicate that the experiments were terminated due to their high computational demand.

Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 5.9× 10
4 - 9.6× 10

4
4.3× 10

4
1.0× 10

6 -

Hier-C 4.2× 10
4 - 4.9× 10

4
4.9× 10

5
1.0× 10

6 -

Hier-S 4.8× 10
4 - 5.1× 10

4
5.3× 10

5
1.6× 10

6 -

K-means-R 5.2× 10
5 - 1.0× 10

6
9.6× 10

5
1.2× 10

7 -

K-means-A 5.6× 10
5 - 8.7× 10

5
6.8× 10

5
2.5× 10

6 -

K-means-C 5.5× 10
5 - 5.0× 10

5
7.8× 10

5
1.0× 10

7 -

K-means-S 3.5× 10
5 - 5.6× 10

5
8.0× 10

5
1.5× 10

7 -

Table 7.22: A summary of the timing results for Consensus with H = 100 and p = 66%, on
all algorithms, except NMF, and for the Benchmark 1 datasets. For the Leukemia dataset,
the timing experiments are not reported because incomparable with those of the remaining
datasets. Cells with a dash indicate that the experiments were terminated due to their high
computational demand.
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CNS Rat Leukemia NCI60 Lymphoma Yeast

Hier-A 0.190350 0.919174 0.498265 0.430841 0.523873

Hier-C 0.176446 0.676293 0.414214 0.483664 0.492815

Hier-S 0.000134 0.507680 0.161798 -0.01777 0.002036

Table 7.23: For each dataset and each hierarchical algorithm considered here, the consensus
matrix corresponding to the number of clusters k∗ predicted by Consensus in Table 7.11
is taken. That matrix is transformed into a distance matrix, which is then used by the
clustering algorithm to produce k∗ clusters. The agreement of that clustering solution with
the gold solution of the given dataset is measured via the Adjusted Rand Index.

CNS Rat Leukemia NCI60 Lymphoma Yeast

Hier-A 0.190350 0.919174 0.498265 0.430841 0.522578

Hier-C 0.237957 0.676293 0.414214 0.483664 0.555979

Hier-S 0.000134 -0.040230 0.161798 -0.009141 0.002036

Table 7.24: For each dataset and each hierarchical algorithm considered here, the consensus
matrix corresponding to the number of clusters k∗ predicted by Consensus in Table 7.13
is taken. That matrix is transformed into a distance matrix, which is then used by the
clustering algorithm to produce k∗ clusters. The agreement of that clustering solution with
the gold solution of the given dataset is measured via the Adjusted Rand Index.

Index (defined in Section 2.1.1). In view of the results reported in the previous section,
only the cases H = 500, 250 and p = 80% are discussed here. The corresponding results
are reported in Tables 7.23 and 7.24, respectively. The relevant values of k∗ are taken
from Tables 7.11 and 7.13, respectively. The interested reader will find, at the following
supplementary material web site [4], all the complete tables, in the Tables section, as Tables
TS1-TS6. The second experiment follows the same lines as the first, but the clustering
algorithm uses a Euclidean distance matrix. The results are reported in Table 7.25. In this
case, the relevant values of k∗ are taken from Table 7.11.

Tables 7.23 and 7.24 confirm the indication about the proper Consensus parameter
setting identified in the previous section. Moreover, it is worth pointing out that there is
no substantial difference between the results reported in Tables 7.23 and 7.25. Combining
those results with the analogous ones obtained by Monti et al., one has an indication that
the consensus matrix is at least as good as an Euclidean distance matrix, when used as
input to hierarchical clustering algorithms.

CNS Rat Leukemia NCI60 Lymphoma Yeast

Hier-A 0.190350 0.910081 0.498265 0.430841 0.558884

Hier-C 0.135778 0.676293 0.414214 0.483664 0.413154

Hier-S 0.000134 0.507680 0.161798 -0.01777 0.002036

Table 7.25: For each dataset and each hierarchical algorithm considered here, the Euclidean
distance matrix and number of clusters k∗ predicted by Consensus in Table 7.11 is taken.
That matrix is used by the clustering algorithm to produce k∗ clusters. The agreement
of that clustering solution with the gold solution of the given dataset is measured via the
Adjusted Rand Index.
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7.5 An Approximation of Consensus: FC

In this section an approximation of Consensus is provided. This speedup is referred to
as FC (Fast Consensus). Intuitively, a large number of clustering solutions, each obtained
via a sample of the original dataset, seem to be required in order to identify the correct
number of clusters. However, there is no theoretic reason indicating that those clustering
solutions must each be generated from a different sample of the input dataset, as Consensus
does. Based on this observation, this thesis proposes to perform, first, a sampling step to
generate a data matrix D1, which is then used to generate all clustering solutions for k

in the range [2, kmax]. In terms of code, that implies a simple switch of the two iteration
cycles of the Consensus procedure (see Chapter 3). Indeed, with reference to the stabil-
ity measures discussed in Chapter 3, it is also worth noticing that each of the kmax × H

clustering solutions needed is computed from a distinct dataset. As discussed here, this
leads to inefficiencies, in particular in regard to agglomerative clustering algorithms, such
as the hierarchical ones. Indeed, their ability to quickly compute a clustering solution with
k clusters from one with k+1, typical of these methods, cannot be used within Consensus

because, for each k, the dataset changes. The same holds true for divisive methods. In
turn, that switch allows to obtain a speedup since costly computational duplications are
avoided when the clustering algorithm C1 is hierarchical. Indeed, once the switch is done,
it becomes possible to interleave the computation of the measure with the level bottom-up
construction of the hierarchical tree underlying the clustering algorithms. Specifically, only
one dendogram construction is required rather than the repeated and partial construction
of dendograms as in the Consensus procedure. Therefore, one uses, in full, the main char-
acteristic of agglomerative algorithms briefly discussed in the section regarding Consensus.
FC is formalized by the procedure given in Fig. 7.7. It is also worth pointing out that this
switch is possible for several of the stability based measures detailed in Chapter 3. This
general approximation paradigm is formalized by the procedure given in Fig. 7.8, where the
macro operations and inputs are the same used for the Stability_Measure procedure
detailed in Chapter 3. The “rule of thumb” that one uses to predict k∗, via FC, is the same
as for Consensus. An example is reported in Fig. 7.4(b). It is worth pointing out that
both the CDFs and ∆ curve shapes for FC closely track those of the respective curves for
Consensus Fig. 7.4(a).

7.5.1 FC and Its Parameters

In this section, the results of the experiments obtained with FC are reported and discussed.
In analogy with Consensus, its precision and time performances depend on H and p. In
order to compare the two measures along the parameters of interest, one uses, for FC, the
same experimental setup detailed in the previous section for Consensus. Moreover, based
on the results of the previous section, the discussion here is based only on the experiments
for FC with H = 250 and p = 80%.

It is worthy to anticipate that the results in this section will show that FC is a very
good approximation of Consensus both as an internal validation measure and as a prepro-
cessor for clustering algorithms. Remarkably, it is at least one order of magnitude faster in
time when used in conjunction with hierarchical clustering algorithms or with partitional
algorithms with a hierarchical initialization.

As pointed out in Chapter 5 in order to perform a better comparison between Consensus

and its approximation, both Benchmark 1 and Benchmark 2 datasets are taken in account
(see Section 5.1 for details) in this section.



108
Chapter 7. Speedups of Internal Validation Measures Based on

Approximations

7.5.1.1 FC as an Internal Validation Measure

Tables 7.26 and 7.27 report the results regarding FC as an internal validation measure for
the Benchmark 1 datasets. For this discussion, they are compared with the Consensus

results reported in Tables 7.13 and 7.14. The interested reader will find, at the following
supplementary material web site [4], all the complete tables as Tables TI7-TI12 for FC and
the corresponding figures as Figs. S65-S139 in the Tables and Figures section, respectively.
The time for the PBM dataset with p = 66% in the corresponding table is not reported,
since it does not provide any relevant information.

Note that, in terms of precision, FC and Consensus provide nearly identical predictions
on the CNS Rat and Yeast datasets, while their predictions are quite close on the Leukemia
dataset. Moreover, in terms of time, note that FC is faster then Consensus by at least
one order of magnitude on all hierarchical algorithms and K-means-A, K-means-C and K-
means-S. In particular, FC is able to complete execution on the PBM dataset, as opposed to
Consensus, with all of the mentioned algorithms. It is also worthy of notice that K-means-
C also provides, for that dataset, a reasonable estimate of the number of clusters present in
it. Another point of interest is the performance of FC with K-means-R since the algorithm
engineering used in its implementation grants good results on the largest datasets used with
that clustering algorithm.

It is somewhat unfortunate, however, that those quite substantial speedups have only
minor effects when one uses NMF as a clustering algorithm, which is a clear indication that
the time taken by NMF to converge to a clustering solution accounts for most of the time
performance of FC in that setting, in analogy with Consensus.

As for Benchmark 2 datasets, both Consensus and FC are computed for a number of
cluster values in the range [2, 30]. The prediction value, k∗, is based on the plot of the ∆(k)

curve (defined in Chapter 3) as indicated in [62]. The corresponding plots are available at
the following supplementary material web site [4], in the Figures section, as Figs. M1-M12
and M13-M24 for Consensus and FC, respectively. The corresponding results are reported
in Table 7.30 and Table 7.33 for the simulated datasets, while the corresponding results for
the microarray datasets are in Tables 7.28-7.29 and Tables 7.31-7.32 for Consensus and FC,
respectively.

By comparing the results in the mentioned tables, it is of great interest to notice that,
on the datasets in Benchmark 2, there is no difference whatsoever in the predictions be-
tween Consensus and FC. Even more remarkably, by analyzing the ∆ curves from which
the predictions are made (see Methods section), one discovers that the ones produced by
Consensus and FC are nearly identical (see again Figs. M1-M24 at the following supple-
mentary material web site [4]). However, on the microarray datasets on Benchmark 2, FC
is at least one order of magnitude faster than Consensus, with exactly the same algorithms
indicated for the Benchmark 1 datasets. NMF results to be problematic also on the datasets
on Benchmark 2.

It is of some interest to point out that, as detailed in the previous section, FC builds the
same number of connectivity matrices as Consensus. However, it uses only H “new” matri-
ces, each sampled from the input dataset, rather than H × k “new” matrices as Consensus
does. Adding this observation to the ones of the preceding subsection, one understands that
the number of connectivity matrices computed by FC is key to its precision performance,
again in analogy with Consensus. The novelty, by far non-obvious, is that those matrices
can be computed by taking a relatively small number of samples from the input matrix.
Moreover, Figs. 7.5 and 7.6 provides the ∆ curve both for Consensus and FC for p = 80%

and different values of H, in order to show how the behavior of the two curves is practically
identically for a H > 100. From these figures it is possible to see how FC preserves the same
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A � � � � � 2

Hier-C � � � 5 � 14 - �

Hier-S 2 8 � � 10 2

K-means-R � � � � � 16

K-means-A � � � � � 12

K-means-C � � � � � 12

K-means-S � 7 	 � � 2

NMF-R � � � � - -

NMF-A � � � � - -

NMF-C � � � � - -

NMF-S 2 8 	 � - -

Gold solution 6 3 8 3 5 18

Table 7.26: A summary of the precision results for FC with H = 250 and p = 80%, on
all algorithms, and for the Benchmark 1 datasets. Cells with a dash indicate that the
experiments were terminated due to their high computational demand.

outstanding properties of Consensus and that for a reasonable value of H the precision of
the measures is the same (see Fig. 7.6 for H = 250).

7.5.1.2 FC and Similarity Matrices

The same experiments described for the evaluation of Consensus for the computation of a
similarity matrix have been performed here for FC. For the presentation of the results, the
same organization of Section 7.4.2 is followed here, i.e., the results for the Benchmark 1

datasets are presented and discussed first. Indeed, the experiments reported in Table 7.35
are the same as the ones reported in Table 7.24 for Consensus. Again, there is no differ-
ence between the two tables. Therefore, also in this case, FC is a good approximation of
Consensus. For completeness, we report that, for FC on the Benchmark 1 datasets, the
interested reader will find, at the following supplementary material web site [4], all the
complete tables, in the Tables section, as Tables TS7-TS12, for each experimental setup.

As for Benchmark 2 datasets, the results of the experiments, for the microarrays
datasets, are reported in Tables 7.34 and 7.36 for Consensus and FC, respectively. Ta-
bles 7.38 and 7.39 report the results for the simulated datasets for Consensus and FC,
respectively. Also for the Benchmark 2 datasets, there is no difference between the two
methods.

In analogy with Consensus and the Benchmark 1 datasets, the clustering results ob-
tained with the use of the similarity matrices computed by Consensus and FC are compared,
for the Benchmark 2 datasets, against the clustering results obtained with the use of Eu-
clidean distance. The relevant values of k∗ are taken from Table 7.28 for Consensus and
Table 7.31 for FC. The results are reported in Tables 7.36-7.37 and Tables 7.38-7.40. They
confirm that the consensus matrix is at least as good as an Euclidean distance matrix, when
used as input to hierarchical clustering algorithms, even when computed by FC.
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Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 5.9× 10
4

2.7× 10
4

7.0× 10
4

6.8× 10
4

1.5× 10
6

4.2× 10
7

Hier-C 5.9× 10
4

2.7× 10
4

6.5× 10
4

6.7× 10
4

1.4× 10
6

3.4× 10
7

Hier-S 8.1× 10
4

2.7× 10
4

5.8× 10
4

6.2× 10
4

2.2× 10
6

4.4× 10
7

K-means-R 3.7× 10
5

3.7× 10
5

1.2× 10
6

1.1× 10
6

1.6× 10
7

1.6× 10
8

K-means-A 3.1× 10
5

2.0× 10
5

9.3× 10
5

9.0× 10
5

1.8× 10
7

2.1× 10
8

K-means-C 2.5× 10
5

6.0× 10
5

6.5× 10
5

9.4× 10
5

1.4× 10
7

2.0× 10
8

K-means-S 3.7× 10
5

5.8× 10
5

6.9× 10
5

9.4× 10
5

1.9× 10
7

2.4× 10
8

NMF-R 1.1× 10
8

1.3× 10
7

6.3× 10
7

7.5× 10
7 - -

NMF-A 3.0× 10
7

4.0× 10
6

1.2× 10
7

1.6× 10
7 - -

NMF-C 2.9× 10
7

4.0× 10
6

1.2× 10
7

1.6× 10
7 - -

NMF-S 3.5× 10
7

4.0× 10
6

1.2× 10
7

1.5× 10
7 - -

Table 7.27: A summary of the timing results for FC with H = 250 and p = 80%, on
all algorithms, and for the Benchmark 1 datasets. Cells with a dash indicate that the
experiments were terminated due to their high computational demand.

Precision

Novartis St.Jude Normal

Hier-A � - 6 � 10

Hier-C � - � � - � 10

Hier-S � 2 10

K-means-R � � 10

K-means-A � - 6 � 8

K-means-C � - � � - � 10

K-means-S � � 10

NMF-R - - -

NMF-A - - -

NMF-C - - -

NMF-S - - -

Gold solution 4 6 13

Table 7.28: A summary of the precision results for Consensus with H = 250 and p = 80%,
on all algorithms and for the Benchmark 2 datasets. Cells with a dash indicate that the
experiments were terminated due to their high computational demand.
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Timing

Novartis St.Jude Normal

Hier-A 1.0× 10
7

3.7× 10
7

9.5× 10
6

Hier-C 1.0× 10
7

3.7× 10
7

9.2× 10
6

Hier-S 9.8× 10
6

3.7× 10
7

9.4× 10
6

K-means-R 1.8× 10
7

1.5× 10
7

6.3× 10
6

K-means-A 1.4× 10
7

6.8× 10
7

1.1× 10
7

K-means-C 1.5× 10
7

6.8× 10
7

1.0× 10
7

K-means-S 1.6× 10
7

6.8× 10
7

1.1× 10
7

NMF-R - - -

NMF-A - - -

NMF-C - - -

NMF-S - - -

Table 7.29: A summary of the timing results for Consensus with H = 250 and p = 80%,
on all algorithms and for the Benchmark 2 datasets. Cells with a dash indicate that the
experiments were terminated due to their high computational demand.

Precision

Gaussian3 Gaussian5 Simulated6

Hier-A � � �

Hier-C � � �

Hier-S � 2 �

K-means-R � � �

K-means-A � � �

K-means-C � � �

K-means-S � � �

Gold solution 3 5 6

Table 7.30: A summary of the precision results for Consensus with H = 250 and p = 80%,
on all algorithms, except NMF, and for the simulated datasets in Benchmark 2.

Precision

Novartis St.Jude Normal

Hier-A � - 6 � 10

Hier-C � - � � - � 10

Hier-S � 2 10

K-means-R � � 10

K-means-A � - 6 � 8

K-means-C � - � � - � 10

K-means-S � � 10

NMF-R - - -

NMF-A - - -

NMF-C - - -

NMF-S - - -

Gold solution 4 6 13

Table 7.31: A summary of the precision results for FC with H = 250 and p = 80%, on
all algorithms and for the microarray datasets in Benchmark 2. Cells with a dash indicate
that the experiments were terminated due to their high computational demand.
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Timing

Novartis St.Jude Normal

Hier-A 4.0× 10
5

1.6× 10
6

3.4× 10
5

Hier-C 3.9× 10
5

1.4× 10
6

3.3× 10
5

Hier-S 4.4× 10
5

1.5× 10
6

3.4× 10
5

K-means-R 1.4× 10
7

5.9× 10
6

2.0× 10
6

K-means-A 5.5× 10
6

3.2× 10
7

5.4× 10
6

K-means-C 6.5× 10
6

3.2× 10
7

2.1× 10
6

K-means-S 7.8× 10
6

4.9× 10
7

2.1× 10
6

NMF-R - - -

NMF-A - - -

NMF-C - - -

NMF-S - - -

Table 7.32: A summary of the precision results for FC with H = 250 and p = 80%, on
all algorithms and for the microarray datasets in Benchmark 2. Cells with a dash indicate
that the experiments were terminated due to their high computational demand.

Precision

Gaussian3 Gaussian5 Simulated6

Hier-A � � �

Hier-C � � �

Hier-S � 2 �

K-means-R � � �

K-means-A � � �

K-means-C � � �

K-means-S � � �

Gold solution 3 5 6

Table 7.33: A summary of the precision results for FC with H = 250 and p = 80%, on all
algorithms, except NMF, and for the simulated datasets in Benchmark 2.

Novartis St.Jude Normal

Hier-A 0.641611 0.173717 0.572747

Hier-C 0.515570 0.438039 0.521355

Hier-S 0.320264 -7.88788e−4 0.502043

Table 7.34: For each dataset and each hierarchical algorithm considered here, the consensus
matrix corresponding to the number of clusters k∗ predicted by Consensus in Table 7.28
is taken. That matrix is transformed into a distance matrix, which is then used by the
clustering algorithm to produce k∗ clusters. The agreement of that clustering solution with
the gold solution of the given dataset is measured via the Adjusted Rand Index.
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Figure 7.4: The experiment is derived from the NCI60 dataset, with the use of the Hier-A
clustering algorithm. (a) Figure for Consensus with H = 250 and p = 80%: the plot of the
CDF curves is shown (i), yielding a monotonically increasing value of A as a function of k.
The plot of the ∆ curve is shown in (ii), where the flattening effect corresponding to k∗ is
evident for k ≥ k∗ = 8. (b) Figure for FC with H = 250 and p = 80%: the plots of the
CDF curves is shown in (iii), yielding a monotonically increasing value of A as a function
of k. The plot of the ∆ curve is shown in (iv), where the flattening effect corresponding to
k∗ is evident for k ≥ k∗ = 8.
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Figure 7.5: Plot of the ∆ curves for Consensus and FC with p=80% and
H=20,40,60,80,100,120,140,160. The experiment is derived from the Lymphoma dataset,
with the use of the Hier-A clustering algorithm.
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Figure 7.6: Plot of the ∆ curves for Consensus and FC with p=80% and H=180,200,220,250.
The experiment is derived from the Lymphoma dataset, with the use of the Hier-A clustering
algorithm.



116
Chapter 7. Speedups of Internal Validation Measures Based on

Approximations

'

&

$

%

FC(Hc, < C1 >,D, kmax)

for i← 1 to Hc do

begin

1. Generate (via a subsampling) a data matrix Di

for k ← 2 to kmax do

begin

2. Let P1 be the partition of Di into k clusters with the use of C1

3. Based on P1 compute the connectivity matrix Mk
i

end

end

for k ← 2 to kmax do

begin

4. Compute the consensus matrix Mk

end

5. Based on the kmax − 1 consensus matrices, return a prediction for k∗

Figure 7.7: The FC procedure
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Fast_Stability_Measure(kmin, kmax, D,H, α, β,< C1, C2, . . . , Ct >)

while H do

begin

1. < D1, D2, . . . , Dl >←< DGP(D0, β),DGP(D0, β), . . . ,DGP(D0, β) >

for k ← kmin to kmax do

begin

2. < DT,0, DT,1, . . . , DT,l, DL,0, DL,1, . . . , DL,l >← Split(< D0, D1, . . . , Dl >,α)

3. < G >← Assign(< DT,0, DT,1, . . . , DT,l >,< C1, C2, . . . , Ct >)

4. < Ci1 , Ci2 , . . . , Ciq >← Train(< G >)

5. < Ĝ >← Assign(< DL,0, DL,1, . . . , DL,l >,< C1, C2, . . . , Ct >)

6. < P1, P2, . . . , Pz >← Cluster(Ĝ, k)

7. u← Collect_Statistic(< P1, P2, . . . , Pz >)

8. Sk ← Sk
⋃{u}

end

end

for k ← kmin to kmax do

begin

9. Rk ← Synopsis(Sk)

end

10. k∗ ← Significance_Analysis(Rkmin , . . . , Rkmax)

return (k∗)

Figure 7.8: The Fast_Stability_Measure procedure.
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CNS Rat Leukemia NCI60 Lymphoma Yeast PBM

Hier-A 0.190350 0.919174 0.498265 0.430841 0.528360 0.000261

Hier-C 0.176446 0.676293 0.414214 0.483664 0.589179 0.672256

Hier-S 0.000134 0.507680 0.171124 -0.009141 0.00203 0.000261

Table 7.35: For each dataset and each hierarchical algorithm considered here, the consensus
matrix corresponding to the number of clusters k∗ predicted by FC in Table 7.26 is taken.
That matrix is transformed into a distance matrix, which is then used by the clustering
algorithm to produce k∗ clusters. The agreement of that clustering solution with the gold
solution of the given dataset is measured via the Adjusted Rand Index.

Novartis St.Jude Normal

Hier-A 0.641611 0.173717 0.572747

Hier-C 0.515570 0.435431 0.537849

Hier-S 0.320264 -7.88788e−4 0.502043

Table 7.36: For each dataset and each hierarchical algorithm considered here, the consensus
matrix corresponding to the number of clusters k∗ predicted by FC in Table 7.31 is taken.
That matrix is transformed into a distance matrix, which is then used by the clustering
algorithm to produce k∗ clusters. The agreement of that clustering solution with the gold
solution of the given dataset is measured via the Adjusted Rand Index.

7.5.2 Comparison of FC with other Internal Validation Measures

It is also of interest to compare FC with other validation measures that are available in the
Literature. One takes, as reference, the benchmarking results reported in Chapter 6, since
both the datasets and the experimental setup are identical to the ones used here. It is worth
pointing out that this benchmark show that there is a natural hierarchy, in terms of time,
for the measures taken in account. Moreover, the faster the measure, the less accurate it is.
From that study and for completeness, taking in account Tables 6.15 and 6.16 of Section 6.3
one reports in Tables 7.41 and 7.42 the best performing measures, with the addition of FC
and the other “best” approximations proposed in this chapter. From that table, one extract
and report, in Tables 7.43 and 7.44, the fastest and best performing measures - again, with
the addition of FC. As is self-evident from that latter table, FC with Hier-A is within a one
order of magnitude difference in speed with respect to the fastest measures, i.e., WCSS and
G-Gap. Quite remarkably, it grants a better precision in terms of its ability to identify the

Novartis St.Jude Normal

Hier-A 0.544647 0.16992 0.57274

Hier-C 0.51557 0.42637 0.52135

Hier-S 0.32026 −7.88786e
−4

0.50204

Table 7.37: For each dataset and each hierarchical algorithm considered here, the Euclidean
distance matrix and number of clusters k∗ predicted by Consensus in Table 7.28 is taken.
That matrix is used by the clustering algorithm to produce k∗ clusters. The agreement
of that clustering solution with the gold solution of the given dataset is measured via the
Adjusted Rand Index.
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Gaussian3 Gaussian5 Simulated6

Hier-A 1.0 0.85942 −0.59990

Hier-C 1.0 0.82638 −0.59990

Hier-S 0.0 0.0 −0.19586

Table 7.38: For each dataset and each hierarchical algorithm considered here, the consensus
matrix corresponding to the number of clusters k∗ predicted by Consensus in Table 7.30
is taken. That matrix is transformed into a distance matrix, which is then used by the
clustering algorithm to produce k∗ clusters. The agreement of that clustering solution with
the gold solution of the given dataset is measured via the Adjusted Rand Index.

Gaussian3 Gaussian5 Simulated6

Hier-A 1.0 0.859429 −0.59990

Hier-C 1.0 0.830103 −0.59990

Hier-S 0.0 0.0 −0.19586

Table 7.39: For each dataset and each hierarchical algorithm considered here, the consensus
matrix corresponding to the number of clusters k∗ predicted by FC in Table 7.33 is taken.
That matrix is transformed into a distance matrix, which is then used by the clustering
algorithm to produce k∗ clusters. The agreement of that clustering solution with the gold
solution of the given dataset is measured via the Adjusted Rand Index.

Gaussian3 Gaussian5 Simulated6

Hier-A 1.0 0.82729 -0.59990

Hier-C 1.0 0.65218 -0.59990

Hier-S 0.0 0.0 -0.195867

Table 7.40: For each dataset and each hierarchical algorithm considered here, the Euclidean
distance matrix and number of clusters k∗ predicted by Consensus in Table 7.30 is taken.
That matrix is used by the clustering algorithm to produce k∗ clusters. The agreement
of that clustering solution with the gold solution of the given dataset is measured via the
Adjusted Rand Index.
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Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast

WCSS-K-means-C � � � 8 �

WCSS-R-R0 � � � � �

G-Gap-K-means-R � � 4 � �

G-Gap-R-R5 � � 2 � �

FOM-K-means-C � 8 � � �

FOM-K-means-S � � � 8 �

FOM-R-R5 � � � 5 �

FOM-Hier-A � � � 6 �

DIFF-FOM-K-means-C � � � � 3

FC-Hier-A � � � � �

FC-Hier-C � � � 5 �

FC-K-means-R � � � � �

FC-K-means-A � � � � �

FC-K-means-C � � � � �

FC-K-means-S � � 10 � �

Clest-F-K-means-R � � 15 � �

Clest-FM-K-means-R 8 � � � �

Consensus-Hier-A � � � � �

Consensus-Hier-C � � � 5 �

Consensus-K-means-R � � � � �

Consensus-K-means-A � � � � �

Consensus-K-means-C � � � � �

Consensus-K-means-S � � 10 � �

Gold solution 6 3 8 3 5

Table 7.41: A summary of precision results of the best performing measures taken into
account in Chapter 6, with the addition of WCSS-R, G-Gap, FOM-R, DIFF-FOM and FC with
H = 500 and p = 80%.

underlying structure in each of the benchmark datasets. It is also of relevance to point out
that FC with Hier-A has a time performance comparable to that of FOM, but again it has
a better precision performance. Notice that, none of the three just-mentioned measures
depends on any parameter setting, implying that no speedup will result from a tuning of
the algorithms.

The results outlined above are particularly significant since (i) FOM is one of the most
established and highly-referenced measures specifically designed for microarray data; (ii) in
purely algorithmic terms, WCSS and G-Gap, are so simple as to represent a “lower bound”
in terms of the time performance that is achievable by any data-driven internal validation
measure. In conclusion, the experiments reported here show that FC is quite close in time
performance to three of the fastest data-driven validation measures available in the Lit-
erature, while also granting better precision results. In view of the fact that the former
measures are considered reference points in this area, the speedup of Consensus proposed
here seems to be a non-trivial step forward in the area of data-driven internal validation
measures.
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Timing

CNS Rat Leukemia NCI60 Lymphoma

WCSS-K-means-C 1.7× 10
3

1.3× 10
3

5.0× 10
3

4.0× 10
3

WCSS-R-R0 1.2× 10
3

8.0× 10
2

4.1× 10
3

3.0× 10
3

G-Gap-K-means-R 2.4× 10
3

2.0× 10
3

8.3× 10
4

8.4× 10
3

G-Gap-R-R5 1.2× 10
3

8.0× 10
2

4.5× 10
4

3.2× 10
3

FOM-K-means-C 1.9× 10
4

9.4× 10
4

5.5× 10
5

2.6× 10
5

FOM-K-means-S 2.9× 10
4

1.0× 10
5

7.1× 10
5

3.6× 10
5

FOM-R-R5 3.9× 10
3

3.7× 10
4

2.1× 10
5

7.6× 10
4

FOM-Hier-A 1.6× 10
3

7.5× 10
3

5.1× 10
4

1.8× 10
4

DIFF-FOM-K-means-C 1.9× 10
4

9.4× 10
4

5.5× 10
5

2.6× 10
5

FC-Hier-A 4.7× 10
4

3.5× 10
4

5.2× 10
4

1.3× 10
5

FC-Hier-C 4.4× 10
4

2.7× 10
4

1.3× 10
5

1.3× 10
5

FC-K-means-R 7.2× 10
5

7.7× 10
5

2.5× 10
6

2.3× 10
6

FC-K-means-A 5.6× 10
5

4.2× 10
5

1.1× 10
6

1.5× 10
6

FC-K-means-C 5.4× 10
5

4.8× 10
5

1.1× 10
6

1.0× 10
6

FC-K-means-S 7.7× 10
5

4.7× 10
5

1.3× 10
6

1.1× 10
6

Clest-F-K-means-R 1.2× 10
6 - - -

Clest-FM-K-means-R 1.2× 10
6 - - -

Consensus-Hier-A 9.2× 10
5

7.9× 10
5

2.0× 10
6

1.9× 10
6

Consensus-Hier-C 8.7× 10
5

6.9× 10
5

2.0× 10
6

2.0× 10
6

Consensus-K-means-R 1.0× 10
6

1.3× 10
6

3.4× 10
6

3.0× 10
6

Consensus-K-means-A 1.3× 10
6

1.6× 10
6

3.0× 10
6

2.6× 10
6

Consensus-K-means-C 1.3× 10
6

1.8× 10
6

2.9× 10
6

2.6× 10
6

Consensus-K-means-S 1.5× 10
6

1.8× 10
6

3.2× 10
6

2.8× 10
6

Table 7.42: A summary of the timing results best performing measures taken into account
in Chapter 6, with the addition of WCSS-R, G-Gap, FOM-R, DIFF-FOM and FC with H = 500

and p = 80%. Cell with a dash indicates that the experiment was performed on a smaller
interval of cluster values with respect to CNS Rat and so the time performance are not
comparable.

Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast

WCSS-K-means-C � � � 8 �

WCSS-R-R0 � � � � �

G-Gap-K-means-R � � 4 � �

G-Gap-R-R5 � � 2 � �

FOM-K-means-C � 8 � � �

FOM-K-means-S � � � 8 �

FOM-R-R5 � � � 5 �

FOM-Hier-A � � � 6 �

DIFF-FOM-K-means-C � � � � 3

FC-Hier-A � � � � �

FC-Hier-C � � � 5 �

Gold solution 6 3 8 3 5

Table 7.43: A summary of the precision results of best performing measures taken from
the benchmarking of Chapter 6, with the addition of WCSS-R, G-Gap, FOM-R, DIFF-FOM and
FC, with H = 250 and p = 80%.
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Timing

CNS Rat Leukemia NCI60 Lymphoma

WCSS-K-means-C 1.7× 10
3

1.3× 10
3

5.0× 10
3

4.0× 10
3

WCSS-R-R0 1.2× 10
3

8.0× 10
2

4.1× 10
3

3.0× 10
3

G-Gap-K-means-R 2.4× 10
3

2.0× 10
3

8.3× 10
4

8.4× 10
3

G-Gap-R-R5 1.2× 10
3

8.0× 10
2

4.5× 10
4

3.2× 10
3

FOM-K-means-C 1.9× 10
4

9.4× 10
4

5.5× 10
5

2.6× 10
5

FOM-K-means-S 2.9× 10
4

1.0× 10
5

7.1× 10
5

3.6× 10
5

FOM-R-R5 3.9× 10
3

3.7× 10
4

2.1× 10
5

7.6× 10
4

FOM-Hier-A 1.6× 10
3

7.5× 10
3

5.1× 10
4

1.8× 10
4

DIFF-FOM-K-means-C 1.9× 10
4

9.4× 10
4

5.5× 10
5

2.6× 10
5

FC-Hier-A 5.9× 10
4

2.7× 10
4

7.0× 10
4

6.8× 10
4

FC-Hier-C 5.9× 10
4

2.7× 10
4

6.5× 10
4

6.7× 10
4

Table 7.44: A summary of the time results of best performing measures taken from the
benchmarking of Chapter 6, with the addition of WCSS-R, G-Gap, FOM-R, DIFF-FOM and FC,
with H = 250 and p = 80%.



Chapter 8

Conclusions and Future Directions

In this thesis, an extensive study of internal validation measures is proposed, with attention
to the analysis of microarray data. In particular, this dissertation has contributed to the
area as follows:

A Paradigm for Stability Measures. A new general paradigm of stability internal
validation measures is proposed. It is also shown that each of the known stability based
measures is an instance of such a novel paradigm. Surprisingly, also Gap falls within the
new paradigm. Moreover, from this general algorithmic paradigm, it is simple to design
new stability internal measure combining the building blocks of the detailed measures.

Benchmarking of Internal Validation Measures. A benchmarking of internal vali-
dation measures, taking into account both the precision and time, is proposed. This study
provides further insights into the relative merits of each of the measures considered, from
which more accurate and useful guidelines for their use can be inferred. In particular, when
computer time is taken into account, there is a hierarchy of measures, with WCSS being the
fastest and Consensus the slowest. Overall, Consensus results to be the method of choice.
It is also to be stressed that no measure performed well on large datasets.

Fast Approximations. Based on the above benchmarking, the idea of extensions and
approximations of internal validation measures has been systematically investigated. The
resulting new measures turn out to be competitive, both in time and precision. In particular,
G-Gap and FC an approximation of Gap and Consensus, respectively, are proposed. As it is
evident from the results obtained, the overall performance of the approximations is clearly
superior to the “original” measures. Moreover, depending on the dataset, they are at least
one orders of magnitude faster. In terms of the existing Literature on data-driven internal
validation measures, FC is only one order of magnitude away from the fastest measures,
yet granting a superior performance in terms of precision. Although FC does not close the
gap between the time performance of the fastest internal validation measures and the most
precise, it is a substantial step forward towards that goal.

Benchmarking of NMF as a clustering algorithm. A benchmarking of NMF as a
clustering algorithm on microarray data is proposed. Unfortunately, in view of the steep
computational price one must pay, the use of NMF as a clustering algorithm does not seem
to be justified. Indeed, NMF is at least two orders of magnitude slower than a classical
clustering algorithm and with a worse precision.

Future Directions. This thesis suggests several interesting directions of investigation.
Some of them are mentioned next:

• Techniques that would enhance the performance of NMF. In particular, a relevant
issue is to compute a solution for k clusters starting from one with k ± 1 clusters.
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That is, an incremental/decremental version of NMF. Such a version could yield a
substantial speedup when NMF is used as a clustering algorithm in conjunction with
Consensus and FC.

• The intrinsic and relative study of stability validation measure generated from the
stability paradigm, mixing the building blocks available today.

• The design of fast approximations of other stability internal validation measures.

• An internal validation measure that closes the gap between the time performance of
the fastest internal validation measures and the most precise.

• A comparison among the best data driven validation measures discussed here and
Bayesian method that solve the same problem, i.e., [141].
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