273 research outputs found

    Increasing the spatial resolution of agricultural land cover maps using a Hopfield neural network

    No full text
    Land cover class composition of remotely sensed image pixels can be estimated using soft classification techniques increasingly available in many GIS packages. However, their output provides no indication of how such classes are distributed spatially within the instantaneous field of view represented by the pixel. Techniques that attempt to provide an improved spatial representation of land cover have been developed, but not tested on the difficult task of mapping from real satellite imagery. The authors investigated the use of a Hopfield neural network technique to map the spatial distributions of classes reliably using information of pixel composition determined from soft classification previously. The approach involved designing the energy function to produce a ‘best guess’ prediction of the spatial distribution of class components in each pixel. In previous studies, the authors described the application of the technique to target identification, pattern prediction and land cover mapping at the sub-pixel scale, but only for simulated imagery.We now show how the approach can be applied to Landsat Thematic Mapper (TM) agriculture imagery to derive accurate estimates of land cover and reduce the uncertainty inherent in such imagery. The technique was applied to Landsat TM imagery of small-scale agriculture in Greece and largescale agriculture near Leicester, UK. The resultant maps provided an accurate and improved representation of the land covers studied, with RMS errors for the Landsat imagery of the order of 0.1 in the new fine resolution map recorded. The results showed that the neural network represents a simple efficient tool formapping land cover from operational satellite sensor imagery and can deliver requisite results and improvements over traditional techniques for the GIS analysis of practical remotely sensed imagery at the sub pixel scale

    A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping

    Get PDF
    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted MHNNA with remote sensing techniques (as based on ALOS images)

    Enhancing the spatial resolution of satellite-derived land surface temperature mapping for urban areas

    Get PDF
    Land surface temperature (LST) is an important environmental variable for urban studies such as those focused on the urban heat island (UHI). Though satellite-derived LST could be a useful complement to traditional LST data sources, the spatial resolution of the thermal sensors limits the utility of remotely sensed thermal data. Here, a thermal sharpening technique is proposed which could enhance the spatial resolution of satellite-derived LST based on super-resolution mapping (SRM) and super-resolution reconstruction (SRR). This method overcomes the limitation of traditional thermal image sharpeners that require fine spatial resolution images for resolution enhancement. Furthermore, environmental studies such as UHI modelling typically use statistical methods which require the input variables to be independent, which means the input LST and other indices should be uncorrelated. The proposed Super-Resolution Thermal Sharpener (SRTS) does not rely on any surface index, ensuring the independence of the derived LST to be as independent as possible from the other variables that UHI modelling often requires. To validate the SRTS, its performance is compared against that of four popular thermal sharpeners: the thermal sharpening algorithm (TsHARP), adjusted stratified stepwise regression method (Stepwise), pixel block intensity modulation (PBIM), and emissivity modulation (EM). The privilege of using the combination of SRR and SRM was also verified by comparing the accuracy of SRTS with sharpening process only based on SRM or SRR. The results show that the SRTS can enhance the spatial resolution of LST with a magnitude of accuracy that is equal or even superior to other thermal sharpeners, even without requiring fine spatial resolution input. This shows the potential of SRTS for application in conditions where only limited meteorological data sources are available yet where fine spatial resolution LST is desirable

    Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016

    Get PDF
    Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) HH and HV polarization data were used previously to produce annual, global 25 m forest maps between 2007 and 2010, and the latest global forest maps of 2015 and 2016 were produced by using the ALOS-2 PALSAR-2 data. However, annual 25 m spatial resolution forest maps during 2011–2014 are missing because of the gap in operation between ALOS and ALOS-2, preventing the construction of a continuous, fine resolution time-series dataset on the world's forests. In contrast, the MODerate Resolution Imaging Spectroradiometer (MODIS) NDVI images were available globally since 2000. This research developed a novel method to produce annual 25 m forest maps during 2007–2016 by fusing the fine spatial resolution, but asynchronous PALSAR/PALSAR-2 with coarse spatial resolution, but synchronous MODIS NDVI data, thus, filling the four-year gap in the ALOS and ALOS-2 time-series, as well as enhancing the existing mapping activity. The method was developed concentrating on two key objectives: 1) producing more accurate 25 m forest maps by integrating PALSAR/PALSAR-2 and MODIS NDVI data during 2007–2010 and 2015–2016; 2) reconstructing annual 25 m forest maps from time-series MODIS NDVI images during 2011–2014. Specifically, a decision tree classification was developed for forest mapping based on both the PALSAR/PALSAR-2 and MODIS NDVI data, and a new spatial-temporal super-resolution mapping was proposed to reconstruct the 25 m forest maps from time-series MODIS NDVI images. Three study sites including Paraguay, the USA and Russia were chosen, as they represent the world's three main forest types: tropical forest, temperate broadleaf and mixed forest, and boreal conifer forest, respectively. Compared with traditional methods, the proposed approach produced the most accurate continuous time-series of fine spatial resolution forest maps both visually and quantitatively. For the forest maps during 2007–2010 and 2015–2016, the results had greater overall accuracy values (>98%) than those of the original JAXA forest product. For the reconstructed 25 m forest maps during 2011–2014, the increases in classifications accuracy relative to three benchmark methods were statistically significant, and the overall accuracy values of the three study sites were almost universally >92%. The proposed approach, therefore, has great potential to support the production of annual 25 m forest maps by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016

    Integration of geographic information system and RADARSAT synthetic aperture radar data using a self-organizing map network as compensation for realtime ground data in automatic image classification

    Get PDF
    The paper presents results of using advanced techniques such as Self-Organizing feature Map (SOM) to incorporate a GIS data layer to compensate for the limited amount of real-time ground-truth data available for land-use and land-cover mapping in wet-season conditions in Bangladesh based on multi-temporal RADARSAT-1 SAR images. The experimental results were compared with those of traditional statistical classifiers such as Maximum Likelihood, Mahalanobis Distance, and Minimum Distance, which are not suitable for incorporating low-level GIS data in the image classification process. The performances of the classifiers were evaluated in terms of the classification accuracy with respect to the collected real-time ground truth data. The SOM neural network provided the highest overall accuracy when a GIS layer of land type classification with respect to the depth and duration of regular flooding was used in the network. Using this method, the overall accuracy was around 15% higher than the previously mentioned traditional classifiers at 79.6% where the training data covered only 0.53% of the total image. It also achieved higher accuracies for more classes in comparison to the other classifiers

    Geoscience-aware deep learning:A new paradigm for remote sensing

    Get PDF
    Information extraction is a key activity for remote sensing images. A common distinction exists between knowledge-driven and data-driven methods. Knowledge-driven methods have advanced reasoning ability and interpretability, but have difficulty in handling complicated tasks since prior knowledge is usually limited when facing the highly complex spatial patterns and geoscience phenomena found in reality. Data-driven models, especially those emerging in machine learning (ML) and deep learning (DL), have achieved substantial progress in geoscience and remote sensing applications. Although DL models have powerful feature learning and representation capabilities, traditional DL has inherent problems including working as a black box and generally requiring a large number of labeled training data. The focus of this paper is on methods that integrate domain knowledge, such as geoscience knowledge and geoscience features (GK/GFs), into the design of DL models. The paper introduces the new paradigm of geoscience-aware deep learning (GADL), in which GK/GFs and DL models are combined deeply to extract information from remote sensing data. It first provides a comprehensive summary of GK/GFs used in GADL, which forms the basis for subsequent integration of GK/GFs with DL models. This is followed by a taxonomy of approaches for integrating GK/GFs with DL models. Several approaches are detailed using illustrative examples. Challenges and research prospects in GADL are then discussed. Developing more novel and advanced methods in GADL is expected to become the prevailing trend in advancing remotely sensed information extraction in the future.</p

    Based on Perceptron Object Classification Algorithms for Processing of Agricultural Field Images

    Get PDF
    Neural network algorithms of object classification are considered in the paper applying to disease area recognition of agricultural field images. The images are presented as reduced normalized histograms. The classification is carried out for RGB-and HSV-space by using of a multilayer perceptron

    Fast and Slow Changes Constrained Spatio-temporal Subpixel Mapping

    Get PDF
    Subpixel mapping (SPM) is a technique to tackle the mixed pixel problem and produce land cover and land use (LCLU) maps at a finer spatial resolution than the original coarse data. However, uncertainty exists unavoidably in SPM, which is an ill-posed downscaling problem. Spatio-temporal SPM methods have been proposed to deal with this uncertainty, but current methods fail to explore fully the information in the time-series images, especially more rapid changes over a short-time interval. In this paper, a fast and slow changes constrained spatio-temporal subpixel mapping (FSSTSPM) method is proposed to account for fast LCLU changes over a short-time interval and slow changes over a long-time interval. Namely, both fast and slow change-based temporal constraints are proposed and incorporated simultaneously into the FSSTSPM to increase the accuracy of SPM. The proposed FSSTSPM method was validated using two synthetic datasets with various proportion errors. It was also applied to oil-spill mapping using a real PlanetScope-Sentinel-2 dataset and Amazon deforestation mapping using a real Landsat-MODIS dataset. The results demonstrate the superiority of FSSTSPM. Moreover, the advantage of FSSTSPM is more obvious with an increase in proportion errors. The concepts of the fast and slow changes, together with the derived temporal constraints, provide a new insight to enhance SPM by taking fuller advantage of the temporal information in the available time-series images

    Detecting land use changes using hybrid machine learning methods in the Australian tropical regions

    Get PDF
    The present study evaluates the application of the hybrid machine learning methods to detect changes of land use with a focus on agricultural lands through remote sensing data processing. Two spectral images by Landsat 8 were applied to train and test the machine learning model. Feed forward neural network classifier was utilized as the machine learning model in which two evolutionary algorithms including particle swarm optimization and invasive weed optimization were applied for the training process. Moreover, three conventional training methods including Levenberg–Marquardt back propagation (LM), Scaled conjugate gradient backpropagation (SCG) and BFGS quasi-Newton backpropagation (BFG) were used for comparing the robustness and reliability of the evolutionary algorithms. Based on the results in the case study, evolutionary algorithms are not a reliable method for detecting changes through the remote sensing analysis in terms of accuracy and computational complexities. Either BFG or LM is the best method to detect the agricultural lands in the present study. BFG is slightly more robust than the LM method. However, LM might be preferred for applying in the projects due to low computational complexities
    corecore