9 research outputs found

    Nonlinear model predictive control of an Organic Rankine Cycle for exhaust waste heat recovery in automotive engines

    Get PDF
    Energy recovery from exhaust gas waste heat can be regarded as an effective way to improve the energy efficiency of automotive powertrains, thus reducing CO2 emissions. The application of Organic Rankine Cycles (ORCs) to waste heat recovery is a solution that couples effectiveness and reasonably low technological risks. On the other hand, ORC plants are rather complex to design, integrate and control, due to the presence of heat exchangers operating with phase changing fluid, and several control devices to regulate the thermodynamic states of the systems. Furthermore, the power output and efficiency of ORC systems are extremely sensitive to the operating conditions, requiring precise control of the evaporator pressure and superheat temperature. This paper presents an optimization and control design study for an Organic Rankine Cycle plant for automotive engine waste heat recovery. The analysis has been developed using a detailed Moving Boundary Model that predicts mass and energy flows through the heat exchangers, valves, pumps and expander, as well as the system performance. Starting from the model results, a nonlinear model predictive controller is designed to optimize the transient response of the ORC system. Simulation results for an acceleration-deceleration test illustrate the benefits of the proposed control strategy

    Recent developments of control strategies for organic Rankine cycle (ORC) systems

    Get PDF
    Organic Rankine cycle (ORC) is one of the most rapidly growing approaches to utilizing low grade thermal energy. This paper deals with the main control problems existed in ORC systems and overviews the main approaches presented in literature. The main ORC operating modes are introduced, the control strategies of ORC systems are then surveyed. Thus, this paper presents a comprehensive review of overall control strategies for ORC energy conversion systems and points out research trend on ORC control systems

    Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review

    Get PDF
    Efficient power generation from low to medium grade heat is an important challenge to be addressed to ensure a sustainable energy future. Organic Rankine Cycles (ORCs) constitute an important enabling technology and their research and development has emerged as a very active research field over the past decade. Particular focus areas include working fluid selection and cycle design to achieve efficient heat to power conversions for diverse hot fluid streams associated with geothermal, solar or waste heat sources. Recently, a number of approaches have been developed that address the systematic selection of efficient working fluids as well as the design, integration and control of ORCs. This paper presents a review of emerging approaches with a particular emphasis on computer-aided design methods

    Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges

    Get PDF
    Organic Rankine cycle systems are suitable technologies for utilization of low/medium-temperature heat sources, especially for small-scale systems. Waste heat from engines in the transportation sector, solar energy, and intermittent industrial waste heat are by nature transient heat sources, making it a challenging task to design and operate the organic Rankine cycle system safely and efficiently for these heat sources. Therefore, it is of crucial importance to investigate the dynamic behavior of the organic Rankine cycle system and develop suitable control strategies. This paper provides a comprehensive review of the previous studies in the area of dynamic modeling and control of the organic Rankine cycle system. The most common dynamic modeling approaches, typical issues during dynamic simulations, and different control strategies are discussed in detail. The most suitable dynamic modeling approaches of each component, solutions to common problems, and optimal control approaches are identified. Directions for future research are provided. The review indicates that the dynamics of the organic Rankine cycle system is mainly governed by the heat exchangers. Depending on the level of accuracy and computational effort, a moving boundary approach, a finite volume method or a two-volume simplification can be used for the modeling of the heat exchangers. From the control perspective, the model predictive controllers, especially improved model predictive controllers (e.g. the multiple model predictive control, switching model predictive control, and non-linear model predictive control approach), provide excellent control performance compared to conventional control strategies (e.g. proportional–integral controller, proportional–derivative controller, and proportional–integral–derivative controllers). We recommend that future research focuses on the integrated design and optimization, especially considering the design of the heat exchangers, the dynamic response of the system and its controllability

    Plant Modeling, Model Reduction and Power Optimization for an Organic Rankine Cycle Waste Heat Recovery System in Heavy Duty Diesel Engine Applications

    Get PDF
    With pressure from strict emission and fuel consumption regulations, researchers are searching for improved internal combustion engine performance. Especially for the heavy-duty vehicles, which takes up 7% of the total vehicle volume while consume around 30% of transportation energy in US. Around 40-60% of energy is wasted as heat in heavy-duty diesel (HDD) vehicles in different engine operating conditions, which mainly includes the waste heat in exhaust gas, exhaust gas recirculation (EGR) circuit, and engine coolant. Waste heat recovery (WHR) techniques are potential to achieve the fuel economy and emission reduction goals. Among the available WHR techniques, organic Rankine cycle (ORC) is preferred by many researchers for its mature technologies and high efficiency. The aim of this dissertation is to analyze the power of HDD vehicle by: (i) building a high fidelity, physics-based ORC-WHR dynamic system plant model, (ii) building a reduced order model framework, and (iii) conducting the power analysis based on the developed plant and reduced models. The dynamic system plant model is built, which includes heat exchangers, a turbine expander, pumps, control valves, compressible volumes, junctions and a reservoir. Components are modelled and calibrated individually. Subsequently, the component models are integrated into an entire ORC-WHR system model. The entire ORC-WHR system model is validated over transient engine conditions. Actuator sensitivity study is conducted for the ORC-WHR power generation analysis using the ORC-WHR plant model. Besides the ORC-WHR plant model, a reduced order model framework is developed utilizing Proper Orthogonal Decomposition (POD) and Galerkin projection approaches. The POD-Galerkin reduced order model framework inherits the system physics from the high fidelity, physics-based ORC-WHR plant model. POD Galerkin reduced order models are compared with three existing models (finite volume model, moving boundary model and 0D lumped model) and show their advantages over the existing models in terms of accuracy or computation cost. In addition, identification method is applied to the low order POD Galerkin reduced order model to increase the accuracy. Given the validated ORC-WHR plant model and POD Galerkin reduced order model framework, the ORC-WHR system power analysis is conducted. Steady state power analysis is conducted over two quasi-steady driving cycles using the ORC-WHR plant model. An engine model is developed to predict the exhaust conditions in transient engine operating conditions. Transient power analysis is conducted with ORC-WHR plant model and engine model co-simulation by optimizing three vapor temperature reference trajectories. Finally, dynamic programming (DP) is implemented with the POD-Galerkin reduced order model to generate ORC-WHR power benchmark in a driving cycle, which can give the guidance on the ORC power optimization and evaluate the controller performance

    Modeling and control of advanced powertrain systems and Waste Heat Recovery technologies for the reduction of CO2 emissions in light-duty vehicles

    Get PDF
    2014 - 2015Transportation is the major sector in the EU where greenhouse gas emissions are still rising. Therefore, in the recent years, the OEMs research and development has focused on the reduction of carbon dioxide (CO2) and pollutants emissions. On the other hand, the European Commission proposed targets for the further reduction of CO2 emissions from new cars by 2020. In this scenario, concepts such as the engines downsizing and other advanced technologies as well as more costly hybrid solutions and, more recently, waste heat recovery (WHR) systems have been proposed... [edited by author]XIV n.s
    corecore