65 research outputs found

    Visual-Inertial first responder localisation in large-scale indoor training environments.

    Get PDF
    Accurately and reliably determining the position and heading of first responders undertaking training exercises can provide valuable insights into their situational awareness and give a larger context to the decisions made. Measuring first responder movement, however, requires an accurate and portable localisation system. Training exercises of- ten take place in large-scale indoor environments with limited power infrastructure to support localisation. Indoor positioning technologies that use radio or sound waves for localisation require an extensive network of transmitters or receivers to be installed within the environment to ensure reliable coverage. These technologies also need power sources to operate, making their use impractical for this application. Inertial sensors are infrastructure independent, low cost, and low power positioning devices which are attached to the person or object being tracked, but their localisation accuracy deteriorates over long-term tracking due to intrinsic biases and sensor noise. This thesis investigates how inertial sensor tracking can be improved by providing correction from a visual sensor that uses passive infrastructure (fiducial markers) to calculate accurate position and heading values. Even though using a visual sensor increase the accuracy of the localisation system, combining them with inertial sensors is not trivial, especially when mounted on different parts of the human body and going through different motion dynamics. Additionally, visual sensors have higher energy consumption, requiring more batteries to be carried by the first responder. This thesis presents a novel sensor fusion approach by loosely coupling visual and inertial sensors to create a positioning system that accurately localises walking humans in largescale indoor environments. Experimental evaluation of the devised localisation system indicates sub-metre accuracy for a 250m long indoor trajectory. The thesis also proposes two methods to improve the energy efficiency of the localisation system. The first is a distance-based error correction approach which uses distance estimation from the foot-mounted inertial sensor to reduce the number of corrections required from the visual sensor. Results indicate a 70% decrease in energy consumption while maintaining submetre localisation accuracy. The second method is a motion type adaptive error correction approach, which uses the human walking motion type (forward, backward, or sideways) as an input to further optimise the energy efficiency of the localisation system by modulating the operation of the visual sensor. Results of this approach indicate a 25% reduction in the number of corrections required to keep submetre localisation accuracy. Overall, this thesis advances the state of the art by providing a sensor fusion solution for long-term submetre accurate localisation and methods to reduce the energy consumption, making it more practical for use in first responder training exercises

    Information Aided Navigation: A Review

    Full text link
    The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.Comment: 8 figures, 3 table

    Loosely coupled GNSS and UWB with INS integration for indoor/outdoor pedestrian navigation

    Get PDF
    3noThe growth of location-based services (LBS) has increased rapidly in last years, mainly due to the possibility to exploit low-cost sensors installed in portable devices, such as smartphones and tablets. This work aims to show a low-cost multi-sensor platform developed by the authors in which an ultra-wideband (UWB) indoor positioning system is added to a classical global navigation satellite systems–inertial navigation system (GNSS-INS) integration, in order to acquire different synchronized data for further data fusion analysis in order to exploit seamless positioning. The data fusion is based on an extended Kalman filter (EKF) and on a geo-fencing approach which allows the navigation solution to be provided continuously. In particular, the proposed algorithm aims to solve a navigation task of a pedestrian user moving from an outdoor space to an indoor environment. The methodology and the system setup is presented with more details in the paper. The data acquired and the real-time positioning estimation are analysed in depth and compared with ground truth measurements. Particular attention is given to the UWB positioning system and its behaviour with respect to the environment. The proposed data fusion algorithm provides an overall horizontal and 3D accuracy of 35 cm and 45 cm, respectively, obtained considering 5 different measurement campaigns.openopenDi Pietra V.; Dabove P.; Piras M.Di Pietra, V.; Dabove, P.; Piras, M

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    Wearable-Based pedestrian localization through fusjon of inertial sensor measurements

    Get PDF
    Hoy en día existe una gran demanda de sistemas de navegación personales integrados en servicios como gestión de desastres para personal de rescate. También se demandan sistemas de navegación personales como guía en grandes superficies, por ejemplo, hospitales, aeropuertos o centros comerciales. En esta tesis doctoral los escenarios estudiados son interiores y urbanos. La navegación se realiza por medio de sensores inerciales y magnéticos, idóneos por su amplia difusión, tamaño y peso reducido y porque no necesitan infraestructura. Se llevarán a cabo investigaciones para mejorar los algoritmos de navegación ya existentes y cubrir determinados aspectos aún no resueltos. En primer lugar se ha llevado a cabo un extenso análisis sobre los beneficios de usar medidas magnéticas para compensar los errores sistemáticos de los sensores inerciales, así como su efecto en la estimación de la orientación. Para ello se han usado medidas de referencia con valores de error conocidos combinando diferentes distribuciones de campos magnéticos. Los resultados obtenidos quedan respaldados con medidas realizadas con sensores reales de medio coste. Se ha concluido que el uso de medidas magnéticas es beneficioso porque acota errores en la orientación. Sin embargo, los escenarios bajo estudio suelen presentar campos magnéticos perturbados, lo que provoca que el proceso de estimación de errores sea prohibitivamente largo. En esta tesis doctoral se proponen algoritmos alternativos para el cálculo del desplazamiento horizontal del usuario, que han sido comparados con respecto a los ya existentes, ofreciendo los propuestos un mejor rendimiento. Además se incluye un innovador algoritmo para calcular el desplazamiento vertical del usuario, haciendo por primera vez posible obtener trayectorias en 3D usando solamente sensores inerciales no colocados en el zapato. Por último se propone un novedoso algoritmo capaz de prevenir errores de posición provocados por errores de rumbo. El algoritmo está basado en puntos de referencia automáticamente detectados por medio de medidas inerciales. Los puntos de referencia elegidos para los escenarios cubiertos son escaleras y esquinas, que al revisitarse permiten calcular el error acumulado en la trayectoria. Este error es compensado consiguiendo así acotar el error de rumbo. Este algoritmo ha sido extensamente probado con medidas de referencia y medidas realizadas con sensores reales de medio coste. La compensación de este error se adapta a las características del sistema de navegación personal

    Localización de personas mediante sensores inerciales y su fusión con otras tecnologías

    Get PDF
    En el presente trabajo de Tesis se aborda el problema de la localización en entornos interiores utilizando sensores inerciales y su fusión con otras medidas para mejorar la estimación y limitar posibles derivas. Para ello, el algoritmo de localización propuesto se divide en tres partes: Una etapa de estimación del movimiento usando Pedestrian Dead Reckoning (PDR), un esquema de fusión de información que permite integrar múltiples tipos de medidas, aunque tengan relaciones no lineales, y la utilización de medidas externas (como la potencia de la señal de puntos de acceso WiFi, rangos a balizas UWB, GNSS, etc.) para limitar la deriva, proponiendo mejoras a cada una de ellas. Para mejorar el algoritmo PDR se propone la modificación del detector de apoyo utilizando un filtro de media sobre una ventana retardada. Para la estimación y corrección de errores se propone la utilización del filtro de Kalman Unscented (UKF) que simplifica los cálculos necesarios para la estimación y mejora la aproximación no lineal. Debido a la falta de información de la guiñada, una estimación PDR pura divergirá con el tiempo. Para aportar información de la orientación a la estimación se propone medir la rotación del campo magnético de acuerdo a las velocidades angulares observadas en el giróscopo. Se comprueba en varios experimentos que las mejoras evitan errores en la fase de apoyo, mejoran la estimación y disminuyen el efecto de la deriva de la orientación. Para fusionar la información del PDR con medidas externas se propone la utilización de dos esquemas: el primero, un filtro de límites que establece una distancia máxima entre 2 estimaciones, y el segundo un esquema basado en un filtro de partículas a dos etapas. El filtro de límites modifica la pdf (función de densidad de probabilidad) para evitar estimaciones muy distantes entre sí. Se comprueba que, al utilizar este método, se logra evitar la deriva un sistema PDR utilizando medidas UWB en otra parte del cuerpo. El esquema basado en un filtro de partículas utiliza la información de PDR para propagar las partículas y las medidas externas para actualizar los pesos de éstas. Se propone agregar el bias de la velocidad angular a los estados de las partículas para modelar el efecto del bias random walk (sesgo de camino aleatorio) del giróscopo. El filtro de partículas permite utilizar cualquier medida con una función de observación y una distribución de error, por lo que se estudian varios casos de estimaciones PDR fusionadas con medidas de sistemas WiFi, RFID, UWB y ZigBee. Los sistemas RF utilizados tienen un error de posicionamiento de 5 m (90 % de los casos) y la estimación PDR tiene un error creciente, pero al fusionar las estimaciones se logra un error inferior a 2 m (90 % de los casos). Por último, se utiliza el mapa del edificio para corregir las estimaciones y encauzarlas en las áreas caminables del edificio. Para ello se utiliza un método de eliminación de hipótesis (partículas) que atraviesan paredes. Este algoritmo se optimiza utilizando solo las paredes de la habitación en que se encuentra la partícula y se propone una sectorización de las operaciones para poder ser utilizada en MATLAB a tiempo real. Se demostró con señales reales que el algoritmo es capaz de auto localizar a una persona si el recorrido es no simétrico, obteniendo un nivel de error que dependerá del edificio, en nuestro caso cercano a 1 m. Si se utilizan medidas RF y el mapa, la estimación converge significativamente más rápido, y el nivel de error y el número de partículas necesarias (por ende, el tiempo de cómputo) disminuyen

    Personal Navigation Based on Wireless Networks and Inertial Sensors

    Get PDF
    Tato práce se zaměřuje na vývoj navigačního algoritmu pro systémy vhodné k lokalizaci osob v budovách a městských prostorech. Vzhledem k požadovaným nízkým nákladům na výsledný navigační systém byla uvažována integrace levných inerciálních senzorů a určování vzdálenosti na základě měření v bezdrátových sítích. Dále bylo předpokládáno, že bezdrátová síť bude určena k jiným účelům (např: měření a regulace), než lokalizace, proto bylo použito měření síly bezdrátového signálu. Kvůli snížení značné nepřesnosti této metody, byla navrhnuta technika mapování ztrát v bezdrátovém kanálu. Nejprve jsou shrnuty různé modely senzorů a prostředí a ty nejvhodnější jsou poté vybrány. Jejich efektivní a nové využití v navigační úloze a vhodná fůze všech dostupných informací jsou hlavní cíle této práce.This thesis deals with navigation system based on wireless networks and inertial sensors. The work aims at a development of positioning algorithm suitable for low-cost indoor or urban pedestrian navigation application. The sensor fusion was applied to increase the localization accuracy. Due to required low application cost only low grade inertial sensors and wireless network based ranging were taken into account. The wireless network was assumed to be preinstalled due to other required functionality (for example: building control) therefore only received signal strength (RSS) range measurement technique was considered. Wireless channel loss mapping method was proposed to overcome the natural uncertainties and restrictions in the RSS range measurements. The available sensor and environment models are summarized first and the most appropriate ones are selected secondly. Their effective and novel application in the navigation task, and favorable fusion (Particle filtering) of all available information are the main objectives of this thesis.

    Precise positioning of autonomous vehicles combining UWB ranging estimations with on-board sensors

    Get PDF
    In this paper, we analyze the performance of a positioning system based on the fusion of Ultra-Wideband (UWB) ranging estimates together with odometry and inertial data from the vehicle. For carrying out this data fusion, an Extended Kalman Filter (EKF) has been used. Furthermore, a post-processing algorithm has been designed to remove the Non Line-Of-Sight (NLOS) UWB ranging estimates to further improve the accuracy of the proposed solution. This solution has been tested using both a simulated environment and a real environment. This research work is in the scope of the PRoPART European Project. The different real tests have been performed on the AstaZero proving ground using a Radio Control car (RC car) developed by RISE (Research Institutes of Sweden) as testing platform. Thus, a real time positioning solution has been achieved complying with the accuracy requirements for the PRoPART use case

    A Radio-Inertial Localization and Tracking System with BLE Beacons Prior Maps

    Full text link
    © 2018 IEEE. In this paper, we develop a system for the low-cost indoor localization and tracking problem using radio signal strength indicator, Inertial Measurement Unit (IMU), and magnetometer sensors. We develop a novel and simplified probabilistic IMU motion model as the proposal distribution of the sequential Monte-Carlo technique to track the robot trajectory. Our algorithm can globally localize and track a robot with a priori unknown location, given an informative prior map of the Bluetooth Low Energy (BLE) beacons. Also, we formulate the problem as an optimization problem that serves as the Backend of the algorithm mentioned above (Front-end). Thus, by simultaneously solving for the robot trajectory and the map of BLE beacons, we recover a continuous and smooth trajectory of the robot, corrected locations of the BLE beacons, and the time-varying IMU bias. The evaluations achieved using hardware show that through the proposed closed-loop system the localization performance can be improved; furthermore, the system becomes robust to the error in the map of beacons by feeding back the optimized map to the Front-end
    corecore