37 research outputs found

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Guided Robust Matte-Model Fitting for Accelerating Multi-light Reflectance

    Get PDF
    The generation of a basic matte model is at the core of many multi-light reflectance processing approaches, such as Photometric Stereo or Reflectance Transformation Imag- ing. To recover information on objects\u2019 shape and appearance, the matte model is used directly or combined with specialized methods for modeling high-frequency behaviors. Multivariate robust regression offers a general solution to reliably extract the matte com- ponent when source data is heavily contaminated by shadows, inter-reflections, specular- ity, or noise. However, robust multivariate modeling is usually very slow. In this paper, we accelerate robust fitting by drastically reducing the number of tested candidate solu- tions using a guided approach. Our method propagates already known solutions to nearby pixels using a similarity-driven flood-fill strategy, and exploits this knowledge to order possible candidate solutions and to determine convergence conditions. The method has been tested on objects with a variety of reflectance behaviors, showing state-of-the-art accuracy with respect to current solutions, and a significant speed-up without accuracy reduction with respect to multivariate robust regression

    Beyond high-resolution geometry in 3D Cultural Heritage: enhancing visualization realism in interactive contexts

    Get PDF
    La tesi, nell’ambito della computer graphics 3D interattiva, descrive la definizione e sviluppo di algoritmi per un migliore realismo nella visualizzazione di modelli tridimensionali di grandi dimensioni, con particolare attenzione alle applicazioni di queste tecnologie di visualizzazione 3D ai beni culturali

    Hierarchical Variance Reduction Techniques for Monte Carlo Rendering

    Get PDF
    Ever since the first three-dimensional computer graphics appeared half a century ago, the goal has been to model and simulate how light interacts with materials and objects to form an image. The ultimate goal is photorealistic rendering, where the created images reach a level of accuracy that makes them indistinguishable from photographs of the real world. There are many applications ñ visualization of products and architectural designs yet to be built, special effects, computer-generated films, virtual reality, and video games, to name a few. However, the problem has proven tremendously complex; the illumination at any point is described by a recursive integral to which a closed-form solution seldom exists. Instead, computer simulation and Monte Carlo methods are commonly used to statistically estimate the result. This introduces undesirable noise, or variance, and a large body of research has been devoted to finding ways to reduce the variance. I continue along this line of research, and present several novel techniques for variance reduction in Monte Carlo rendering, as well as a few related tools. The research in this dissertation focuses on using importance sampling to pick a small set of well-distributed point samples. As the primary contribution, I have developed the first methods to explicitly draw samples from the product of distant high-frequency lighting and complex reflectance functions. By sampling the product, low noise results can be achieved using a very small number of samples, which is important to minimize the rendering times. Several different hierarchical representations are explored to allow efficient product sampling. In the first publication, the key idea is to work in a compressed wavelet basis, which allows fast evaluation of the product. Many of the initial restrictions of this technique were removed in follow-up work, allowing higher-resolution uncompressed lighting and avoiding precomputation of reflectance functions. My second main contribution is to present one of the first techniques to take the triple product of lighting, visibility and reflectance into account to further reduce the variance in Monte Carlo rendering. For this purpose, control variates are combined with importance sampling to solve the problem in a novel way. A large part of the technique also focuses on analysis and approximation of the visibility function. To further refine the above techniques, several useful tools are introduced. These include a fast, low-distortion map to represent (hemi)spherical functions, a method to create high-quality quasi-random points, and an optimizing compiler for analyzing shaders using interval arithmetic. The latter automatically extracts bounds for importance sampling of arbitrary shaders, as opposed to using a priori known reflectance functions. In summary, the work presented here takes the field of computer graphics one step further towards making photorealistic rendering practical for a wide range of uses. By introducing several novel Monte Carlo methods, more sophisticated lighting and materials can be used without increasing the computation times. The research is aimed at domain-specific solutions to the rendering problem, but I believe that much of the new theory is applicable in other parts of computer graphics, as well as in other fields

    Digitalización masiva en 3D: un hito para la documentación arqueológica

    Get PDF
    [EN] In the heritage field, the demand for fast and efficient 3D digitization technologies for historic remains is increasing. Besides, 3D digitization has proved to be a promising approach to enable precise reconstructions of objects. Yet, unlike the digital acquisition of cultural goods in 2D widely used today, 3D digitization often still requires a significant investment of time and money. To make it more widely available to heritage institutions, the Competence Center for Cultural Heritage Digitization at the Fraunhofer Institute for Computer Graphics Research IGD has developed CultLab3D, the world’s first 3D mass digitization facility for collections of three-dimensional objects. CultLab3D is specifically designed to automate the entire 3D digitization process thus allowing to scan and archive objects on a large-scale. Moreover, scanning and lighting technologies are combined to capture the exact geometry, texture, and optical material properties of artefacts to produce highly accurate photo-realistic representations. The unique setup allows to shorten the time needed for digitization to several minutes per artefact instead of hours, as required by conventional 3D scanning methods.[ES] La demanda de tecnologías rápidas y eficientes en el área de digitalización en tercera dimensión para el legado cultural, se encuentra en constante crecimiento. La digitalización en tercera dimensión ha mostrado ser una aproximación prometedora que garantiza una precisa reconstrucción de objetos. Sin embargo, en comparación con la adquisición de objetos culturales en 2D, ampliamente utilizados en la actualidad, la digitalización en tercera dimensión aún requiere de una inversión significativa de tiempo y dinero. Para facilitar su acceso a instituciones enfocadas a salvaguardar el legado cultural, el Centro de Competencia para la Digitalización del Legado Cultural (Competence Center for Cultural Heritage Digitization) del Instituto Fraunhofer, Computer Graphics Research IGD, desarrolló CultLab3D. CultLab3D es la primerainstancia a nivel mundial que cuenta con un sistema totalmente automatizado para la digitalización masiva de colecciones de objetos tridimensionales. CultLab3D se diseñó específicamente para automatizar los procesos de digitalización en tercera dimension, permitendo escanear y archivar objetos a larga escala. Además, tecnologías de escaneado e iluminación han sido igualmente combinadas para la captura de geometrías exactas, textura y propiedades ópticas del material que constituyen los artefactos en cuestión, con el objetivo de producir representaciones foto-realísticas altamente precisas. Esta construcción única permite la reducción del tiempo requerido por métodos convencionales para la digitalización en tercera dimensión, siendo necesario solamente algunos minutos en lugar de varias horas.CultLab3D was funded by the German Federal Ministry for Economic Affairs and Energy under grant agreement 01MT12022E and Fraunhofer strategic funds.Santos, P.; Ritz, M.; Fuhrmann, C.; Fellner, D. (2017). 3D mass digitization: a milestone for archeological documentation. Virtual Archaeology Review. 8(16):1-11. https://doi.org/10.4995/var.2017.6321SWORD11181

    Surface analysis and visualization from multi-light image collections

    Get PDF
    Multi-Light Image Collections (MLICs) are stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination that provides large amounts of visual and geometric information. Over the last decades, a wide variety of methods have been devised to extract information from MLICs and have shown its use in different application domains to support daily activities. In this thesis, we present methods that leverage a MLICs for surface analysis and visualization. First, we provide background information: acquisition setup, light calibration and application areas where MLICs have been successfully used for the research of daily analysis work. Following, we discuss the use of MLIC for surface visualization and analysis and available tools used to support the analysis. Here, we discuss methods that strive to support the direct exploration of the captured MLIC, methods that generate relightable models from MLIC, non-photorealistic visualization methods that rely on MLIC, methods that estimate normal map from MLIC and we point out visualization tools used to do MLIC analysis. In chapter 3 we propose novel benchmark datasets (RealRTI, SynthRTI and SynthPS) that can be used to evaluate algorithms that rely on MLIC and discusses available benchmark for validation of photometric algorithms that can be also used to validate other MLIC-based algorithms. In chapter 4, we evaluate the performance of different photometric stereo algorithms using SynthPS for cultural heritage applications. RealRTI and SynthRTI have been used to evaluate the performance of (Neural)RTI method. Then, in chapter 5, we present a neural network-based RTI method, aka NeuralRTI, a framework for pixel-based encoding and relighting of RTI data. In this method using a simple autoencoder architecture, we show that it is possible to obtain a highly compressed representation that better preserves the original information and provides increased quality of virtual images relighted from novel directions, particularly in the case of challenging glossy materials. Finally, in chapter 6, we present a method for the detection of crack on the surface of paintings from multi-light image acquisitions and that can be used as well on single images and conclude our presentation

    Path manipulation strategies for rendering dynamic environments.

    Get PDF
    The current work introduces path manipulation as a tool that extends bidirectional path tracing to reuse paths in the temporal domain. Defined as an apparatus of sampling and reuse strategies, path manipulation reconstructs the subpaths that compose the light transport paths and addresses the restriction of static geometry commonly associated with Monte Carlo light transport simulations. By reconstructing and reusing subpaths, the path manipulation algorithm obviates the regeneration of the entire path collection, reduces the computational load of the original algorithm and supports scene dynamism. Bidirectional path tracing relies on local path sampling techniques to generate the paths of light in a synthetic environment. By using the information localized at path vertices, like the probability distribution, the sampling techniques construct paths progressively with distinct probability densities. Each probability density corresponds to a particular sampling technique, which accounts for specific illumination effects. Bidirectional path tracing uses multiple importance sampling to combine paths sampled with different techniques in low-variance estimators. The path sampling techniques and multiple importance sampling are the keys to the efficacy of bidirectional path tracing. However, the sampling techniques gained little attention beyond the generation and evaluation of paths. Bidirectional path tracing was designed for static scenes and thus it discards the generated paths immediately after the evaluation of their contributions. Limiting the lifespan of paths to a generation-evaluation cycle imposes a static use of paths and of sampling techniques. The path manipulation algorithm harnesses the potential of the sampling techniques to supplant the static manipulation of paths with a generation-evaluation-reuse cycle. An intra-subpath connectivity strategy was devised to reconnect the segregated chains of the subpaths invalidated by the scene alterations. Successful intra-subpath connections generate subpaths in multiple pieces by reusing subpath chains from prior frames. Subpaths are reconstructed generically, regardless of the subpath or scene dynamism type and without the need for predefined animation paths. The result is the extension of bidirectional path tracing to the temporal domain

    {3D} Morphable Face Models -- Past, Present and Future

    No full text
    In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications
    corecore