11 research outputs found

    Incorporating structural characteristics for identification of protein methylation sites

    Get PDF
    [[abstract]]Studies over the last few years have identified protein methylation on histones and other proteins that are involved in the regulation of gene transcription. Several works have developed approaches to identify computationally the potential methylation sites on lysine and arginine. Studies of protein tertiary structure have demonstrated that the sites of protein methylation are preferentially in regions that are easily accessible. However, previous studies have not taken into account the solvent-accessible surface area (ASA) that surrounds the methylation sites. This work presents a method named MASA that combines the support vector machine with the sequence and structural characteristics of proteins to identify methylation sites on lysine, arginine, glutamate, and asparagine. Since most experimental methylation sites are not associated with corresponding protein tertiary structures in the Protein Data Bank, the effective solvent-accessible prediction tools have been adopted to determine the potential ASA values of amino acids in proteins. Evaluation of predictive performance by cross-validation indicates that the ASA values around the methylation sites can improve the accuracy of prediction. Additionally, an independent test reveals that the prediction accuracies for methylated lysine and arginine are 80.8 and 85.0%, respectively. Finally, the proposed method is implemented as an effective system for identifying protein methylation sites. The developed web server is freely available at http://MASA.mbc.nctu.edu.tw/. © 2009 Wiley Periodicals, Inc

    Incorporating Structural Characteristics for Identification of Protein Methylation Sites

    Get PDF
    [[abstract]]Studies over the last few years have identified protein methylation on histones and other proteins that are involved in the regulation of gene transcription. Several works have developed approaches to identify computationally the potential methylation sites on lysine and arginine. Studies of protein tertiary structure have demonstrated that the sites of protein methylation are preferentially in regions that are easily accessible. However, previous studies have not taken into account the solvent-accessible surface area (ASA) that surrounds the methylation sites. This work presents a method named MASA that combines the support vector machine with the sequence and structural characteristics of proteins to identify methylation sites on lysine, arginine, glutamate, and asparagine. Since most experimental methylation sites are not associated with corresponding protein tertiary structures in the Protein Data Bank, the effective solvent-accessible prediction tools have been adopted to determine the potential ASA values of amino acids in proteins. Evaluation of predictive performance by cross-validation indicates that the ASA values around the methylation sites can improve the accuracy of prediction. Additionally, an independent test reveals that the prediction accuracies for methylated lysine and arginine are 80.8 and 85.0%, respectively. Finally, the proposed method is implemented as an effective system for identifying protein methylation sites. The developed web server is freely available at http:/IMASA.mbc.nctu.edu.tw/. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 30: 1532-1543, 200

    Incorporating Distant Sequence Features and Radial Basis Function Networks to Identify Ubiquitin Conjugation Sites

    Get PDF
    Ubiquitin (Ub) is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3) enzymes. Three major enzymes participate in ubiquitin conjugation. They are – E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF) network to identify protein ubiquitin conjugation (ubiquitylation) sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub) sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (−20∼+20) revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information), which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence features of Ub sites can improve predictive performance. Additionally, the independent test demonstrates that the proposed method can outperform other ubiquitylation prediction tools

    Investigation and identification of protein γ-glutamyl carboxylation sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carboxylation is a modification of glutamate (Glu) residues which occurs post-translation that is catalyzed by γ-glutamyl carboxylase in the lumen of the endoplasmic reticulum. Vitamin K is a critical co-factor in the post-translational conversion of Glu residues to γ-carboxyglutamate (Gla) residues. It has been shown that the process of carboxylation is involved in the blood clotting cascade, bone growth, and extraosseous calcification. However, studies in this field have been limited by the difficulty of experimentally studying substrate site specificity in γ-glutamyl carboxylation. <it>In silico</it> investigations have the potential for characterizing carboxylated sites before experiments are carried out.</p> <p>Results</p> <p>Because of the importance of γ-glutamyl carboxylation in biological mechanisms, this study investigates the substrate site specificity in carboxylation sites. It considers not only the composition of amino acids that surround carboxylation sites, but also the structural characteristics of these sites, including secondary structure and solvent-accessible surface area (ASA). The explored features are used to establish a predictive model for differentiating between carboxylation sites and non-carboxylation sites. A support vector machine (SVM) is employed to establish a predictive model with various features. A five-fold cross-validation evaluation reveals that the SVM model, trained with the combined features of positional weighted matrix (PWM), amino acid composition (AAC), and ASA, yields the highest accuracy (0.892). Furthermore, an independent testing set is constructed to evaluate whether the predictive model is over-fitted to the training set.</p> <p>Conclusions</p> <p>Independent testing data that did not undergo the cross-validation process shows that the proposed model can differentiate between carboxylation sites and non-carboxylation sites. This investigation is the first to study carboxylation sites and to develop a system for identifying them. The proposed method is a practical means of preliminary analysis and greatly diminishes the total number of potential carboxylation sites requiring further experimental confirmation.</p

    SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites

    Get PDF
    Distribution of KEGG pathway annotations for S-sulfenylated proteins. (DOCX 15 kb

    Incorporating significant amino acid pairs to identify O-linked glycosylation sites on transmembrane proteins and non-transmembrane proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While occurring enzymatically in biological systems, O-linked glycosylation affects protein folding, localization and trafficking, protein solubility, antigenicity, biological activity, as well as cell-cell interactions on membrane proteins. Catalytic enzymes involve glycotransferases, sugar-transferring enzymes and glycosidases which trim specific monosaccharides from precursors to form intermediate structures. Due to the difficulty of experimental identification, several works have used computational methods to identify glycosylation sites.</p> <p>Results</p> <p>By investigating glycosylated sites that contain various motifs between Transmembrane (TM) and non-Transmembrane (non-TM) proteins, this work presents a novel method, GlycoRBF, that implements radial basis function (RBF) networks with significant amino acid pairs (SAAPs) for identifying O-linked glycosylated serine and threonine on TM proteins and non-TM proteins. Additionally, a membrane topology is considered for reducing the false positives on glycosylated TM proteins. Based on an evaluation using five-fold cross-validation, the consideration of a membrane topology can reduce 31.4% of the false positives when identifying O-linked glycosylation sites on TM proteins. Via an independent test, GlycoRBF outperforms previous O-linked glycosylation site prediction schemes.</p> <p>Conclusion</p> <p>A case study of Cyclic AMP-dependent transcription factor ATF-6 alpha was presented to demonstrate the effectiveness of GlycoRBF. Web-based GlycoRBF, which can be accessed at <url>http://GlycoRBF.bioinfo.tw</url>, can identify O-linked glycosylated serine and threonine effectively and efficiently. Moreover, the structural topology of Transmembrane (TM) proteins with glycosylation sites is provided to users. The stand-alone version of GlycoRBF is also available for high throughput data analysis.</p

    PMeS: Prediction of Methylation Sites Based on Enhanced Feature Encoding Scheme

    Get PDF
    Protein methylation is predominantly found on lysine and arginine residues, and carries many important biological functions, including gene regulation and signal transduction. Given their important involvement in gene expression, protein methylation and their regulatory enzymes are implicated in a variety of human disease states such as cancer, coronary heart disease and neurodegenerative disorders. Thus, identification of methylation sites can be very helpful for the drug designs of various related diseases. In this study, we developed a method called PMeS to improve the prediction of protein methylation sites based on an enhanced feature encoding scheme and support vector machine. The enhanced feature encoding scheme was composed of the sparse property coding, normalized van der Waals volume, position weight amino acid composition and accessible surface area. The PMeS achieved a promising performance with a sensitivity of 92.45%, a specificity of 93.18%, an accuracy of 92.82% and a Matthew’s correlation coefficient of 85.69% for arginine as well as a sensitivity of 84.38%, a specificity of 93.94%, an accuracy of 89.16% and a Matthew’s correlation coefficient of 78.68% for lysine in 10-fold cross validation. Compared with other existing methods, the PMeS provides better predictive performance and greater robustness. It can be anticipated that the PMeS might be useful to guide future experiments needed to identify potential methylation sites in proteins of interest. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx

    SNOSite: Exploiting Maximal Dependence Decomposition to Identify Cysteine S-Nitrosylation with Substrate Site Specificity

    Get PDF
    S-nitrosylation, the covalent attachment of a nitric oxide to (NO) the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-nitrosylation remains unknown. Based on a total of 586 experimentally identified S-nitrosylation sites from SNAP/L-cysteine-stimulated mouse endothelial cells, this work presents an informatics investigation on S-nitrosylation sites including structural factors such as the flanking amino acids composition, the accessible surface area (ASA) and physicochemical properties, i.e. positive charge and side chain interaction parameter. Due to the difficulty to obtain the conserved motifs by conventional motif analysis, maximal dependence decomposition (MDD) has been applied to obtain statistically significant conserved motifs. Support vector machine (SVM) is applied to generate predictive model for each MDD-clustered motif. According to five-fold cross-validation, the MDD-clustered SVMs could achieve an accuracy of 0.902, and provides a promising performance in an independent test set. The effectiveness of the model was demonstrated on the correct identification of previously reported S-nitrosylation sites of Bos taurus dimethylarginine dimethylaminohydrolase 1 (DDAH1) and human hemoglobin subunit beta (HBB). Finally, the MDD-clustered model was adopted to construct an effective web-based tool, named SNOSite (http://csb.cse.yzu.edu.tw/SNOSite/), for identifying S-nitrosylation sites on the uncharacterized protein sequences

    PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in intracellular signal transduction. Due to the difficulty in performing high-throughput mass spectrometry-based experiment, there is a desire to predict phosphorylation sites using computational methods. However, previous studies regarding <it>in silico </it>prediction of plant phosphorylation sites lack the consideration of kinase-specific phosphorylation data. Thus, we are motivated to propose a new method that investigates different substrate specificities in plant phosphorylation sites.</p> <p>Results</p> <p>Experimentally verified phosphorylation data were extracted from TAIR9-a protein database containing 3006 phosphorylation data from the plant species <it>Arabidopsis thaliana</it>. In an attempt to investigate the various substrate motifs in plant phosphorylation, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. Profile hidden Markov model (HMM) is then applied to learn a predictive model for each subgroup. Cross-validation evaluation on the MDD-clustered HMMs yields an average accuracy of 82.4% for serine, 78.6% for threonine, and 89.0% for tyrosine models. Moreover, independent test results using <it>Arabidopsis thaliana </it>phosphorylation data from UniProtKB/Swiss-Prot show that the proposed models are able to correctly predict 81.4% phosphoserine, 77.1% phosphothreonine, and 83.7% phosphotyrosine sites. Interestingly, several MDD-clustered subgroups are observed to have similar amino acid conservation with the substrate motifs of well-known kinases from Phospho.ELM-a database containing kinase-specific phosphorylation data from multiple organisms.</p> <p>Conclusions</p> <p>This work presents a novel method for identifying plant phosphorylation sites with various substrate motifs. Based on cross-validation and independent testing, results show that the MDD-clustered models outperform models trained without using MDD. The proposed method has been implemented as a web-based plant phosphorylation prediction tool, PlantPhos <url>http://csb.cse.yzu.edu.tw/PlantPhos/</url>. Additionally, two case studies have been demonstrated to further evaluate the effectiveness of PlantPhos.</p

    Computational Identification and Modeling of Crosstalk between Phosphorylation, O-β-glycosylation and Methylation of FoxO3 and Implications for Cancer Therapeutics

    Get PDF
    FoxO3 is a member of the forkhead class of transcription factors and plays a major role in the regulation of diverse cellular processes, including cell cycle arrest, DNA repair, and protection from stress stimuli by detoxification of reactive oxygen species. In addition, FoxO3 is a tumor suppressor and has been considered as a novel target for cancer therapeutics. Phosphorylation of FoxO3 via the AKT, IKK, and ERK pathways leads to deregulation, cytoplasmic retention, degradation of FoxO3 and favors tumor progression. Identification of the amino acid residues that are the target of different posttranslational modifications (PTMs) provides a foundation for understanding the molecular mechanisms of FoxO3 modifications and associated outcomes. In addition to phosphorylation, serine and threonine residues of several proteins are regulated by a unique type of PTM known as O-β-glycosylation, which serves as a functional switch. We sought to investigate the crosstalk of different PTMs on the FoxO3 which leads to the onset/progression of various cancers and that could also potentially be targeted as a therapeutic point of intervention. A computational workflow and set of selection parameters have been defined for the identification of target sites and crosstalk between different PTMs. We identified phosphorylation, O-β-GlcNAc modification, and Yin Yang sites on Ser/Thr residues, and propose a potential novel mechanism of crosstalk between these PTMs. Furthermore, methylation potential of human FoxO3 at arginine and lysine residues and crosstalk between methylation and phosphorylation have also been described. Our findings may facilitate the study of therapeutic strategies targeting posttranslational events
    corecore