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A B S T R A C T   

Information extraction is a key activity for remote sensing images. A common distinction exists between 
knowledge-driven and data-driven methods. Knowledge-driven methods have advanced reasoning ability and 
interpretability, but have difficulty in handling complicated tasks since prior knowledge is usually limited when 
facing the highly complex spatial patterns and geoscience phenomena found in reality. Data-driven models, 
especially those emerging in machine learning (ML) and deep learning (DL), have achieved substantial progress 
in geoscience and remote sensing applications. Although DL models have powerful feature learning and repre-
sentation capabilities, traditional DL has inherent problems including working as a black box and generally 
requiring a large number of labeled training data. The focus of this paper is on methods that integrate domain 
knowledge, such as geoscience knowledge and geoscience features (GK/GFs), into the design of DL models. The 
paper introduces the new paradigm of geoscience-aware deep learning (GADL), in which GK/GFs and DL models 
are combined deeply to extract information from remote sensing data. It first provides a comprehensive summary 
of GK/GFs used in GADL, which forms the basis for subsequent integration of GK/GFs with DL models. This is 
followed by a taxonomy of approaches for integrating GK/GFs with DL models. Several approaches are detailed 
using illustrative examples. Challenges and research prospects in GADL are then discussed. Developing more 
novel and advanced methods in GADL is expected to become the prevailing trend in advancing remotely sensed 
information extraction in the future.   

1. Introduction 

Remotely sensed information extraction techniques derive essential 
information from remote sensing data for a wide range of Earth system 
and socio-economic researches and applications (Persello and Stein, 
2017; Lian et al., 2020; Zhang et al., 2020; Chen et al., 2021; Liu et al., 
2021a; Xia et al., 2021). Since the launch of Landsat-1 in 1972, the 
continuous development of new sensors has increased the 
spatial-temporal-spectral resolution of Earth observation data (Vali 
et al., 2020; Shao et al., 2021; Emilien et al., 2021). In recent years, the 
accumulation of massive Earth observation datasets, substantial im-
provements in computing platform performance and the rise of artificial 
intelligence (AI), are significantly changing the theory and practice of 

remote sensing information processing (Zhang et al., 2019a). In this 
regard, and in relation to advances in AI generally, knowledge-driven 
and data-driven models are the dominant paradigms for 
spatio-temporal modeling and spatio-temporal decision-making (Bon-
ham-Carter, 1994; Solomatine, 2002; Ge, 2006; Riaz et al., 2018). 

Knowledge-driven models rely significantly on prior knowledge that 
is summarized by geoscientific experts or extracted from geoscience 
data, and these methods extract information usually through knowledge 
reasoning (Lu and Weng, 2007). In the context of the symbolic school of 
early AI (Garcez et al., 2019; Futia and Vetrò, 2020), the earlier devel-
oped knowledge-driven methods express geoscience knowledge and 
geoscience features (GK/GFs) from relevant expert experience and 
geoscience data as a series of clear logical inference rules and other 
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formulations through human intervention (Goodfellow et al., 2016; 
Zhuang et al., 2017), which are readily coded for computer manipula-
tion. Expert systems are the most influential and representative line of 
research in knowledge-driven methods based on knowledge rule 
reasoning (Goodenough et al., 1987; Wang et al., 2020a). Subsequently, 
knowledge-based model reasoning for information extraction was 
developed by considering the physical processes or physical laws un-
derpinning ground objects and geoscience phenomena (Zhang et al., 
2019a). Such physical models combine the interaction mechanism be-
tween the remote sensing observations and the targets to extract the-
matic information or geoscientific parameters related to environmental 
domains, such as the atmosphere, ocean, vegetation and hydrology 
(Liang, 2005). However, prior knowledge is generally very limited 
relative to the complicated distributions and patterns of natural phe-
nomena and geographical elements, and the great complexity of un-
derlying physical processes. This greatly hinders the construction of 
accurate knowledge reasoning models as well as knowledge discovery 
processes (Goffi et al., 2020; Yuan et al., 2020; Li et al., 2021a). This 
situation makes it difficult presently to perform large-scale and 
high-level information extraction tasks using knowledge-driven 
methods. Nevertheless, knowledge-driven methods are still regarded 
as one of the most important research directions because of their 
advanced reasoning ability and interpretability (Arvor et al., 2019; 
Garcez et al., 2019; Li et al., 2020). 

Along another research avenue, more and more research effort has 
been focused on bottom-up methods, or data-driven methods, with the 
advent of the era of ‘data deluge’ in geoscience and remote sensing (Li 
et al., 2021a). Data-driven methods discover knowledge and extract 
information via fitting models to a large quantity of data (Sukor et al., 
2019; Zhang et al., 2019a), including classic machine learning methods, 
and deep learning (DL) technologies that have emerged as the 
cutting-edge AI frameworks in recent years (Wang et al., 2020a; Li et al., 
2021a). DL derived from connectionist AI has triggered profound social 
and industrial changes (Garcez et al., 2019; Futia and Vetrò, 2020), and 
has brought unprecedented opportunities for the development of geo-
science and remote sensing (Zhu et al., 2017; Jiang et al., 2020). First, 
DL models have powerful feature learning and representation capabil-
ities, able to transform raw inputs into high-level and abstract repre-
sentations (LeCun et al., 2015). This capability is conducive to revealing 
the latent characteristics and laws in complex spatial patterns and 
phenomena through learning mapping or dependences between the in-
puts and outputs of models. Second, the ever-increasing numbers of 
spatio-temporal data provide data support for training DL models and 
developing new algorithms (Reichstein et al., 2019; Li, 2020). By 
drawing on the successful experience of the computer science commu-
nity, DL techniques have been demonstrated to have outstanding per-
formance in remote sensing image classification (Bergado et al., 2018; 
Mullissa et al., 2019), object detection (Hoeser and Kuenzer, 2020), 
environmental parameter retrieval (Yuan et al., 2020), and other in-
formation extraction goals in geoscience and remote sensing (Zhang 
et al., 2016; Dramsch, 2020; Ma et al., 2019; Bergado et al., 2021), as 
well as many other complex tasks in other fields (Guo et al., 2016). 

Although the rapid progress of DL has exerted a profound impact on 
various industries and people’s lives, the problem of ignoring domain 
knowledge (e.g., practical engineering theories (Wang et al., 2020b), the 
experience and theories of remote sensing interpretation (Yao et al., 
2020)) and existing scientific laws (e.g., spatial autocorrelation 
described by Tobler’s first law of geography (Li et al., 2021a) and the 
law of conservation of mass and energy (Reichstein et al., 2019)) is 
prevalent in the design of its models. This hinders in-depth applications 
of DL in various fields to a great extent. Different from knowledge-driven 
methods, although DL models can fit complex nonlinear relationships in 
real situations, they work as black box models since they are agnostic to 
the drivers of the underlying real-world phenomena and processes 
(Castelvecchi, 2016; Paoletti et al., 2019). Therefore, even if the ‘black 
box’ performs more accurately, it cannot directly be used as the 

foundation for subsequent scientific developments (Karpatne et al., 
2017a). Besides, the most widely used supervised DL models are 
extremely limited by the number and representativeness of the labeled 
data used to train them, resulting in weak generalization and extrapo-
lation ability beyond the training data (Karpatne et al., 2017b; Karnia-
dakis et al., 2021). In terms of remotely sensed information extraction, 
although data-driven DL methods have achieved a great deal of success, 
they do not yet deliver many recognized scientific and practical re-
quirements due to the following challenges: First, the internal mecha-
nism of DL-based information extraction methods is elusive, and thus it 
is difficult for humans to understand how DL produces the final decision. 
Second, incomplete labeled data used for training in practical situations 
makes DL models become unreliable and cannot generalize well under 
new geospatial contexts, especially when the geographic heterogeneity 
is obvious (Wang et al., 2021a). Third, the training process of DL models 
relies on data available (Wang et al., 2020b), and does not involve the 
guidance of GK/GFs, which may lead to unreasonable or incorrect pre-
dictions. Therefore, the effectiveness of DL-based methods is still far 
from the visual interpretation and information processing that can be 
achieved by domain experts. 

Considering the respective merits and faults of knowledge-driven 
methods and data-driven DL models the combination, especially the 
in-depth combination, of the two different paradigms to achieve com-
plementary advantages has gained attention recently. There have been 
several efforts towards this emerging scheme in the research fields of 
neural-symbolic computing (Garcez et al., 2019; Lamb et al., 2020), 
physics (Raissi et al., 2019; Karniadakis et al., 2021), hydrology (Jiang 
et al., 2020), meteorology (Higa et al., 2021) and geospatial science 
(Janowicz et al., 2020; Li, 2020; Hsu et al., 2021; Li et al., 2021a). For 
example, in runoff modeling, Jiang et al. (2020) proposed a hybrid 
physics-AI approach where geosystem dynamics were encoded as a 
neural network architecture. In two examples of object detection based 
on geospatial artificial intelligence technology, rim features and spatial 
autocorrelation were explicitly introduced as prior geospatial knowledge 
into DL models, respectively, for Mars crater detection (Hsu et al., 2021) 
and weakly supervised terrain detection (Li et al., 2021a). These case 
studies demonstrated that under the guidance and motivation of domain 
knowledge, integrated methods are capable of leveraging powerful DL 
frameworks with increased prediction accuracy, reasoning ability, 
interpretability, generalization performance and reducing the re-
quirements for labeled data used in training. Accordingly, the symbiotic 
integration of knowledge-driven and data-driven DL models is consid-
ered to be one of the most promising research directions, providing 
references for remote sensing knowledge discovery and information 
extraction. 

The purpose of this paper is to build the foundations of algorithms 
and architectures of deeply knowledge-integrated data-driven DL 
models, with particular attention to how to improve the effectiveness of 
extracting valuable information from remote sensing data by intro-
ducing GK/GFs. To this end, an emerging paradigm called geoscience- 
aware deep learning (GADL) is proposed in this paper. In GADL, GK/ 
GFs are deeply blended with DL models in several ways which will be 
reviewed later. The main contributions of this paper include:  

(1) We propose a paradigm of GADL aiming at leveraging the value of 
GK/GFs to improve the performance of DL models in enabling 
remotely sensed information extraction.  

(2) A comprehensive summary of GK/GFs in GADL is introduced. 
(3) We provide a taxonomy of approaches in GADL used for inte-

grating GK/GFs with DL models, and five main approaches under 
this taxonomy are reviewed in detail using typically existing or 
potential works. 

The remainder of the paper is organized as follows. Section 2 elab-
orates the characteristics of GADL, as well as providing a framework for 
deep integration of GK/GFs with DL models. Section 3 gives a detailed 
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description and summary of GK/GFs in GADL. Section 4 describes five 
approaches to integration using illustrative examples. Future challenges 
and the research prospects for this topic are further analyzed and dis-
cussed in Section 5. Finally, Section 6 provides some concluding 
remarks. 

2. Geoscience-aware deep learning (GADL) 

2.1. Characteristics 

Knowledge-driven and data-driven methods represent the two 
dominant paradigms to deal with the practical problems of remotely 
sensed information extraction, depending on GK/GFs or geoscience 
data. Both knowledge-driven and data-driven DL models have their 
strengths and weaknesses, and neither knowledge-driven models nor 
data-driven DL models alone are enough to deal comprehensively with 
the challenges in remote sensing. Instead, a novel paradigm of symbiotic 
integration of the two class of methods needs to be further explored and 
developed. To this end, the paradigm of GADL is introduced in this 
paper, which attempts to build the foundations of deeply blending GK/ 
GFs in DL models to take full advantage of their complementary ad-
vantages and improve the effectiveness of DL models. 

The common problem in remotely sensed information extraction is to 
represent relationships between remote sensing observations and target 
outputs such as classes of ground objects or geoscientific parameters. 
Data-driven methods can learn a model from training samples to extract 
such relationships automatically. In particular, DL models are usually 
able to fit observations very well (Reichstein et al., 2019) via end-to-end 
training, and they bring excellent processing capacity for complex data, 
as is true for the current deluge of multi-source heterogeneous and 
high-dimensional remote sensing data. Besides, the powerful capability 
of feature learning and hidden representation of DL models can endow 
GADL with the ability to discover potential patterns and laws in complex 
phenomena and processes. At the same time, knowledge-driven methods 
deal with information extraction tasks by knowledge reasoning based on 
explicitly represented relationships between observations and target 
outputs. This reasoning process encapsulates cause-and-effect relation-
ships, such as those between inputs and outputs, and between parame-
ters and outputs, which are derived from long-term geoscientific 
practice or proven scientific principles. Therefore, compared with pure 
data-driven methods, the introduction of GK/GFs makes GADL more 
interpretable via knowledge-based reasoning, instead of operating as a 
block box. Simultaneously, it offers the potential for better generaliza-
tion and extrapolation ability over any unseen observations within or 
beyond current observed conditions (Reichstein et al., 2019) because of 
the universality of GK/GFs. It is worth noting that the range of admis-
sible solutions of GADL can be dramatically narrowed by honoring the 
constraints of GK/GFs in addition to the observations, which is helpful to 
reduce the dependence on the quality and quantity of labeled data 
(Wang et al., 2020b; Li et al., 2021b). More importantly, the guidance 
from GK/GFs can help in producing results of geoscientific consistency 
by removing scientifically unreasonable or implausible results (Karpatne 
et al., 2017b). To illustrate this more clearly, the example of spectral 
confusion in remote sensing image classification is given as follows. In 
the first case, much hillshade on one side of a mountain is easily 
confused with water bodies in some land cover products generated by 
data-driven classifiers (Zhang et al., 2021a). This situation may be 
improved if topography-related information or features such as from 
digital elevation models (DEMs) are introduced into the analysis (Lu and 
Weng, 2007). In the second case, in object-based segmentation and 
classification of coastal areas using multi-spectral image data as input, it 
is possible to confuse beach with construction (Qiao et al., 2011). 
Fortunately, the sea is usually easily identified since it is the largest 
water body object, and there is an opportunity to improve the classifi-
cation result by introducing spatial distance knowledge that beaches are 
closer to the sea than construction. Thus, spatial distance can be used to 

constrain the classifier to minimize the training error calculated by the 
multi-dimensional features, and at the same time produce classification 
results consistent with the spatial relationship of ground objects. 

Overall, through the synergistic manner of GK/GFs and DL models, 
both complementary advantages of knowledge-driven and data-driven 
DL methods can be integrated into the characteristics of GADL 
(Fig. 1). First, GADL is primarily committed to increasing the accuracy of 
information extraction. This benefits from the integrated paradigm 
having a better chance to reveal hidden features and unknown re-
lationships, as well as to provide the constraints of geoscientific con-
sistency to obtain relationships that are closer to the true relationship 
between observations and target outputs. Additionally, GADL can be 
endowed with more enhanced model performance simultaneously, such 
as reasoning ability, interpretability, generalization ability, powerful 
feature learning and representation ability, processing and fitting ca-
pacity of complex data, and low dependence on labeled data. 

2.2. Framework of the deep integrated approaches 

The paradigm of GADL aims to achieve deep integration of GK/GFs 
and DL models through some integrated approaches to extract valuable 
information from remote sensing data. In the past, many studies have 
realized the combination of knowledge-driven and data-driven methods 
through post-processing revision or decision fusion (Lu and Weng, 2007; 
Jia et al., 2018). Some researchers have applied similar approaches to 
blend domain knowledge and DL models, such as in research on air 
pollution prediction (Kabir et al., 2020) and semantic segmentation of 
remote sensing images (Sun and Wang, 2018). While in this paper, we 
pay more attention to how to incorporate GK/GFs into the architecture 
of the DL models themselves in the process of remotely sensed infor-
mation extraction, instead of the aforementioned one-time post pro-
cessing or decision fusion. This is what we mean by “deep” in relation to 
the paradigm of deep integration. In other words, in GADL, GK/GFs are 
used to guide the design of algorithms and models, or parameter opti-
mization processes of DL, and empower DL models to learn under geo-
science awareness. 

Fig. 2 demonstrates the framework of deep integrated approaches of 
GK/GFs and DL models in GADL. On the one hand, useful knowledge/ 
features for solving specific problems should be selected. Generally 
speaking, GK/GFs can be summarized or extracted from the input geo-
science theories (e.g., geoscience principles and laws), expert experi-
ence, remote sensing data (e.g., images from active or passive remote 
sensing) and auxiliary geoscience data (e.g., in-situ sensor data (Kar-
patne et al., 2018), topographic data). For the convenience of subse-
quent applications, we divide GK/GFs into three types according to the 
source and nature of GK/GFs, which will be detailed in Section 3. On the 
other hand, a DL architecture suitable for handling the current task 
should be designed or determined. Presently, a vast variety of DL models 
with different characteristics and scope of application have been 
evolved, which have been summarized in detail by LeCun et al. (2015), 
Ball et al. (2017), Yuan et al. (2020), Hoeser and Kuenzer (2020). For 
example, convolutional neural networks (CNNs) are especially suitable 
for extracting multi-scale information and semantic information from 
images (Zhu et al., 2017); recurrent neural networks (RNNs) can capture 
temporal dependencies of time-series data (Qiu et al., 2019; Zhao et al., 
2021); graph convolutional networks (GCNs) are able to conduct flexible 
convolution to extract structural information from irregular 
non-Euclidean data (Liu et al., 2020; Zhang et al., 2021b). In addition to 
the above-mentioned commonly used networks, the transformer (Vas-
wani et al., 2017)-based network has also been developed recently to 
learn spectrally sequence information for hyperspectral image classifi-
cation (Hong et al., 2021). The characteristics of different DL models 
provide a wide range of options and bases for designing fusion strategies 
in GADL. 

In terms of the taxonomy of approaches for integrating GK/GFs with 
DL models, we consider the representation of knowledge/features as the 
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classification basis. In fact, the knowledge or feature representation 
refers to the means to symbolize and formalize knowledge or features in 
a computer-useable manner (Baltsavias, 2004). For different problems, 
how to choose the appropriate representations is a crucial consideration 
for making decisions and predictions effectively and, thus, is also the 
cornerstone of building deep integrated approaches to integrate GK/GFs 
and DL models in GADL. In the light of common representations of 
GK/GFs, this paper introduces five main approaches for in-depth inte-
gration of GK/GFs and DL models, namely: rule-based, semantic 
network-based, object-based, physical model-based, neural 
network-based. Different types of GK/GFs and characteristics of vari-
eties of DL models are considered in the specific modeling of each 
approach, and each approach is elaborated in Section 4 using some 
emergent or potential examples of GADL research directions. Next, these 
integrated approaches with enhanced model performance can be 
applied to land use/land cover (LULC) mapping, object recognition, 
geoscientific parameter estimation and other problems involving 
remotely sensed information extraction. Finally, the results are analyzed 
and model assessment of the deep integrated models in GADL 
undertaken. 

3. Types of GK/GFs 

This paper focuses on the GK and GFs that are beneficial for 
extracting useful information from remote sensing data. They can sup-
plement the limited electromagnetic spectrum information in remote 
sensing data. GK, which is related to conceptual physical models, often 
does not require the definition of measurable properties, and it repre-
sents the synthesis of cognition and experience accumulated by people 
in geoscientific practice. Domain experts and scholars have long been 
aware of the importance of GK for solving geoscience problems, and 
some different views about GK (or other similar terms, such as 
geographic knowledge) from different perspectives have been provided. 
For example, geographic knowledge was described as the product of 
geographic thinking and reasoning about the world’s natural and human 
phenomena (Golledge, 2002). According to the degree of abstraction, 
Wang et al. (2021b) hold that GK consists of knowledge related to data, 
concepts and law. In this paper, we suggest that the scope of GK is 
potentially extensive, involving an investigator’s awareness and un-
derstanding of geoscience phenomena, geoscience processes (e.g., hy-
drological, ecological and atmospheric processes, soil process) and their 
internal driving mechanisms, and geoscience attributes (e.g., spatial 
distribution and time variation) of ground objects. In contrast, GFs, 
which are more related to statistical models, require measurable prop-
erties and, thus, exist as data, in the sense that GFs refer to intuitive 

features that can be extracted directly from remote sensing data or 
auxiliary data, such as texture features and geometric features. GK and 
GFs can be formalized and quantified, and further applied in 
knowledge-driven methods or the paradigm of GADL through some 
appropriate representations. 

Considering the source and nature of GK and GFs, we group them 
into three types: spatial knowledge/features, physical knowledge/fea-
tures and regional knowledge/features. On this foundation, for the 
purpose of illustration, we further subdivide the knowledge/features 
into nine different forms. More detailed descriptions or examples of each 
type and form of GK/GFs are listed in Table 1. This division and sub-
division of GK/GFs is the basis for deep integration modeling of GK/GFs 
with DL, because each integrated approach has its own applicability for 
different types of GK/GFs. 

3.1. Spatial knowledge/features 

Spatial character is a basic property of geoscience research objects 
(Zhou et al., 1999), which can be reflected to some extent in remote 
sensing data. Therefore, spatial knowledge/features are an important 
type of GK/GFs with which to extract object information efficaciously. 
This paper further subdivides spatial knowledge/features into four 
forms: spatial vision features, spatial geometry features, spatial distri-
bution knowledge and spatial relationship knowledge. 

Spatial vision features represent the visual perception of ground 
features reflected directly in remote sensing images. The most repre-
sentative visual feature is spatial texture; image structure formed by 
regular spatial changes or the repeated arrangement of tones or fine 
structures, which form visually identifiable differences. The most widely 
used quantitative textures methods include the gray level co-occurrence 
matrix (GLCM) and its derived statistics (Haralick et al., 1973), fractal 
dimension (Pentland, 1984), and the pixel shape index (Zhang et al., 
2006). In fact, since texture alone is insufficient to describe complex 
Earth surface conditions, the approach of integrating texture with other 
knowledge/feature forms has attracted increasing attention in practice 
(Huang et al., 2014). 

Spatial geometry features are another commonly used fundamental 
form for analyzing remote sensing objects, where shape is a main form 
that is conducive to identifying ground information. In the long-term 
remote sensing interpretation work of geoscientists, it is often used as 
additional information to make up for the limitations of spectral infor-
mation (Arvor et al., 2013; Jawak et al., 2015). Shape expresses the 
outline of targets on the two-dimensional image plane, and it can be 
characterized by some basic descriptors (e.g., area, length, width), shape 
indices, moments and so on (see Table 1). In image analysis, the 

Fig. 1. Characteristics of GADL.  
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Fig. 2. Framework of approaches for deep integration of GK/GFs and DL models in GADL. Different types of GK/GFs and varieties of DL models can be deeply 
integrated based on the different representations of GK/GFs. Under this taxonomy, five main integrated approaches of GK/GFs and DL models are provided for 
solving various problems of remotely sensed information extraction. Note that only GK/GFs-based models and only DL models are capable of solving these problems 
(see 2 Gy dotted lines), but GADL offers an opportunity to fully combine the strengths of both models. 
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Table 1 
Types, forms, and descriptions or examples of GK/GFs used in remotely sensed information extraction.  

Types Forms Specific forms Specific items Descriptions or examples References 

Spatial 
knowledge/ 
features 

Spatial vision 
features 

Texture Statistics based on 
GLCM 

GLCM is the frequency of pixel pairs with gray values i 
and j respectively in a certain direction and distance. 
Some textural statistics are obtained from GLCM, e.g., 
Correlation, contrast, entropy. 

Haralick et al. (1973) 

Random field model Random field models use probability models to describe 
the random process of texture, including Markov random 
field (MRF) model, Gibbs model, simultaneous 
autoregressive random (SAR) model. 

Hassner and Sklansky (1981); 
Liao et al. (1992); Elfadel and 
Picard (1994) 

Wavelet transform Wavelet transform can analyze image texture details at 
multiple scales, and its successful development branches 
include tree-structured wavelet transform. 

Mallat (1989); Chang and 
Kuo (1993) 

Fractal Dimension Fractal dimension can be used as a measure of image 
roughness that is not sensitive to scale. 

Pentland (1984) 

Morphological 
texture 

Mathematical Morphology uses structuring elements with 
certain shape and size to detect the corresponding 
textures in the image. 

Aptoula and Lefèvre (2011) 

Spatial geometry 
features 

Shape Basic descriptor E.g., area, length, width, length/area, density, main 
direction, centroid, convexity. 

Zhang and Lu (2004); Sun 
(2014) 

Shape index E.g., 0.25E/
̅̅̅̅
A

√
, E/2

̅̅̅̅̅̅
πA

√
, where E and A represent 

perimeter and area respectively. 
Song and Civco (2004); Wu 
(2007); Du et al. (2019) 

Minimum bounding 
rectangle 

It is the smallest rectangle that contains every point in the 
shape. 

Yang et al. (2008) 

Moments E.g., boundary moments, invariant moments, Zernike 
moments. 

Zhang and Lu (2004); Ma 
et al. (2011) 

Spatial distribution 
knowledge 

Spatial position Geographic position Geographic position refers to the absolute position of 
targets in a geographic coordinate system. 

Zhou et al. (1999); 
“Geographic coordinate 
system”, 2021 

Spatial structure Structural 
characteristics 

This refers to the geometric structure and its 
characteristics of the spatial distribution of ground 
objects. For example, connectivity of linear features such 
as rivers and roads. 

Atkinson (2009); Ge (2013);  
Ge et al. (2019) 

Spatial pattern Landscape pattern This refers to the spatial arrangement and combination of 
landscape elements with different sizes and shapes. It can 
be divided into random, dispersed and clustered 
distribution, or point, linear and areal distribution. 

Wu (2007); Ge et al. (2016);  
Ge et al. (2019) 

Spatial relationship 
knowledge 

Orientation 
relation 

Distance relation It is used to specify how far the object is away from the 
reference object in a certain metric space (e.g., Euclidean 
space). 

Chen and Zhao (1999); Qiao 
et al. (2011) 

Directional relation It refers to the direction of one object relative to another. 
Non-orientation 
relation 

Topological relation The disjoint, meet, overlap, inside, contains relations 
between any two spatial objects represented by points, 
lines, or polygonal areas. 

Clementini et al. (1994) 

Physical 
knowledge/ 
features 

Sensor information Imaging mode Imaging parameter Parameters related to imaging mode in remote sensing 
image metadata, e.g., imaging time, attitude, height. 

Baltsavias (2004); Olsen 
(2007) 

Sensor 
performance 

SNR Signal-to-noise ratio (SNR) is the ratio of a signal level to 
a noise level, it reflects the image quality and radiometric 
performance of a remote sensing imaging system. 

Fiete and Tantalo (2001) 

Spectral resolution This refers to the bandwidth and the sampling rate over 
which the sensor gathers information. 

Schowengerdt (2006);  
Pradham et al., 2008 

Spatial resolution This refers to the smallest features in the scene that can be 
separated. 

Radiometric 
resolution 

This refers to range of discrete signals that the sensor can 
record. 

Temporal 
Resolution 

This refers to the time elapsed between consecutive 
images of the same ground location taken by the sensor. 

Model Physical model Imaging geometric 
model 

The imaging geometric model describes the relationship 
between the position of ground points in geospatial space 
and image points on remote sensing images. For example, 
the central projection model, rigorous sensor model, and 
affine projection model in optical imaging system. 

Hattori et al. (2000);  
Robertson (2003) 

Quantitative remote 
sensing model 

Quantitative remote sensing models are based on 
physical processes and mechanisms to characterize the 
interaction between remote sensing signals and ground 
features. For example, radiation transfer models, 
geometric-optical models, and dynamic models that 
characterize plant growth, carbon cycle, and water cycle. 

Zhang et al. (2019a) 

Spectral features Spectral index Vegetation index The indicators are designed to evaluate vegetation 
growth and biomass, including NDVI, enhanced 
vegetation index (EVI), ratio vegetation index (RVI), 
difference vegetation index (DVI), soil-adjusted 
vegetation index (SAVI). 

Bannari et al. (1995); Xue 
and Su (2017) 

Water index The indicators are designed to delineate open water 
features and enhance water information, e.g., normalized 

McFeeters (1996); Xu (2006) 

(continued on next page) 
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quantitative representation of shape is usually based on smaller mean-
ingful objects into which the image is segmented (Lande et al., 2014). 
Also, shape usually provides explicit geometric constraints for the 
detection of buildings, roads and other objects (Cheng and Han, 2016; 
Lian et al., 2020). 

According to the spatial range from small to large involved in the 
distribution of ground objects, spatial distribution knowledge generally 
includes the spatial absolute position, spatial structural characteristics 
and spatial distribution pattern of ground objects. First, objects 
distributed in different spatial locations often exhibit certain regional 
characteristics. For example, both horizontal zonality and vertical 
zonality associated with horizontal position and elevation, respectively, 
should be considered when distinguishing vegetation types (Yao et al., 
2020). At the same time, spatial absolute location can also be used for 
geographic registration of images and historical data (Zhong et al., 
2020; Li et al., 2021b), which is the key to the integration of 
multi-source knowledge/feature forms. Second, some ground objects 
often present obvious spatial structural characteristics which are 
conductive to information extraction. For example, farmland and fish-
ponds are usually regular, while roads and rivers are linear features with 
connectivity. Multiple-point simulation is an effective way to capture 
complex geometric structural information (Atkinson, 2009). It first 
recognizes the structural characteristics of ground objects from training 

data, and then reproduces the spatial distribution structures. For 
example, Ge (2013) successfully introduced the spatial structural in-
formation of ground objects acquired by multi-point simulation into the 
soft classification results to reduce the uncertainty of soft classification. 
Third, spatial distribution pattern as prior knowledge has been applied to 
differentiate the distribution structure of ground objects in existing 
research (Xu et al., 2013; Ge et al., 2016, 2019), so as to guide the se-
lection of information extraction strategies under different distribution 
patterns. Super-resolution land cover mapping is a technique that re-
constructs the spatial distribution of land cover objects at the subpixel 
scale. In this regard, Ge et al. (2016) developed divide-and-conquer 
super-resolution mapping strategies for different types of ground ob-
jects (i.e., areal, linear and point objects classified according to the 
planar shape of the spatial distribution). 

There are mutual restrictions and interdependencies amongst the 
various elements of the geographical environment. Therefore, target 
objects are often closely related to their surroundings and other objects. 
This kind of spatial connection or association is summarized as spatial 
relationship knowledge, which is a high-level knowledge/feature form 
represented through the relative positions of ground objects. Spatial 
relationship knowledge is a popular knowledge/feature form for remote 
sensing image classification and object detection and extraction (Balt-
savias, 2004). Distance relation is the most fundamental spatial relation, 

Table 1 (continued ) 

Types Forms Specific forms Specific items Descriptions or examples References 

difference water index (NDWI), modified normalized 
difference water index (MNDWI). 

Built-up index The indicators are designed to map built-up areas quickly 
and objectively, e.g., normalized difference built-up 
index (NDBI). 

Zha et al. (2003) 

Soil index The indicators are designed to enhance soil covers, e.g., 
normalized difference soil index (NDSI). 

Deng et al. (2015) 

Burn index The indicators are designed to highlight burnt areas in 
large fire zones, e.g., normalized burn ratio (NBR), 
differenced normalized burn ratio (dNBR). 

García and Caselles (1991);  
Cocke et al. (2005) 

Other indices Other indices are used to enhance corresponding 
information. For example, the cloud index (CI) and cloud 
shadow index (CSI) are proposed to indicate the potential 
clouds and cloud shadows. 

Zhai et al. (2018) 

Spectral 
characteristic 

Spectrum library The spectrum library is a collection of reflection spectrum 
data of various ground objects. It can be measured by 
spectrometers or obtained by hyperspectral images. 

Zomer et al. (2009) 

Spectral reflectance 
curve 

The relationship curve between the reflectivity of the 
ground object and the wavelength. 

Singh and Sirohi (1994); Kim 
et al. (2018) 

Band 
combination 

False-color 
composite 

This is a synthesis method of any non-red, green, and blue 
real bands, which can be used to display richer 
information or highlight certain information. 

Yin et al. (2012); Lu et al. (2020) 

Regional 
knowledge/ 
features 

Temporal 
knowledge 

LULC change Land use transfer 
matrix 

The matrix describes the structural characteristics of 
regional land use change and the change direction of each 
land use type. 

Liu et al. (2018b) 

Phenological 
change 

Seasonal rhythm For example, the growth of plants (including crops) 
changes regularly with the seasonal change of climate. 

Zeng et al. (2020b) 

Environmental 
knowledge/features 

Topographical 
features 

DEM DEM is a 3D representation of the terrain elevation of the 
bare Earth surface. 

“Digital elevation model”, 
2021 

DSM DSM refers to the ground elevation model including the 
height of surface buildings, bridges and trees. 

Slope Slope is the rise or fall of the land surface, and it refers to 
the elevation difference between two points of a unit 
distance. 

Brouwer et al. (1985) 

Aspect Aspect is the compass direction that a topographic slope 
faces. 

Chang and Tsai (1991); 
“Aspect”, 2013 

Historical 
knowledge 

Physical 
regionalization 

Physical regionalization refers to the regional division 
based on regional differentiation, including the division 
of landforms, climate, hydrology, soil, organisms and 
other physical geographical elements. 

Lu and Weng (2007); Macias 
et al. (2020) 

Map products Historical classification products and other 
socioeconomic zoning products related to regions such as 
historical LULC maps, vegetation type maps, soil maps. 
They are highly condensed expert knowledge. 

Lu and Weng (2007); Wu 
et al. (2015); Zhu et al. 
(2021) 

Note: The specific items in each knowledge/feature form mentioned in the table are limited, and only the items commonly used in remotely sensed information 
extraction are listed. 
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and an example of its application is the image classification of the city 
and offshore area (Qiao et al., 2011). In this study, the spatial rela-
tionship related to spatial distance and spatial adjacency helped to 
modify and improve the preliminary classification results, discrimi-
nating water and shadows effectively, as well as beach and construction. 
In another example, the urban buffer defined around population center 
coordinates and the nearest distance from river formed a spatial model 
for knowledge-based land cover classification, leading to increased ac-
curacy (Daniels, 2006). The directional relation is less widely used, but a 
representative example is the use of shadow, which is a common cue for 
building detection (Cheng and Han, 2016). In this respect, Ok (2013) 
modeled the directional spatial relationship between buildings and their 
shadows to automatically detect buildings from single 
very-fine-resolution images. The topological relation is a type of spatial 
relationship knowledge for spatial analysis of geoscience data or ground 
objects expressed by points, lines and polygonal areas. In applications, 
the topological relation is especially suitable for the extraction of linear 
features such as roads, to ensure their intersection and connectivity 
(Lian et al., 2020). It is worth noting that although the introduction of 
spatial relationships can compensate for spectral confusion (Qiao et al., 
2011), how to appropriately transform the invisible relationships be-
tween targets into explicit knowledge representations has always been 
an important topic for information extraction (Cheng and Han, 2016). 

3.2. Physical knowledge/features 

Physical knowledge/features are related mainly to the imaging 
principle and process of the sensor, as well as the mechanism of elec-
tromagnetic waves reflected and radiated by ground objects. Here, the 
physical knowledge/features that can be used in extraction information 
from remote sensing data is grouped into three forms: sensor informa-
tion, model, and spectral features. 

Sensor information is the mastery of the sensor imaging mode and 
imaging performance. This knowledge/feature form can provide the 
necessary parameters and information for methods of target information 
extraction and quantitative estimation of geoscience variables, as well as 
guide the selection of remote sensing images and the design of infor-
mation extraction algorithms. First, some parameters in remote sensing 
image metadata are generally available. The elevation and azimuth 
angles of the satellite and Sun can be used for shadow-based building 
height inversion (Li et al., 2014), while these angular parameters on the 
geometric properties of satellite imaging are also indispensable input 
parameters for vegetation canopy reflectance models (Hilker et al., 
2017). Furthermore, in the “remotely sensed big data era” (Zhang et al., 
2019a), more and more research focuses on the fusion of images from 
different sensors with various spatial, temporal and spectral resolutions, 
including some street view images and geo-tagged photos. In this way, 
the complementarity of multi-source sensor data in the spatial, temporal 
and spectral dimensions can, for example, be brought into fuller play to 
obtain more accurate results for subpixel mapping (He et al., 2019), 
LULC mapping and change detection (Cao et al., 2018; Xi et al., 2019), 
and impervious surface extraction (Powell et al., 2008; Zhang et al., 
2017a; Shao et al., 2021). 

Model refers to knowledge of the parametric models associated with 
the remotely sensed information extraction process, including the im-
aging geometric models used for image geometry rectification when 
necessary, and the physical models that are of greater concern here. 
Physical models mainly refer to quantitative remote sensing models in 
remotely sensed information extraction. Quantitative remote sensing 
physical models transform electromagnetic wave information into use-
ful knowledge by establishing physically meaningful equations and 
models (Zhou et al., 1999), which are utilized to retrieve the geo-
scientific information needed for operations and research. In plant 
growth, the terrestrial water cycle, carbon and nitrogen cycles, land 
surface radiation, and other geoscientific processes, such physical 
models express the mechanisms of action between geoscience variables 

and remote sensing observations and transmission media through clear 
formulae (Zhang et al., 2019a; Yuan et al., 2020; Jiang et al., 2020). 

Spectral features are based on the spectral reflectance characteristics 
of ground objects. One of the most widely used knowledge/feature forms 
in spectral features is the spectral index. In contrast to imaging geo-
metric models and quantitative remote sensing models, spectral indices, 
which are abstract constructs obtained by mathematical operation on 
multi-spectral remote sensing data, more empirical-based than physical- 
based, but we include them here because of their wide application. They 
are developed by experts to extract and quantify thematic information 
related to the indices. For example, required biophysical or environ-
mental parameters, such as biomass, chlorophyll content and vegetation 
coverage can usually be estimated by establishing the relationship be-
tween them and vegetation indices (Li et al., 2012; Tong and He, 2017; 
Yue et al., 2019). Adamo et al. (2020) incorporated normalized differ-
ence vegetation index (NDVI), green/red ratio, blue/NIR ratio and 
brightness for effective implementation of knowledge-driven grassland 
ecosystem classification; Zhai et al. (2018) proposed a cloud index and 
cloud shadow index, and both spectral indices were applied in a unified 
cloud/shadow detection algorithm. Besides, when synthesizing 
multi-band images, false color composites are often used to highlight 
some ground object information. There was a successful application 
case, where Lu et al. (2020) found that false color red-green-blue com-
posite images from multi-band sensors helped to discriminate 
water-in-oil and oil-in-water emulsions in the ocean. 

3.3. Regional knowledge/features 

Regional knowledge/features are related to the temporal evolution 
of ground objects, the physical geographical environment, regional 
differentiation and the socio-economic conditions within a region. Here, 
we subdivide regional knowledge/features into temporal knowledge 
and environmental knowledge/features, as shown in Table 1. 

Temporal knowledge reflects primarily the changes in ground ob-
jects over time. The most typical temporal knowledge used in remotely 
sensed information extraction is the seasonal variation of plant growth 
(i.e., seasonal rhythm). First, this phenological rhythm is beneficial for 
extracting vegetation information itself (Almeida et al., 2013). One 
prime example is that different temporal images are often selected to 
distinguish vegetation areas according to the biomass differences of 
different types of vegetation, such as herbaceous and woody classes, 
evergreen and winter-deciduous classes (Adamo et al., 2020). Second, 
the extraction of non-vegetation objects can be facilitated by maxi-
mizing the spectral signature differences between vegetation and 
non-vegetation objects such as residential areas (Zhou et al., 1999) and 
impervious surfaces (Weng et al., 2009). 

Environmental knowledge/features refer to the surrounding envi-
ronmental conditions of the ground objects and knowledge of the spatial 
dependence from a rather macroscopic perspective. Among the various 
factors affecting the formation of the land surface environment, topog-
raphy is undoubtedly a dominant factor. In previous studies, DEMs, 
digital surface models (DSMs), slope, aspect and related terrain indices 
were used frequently as prior information and combined with remote 
sensing data and other georeferenced GIS data to establish classification 
and analysis models, demonstrated to significantly increase the mapping 
accuracy of LULC (Daniels, 2006), vegetation type (Yao et al., 2020), soil 
type (Dornik et al., 2016) and landslide susceptibility (Senouci et al., 
2021) in mountainous regions (Lu and Weng, 2007). Another type of 
environmental knowledge/features is embedded in historical products 
related to physical regionalization, classification of ground objects and 
other zoning. These products, such as land use thematic maps, geo-
morphologic thematic maps and ecological zoning maps within a certain 
area are all the result of the regional cognition of geoscientists from a 
professional perspective. Thus, this type of knowledge can be extremely 
valuable (Wu et al., 2015; Wang et al., 2021b). The following applica-
tions have shown that the integration of this type of knowledge can 
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overcome the problem of spectral confusion to a large extent and 
improve information extraction. With the effective support of the 
mountain altitudinal belts, Yao et al. (2020) produced a vegetation type 
map with medium and large scales in mountain areas. Based on the 
urban ecoregion scheme proposed by Schneider et al. (2010), Liu et al. 
(2018a) first stratified the global area, then calculated the normalized 
urban areas composite Index (NUACI) (Liu et al., 2015) and set 
region-specific thresholds for multi-temporal global urban land map-
ping. Additionally, pre-interpreted thematic maps can be regarded as 
prior knowledge to guide automatic collection of object samples for 
object-based remote sensing classification (Wu et al., 2015). More 
importantly, regional knowledge/features have also been demonstrated 
to be valuable in large-scale land cover mapping. The reliable Globe-
Land30 global land cover mapping product (Chen et al., 2015) were 
produced after implementing natural knowledge, cultural knowledge 
and temporal constraints knowledge-based interactive testing, for 
example. 

4. Deep integrated approaches in GADL 

In recent years, some advanced approaches for integrating domain 
knowledge into DL models have been developed. Based on the repre-
sentation of GK/GFs, a taxonomy of these approaches applied for 
remotely sensed information extraction is provided in this section. Five 
main approaches are summarized in Table 2 under this criterion. A re-
view of each category is detailed in the following subsections. 

4.1. Rule-based integration 

Rule-based knowledge/feature representation, which mainly ex-
presses knowledge/features by structured “if-then” forms that are 
consistent with human logical reasoning, is one of the simplest machine- 
understandable expressions and the focus of early AI research (Wang 
et al., 2020a). Both expert systems (Goodenough et al., 1987) and the 
widely used decision tree in machine learning (Friedl and Brodley, 
1997) are developed based on this kind of representation (Wang et al., 
2020a). Since rule-based representation is highly explanatory and 
operable, it has flexible applications in many Earth system science 
problems (Xu et al., 2005; El Hajj et al., 2009; Schneider et al., 2010; Lu 
et al., 2020; Singh et al., 2020). In these cases, a large number of spectral 
features (e.g., spectral indices) and environmental knowledge/features 
(e.g., topographical features, phenological stages, cropping systems, 

socioeconomic statistics) listed in Table 1 can be transformed into rules 
to be used in the process of information extraction. In this context, it is 
desirable to incorporate these logic rules into DL models, so as to 
introduce GK/GFs and increase interpretability. 

Integrating rule-based knowledge/features into neural networks has 
been explored in some contexts. Neural-symbolic computing aims at 
integrating symbolic AI based on knowledge representations and con-
nectionist AI based on neural networks in a principled way to construct 
an explainable AI system (Samek et al., 2017; Garcez et al., 2019). The 
knowledge-based artificial neural network (KBANN) (Towell and 
Shavlik, 1994) is one of the most influential models in the early devel-
opment of neural-symbolic systems that combines logical reasoning and 
neural learning. In KBANN, a rules-to-network translator is responsible 
for establishing a mapping between a rule set used by experts and a 
neural network first. Then the newly-built initial network is refined 
using a learning algorithm (e.g., the backpropagation algorithm) and a 
set of training examples. Subsequently, Wu (2001) discussed the con-
ceptual steps of an interpreting system for remotely sensed imagery 
based on the approach for constructing KBANN. Specifically, Wang 
(2018) designed a rule-embedded neural network and validated it with a 
time-series electrocardiograph signal detection problem. In this design, 
a rule modulating block was used to generate the rule-modulated map, 
which brought knowledge from human teachers to contribute to the 
global-based inference. For DL models, a general iterative distillation 
method was proposed by Hu et al. (2016), which had the ability to 
introduce logic rules expressing structured information into DL models 
and guide the learning process. Fig. 3 depicts the architecture of rule 
knowledge distillation, where a student network is projected to a 
rule-regularized subspace to construct a teacher network at each itera-
tion, and simultaneously this student network is updated to form a 
trade-off between imitating the soft predictions from the teacher 
network and predicting the true labels. Experiments on both CNNs and 
RNNs, respectively, for sentiment analysis and named entity recognition 
have demonstrated that this algorithm is able to integrate knowledge 
encoded as rules to DL models. 

Generally, since static rule-based representation is brittle and lacks 
learnability, simultaneously neural networks lack interpretability and 
have high learning costs, the combination of these two aspects can 
overcome their respective deficiencies. However, there are few studies 
on the rule-based integration of GK/GFs and DL models due to many 
challenges. For example, the algorithm of embedding rules into neural 
network is relatively more complex; the rule-based approach is probably 

Table 2 
A taxonomy of approaches for integrating GK/GFs with DL models.  

Categories Applicable GK/GFs Characteristics Typical references 

Rule-based 
integration 

Spectral features (e.g., spectral indices), and 
environmental knowledge/features (e.g., 
precipitation, temperature, topographical 
features, phenological stages) 

The representation of rule-based knowledge/features is 
flexible, but it is relatively difficult to embed it into 
neural networks. 

Towell and Shavlik (1994); Wu (2001); Hu 
et al. (2016); Wang (2018) 

Semantic 
network-based 
integration 

Spatial distribution knowledge and spatial 
relationship knowledge 

It is suitable for expressing relational knowledge, but the 
construction process of semantic network itself is 
relatively complicated. It is also not very easy to embed 
the semantic network into neural networks. 

Alirezaie et al. (2019); Li et al., 2020a 

Object-based 
integration 

Spectral features, spatial knowledge such as 
texture, geometry, spatial distribution, and 
spatial relationship 

Image objects are suitable for flexible expressions of 
more GK/GFs. The integration models based on GCN, 
which are more conducive to representing the long- 
range spatial relations, deserve further attention. 

Zhao et al. (2017); Zhao et al. (2019); Hong 
and Zhang (2020) 

Physical model- 
based 
integration 

Mechanisms and processes that can be expressed 
in explicitly mathematical formulas 

It is one of the popular approaches to introduce domain 
knowledge into DL models recently. Some complex 
constraints from the physical models may lead to more 
time consumption. 

Reichstein et al. (2019); Raissi et al. (2019);  
Jiang et al. (2020); Wang et al. (2020b); Wang 
et al. (2020c); Karniadakis et al. (2021);  
Teisberg et al. (2021) 

Neural network- 
based 
integration 

Spatial features, spectral features, temporal 
knowledge, and environmental knowledge/ 
features 

It is another popular approach to integrate GK/GFs into 
DL models. This category has more plentiful and flexible 
forms. How to effectively strengthen the auxiliary 
geoscience data/features that are conducive to 
improving the performance of DL models, and enhance 
the interpretability of results remains to be further 
investigated. 

Li et al. (2017); Audebert et al. (2018); Kim 
et al. (2018); Wu et al. (2021); Li et al. 
(2021b); Yang et al. (2021); Mañas et al. 
(2021); Ayush et al. (2021)  
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not suitable for scaling up. Still, the existing research has opened a door 
for subsequent remotely sensed information extraction. 

4.2. Semantic network-based integration 

The semantic network is one of the most common formalisms for 
knowledge representation in symbolic AI. It is a way to express knowl-
edge in the form of a directed graph. A semantic network is composed of 
nodes representing entities or concepts and directed arcs representing 
relationships between nodes. Compared with rule-based knowledge 
representation, a semantic network is good at constructing the organic 
relationship between various complex things, especially suitable for 
expressing relational knowledge (Zhou et al., 1999; Hao et al., 2021). 
Thus, it is highly appropriate for characterizing the spatial distribution 
knowledge and spatial relationship knowledge in GK/GFs. Ontologies 
and knowledge graphs (KGs) are two representative modern imple-
mentations of semantic networks (Futia and Vetrò, 2020). 

An ontology semantically describes fundamental concepts and their 
relations by different levels of abstraction, and has strong capabilities for 
knowledge representation, inference and sharing (Arvor et al., 2013; 
Réjichi et al., 2015; Li et al., 2020). In the domain of remote sensing 
analysis, ontologies were investigated as conceptual support for topo-
logical representations to provide formal semantic relationships for 
remote sensing data (Oliva-Santos et al., 2014). At the same time, 

ontological knowledge representing different spatial and hierarchical 
levels was recommended to be exploited in a joint DL manner to address 
the complex land cover and land use classification task (Zhang et al., 
2019b). In particular, ontology-based methods were suggested to apply 
in remote sensing interpretation because of their explicit representation 
of symbolic knowledge (Réjichi et al., 2015; Andrés et al., 2017; Arvor 
et al., 2019). In this sense, ontologies have played a positive role in the 
unification of GK/GFs and DL models. As a first attempt in this direction, 
Alirezaie et al. (2019) proposed a semantic image segmentation method 
in which an ontological reasoner can interact with the DL model. More 
specifically, as Fig. 4 shows, features of misclassified regions are 
conceptualized by an ontological reasoner in terms of their spatial re-
lations with the surroundings; then the reasoner gives feedback to the 
convolutional auto-encoder (AE) classifier in the form of additional 
channels. Li et al. (2020) further presented a collaborative framework to 
combine knowledge-guided ontological reasoning and DL in an iterative 
manner for semantic segmentation of remote sensing images. In this 
method, it is worth emphasizing that the ontological reasoning consists 
of two reasoning modules: the intra-taxonomy reasoning refining the 
classification result of DL model through ontological reasoning rules, 
and the extra-taxonomy reasoning generating the inferred channels used 
as input to the DL model. In doing so, it promotes both interpretability 
and classification accuracy. 

KGs, which are essentially large-scale semantic networks, are a new 

Fig. 3. Flowchart of an iterative rule knowledge distillation.  

Fig. 4. Flowchart of remote sensing image semantic segmentation based on the synergy of ontological reasoning and a DL model.  
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method of knowledge representation (Hao et al., 2021). Thanks to the 
native reasoning mechanism, KGs have performed well in personalized 
recommendation, intelligent search, question answering, etc. (Lu et al., 
2019). Given that KGs and their underlying semantic technology can 
provide human-understandable insights for DL techniques, Futia and 
Vetrò (2020) suggested incorporating KGs into DL models focusing on 
three future research directions: knowledge matching, cross-disciplinary 
explanations and interactive explanations. 

Overall, the current research on integrating ontologies or KGs into 
DL models, especially in terms of remotely sensed information extrac-
tion, is in its infancy focusing mainly on envisioning or preliminary 
experiments. This is mainly because the construction process of ontol-
ogies and KGs is relatively complicated, and it is not very easy to embed 
them into the optimization process of neural networks at present. 
However, with the introduction and development of new concepts such 
as geographic KGs (Wang et al., 2021b), this will still likely be a 
promising approach to explainable AI in the field of geoscience and 
remote sensing. 

4.3. Object-based integration 

Object-based image analysis, or to be precise geographic object- 
based image analysis (GEOBIA), is devoted to analyzing remote 
sensing imagery automatically by means of meaningful image objects 
(typically derived from segmentation) rather than individual pixels (Hay 
and Castilla, 2008; Blaschke et al., 2014). During the process, not only 
spectral information, but also spatial knowledge such as texture, ge-
ometry, the location distribution of ground objects and contextual in-
formation introduced by multi-scale segmentation are quantified as the 
characteristics of the image objects (Chen et al., 2018). Thus, compared 
with single pixels that express only spectral information and limited 
contextual relations, the image object has become a crucial carrier of 
knowledge (Blaschke et al., 2014). In GEOBIA, object-based analysis is 
often combined with rule sets to make full use of GK/GFs, and this 
approach has been popularized in remotely sensed information extrac-
tion, including object detection (Cheng and Han, 2016), change detec-
tion (Zhang et al., 2017b; Toure et al., 2018), (super-resolution) land 
cover mapping (Wu et al., 2015; Chen et al., 2017; Du et al., 2019) and 
agricultural landscape mapping (Garcia-Pedrero et al., 2015). 

Although most DL methods, especially those based on CNN archi-
tectures for remote sensing image analysis are pixel-based, some 
research showed that DL models could benefit from the strengths of 
object-based methods. In this regard, in the majority of methods inte-
grating GEOBIA and CNN, remote sensing images are partitioned into 
image objects to generate patches as the inputs to a CNN, and the classes 
of the image objects are then determined through pixel classification 
using the CNN. These methods are mostly different in patch generation 
and segmentation methods. For example, to accurately predict the land 
use classes of image objects with different shapes, Zhang et al. (2018) 
designed two object-based CNN models with either a range of small 
input windows or a large input window to deal with linearly shaped 
objects and other general objects. Fu et al. (2018) extracted image 
patches as inputs to a CNN according to fixed window sizes and the 
center of gravity of the segmentation objects generated by a multi-
resolution segmentation algorithm. Moreover, in a change detection 
method for geographical areas (Liu et al., 2021b), the bounding boxes of 
segmented objects were used to generate image patches that fed in the 
CNN. Different from the aforementioned patch-based CNNs integrated 
with GEOBIA, Zheng et al. (2021) proposed a deep object-based se-
mantic change detection framework for end-to-end building damage 
assessment, where a deep object localization network was adopted to 
generate accurate building objects, in place of conventionally non-
differentiable image segmentation. 

Some studies have introduced more object-based GK/GFs into object- 
based CNN frameworks and achieved satisfactory results. For example, 
Zhao et al. (2017) combined highly abstracted deep features from CNNs 

with object-based features (i.e., the mean brightness of each band and 
the NDVI) under the constraint of boundary information of image ob-
jects, and then leveraged a two-layer neural network classifier and 
optimal statistics to achieve more precise fine-resolution image classi-
fication. Afterwards, this object-based CNN was utilized for identifying 
complex ground objects by inputting semantic elements derived from 
open street map data, which is a pivotal step for further urban scene 
classification (Zhao et al., 2019). In addition, Hong and Zhang (2020) 
devoted a CNN to extracting deep features of ground objects from 
multiscale low-level features such as texture, shape and spectral features 
of image objects, and these multiscale deep features were stacked for 
hyperspectral image classification. 

Besides CNNs, in recent few years, GCNs have also attracted 
mounting attention, because its information propagation based on graph 
structures are suitable to exploit spatial contextual information in image 
analysis (Liu et al., 2020; Zhang et al., 2021b). To reduce the compu-
tational burden of GCNs in remote sensing image classification, Hong 
et al. (2020a) proposed a minibatch training fashion, which uses mini-
batch GCNs generated by random sampling from a full graph to train 
large-scale GCNs. In addition, the segmented superpixel, which is a 
homogeneous region composed of raw pixels similar to an image object, 
is usually selected as the nodes of the graph in some GCNs-based 
methods to circumvent high storage and computational cost. By using 
superpixels, there is no need for extra shape constraints or 
post-processing in remote sensing image classification. Meanwhile, it is 
convenient to integrate spatial relations between superpixels into 
network structures (Zeng et al., 2020a). For example, Wan et al. (2019) 
and Wan et al. (2020) introduced multi-scale spatial structural infor-
mation by building different graph structures, and captured the changes 
of spatial dependence and similarity between nodes through dynamic 
updating of edge weights. 

In summary, the effectiveness of integration of object-based knowl-
edge/feature representations and DL models has been confirmed in 
recent research when maintaining the integrity of distribution patterns 
of ground objects and guaranteeing semantic consistency within each 
image object. However, research in this area is still in early develop-
ment, and many object-based knowledge and features (e.g., long-range 
spatial relations) are expected to be incorporated into object-based DL 
architectures. In particular, GCNs and other graph neural networks are 
naturally compatible with object-based methods, and their potential in 
this area remains to be further investigated. Here, a schematic imple-
mentation of a potential object-based GCN method for image classifi-
cation is shown in Fig. 5, where the segmented objects and their 
corresponding features (e.g., texture, shape and spectral features) can be 
regarded as graph nodes and node attributes, respectively. The multi-
scale and long-range spatial relations between nodes can be introduced 
for constructing graph that will be used by GCNs to learn node repre-
sentations and obtain classification results. 

4.4. Physical model-based integration 

Many geoscientific problems rely on physical theories and repre-
sentations. Physical models are explicitly mathematical formulas 
designed by human experts to better analyze and understand processes 
or phenomena in the real-world system. Such physical models, whose 
structures are often described by complex forms (e.g., a series of 
nonlinear differential equations (DEs) (Todorovski and Džeroski, 2006; 
Karpatne et al., 2017b; Raissi et al., 2019)), encapsulate rich 
domain-specific knowledge (e.g., cause-effect relationships between 
variables) involved in geoscience processes and phenomena. As a 
cornerstone of geosciences, physical model-based approaches have al-
ways been the basis for the development of research fields such as 
geoscientific parameter retrieval and dynamic systems modeling. 
However, there is a lack of sound physical models since real physical 
processes are generally highly complex (Zhang et al., 2019a). At the 
same time, high computational cost is often needed to estimate the 
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parameters of physical models (Yuan et al., 2020). Given this, DL models 
have been exploited to provide a feasible and alternative scheme for 
approximating complex physical processes. DL-based methods have 
achieved remarkable successes for the retrieval of land surface tem-
perature (Tan et al., 2019), spatiotemporal estimation of air pollutants 
(Li and Wu, 2021), and many other applications requiring environ-
mental parameter estimation and process simulation. Nevertheless, 
limitations still exist in DL model-based applications due to a lack of 
labeled instances and lack of guidance from scientific principles or laws, 
as well as the sensitivity of DL models to noise in training data (Wang 
et al., 2020b). 

To overcome the above challenges, current research is pointing to the 
need for a new paradigm which aims to actualize the synergy of DL and 
physical models (Reichstein et al., 2019; Gil et al., 2019). For example, 
theory-guided data science (TGDS) was recommended as a schema 
(Karpatne et al., 2017b), where scientific theories and data science 
models were systematically combined through several strategies. One of 
the most effective avenues to deeply integrate physical models with DL 
is modeling physical regularization-constrained DL architectures to 
ensure physical consistency and interpretability (Karpatne et al., 2017b; 
De Bézenac et al., 2019). The architecture of this strategy is demon-
strated in Fig. 6. In fact, embedding physical constraints into neural 
networks has appeared for a long time. For example, super-resolution 
mapping using a Hopfield neural network (HNN) adopted a similar 
strategy. In this method, the proportion constraint was injected into the 
energy function of the HNN to retain the class proportions determined 
from soft classification (Tatem et al., 2001, 2002). In recent years, this 

approach has been continuously adapted. Karpatne et al. (2017a) 
established a physics-guided neural network (PGNN) model for 
modeling lake temperature. The physics-based loss function of this 
neural network was designed according to the physical relationships 
between physical quantities. Similar work was studied by Jia et al. 
(2019), where a physics-guided recurrent neural network (PGRNN) was 
presented to model lake water temperature. This model integrates a 
special energy conservation flow into the standard recurrent process and 
captures the variation of energy balance over time by introducing the 
loss function term for energy conservation. Subsequently, a more gen-
eral framework, the theory-guided neural network (TgNN), was devel-
oped to deal with the problem of subsurface flow (Wang et al., 2020b). 
This framework simultaneously imports practical experience (i.e., 
expert knowledge, engineering controls) and physics principles (i.e., 
those expressed by partial differential equations (PDEs) and boundary 
conditions) as penalty terms of the loss function of a deep neural 
network (DNN). More motivating examples concern physics-informed 
neural networks (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021), 
in which PDEs were embedded into the loss function of neural networks 
using automatic differentiation. In this way, the loss function of PINNs 
seamlessly integrates the supervised loss of measurements and the un-
supervised loss of PDEs. The powerful capability of this 
physics-informed learning is reflected in its diverse application. For 
example, Teisberg et al. (2021) applied PINNs to interpolate 
mass-conserving ice thickness in combination with loss of radar data fit, 
velocity data fit and mass conservation loss. Also, Wang et al. (2020c) 
investigated the performance of PINNs constrained by the 

Fig. 5. A schematic implementation of an object-based GCN. Multiscale spatial relations can be introduced for graph construction, where the white nodes and green 
nodes denote the first-order neighbors and second-order neighbors of the yellow center node. Besides, graph structures also help to build long-range spatial relations. 
For example, the long-range similarity between the blue nodes and the center node. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 6. Physical regularization-constrained DL architectures.  
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advection-diffusion equations of atmospheric pollution plumes for 
image super-resolution with missing values. Another effective strategy 
to deeply implant physical representations into DL is to wrap physical 
models into the neural network layers. As presented by Jiang et al. 
(2020), a physical process-wrapped recurrent neural network (P-RNN) 
layer with physically meaningful parameters was designed, and it was 
utilized to incorporate geosystem dynamical ordinary differential 
equations into DL models. 

Overall, the introduction of physical models can provide constraints 
for the optimization process of DL models. Although the above methods 
are applied mainly in physics related disciplines at present, the research 
can provide profound inspiration for the quantitative extraction of in-
formation from remote sensing data. Meanwhile, similar methods can be 
used for geospatial statistical characteristics, such as spatial autocorre-
lation (e.g., Moran’s I (Moran, 1950) and LISA (Anselin, 1995)), and 
spatial heterogeneity (e.g., q statistics (Wang et al., 2016)). Through 
in-depth integration of physical models into DL, it should be possible to 
obtain more accurate, reliable and understandable results of geo-
scientific parameter estimation, simulation and interpolation (including 
downscaling) involving geoscientific processes and phenomena gov-
erned by physical laws or natural laws. 

4.5. Neural network-based integration 

Neural networks themselves are capable of effective knowledge/ 
feature representation. In particular, unlike conventional machine 
learning needing labor-intensive feature engineering, DL is a powerful 
representation-learning technology because it allows automatic learning 
of features with multiple levels of abstraction from raw data through 
multiple processing layers (LeCun et al., 2015). For the issue of remotely 
sensed information extraction, rich auxiliary geoscience data and 
shallow GFs provide a driving factor for DL-based knowledge discovery, 
and the deep or latent GK/GFs can be excavated by DL models and will 
be hidden in the trainable parameters of neural networks (Wu, 2001; 
Wang et al., 2020a). Therefore, the following two strategies are worthy 
of attention. First, the integration of different types of GK/GFs extracted 
from remote sensing data by DL models. Second, simultaneous feed-in of 
geoscience-related data, formalized information or shallow features into 
DL models together with remote sensing data, and then use of deep 
GK/GFs extracted by neural network layers to assist or guide informa-
tion extraction from remote sensing data. Currently, benefiting from the 
flexible architectural design of DL model, the above approach can be 
attempted via the following six main means.  

(1) Introducing auxiliary geoscience data/features as input into DL 
models through individual neural network processing stream. 
This architecture stacks directly geoscience auxiliary data con-
verted into raster format and remote sensing data or converts 
information into feature representations, such as those formal-
ized as geographical laws, as its input. For example, DSM and 
normalized DSM can be fed into a CNN as additional channels 
stacked with image data (Paisitkriangkrai et al., 2015) to improve 
semantic pixel labelling. Kim et al. (2018) transformed two sea-
sons of multispectral images into 2-D spectral reflectance curve 
graphs, taken as the input of CNNs for land cover classification. In 
their work, the multitemporal images endow 2-D spectral curves 
with phenological characteristics of land covers. To estimate 
ground-level PM2.5 in China, Li et al. (2017) developed a deep 
belief network (DBN) model taking spatial-temporal autocorre-
lation of PM2.5 as two input variables, and these two terms were 
computed, respectively, based on inverse spatial and temporal 
distance weightings.  

(2) Designing DL models with two neural network branches to learn 
deep features separately from input auxiliary geoscience data/ 
features and remote sensing images and then fuse them. Those 
deep features are generally fused through summation or 

concatenation in the middle or at the end of the two streams. 
FuseNet (Hazirbas et al., 2016) is one of the most influential 
two-branch CNN architectures based on heterogeneous data 
fusion, which is developed to improve semantic image segmen-
tation results by incorporating depth information. Subsequently, 
Audebert et al. (2018) further investigated the usefulness of 
FuseNet for semantic labeling of remote sensing imagery. In this 
architecture, NDSM/DSM/NDVI and remote sensing imagery 
were input as the auxiliary branch and main branch, respectively, 
and the auxiliary features were fused into the main branch 
though element-wise summation at multiple levels (See Fig. 7). 
Many other studies suggested that topographical data can benefit 
semantic segmentation (Sherrah, 2016; Marmanis et al., 2016, 
2018), in which color images and NDSM/DSM data are processed 
in two parallel networks since DSM and images have different 
statistics (Sun and Wang, 2018). Among them, Marmanis et al. 
(2018) appended a special boundary-detection network before 
the segmentation network, and this special block also contained a 
DSM stream to help extract explicit boundary information for the 
purpose of improving semantic image segmentation. Different 
from frameworks relying solely on image data, Wu et al. (2021) 
proposed a novel framework for remote sensing cloud/snow 
detection, in which geographic information (i.e., altitude, lati-
tude and longitude) was introduced by encoding it to a string of 
auxiliary maps and feeding it into the branch network. Finally, 
the deep features were concatenated with dense features from 
image data for more accurate prediction. Similar dual-branch 
architectures were also used for deeply joint spectral-spatial 
features of imagery (Yang et al., 2016) or heterogeneous fea-
tures from aerial and street view images (Cao et al., 2018; Hoff-
mann et al., 2019), as well as fusing multimodal data for remotely 
sensed image classification via several different fusion strategies 
under a general multimodal DL framework (Hong et al., 2020b).  

(3) Leveraging attention modules to achieve feature enhancement or 
feature selection when fusing features. Although the above two 
approaches are relatively more common to integrate GK/GFs into 
DL models, the current fusion strategies cannot strengthen the 
features that are conducive to improving the performance of DL 
models. An attention module is a special structure that can be 
embedded into DL models (Yang and Qi, 2021). It is capable of 
automatically learning and computing feature weights utilized to 
highlight critical information, in other words, suppress the 
interference of useless information (Yang et al., 2021). 
Combining spatial attention (Woo et al., 2018) and channel 
attention (Hu et al., 2018) has exhibited impressive capabilities 
in scene semantic segmentation (Fu et al., 2019) and building 
outline extraction (Zhao et al., 2021), etc., which can capture 
feature weights and help obtain key features in both spatial and 
channel dimensions. Lately, two kinds of attention mechanisms 
have been used to incorporate GFs into DL models for semantic 
segmentation of remote sensing imagery. In this vein, Yang et al. 
(2021) designed a novel attention-fused CNN architecture which 
contains a multipath encoder structure with dual branches to 
process heterogeneous input data. More importantly, two spatial 
and channel attention-fused block modules were also introduced 
into this architecture to overcome difficulties in fusing not only 
multipath features, but also multilevel features. Similarly, Mou 
et al. (2019) introduced both spatial and channel relation mod-
ules into DL models through serial or parallel integration, which 
enabled spatial and channel relational reasoning and explicitly 
modeled global relations.  

(4) Transferring the GK/GFs that pretrained networks contain to 
downstream tasks of remotely sensed information extraction. 
Years of practice have shown that DL, which serves as a general- 
purpose representation-learning procedure (Bengio et al., 2013), 
is highly suited to discover knowledge from inputs that is helpful 
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for downstream classification or other prediction tasks (Wang 
et al., 2020a). For example, a feasible way to deeply integrate 
GK/GFs and DL is using GK/GFs as supervised information to 
guide the pretraining of DL models. Then, GK/GFs can be 
encapsulated indirectly in the well-trained model parameters to 
act on specific downstream tasks. In recent work, Li et al. (2021b) 
leveraged the geographical location of remote sensing images and 
their correspondingly preexisting global land cover products as 
GK to pretrain the network. The pretrained model was then 
fine-tuned for specific information extraction tasks such as se-
mantic segmentation and object detection, which achieved 
encouraging accuracy. In two recent studies (Mañas et al., 2021; 
Ayush et al., 2021), geolocation and seasonal contrast of remote 
sensing images provided effective supervision for network pre-
training and were conductive to increasing the accuracy of 
downstream predictions.  

(5) Combining different DL models to excavate various GK/GFs for 
more accurate prediction. As mentioned in Section 2, different DL 
models are good at processing different datasets and excavating 
different deep GK/GFs. These knowledge/features generally have 
complementary advantages that are instrumental in performance 
gains of information extraction. There are several examples to 
illustrate this. To achieve the precise delineation of boundaries in 
building segmentation, Shi et al. (2020) proposed a gated GCN 
which combined the GCN and the RNN with gated recurrent units 
and they were, respectively, responsible for capturing short-range 
and long-range spatial information. A unitized framework for 
urban land cover classification was designed by Qiu et al. (2019), 
in which a residual CNN was capable of learning spectral-spatial 
features whereas an RNN was used for capturing temporal de-
pendencies from sequential images. In work on hyperspectral 
image classification, Liu et al. (2020) blended CNN and GCN 
branches to generate a joint spectral-spatial feature representa-
tion, where the former and the latter can learn deep features at 
the pixel scale and superpixel scale, respectively. Tao et al. (2019) 
proposed a novel spatial information inference structure which 
can be embedded into CNN-based road extraction architectures. 
This structure regards several 3-D convolutional RNNs as infor-
mation processing units and enables useful topology information 
to be transmitted to identify roads under occlusions, which pro-
vides complementary global spatial information for general vi-
sual features.  

(6) Normalizing the loss function of the DL models by the constraints 
of various GK/GFs extracted from DL models to characterize 
geoscience features. Normalization provides a flexible spatially 
explicit way for the DL models to embed geoscience character-
istics in optimization to keep invariant GK/GFs (Janowicz et al., 
2020). In addition to the physical model mentioned in 4.4, the 
deep representation learned from DL models can also be 
embedded into the loss function of DL models as a regularizer. For 
example, Mosinska et al. (2018) obtained topologically linear 
knowledge using a pretrained VGG network (Simonyan and Zis-
serman, 2014), and imported it to the loss function of a DL model 
by a newly designed penalty term that is sensitive to linear 
structures. In another example, the latent shape representation of 
the buildings was used to constrain the semantic segmentation of 
the buildings, thus reducing over-fitting (Wang and Li, 2020). 

Obviously, neural network-based approaches are able to integrate 
GK/GFs into DL models by more plentiful and flexible means, and they 
have obtained some impressive achievements in some complex tasks. 
Therefore, this kind of approach has become one of the popular ap-
proaches to introduce GK/GFs into DL models recently. With the further 
exploration of many outstanding problems, such as how to effectively 
strengthen the auxiliary geoscience data/features that are conducive to 
accurate results, these approaches will bring advantages in more tasks. 

5. Challenges and future research 

The rapid development of AI, big data and cloud computing has 
projected geoscience research into the era of big knowledge (Lu et al., 
2018). Currently, researchers generally use AI and big data to solve 
problems of information extraction from remote sensing data while 
ignoring the importance of knowledge. In this context, an emerging 
paradigm of GADL is proposed in this paper to solve practical problems 
in the field of remotely sensed information extraction by means of 
integrating GK/GFs with the most popular AI frameworks, namely DL 
models. Although some progress has been made with this paradigm, 
how to effectively realize, choose and assess the deep integrated 
methods in GADL is still an open research direction. In this context, the 
main challenges and future opportunities for research are considered in 
this section. 

Fig. 7. Diagram of FuseNet architecture for semantic segmentation of remote sensing imagery.  
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5.1. Performance evaluation 

In-depth integration of GK/GFs into DL models can theoretically 
bring performance gains, which has been preliminarily demonstrated in 
a small number of studies so far. However, there is still a lot of research 
to be done in the evaluation of deep integrated models and methods, 
especially in quantitative evaluation. First, in terms of the accuracy of 
the results, it is necessary to analyze quantitatively the contribution of 
GK/GFs to accuracy gains, and at the same time confront and tackle the 
possible negative effects of the introduction of GK/GFs. For example, 
importing physics-based penalty terms into the loss function of DL 
models may affect the convergence and optimization speed of the model 
(Karpatne et al., 2017a); incorporating formalized GK/GFs into DL for 
remote sensing image classification can boost the overall accuracy, but 
may reduce the accuracy of specific classes (Audebert et al., 2018). 
Additionally, the complexity of deep integrated models, including time 
consumption and the number of parameters, needs to be further inves-
tigated and analyzed to ensure that it is within an acceptable range, 
because the extraction and fusion of GK/GFs may bring additional cal-
culations. Lastly, other performance issues in deep integration in GADL, 
such as interpretability, generalization ability, robustness and the 
impact of the quantity and quality of trainable data on the properties of 
deep integrated models, need to be evaluated on a large number of 
datasets and information extraction instances in the remote sensing 
community. 

5.2. Uncertainty estimation 

Another direction for deep integrated model in GADL would be to 
introduce uncertainty estimation in their architectures. In the paradigm 
of GADL, there are many sources of uncertainty, including knowledge 
such as experience and common sense, input data (e.g., remote sensing 
data suffering from various degradation, noise effects, or spectral vari-
abilities caused by various factors (Hong et al. (2018)) in the process of 
imaging) and the deep integrated models themselves. Therefore, it is 
necessary to estimate the uncertainty related to model outputs (Raissi 
et al., 2019). In terms of DL models, although they have been used 
widely in the fields of computer vision, remote sensing and geoscience, 
and have made excellent achievements in tasks such as semantic image 
segmentation and target recognition, the vast majority of current DL 
models do not provide uncertainty measures associated with their pre-
dictions (Dechesne et al., 2021). In recent years, Bayesian/probabilistic 
inference has been recommended to measure the confidence and cred-
ibility of DL models (Reichstein et al., 2019). For example, a Bayesian DL 
method based on Monte Carlo Dropout was proposed by Dechesne et al. 
(2021), which was able to estimate prediction uncertainty and provide 
uncertainty maps for qualitative evaluation of the segmentation results 
of remote sensing images. Due to the difficulty of specifying meaningful 
priors over millions of parameters, it is challenging to adapt the main-
stream general DL methods to Bayesian DL (Baan, 2021). Considering no 
assumption of the normal noise and linear data, the non-parametric 
bootstrapping method can be a good method of ensemble learning to 
obtain uncertainty evaluation for the general integrated DL model in 
GADL (Kumar and Srivastava, 2012). Similarly, for deep integrated 
models in GADL, it is worth studying how to represent and assess their 
uncertainty based on the above methods. 

5.3. Insufficient labeled data 

The complex and deep structure of DL models requires a large 
number of labeled data for training (Yuan et al., 2020). Although the 
idea of introducing GK/GFs to DL architectures can reduce the demand 
for labeled data to a certain extent, which may ameliorate the common 
problem of lack of labeled data (Wang et al., 2020b; Li et al., 2021b), the 
current quantity and quality of labeled data required for remotely sensed 
information extraction is still very limited. This dilemma greatly limits 

the scope of applications of the paradigm of deep integration such as 
application across large areas (Wang et al., 2020a). Therefore, much 
research effort is needed in this regard. First, it would be worthwhile to 
further enrich and standardize the labeled data library, and build a 
sample library based on knowledge that contains diversified attributes 
(e.g., geoscientific attributes, physical attributes, social attributes and 
semantic attributes) of each labeled example. More importantly, more 
effort should be focused on developing the effective combination of 
GK/GFs with deep transfer learning (Huang et al., 2018; Tong et al., 
2020), self-supervised learning (Mañas et al., 2021; Ayush et al., 2021) 
for representation extraction, and semi-supervised learning (Papan-
dreou et al., 2015; Kang et al., 2019), etc. With the support of GK/GFs, 
we can learn powerful representations from a large amount of remote 
sensing data, and effectively combine them with limited labeled training 
samples to obtain high generalization ability in an unsupervised way or 
a semi-supervised way (Wang and Gao, 2014; Wu and Prasad, 2017; Ren 
et al., 2019). These learning strategies can alleviate the existing prob-
lems to a great extent due to their small demand for manual annotation 
and, therefore deserve to be further promoted in the remote sensing 
community. 

5.4. Selection and development of integrated approaches 

GADL aims to effectively learn from available data while complying 
with the constraints from GK/GFs through deep integration of GK/GFs 
and DL models. In this respect, this paper provides and discusses five 
representative knowledge/feature representations and the correspond-
ing approaches in which they are embedded in DL models. In practical 
terms, how to select the appropriate representation of knowledge/fea-
tures and its deep integrated approach with DL models is vital for spe-
cific tasks of remotely sensed information extraction. Therefore, 
different representations and in-depth integration approaches need to be 
analyzed carefully and compared extensively in the future. Additionally, 
the research on these deep integrated approaches is still immature, and 
the representations of GK/GFs discussed in this paper are not exhaustive. 
For example, when representing spatial knowledge/features, the 
distinction between spatial continua and spatial objects is critical, which 
fundamentally determines the choice of different spatial statistical 
models. For example, in air photo interpretation the representation of 
many features (tone, brightness, texture, etc.) relies on spatial continua, 
but the representation of spatial pattern relies on spatial objects being 
defined first. So, the classes of ground features defined and extracted are 
predicated explicitly on whether the spatial continua or object-based 
data models are invoked first. Besides, more endeavors are needed to 
explore in-depth combinations of other knowledge/features expressed 
in various forms (Gil et al., 2019) such as geo-texts, questionnaires and 
map symbols with DL models to further develop the paradigm of GADL. 
At the same time, it is necessary to tap deeply the potential of DL 
technologies and the internal mechanisms of complex phenomena and 
processes to achieve more deep-level integration. 

6. Conclusion 

In this paper, we proposed an emerging paradigm called GADL of 
deep integration of GK/GFs and DL models for extracting information 
from remote sensing data. This paradigm aims to leverage the value of 
GK/GFs to improve the performance of DL models. On the basis of a 
comprehensive investigation of existing research, we first provided a 
comprehensive summary of GK/GFs, laying the foundation for knowl-
edge/feature representations and their further introduction into DL 
models. Then, we provided a taxonomy of approaches in which GK/GFs 
are integrated systematically with DL models based on five representa-
tions of GK/GFs: rule-based, semantic network-based, object-based, 
physical model-based and neural network-based. For each integrated 
approach, some prototypical examples of methods and applications 
were reviewed, and we also highlighted some promising avenues for 
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deeply symbiotic integration. Finally, some insights into potential future 
directions for in-depth combination were provided. For example, the 
computational complexity and the performance gains of the integrated 
models deserve further investigation; uncertainty estimation of the in-
tegrated models in GADL combined with Bayesian/probabilistic infer-
ence is a potential direction; the incorporation of GK/GFs with deep 
transfer learning, self-supervised or semi-supervised learning is a 
promising way to make models work well with insufficient labeled data. 
The methods discussed in this paper are not exhaustive. We anticipate 
that more novel methods of deep integration of GK/GFs and DL models 
will be explored in the future, which will contribute to the discovery and 
understanding of more complex or underlying geoscience phenomena 
and processes. 
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Dornik, A., Drăguţ, L., Urdea, P., 2016. Knowledge-based soil type classification using 
terrain segmentation. Soil Res. 54, 809–823. https://doi.org/10.1071/SR15210. 

Dramsch, J.S., 2020. 70 years of machine learning in geoscience in review. Adv. 
Geophys. 61, 1. https://doi.org/10.1016/bs.agph.2020.08.002. 

Du, S., Shu, M., Wang, Q., 2019. Modelling relational contexts in GEOBIA framework for 
improving urban land-cover mapping. GIScience Remote Sens. 56 (2), 184–209. 
https://doi.org/10.1080/15481603.2018.1502399. 
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