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Abstract 

 

The current work introduces path manipulation as a tool that extends bidirectional path 

tracing to reuse paths in the temporal domain. Defined as an apparatus of sampling and 

reuse strategies, path manipulation reconstructs the subpaths that compose the light 

transport paths and addresses the restriction of static geometry commonly associated 

with Monte Carlo light transport simulations. By reconstructing and reusing subpaths, 

the path manipulation algorithm obviates the regeneration of the entire path collection, 

reduces the computational load of the original algorithm and supports scene dynamism.    

 

Bidirectional path tracing relies on local path sampling techniques to generate the 

paths of light in a synthetic environment. By using the information localized at path 

vertices, like the probability distribution, the sampling techniques construct paths 

progressively with distinct probability densities. Each probability density corresponds 

to a particular sampling technique, which accounts for specific illumination effects. 

Bidirectional path tracing uses multiple importance sampling to combine paths sampled 

with different techniques in low-variance estimators. The path sampling techniques and 

multiple importance sampling are the keys to the efficacy of bidirectional path tracing. 

 

However, the sampling techniques gained little attention beyond the generation and 

evaluation of paths. Bidirectional path tracing was designed for static scenes and thus 

it discards the generated paths immediately after the evaluation of their contributions. 

Limiting the lifespan of paths to a generation-evaluation cycle imposes a static use of 

paths and of sampling techniques. The path manipulation algorithm harnesses the 

potential of the sampling techniques to supplant the static manipulation of paths with a 

generation-evaluation-reuse cycle. An intra-subpath connectivity strategy was devised 

to reconnect the segregated chains of the subpaths invalidated by the scene alterations. 

Successful intra-subpath connections generate subpaths in multiple pieces by reusing 

subpath chains from prior frames. Subpaths are reconstructed generically, regardless 

of the subpath or scene dynamism type and without the need for predefined animation 

paths. The result is the extension of bidirectional path tracing to the temporal domain. 



VI 
 

  



VII 
 

Contents 
 

Abstract ................................................................................................... V 

List of Figures ........................................................................................ XI 

List of Tables ........................................................................................ XV 

List of Symbols .................................................................................. XVII 

Acknowledgments .............................................................................. XXI 

1 Introduction ........................................................................................ 1 

1.1 Industrial context .......................................................................................... 5 

1.2 Summary of contributions ............................................................................. 8 

1.3 Thesis outline ................................................................................................ 9 

2 Background and literature review ................................................. 11 

2.1 Solid angle .................................................................................................. 11 

2.2 Radiometric quantities ................................................................................ 14 

2.2.1 Radiant power .............................................................................. 14 

2.2.2 Irradiance, radiant exitance and radiant intensity ........................ 15 

2.2.3 Radiance ....................................................................................... 15 

2.3 Surface scattering ........................................................................................ 17 

2.3.1 The bidirectional scattering distribution function ........................ 17 

2.3.2 The bidirectional reflectance distribution function ...................... 18 

2.3.3 Surface reflectance ....................................................................... 22 

2.3.4 Local illumination and the rendering equation ............................ 23 

2.4 Light transport ............................................................................................. 25 

2.4.1 The light transport linear operators .............................................. 25 

2.4.2 The surface domain formulation .................................................. 27 

2.4.3 The path integral formulation ...................................................... 30 



VIII 
 

2.5 Light transport algorithms .......................................................................... 36 

2.5.1 Radiosity ...................................................................................... 37 

2.5.2 Precomputed light transport ......................................................... 39 

2.5.3 Ray tracing ................................................................................... 42 

2.5.4 Monte Carlo ray tracing ............................................................... 44 

2.5.5 Photon mapping ........................................................................... 57 

2.5.6 Unified estimation ....................................................................... 62 

2.5.7 Instant radiosity ........................................................................... 67 

2.5.8 The choice of algorithmic foundation.......................................... 73 

2.6 Path manipulation strategies and related work ........................................... 75 

2.6.1 Improved efficiency via sampling-oriented techniques ............... 76 

2.6.2 Accelerated Monte Carlo ray tracing ........................................... 80 

2.6.3 Temporal coherence and path reuse ............................................ 88 

2.7 Conclusions ................................................................................................. 95 

3 Path manipulation strategies .......................................................... 97 

3.1    Background: sampling and estimate computation ...................................... 98 

3.1.1 Local path sampling techniques................................................... 98 

3.1.2 Evaluation of the sample contribution ....................................... 101 

3.2 Path validity and immutable contribution ................................................. 107 

3.3 Invalidation and anchor computation ....................................................... 110 

3.4 Reconstruction .......................................................................................... 113 

3.4.1 Primary anchor reconstruction ................................................... 113 

3.4.2 Two-chain reconstruction .......................................................... 116 

3.4.3 Terminus anchor reconstruction ................................................ 125 

3.5 High-level algorithm description .............................................................. 128 

3.6 Algorithm analysis .................................................................................... 129 

3.7 Conclusions ............................................................................................... 135 



IX 
 

4 Light transport framework implementation ............................... 137 

4.1 Supported Monte Carlo algorithms ........................................................... 138 

4.2 The standard Monte Carlo pipeline ........................................................... 139 

4.2.1 Ray generation ........................................................................... 141 

4.2.2 Point sample computation .......................................................... 142 

4.2.3 Path generation .......................................................................... 142 

4.2.4 Visibility computation ............................................................... 146 

4.2.5 Contribution evaluation ............................................................. 148 

4.2.6 Image synthesis .......................................................................... 152 

4.2.7 Bidirectional path tracing ........................................................... 153 

4.3 The reconstruction pipeline ....................................................................... 154 

4.3.1 Invalidation and anchor computation ........................................ 155 

4.3.2 Intra-subpath reconnection ........................................................ 159 

4.3.3 Subpath regeneration ................................................................. 161 

4.3.4 Contribution re-evaluation ......................................................... 164 

4.3.5 Collateral subpath identification and re-evaluation ................... 165 

4.3.6 The path manipulation algorithm ............................................... 167 

4.4 Conclusions ............................................................................................... 168 

5 Results ............................................................................................. 171 

5.1 Cornell box: geometry transformation ...................................................... 173 

5.1.1 Gain analysis .............................................................................. 175 

5.1.2 Reconstruction analysis ............................................................. 176 

5.1.3 Intra-subpath connectivity factors ............................................. 179 

5.2 Cornell box: light translation .................................................................... 181 

5.2.1 Gain analysis .............................................................................. 182 

5.2.2 Reconstruction analysis ............................................................. 183 

5.2.3 Bias analysis .............................................................................. 184 



X 
 

5.3 Cornell box: camera rotation .................................................................... 185 

5.3.1 Gain analysis .............................................................................. 186 

5.3.2 Reconstruction analysis ............................................................. 189 

5.4 Computer-aided assembly design ............................................................. 190 

5.4.1 Test configuration ...................................................................... 191 

5.4.2 Gain analysis .............................................................................. 193 

5.4.3 Reconstruction analysis ............................................................. 195 

5.5 Interior architecture................................................................................... 196 

5.5.1 Test configuration ...................................................................... 196 

5.5.2 Frame 2: reconstruction analysis ............................................... 197 

5.5.3 Frame 3: reconstruction analysis ............................................... 199 

5.5.4 Frame 4: reconstruction analysis ............................................... 203 

5.5.5 Gain analysis .............................................................................. 203 

5.6 Conclusions ............................................................................................... 205 

6 Future developments ..................................................................... 209 

7 Conclusions ..................................................................................... 213 

References ............................................................................................ 217 

 

 

 



XI 
 

List of Figures 

 

1.1 OMS2 and OMS4 material scanners .................................................................. 6 

1.2 Light propagation in a centre high-mount stop lamp.......................................... 7 

 

2.1 Solid angle subtended by a surface ................................................................... 12 

2.2 Derivation of the differential solid angle .......................................................... 13 

2.3 Geometry for the scattering of radiance between two surfaces ........................ 16 

2.4 Angular representation of the BRDF’s unit direction vectors .......................... 20 

2.5 Representation of the halfway-difference parameterization ............................. 21 

2.6 Boundary reflection and transmission .............................................................. 24 

2.7 Form factor between two diffuse patches ......................................................... 30 

2.8 Throughput exemplification for a path of length 𝑘 = 4 ................................... 33 

2.9 Environment projection on the imaginary hemicube........................................ 38 

2.10 Self-transfer rendering for diffuse and glossy objects ...................................... 40 

2.11 Sampling in distributed ray tracing................................................................... 43 

2.12 Sampling in path tracing ................................................................................... 49 

2.13 Bidirectional path tracing as a connectivity strategy ........................................ 50 

2.14 Bidirectional sampling of a light transport path of length 𝑘 = 4 ..................... 51 

2.15 Bidirectional mutation and caustic perturbation ............................................... 55 

2.16 Photons location for the kernel density estimation ........................................... 58 

2.17 Image space photon mapping pipeline ............................................................. 60 

2.18 Photon relaxation .............................................................................................. 61 

2.19 Vertex connection and merging techniques for a path of length 𝑘 = 3 ........... 63 

2.20 Conditional sampling of a regular path from an extended one ......................... 65 

2.21 Bidirectional and Metropolis sampling of virtual point lights ......................... 68 

2.22 Geometry for radiance estimation via virtual spherical lights .......................... 69 

2.23 Binary light tree with 3 lightcuts ...................................................................... 71 

2.24 Matrix row-column sampling algorithmic steps ............................................... 72 

 

 



XII 
 

3.1 Sampling techniques for paths of length 𝑘 = 2 ............................................... 99 

3.2 Sampling technique exemplification for paths of length 𝑘 = 5 ..................... 104 

3.3 Inter-frame transformations of objects and paths ........................................... 108 

3.4 In-scope and out-of-scope path invalidations ................................................. 111 

3.5 Identification of collateral paths via connecting edge visibility ..................... 112 

3.6 Primary anchor reconstruction ....................................................................... 115 

3.7 Two-chain reconstruction ............................................................................... 122 

3.8 Terminus anchor reconstruction ..................................................................... 126 

3.9 High-level algorithm description .................................................................... 127 

 

4.1 Phases of the standard Monte Carlo pipeline ................................................. 139 

4.2 Path generation routine ................................................................................... 143 

4.3 Subpaths extension and reignition .................................................................. 144 

4.4 Bidirectional visibility computation ............................................................... 147 

4.5 Visibility computation process ....................................................................... 148 

4.6 Contribution evaluation process ..................................................................... 150 

4.7 Bidirectional path tracing flowchart ............................................................... 153 

4.8 Invalid subpaths identification process .......................................................... 156 

4.9 In-scope identification routine ........................................................................ 157 

4.10 Invalid subpaths identification ....................................................................... 158 

4.11 Reconnection routine ...................................................................................... 160 

4.12 Reconstruction routine.................................................................................... 161 

4.13 Invalid subpaths reconstruction ...................................................................... 162 

4.14 Regeneration routine ...................................................................................... 163 

4.15 Identification of collateral subpaths via implemented methods ..................... 166 

4.16 Path manipulation algorithm flowchart .......................................................... 169 

 

5.1 Equal-sample comparison for the Cornell box cube translation .................... 173 

5.2 Path manipulation algorithm’s convergence behaviour for the 5𝑡ℎ frame ..... 178 

5.3 Intra-subpath connectivity as a function of the subpath length ...................... 180 

5.4 Equal-sample comparison for the Cornell box light translation ..................... 181 

5.5 Positive-negative differences comparison for two frames ............................. 185 

5.6 Equal-sample comparison for the Cornell box camera rotation ..................... 186 



XIII 
 

5.7 Initial configuration for the disassembly test.................................................. 191 

5.8 Equal-sample comparison for the disassembly frame .................................... 192 

5.9 Positive-negative differences comparison for the disassembly frame ............ 194 

5.10 First and second frames of the interior redesign test ...................................... 197 

5.11 Equal-sample comparison for the 2𝑛𝑑 redesign frame .................................... 198 

5.12 Second and third frames of the interior redesign test ..................................... 200 

5.13 Equal-sample comparison for the 3𝑟𝑑 redesign frame .................................... 201 

5.14 Equal-sample comparison for the 4𝑡ℎ redesign frame .................................... 202 

5.15 Baseline and novel algorithm’s convergence behaviour for the 3𝑟𝑑 frame .... 205 

 

6.1 Total memory usage associated with rendering 1 – 64 subpaths per pixel .... 212 

  



XIV 
 

  



XV 
 

List of Tables 

 

2.1 Comparison path manipulation algorithm – 1𝑠𝑡 set of temporal methods ........ 93 

2.2 Comparison path manipulation algorithm – 2𝑛𝑑 set of temporal methods ....... 94 

 

5.1 Test configuration for the rendered scenes ..................................................... 172 

5.2 Execution time breakdown for the Cornell box cube translation ................... 174 

5.3 Reconstruction information gathered from the cube animation frames ......... 177 

5.4 Intra-subpath connectivity as a function of the transformation type .............. 180 

5.5 Execution time breakdown for the Cornell box light translation ................... 182 

5.6 Reconstruction information gathered from the light animation frames.......... 184 

5.7 Execution time breakdown for the Cornell box camera rotation .................... 187 

5.8 Reconstruction information gathered from the camera animation frames ..... 189 

5.9 Execution time breakdown for the disassembly frame ................................... 193 

5.10 Reconstruction information associated with the disassembly frame .............. 195 

5.11 Execution time breakdown for the interior redesign frames .......................... 204 

  



XVI 
 

 

 



XVII 
 

List of Symbols 

 

Symbol Description ([unit of measurement]) Page 

   

𝑥 Point in 3D space 12 

�⃗⃗�  Unit length direction 12 

�⃗⃗� 𝑥 Unit normal at point 𝑥 12 

𝑟 Distance/radius measured from some point 𝑥 ([𝑚]) 12 

𝒮 Surface 12 

𝑑𝐴 Area of an infinitesimal patch usually centred at some point 𝑥 ([𝑚2]) 12 

Ω(�⃗⃗� ) Solid angle ([𝑠𝑟]) 12 

Ω⊥(�⃗⃗� ) Projected solid angle ([𝑠𝑟]) 12 

ℋ+(𝑥) Upper hemisphere centred on 𝑥 12 

ℋ−(𝑥) Lower hemisphere centred on 𝑥 12 

𝑑ω⃗⃗  Differential solid angle ([𝑠𝑟]) 13 

E𝜆 Energy of a photon with wavelength 𝜆 ([𝐽]) 14 

𝑄 Radiant energy ([𝐽]) 14 

Φ Radiant power ([𝑊]) 14 

𝐸(𝑥) Irradiance ([𝑊/𝑚2]) 15 

𝐵(𝑥) Radiosity ([𝑊/𝑚2]) 15 

𝐼(�⃗⃗� ) Radiant intensity ([𝑊/𝑠𝑟]) 15 

𝐿(𝑥, �⃗⃗� ) Radiance ([𝑊/(𝑚2𝑠𝑟)]) 15 

𝜃 Polar angle measured from the normal at 𝑥 16 

𝜙 Azimuth angle measured relative to the tangent at 𝑥 16 

𝑑�⃗⃗� ⊥ Projected differential solid angle ([𝑠𝑟]) 17 

𝑓𝑠(𝑥, �⃗� 𝑖 , �⃗� 𝑜) Bidirectional scattering distribution function ([𝑠𝑟−1]) 18 

𝑓𝑟(𝑥, �⃗� 𝑖, �⃗� 𝑜) Bidirectional reflectance distribution function ([𝑠𝑟−1]) 18 

𝑓𝑡(𝑥, �⃗� 𝑖 , �⃗� 𝑜) Bidirectional transmittance distribution function ([𝑠𝑟−1]) 18 

�⃗� 𝑥  Unit tangent at point 𝑥 19 

�⃗� 𝑥 Unit bitangent at point 𝑥 20 

�⃗⃗�  Unit halfway vector at point 𝑥 21 

𝜌(𝑥) Reflectance of a surface at point 𝑥 22 

𝜌𝑏ℎ(𝑥) Bi-hemispherical reflectance of an isotropically illuminated surface 23 

𝜌(𝑥, �⃗⃗� 𝑖) Directional-hemispherical reflectance for incident direction �⃗⃗� 𝑖 23 

𝜏(𝑥, �⃗⃗� 𝑖) Tracing function determining the first intersection from 𝑥 along �⃗⃗� 𝑖 24 
𝛼𝑚𝑖𝑛(𝑥, �⃗⃗� 𝑖) Boundary distance function associated with the tracing function 24 

ℳ Set of scene surfaces 24 

𝒟 Set of unit directions 25 

ℛ Ray space 25 

𝐾 Scattering operator 26 

𝒫 Propagation/geometric operator 26 

𝑇 Light transport operator 26 

ℐ Identity operator 27 

𝑉(𝑥 ↔ 𝑥′) Visibility function between points 𝑥 and 𝑥′ 28 

𝐺(𝑥 ↔ 𝑥′) Geometric factor between points 𝑥 and 𝑥′ ([𝑠𝑟 𝑚2⁄ ]) 29 



XVIII 
 

Symbol Description ([unit of measurement]) Page 

   

ℱ𝑖→𝑗  Form factor computing radiosity from patch 𝑖 to patch 𝑗 30 

I𝑗 Measurement associated with pixel 𝑗 30 

𝑊(𝑥, �⃗⃗� ) Importance ([𝑊−1]) 30 

𝑓𝑠
∗(𝑥, 𝜔 𝑖 , 𝜔 𝑜) Adjoint bidirectional scattering distribution function ([𝑠𝑟−1]) 31 

𝐾∗ Adjoint scattering operator 31 

𝑇𝑊 Importance transport operator 31 

Ӽ Set of paths of all finite lengths 32 

𝑑𝜇(�̅�) Differential area-product measure defined on a path �̅� 32 

𝑓𝑗(�̅�) Measurement contribution function defined on a path �̅� 32 

𝑑𝜇(𝓇) Differential throughput of a small cone of rays around ray 𝓇  ([𝑚2𝑠𝑟]) 34 

𝜇(𝒟𝓇) Throughput of a non-infinitesimal cone of rays 𝒟𝓇 ([𝑚2𝑠𝑟]) 34 

𝜇𝑚
𝑗 (𝒟�̅�) Measurement contribution throughput on the set of paths 𝒟�̅� 34 

𝜇𝑝(𝒟�̅�) Power throughput on the set of paths 𝒟�̅� ([𝑊]) 34 

𝜇𝑠(𝒟�̅�) Scattering throughput on the set of paths 𝒟�̅� ([𝑚2𝑠𝑟]) 34 

𝜇𝑔(𝒟�̅�) Geometric throughput on the set of paths 𝒟�̅� ([𝑚2𝑠𝑟]) 35 

Γ(𝑥, �⃗⃗� 𝑖 , �⃗⃗� 𝑜)) Transport function used to transfer radiance ([𝑠𝑟−1]) 39 

𝑝(�̅�) Probability density associated with sampling path �̅� 44 

ℰ[𝐹𝑁] Expected value of estimator 𝐹𝑁 44 

𝒱[𝐹𝑁] Variance of estimator 𝐹𝑁 44 

𝛽[𝐹𝑁] Bias of estimator 𝐹𝑁 44 

𝑀𝑆𝐸[𝐹𝑁] Mean squared error of estimator 𝐹𝑁 45 

𝜎[𝐹𝑁] Standard deviation of estimator 𝐹𝑁 45 

𝜖[𝐹𝑁] Efficiency of estimator 𝐹𝑁 45 

𝓉[𝐹𝑁] Time required to evaluate estimator 𝐹𝑁 45 

𝑝(𝑥𝑖) Surface area probability density used to sample vertex 𝑥𝑖 46 

𝑝(�⃗⃗� 𝑜) Solid angle probability density used to sample direction �⃗⃗� 𝑜 46 

𝑝⊥(�⃗⃗� 𝑜) Projected solid angle probability density used to sample �⃗⃗� 𝑜 46 

𝑝(𝑥 → 𝑦) Transition probability density of going from state 𝑥 to state 𝑦 47 

𝜉 Random number 48 

𝑞𝑖 Continuation probability of a path to be extended past vertex 𝑥𝑖 48 

𝑦𝑠−1 Connecting vertex of a light subpath 51 

𝑧𝑡−1 Connecting vertex of an eye subpath 51 

�̅�𝑠,𝑡 Light transport path sampled with 𝑠 light vertices and 𝑡 eye vertices 51 

𝑤𝑠,𝑡(�̅�𝑠,𝑡) Multiple importance sampling weighting function for path �̅�𝑠,𝑡 52 

𝑓(�̅�) Image contribution function defined on a path �̅� 54 

𝒽𝑗(�̅�) Filter function correlating the contribution of a path �̅� with pixel 𝑗 54 

a(�̅� → �̅�) Acceptance probability of a path �̅� mutated from a path �̅� 55 

𝒦𝑟(‖𝑥𝑠
∗−𝑥𝑠‖) Density estimation kernel of radius 𝑟 64 

�̅� Average scene reflectance 67 

𝐶𝑠,𝑡 Contribution of a path �̅�𝑠,𝑡 101 

𝜂𝑠 Throughput of a light subpath 𝑦0…𝑦𝑠−1 101 

𝜂𝑡 Throughput of an eye subpath 𝑧0…𝑧𝑡−1 101 

𝒸𝑠,𝑡 Factors of the measurement contribution function reliant on 𝑦𝑠−1𝑧𝑡−1 101 

𝐶𝑠,𝑡
∗  Unweighted contribution of a path �̅�𝑠,𝑡 102 

ϐ Exponent of the power heuristic used to compute 𝑤𝑠,𝑡(�̅�𝑠,𝑡) 106 



XIX 
 

Symbol Description ([unit of measurement]) Page 

   

𝜑𝑖 The 𝑖𝑡ℎ rendering frame 107 

�̅�𝑠,𝑡
𝜑𝑖 Path used in the rendering of frame 𝜑𝑖 107 

𝑎𝑖+1 Anchor from which an invalid subpath is reconstructed 111 

𝑥0…𝑎𝑖+1 First chain of an invalid subpath 117 

𝑥𝑖+2…𝑥𝑛−1 Second chain of an invalid subpath 117 

Λ𝑖+1,𝒿 Contribution of the tentative connection between 𝑎𝑖+1 and 𝑥𝑖+2≤𝒿≤𝑛−1 118 

𝑞𝑖+1,𝒿
Λ  Probability with which Λ𝑖+1,𝒿 passes the sufficient throughput test 118 

𝜘 Threshold against which Λ𝑖+1,𝒿 is tested 118 

𝑞𝑖+1,𝒿
𝑃  Probability for the tentative connection to occur 120 

𝑞𝑖+1,𝒿 Probability with which the intra-subpath connection is established 121 

𝜍𝓇  The cost of sampling a ray 𝓇 132 

𝜍𝜏 The cost of computing the first scene intersection by tracing a ray 132 

𝜍𝜂 The cost of evaluating the throughput of a vertex 132 

𝜍𝑒𝑣𝑎𝑙 The cost of evaluating the contribution of a path �̅�𝑠,𝑡 132 

𝜍𝑟𝑒𝑐𝑜𝑛 The reconstruction cost per subpath 133 

𝜍𝑞𝑖+1,𝒿
Λ  The cost of computing the probability 𝑞𝑖+1,𝒿

Λ  134 

𝛿𝑖+1,𝒿 Kronecker delta defined for the intra-subpath connection 𝑎𝑖+1 − 𝑥𝒿 134 

𝛿𝑣,𝜏 Kronecker delta defined for the subminimal length of a subpath 135 

𝜍𝑆𝑃 Memory cost per average length subpath 172 

𝜍𝜑𝑖  Memory cost for all the subpaths used to render a frame 172 

  



XX 
 

  



XXI 
 

Acknowledgments  

 

My fascination for light and illumination started with observing the change of colours 

in my mother’s irises, an effect which I can now explain through Rayleigh scattering 

and the concentration of melanin within the stroma. The first contact with the field of 

illumination occurred during my studies at PERCRO, a laboratory of Scuola Superiore 

Sant’Anna, when I came across articles like “Display of the earth taking into account 

atmospheric scattering” (Nishita et al. 1993). The idea of working on ray tracing was 

first suggested by Assistant Professor Franco Tecchia, whom I would like to thank for 

his enthusiasm and great support. Since then my quest has been to learn more about light 

and to develop a thorough understanding of the Monte Carlo light transport algorithms. 

 

The opportunity to do so came with the offer made by the Centre for Digital 

Entertainment, The Media School, Bournemouth University, to study for the degree 

of Engineering Doctorate. The generous grant from the Engineering and Physical 

Sciences Research Council supported both my studies and the deepening of my 

knowledge about cultures. It is truly extraordinary to partake, as a student, in events 

such as world-renowned conferences and attend expert discussions around the globe. 

Consequently, I would like to thank my university supervisor Ian Stephenson for his 

trust vote during the interviews that followed my application for the doctoral 

programme. I would also like to thank my university supervisor Oleg Fryazinov for 

his consideration, trust and encouraging words. I thank both my university supervisors 

for their feedback on this work. I am thankful to the valuable and reliable professionals 

who took care of and abstracted the administrative aspects of my academic activities. 

 

The Cornell box model, used to carry the first three tests examined in chapter 5, was 

constructed after the data provided by the Cornell University (2017). The 3D models 

utilised for the other two investigated tests were downloaded from CGTrader (2017). 

 



XXII 
 

The Engineering Doctorate framework required an industrial context in which to 

conduct the research activities. For me the industrial context was Optis, a software 

development company with considerable experience in the field of optical simulation. 

I discovered Optis at SIGGRAPH 2013 Exhibition and it represented an extraordinary 

opportunity to shape and conduct my research. I would like to thank Director Chris 

Grieve for his exceptionally broad perspective on things, which made possible my 

collaboration with Optis. I would also like to thank my industrial supervisor Nicolas 

Dalmasso, for his optimism and trust, which have conferred me great freedom in 

conducting my research. I also thank him for establishing connections with the French 

side research and development engineers. I thank Engineer Eric Humbert for the 

fruitful discussions on bidirectional path tracing and Markov chains. I thank Jacques 

Diringer for his kindness and assistance with the real-time technology. I would like to 

thank Dominique Chabaud for his kindness and help in discovering beautiful Provence. 

I thank Lorraine Qadeer for helping me settle in and for the numerous sweet delights. 

 

I would like to thank Lecturer Professor Rodica Medan for her refusal to compromise, 

dedication, joyfulness and refinement in teaching English. I thank her and Lecturer 

Professor Vasile Prejmerean for their support in applying for the doctoral programme. 

 

I thank my perspicacious mother and my creative father for their unexhausted love and 

support. I am amazed to see a “perpetuum mobile” type of dedication. I also thank my 

friends and relatives who supported me in countless ways throughout this study period. 

 

I would like to extend my deepest gratitude to Adonai, for guiding me towards the 

Engineering Doctorate studies and for depositing unfailing trust in me. I am grateful 

to experience the fact that in Light there is no variableness, neither shadow of turning.    



1 
 

Chapter 1 

 

Introduction 

 

The current work introduces path manipulation as a tool that extends bidirectional path 

tracing to the temporal domain and thus supports the generation of a wide variety of 

illumination effects for input models subjected to conditions of dynamic geometry. 

Defined as an apparatus of sampling and reuse strategies, path manipulation exploits 

full light transport paths from a temporal perspective, with the purpose of addressing 

the restriction of static geometry commonly associated with Monte Carlo simulations. 

 

Monte Carlo ray tracing is a ubiquitous class of global illumination algorithms that 

generates physically correct light transport solutions for a variety of complex lighting, 

scattering and geometric models. The pivotal feature of these algorithms is robustness, 

defined as input generality, physical plausibility and visual appeal. Though robustness 

motivates the employment of Monte Carlo ray tracing well beyond computer graphics, 

in numerous industries, it is however the effect of the underlying sampling techniques. 

 

A Monte Carlo algorithm forms the image of a 3D model by randomly sampling light 

transport paths and computing Monte Carlo estimators (chapter 2, subsection 2.5.4). 

The sampling techniques (chapter 3, subsection 3.1.1) generate the light transport paths 

progressively, based on the information of the last sampled vertices, such as the local 

probability distribution. They also underlie the evaluation of the path contributions 

(chapter 3, subsection 3.1.2). However, the sampling techniques received little attention 

outside the generation of paths and the evaluation of their contributions. Monte Carlo 

ray tracing algorithms were designed for static environments and thus they discard the 

generated paths immediately after the evaluation of their contributions. Limiting the 

lifespan of paths to a generation-evaluation cycle imposes a static use of paths and of 

sampling techniques. Yet, the potential of the latter can be exploited beyond the path 
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generation-evaluation cycle, through solutions that manipulate paths in a temporal 

aware manner. A Monte Carlo algorithm that processes light transport paths using both 

the spatial and the temporal coordinate avoids the regeneration of the entire path 

collection, reduces the execution costs and obviates the assumption of static geometry. 

 

The balance between accuracy and time complexity has always been the driving force 

of both offline and real-time global illumination, though to different effect. In the case 

of offline global illumination, the efforts were directed towards attaining high degrees 

of accuracy (Whitted 1980; Cook et al. 1984; Kajiya 1986; Veach and Guibas 1994; 

Veach and Guibas 1997; Georgiev et al. 2012; Vorba et al. 2014; Šik et al. 2016). 

Having a strict millisecond frame budget (Bikker and van Schijndel 2013), real-time 

global illumination must attain high-speed executions (Damez et al. 2003), 

notwithstanding the cost of simplifying assumptions (Ritschel et al. 2012). For Monte 

Carlo ray tracing, the accuracy-performance balance gained even more significance 

with the engagement of the former in a multitude of industrial sectors like aerospace, 

automotive industry, electronics, light design, architecture, medicine, luxury goods 

and many others. The issue raised by the industry is no longer a trade-off, but rather a 

duality encompassing accuracy and contained execution time. Fast executions imply 

additional flexibility in accommodating dynamism, an appealing trait in most sectors 

as it permits the spatial altering of objects and thus an evolving perspective of the scene. 

 

Monte Carlo ray tracing is computationally expensive. On the one hand, numerous 

sampling operations, visibility tests and contribution evaluations are required to 

produce results with an acceptable level of variance, i.e. without objectionable high 

frequency noise. On the other hand, Monte Carlo algorithms were designed to render 

static scenes and consequently they fail to accommodate dynamic scenes. The slightest 

changes of a scene are processed by fully recomputing the global illumination solution. 

 

Research in offline Monte Carlo ray tracing produced a series of techniques aimed at 

reducing the variance of the light transport solution and with it the execution costs. 

Variance manifests itself as noise and it affects the image quality. It is the result of 

using insufficient paths to appropriately estimate the illumination of the environment. 
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Different Monte Carlo algorithms, including bidirectional path tracing, reuse paths 

across various measurements. Path mutations, probabilistic connections, combinatorial 

connections, additional sample extraction from existing paths are all techniques that 

reuse paths and consequently reduce the sampling costs and the volume of resources 

required by the global illumination computations. Besides path reuse, most algorithms 

employ techniques that either reduce the tracing cost per individual path (e.g. splitting 

and Russian roulette) or design estimators that reduce variance (e.g. control variates, 

importance sampling, stratified sampling, adaptive sampling or correlated estimators). 

Recent advancements use more sophisticated techniques, like image-space control 

variates (Rousselle et al. 2016) and other reconstruction strategies (Zwicker et al. 2015), 

to reduce variance. However, most of these algorithms operate on static environments 

or render certain effects without a true global illumination solution (Bagher et al. 2013). 

 

Only recently, offline Monte Carlo ray tracing started to manifest an interest in 

exploiting temporal coherence and supporting animated sequences (Manzi et al. 2016). 

 

A considerably larger volume of research has been conducted in classic ray tracing 

(chapter 2, subsection 2.6.2). The goal of a classic ray tracer is to compute the average 

radiance of each pixel, using only several primary and secondary rays. By harnessing 

the computational power of the stream processing technology and by adapting the 

creation and traversal of the acceleration structures to dynamic conditions, classic ray 

tracing can render dynamic scenes at interactive or even real-time frame rates. 

However, the existing algorithms only trace secondary bounces (e.g. shadow rays, 

specular/distributed reflections or transmissions) and exploit temporal coherence only 

by refitting the acceleration structure. Similarly, progressive Monte Carlo ray tracing 

uses the high throughput rates of the stream processing architectures to improve the 

accuracy-performance balance. Unlike classic ray tracing, the progressive algorithms 

compute full light transport solutions. Nevertheless, scene dynamism is not treated 

directly and can be expected solely as a consequence of performance improvements. 

In other words, temporal coherence is not a current objective for progressive methods. 
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The current work approaches the predominantly static nature of Monte Carlo light 

transport simulations by extending bidirectional path tracing towards reusing paths in 

the temporal domain. The tool used for this aim is a set of sampling and reuse strategies. 

 

Sampling techniques and multiple importance sampling (Veach and Guibas 1995) are 

the keys to the robustness of bidirectional path tracing. The sampling techniques are 

used to generate and evaluate the paths of light in a synthetic environment. On the one 

hand, the punctiform nature of the sampling techniques abstracts bidirectional path 

tracing from the input complexity. On the other hand, each sampling technique 

accounts for a specific group of illumination effects. Multiple importance sampling 

optimally combines paths, sampled with various techniques, in low-variance estimators. 

 

The main outcome of the current work is a path manipulation algorithm that uses both 

sampling techniques and multiple importance sampling to reconstruct and reuse paths 

across different frames. The goal is to inject scene dynamism in Monte Carlo light 

transport simulations and supplant the static manipulation of paths with a generation-

evaluation-reuse cycle. Unlike most path reuse solutions (chapter 2, subsection 2.6.3), 

the proposed algorithm reconstructs and reuses paths independently of the subpath and 

scene dynamism types. That is, light and eye subpaths are processed generically and 

regardless of whether the transformations affected the camera, a light source or other 

scene objects. Moreover, a priori knowledge about the animation paths is not required. 

 

Three major steps define the reconstruction process. Firstly, the subpaths invalidated 

by the transformations of the geometry are identified (chapter 3, section 3.3). The 

geometric transformations invalidate either a light subpath, an eye subpath or the 

connecting edge between the two. The disconnection between two subpaths is easily 

solved by reconnecting each subpath to other homologues. The invalid light and eye 

subpaths are of two types, namely in-scope and out-of-scope subpaths. An in-scope 

subpath, is a subpath with an edge obstructed by a dynamic object. An out-of-scope 

subpath, is a subpath invalidated by the movement of one of its vertices. All the invalid 

subpaths could be identified by searching for new intersections on the subpath edges. 

However, optimizations are applied on a per type basis (chapter 4, subsection 4.3.1). 
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Secondly, the invalid subpaths are reconstructed in a manner that restores the disrupted 

particle flow (chapter 3, section 3.4). A novel intra-subpath connectivity strategy is 

used to reconnect the segregated subpath chains into coherent subpaths (chapter 3, 

subsection 3.4.2). The subpath chains are sections of an invalid subpath, which the 

novel strategy processes independently of the homologue that is connected to the 

invalid subpath. The gist is to concurrently exclude and reuse standalone subpath 

chains that would bring no contribution unless reconnected to light or eye chains. 

Should an intra-subpath connection fail, the invalid subpath will be regenerated from 

the new intersection point determined on the disrupted subpath edge. The regeneration 

is performed through the classic, local path sampling techniques (Veach 1998, p. 226).  

 

Lastly, the throughput of the reconstructed subpaths is computed and the contributions 

of the resultant light transport paths are evaluated (chapter 4, subsection 4.3.4). The 

collateral subpaths, i.e. the subpaths with intact geometric structures but invalid 

contributions, are reconnected and re-evaluated as well (chapter 4, subsection 4.3.5). 

 

1.1 Industrial context 

 

The current research was conducted within Optis, a software development company 

with considerable experience in optical simulation. Optis provides a variety of services 

that encompasses lighting visualisation simulation for early design validation, human 

vision simulation, optical shape design, digital vision system position modelling and 

optimisation, optical and photometric simulation within CAD/CAM tools, field of 

view simulation for vehicle design and optical regulation, light management via virtual 

reality and dynamic distortion visualisation for windshield design. The core technology 

which supports the light simulation products is a physically-based rendering engine. 
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Figure 1.1: The OMS2 (left) and OMS4 (right) material scanners (courtesy of Optis). 

 

The rendering engine can simulate a comprehensive range of optical effects for scene 

configurations inclusive of real-world illumination, true material properties and human 

eye dynamics. The illumination models can simulate light, both indoors and outdoors, 

with accurate levels of emission and spectrum distribution. Material properties can be 

either modelled analytically or measured physically with the in-house bidirectional 

scattering distribution function scanners (OMS2/OMS4). Materials are defined by 

spectra and can exhibit volumetric and heterogeneous properties. The OMS2 scanner 

is portable and acquires the reflectance of opaque objects with more than 1 million 

bytes. The OMS4 scanner comprises a fixed installation and measures reflectance, 

transmission and subsurface scattering with a maximum dynamic range of 108 bytes. 

The supported sensors can have either a pure radiometric response or a photometric 

one, i.e. a response which includes the sensitivity of a human eye model, with 

idiosyncrasies like age and visual deficiencies. The photometric sensors can be 

stimulated by any wave in the electromagnetic spectrum, whereas the radiometric ones 

are limited to the visible range. The human eye response is especially important for 

the industries that carry numerous visual acuity, perception and safety tests throughout 

the design process. Figure 1.1 illustrates the OMS2 and OMS4 material scanners. 

 

The complex scene configuration is provided as input to the physically-based renderer, 

which uses unidirectional Monte Carlo ray tracing and/or photon mapping to generate 

the light transport solution. Though robust, the results entail protracted executions. 

Figure 1.2 depicting the 1800×1600 image of a centre high-mount stop lamp rendered 

in 16h:32m:25s, using 9 samples per pixel and 3 workstations with 16 threads launched. 
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Figure 1.2: Light propagation in a centre, high-mount stop lamp (courtesy of Optis). 

 

For its interactive and real-time products, Optis relies on a rendering engine that 

computes both direct and global illumination solutions. The direct illumination is 

computed in real-time with forward or deferred rendering algorithms. The global 

illumination is computed either with a real-time recursive ray tracer or with a 

progressive path tracer. Before the current research, the latter algorithms were the only 

bridging solutions between the offline and the real-time area of development. Recursive 

ray tracing and path tracing are explained in chapter 2 (subsections 2.5.3 & 2.5.4.1). 

 

From Optis’ perspective, the main challenge was to reduce the execution time of the 

offline renderer, while improving the accuracy of the real-time renderer. Accuracy, 

input generality, variety of illumination effects and scene dynamism were the principal 

factors that shaped the current research. The offline renderer accommodated arbitrary 

levels of scene complexity and generated unbiased results, whose errors could be 

computed and used in analysis stages, like industrial standard conformity evaluation 

and chromaticity studies. Accuracy, input generality and variety of illumination effects 

exacted high computational costs. Being computationally less prohibitive, the real-time 

renderer could support dynamism, at the cost of a limited range of illumination effects. 

The current work was developed as a solution that addresses all these conditions and 

injects novelty and progress in the development process. The target was to meet market 

demands with a product that supports dynamism with the quality of an offline renderer. 
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1.2 Summary of contributions 

 

The principal contributions of the current work can be summarized as indicated below: 

• The path manipulation algorithm extends bidirectional path tracing to reuse 

paths in the temporal domain and thus explicitly supports the generation of a 

wide variety of illumination effects for generic models subjected to dynamism. 

• The current work introduces the concepts of immutable contribution and path 

validity as the norms used to identify the subpaths which can be directly reused 

in the rendering of the altered scene. An immutable contribution implies a valid 

path, whose lifespan can be extended from a generation-evaluation cycle to a 

generation-evaluation-reuse one. The subpaths that breach the validity criteria 

are identified as invalid and the notion of anchor is used in their reconstruction. 

• The path manipulation algorithm implements an intra-subpath connectivity 

strategy which reconnects the dysfunctional chains of the invalid subpaths in a 

manner that maximizes path reuse. The novel strategy uses the scattering and 

the stochastic properties of the connecting vertices to establish intra-subpath 

connections. Unlike conventional path generation methods, which use Russian 

roulette only to control the subpath lengths, the proposed strategy applies a 

two-dimensional rejection test also during the connection process. Effectively, 

the intra-subpath connectivity strategy generates subpaths in multiple pieces. 

• The path manipulation algorithm reconstructs and reuses paths independently 

of the subpath or scene dynamism type and without the need for predefined 

animation paths. The light and eye subpaths are processed generically, without 

regard to whether the camera, a light source or another object was transformed. 

These capabilities benefit especially applications that require direct interaction 

with the 3D environment, like the light simulation tools for CAD/CAM systems. 

• The light transport framework provided Optis with the first implementation of 

bidirectional path tracing. It also included the first, in-house implementation of 

the recursive multiple importance sampling schema (van Antwerpen 2011b). 

The path generation approach proposed by Novák et al. (2010) was adapted to 

sample the light transport paths. Unlike the state-of-the-art method, the version 

developed in the light transport framework terminates subpaths stochastically. 
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• The light transport framework was designed modularly and thus the path 

manipulation algorithm ports bidirectional path tracing to the temporal domain 

by replacing only the path generation phase of its pipeline. In reconstructing 

rather than generating paths, the path manipulation algorithm supports scene 

dynamism with the quality of an offline renderer. This capability extends the 

applicability of the path manipulation algorithm to many sectors, among which 

aerospace, automotive industry, light design, architecture and cultural heritage. 

 

1.3 Thesis outline 

 

The remainder of this thesis is structured as follows. Chapter 2 analyses the problem 

domain of the current work and the decisions that shaped the path manipulation 

algorithm. The discussion starts by defining the solid angle and the radiometric 

quantities. Surface scattering peruses the bidirectional scattering distribution function, 

as the main tool that characterizes the local behaviour of light at encountering objects. 

The local illumination mechanism is used as a basis for the inspection of the rendering 

equation and its alternative formulations. The presented light transport theory supports 

the discrimination between miscellaneous global illumination algorithms and the self-

contained theoretical formulation of the path manipulation algorithm. The review of 

various classes of global illumination algorithms reflects the technical review carried 

for Optis and the decisional process that led to the selection of bidirectional path 

tracing as the development foundation of the current work. The chapter concludes by 

inspecting the current work relative to the recent advances in light transport simulation. 

 

Chapter 3 discusses the theoretical foundation of the path manipulation algorithm. The 

local path sampling techniques and the sample contribution evaluation schema are 

detailed based on the original formulation proposed by Veach (1998, p. 302-307). The 

concepts of immutable contribution and path validity are defined using the standard 

framework in which the path sampling techniques operate. These two concepts identify 

the paths that can be immediately reused in the rendering of the transformed scene. 

The discussion proceeds by exploring the first step of the path manipulation algorithm, 

namely the identification of the invalid subpaths and the computation of the anchors. 

The reconstruction of the invalid subpaths is structured in three scenarios, based on 
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whether the anchor follows the first vertex (primary anchor reconstruction), replaces 

the last vertex (terminus anchor reconstruction) or divides a subpath into two chains 

(two-chain reconstruction). The latter scenario presents the intra-subpath connectivity 

strategy and each scenario discusses the evaluation of the reconstructed subpaths. The 

chapter closes with a high-level description and an analysis of the proposed algorithm. 

 

Chapter 4 details the implementation of the light transport framework. The discussion 

starts with an overview of the implemented Monte Carlo ray tracing algorithms. The 

light transport framework was designed modularly and thus the focus of this chapter 

is on the building blocks that define the pipeline of both bidirectional path tracing and 

the path manipulation algorithm. The description of the standard Monte Carlo pipeline 

subsumes not just the bidirectional path tracer, but all the developed Monte Carlo ray 

tracing algorithms. The path generation, contribution evaluation and image synthesis 

phases of the standard pipeline are analysed in terms of building block descriptions. 

Having examined most of the building blocks, the rest of the chapter delineates the 

block that supplants the path generation phase and defines the path manipulation 

algorithm. The chapter concludes with a schematic flow of the propounded algorithm. 

 

Chapter 5 examines the results of the path manipulation algorithm. Several tests on 

the Cornell box are used to benchmark the proposed algorithm against bidirectional 

path tracing. These tests analyse the performance gap between the baseline and the 

novel algorithm and report on the information gathered from the reconstruction process. 

The carried inspection also discusses the factors that influence the intra-subpath 

connectivity. The subsequent tests were ideated to reflect two of the Optis projects and 

emphasize the capabilities of the path manipulation algorithm. One test was devised 

for product assembling/disassembling sequences in CAD/CAM systems and it subjects 

several body parts to affine transformations. The other test combines object, light 

source and camera transformations in a building interior redesign scenario. Both tests 

analyse the performance and the reconstruction information associated with the path 

manipulation algorithm. Their objective is to stress the ability of the novel algorithm 

to reconstruct paths generically and without the need for predefined animation paths. 

 

Chapter 6 reflects on the limitations of the path manipulation algorithm and explores 

future developments. Chapter 7 concludes with an outline of the original contributions. 
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Chapter 2 

 

Background and literature review 

 

This chapter analyses the problem domain of the current work and expounds the design 

decisions that shaped the development of the path manipulation algorithm. It evinces 

the limitations of various light transport algorithms and reflects the decisional process 

that led to selecting bidirectional path tracing as the development foundation of the 

path manipulation algorithm. Ideated as an apparatus of sampling and reuse strategies, 

path manipulation extends the use of light transport paths to the temporal domain, with 

the purpose of injecting scene dynamism in Monte Carlo light transport simulations. 

 

Contextual analysis starts by defining the solid angle and the radiometric quantities. 

Surface scattering builds on the radiometric notions and introduces the bidirectional 

scattering distribution function, as the main tool that defines the local behaviour of 

light at encountering objects. Surface reflectance is further characterized through the 

definition of several derived quantities. The rendering equation is derived from the 

scattering equation and its alternative formulations are presented in the light transport 

section. The surface domain and the path integral formulations detail the structure of 

the rendering equation and underlie different approaches to interpreting and estimating 

it. The light transport theory (sections 2.1 - 2.4) serves to discriminate between global 

illumination algorithms and to theorize the path manipulation algorithm (chapter 3). 

Section 2.5 discusses various classes of global illumination algorithms and reflects the 

technical review, carried for Optis, that led to selecting bidirectional path tracing as 

the development foundation of the current work. The chapter closes by inspecting the 

current work relative to the recent advances in light transport simulation (section 2.6). 

 

2.1 Solid angle 

 

The solid angle is a central notion, used either as a parameter in the definition of certain 

radiometric quantities or as a measure in the specification of light transport operations. 
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Figure 2.1: Measured in steradians [𝑠𝑟], the solid angle expresses the size of a surface 

𝒮 as it is perceived from an observation point 𝑥, found at a distance 𝑟 from the surface. 

 

The solid angle subtended by a surface 𝒮 at a given point 𝑥 is determined by projecting 

𝒮 onto a unit sphere centred around 𝑥 and integrating the resulting cone of directions 

with respect to the surface area. That is, the solid angle is defined by the ratio between 

the area 𝒮 covers on a unit sphere and the squared value of the distance 𝑟 from 𝑥 to 𝒮: 

Ω(�⃗⃗� ) = ∬
|�⃗⃗� ∙ �⃗⃗� 𝒮|𝑑𝐴

𝑟2
𝒮

(2.1) 

where �⃗⃗�  is a unit length direction emanating from 𝑥 and �⃗⃗� 𝒮 is the unit normal of 𝒮 at 

an infinitesimal patch of area 𝑑𝐴. Figure 2.1 illustrates the ideas behind the solid angle. 

 

The projected solid angle (Veach 1998, p. 77) is determined by further projecting the 

set of directions onto the space tangent at 𝑥 and finding the area of the resulting 

surface. The tangent space is given by all the vectors that are orthogonal on the surface 

normal at point 𝑥. For a specific direction �⃗⃗�  the projected solid angle is expressed as: 

Ω⊥(�⃗⃗� ) = |�⃗⃗� 𝑥 ∙ �⃗⃗� |Ω(�⃗⃗� ) (2.2) 

By definition, the solid angle assimilates all the directions that connect point 𝑥 to 

surface 𝒮. The tangent space divides the sphere of directions that emanate from 𝑥 into 

an upper hemisphere ℋ+(𝑥) and a lower hemisphere ℋ−(𝑥). The upper hemisphere 

subsumes the unit vectors situated on the same side as the surface normal at 𝑥. The 

lower hemisphere contains the unit vectors situated on the oppositely directed side of 

the normal. The projected solid angle, for any of the two hemispheres, is found by 

projecting ℋ+/−(𝑥) onto the tangent space and computing the area of the resulting disk. 
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Figure 2.2: The derivation of the infinitesimal solid angle using spherical coordinates. 

 

The projected solid angle can also be derived for arbitrary distributions of directions. 

In the context of Monte Carlo integration, the projected solid angle may be used as a 

measure for the probability densities from which extension rays are sampled. Generally, 

the solid angle is used as a parameter in the definitions of the radiometric quantities. 

 

The differential solid angle is another useful concept, usually expressed in the spherical 

coordinate system, which is the prevalent surface framework in light transport theory: 

𝑑�⃗⃗� = 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 (2.3) 

The rationale of the notation 𝑑�⃗⃗�  is that the differential solid angle encloses a very 

small cone of directions, which can be simply characterized by the given direction ω⃗⃗ . 

Conversion (2.3) is particularly useful for sampling distribution functions, like the 

bidirectional scattering distribution function or the emission distribution of a light 

source. Pharr and Humphreys (2004), use extensively equation (2.3) to analytically 

draw samples from probability distributions. Figure 2.2 derives the differential solid 

angle by defining the area of an infinitesimal patch in the spherical coordinate system. 
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2.2 Radiometric quantities 

 

Radiometry is the science of measuring electromagnetic radiation, of correlating 

measured results with reference data and of validating theoretical hypotheses. The 

radiometric quantities are descriptors of light behaviour. Each quantity defines the 

distribution of energy based on a set of parameters, which is indicative of a specific 

light phenomenon. The current section discusses the prominent radiometric quantities. 

 

2.2.1 Radiant power 

 

The elementary particle in lighting is the photon. In vacuum, a photon moves with the 

speed of light and has an energy that varies inversely proportional to its wavelength 𝜆: 

E𝜆 =
ℎ𝑐

𝜆
(2.4) 

where ℎ refers to Planck’s constant and 𝑐 represents the speed of light in empty space. 

 

The radiant energy (Joules [𝐽]) is the energy of the total number of photons emitted in 

the surrounding environment by a light source. It is expressed as (Jensen 2001, p. 13): 

𝑄 = ∫𝑁𝜆E𝜆𝑑𝜆
𝒟𝑒

(2.5) 

where 𝒟𝑒 is the emission region and 𝑁𝜆 is the number of photons that have wavelength 

𝜆 and energy E𝜆. The radiant energy is a function of time and should have also been 

integrated over some time interval [𝓉𝑖 , 𝓉𝑖+1]. However, only systems in equilibrium are 

considered and thus the time dimension can be omitted. A system in equilibrium entails 

a constant density of photons, which does not change with time (Veach 1998, p. 81). 

 

The radiant power (Watts [𝐽/𝑠]) is defined as the flow of radiant energy per unit time: 

Φ =
𝑑𝑄

𝑑𝓉
(2.6) 
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2.2.2 Irradiance, radiant exitance and radiant intensity 

 

Irradiance ([𝑊 𝑚⁄
2
]) generally measures incident radiation (Veach 1998, p. 81). It is a 

function of position and denotes the radiant power that illuminates a unit surface area: 

𝐸(𝑥) =
𝑑Φ

𝑑𝐴(𝑥)
(2.7) 

As a positional measure, it quantifies the incident radiation relative to the normal 

defined at the observation point. Conversely, the quantity that measures the radiant 

power exiting a unit surface area is referred to as radiant exitance (M) or radiosity (B). 

 

Radiant intensity ([𝑊/𝑠𝑟]) is a directional measure that quantifies incident or exitant 

radiation. It is the power received or emitted per unit solid angle (Jensen 2001, p. 14): 

𝐼(�⃗⃗� ) =
dΦ

𝑑�⃗⃗� 
(2.8) 

When it quantifies exitant radiation, the radiant intensity refers to phenomena like 

emission, reflection or transmission. When a surface is lit by a cone of directions, which 

encloses a unit solid angle at the apex, the radiant intensity measures incident radiation. 

 

2.2.3 Radiance 

 

Radiance (Veach 1998, p. 81) is the cardinal radiometric quantity of light transport 

theory. It quantifies the amount of light emanated from the cone of directions subsumed 

in a unit solid angle that reaches a virtual unit area surface, which is perpendicular on 

the emission axis. Usually, the orientation of the emitting surface is not coincident with 

the emission axis and the unit area around the illuminating point is projected onto the 

emission axis. Radiance is the radiant power per unit projected area and unit solid angle: 

𝐿(𝑥, �⃗⃗� ) =
𝑑2Φ

𝑑𝐴(𝑥)|�⃗⃗� 𝑥 ∙ �⃗⃗� |𝑑�⃗⃗� 
(2.9) 

where |�⃗⃗� 𝑥 ∙ �⃗⃗� | is the cosine between the normal at 𝑥 and the emission axis �⃗⃗� . Figure 

2.3 depicts the geometry involved in the scattering of radiance between two surfaces.  
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Figure 2.3: The radiance that arrives at 𝑑𝐴′ from 𝑑𝐴 along the emitting direction 𝑑𝜔 . 

 

Radiance ([𝑊/(𝑚2𝑠𝑟) ]) is a five-dimensional quantity, evaluated at a given position 

and for a given direction. The directional parameter can be specified in spherical 

coordinates, as a pair of angles (𝜃, 𝜙). The polar angle 𝜃 is measured from the normal 

at 𝑥, whereas the azimuth angle 𝜙 is measured relative to the tangent at 𝑥. In vacuum, 

radiance is constant along a propagation direction (Jensen 2001, p. 15). The latter 

property is extremely important, since all the ray tracing algorithms apply it within 

the environments that lack participating media or have constant indices of refraction. 

 

An alternative to projecting the unit area onto the plane defined by the emission axis, 

is to integrate |�⃗⃗� 𝑥 ∙ �⃗⃗� | in the solid angle and use the projected solid angle as parameter. 

This interpretation may be more cogent as it uses the natural area (Veach 1998, p. 82). 

 

Radiance is computed by both the local and the global illumination framework. The 

bidirectional scattering distribution function (subsection 2.3.1) relates radiance to 

irradiance. The scattering operator (subsection 2.4.1) computes the exitant radiance 

given the incident counterpart, whereas the propagation operator (subsection 2.4.1) 

performs the opposite transformation. The distinction between incident and exitant 

radiance (Veach 1998, p. 83) concerns the transformations undergone by the measured 

photons. At each surface, the directions and the wavelengths of the scattered photons 

depend on the surface properties. Hence, the two types of radiance regard the attributes 

manifested by the photons, at the observed time and location. The rendering equation 

(subsection 2.3.4) computes radiance recursively, at different locations in the scene. 
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2.3 Surface scattering 

 

Surface appearance is an important visual cue in discriminating between the nature of 

different objects. The appearance of an object is controlled by its material character 

and by the finish of its surface. The material character is related to the atomic structure 

of an object and it generally determines the classification of the latter into dielectric, 

metal or composite. The finish of a surface refers to the microscopic geometry of the 

surface. Most real-world objects are not optically smooth, but have varying degrees of 

roughness. For instance, Rayleigh criterion states that a surface is optically smooth 

only if it has a roughness less than 𝜆/(8𝑐𝑜𝑠𝜃), where 𝜆 is the wavelength of the 

incident light and 𝜃 is the incident/polar angle. Together, material character and 

surface finish, determine the behaviour of light at intersecting the surface of an object.   

 

2.3.1 The bidirectional scattering distribution function 

 

The bidirectional scattering distribution function (BSDF) is a mathematical construct 

that describes the local light-scattering properties of a surface. The local scattering 

process begins with an infinitesimal surface being illuminated by a cone of incident 

directions. Assume the observed surface is centred on a point 𝑥 and the cone of 

incident directions describes a unit solid angle around a direction �⃗⃗� 𝑖. The radiometric 

quantity which characterizes the light that arrives at 𝑥 from �⃗⃗� 𝑖 is the incident radiance: 

𝐿𝑖(𝑥, �⃗⃗� 𝑖) =
𝑑2Φ

𝑑𝐴(𝑥)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑖|𝑑�⃗⃗� 𝑖
 

The irradiance measured at point 𝑥 due to direction �⃗⃗� 𝑖 can be expressed as follows: 

𝑑𝐸(𝑥, �⃗⃗� 𝑖) = 𝐿𝑖(𝑥, �⃗⃗� 𝑖)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑖|𝑑�⃗⃗� 𝑖 = 𝐿𝑖(𝑥, �⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
⊥ (2.10) 

The direction �⃗⃗� 𝑖 implies that the light measured at 𝑥 arrives from a given location in 

space. The proportionality between irradiance and projected differential solid angle 

confirms the idea that incident light is transformed based on the surface properties. The 

projected differential solid angle 𝑑�⃗⃗� ⊥ is related to the differential solid angle 𝑑�⃗⃗�  via: 

𝑑�⃗⃗� ⊥ = |�⃗⃗� 𝑥 ∙ �⃗⃗� |𝑑�⃗⃗� ∀�⃗⃗� (2.11) 
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From the impact point 𝑥, light is scattered along a given propagation direction �⃗⃗� 𝑜. The 

quantity which describes the light leaving a unit area in direction �⃗⃗� 𝑜, is the exitant 

radiance. The proportion which relates the exitant radiance to irradiance, according to 

the light-scattering properties of the surface, is exactly the BSDF (Veach 1998, p. 85): 

𝑓𝑠 ∶ ℋ
+ −⁄ (𝑥) ×ℋ+ −⁄ (𝑥) → ℝ, 𝑓𝑠(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜) =

𝑑𝐿𝑜(𝑥, �⃗⃗� 𝑜)

𝑑𝐸(𝑥, �⃗⃗� 𝑖)
=
𝑑𝐿𝑜(𝑥, �⃗⃗� 𝑜)

𝐿𝑖(𝑥, �⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
⊥ (2.12) 

The BSDF is generalized to both the upper and the lower hemisphere, meaning that it 

can describe both the reflection and the transmission phenomenon. By restricting the 

BSDF to the upper or the lower hemisphere, the bidirectional reflectance distribution 

function, respectively the bidirectional transmittance distribution function is obtained.  

 

2.3.2 The bidirectional reflectance distribution function 

 

The bidirectional reflectance distribution function (BRDF) is obtained by restricting 

the domain of the BSDF to the incident and reflected hemispheres (Veach 1998, p. 86): 

𝑓𝑟 ∶ ℋ𝑖(𝑥) × ℋ𝑟(𝑥) → ℝ 

The omission of the signed superscript refers to the fact that the BRDF can be defined 

on either the upper or the lower hemisphere. Reflectance in the upper hemisphere 

describes the most habitually assumed type of reflection, like that from opaque objects. 

On the other hand, reflectance in the lower hemisphere may entail scenarios like the 

total internal reflection on the back of a raindrop, during the formation of the rainbow. 

 

The bidirectional transmittance distribution function (BTDF) is defined by limiting the 

domain of the BSDF to the incident and transmitted hemispheres (Veach 1998, p. 87): 

𝑓𝑡 ∶ ℋ𝑖(𝑥) × ℋ𝑡(𝑥) → ℝ 

As opposed to the incident and reflected hemispheres, which are located on the same 

side of the surface, the incident and transmitted hemispheres are located on opposite 

sides of the surface. Nevertheless, both ℋ𝑖(𝑥) and ℋ𝑡(𝑥) can refer to either ℋ+ or ℋ−
. 

 

The BRDF possesses properties that do not always hold for the BTDF or the BSDF. 
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2.3.2.1 Properties of the BRDF 

 

An important property of the BRDF, known as the Helmholtz law of reciprocity, states 

that the BRDF is independent of the direction in which light flows, i.e. it is symmetric: 

𝑓𝑟(𝑥, �⃗⃗� 𝑖 , �⃗⃗� 𝑜) = 𝑓𝑟(𝑥, �⃗⃗� 𝑜 , �⃗⃗� 𝑖) (2.13) 

This property is fundamental to numerous global illumination algorithms, because it 

enables the generation of transport paths from both the light sources and the camera. 

 

Another property of the BRDF refers to the conservation of energy. A surface cannot 

reflect more light than it receives, i.e. exitant energy must not exceed incident energy: 

∫𝑓𝑟(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑜|𝑑�⃗⃗� 𝑜 ≤ 1

ℋ𝑟

∀�⃗⃗� 𝑖 ∈ ℋ𝑖 (2.14) 

BRDFs characterized by these properties are physical and thus describe real surfaces. 

Veach (1998, p. 175) generalizes these two principles to surfaces with arbitrary BSDF. 

 

2.3.2.2 Parameterizations of the BRDF 

 

Definition (2.12) expresses the BSDF in terms of the unit directions �⃗⃗� 𝑖 and �⃗⃗� 𝑜. Hence, 

both the BRDF and the BTDF can be specified using this unit direction representation. 

 

Another widely used parameterization, adopts the spherical coordinate system for the 

specification of the BSDF. Like the solid angle, the BRDF can be parameterized using 

the polar and azimuth angles (𝜃, 𝜙). The polar angle 𝜃 is the angle made by a given 

direction �⃗⃗�  with the normal at the observed surface point. The azimuth angle 𝜙 is the 

angle between the projection of �⃗⃗�  on the tangent space and the tangent at the surface 

point. Figure 2.4 illustrates the conversion of the unit direction vectors to angular form. 

 

The correlation between the unit direction and the angular representation is given by: 

cos 𝜃 = �⃗⃗� ∙ �⃗⃗� 𝑥

cos 𝜙 = �⃗⃗� ∙ �⃗� 𝑥
(2.15) 
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Figure 2.4: The surface coordinate system defined by the normal �⃗⃗� 𝑥, tangent �⃗� 𝑥 and 

bitangent �⃗� 𝑥 is used to redefine the directions of the BRDF in terms of pairs of angles. 

 

The surface coordinate system is a vital convention that must be adopted whenever 

modelling surface scattering. Hall (1989) draws attention on the necessity of a surface 

reference system, as well as on the importance of having a mapping between the local 

surface and the global coordinate systems. The angular parameterization of the BRDF 

is a local representation, as both directions are defined relative to one of the local 

surface axes. Conversely, the unit direction parameterization is a global representation, 

since the incident and exitant directions of the BRDF do not depend on the local axes. 

 

BRDF representation and parameterization are important especially in the context of 

measured BRDFs. Usually, a real BRDF is sampled at different viewing and lighting 

angles. The result of the measurement process is a table of reflectance values, which 

correspond to the observed viewing and lighting angles. This tabular data can be fitted 

to existing analytic models by using an adequate parameterization. Selecting a good 

parameterization is essential to the fitting process. One parameterization advantage 

refers to attaining an increased separability of the BRDF, i.e. the original BRDF can be 

factorised into distinct bases that can be manipulated independently. Other advantages 

refer to representing the BRDF more compactly and to reducing its memory footprint. 

 



21 
 

 

Figure 2.5: Parameterization via halfway �⃗⃗� (𝜃ℎ, 𝜙ℎ) and difference �⃗⃗� 𝑖(𝜃𝑑 , 𝜙𝑑) vectors. 

 

For example, Rusinkiewicz (1998) proposed the halfway-difference parameterization. 

This representation defines the BRDF in terms of the halfway and difference vectors. 

The halfway vector is the bisector of the angle described by the incoming and the 

viewing direction. The difference vector is the incoming vector in a reference frame 

that establishes the halfway vector as the surface normal. This reference frame can be 

obtained by means of a Gram-Schmidt orthonormalization (Kautz and McCool 1999): 

�⃗⃗� 𝑥
′ = �⃗⃗� =

�⃗⃗� 𝑖 + �⃗⃗� 𝑜
‖�⃗⃗� 𝑖 + �⃗⃗� 𝑜‖

�⃗� 𝑥
′ = −

�⃗⃗� 𝑥 − (�⃗⃗� 𝑥 ∙ �⃗⃗� )�⃗⃗� 

‖�⃗⃗� 𝑥 − (�⃗⃗� 𝑥 ∙ �⃗⃗� )�⃗⃗� ‖

�⃗� 𝑥
′ = �⃗⃗� × �⃗� 𝑥

′ �⃗⃗� 𝑖
′
= [�⃗⃗� 𝑖 ∙ �⃗⃗� , �⃗⃗� 𝑖 ∙ �⃗� 𝑥

′, �⃗⃗� 𝑖 ∙ �⃗� 𝑥
′ ]

(2.16) 

Figure 2.5 illustrates the halfway-difference parameterization relative to the standard 

normal-tangent-bitangent surface coordinates. The image also displays the polar and 

the azimuth angles that correspond to the incident and exitant directions of the BRDF. 

 

The main advantage of the halfway-difference parameterization is the separability of 

the BRDF. The purpose of this representation is to align the retro-reflective and the 

specular peaks with the axes of the reference frame and reduce their dependence on a 

combination of axes to mainly one axis. Minimizing the axis dependence of the 

reflective peaks renders the BRDF separable into different components. Problems 

arise when the halfway vector lies very close to the surface normal. The specialized 

literature proposes alternative parameterizations. For instance, Kautz and McCool 

(1999) discuss the singular value decomposition and the normalized decomposition. 
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However, most parameterizations are case dependent and have their own advantages 

and disadvantages. The most problematic aspect of the singular value decomposition 

is the output of negative values, which are incompliant with the nature of reflectance. 

 

Parameterization is equally important for the efficient representation and storing of 

BRDF data. Measured BRDFs, which are not fitted to an analytic model, preserve the 

distinctive features of the original material. However, they represent a dense collection 

of data, rather than a reflectance model. One disadvantage to using raw data, is the fact 

that the slightest change in material properties requires new BRDF data. Other 

concerns regard the indexing, the value retrieval and the storing of the BRDF data. For 

example, isotropic BRDFs can be stored more compactly due to rotational invariance, 

i.e. 𝜙𝑜  can be ignored. Matusik et al. (2003) used the halfway and difference vectors to 

render isotropic measured BRDFs, at the cost of a decrease in the accuracy of the data. 

 

2.3.3 Surface reflectance 

 

As a specialization of the BSDF (equation 2.12), the BRDF describes the reflection of 

light at a surface point and can be used to derive several quantities that characterize the 

reflectance of a surface. The irradiance field at a surface point enables the deduction of 

the reflected radiance via integration over the incident hemisphere (Jensen 2001, p. 20): 

𝐿𝑜(𝑥, �⃗⃗� 𝑜) = ∫𝑓𝑟(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)

ℋ𝑖

𝑑𝐸(𝑥, �⃗⃗� 𝑖) = ∫𝑓𝑟(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)

ℋ𝑖

𝐿𝑖(𝑥, �⃗⃗� 𝑖)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑖|𝑑�⃗⃗� 𝑖 (2.17) 

 

Reflectance quantifies the amount of incident light reflected by a surface and is defined 

as the ratio between the reflected and the incident flux (Nicodemus et al. 1977, p. 8): 

𝜌(𝑥) =
𝑑Φ𝑟
𝑑Φ𝑖

=
∫ ∫ 𝑓𝑟(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)𝐿𝑖(𝑥, �⃗⃗� 𝑖)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑖||�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑜|𝑑�⃗⃗� 𝑖𝑑�⃗⃗� 𝑜ℋ𝑖ℋ𝑟

∫ 𝐿𝑖(𝑥, �⃗⃗� 𝑖)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑖|𝑑�⃗⃗� 𝑖ℋ𝑖

(2.18) 

where the equivalence 𝑑Φ𝑟 𝑑𝐴(𝑥)⁄ = ∫ 𝐿𝑜(𝑥, �⃗⃗� 𝑜)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑜|𝑑�⃗⃗� 𝑜ℋ𝑟
 was used to define 

the reflected flux and the reflected radiance 𝐿𝑜(𝑥, �⃗⃗� 𝑜) was expanded via its definition. 

Reflectance is also known as the albedo of a material. The flux that is not reflected, is 

either transmitted via the BTDF or absorbed, so that energy is properly accounted for. 
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The bi-hemispherical reflectance is defined in conditions of isotropic illumination, 

which imply a constant incident radiance (Mobley et al. 2017). Reflectance reduces to:  

𝜌𝑏ℎ(𝑥) =
1

𝜋
∫ ∫𝑓𝑟(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑖||�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑜|𝑑�⃗⃗� 𝑖𝑑�⃗⃗� 𝑜
ℋ𝑖ℋ𝑟

(2.19) 

The bi-hemispherical reflectance is known as the Bond, spherical or white-sky albedo. 

 

The directional-hemispherical reflectance is obtained by assuming a fixed incident 

direction (Mobley et al. 2017). This quantity is also known as the black-sky albedo: 

𝜌(𝑥, �⃗⃗� 𝑖) = ∫𝑓𝑟(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑜|𝑑�⃗⃗� 𝑜
ℋ𝑟

(2.20) 

Nicodemus et al. (1977) analyse multiple quantities that describe surface reflectance. 

 

2.3.4 Local illumination and the rendering equation 

 

When light encounters an obstacle, two types of light interaction can be detected. One 

type of light interaction takes place at the boundary between two media, whereas the 

other type occurs as light travels through the intersected object. The boundary/surface 

interaction is modelled by the BSDF. As it passes through an object, light is either 

scattered or absorbed. Its exact behaviour is determined by the electrical properties of 

the traversed object, i.e. by the material character. Metals possess free electrons which 

resonate when excited and emit electromagnetic radiation when returning to their 

ground state. Without free electrons, dielectrics have a low and uniform reflectivity. 

Hall (1989) examines in detail the electrical properties that give a material its character. 

 

Based on the type of incident light, surface interaction can be defined using a direct 

and an indirect component. The direct component subsumes light reflected/transmitted 

towards the viewer directly from the light sources. The indirect/scattered component 

incorporates light arriving at the viewed point from objects other than the light sources. 

Both components are subjected to attenuation factors, surface microgeometry and 

Fresnel coefficients (Hecht 2002, p. 114). The attenuation factors can be discarded for 

environments that lack participating media and comprise objects with constant index 

of refraction. The geometric factor and the Fresnel coefficients are usually subsumed 

in the BSDF. The incident light from a given direction �⃗⃗� 𝑖 is modelled by the BSDF as: 
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Figure 2.6: Boundary reflection (𝑓𝑟) & transmission (𝑓𝑡) (amended from Jurohi 2006). 

 

𝑑𝐿𝑜(𝑥, �⃗⃗� 𝑜) = 𝑓𝑠(𝑥, �⃗⃗� 𝑖 , �⃗⃗� 𝑜)𝐿𝑖(𝑥, �⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
⊥ 

Integrating over incident directions yields the scattering equation (Veach 1998, p. 86): 

𝐿𝑜(𝑥, �⃗⃗� 𝑜) = ∫𝑓𝑠(𝑥, �⃗⃗� 𝑖 , �⃗⃗� 𝑜)𝐿𝑖(𝑥, �⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
⊥

ℋ

(2.21) 

where ℋ denotes either the upper (ℋ+) or the lower (ℋ−) hemisphere. Equation (2.21) 

is also known as the local illumination model (Jensen 2001, p. 20). The scattering 

equation incorporates both the direct and the indirect component, as �⃗⃗� 𝑖 may originate 

at the light sources or at other scene locations. Figure 2.6 shows the direct reflection 

and transmission at 𝑥 and the indirect transmission at 𝑦 caused by the secondary ray �⃗� 𝑡 . 

 

The scattering equation is generalized by defining the incident radiance based on the 

exitant one and by adding an emitted component that represents the scene light sources: 

𝐿𝑜(𝑥, �⃗⃗� 𝑜) = 𝐿𝑒(𝑥, �⃗⃗� 𝑜) + ∫𝑓𝑠(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)𝐿𝑜(𝜏(𝑥, �⃗⃗� 𝑖),−�⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
⊥

ℋ

(2.22) 

where 𝐿𝑖(𝑥, �⃗⃗� 𝑖) = 𝐿𝑜(𝜏(𝑥, �⃗⃗� 𝑖),−�⃗⃗� 𝑖) and 𝜏(𝑥, �⃗⃗� 𝑖) is the tracing/ray-casting function, 

which casts a ray from 𝑥 in the direction �⃗⃗� 𝑖 and determines the first scene intersection: 

𝜏(𝑥, �⃗⃗� 𝑖) = 𝑥 + 𝛼𝑚𝑖𝑛(𝑥, �⃗⃗� 𝑖)�⃗⃗� 𝑖 (2.23) 

𝛼𝑚𝑖𝑛(𝑥, 𝜔 𝑖) represents the boundary distance function defined as (Veach 1998, p. 110): 

𝛼𝑚𝑖𝑛(𝑥, �⃗⃗� 𝑖) = inf{𝛼 > 0 | 𝑥 + 𝛼�⃗⃗� 𝑖 ∈ ℳ} (2.24) 

which yields the first point on the set of scene surfaces ℳ visible from 𝑥 along �⃗⃗� 𝑖. 

Equation (2.22) completely defines the light transport problem and it is known as the 

rendering equation (Kajiya 1986) or the light transport equation (Veach 1998, p. 90). 
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2.4 Light transport 

 

Light transport theory regards the scattering of light in a synthetic environment. The 

rendering equation (Kajiya 1986) expresses the incident radiance as the radiance that 

arrives at the observed point from another scene location. Being of a scattered nature, 

radiance can be evaluated recursively at distinct scene locations. The rendering equation 

is appliable to environments without participating media. In vacuum, radiance is 

constant along a propagation direction and its exitant component must equal the sum 

between the emitted and the scattered component. Even so, the rendering equation is 

complex and it entails an infinite series, which can only be evaluated numerically by 

the existing global illumination algorithms. Consequently, various algorithms evaluate 

the rendering equation recursively, based on different assumptions and/or constraints.  

 

2.4.1 The light transport linear operators 

 

As expressed by the rendering equation, light transport is a two-step process. Surface 

interaction is defined by the scattering equation. From the impact point light propagates 

further through reflections and transmissions. The rendering equation captures the 

notion of propagation in the equality between the incident and the exitant radiance, i.e. 

𝐿𝑖(𝑥, �⃗⃗� 𝑖) = 𝐿𝑜(𝜏(𝑥, �⃗⃗� 𝑖), −�⃗⃗� 𝑖). Without participating media, radiance is constant along 

a propagation direction and thus it can be represented only as it exits a surface, without 

considering every point of its trajectory. That is, the radiance that exits a surface is the 

radiance that reaches the first surface intersected along the propagation direction. The 

known implication is that the incident and the exitant radiance can be interconverted.   

 

Veach (1998) uses the radiance function to describe the distribution of radiance in a 

scene. The radiance function simply associates radiance values to position-direction 

pairs. A position-direction pair (𝑥, �⃗⃗� ) can be interpreted as a ray that has origin 𝑥 and 

direction �⃗⃗� . The entirety of such rays forms the ray space ℛ = ℳ ×𝒟, which is the 

Cartesian product between the set of scene surfaces ℳ and the set of unit directions 𝒟. 
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Using the ray space abstraction, the radiance function can be defined as 𝐿 ∶ ℛ → ℝ. 

Though the negative values of the codomain cannot represent radiance values, they are 

allowed so that the radiance functions can form a space. Veach (1998, p. 107) studies 

the properties which render function spaces desirable, especially for analysis purposes. 

 

The light transport linear operators work on the space of radiance functions and 

interconvert the incident and the exitant radiance. A linear operator is a linear mapping 

between vector spaces. Scattering and propagation are defined by two linear operators. 

 

The scattering operator maps the incident radiance function to its exitant homologue: 

(𝐾𝐿𝑖)(𝑥, �⃗⃗� 𝑜) = ∫𝑓𝑠(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)

𝒟

𝐿𝑖(𝑥, �⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
⊥ (2.25) 

The scattering operation can be concisely expressed as 𝐿𝑜 = 𝐾𝐿𝑖 (Veach 1998, p. 110). 

 

The propagation operator, also known as the geometric operator, defines the reverse 

transformation in that it maps the exitant radiance function to the incident counterpart: 

(𝒫𝐿𝑜)(𝑥, �⃗⃗� 𝑖) = {
𝐿𝑜(𝜏(𝑥, �⃗⃗� 𝑖), −�⃗⃗� 𝑖) 𝑖𝑓 𝛼𝑚𝑖𝑛(𝑥, �⃗⃗� 𝑖) < ∞

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2.26)
  

where 𝜏(𝑥, �⃗⃗� 𝑖) is the tracing function and 𝛼𝑚𝑖𝑛(𝑥, �⃗⃗� 𝑖) is the boundary distance 

function. When 𝛼𝑚𝑖𝑛(𝑥, �⃗⃗� 𝑖) =  ∞, ℳ is not intersected and 𝜏 remains undefined 

(Veach 1998, p. 110). The rectilinear propagation of light can be abridged as 𝐿𝑖 = 𝒫𝐿𝑜 . 

 

The scattering and the propagation operator represent one step in the light transport 

process. Their combination yields the light transport operator 𝑇 = 𝐾𝒫, which maps 

the exitant radiance onto itself, in a single scattering step: 𝑇𝐿𝑜 = 𝐾(𝒫𝐿𝑜) = 𝐾𝐿𝑖 = 𝐿𝑜 . 

 

Using the light transport operator, the rendering equation (2.22) can be formulated as: 

𝐿𝑜 = 𝐿𝑒 + 𝑇𝐿𝑜 (2.27) 
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Its analytic solution can be obtained by inverting the light transport operator, as shown: 

(ℐ − 𝑇)𝐿𝑜 = 𝐿𝑒

𝐿𝑜 = (ℐ − 𝑇)
−1𝐿𝑒

𝐿𝑜 = 𝐿𝑒 + 𝑇𝐿𝑒 + 𝑇
2𝐿𝑒 + 𝑇

3𝐿𝑒 +⋯ =∑𝑇𝑖𝐿𝑒

∞

𝑖=0

(2.28)

 

where ℐ is the identity operator that leaves the radiance function unchanged. The 

expansion in deduction (2.28) is the Neumann series for the equilibrium radiance. This 

series emphasizes two important properties of the rendering equation. Practically, the 

rendering equation cannot be solved in closed-form. Hence, all the global illumination 

algorithms estimate it with more or less stringent constraints. The physical significance 

of the rendering equation is the progressive scattering of light through an environment. 

  

The analytic solution to the rendering equation is a mathematical formalism with 

several implications. Firstly, the numerical techniques used to estimate the rendering 

equation determine the constraint level an algorithm assumes on various light transport 

components, like illumination, surface reflectance models or geometric representation. 

Secondly, the scattering and propagation operators are mechanisms of light transport 

that clarify the relationship between the incident and the exitant quantities. Lastly, all 

the numerical solutions that estimate the rendering equation have a physical substrate. 

 

2.4.2 The surface domain formulation 

 

The rendering equation was defined using the concepts of ray and ray-casting. The 

ray-casting function is central to an entire class of global illumination algorithms. Its 

purpose is to determine the closest ray-scene intersections. The punctiform nature of 

the ray-casting function abstracts the reliant algorithm from the input complexity. 

Light sources, surface models, geometric representation and object interrelations are 

decoupled from the algorithm and can be treated generically. Still, object interrelations 

detail the structure of the rendering equation and define a common basis for various 

algorithms. Two steps detail surface interrelations (Pharr and Humphreys 2004, p. 737). 
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The first step redefines the radiance function and the BDSF using surface locations. 

Veach (1998, p. 106) redefines the domain of the radiance function as a Cartesian square 

on the set of scene surfaces ℳ and recasts the radiance function as 𝐿 ∶ ℳ ×ℳ → ℝ. 

Using this reformulation, each pair (𝑥, �⃗⃗� ) can be expressed as 𝑥 → 𝑥′. A notable 

difference between the two notations is that �⃗⃗�  may indicate a direction towards infinity 

(𝛼𝑚𝑖𝑛 = ∞), while 𝑥 → 𝑥′ specifies only directions between concrete surface locations. 

Hence, the surface-based representation of the radiance function and of the BSDF is: 

𝐿(𝑥 → 𝑥′) = 𝐿(𝑥, �⃗⃗� )

𝑎𝑛𝑑

𝑓𝑠(𝑥 → 𝑥′ → 𝑥") = 𝑓𝑠(𝑥′, �⃗⃗� 𝑖, �⃗⃗� 𝑜)

 

where �⃗⃗� = 𝑥′ − �̂�, �⃗⃗� 𝑖 = 𝑥 − 𝑥′̂  and �⃗⃗� 𝑜 = 𝑥" − 𝑥′̂  are unit vectors with upward directions. 

The hat operator represents a unit-length vector and it is formally defined as follows: 

�̂� =
𝑢

‖𝑢‖
(2.29) 

where ‖𝑢‖ is the length of vector 𝑢. Throughout the current work the hat operator will 

be used to construct unit-length vectors that point from one surface location to another. 

 

The second step, entails a change in the integration variable. The rendering equation 

must be converted from an integral over directions to one over surface areas. To this 

end, the solid angle must be related to the surface area through the following equation: 

𝑑�⃗⃗� 𝑖 =
|�⃗⃗� 𝑥 ∙ 𝑥′ − �̂�|𝑑𝐴(𝑥)

‖𝑥 − 𝑥′‖2
=
|𝑐𝑜𝑠𝜃|𝑑𝐴(𝑥)

‖𝑥 − 𝑥′‖2
(2.30) 

The rendering equation uses the projected solid angle as an integration variable. Hence, 

the projected differential solid angle is obtained by multiplying equation (2.30) with 

the cosine of the angle made by the incident direction 𝑥 → 𝑥′ with the normal at 𝑥’:  

𝑑�⃗⃗� 𝑖
⊥ =

|�⃗⃗� 𝑥′ ∙ 𝑥 − 𝑥
′̂ ||�⃗⃗� 𝑥 ∙ 𝑥′ − �̂�|

‖𝑥 − 𝑥′‖2
𝑑𝐴(𝑥) =

|𝑐𝑜𝑠𝜃′||𝑐𝑜𝑠𝜃|

‖𝑥 − 𝑥′‖2
𝑑𝐴(𝑥) (2.31) 

Equation (2.31) can be applied only when the points 𝑥 and 𝑥′ are mutually visible. The 

visibility between two points is determined through the binary function 𝑉(𝑥 ↔ 𝑥′), 

which associates visibility with a value of 1 and occlusion with a value of 0. Coupling 

the visibility function with the ratio from equation (2.31), yields the geometric factor: 
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𝐺(𝑥 ↔ 𝑥′) = 𝑉(𝑥 ↔ 𝑥′)
|�⃗� 𝑥′ ∙ 𝑥 − 𝑥

′̂ ||�⃗� 𝑥 ∙ 𝑥′ − �̂�|

‖𝑥 − 𝑥′‖2
= 𝑉(𝑥 ↔ 𝑥′)

|𝑐𝑜𝑠𝜃′||𝑐𝑜𝑠𝜃|

‖𝑥 − 𝑥′‖2
(2.32) 

 

The geometric factor represents the change of variable. Applying the conversion steps, 

yields the surface form of the rendering equation (Pharr and Humphreys 2004, p. 738): 

𝐿𝑜(𝑥′ → 𝑥") = 𝐿𝑒(𝑥′ → 𝑥") + ∫𝑓𝑠(𝑥 → 𝑥′ → 𝑥")𝐿𝑜(𝑥 → 𝑥
′)𝐺(𝑥 ↔ 𝑥′)𝑑𝐴(𝑥)

ℳ

(2.33) 

Another designation for equation (2.33) is the three-point form (Veach 1998, p. 221). 

 

One global illumination algorithm, which uses extensively the surface interrelations, 

is radiosity (Goral et al. 1984). Radiosity assesses the energy equilibrium for purely 

diffuse environments. As only diffuse surfaces are considered, the angular dependence 

of the radiance and the BSDF vanishes and only the radiosity exchange between sets 

of patches is computed. Consequently, equation (2.33) reduces to the ensuing equation: 

𝐵(𝑥′) = 𝐵𝑒(𝑥
′) +

𝜌𝑑(𝑥
′)

𝜋
∫𝐵(𝑥)

ℳ

𝐺(𝑥 ↔ 𝑥′)𝑑𝐴(𝑥) (2.34) 

where 𝐵 is the radiosity defined in equation (2.7) and 𝜌𝑑 is the diffuse reflectance 

(Jensen 2001, p. 21). Figure 2.7 expresses the form factor between two diffuse patches. 

 

Other algorithms which benefit from the explicit surface interrelations are the ones 

designated as Monte Carlo ray tracing. These algorithms rely on the path integral 

framework to compute the numerical light transport solution. The path integral 

framework expands the three-point rendering equation (2.33) to an integral over paths. 
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Figure 2.7: The form factor ℱ𝑖→𝑗  used to compute the radiosity from patch 𝑖 to patch 𝑗. 

 

2.4.3 The path integral formulation 

 

The goal of a light transport algorithm is to produce a set of measurements I0, … , I𝓅 

that form the image of a 3D model. Like a real-world camera, a global illumination 

algorithm generates the output image by measuring the responsivity of a matrix of 

hypothetical sensors to the radiance incident on it. Each measurement I𝑗 , 0 ≤ 𝑗 ≤ 𝓅, 

represents a pixel value and describes the sensor responsivity associated with the pixel: 

I𝑗 = ∫𝑊𝑒
𝑗(𝑥, �⃗⃗� 𝑖)𝐿𝑖(𝑥, �⃗⃗� 𝑖)

ℛ

𝑑𝐴(𝑥)𝑑�⃗⃗� 𝑖
⊥ = ∫𝑊𝑒

𝑗(𝑥, �⃗⃗� 𝑖)

ℛ

𝑑2Φ𝑖 (2.35) 

where 𝑊𝑒
𝑗
(𝑥, �⃗⃗� 𝑖) is the sensor responsivity for pixel 𝑗. Known as the measurement 

equation (Veach 1998, p. 89), equation (2.35) integrates responsivity over sensor area. 

 

Veach (1998, p. 91) treats sensor responsivity as an emitted quantity and defines an 

equation which specifies the importance attributed to the light that reaches a sensor: 

𝑊𝑜(𝑥, �⃗⃗� 𝑜) = 𝑊𝑒(𝑥, �⃗⃗� 𝑜) + ∫𝑓𝑠(𝑥, �⃗⃗� 𝑜 , �⃗⃗� 𝑖)𝑊𝑜(𝜏(𝑥, �⃗⃗� 𝑖), −�⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
⊥

ℋ

(2.36) 

Named the importance transport equation, equation (2.36) defines the equilibrium for 

the importance function 𝑊 ∶ ℛ → ℝ, whose values correspond to sensor responsivity 

measurements. Like the radiance function, the importance function has a real codomain, 

which ensures that the properties associated with function spaces are entirely preserved. 
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The importance transport equation evaluates the equilibrium importance by applying 

the BSDF with exchanged directional parameters. The BSDF is not symmetric and the 

transposition of the directions �⃗⃗� 𝑖 and �⃗⃗� 𝑜 yields the adjoint BSDF (Veach 1998, p. 93): 

𝑓𝑠
∗(𝑥, �⃗⃗� 𝑖 , �⃗⃗� 𝑜) = 𝑓𝑠(𝑥, �⃗⃗� 𝑜 , �⃗⃗� 𝑖) (2.37) 

The adjoint BSDF is a pivotal concept, especially for bidirectional algorithms, as it 

evaluates importance. The BSDF models the scattering of light by a surface. Importance 

flows in the opposite direction of light and thus it requires that the BSDF be adapted 

to reflect a scattering process in the reversed direction of the light flow. Hence, the 

BSDF 𝑓𝑠(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜) evaluates radiance, whereas the adjoint BSDF 𝑓𝑠
∗(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜) 

evaluates importance. In terms of propagation, if �⃗⃗� 𝑖 is always the sampled direction 

then, the BSDF scatters importance particles and the adjoint BSDF scatters photons. 

 

Using the linear operators, the importance transport equation can be reformulated as: 

𝑊𝑜 = 𝑊𝑒 + 𝐾
∗𝒫𝑊𝑜 (2.38) 

where 𝐾∗ is the adjoint scattering operator, which differs from the scattering operator 

𝐾 in using the adjoint BSDF, i.e. (𝐾∗𝑊𝑖)(𝑥, �⃗⃗� 𝑜) = ∫ 𝑓𝑠
∗(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)𝒟

𝑊𝑖(𝑥, �⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
⊥. 

The geometric operator is self-adjoint, since the first intersection point from which 

incident particles arrive does not change with the evaluated quantity. That is, 𝒫 

converts radiance and importance in the same way 𝐿𝑖 = 𝒫𝐿𝑜 and 𝑊𝑖 = 𝒫
∗𝑊𝑜 = 𝒫𝑊𝑜. 

Consequently, the measurement equation can be restated as shown in the following: 

I𝑗 = ∫𝑊𝑒𝒫(ℐ − 𝑇)−1𝐿𝑒
ℛ

≍ ∫𝒫(ℐ − 𝐾∗𝒫)−1𝑊𝑒𝐿𝑒
ℛ

(2.39) 

where 𝑇𝑊 = 𝐾
∗𝒫 is the importance transport operator, 𝐿𝑜 = 𝐾𝐿𝑖 and 𝑊𝑜 = 𝐾

∗𝑊𝑖. 

Veach (1998) minutely discusses the adjoint transport principles briefly presented here. 

 

The goal of the path integral formulation is to express the measurement equation as an 

integral over the space of paths. The three-point rendering equation implies a recursive 

sampling of the scene, one surface at a time. The path integral formulation expands 

the three-point rendering equation by considering a sequence of surface scattering 

events. That is, surfaces are interrelated through the explicit modelling of the light flow. 
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Mathematically, the measurement equation can be redefined on the space of paths as: 

I𝑗 = ∫𝑓𝑗(�̅�)𝑑𝜇(�̅�)
Ӽ

(2.40) 

where �̅� = 𝑥0…𝑥𝑘 is a path of length 𝑘 and Ӽ is the set of paths of all finite lengths: 

Ӽ = ⋃ Ӽk

𝑘<∞

𝑘=1

(2.41) 

𝑑𝜇(�̅�) is the differential area-product measure defined over 𝑥𝑖 ∈ ℳ, with 0 ≤ 𝑖 ≤ 𝑘: 

𝑑𝜇(�̅�) = 𝑑𝐴(𝑥0)…𝑑𝐴(𝑥𝑘) (2.42) 

 

The path integral formulation (2.40) can be fully derived by expanding equation (2.33): 

I𝑗 = ∑ ∫ 𝐿𝑒(𝑥0 → 𝑥1)𝐺(𝑥0 ↔ 𝑥1)∏𝑓𝑠(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1)𝐺(𝑥𝑖 ↔ 𝑥𝑖+1)

𝑘−1

𝑖=1ℳ𝑘+1

𝑘<∞

𝑘=1

𝑊𝑒
𝑗(𝑥𝑘−1 → 𝑥𝑘)𝑑𝐴(𝑥0)…𝑑𝐴(𝑥𝑘) (2.43)

 

The integrand in equation (2.43) can be abstracted in the measurement contribution 

function 𝑓𝑗 (Veach 1998, p. 223). For a path of length 𝑘, 𝑓𝑗 is defined as shown below: 

𝑓𝑗(�̅�) = 𝐿𝑒(𝑥0 → 𝑥1)𝐺(𝑥0 ↔ 𝑥1)

∏𝑓𝑠(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1)𝐺(𝑥𝑖 ↔ 𝑥𝑖+1)

𝑘−1

𝑖=1

𝑊𝑒
𝑗(𝑥𝑘−1 → 𝑥𝑘)

(2.44) 

 

The physical interpretation of the path integral formulation is that of light scattering 

through an environment as many times as indicated by the length of the sampled path. 

For a path �̅� = 𝑥0…𝑥4, the measurement contribution function is defined as follows: 

𝑓𝑗(�̅�) = 𝐿𝑒(𝑥0 → 𝑥1)𝐺(𝑥0 ↔ 𝑥1)𝑓𝑠(𝑥0 → 𝑥1 → 𝑥2)

𝐺(𝑥1 ↔ 𝑥2)𝑓𝑠(𝑥1 → 𝑥2 → 𝑥3)𝐺(𝑥2 ↔ 𝑥3)

𝑓𝑠(𝑥2 → 𝑥3 → 𝑥4)𝐺(𝑥3 ↔ 𝑥4)𝑊𝑒
𝑗
(𝑥3 → 𝑥4)

 

Figure 2.8 shows the terms of the measurement contribution function for 𝑥̅ = 𝑥0 …𝑥4 . 
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Figure 2.8: Emission, scattering and measurement events on a path of length 𝑘 = 4. 

 

The path integral formulation has several advantages. One advantage is the explicit 

modelling of the emission, scattering and measurement events along full transport 

paths. Instead of focusing on a quantity scattered between two surfaces, the path 

integral formulation operates on the geometric construct of path, with the result that a 

higher degree of generality is obtained. Equation (2.43) abstracts the dichotomy 

between light and importance particles. The greatest advantage of this formulation is 

the ability to construct paths arbitrarily, from the camera, a light source or any other 

scene object. The flexibility of arbitrarily constructing paths underlies the development 

of sampling techniques and of Monte Carlo solutions. Multiple importance sampling 

(Veach and Guibas 1995), bidirectional path tracing (Veach and Guibas 1994) and 

Metropolis light transport (Veach and Guibas 1997) rely on the path integral framework. 

 

2.4.3.1 The throughput measures  

 

The path integral formulation constitutes a natural framework for the definition of 

several path space measures. Generally known as throughput, each measure has its 

own physical meaning. Veach (1998, p. 243) distinguishes four throughput measures. 
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The cone of directions subsumed in a unit solid angle around a ray 𝓇(𝑥, �⃗⃗� ), impinges 

on a unit surface area 𝑑𝐴 with an energy proportional to the ensuing product measure: 

𝑑𝜇(𝓇) = 𝑑𝜇(𝑥, �⃗⃗� ) = 𝑑𝐴(𝑥)𝑑�⃗⃗� ⊥ (2.45) 

The differential throughput, 𝑑𝜇(𝓇) measures the light-carrying capacity of a small cone 

of rays. The throughput of a non-infinitesimal cone of rays 𝒟𝓇 can be obtained by 

simply integrating the differential throughput measure 𝑑𝜇 over the domain 𝒟𝓇, giving: 

𝜇(𝒟𝓇) = ∫𝑑𝐴(𝑥)𝑑�⃗⃗� ⊥

𝒟𝓇

(2.46) 

 

The measurement contribution throughput quantifies the amount of light that a set of 

paths 𝒟�̅� brings to a measurement I𝑗. It is obtained by integrating the measurement 

contribution function 𝑓𝑗(𝑥̅) with respect to the differential area-product measure 𝑑𝜇(𝑥̅): 

𝜇𝑚
𝑗 (𝒟�̅�) = ∫𝑓𝑗(�̅�)

𝒟�̅�

𝑑𝜇(�̅�) (2.47) 

This throughput is a fundamental measure used to derive the other throughput measures. 

 

The power throughput is obtained by omitting the importance function 𝑊𝑒
𝑗
 from 𝑓𝑗(�̅�): 

𝜇𝑝
𝑘(𝒟�̅�) = ∫𝐿𝑒(𝑥0 → 𝑥1)𝐺(𝑥0 ↔ 𝑥1)∏𝑓𝑠(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1)𝐺(𝑥𝑖 ↔ 𝑥𝑖+1)

𝑘−1

𝑖=1

𝑑𝜇(�̅�)

𝒟�̅�

(2.48) 

As the measurement contribution function is dependent on the path length, 𝜇𝑝
𝑘(𝒟�̅�) 

quantifies the power carried by a set of 𝑘-length paths. The length-independent measure 

quantifies the power within the entire scene and is defined as shown in the following: 

𝜇
𝑝
(𝒟�̅� ⊂ Ӽ) = ∑ 𝜇

𝑝
𝑘(𝒟�̅� ⊂ Ӽ𝑘)

𝑘<∞

𝑘=1

(2.49) 

 

The scattering throughput assumes uniform light source emission and thus is defined 

by extracting the emitted radiance function from the integrand of the power throughput: 

𝜇𝑠
𝑘(𝒟�̅�) = ∫𝐺(𝑥0 ↔ 𝑥1)∏𝑓𝑠(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1)𝐺(𝑥𝑖 ↔ 𝑥𝑖+1)

𝑘−1

𝑖=1𝒟�̅�

𝑑𝜇(�̅�) (2.50) 
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The scattering throughput indicates how the power-carrying capacity of a set of paths 

is modulated by the geometry and the surface properties of a given environment. The 

length-independent scattering throughput is defined similarly to the power analogue 𝜇𝑝 . 

 

The geometric throughput assumes both uniform light source emission and perfectly 

random scattering. The latter condition entails a constant BSDF over the hemisphere: 

𝑓𝑠(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1) =
1

2𝜋
 

Hence, the geometric throughput further decouples the power-carrying capacity of a 

set of paths from the surface properties. Like the other measures, it is length-dependent:  

𝜇𝑔
𝑘(𝒟�̅�) = (

1

2𝜋
)
𝑘−1

∫𝐺(𝑥0 ↔ 𝑥1)

𝒟�̅�

…𝐺(𝑥𝑘−1 ↔ 𝑥𝑘)𝑑𝜇(�̅�) (2.51) 

The length-independent counterpart is defined similarly to the power throughput 𝜇𝑝 

and it constitutes a generalization of the throughput measure defined in equation (2.46). 

Veach (1998, p. 245) remarks that scenes with finite surface area do not entail a finite 

geometric throughput, since the geometric factors (equation 2.32) do not absorb energy 

as light propagates along the sampled paths. Without participating media, absorption 

occurs at the BSDF level. To determine the extent to which a set of paths is modulated 

by the surface properties or by the geometry, the ratio 𝜇𝑠(𝒟𝑥̅)/𝜇𝑔(𝒟𝑥̅) can be evaluated. 
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2.5 Light transport algorithms 

 

In the absence of participating media, the light transport problem is entirely described 

by the rendering equation (2.22). If the light transport linear operators are the 

mathematical tools used to derive the analytic solution of the rendering equation, in 

practice the light transport algorithms can only provide numerical solutions. The 

approximative nature of various global illumination algorithms stems from the limited 

resources and from the infiniteness entailed by the Neumann series (equation 2.28). 

 

The literature abounds in techniques which compute global illumination based on a 

set of resource constraints (Ritschel et al. 2012; Davidovič et al. 2014). From the early 

stages of the current work, an important prerequisite for the development of the light 

transport framework (chapter 4) was the ability to simulate a wide range of illumination 

effects. This imperative represented the starting point and the canon used to identify 

the algorithm that would act as a development foundation and steppingstone towards 

the set goal. The goal is to support scene dynamism for high-quality light transport 

simulations. The current section reflects the technical review carried for Optis, which 

led to the decisions that shaped the development of the path manipulation algorithm. 

 

Though inappropriate for the set objectives, the classes of radiosity and precomputed 

light transport algorithms were part of the contextual analysis and contributed towards 

making an informed decision. Due to its generality, the class of point-based sampling 

algorithms represented the strongest candidate for the development of the light 

transport framework. Having identified an appropriate algorithmic basis, section 2.6 

analyses the current work relative to the recent advances in light transport simulation. 
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2.5.1 Radiosity 

 

Radiosity (Goral et al. 1984) was presented in subsection 2.4.2 as one of the algorithms 

which extensively use surface interrelations. Radiosity computes a view-independent, 

global illumination solution and can be credited with the introduction of physically-

based simulation to image synthesis. The algorithms in this class originated from the 

field of radiative heat transfer, where they were designated as finite element methods. 

However, the original algorithm (Goral et al. 1984) is restrictive and computationally 

expensive. Firstly, the form factors are computed between each pair of scene patches, 

with the result that the computational cost increases with the complexity of the scene. 

For a scene discretized into 𝑁 patches, radiosity requires 𝑂(𝑁2) memory to store the 

matrix of form factors and 𝑂(𝑁3) time to solve the equations via Gaussian elimination. 

Secondly, the radiosity solution depends on the tessellation of the scene. When the 

level of tessellation is inadequate, the illumination solution suffers from artefacts, such 

as blurred shadow edges. Lastly, radiosity cannot generate effects other than diffusion. 

 

Research in this area brought many improvements to the original algorithm. Immel et 

al. (1986) extended the original radiosity algorithm to account for glossy reflections. 

Building on hierarchical radiosity (Hanrahan et al. 1991), Smits et al. (1994) proposed 

a clustering algorithm that reduces both the form factors and the visibility calculations. 

 

Still, many radiosity algorithms are affected by severe constraints. The dependence on 

the mesh tessellation is the major limitation in accurately simulating light transport. 

The previously cited advances display limitations that either increase the complexity 

of the algorithm or generate artefacts. Immel et al. (1986) use the concept of hemicube 

to compute patch visibility. The hemicube introduces additional operations, like the 

projection of the environment on each of the cubes that surround the point samples of 

a patch. The approximation of the directional hemisphere with the hemicube and the 

interpolation of the radiance among exitant directions produce discretization artefacts. 

Figure 2.9 depicts the projection operation on the hemicube centred on a patch sample. 
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Figure 2.9: The projection of the environment on the imaginary hemicube centred on 

the point sample 𝑥 of one of the scene patches (amended from Immel et al. 1986, p. 4). 

 

The clustering algorithm for hierarchical radiosity (Smits et al. 1994), uses ray tracing 

to supplant certain operations. Specifically, the hemicube construct is replaced by ray 

casting, so that visibility may be computed in a much simpler and efficient manner. 

However, the main disadvantage remains the mesh tessellation. The actual rendering 

step processes a different mesh from the one used during the computation of the global 

solution. Having two separate meshes, implies at least the recomputation of the form 

factor between the source and the target point, if not the recalculation of their visibility. 

 

Interactive radiosity algorithms also restrict the simulation process through various 

assumptions. One end of the assumption spectrum refers to limiting the types of objects 

that can be present in a scene. Dachsbacher et al. (2007) construct their algorithm by 

exclusively accepting opaque solids. The other end of the assumption spectrum refers 

to defining and using hypothetical constructs, which do not have exact correspondents 

in the rendered scene. Dachsbacher et al. (2007) define a linear operator based on a 

hypothetical BTDF, which does not have a physical correspondent in the used scene.  

 

Such assumptions and the input dependence, excluded radiosity from being deemed a 

potential algorithmic foundation for the development of the light transport framework. 
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2.5.2 Precomputed light transport 

 

Precomputed light transport is a class of global illumination algorithms, described by 

two phases. The pre-processing phase derives the essential light transport information, 

so that the rendering phase may benefit from interactive or even real-time framerates. 

 

Most precomputed light transport algorithms use a light transport operator to model 

the light interactions between object patches. The light transport operator is defined 

like the scattering operator (equation 2.25), but also includes the visibility function 𝑉: 

(𝒯𝐿𝑖)(𝑥, �⃗⃗� 𝑜) =∫𝑓𝑠(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)

𝒟

𝑉(𝑥, �⃗⃗� 𝑖)|�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑖|𝐿𝑖(𝑥, �⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖

=∫Γ(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)𝐿(𝑥, �⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
𝒟

(2.52)
 

The transport function Γ absorbs the BSDF, the visibility function and the cosine term. 

 

The pre-processing phase projects both the radiance and the transport function onto 

orthonormal bases. The result of the projection operation is a set of coefficients, which 

modulates the basis functions and reconstructs the original radiance/transport function.  

 

The rendering phase involves the integration of the product between the radiance and 

the transport function. Using the decomposed illumination and transport information, 

the reflected radiance, at each visible point, is simply computed as the inner product 

between the vector of radiance coefficients and the vector of transport coefficients:  

𝐿𝑜(𝑥, �⃗⃗� 𝑜) = ∫(∑𝐿𝑘𝒷𝑘(�⃗⃗� 𝑖)

𝑘

)(∑Γ𝓃(𝑥, �⃗⃗� 𝑜)𝒷𝓃(�⃗⃗� 𝑖)

𝓃

)𝑑�⃗⃗� 𝑖
ℋ

= ∑∑𝐿𝑘Γ𝓃(𝑥, �⃗⃗� 𝑜) ∫𝒷𝑘(�⃗⃗� 𝑖)𝒷𝓃(�⃗⃗� 𝑖)𝑑�⃗⃗� 𝑖
ℋ𝓃𝑘

= ∑∑𝐿𝑘Γ𝓃(𝑥, �⃗⃗� 𝑜)𝛿𝑘𝓃(�⃗⃗� 𝑖)

𝓃𝑘

=∑𝐿𝑘Γ𝑘(𝑥, �⃗⃗� 𝑜)

𝑘

= 𝐿 ∙ Γ (2.53)

 

where 𝐿𝑘 is a radiance coefficient, 𝒷𝑘 is a radiance basis function, Γ𝓃 is a transport 

coefficient, 𝒷𝓃 is a transport basis function and lastly 𝛿𝑘𝓃 is the Kronecker delta. 



40 
 

 

Figure 2.10: Self-transfer rendering for diffuse & glossy objects (Sloan et al. 2002, p. 2). 

 

The above equation computes only direct illumination and light source occlusion. Each 

higher-order term of the Neumann series (equation 2.28) requires a similar derivation.  

Moreover, the above mechanism can be applied only under the assumption of distant 

illumination. The low frequency nature of distant light, reduces the dimensionality of 

the radiance function and with it the light transport computational complexity. Uniform 

illumination does not vary with position, but depends solely on the incident direction.  

 

Precomputed radiance transfer (Sloan et al. 2002) uses this assumption to render the 

self-shadowing and the interreflection pattern of a diffuse or glossy object. For diffuse 

objects, the dimensionality of the transport function reduces as well. Because a purely 

diffuse BRDF is uniform over the surface, the dependence on the exitant direction can 

be eliminated. Thus, diffuse object rendering reduces to a simple dot product between 

the radiance and the transport coefficients vectors. Rendering glossy objects requires 

additional computations, since the transport function preserves its dimensionality. 

Even so, the admissible glossy surfaces are limited to rotationally invariant BRDFs. 

Figure 2.10 compares the rendering of self-transfer between diffuse and glossy objects. 

diffuse surface self transfer

glossy surface self transfer
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By computing the light transfer between points located on distinct objects, precomputed 

radiance transfer (Sloan et al. 2002) can simulate the effect of an object on its vicinity, 

i.e. inter-object illumination. However, the influence of multiple objects on the same 

receiver was acknowledged as computationally intractable, despite the simplifying 

assumption of constant lighting across the neighbourhoods of the influencing objects. 

 

The premises of distant illumination and radially symmetric surface definitions cause 

the high frequency details (e.g. sharp shadows, specularity and caustics) to be blurred. 

 

Kautz et al. (2002) remove the limitation on surface definitions by processing generic 

BRDFs. Without the assumption of rotational invariance, the spherical harmonics 

coefficients of the BRDF and the spherical harmonics projection of the incident light 

are both computed during the pre-processing phase. The rendering phase still computes 

a simple dot product between the light and the BRDF coefficients vectors. However, 

the assumption of low frequency illumination is maintained. Moreover, precomputed 

radiance transfer is used to generate the self-shadowing and interreflection patterns. 

 

Ng et al. (2004) achieve all frequency relighting in conditions of distant illumination. 

The sharp illumination effects are retained by computing the integral of three projected 

factors. The pre-processing phase projects the scattering and the visibility function 

onto the Haar wavelet basis. For each frame, the radiance function is projected onto 

the Haar basis and is non-linearly approximated with the 𝑁 largest wavelets. The 

product between the light, the scattering and the visibility coefficients is accumulated 

at each point. The triple product wavelet approach removes the low pass filter effect. 

Still, the algorithm fails to render anisotropic BRDFs and higher-order light bounces. 

 

Wang et al. (2005) extend precomputed light transport to render different types of 

illumination effects, such as translucency. Nevertheless, effects like transparency or 

refracted caustics are not supported. Moreover, the assumption of distant illumination 

is preserved to the detriment of other illumination models. Precomputed light transport 

achieves high performance, at the cost of input generality and illumination effects. 
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2.5.3 Ray tracing 

 

Ray tracing is one of the most general classes of global illumination algorithms. Its 

generality stems from the punctiform nature of the ray-casting function, whose role is 

to trace rays and determine their closest intersections with the scene geometry. The 

determined intersections are called point samples. Because ray tracing algorithms use 

point sampling to estimate the illumination of a scene, they are also known as point 

sampling algorithms. Their major advantage is the abstraction from input complexity. 

Compared to radiosity and precomputed light transport, the ray tracing algorithms 

avoid the contrivances related to geometric representation, incident illumination and 

surface properties. All components are treated generically and without precomputation. 

 

Recursive ray tracing (Whitted 1980) was the algorithm which popularized ray 

tracing. Together with radiosity, ray tracing can be credited with advancing the 

synthesis of realistic images towards physically-based light transport simulations. 

 

A classic ray tracing algorithm computes the average radiance of each pixel, by 

tracing several primary rays through the pixel. The primary rays carry the radiance 

reflected by the first determined point samples to the observer. At every primary 

sample, the direct illumination is computed via the scattering equation (2.21). A point 

sample is illuminated by a light source only if the shadow ray traced between them is 

unobstructed by other objects, i.e. the visibility function for the shadow ray returns 1. 

From the primary samples, secondary rays are generated and traced in reflected or 

transmitted directions, according to the surface BSDFs. The radiance of the secondary 

samples is computed analogously to the primary samples, via the scattering equation. 

 

Recursive ray tracing (Whitted 1980) extends the evaluation of the scattering equation 

to higher-order specular rays. From the primary samples, rays are recursively traced 

through various specularly reflected or transmitted bounces, as indicated by the 

surface BSDFs. At each impact point, radiance is computed using the scattering 

equation. It is precisely this recursive evaluation that gave the algorithm its name. 

Jensen (2001, p. 37) provides the pseudocode for the recursive ray tracing algorithm.  
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Figure 2.11: Sampling in distributed ray tracing (amended from Cook et al. 1984, p. 5). 

 

However, recursive ray tracing is not a solution to the rendering equation. Firstly, the 

higher-order rays are traced only in specularly reflected or transmitted directions. The 

indirect illumination arising from other types of scattering, like translucency or gloss, 

is simply omitted. Furthermore, the purely specular sampling precludes the simulation 

of soft shadows, depth of field and motion blur. In terms of Heckbert’s notation (1990), 

the recursive ray tracing algorithm is limited to generating paths of the form 𝐿𝐷? 𝑆∗𝐸. 

 

Distributed ray tracing (Cook et al. 1984) overcomes the limitations of recursive ray 

tracing by sampling rays according to the BSDF, rather than assuming 𝛿 directions for 

the reflected and transmitted rays. The random sampling of the BSDF enables the 

simulation of fuzzy phenomena, like translucency and gloss. Moreover, effects like 

depth of field, motion blur and penumbrae are generated by sampling lenses, time and 

light sources. However, distributed ray tracing focuses most of its effort on generating 

higher-order rays, which contribute less to variance than primary rays (Kajiya 1986). 

Figure 2.11 illustrates the concepts of distributed ray tracing for a single primary ray. 

 

The random sampling ideas, which underlie distributed ray tracing, inspired the first 

Monte Carlo ray tracing algorithm. Kajiya (1986) defines the light transport problem 

as an integral that can be solved by means of randomly sampled light transport paths. 
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2.5.4 Monte Carlo ray tracing  

 

The goal of a Monte Carlo ray tracing method is to estimate the measurement equation: 

I𝑗 = ∫𝑓𝑗(�̅�)𝑑𝜇(�̅�)
Ӽ

 

 

Since the publication of path tracing (Kajiya 1986), plural algorithms use Monte Carlo 

integration to solve the rendering equation. The approach is to randomly sample light 

transport paths, based on a probability density function 𝑝, and compute the estimator: 

I𝑗 ≈ 𝐹𝑁 =
1

𝑁
∑
𝑓𝑗(�̅�𝑖)

𝑝(�̅�𝑖)

𝑁

𝑖=1

(2.54) 

where 𝑁 is the number of sampled paths and �̅�𝑖 is a path sampled according to the 

probability density 𝑝(�̅�𝑖). Equation (2.54) represents an unbiased estimation of the 

measurement I𝑗 . This means that on average, the estimator 𝐹𝑁 yields the correct result:  

ℰ[𝐹𝑁] = ℰ [
1

𝑁
∑
𝑓𝑗(�̅�𝑖)

𝑝(�̅�𝑖)

𝑁

𝑖=1

] =
1

𝑁
∑∫

𝑓𝑗(�̅�)

𝑝(�̅�)
𝑝(�̅�)𝑑𝜇(�̅�) = ∫𝑓𝑗(�̅�)𝑑𝜇(�̅�) = I𝑗

ӼӼ

𝑁

𝑖=1

(2.55) 

where ℰ[𝐹𝑁] is the expected value of the estimator. The expected value or expectation 

of a random variable 𝑌 = 𝑓(𝑋) is defined as ℰ[𝑌] = ℰ[𝑓(𝑋)] = ∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝜇(𝑥)
𝒟𝑥

. 

The variance of the random variable 𝑌 is 𝒱[𝑌] = ℰ[(𝑌 − ℰ[𝑌])2] = ℰ[𝑌2] − ℰ2[𝑌]. 

 

The estimator 𝐹𝑁 is unbiased if the expected value of the error 𝐹𝑁– I𝑗 is equal to zero: 

𝛽[𝐹𝑁] = ℰ[𝐹𝑁 − I𝑗] = ℰ[𝐹𝑁] − I𝑗 = 0 (2.56) 

 

A Monte Carlo estimator, with bias 𝛽 ≠ 0, is consistent only if (Veach 1998, p. 43): 

lim
𝑁→∞

𝛽[𝐹𝑁] = lim
𝑁→∞

𝒱[𝐹𝑁] =0 (2.57) 
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To determine the accuracy of an estimator, the mean squared error can be computed:  

𝑀𝑆𝐸[𝐹𝑁] = ℰ [(𝐹𝑁 − I𝑗)
2
]

= ℰ[𝐹𝑁
2] − 2ℰ[𝐹𝑁I𝑗] + ℰ[I𝑗

 2] = ℰ[𝐹𝑁
2] − 2ℰ[𝐹𝑁]I𝑗 + I𝑗

 2

= (ℰ[𝐹𝑁
2] − ℰ2[𝐹𝑁]) + (ℰ

2[𝐹𝑁] − 2ℰ[𝐹𝑁]I𝑗 + I𝑗
 2)

= 𝒱[𝐹𝑁] + (ℰ[𝐹𝑁] − I𝑗)
2
= 𝒱[𝐹𝑁] + 𝛽

2[𝐹𝑁] (2.58)

 

Equation (2.58) underlines a major difference between an unbiased and a consistent 

estimator. For an unbiased estimator, the error can be determined by simply evaluating 

its variance, i.e. 𝑀𝑆𝐸[𝐹𝑁] = 𝒱[𝐹𝑁], since 𝛽[𝐹𝑁] = 0. Moreover, the variance of an 

unbiased estimator decreases linearly with the number of samples (Veach 1998, p. 39): 

𝒱[𝐹𝑁] = 𝒱 [
1

𝑁
∑
𝑓𝑗(�̅�𝑖)

𝑝(�̅�𝑖)

𝑁

𝑖=1

] =
1

𝑁2
𝒱 [∑

𝑓𝑗(�̅�𝑖)

𝑝(�̅�𝑖)

𝑁

𝑖=1

] =
1

𝑁2
∑𝒱[

𝑓𝑗(�̅�𝑖)

𝑝(�̅�𝑖)
]

𝑁

𝑖=1

=
1

𝑁
(∫

𝑓𝑗
2(�̅�)

𝑝(�̅�)
𝑑𝜇(�̅�)

Ӽ

− I𝑗
 2) =

1

𝑁
𝒱 [
𝑓𝑗(�̅�)

𝑝(�̅�)
] =

1

𝑁
𝜎2 [

𝑓𝑗(�̅�)

𝑝(�̅�)
] (2.59)

 

where �̅�𝑖 are independent random paths and the property 𝒱[ℴ𝑌𝑖] = ℴ
2𝒱[𝑌𝑖] holds for 

any random variable 𝑌𝑖 = 𝑓𝑗(�̅�𝑖) 𝑝(�̅�𝑖)⁄ . Expression 𝒱[𝐹1] = 𝒱[𝑓𝑗(�̅�) 𝑝(�̅�)⁄ ] refers 

to an estimator defined on a single random path �̅� and 𝜎[𝐹1] = √𝒱[𝐹1] is the standard 

deviation of the estimator 𝐹1. Equation (2.59) is the mathematical argument behind 

the commonly known fact that Monte Carlo algorithms suffer from variance. Their 

convergence rate is 𝑂(1/√𝑁), given the root mean squared error is 𝜎[𝐹𝑁] =
1

√𝑁
𝜎[𝐹1]. 

 

The error of a consistent estimator cannot be determined as easily, because bias is not 

only a function of the number of samples, but also depends on I𝑗 (Veach 1998, p. 44). 

 

Without bias, the efficiency of an estimator can be measured relative to the running 

time that is used to sample and evaluate the light transport paths (Veach 1998, p. 45): 

𝜖[𝐹𝑁] =
1

𝒱[𝐹𝑁]𝓉[𝐹𝑁]
(2.60) 
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To use Monte Carlo integration, a method must evaluate the measurement contribution 

function 𝑓𝑗 (equation 2.44) and the probability density function 𝑝. The probability 

density function 𝑝 is defined relative to the differential area-product measure 𝑑𝜇 and 

depends on the random generation of the point samples that compose the given path. 

 

A random path �̅� = 𝑥0…𝑥𝑘 has a probability density equal to (Veach 1998, p. 227): 

𝑝(�̅�) =
𝑑𝑃(�̅�)

𝑑𝜇(�̅�)
=
𝑑𝑃(𝑥0…𝑥𝑘)

𝑑𝜇(𝑥0…𝑥𝑘)
=
𝑑𝑃(𝑥0)…𝑑𝑃(𝑥𝑘)

𝑑𝐴(𝑥0)…𝑑𝐴(𝑥𝑘)
=∏

𝑑𝑃(𝑥𝑖)

𝑑𝐴(𝑥𝑖)

𝑘

𝑖=0

(2.61) 

where 𝑑𝑃(𝑥𝑖) 𝑑𝐴(𝑥𝑖)⁄  is the probability per unit area with which vertex 𝑥𝑖 was sampled. 

 

The vertex of a path can be sampled either from a distribution over the surface area, 

or by randomly casting a ray. In the first case, 𝑑𝑃(𝑥𝑖) 𝑑𝐴(𝑥𝑖)⁄  can be used as such. 

When a vertex 𝑥𝑖 is sampled by determining the intersection of a random ray with the 

scene geometry, the probability of the random ray must be converted to a probability 

measured with respect to the surface area. Let ray 𝓇(𝑥𝑖−1, 𝑥𝑖−1 → 𝑥𝑖) be sampled from 

a probability density 𝑝⊥(𝑥𝑖−1 → 𝑥𝑖) measured with respect to the projected solid angle. 

The projected solid angle probability density and the area homologue are related via: 

𝑑𝑃(𝑥𝑖)

𝑑𝐴(𝑥𝑖)
=
𝑑𝑃(𝑥𝑖)

𝑑�⃗⃗� 𝑜⊥
∙
𝑑�⃗⃗� 𝑜

⊥

𝑑𝐴(𝑥𝑖)
⟺ 𝑝(𝑥𝑖) = 𝑝

⊥(�⃗⃗� 𝑜)
𝑑�⃗⃗� 𝑜

⊥

𝑑𝐴(𝑥𝑖)
(2.31)
⇔   𝑝(𝑥𝑖) = 𝑝

⊥(�⃗⃗� 𝑜)𝐺(𝑥𝑖−1 ↔ 𝑥𝑖) (2.62)

 

where �⃗⃗� 𝑜 = 𝑥�̇� − 𝑥�̇�−1̂ . Should �⃗⃗� 𝑜 be sampled from a probability density measured with 

respect to the solid angle then, by equation (2.11), the area probability density becomes: 

 𝑝(𝑥𝑖) =
𝑝(�⃗⃗� 𝑜)

|�⃗⃗� 𝑥𝑖−1 ∙ �⃗⃗� 𝑜|
𝐺(𝑥𝑖−1 ↔ 𝑥𝑖) = 𝑝(�⃗⃗� 𝑜)

|�⃗⃗� 𝑥𝑖 ∙ −�⃗⃗� 𝑜|

‖𝑥𝑖−1 − 𝑥𝑖‖2
(2.63) 

where equality 𝑝⊥(�⃗⃗� 𝑜) = 𝑝(�⃗⃗� 𝑜)(𝑑�⃗⃗� 𝑜 𝑑�⃗⃗� 𝑜
⊥⁄ ) = 𝑝(�⃗⃗� 𝑜)(1 |�⃗⃗� 𝑥 ∙ �⃗⃗� 𝑜|⁄ ) holds ∀𝑥 ∈ ℳ. 

 

Using either equation (2.62) or (2.63), the probability density 𝑝(�̅�) can be computed 

as the product of all the probability densities with which the vertices of the path �̅� were 

sampled. Every path �̅� is sampled by a particular strategy, with a probability density 

𝑝(�̅�). Consequently, the estimator (2.54) subsumes different path sampling strategies. 
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2.5.4.1 Path tracing 

 

Path tracing was the first unbiased Monte Carlo ray tracing algorithm used in computer 

graphics. Introduced together with the rendering equation (Kajiya 1986), path tracing 

generates paths that begin at the camera and are of the form 𝐿(𝑆|𝐷)∗𝐸. It extends the 

ideas of distributed ray tracing, by sampling locally defined probability distributions. 

 

Since a path starts at the camera, its first vertex is either sampled anywhere on the lens 

or is determined by tracing a ray, from a random position in a pixel, towards the lens. 

The ray that connects the image plane to the lens also determines the first intersection 

with the scene. The ensuing vertices are generated by sampling directions according 

to the BSDFs and computing the closest scene intersections. The last vertex is sampled 

directly on the light source. A path terminates if it randomly intersects a light source. 

 

Unlike distributed ray tracing, path tracing does not generate multiple rays per point 

sample. At each point sample, the number of rays generated by distributed ray tracing 

is proportional to the amount of light scattered towards the camera. Instead of focusing 

its computational effort on a ray tree, path tracing samples just one ray per impact point. 

Since the branching factor is always 1, path tracing assigns the same workload to both 

primary and higher-order rays, with the result that variance reduces as compared to 

distributed ray tracing. Performance increases due to less rays traced per point sample. 

 

Mathematically, path tracing is a Markov chain estimation of the Neumann series 

(equation 2.28). A stationary, discrete Markov chain is a sequence of random variables 

�̅� = 𝑥0…𝑥𝑘, with an initial probability density 𝑝(𝑥0) and 𝑘 transition probability 

densities 𝑝(𝑥𝑖−1 → 𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑘. Some Markov chain states are absorbing, because 

they lack an exitant transition. As a path, a Markov chain can be evaluated via Monte 

Carlo integration, with its probability being computed through equations (2.61) - (2.63). 
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The interesting problem that arises in light transport, is the estimation of an arbitrarily 

long series (equation 2.43) with a finite amount of terms. Monte Carlo integration 

randomly samples the estimand 𝑓𝑗 and weights the computed values using the sampling 

probabilities. However, the question really posed is how to stop sampling after a finite 

number of terms without introducing bias. The Monte Carlo answer is Russian roulette. 

 

Russian roulette addresses the problem of evaluating samples whose contributions are 

relatively small. Given an estimator composed of several contributions 𝐹 = ∑ 𝐹𝑖
𝑁
𝑖=1 , 

Russian roulette decides whether to assess 𝐹𝑖 via the ensuing test (Veach 1998, p. 67): 

𝐹𝑖
∗ = {

1

𝑞𝑖
𝐹𝑖 𝜉 < 𝑞𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2.64)

 

where 𝐹𝑖 represents the 𝑖𝑡ℎ contribution subsumed in estimator 𝐹, 𝜉 is a random 

number and 𝑞𝑖 is the probability with which 𝐹𝑖 is evaluated. The evaluation probability 

𝑞𝑖 is chosen based on an estimate of 𝐹𝑖. The estimator 𝐹𝑖
∗ depends on the evaluation 

probability 𝑞𝑖 and it is unbiased whenever 𝐹𝑖 is: ℰ[𝐹𝑖
∗] = 𝑞𝑖 ∙ (

1

𝑞𝑖
) ℰ[𝐹𝑖] + (1 − 𝑞𝑖) ∙ 0⏟                  

ℰ[𝐹𝑖]

.  

 

Russian roulette can be used to terminate infinite random walks without introducing 

bias. Given a random path �̅� = 𝑥0…𝑥𝑖, Russian roulette decides whether �̅� should be 

extended or terminated. The decision relies on the contribution that would be obtained 

by further extending �̅�. A similar test to (2.64) is used with the continuation probability 

𝑞𝑖 chosen according to the amount of light that is scattered from 𝑥𝑖 to 𝑥𝑖+1. Veach 

(1998, p. 310) concretely defines 𝑞𝑖 . Though the meaning of 𝑞𝑖 depends on the test type, 

𝑞𝑖 will be hereafter used as a continuation probability. Russian roulette can also be used 

to reduce visibility tests (Veach 1998, p. 317). Russian roulette increases variance, yet 

it can also increase efficiency (2.60) by reducing the running time (Veach 1998, p. 67). 

 

Path tracing can use Russian roulette to unbiasedly terminate the sampling of the 

vertices that are not located on the lens or on a light source. The use of Russian roulette 

causes the probabilities densities (2.62) and (2.63) to become a product between the 

probability density used to sample a new vertex and the continuation probability 𝑞𝑖. 
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Figure 2.12: Sampling a unidirectional path with connection to a random light vertex. 

 

The measurement contribution function 𝑓𝑗 has meaning only if the last path vertex is 

sampled on a light source. When a path randomly intersects a light source, it terminates 

naturally and its contribution can be evaluated through equation (2.54). Considering 

only paths that randomly intersect the light sources would prove inefficient, as paths 

have a low probability of randomly intersecting the light sources. In such cases, the 

solution would converge extremely slowly and hence would suffer from high variance. 

 

Instead, path tracing algorithms randomly select a point on a light source and connect 

the given path to the sampled light vertex. Both Veach (1998, p. 311) and Pharr and 

Humphreys (2004, p. 723-728) discuss strategies for sampling vertices on the light 

sources. With their light vertices in place, paths can be evaluated via estimator (2.54). 

Jensen (2001, p. 43) provides a high-level description of the path tracing algorithm. 

 

Compared to distributed ray tracing, path tracing can utilize its performance gain to 

generate multiple paths per pixel and thus further reduce variance. However, variance 

reduction is a difficult task for path tracing and generally for Monte Carlo ray tracing. 

Kajiya (1986) introduces five variance reduction techniques, whereas Veach (1998) 

provides a detailed treatment of the four predominant variance reduction categories. 

 

Path tracing samples paths unidirectionally. Figure 2.12 depicts the sampling of a 

unidirectional path, which is randomly terminated at 𝑥4 and is connected to the random 

light vertex 𝑥5. The adjoint BSDF is used to evaluate the throughput at each vertex. 
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Figure 2.13: The formulation of bidirectional path tracing as a connectivity strategy 

between light & eye subpath vertices (amended from Lafortune and Willems 1993, p. 5). 

 

2.5.4.2 Bidirectional path tracing 

 

Bidirectional path tracing (Lafortune and Willems 1993; Veach and Guibas 1994) 

generalizes path tracing by sampling paths from both the camera and the light sources.  

 

Veach and Guibas (1994; 1995) formulate bidirectional path tracing as a family of 

path sampling techniques. Each technique samples a path with a specific probability 

density. The path integral framework supports both the computation of the probability 

densities and the combination of all the probability densities with which a path could 

have been sampled by the distinct techniques. Known as multiple importance sampling 

(Veach and Guibas 1995), the latter operation serves to create low-variance estimators. 

 

Lafortune and Willems (1993) describe bidirectional path tracing as a method that uses 

shadow rays to connect the vertices of a light subpath to the vertices of an eye subpath. 

With this approach, the generation of paths is fixed on a specific connectivity strategy. 

Figure 2.13 illustrates this bidirectional path connectivity and evaluation strategy. 
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Figure 2.14: A light transport path of length 𝑘 = 4, created by concatenating a 

light subpath with 2 vertices to an eye subpath with 3 vertices (Veach 1998, p. 299). 

 

Bidirectional path tracing can construct paths by connecting a subpath sampled from 

the light source to a subpath sampled from the camera. Still, paths can be constructed 

generically and the connectivity strategy between the light and eye vertices can vary. 

For example, each eye subpath can be connected to a randomly selected light subpath. 

Conversely, a subset of eye subpaths can be connected to the same light subpath. Such 

connectivity strategies can be regarded as optimizations for efficient path generation.  

 

Another difference between the two versions of bidirectional path tracing, refers to the 

set of estimators. Lafortune and Willems (1993) do not account for estimators defined 

on paths with zero or one eye vertices and with zero light vertices. Thus, the effects 

associated with the missing estimators are not simulated. For example, the absence of 

naïve path tracing estimators precludes effects like caustics and directly visible lights. 

Other differences regard direct lighting strategies, non-local sampling strategies, image 

independent solutions and variance reduction techniques (Veach 1998, p. 326). Hence, 

the ensuing discussion focuses on the approach proposed by Veach and Guibas (1994). 

 

A path generated with bidirectional path tracing consists of a light and an eye subpath. 

Both subpaths are stationary, discrete Markov chains. The light subpath is generated 

from the light source with 𝑠 random vertices 𝑦0…𝑦𝑠−1. The eye subpath is generated 

from the camera with 𝑡 random vertices 𝑧0…𝑧𝑡−1. The subpath lengths are determined 

via Russian roulette (Veach 1998, p. 309). Vertices 𝑦𝑠−1 and 𝑧𝑡−1 are connected to form 

a light transport path �̅� ≡ �̅�𝑠,𝑡 = 𝑦0…𝑦𝑠−1𝑧𝑡−1…𝑧0. The vertices that are connected 

are called connecting vertices and the edge between them is called the connecting edge. 

Figure 2.14 shows the bidirectional sampling of a light transport path of length 𝑘 = 4. 
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The above designation is not limited to the end vertices. Veach (1998, p. 300) proposes 

an approach that joins each prefix of the light subpath to each suffix of the eye subpath 

and thus efficiently draws additional samples from the same pair of light and eye 

subpaths. Within this context, all the prefix-suffix pairs represent connecting vertices.  

 

When subpaths randomly intersect the lens or a light source, they represent complete 

unidirectional paths and they need not be connected to other subpaths. The rest of the 

subpaths must be connected, even if they comprise a single vertex. Zero and one vertex 

subpaths require special treatment and they are discussed by Veach (1998, p. 310-314). 

 

A complete light transport path can be sampled in more than one way, through a family 

of sampling techniques. These sampling techniques are obtained by varying the number 

of vertices in both the light and the eye subpath. For a path of length 𝑘 = 𝑠 + 𝑡 − 1 

there are 𝑘 + 2 different sampling techniques that can be used to generate the path. 

Each of the 𝑘 + 2 sampling techniques corresponds to a different probability density 

over the space of paths. This means that each technique samples different factors from 

the measurement contribution function 𝑓𝑗 (equation 2.44) and thus accounts for distinct 

illumination effects. Bidirectional path tracing takes advantage of all these nuances and 

combines all the 𝑘 + 2 sampling techniques in the following multi-sample estimator: 

𝐹 =∑∑𝑤𝑠,𝑡(�̅�𝑠,𝑡)
𝑓𝑗(�̅�𝑠,𝑡)

𝑝𝑠,𝑡(�̅�𝑠,𝑡)𝑡≥0𝑠≥0

(2.65) 

where 𝑤𝑠,𝑡 is the weighting function associated with a combination strategy, like the 

power heuristic (Veach and Guibas 1995). Chapter 3, subsection 3.1.1, details the local 

path sampling techniques. Chapter 3, subsection 3.1.2, delineates the computation of 

the above multi-sample estimator. The latter subsection provides complete derivations 

for the measurement contribution function, probability density and weighting function.  

 

A complete light transport path cannot be constructed, if the connecting vertices are 

obstructed. Likewise, two subpaths cannot be connected if the BSDF of one connecting 

vertex does not scatter light towards the other vertex. For example, the connection 

attempt fails whenever a connecting vertex has a purely specular BSDF. The rationale 
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is that the solid angle around the specular direction is zero and so is the probability for 

the connecting edge to be established. In fact, bidirectional path tracing can only 

connect subpaths that form 𝐷𝐷 edges, simply because there is a very low probability 

for a specular direction to coincide with the connecting edge. Generally, bidirectional 

path tracing cannot handle Dirac delta functions, like point or directional light sources, 

pinhole cameras and perfectly specular surfaces. Path vertices from 𝛿 functions have 

zero probability of being sampled by other techniques than the one that generated them. 

 

There are various remedies to such difficulties. The simplest, is to restrict the use of 

Dirac delta components and thus benefit from unbiased results. The second solution is 

to allow Dirac delta components at the cost of various estimators. For example, point 

light sources could be admitted to the detriment of estimators defined on light subpaths 

with zero or one vertices. Veach (1998) proposes non-local path sampling approaches.  

 

Bidirectional path tracing also struggles with environments that represent the outdoors 

or portals, such as light seeping at the edges of a window covered by an opaque curtain. 

However, bidirectional path tracing is a state-of-the-art algorithm that can robustly 

simulate diverse illumination effects for many physically valid scene configurations. 

Jensen (2001, p. 47) shows a schematic flow of the bidirectional path tracing algorithm. 

 

2.5.4.3 Metropolis light transport 

  

Metropolis light transport (Veach and Guibas 1997) was introduced as a more efficient 

approach to sampling the path space. The fundamental idea is to generate the Markov 

chains over the path space, according to the contributions they bring to the ideal image. 

 

Unlike path tracing and bidirectional path tracing, Metropolis light transport does not 

explore the path space by generating numerous different Markov chains. Instead, it 

samples the path space locally, by applying small mutations to a number of seed paths. 
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Consider for the moment that a single seed path �̅�0 is generated according to a 

convenient probability density 𝑝0. The goal is to generate a sequence of paths �̅�1… �̅�𝑁, 

in which each path �̅�𝑖+1 is obtained by mutating its predecessor �̅�𝑖, 0 ≤ 𝑖 ≤ 𝑁 − 1. 

The applied mutations can take any form and they usually modify a few path vertices. 

 

Each mutation has an acceptance probability that is defined based on the contributions 

of the mutated and mutant paths. Metropolis light transport computes the acceptance 

probabilities, such that every path �̅�𝑖 is distributed proportionally to the image 

contribution function (Veach 1998, p. 332). The image contribution function 𝑓(�̅�𝑖) 

relates the light flow along �̅�𝑖 to image pixels and it is similar to the measurement 

contribution function 𝑓𝑗 (equation 2.44). Veach (1998, p. 338) abstracts the sensor 

terms in a filter function 𝒽𝑗(�̅�) and redefines the measurement equation as follows:  

I𝑗 = ∫𝒽𝑗(�̅�)𝑓(�̅�)𝑑𝜇(�̅�)
Ӽ

(2.66) 

where 𝒽𝑗(�̅�) correlates the contribution of �̅� with pixel 𝑗 and the image contribution 

function 𝑓 contains the remaining terms of the measurement contribution function 𝑓𝑗. 

The measurement I𝑗 can be evaluated via Monte Carlo integration (estimator 2.54). 

 

Every random path �̅�𝑖 is sampled with a probability density 𝑝𝑖 (Veach 1998, p. 334): 

𝑝𝑖(�̅�) = ∫𝑝(�̅� → �̅�)𝑝𝑖−1(�̅�)𝑑𝜇(�̅�)

Ӽ

(2.67) 

where 𝑝 is the transition function that represents the probability density associated 

with mutating �̅�𝑖−1 = �̅� into �̅�𝑖 = �̅�. The mutation of the path �̅�𝑖−1 usually involves 

adding, replacing, deleting or perturbing a few vertices. Veach (1998) proposes three 

types of mutations: bidirectional mutations, perturbations and lens subpath mutations. 

Figure 2.15 illustrates a bidirectional mutation together with a caustic perturbation. 
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Figure 2.15: Example of bidirectional mutation (top) & caustic perturbation (bottom). 

The bidirectional mutation deletes the edge 𝑥1𝑥2 of the path 𝑥̅ = 𝑥0𝑥1𝑥2𝑥3 and 

replaces it with a new vertex 𝑧1 yielding the mutated path �̅� = 𝑥0𝑥1𝑧1𝑥2𝑥3. The caustic 

perturbation generates a new path by perturbing the light source ray and tracing it 

through similar bounces to the initial path (amended from Veach 1998, p. 348 & 353). 

 

A tentative sample is accepted/rejected based on the acceptance probability a(�̅� → �̅�). 

The acceptance probability is derived by assuming an equilibrium distribution, i.e. 𝑝𝑖−1 

is assumed to be proportional to 𝑓. To preserve the equilibrium, any transition must be 

proportional to the image contribution function and must be equipoised by its reverse: 

𝑓(�̅�)𝑝(�̅� → �̅�)a(�̅� → �̅�) = 𝑓(�̅�)𝑝(�̅� → �̅�)a(�̅� → �̅�) (2.68) 

This condition is known as the detailed balance. Due to parity reasons the reversed 

transition is always accepted via a(�̅� → �̅�) = 1. By maximizing the probability of the 

reversed transition, the acceptance probability can be defined as (Veach 1998, p. 336): 

a(�̅� → �̅�) = min {1,
𝑓(�̅�)𝑝(�̅� → �̅�)

𝑓(�̅�)𝑝(�̅� → �̅�)
} (2.69) 
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However, the probability densities associated with �̅�𝑖 become proportional to 𝑓 only 

as 𝑁 → ∞. The closer the mutated paths are to the seed path �̅�0, the stronger they are 

influenced by it. The pervasive effect of the seed path causes the solution to suffer from 

start-up bias. Veach (1998, p. 339) suggests a method that eliminates the start-up bias. 

 

So far, a single path was considered for the generation of the mutated paths. In practice, 

it is convenient to sample multiple initial paths and seed the Metropolis light transport 

algorithm with each of them. The seeds can be generated with other unbiased path 

sampling algorithms, like bidirectional path tracing. Jensen (2001, p. 49) provides a 

high-level description of the Metropolis light transport algorithm, using multiple seeds. 

 

Metropolis light transport is a sophisticated algorithm that can simulate difficult light 

configurations, such as portals concentrating most of the scene illumination. Because 

it samples the path space locally, Metropolis light transport can detect and efficiently 

explore regions with significant illumination. However, it is quite sensitive to the type 

of mutations. For example, restrictive mutations may cause the algorithm to get caught 

in some region of the path space, with the result that the solution converges slower. 

Mutations and their associated probabilities may also lead to correlation and variance.  

 

Metropolis light transport concludes the section on the versatile and robust class of 

Monte Carlo ray tracing algorithms. These algorithms can simulate a variety of light 

effects for generic scene configurations. Hence, Monte Carlo ray tracing fulfils the 

prerequisite of the light transport framework and was identified as a development basis. 
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2.5.5 Photon mapping 

 

Photon mapping (Jensen 2001) is a two-pass global illumination algorithm, aiming to 

create images of generic environments free of high-frequency noise. Founded on the 

idea that many environments contain regions over which illumination varies smoothly, 

photon mapping computes light information at various scene locations and stores it in 

a structure that can be used afterwards to render the environment. The first phase of the 

photon mapping algorithm is photon tracing, whereas the second phase is rendering. 

 

In the photon tracing phase, the photons emitted from the light sources are traced 

several bounces until they are absorbed. At diffuse impact points, the photon and its 

information (e.g. position, incoming direction, power, etc.) are stored in the photon 

map. The photon map is a global cache which enables the estimation of the radiance at 

various surface locations. The storing of photons only at diffuse surfaces, is motivated 

by the low probability that a photon has to arrive from a specular direction. Specular 

effects are generated via ray tracing. Jensen (2001) discusses the emission of photons 

from various light sources. The scattering of photons is decided stochastically based 

on the scattering properties of the surfaces. Russian roulette (Jensen 2001, p. 62-63) is 

used to decide whether a photon is reflected, transmitted or absorbed. A key difference 

between rays and photons, is that rays carry radiance and photons carry power. The 

used entity may cause different interactions (e.g. photons do not refract like rays do). 

 

In the rendering phase, the photon map is used to estimate the radiance at different 

surface locations. The radiance estimate is computed using kernel density estimation. 

For each point sample, the kernel density estimation determines the 𝑁 nearest photons 

located within a given distance (Jensen 2001, p. 72). Several volumes can be used to 

locate the photons. The chosen volume determines the speed and the accuracy with 

which the nearest photons are identified. For example, the sphere has the advantage 

that the distance and the projected area can be easily computed. However, volumes 

like the ellipsoid may have less false positives. For the sphere the radiance estimate is: 
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Figure 2.16: Two nearest photons 𝑦2 and 𝑦3 are identified around point sample 𝑥0. 

 

𝐿𝑜(𝑥, �⃗⃗� 𝑜) =
1

𝜋𝑟2
∑𝑓𝑠(𝑥, �⃗⃗� 𝑖, �⃗⃗� 𝑜)ΔΦ(𝑥, �⃗⃗� 𝑖)

𝑁

𝑖=1

(2.70) 

where 𝑟 is the sphere radius within which the nearest photons lie. The surface around 

point 𝑥 is assumed to be flat. Figure 2.16 shows the identification of the nearest photons. 

 

The radiance estimate is susceptible to both the size of the photon map and the number 

of nearest neighbours. A small photon map tends to blur the edges of sharp illumination 

features. By weighting photons based on their distance from the point sample, 2D filters 

can enhance edge features. However, corners and edges may introduce errors in the 

estimate if the size of the photon map and number of the nearest photons are too small. 

 

Jensen (2001) proposes two approaches to using the photon map. The first approach 

uses kernel density estimation to render diffuse scattering and recursive ray tracing 

to render specular effects. The second approach uses distributed ray tracing to render 

the entire image. The radiance computation is effectively a combination of accurate 

and approximate evaluations. The accurate evaluation is used for directly viewed 

surfaces, specular phenomena and ray lengths smaller than a given threshold. The 

approximate evaluation is used for diffuse scattering and primary rays with small 

contributions. Depending on requirements, the photon map and the radiance estimate 

can be used for both accurate and approximate evaluations. For example, they can be 

utilized to accurately compute caustics as well as to approximate direct illumination. 
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Unlike Monte Carlo ray tracing, photon mapping is biased. The source of bias is the 

kernel density estimation, which acts as a low-pass filter. Though the kernel density 

estimation reduces variance, it introduces multifold bias (Herzog et al. 2007). The 

boundary bias is caused by the fewer observations that can be averaged at the 

boundary of the evaluated region. Topological bias arises from the assumption that 

surfaces are flat around the point samples. Proximity bias results from setting a volume 

radius and influencing the correctness of the photon density used to estimate radiance. 

 

However, photon mapping is consistent (equation 2.57). Progressive photon mapping 

(Hachisuka et al. 2008; Hachisuka and Jensen 2010) uses a single ray tracing pass and 

multiple photon tracing passes to compute and refine an estimate that converges to the 

correct solution as photons are added. The ray tracing pass determines all the visible 

surfaces by tracing paths through every pixel. Each path vertex, located on a surface 

with a diffuse component in the BSDF, is stored together with pertinent information, 

such as position, normal, incident direction, power, photon count, radius, etc. Every 

photon pass computes a photon map, stores the contribution of the nearest photons at 

the apposite point samples and then discards the photon map, so that memory can be 

reused in the next passes. Each pass reduces the volume radius and the proximity bias. 

 

Herzog et al. (2007) reduce the geometric biases. However, the proposed photon ray 

splatting technique does not provide a complete global illumination solution. Rather, 

it defines a new density estimation method, which processes complex geometric shapes 

and reduces the low frequency noise specific to photon mapping. Ritschel et al. (2012) 

analyse other interactive methods, which either improve the quality of the illumination 

effects or reduce the execution costs of certain algorithmic passes, like final gathering. 

 

Among these, image space photon mapping (McGuire and Luebke 2009) accelerates 

two of the most expensive steps of photon mapping. Firstly, the proposed algorithm 

rasterizes a bounce map from the viewpoint of each light source, storing for each pixel 

the closest intersected surface point, the power of the photon incident at that point and 

the scattering direction of the photon. The bounce map serves only as an intermediate 

step in interrupting and moving the photon tracing process from the GPU to the CPU. 
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Figure 2.17: Image space photon mapping pipeline. The thick arrows synchronize 

CPU step C with GPU steps A & D (amended from McGuire and Luebke 2009, p. 4). 

 

After tracing the photons and constructing the photon map, the proposed algorithm 

estimates radiance by scattering photons to nearby pixels. For each photon a volume 

is rasterized and illumination is computed for all the visible surfaces from within the 

volume, by constructing the density estimate from the parameters of the eye geometry 

buffer (BSDF parameters, sample position, surface normal and depth value). Splatting 

photon volumes and shading all the pixels for which the density estimation kernel has 

significant value, effectively eliminates the costly gathering step and renders dynamic 

scenes with 2-megapixels resolution and interactive framerates. However, image space 

photo mapping works only with point emitters and pinhole cameras that have unique 

projection centres. Moreover, purely reflective and transmissive surfaces are rendered 

separately via ray tracing or rasterization approximations. Loss of indirect illumination 

is also observed when the camera is allowed to closely view a surface, due to clipping 

photon volumes before clipping the surface. To avoid reaching the GPU fill-rate and 

attain high performance, the proposed algorithm performs an upsampling step which 

introduces bias by interpolating low-resolution radiance with the high-resolution eye 

geometry buffer. Figure 2.17 illustrates the image space photon mapping pipeline. 

 

Progressive photon relaxation (Spencer and Jones 2013) improves the simulation of 

caustic illumination by progressively removing noise and minimizing residual bias. 

To do so, the algorithm executes one pass of persistent photon tracing and multiple 

passes of transient photon tracing. The persistent photons are stored in the photon map 

and their locations are correlated with a flux density function via Voronoi tessellation. 
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Figure 2.18: The relaxation operation repels photon 𝑖 from its neighbour 𝑗 with a 

force 𝒻𝛾 such that its bounding sphere grazes that of 𝑗. The relaxation force 𝒻𝛾 is 

computed using radii 𝑟𝛾(𝑖) and 𝑟𝛾(𝑗). Both radii are determined by adjusting the radii 

estimated from the photon distribution based on the ratio between the mean transient 

flux and the flux density over each cell (amended from Spencer and Jones 2013, p. 6).  

 

The transient photons serve to progressively refine the radiance estimate and are 

destroyed once their contributions have been accumulated to the flux of the photons 

whose Voronoi cells they intersected. The transient photon contributions are also used 

during a relaxation step, to compute the force which repels/attracts adjacent persistent 

photons. The photon relaxation is intended to create a blue noise distribution by 

manipulating the photon Voronoi cells such that their areas can be approximated 

relatively well by the density estimation kernel. The migration of persistent photons is 

constrained by adequately attenuating the relaxation force. The blue noise distribution 

locally minimizes the variance in cell areas and nearly-homogenizes the photon flux. 

After sufficient iterations the noise due to the photon distribution is diffused. The 

advantages of such an approach are low-bandwidth kernels, constant memory bound, 

noise removal, view independence and vectorization suitability. Yet, the proposed 

algorithm suffers from bias that cannot be completely eliminated since the relaxation 

step uses a density estimation kernel which may misestimate the Voronoi cell areas 

and prevent them from appropriately estimating the flux density. For materials other 

than perfectly diffuse ones, the approach also fails to completely eliminate noise due 

to the sparse number of photons that approximate the incident illumination. Figure 

2.18 exemplifies the repulsion of two neighbouring photons via the relaxation force. 
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Unlike Monte Carlo ray tracing, photon mapping excels at simulating 𝑆+𝐷𝑆+ paths. 

Such paths regard caustics specularly reflected or transmitted towards the eye and are 

difficult to simulate via Monte Carlo ray tracing, because specular directions entail a 

zero solid angle and a very low probability of being sampled by other techniques than 

the ones that generated them. This efficiency of simulating illumination effects with 

reduced noise, caused photon mapping to be identified as a second potential basis for 

the development of the light transport framework. Jensen (2001) provides both the 

pseudocode for various steps and the implementation of the photon mapping algorithm. 

 

2.5.6 Unified estimation 

 

Unified estimation (Georgiev et al. 2012; Hachisuka et al. 2012) introduces a 

common theoretical framework for bidirectional path tracing and photon mapping. 

The incompatibility between the two algorithms stemmed from the estimation of 

radiance. Bidirectional path tracing estimates the measurement contribution function 

by sampling and evaluating light transport paths. Photon mapping uses kernel density 

estimation to compute radiance at various surface locations. When expressed in the 

same framework, these algorithms explore spaces of different dimensionality for 

paths of equal length. Vertex connection and merging (Georgiev et al. 2012) and 

unified path sampling (Hachisuka et al. 2012) effectively combine the two algorithms.  

 

The unified estimation algorithms address the difficulty of Monte Carlo ray tracing in 

simulating 𝑆+𝐷𝑆+ light transport. The core idea is to adapt photon mapping to the path 

integral framework and combine it with bidirectional path tracing through multiple 

importance sampling (Veach and Guibas 1995). The resultant solutions comprise an 

enhanced set of sampling techniques, which can simulate difficult light transport paths. 

 

Jensen (2001) also explores the idea of combining photon mapping with ray tracing. 

For instance, one proposed approach to using photon mapping relies on a caustics 

photon map to render caustics, on ray tracing to accurately compute direct illumination 

and on a global photon map to approximate direct/indirect/caustic illumination. Still, 

such estimation heuristics are suboptimal and they retain the formulation dichotomy. 
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Figure 2.19: Techniques for sampling a path of length 𝑘 = 3 (Georgiev et al. 2012, p. 3). 

 

In bidirectional path tracing, a path of length 𝑘 is generated with one of the 𝑘 + 2 

sampling techniques and its contribution is weighted through a heuristic that combines 

all of the 𝑘 + 2 techniques. However, only the unidirectional techniques in the 𝑘 + 2 

family can sample 𝑆+𝐷𝑆+ paths, since the probability densities for connecting specular 

vertices are extremely low. Still, unidirectional sampling techniques have rather low 

probability densities and yield a high-variance estimator. The reformulation of photon 

mapping as a path sampling approach is meant to add more sampling techniques to the 

multi-sample estimation and facilitate the simulation of difficult light transport paths. 

 

A path sampled with a photon mapping technique consists of a light subpath 𝑥0…𝑥𝑠
∗ 

and an eye subpath 𝑥𝑠…𝑥𝑘. Vertex 𝑥𝑠
∗ represents a photon location, reached in 𝑠 

bounces from the light source. Vertex 𝑥𝑠 is a point sample traced from the camera, for 

which the radiance estimate must be computed. Hence, a complete light transport path 

�̅�∗ = 𝑥0…𝑥𝑠
∗𝑥𝑠 …𝑥𝑘 has 𝑘 + 2 vertices. For the same length 𝑘, a path sampled with 

bidirectional path tracing has 𝑘 + 1 vertices. A path with 𝑘 + 2 vertices, has a 

probability density defined on a higher-dimensional differential area-product measure. 

Figure 2.19 depicts the difference between bidirectional and photon mapping sampling.  
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Vertex connection and merging solves the dimensionality conflict by removing 𝑥𝑠
∗. To 

this end, the measurement contribution function 𝑓𝑗(�̅�
∗) is also integrated relative to 𝑥𝑠

∗: 

I𝑗 = ∫ (∫ 𝐿𝑒(𝑥0 → 𝑥1)𝐺(𝑥0 ↔ 𝑥1) ∏ 𝑓
𝑠
(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1)𝐺(𝑥𝑖 ↔ 𝑥𝑖+1)

𝑠−1|𝑥𝑠=𝑥𝑠
∗

𝑖=1ℳℳ𝑘+1

𝒦𝑟(‖𝑥𝑠
∗ − 𝑥𝑠‖)𝑓𝑠(𝑥𝑠, 𝑥𝑠−1 → 𝑥𝑠

∗, 𝑥𝑠 → 𝑥𝑠+1)𝐺(𝑥𝑠 ↔ 𝑥𝑠+1)

∏ 𝑓
𝑠
(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1)𝐺(𝑥𝑖 ↔ 𝑥𝑖+1)

𝑘−1

𝑖=𝑠+1

𝑊𝑒
𝑗 (𝑥𝑘−1 → 𝑥𝑘)𝑑𝐴(𝑥𝑠

∗))𝑑𝜇(�̅�)

= ∫ (∫ 𝑓
𝑗
(�̅�∗)𝑑𝐴(𝑥𝑠

∗)

ℳ

)

ℳ𝑘+1

𝑑𝜇(�̅�) (2.71)

 

where 𝒦𝑟 is the density estimation kernel of radius 𝑟 and ∫ 𝑓𝑗(�̅�
∗)𝑑𝐴(𝑥𝑠

∗)
ℳ

 corresponds 

to blurring by 𝒦𝑟. The evaluation 𝑓𝑠(𝑥𝑠, 𝑥𝑠−1 → 𝑥𝑠
∗, 𝑥𝑠 → 𝑥𝑠+1) is characteristic to 

photon mapping, where 𝑥𝑠−1 → 𝑥𝑠
∗ is the incident direction of the photon arriving at 𝑥𝑠

∗
. 

 

Unified path sampling does not reduce the dimensionality of the extended path, instead 

it extends a path sampled with bidirectional path tracing via vertex perturbation. A 

path �̅� = 𝑥0…𝑥𝑠−1𝑥𝑠…𝑥𝑘 is recreated in the extended path space by appending a new 

vertex 𝑥𝑠
∗ to the light subpath. The new vertex is generated by perturbing 𝑥𝑠 with a 

probability density equal to the density estimation kernel: 𝑝(𝑥𝑠 → 𝑥𝑠
∗) = 𝒦𝑟(‖𝑥𝑠

∗ − 𝑥𝑠‖). 

For a spherical volume, 𝑥𝑠
∗ is sampled on the disk that surrounds the point sample 𝑥𝑠. 

The measurement contribution function for a path �̅�∗ = 𝑥0…𝑥𝑠−1𝑥𝑠
∗𝑥𝑠…𝑥𝑘 is given by: 

𝑓𝑗(�̅�
∗) = 𝑓𝑗(𝑥0…𝑥𝑠

∗)𝒦𝑟(‖𝑥𝑠
∗ − 𝑥𝑠‖)𝑓𝑠(𝑥𝑠, 𝑥𝑠−1 → 𝑥𝑠

∗, 𝑥𝑠 → 𝑥𝑠+1)𝑓𝑗(𝑥𝑠…𝑥𝑘) (2.72) 

 

The complemental approaches of the two unified estimation algorithms also regard 

the computation of the probability density. In vertex connection and merging, a path 

�̅�∗ is accepted only if the photon location 𝑥𝑠
∗ is within a distance 𝑟 from the point 

sample 𝑥𝑠. Using an acceptance probability 𝑃𝑎𝑐𝑐(�̅�
∗), the probability density of �̅�∗ is:  

𝑝𝑉𝑀(�̅�
∗) = 𝑃𝑎𝑐𝑐(�̅�

∗)𝑝(𝑥0)…𝑝(𝑥𝑠−1)𝑝(𝑥𝑠)…𝑝(𝑥𝑘) = 𝑃𝑎𝑐𝑐(�̅�
∗)𝑝𝑉𝐶(�̅�) (2.73) 

where 𝑝𝑉𝐶(�̅�) is defined on a 𝑘 + 1 dimensional differential area-product measure. To 

reduce the extra dimension, 𝑃𝑎𝑐𝑐(�̅�
∗) integrates over the points within distance 𝑟 of 𝑥𝑠: 
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Figure 2.20: The 𝑘-length regular path (right) is derived from the (𝑘 + 1)-length 

extended path (left) iff photon 𝑥𝑠
∗ is within distance 𝑟 of 𝑥𝑠 (Georgiev et al. 2012, p. 4). 

 

𝑃𝑎𝑐𝑐(�̅�
∗) = ∫𝑝(𝑥𝑠−1 → 𝑥)𝑑𝑥

𝒟𝑟

≈ |𝒟𝑟|𝑝(𝑥𝑠−1 → 𝑥𝑠
∗) ≈ 𝜋𝑟2𝑝(𝑥𝑠−1 → 𝑥𝑠

∗) (2.74) 

Without simplifications, the above integral is insoluble. Georgiev et al. (2012) assume 

that 𝒟𝑟 = {𝑥 ∈ ℳ|‖𝑥𝑠 − 𝑥‖ ≤ 𝑟} is a disk of radius 𝑟 and 𝑝(𝑥𝑠−1 → 𝑥) is constant inside 

it. Figure 2.20 shows the conditional sampling of a regular path from an extended one. 

 

By extending a path sampled with bidirectional path tracing, unified path sampling 

can compute the probability density regardless of the approach that generated the path: 

𝑝(�̅�∗) = (𝑝(𝑥0)…𝑝(𝑥𝑠−1))𝑝(𝑥𝑠
∗)(𝑝(𝑥𝑠)…𝑝(𝑥𝑘)) (2.75) 

where 𝑝(𝑥𝑠
∗) depends on whether 𝑥𝑠

∗ was sampled from 𝑥𝑠−1 or by perturbing 𝑥𝑠. Thus, 

𝑝(𝑥̅∗) is used on paths sampled with both bidirectional path tracing and photon mapping. 

 

Vertex connection and merging (Georgiev et al. 2012, p. 5) and unified path sampling 

(Hachisuka et al. 2012, p. 4) estimate the measurement equation I𝑗  similarly, by defining 

a multi-sample estimator, which combines paths generated with both bidirectional and 

density estimation techniques. For a path of length 𝑘, the former algorithm uses 𝑘 − 1 

density estimation techniques, whereas the latter algorithm uses 𝑘 + 1 such techniques. 

The difference in the number of density estimation techniques is the result of the path 

contraction or extension. Still, both algorithms generate the same range of light effects. 
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In being a combination of the underlying algorithms, the multi-sample estimator may 

suffer from both variance and bias. To reduce them, its progressive variant generates 

and averages multiple independent rendering iterations. The progressive estimator 

converges asymptotically as fast as bidirectional path tracing, but is as efficient as 

photon mapping at simulating 𝑆+𝐷𝑆+ light transport. It is also only consistent, just 

like progressive photon mapping. Caustics reflected by highly glossy surfaces are not 

simulated efficiently, as the basic algorithms do not have optimal sampling techniques. 

 

Apparently, unified path sampling provides a simpler approach to adapting photon 

mapping to the path integral framework. Nevertheless, it entails several manoeuvres. 

 

The generation of a new vertex is complicated in practice. The vertex 𝑥𝑠
∗ must be 

sampled within the support of the density estimation kernel and this operation entails 

the projection of a volume onto a potentially complex surface. Hachisuka et al. (2012) 

simplify the implementation by approximating the contribution of an extended path �̅�∗ 

through virtual perturbation. That is, the last vertex of the eye subpath 𝑥𝑠 is set as the 

newly sampled vertex and the actual perturbation is not executed. Assuming a constant 

kernel 𝒦𝑟 = 1/(𝜋𝑟
2) and a uniform distribution within its support, the authors prove 

that the contribution of an extended path is equivalent to that of a path sampled via 

bidirectional path tracing. Despite being approximate, virtual perturbations are claimed 

to yield a consistent estimator if proper multiple importance sampling weights are used. 

 

By combining bidirectional path tracing and photon mapping, the unified estimation 

algorithms create an extended set of sampling techniques and address difficult light 

transport scenarios. Unified estimation was identified as a third development candidate. 
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2.5.7 Instant radiosity 

 

As an alternative to radiosity, instant radiosity (Keller 1997) uses the concept of 

virtual point light (VPL) to address the discretization artefacts and the computational 

complexity that generally affect the radiosity algorithms. Like photon mapping, the 

instant radiosity algorithm can be discussed in terms of two major execution steps. 

 

In the first step, photons are emitted and traced in the scene. For each light source, 𝑁 

particles are mapped onto its surface and traced into the scene using the first few 

components of low-discrepancy sequences (e.g. Halton sequence). From the first ⌊�̅�𝑁⌋ 

non-attenuated primary samples, diffuse propagation directions that follow a cosine-

weighted distribution are sampled using the next components of each low-discrepancy 

sequence. The term �̅� represents the average scene reflectance, defined as follows: 

�̅� =
∑ 𝜌𝑑,𝑘|𝐴𝑘|
ℳ
𝑘=1

∑ |𝐴𝑘|
ℳ
𝑘=1

(2.76) 

where ℳ is the set of scene surfaces, 𝐴𝑘 is the 𝑘𝑡ℎ surface area and 𝜌𝑑,𝑘 is the diffuse 

reflectance (Jensen 2001, p. 21). The average reflectance also determines the absorption 

of particles. With each bounce 𝑖 a total number of ⌊�̅�𝑖𝑁⌋ photons are further propagated. 

 

Paths generated in this manner are known as quasi-random walks. The vertices of each 

path are used as virtual point lights in the computation of indirect illumination. The 

radiosity equation, used to assess the radiosity equilibrium, is defined as (Keller 1997):  

𝐵𝑗 =
1

|Ψ𝑗|
∑ ∫ ∫ ∫𝑓𝑗(𝑦0, … , 𝑦𝑠)𝑓𝑟(𝑦𝑠−1 → 𝑦𝑠 → 𝑧1)𝐺(𝑦𝑠 ↔ 𝑧1)

𝒮𝑒ℳ𝑠+1Ψ𝑗

∞

𝑠=1

𝑓𝑟(𝑦𝑠 → 𝑧1 → 𝑧0)𝐺(𝑧0 ↔ 𝑧1)𝑑𝑦0𝑑𝑦1…𝑑𝑦𝑠𝑑𝑧1𝑑Ψ (2.77)

 

where Ψ𝑗 is the 𝑗𝑡ℎ pixel of the image, 𝒮𝑒 is the support of the light sources, 𝑓𝑗 is the 

power contribution function, i.e. the integrand of equation (2.48), and 𝑧1 is one of the 

potentially many primary samples, determined by tracing a ray through the 𝑗𝑡ℎ pixel. 

For purely diffuse scenes, the BRDFs in the radiosity equation can be reduced to 𝜌𝑑/𝜋. 
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Figure 2.21: Bidirectional and Metropolis sampling of VPLs. Quadrangle a) displays 

standard instant radiosity, whereas quadrangle b) displays the sampling of reverse 

VPLs. The reverse VPLs are sampled from the camera via subpaths of length 𝑘 = 2. 

Their radiance field is estimated by connecting them to standard VPLs sampled from 

the light sources (magenta lines). Quadrangle c) displays the Metropolis sampling of 

VPLs. The additional VPL 𝑥𝑣2 is sampled by mutating the light subpath �̅�𝑠0, which 

yielded VPL 𝑥𝑣1 (amended from Segovia et al. 2006, p. 4 & Segovia et al. 2007, p. 5). 

 

In the second step, quasi-Monte Carlo integration is performed by rendering the scene 

with shadows for each virtual point light and summing the images in an accumulation 

buffer. Each image is rendered using stencil shadow volumes, i.e. by evaluating the 

shadow volumes of the primitives against the scene depth buffer and creating a mask 

in the stencil buffer. The radiance of each image is scaled by the weight 1/⌊�̅�𝑖𝑁⌋ to 

account for attenuation by the BRDFs. All images are accumulated using a weight of 

1/𝑁. Shadow maps can be used instead of shadow volumes to speed up the algorithm. 

 

Like Monte Carlo ray tracing, instant radiosity was extended to use bidirectional 

techniques. Bidirectional instant radiosity (Segovia et al. 2006) uses both eye and light 

subpaths to generate the virtual point lights which, after being resampled based on 

their contributions, are used in the rendering step. Generating the virtual point lights 

bidirectionally increases efficiency, as only the VPLs that are significant from the 

perspective of both the light sources and the camera contribute to the final image. 

Similarly, Metropolis instant radiosity (Segovia et al. 2007) generates relevant VPLs 

by mutating paths sampled from the camera to the light sources. The virtual point 

lights are sampled via perturbations (Veach and Guibas 1997), which yield a faster 

exploration of the path space and consequently a better convergence rate. Figure 2.21 

illustrates the generation of VPLs in bidirectional and Metropolis instant radiosity. 
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Figure 2.22: The geometry that underlies the radiance estimation at primary sample 

𝑧1 via a virtual spherical light centred at 𝑦𝑠 (amended from Hašan et al. 2009, p. 3). 

 

However, these methods work under the assumption of diffuse light transport and they 

suffer from artefacts related to the connecting vertices. As expressed by the radiosity 

equation, a VPL is connected to an eye subpath through the standard connecting edge:  

𝑓𝑟(𝑦𝑠−1 → 𝑦𝑠 → 𝑧1)𝐺(𝑦𝑠 ↔ 𝑧1)𝑓𝑟(𝑦𝑠 → 𝑧1 → 𝑧0) 

Whenever the 𝐺 factor or the contribution of the BRDF is large compared to the path 

probability density, artefacts will appear due to the path having a larger contribution 

than expected. The squared distance ‖𝑦𝑠 − 𝑧1‖
2 in the denominator of the geometric 

factor generates a spike in the rendered image, whenever a VPL lies very close to a 

primary sample. Due to the small distance, the path contribution will be inflated. A 

similar effect is produced in the case of a glossy BRDF with a substantial contribution 

in the direction of the primary sample. However, diffuse BRDFs do not generate spikes.  

 

To eliminate the spikes induced by the geometric factor, the latter can be clamped to 

a given constant. Yet, the use of a clamping constant introduces bias (equation 2.56). 

 

Virtual spherical lights (Hašan et al. 2009) remove the spike artefacts. Instead of using 

VPLs to evaluate the radiance contributions, the virtual spherical lights technique 

considers a disk of radius 𝑟𝑠 around each VPL and estimates the radiance of a primary 

sample by using a cone of incident directions 𝒟𝑟𝑠 . Figure 2.22 illustrates these concepts. 
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By integrating over the cone of directions that travel from the primary sample to the 

sphere of radius 𝑟𝑠 centred at the virtual point light, the proposed method eliminates 

the geometric spikes. It also renders glossy surfaces, as the BRDF induced spikes are 

effectively removed through the integration over the cone of incident directions. The 

integration operation acts as a low-pass filter, smoothing any glossy lobe of the BRDF. 

 

Like the density estimation kernel used in photon mapping, the region around a VPL 

has two major impacts on the algorithm. Firstly, the radius parameter introduces bias. 

The algorithm is not consistent, as the radii are always chosen using the local density 

of virtual point lights. Specifically, the 10 nearest neighbours are searched and the 

radius 𝑟𝑠 is set to a user-defined multiple of the resultant search radius. Secondly, some 

of the glossy details are blurred, due to the directional integration and area averaging. 

 

Lightcuts (Walter et al. 2005) improve the simulation of indirect illumination effects 

by clustering point light sources. Each type of light source is discretized using either 

point, oriented or directional light sources. These light sources are grouped based on 

their proximity and orientation and a binary light tree is built using a bottom-up 

approach that progressively combines lights and/or clusters. The clusters are created 

with minimum sizes and representative light sources are randomly chosen based on 

the intensities of the children. The image is rendered by adaptively selecting for each 

point sample a lightcut, which is a set of tree nodes such that every path from the root 

to the leaf contains a single node from the lightcut. The lightcuts are selected by 

computing a per cluster error bound and by replacing a node with its children 

whenever the error bound is larger than the product between a perceptual error (2%) 

and the total radiance estimate. Radiance is estimated for each node by multiplying 

the BRDF and geometric factor of the representative light source with the sum of the 

intensities of all the light sources in the cluster. The cluster error bound is determined 

by computing upper bounds on the BRDF, geometric and visibility terms of the cluster 

and multiplying them with the cluster intensity. The amount of error depends on the 

similarities between the BRDFs, geometric factors and visibility terms associated with 

the light sources of the cluster. Figure 2.23 displays a light tree with three lightcuts. 
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Figure 2.23: A binary light tree and three lightcuts. The colours in the images above 

the lightcuts highlight the regions where the error is small (Walter et al. 2005, p. 3). 

 

The lightcuts algorithm can evaluate a considerable number of virtual point lights with 

sublinear cost and thus it can simulate indirect illumination with more details. By 

employing a less conservative approach, reconstruction cuts exploit the coherence in 

illumination and further reduce the shading costs and the aliasing problems of the 

lightcuts. The gist of the reconstruction cuts is to compute lightcuts sparsely over the 

image and shade the rest of the image by interpolating their illumination information. 

However, both techniques are subjected to the limitations of the underlying instant 

radiosity algorithm. Neither lightcuts nor reconstruction cuts can render illumination 

effects that cannot be simulated with instant radiosity. Moreover, delta components 

are processed through recursive ray tracing. Lightcuts introduce errors by clustering 

light sources, but ensure these errors are statistically uncorrelated through the random 

selection of the representative light sources. In addition, reconstruction cuts may miss 

features which are not captured by the interpolated lightcuts. Finally, not all types of 

BRDFs and light sources (e.g. spotlights) are supported by the lightcuts framework. 
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Figure 2.24: Matrix row-column sampling algorithmic steps (Hašan et al. 2007, p. 3). 

 

The matrix row-column sampling for many lights (Hašan et al. 2007) reformulates the 

many-light problem as a large matrix of sample-light interactions, where every column 

represents all the samples illuminated by a light and every row represents a sample 

illuminated by all the lights. The sum of the matrix columns gives the ideal image and 

it is approximated by sampling rows and columns of the matrix on the GPU via shadow 

maps. The input to the proposed algorithm is the set of samples and the set of virtual 

point lights, which are determined via ray tracing and instant radiosity respectively. 

Shadow maps could also be used to generate the samples, while reflective shadow 

maps (Dachsbacher and Stamminger 2005) could be used to determine one-bounce 

virtual point lights. The image is divided into blocks and a row is randomly selected 

from each block via shadow mapping, which is utilized to evaluate the contributions 

of all lights to a sample by computing the depth map from the sample location. The 

selected rows are packed into a matrix and used to cluster the reduced columns of the 

obtained matrix. The columns are reduced since they do not contain all the samples. 

The clustering selects a given number of reduced columns as cluster centres based on 

a probability that is proportional to the sum of the distances between the considered 

column and the rest of the columns. The distance between two columns regards the 

degree to which two lights dislike being in the same cluster. That is, columns that are 

farther away from the others are more likely to be selected as cluster centres. If a 

column is selected multiple times, its weight is increased inversely proportional to its 

probability. After identifying all the requested cluster centres, every remaining column 

is assigned to the nearest cluster based on its distance. A representative full column is 

selected from each cluster with a probability proportional to the reduced column norm. 

Finally, the weighted representative full columns are accumulated using shadow maps. 

Figure 2.24 summarizes the main steps of the matrix row-column sampling algorithm. 
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By using efficient rasterization, the matrix row-column sampling avoids using ray 

tracing and provides fast user feedback. Unlike lightcuts, which adapt clustering to 

each sample, it uses global clustering to exploit the GPU capabilities and obtain up to 

30× speedups. However, the approach suffers from shadow mapping artefacts (e.g. 

shadow bias), clamping artefacts (e.g. corner darkening) and slight temporal artefacts. 

 

Virtual point light techniques benefit from fast executions. However, they do not 

simulate a comprehensive range of illumination effects. For example, generic BSDFs 

and 𝑆+𝐷𝑆+ paths are not supported despite recent advancements (Hedman et al. 2016). 

 

2.5.8 The choice of algorithmic foundation 

 

The practical goal of the current work is to implement a light transport framework that 

simulates a wide range of illumination effects in conditions of dynamic geometry. The 

review on the global illumination classes identified several algorithms that satisfied 

the prerequisites established for the development of the light transport framework. 

 

Monte Carlo ray tracing, photon mapping and unified estimation were all identified as 

classes of algorithms that efficiently simulate the needed range of illumination effects. 

Bidirectional path tracing prevailed as the best basis for the light transport framework. 

 

Compared to path tracing, bidirectional path tracing is a generalization benefiting from 

better exploration of the path space and better convergence for certain configurations. 

 

Compared to Metropolis light transport, bidirectional path tracing benefits from 

simplicity and lack of bias. Unlike the former algorithm, it explores the path space 

globally and does not require good mutation strategies to ensure that the random walk 

does not get caught in a subregion of the path space. Furthermore, it does not suffer 

from start-up bias, image plane sample stratification or path correlation artefacts. 

Consequently, bidirectional path tracing circumvents the difficulties associated with 

finding good ergodic mutations and generating a sufficiently large collection of paths.  
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Compared to progressive photon mapping, bidirectional path tracing has the advantage 

of being unbiased and not merely consistent. The lack of bias enables the computation 

of the error based on variance alone (equation 2.58). This feature causes the images 

generated with bidirectional path tracing to be used as references in the result analysis 

of other algorithms. Moreover, bidirectional path tracing does not suffer from blur 

caused by the density estimation, nor from other geometric biases (Herzog et al. 2007). 

 

Being formulated in the path integral framework, bidirectional path tracing easily 

supports the use of multiple importance sampling. Combining paths, sampled from 

various probability densities, is the key to the robustness of bidirectional path tracing. 

The unified estimation algorithms reformulate photon mapping in the path integral 

framework, so that they can take advantage of the powerful variance reduction 

technique and improve the efficiency of the light transport simulation with an enhanced 

set of sampling techniques. These algorithms are more efficient at simulating effects 

like 𝑆+𝐷𝑆+ light transport, but they are still only as efficient as the algorithms that 

they combine. Phenomena for which the underlying algorithms do not provide good 

sampling strategies, are not simulated efficiently. Also, unified estimation algorithms 

are only consistent. For these reasons, bidirectional path tracing prevailed as the best 

development foundation. It might be less efficient at simulating certain effects, but its 

advancements could be combined in the style of unified estimation. Thus, the current 

work focuses on improving bidirectional path tracing. This algorithm represented the 

starting point for the development of the path manipulation strategies. The rationale 

of the path manipulation strategies is to inject dynamism in Monte Carlo simulations, 

by advancing the algorithm itself, without necessarily relying on hardware techniques. 

The core idea is to extend the use of paths to the temporal domain, through an apparatus 

of sampling and reuse strategies. By reconstructing and reusing subpaths, the resultant 

path manipulation algorithm avoids regenerating the entire path collection, reduces the 

computational load of the original algorithm and supports scene dynamism. The next 

section compares the current work with the recent advances in light transport simulation. 
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2.6 Path manipulation strategies and related work 

 

Path sampling techniques constitute the foundation of Monte Carlo ray tracing. Using 

the information localized at path vertices, sampling techniques construct paths with 

different probability densities. On the one hand, the punctiform nature of the sampling 

techniques decouples a Monte Carlo algorithm from the specificity of the input. On 

the other hand, the sampling techniques determine the efficiency with which the 

measurement contribution function (equation 2.44) is estimated. In other words, 

each individual technique efficiently samples a specific group of illumination effects, 

by taking into account different factors of the measurement contribution function. 

 

The set of sampling techniques that a Monte Carlo ray tracing algorithm uses, defines 

the efficiency of the light transport simulation. The simplest form of Monte Carlo ray 

tracing, explores the path space by generating unidirectional paths. Representative of 

this modus operandi are the shooting algorithms, which trace light particles up to the 

camera (Dutré and Willems 1995). In a reciprocal manner, gathering algorithms (e.g. 

naïve path tracing) scatter importance in the scene until a light source is intersected. 

The efficiency of unidirectional approaches can be moderate, because few paths tend 

to intersect the camera or the light sources, causing the solution to converge slower. 

 

Unidirectional approaches improve their efficiency by utilizing additional sampling 

techniques. For instance, next event estimation is used by both shooting and gathering 

algorithms. This estimator assesses the measurement contribution function at each path 

vertex via a direct connection to either the camera or a light source. In this way, more 

sampling techniques explore the path space and more illumination effects are sampled. 

 

A more efficient tier of Monte Carlo ray tracing algorithms exploits better the path 

sampling techniques. Metropolis light transport (Veach and Guibas 1997) uses path 

mutations to explore regions with high contribution and thus expedite the simulation 

of difficult illumination scenarios. Bidirectional path tracing generates and combines 

paths based on a family of sampling techniques. By generating paths dually from the 

light sources and the camera, bidirectional path tracing exploits the universality of the 
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path generation process. Moreover, the contribution of each path is evaluated based 

on all the sampling techniques that could have generated that path. That is, multiple 

importance sampling optimally combines the paths sampled with different techniques. 

 

By using a set of sampling and reuse strategies, the current work ports bidirectional 

path tracing to the temporal domain and facilitates scene dynamism. Conventionally, 

sampling techniques are used to generate and evaluate the contributions of paths. Thus, 

their potential is limited to the path generation-evaluation cycle. Discarding paths after 

the evaluation of their contributions, implies a static usage of paths and of sampling 

techniques. Moreover, the temporal dimension is supressed with this approach. The 

path manipulation algorithm uses sampling techniques in a temporal aware approach 

that supplants the static manipulation of paths with a generation-evaluation-reuse cycle. 

 

2.6.1 Improved efficiency via sampling-oriented techniques 

 

Despite the gradation of efficiency via sampling techniques, Monte Carlo ray tracing 

suffers from being computationally expensive. On the one hand, the execution costs 

can be credited to the numerous sampling operations, visibility tests and path 

contribution evaluations. On the other hand, the stochastic nature of the Monte Carlo 

integration causes variance (Veach 1998, p. 39). The convergence rate of an unbiased 

estimator is 𝑂(1/√𝑁). The immediate implication is that acceptable levels of variance 

require a significant number of paths to be generated, whence the high execution costs. 

 

To improve efficiency, Monte Carlo algorithms use various cost reduction techniques. 

 

One approach refers to reducing the number of traced paths, by reusing them across 

different measurements. For example, Metropolis light transport performs mutations 

by reusing as much path information as possible. Bidirectional path tracing can reuse 

light subpaths across connections with different eye subpaths. Also, additional samples 

can be efficiently generated from the same complete light transport path, by joining 

each prefix of the light subpath to each suffix of the eye subpath (Veach 1998, p. 300).  



77 
 

Another means to achieve better performance is to reduce the cost per individual path. 

Two extensively used, complementary techniques that serve this purpose are Russian 

roulette and splitting (Arvo and Kirk 1990). Russian roulette reduces the number of 

scattering events, at the cost of introducing extra variance. Conversely, splitting can 

reduce variance and increase performance by adapting the number of scattering events 

(i.e. the density of samples) to the estimated contribution of the light transport path. 

 

Variance reduction techniques represent another approach to reducing execution costs. 

The most pervasive method is multiple importance sampling, which reduces variance 

by optimally combining samples from multiple techniques. Veach (1998) provides a 

comprehensive discussion on all four major variance reduction categories, namely 

analytic integration, uniform sampling, adaptive sampling and correlated estimators. 

 

Algorithms such as vertex connection and merging (Georgiev et al. 2012) and unified 

path sampling (Hachisuka et al. 2012) improve the efficiency of the light transport 

simulation by enhancing the regular set of bidirectional sampling techniques with 

sampling techniques derived from the photon density estimation. The augmented set 

of sampling techniques explores better those types of light transport paths that involve 

specular surfaces, improving thus the low convergence rates of the individual methods.  

 

Probabilistic connections for bidirectional path tracing (Popov et al. 2015) improve 

the efficiency of the original algorithm by establishing bidirectional connections based 

on the contribution of a discrete set of light subpaths. At each iteration one eye subpath 

is generated per pixel and 𝑀 light subpaths are stored. For a small subset of eye 

subpaths, sampled uniformly on the image plane, the proposed method computes and 

stores probability mass functions. The probability mass functions are computed by 

normalizing the contribution of each light subpath with the sum of the contributions 

of all of the 𝑀 light subpaths. For eye subpaths that do not store records of probability 

mass functions, the approach finds the closest located records, interpolates them and 

then uses the CDF inversion method to sample connections and evaluate contributions. 
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Using Gaussian mixture models, Vorba et al. (2014) address the difficulty manifested 

by Monte Carlo ray tracing in rendering scenes with complex visibility. In a training 

pass, the proposed method learns the distributions of the light and importance particles 

and uses them, in the rendering pass, to augment the sampling of emission and 

scattering directions with an estimate of the equilibrium radiance or importance. That 

is, the equilibrium importance is used to guide light subpaths towards the camera, 

whereas the equilibrium radiance is used to guide eye subpaths towards light sources. 

Guiding subpaths towards each other increases the probability of connecting them 

with non-zero contributions. A higher number of valid contributions reduces variance. 

 

Gradient-domain bidirectional path tracing (Manzi et al. 2015) uses finite difference 

gradients to reduce variance and consequently rendering time. Following the outline 

of gradient-domain path tracing (Kettunen et al. 2015), the bidirectional algorithm 

generates a number of base, full transport paths for each pixel. The base eye or light 

subpaths are then shifted, using manifold exploration (Jakob and Marschner 2012), to 

the horizontal and vertical neighbouring pixels. The contribution difference between a 

shifted path and its base homologue is stored in a gradient image. In a post-processing 

pass, the regular and the gradient images are combined via a screened Poisson solver. 

 

Gradient-domain path reusing (Bauszat et al. 2017) improves the convergence rate of 

gradient-domain path tracing by reusing eye subpaths in the computation of the image 

gradients. After splitting the image into tiles and generating a single eye subpath per 

pixel, the proposed algorithm shifts each base subpath to all the pixels in the tile via a 

generic path reusing function. The reusing function connects the primary sample of a 

pixel with the higher-order sample of a subpath generated for another pixel, by shifting 

the subpath such that a connection with a non-zero contribution can be established 

between the two samples. The contributions of the shifted subpaths serve to estimate 

the gradients. The process is repeated for all the requested samples per pixel. The final 

image is reconstructed from pixel values and gradients via a screened Poisson solver.  
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Metropolised bidirectional estimators (Šik et al. 2016) take one step further and extend 

vertex connection and merging with Markov chain Monte Carlo sampling, so as to 

efficiently process both complex specular transport and complex visibility. Using a 

standard Monte Carlo sampler, the proposed algorithm generates all the eye subpaths, 

which are immediately evaluated using next event estimation. The subpaths which 

intersect a light source are also evaluated using naïve path tracing. The light subpaths 

are generated with a Markov chain Monte Carlo sampler and evaluated using the 

remaining vertex connection and merging techniques. In this way, the strength of the 

bidirectional estimators in handling glossy/specular transport is combined with the 

versatility of the Markov chain Monte Carlo sampling in addressing complex visibility. 

 

As discussed in chapter 4, the current work implements the bidirectional path tracing 

algorithm and the path manipulation strategies with path reuse, Russian roulette and 

multiple importance sampling. However, the gist of the path manipulation algorithm 

is the extension of bidirectional path tracing towards reusing paths in the temporal 

domain. As opposed to the previous advancements, the current work does not focus 

on deriving strategies that increase the efficiency of the sampling process itself. That 

is, the path manipulation algorithm does not provide additional sampling strategies 

that improve the simulation of certain difficult light transport paths. It does not reduce 

variance by guiding subpaths or by establishing probabilistic connections. Neither does 

it enhance the basic algorithm with tools like image gradients or metropolised sampling. 

 

Instead, it focuses on developing sampling strategies, inherent to the path integral 

framework, that are capable of exploiting temporal coherence during the rendering 

process itself. Though improving the performance of the original algorithm, the above 

methods explore the spatial dimension while ignoring the temporal one. They may 

store and reuse paths within one iteration of the algorithm, yet new paths are generated 

between iterations. For example, the probabilistic connections approach stores light 

subpaths and reuses them across connections with different eye subpaths. Unified path 

sampling and metropolised bidirectional estimators also reuse paths. However, the 

path generation-evaluation cycle is repeated between iterations. The current work aims 

to supplant this static manipulation of paths with a generation-evaluation-reuse cycle. 
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2.6.2 Accelerated Monte Carlo ray tracing 

 

The capacity stream processing architectures exhibit at delivering high throughput, 

represents another driving force aimed at reducing the execution costs of Monte Carlo 

ray tracing. In other words, progressive Monte Carlo ray tracing invested a lot of effort 

in adapting the Monte Carlo algorithms to the rigours of stream processing technology. 

 

One direction of research involves the development of high-performance ray shooting 

engines (Parker et al. 2010; Wald et al. 2014). The aim of the ray shooting investigation 

is to optimally select and efficiently construct and traverse acceleration data structures. 

 

An alternative to ray shooting based on acceleration data structures is divide-and-

conquer ray tracing (Mora 2011; Áfra 2012; Nabata et al. 2013; Ravichandran and 

Narayanan 2013). The latter category of algorithms circumvents the construction of 

acceleration data structures by correlating the partitioning of primitives with the 

tracing of rays. The major advantage in doing so is that the partitioning time can be 

significantly less than the building time of an acceleration structure, saving both 

precious time and memory especially for applications involving dynamic scenes.  

 

The initial divide-and-conquer algorithm (Mora 2011) employs spatial partitioning to 

recursively divide the bounding box of a list of triangles along the longest dimension. 

For scenes with less than 10,000 triangles a median cut schema is used, whereas for 

the rest of the scenes the split locations are determined by uniformly selecting a 50th 

of the entire triangle stream and averaging the middles of the triangle spans. A triangle 

span is the difference between the triangle’s maximum and minimum values along the 

split axis, clamped by the bounding box limits. The intersections of the triangles/rays 

with the currently evaluated bounding box are used to sort an auxiliary list of indices. 

All the triangles/rays which intersected the current bounding box are identified via a 

contiguous range of indices. The index sorting, performed in a breadth-first quicksort 

manner, avoids moving the larger triangle/ray structures and is designated as filtering. 
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The tracing of primary rays is optimized by traversing the spatial subdivisions in a 

front-to-back order and by suppressing the computation of the intersections beyond 

the first successful intersection. The tracing of rays emanating from common locations 

(e.g. camera, point or virtual point light sources) is further optimized by tracing conic 

ray packets instead of individual rays. These optimizations do not apply to incoherent 

rays, for which the closest scene intersection must be computed using a Z-buffer 

like approach. When the number of triangles or rays falls below a given threshold, the 

active rays are traced against the subdivision triangles via naïve ray tracing. Otherwise 

subdivision, intersection, filtering and traversal continue to be executed recursively. 

 

Ravichandran and Narayanan (2013) parallelize the divide-and-conquer ray tracing 

algorithm to benefit from the streaming capabilities of the GPU. The parallel approach 

exhibits increased performance for primary rays, incoherent rays and scenes with 

viewpoints located outside the bounding box. Its performance decreases relative to 

that of the CPU-based algorithm for viewpoints located inside the bounding box, for 

which the latter algorithm benefits from early ray termination and conic packet tracing. 

 

Áfra (2012) succeeds in optimizing the CPU-based algorithm for incoherent rays by 

efficiently filtering rays, using higher quality object partitioning and exploiting wider 

SIMD sets. By sorting the rays instead of their indices, Áfra (2012) achieves linear 

memory accesses and avoids the cache misses incurred by the initial algorithm. This 

filtering suits incoherent rays, increasing the ray traversal performance by at least 25%. 

By adopting object partitioning over spatial partitioning, the list of primitives is 

divided into disjoint lists. The median cut and surface area heuristic split the list of 

primitives along the longest dimension of an axis aligned bounding box. The surface 

area heuristic is selected whenever the ratio between the active rays and the current 

triangles exceeds a given threshold. Primitives are filtered by sorting the associated 

list of indices. The traversal order is also adapted to incoherent rays by considering 

the axis on which the two child bounding boxes are farthest apart, the direction sign 

of the first active ray along that axis and the closest child along the identified direction. 

Finally, the advanced vector extensions are faster than the streaming SIMD extensions. 
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Nabata et al. (2013) further accelerate the tracing of rays by exploiting the distribution 

of rays and a cost metric which avoids inefficient ray filtering. Like Áfra (2012), the 

proposed algorithm uses a bounding volume hierarchy represented as a binary tree. 

The scene bounding volume is subdivided into several bins, each with its left and right 

volumes bounding two disjoint sets of triangles. When the rays are over 1000, some 

of them are randomly selected and traced against every pair of left-right volumes to 

determine the cost function, the ray distribution in the bounding volume and the 

traversal order of the child volumes. The cost function is assessed using the surface 

area heuristic, with the intersection probabilities for the left and right volumes 

substituted with the intersection ratio between the number of rays intersecting that 

precise volume and the total number of randomly selected rays. The smallest cost 

function identifies the bin to be investigated. The traversal order is determined by 

selecting the child volume with most of the selected rays closer to it. The closest rays 

are determined by intersecting the selected rays with each child volume. Ray filtering 

is made efficient by suppressing it whenever the intersection ratio exceeds a certain 

threshold. The proposed algorithm exhibits superior performance for all types of ray 

when compared to Áfra (2012) and for incoherent rays when compared to Mora (2011). 

 

A challenge in simulating light transport on stream processing architectures is 

precisely the incoherence of scattered rays. One technique for accelerating ray tracing 

is to take advantage of the coherence of certain rays and group them into packets. Rays 

originating at the same location (e.g. primary rays, rays emanating from point light 

sources or soft shadow rays cast from a sample) exhibit sufficient coherence to be 

traced in packets and benefit from efficient SIMD instructions and packet-based 

culling. However, most light transport rays are incoherent as they originate from 

different scene locations, tend to go in all directions and cover large scene portions. 

Boulos et al. (2007) demonstrate that higher-order rays can be assembled in general 

packets based on a common property. Runs trace all the higher-order rays that share a 

property (e.g. object identifier, material, geometric proximity, surface orientation) and 

correspond to adjacent primary rays. Groups trace all rays with a common property, 

while ray types assemble shadow, refraction and reflection rays in 3 distinct packets. 

Ray types prevailed over the other packing strategies, due to low overhead and less 

sensitivity to ray ordering than runs. Groups were considered too general to be viable. 
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Boulos et al. (2007) also identify the bounding volume hierarchy as robust to false 

negatives in ray-box intersections, deformable primitives and spread in ray packets. 

Performance is increased beyond the SIMD gain by combining general packets with a 

bounding volume hierarchy traversal that benefits from early ray termination and ray 

packet culling. Run packets were reported to perform an increased number of ray-box 

intersections at higher bounce depths, reducing performance by 10-20% as compared 

to ray type packets. Thus, memory accesses and higher-order rays dictate performance. 

 

Aila and Karras (2010) discuss architectural solutions that reduce memory traffic for 

efficient tracing of incoherent rays. The proposed approach divides the bounding 

volume hierarchy into treelets and queues rays with each treelet to reduce cache 

pressure. A custom architecture with 16 processors fetches rays from an input queue 

in the DRAM and fills warps of 32 threads. During execution each ray fetches two 

child volumes, traverses the closest intersected one and stores the other one’s index 

on a per-ray traversal stack. When the non-terminated rays in a warp fall below 50%, 

the rays are compacted by storing the terminated ones in memory and copying the data 

of the non-terminated ones to the warp that is currently being filled. Compaction 

increases the non-terminated rays from 25% to 60-75%, suggesting over 2× speedups. 

Small differences in the memory traffic for rays sorted randomly (worst case) and 

relative to an origin-direction space-filling curve (best case), led to the conclusion that 

ray order is irrelevant. The explanation is that, for increasingly complex scenes, rays 

tend to visit nodes further apart in the tree. By storing the per-ray traversal stack in 

memory and accessing it via a stack top cache, the traversal stack traffic is eliminated 

and the total memory traffic is approximately halved. Treelets are built from the leaves 

up by optimizing the total surface area of their roots and rays are stored in the queue 

of the treelet whose boundary they encounter. Two types of schedulers decide when a 

treelet queue has accumulated sufficient rays to be traced. A lazy scheduler assigns a 

processor with a currently empty queue to the queue with the highest number of rays. 

A balanced scheduler assigns processors based on the number of processors a queue 

requests and on the number of rays. The requested processors grow linearly from the 

moment a treelet queue exceeds a target size and until it reaches the double target size. 
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Aila and Karras (2010) prove that a lazy scheduler works best with treelets that reflect 

the L2-cache size, while a balanced one works best with treelets that fit the L1-cache 

size. Unlike the lazy scheduler, the balanced one exhibits increased memory traffic, 

but makes practically feasible assumptions about the speed of the L2 cache. A key 

advantage of ray packing is the ability to accommodate the requested nodes/triangles 

in the L1-cache. The treelet queues are implemented in external memory, with dynamic 

resizing to circumvent deadlocks and pre-emption operations. A queue is bypassed 

and memory traffic is further reduced by dispatching a ray to another processor that is 

already bound to that specific queue. A ray can also be forwarded to a processor which 

in the previous two executions was bound to the queue that should have stored the ray. 

The rationale is that rays from a previous queue can still be in execution even after 

binding the processor to another queue and treelets about to be completely traversed 

have fewer rays, allowing the processor to trace rays from multiple treelets. Bypassing 

reduces memory traffic by 10% if only the current queue is considered and by 20% if 

the previous two queues are allowed. Aila and Karras (2010) outline interesting future 

refinements, but identify auxiliary traffic (rays, queues, stacks) as the main challenge. 

 

Thus, another area of interest within progressive Monte Carlo ray tracing is concerned 

with fully utilizing the available resources. The full use of the streaming capabilities 

is synonymous with minimizing the divergence of the execution flow, which is 

generally achieved by designing operations to access contiguous blocks of memory 

and by imposing a maximum depth on the traced paths (van Antwerpen 2011a). 

Having all paths traced up to a certain length avoids the suboptimal sharing of 

processing units between working and idle threads. Yet, in proceeding as such the 

efficiency of the Monte Carlo algorithm itself is affected, since paths are traced up to 

the imposed length regardless of the contribution they bring with each scattering step. 

Novák et al. (2010) try to remedy this limitation by means of a two-stage algorithm, 

which in its first phase still traces paths up to a user predefined length, but which in 

its closing phase continues tracing the terminated paths up to a length defined in 

terms of the average scene reflectance. Being essentially a path generation strategy, 

the proposed technique lends itself to both path tracing and bidirectional path tracing. 
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In addition to compacting operations with the purpose of accessing contiguous blocks 

of memory and benefiting from full memory bandwidth, progressive Monte Carlo 

algorithms also face, on some processing units such as the GPU, restrictive memory 

capacities. Memory limitations constitute a major challenge in implementing some of 

the Monte Carlo algorithms, like bidirectional path tracing, on the GPU. State-of-the-

art solutions such as streaming bidirectional path tracing (van Antwerpen 2011b) and 

light vertex cache bidirectional path tracing (Davidovič et al. 2014) address this 

problem using pure GPU implementations. Combinatorial bidirectional path tracing 

(Pajot et al. 2011), avoids some of the GPU limitations by generating all the eye and 

light subpaths on the CPU and then connecting all their vertices on the GPU. 

Exhaustively combining subpath vertices reduces the sampling costs via path reuse, 

limits the memory footprint to an adequate size and ensures a suitable GPU occupancy. 

 

The advent of stream processing technology and the development of progressive 

Monte Carlo algorithms, considerably improved the balance between accuracy and 

performance. However, research in this area is dictated by the necessities that arise 

with porting the offline algorithms on the designated architectures. That is, the focus 

is on developing structures and mechanisms that adapt the original Monte Carlo 

algorithms to the design, capabilities and limitations of the hosting platform. For 

example, the discussed progressive algorithms harness the power of the GPU to attain 

fast executions. Yet, none of them focus on scene dynamism and temporal coherence. 

 

The methods that do exploit temporal coherence refer mainly to accelerating classic 

ray tracing. Research in this area either produced parallel ray tracers that fully engage 

the resources of multi-processor systems or created techniques that optimally process 

acceleration structures and exploit ray coherence. For instance, Martin et al. (2002) use 

a 32-processor system to reproject anterior primary samples onto the image plane and 

guide the ray tracing of the current frame in a way that reduces flickering and popping. 
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Wald et al. (2003) ray trace dynamic scenes on a cluster of dual-core machines. For 

static objects and for groups of primitives subjected to the same transformations, i.e. 

to hierarchical motion, their method builds once the local binary space partitioning 

trees and then computes the intersections of these objects with the rays transformed to 

the corresponding local coordinate systems. Objects with unstructured motion, i.e. that 

move independently of all other objects, are stored separately and their acceleration 

structures are rebuilt for each frame. Similarly, Chapman et al. (1991) transform a ray 

to object space and compute its intersections with the geometry for the entire animated 

sequence. Lauterbach et al. (2006) make no assumptions about the motion of objects 

and dynamically update or rebuild the scene bounding volume hierarchy. The proposed 

method uses a heuristic, based on the surface area ratio between a parent node and its 

children, to determine the degradation level beyond which the hierarchy can no longer 

be updated and must be rebuilt. The method also exploits ray coherence by generating 

ray packets and traversing the nodes of the hierarchy if at least one ray intersects them. 

 

Wald et al. (2007) report on a variety of techniques, which explore the principal 

research directions assumed in ray tracing dynamic scenes. The survey analyses the 

design decisions and trade-offs involved in selecting the best suited acceleration 

structure for a given scene, motion type and ray characteristics (e.g. number and type). 

However, the focus is on mechanisms that quickly build or update the acceleration 

structures and on algorithms that efficiently exploit ray coherence at traversing them. 

 

Recent advances (Guntury and Narayanan 2010; Guntury and Narayanan 2012; 

Günther 2014; Nah et al. 2015; Pérard-Gayot et al. 2017) do not seem to depart from 

the mainstream research, as they continue to explore the avenues of performant builds 

of acceleration structures and coherent ray traversal. As noted by Wald et al. (2002), 

Monte Carlo ray tracing entails a different level of complexity than classic ray tracing 

does. By computing the radiance equilibrium of a scene, Monte Carlo ray tracing poses 

issues well beyond the coherence of primary and secondary rays. Load balancing, 

contained synchronization, higher-order ray incoherence, decomposition of the global 

illumination computations into independent tasks and their efficient executions, are 

some of the aspects that a fast ray tracing global illumination system must consider. 
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In fact, Wald et al. (2002) combine distributed ray tracing, instant radiosity and photon 

mapping techniques in a parallel algorithm that relies on restrictions to compute the 

global illumination solution. The illumination information, subjected to constraints like 

maximum path length and specific surface properties, is recomputed every frame, with 

the same pseudorandom numbers and low-discrepancy sequences, to avoid flickering. 

 

Techniques based on rasterization can evaluate the indirect illumination arising from 

a limited number of bounces in real-time. For instance, bidirectional path tracing via 

rasterization (Tokuyoshi and Ogaki 2012) generates one-bounce light subpaths using 

reflective shadow maps, determines the primary rays via the geometry buffer, extends 

them with one edge using global ray-bundles and establishes their connections with the 

light subpaths via shadow maps. However, such techniques introduce approximations 

beyond the limitation of the subpath lengths. Bidirectional path tracing via rasterization 

exclusively assumes point light sources and diffuse or moderately glossy BRDFs. The 

global ray-bundles do not sample according to the BRDF causing spike artefacts on 

glossy surfaces, which are smoothed by clamping the roughness parameters. However, 

important cues may be lost by blurring the high-frequency illumination details. The 

limited resolution of the ray-bundles may also cause artefacts. The geometric factor in 

the probability density of a two-bounce path generates spikes too, which are solved 

only biasedly via clamping. Multiple bounces can be generated for small scenes at the 

expense of memory. By limiting the scene configurations and by approximating the 

illumination computations, such rasterization techniques distance themselves notably 

from the current work and will not be further considered. Ritschel et al. (2012, p. 14) 

provide an ampler discussion on the rasterization-based global illumination techniques. 

 

The current work takes a different route to facilitating scene dynamism in Monte Carlo 

ray tracing. Instead of conforming a Monte Carlo algorithm to the rigours of a specific 

architecture or efficiently refitting and traversing acceleration data structures, the path 

manipulation algorithm exploits the temporal coherence of entire light transport paths. 
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2.6.3 Temporal coherence and path reuse 

 

An extensive volume of work (Damez et al. 2003; Tawara et al. 2004) uses the temporal 

coherence in lighting distribution as a premise for circumventing redundant global 

illumination computations in dynamic environments. The strategies that exploit this 

temporal coherence vary across the different classes of global illumination algorithms. 

Yet, the common goal is to preserve as much of the already computed lighting solution 

as possible. For example, temporal gradient-domain path tracing (Manzi et al. 2016) 

reuses the same random variables, that generated the base paths in the previous frame, 

to sample the base paths in the next frame. The shifted paths are computed from the 

base homologues and the spatial (base-shifted), temporal (base-base) and mixed 

(shifted-shifted) gradients are determined from the base and temporal offset frames. 

 

Knecht (2009) reduces the cost of evaluating illumination from virtual point lights 

by diminishing the number of VPLs through the reuse of illumination information 

from the previous frame. Being a real-time version of instant radiosity, the proposed 

algorithm uses imperfect shadow maps (Ritschel et al. 2008) to sample multi-bounce 

VPLs with a reduced fill rate. The first tier of VPLs is sampled using cube maps for 

point light sources and importance maps for spotlight sources. In the latter case, point 

samples are first generated from a uniform distribution and then hierarchically warped 

(Clarberg et al. 2005) according to the levels of an importance map. The importance 

map is created with the geometry buffer of the spotlight using the light intensity, light 

colour, surface colour and specular power. The final positions of the point samples are 

used to lookup the surface information, in the light geometry buffer, that will generate 

the VPLs. The other VPLs are sampled by discretizing the scene into a point cloud 

and assigning the point samples with the largest contributions to existing VPLs. The 

assignment operation is implemented as an imperfect shadow map test, which selects 

for each VPL the visible point sample with the largest specular contribution. Yet, the 

assignment of one point sample to each VPL generates a suboptimal distribution and 

the disposal of the less dominant point samples introduces bias. Furthermore, only 

primary samples are generated from the camera. These primary samples are shaded by 

dividing the camera geometry buffer into several tiles and allotting each VPL to a tile. 
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Each tile displays the entire scene using a subset of the camera geometry buffer pixels. 

The contribution of a VPL to its tile is evaluated using its imperfect shadow map and 

is additively written to the accumulation buffer. Once shaded, the tiles are merged by 

interpolating the current illumination with the illumination from the last frame. The 

recycling degree of the prior illumination information is determined by a per-pixel 

confidence value dependent on the sample position change, normal change and 

difference between the current and previous illumination values. The illumination 

discrepancies, owed to discontinuities in the geometry buffer, are smoothed with a 

geometry-aware box filter. The direct illumination, computed in a 2D post-processing 

step, is combined with the indirect illumination and is tone mapped to yield the final 

image. By lighting only a pixel subset with each VPL and by smoothing illumination 

over time, shading costs and temporal aliasing are reduced. Yet, temporal smoothing 

artefacts occur when objects move fast or the light source is suddenly occluded. The 

typical instant radiosity spikes are suppressed by biasedly clamping the VPL-sample 

distances to a minimum value of 1. Other problematic issues of this approach regard 

limited number of bounces, lack of heuristics for optimal parameter selection, loss of 

indirect shadows due to few point samples, temporal artefacts when less than 256 

VPLs are used, texture lookup limitation for deformable geometries and potentially 

detrimental impact of the lookup limitation on temporal coherence. The current work 

takes a fundamentally different approach to exploiting temporal coherence. It extends 

bidirectional path tracing to the temporal domain by reconstructing and reusing 

random-length light and eye subpaths via platform-independent sampling techniques. 

Hence, the problematics inherent to GPU-based instant radiosity methods are avoided. 

 

Lai (2010) provides a broad discussion on the temporal-aware algorithms developed 

in various global illumination research areas. Recent techniques, such as the sequential 

Monte Carlo instant radiosity (Hedman et al. 2016), confirm the renewed interest in 

the temporal processing of global illumination. However, there is little development 

in the area of path reuse. Few techniques approach temporal coherence by extending 

a Monte Carlo method without recourse to additional tools like image-space gradients. 

By directly processing light transport paths, path reuse techniques constitute the 

immediate context of the current work and are examined for the rest of this subsection. 
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Path reuse techniques accommodate scene dynamism by recycling path information. 

Across different solutions, the degree of information preservation ranges from primary 

samples (Havran et al. 2003) to parts of light subpaths (Sbert et al. 2004a), parts of eye 

subpaths (Bekaert et al. 2002) or subpath parts of both types (Sbert and Castro 2004). 

Nevertheless, the existent path reuse approaches work on rather limiting assumptions. 

 

Havran et al. (2003) present a spatio-temporal architecture for animation rendering, 

which assumes the animation paths, for the camera and moving objects, are known a 

priori. On the one hand, the presupposition of animation paths precludes the use of the 

proposed framework with applications that require direct interaction with the scene, 

as is the case of the simulation and design software used in commercial industries (e.g. 

optical and photometric simulation within CAD/CAM tools and light management via 

virtual reality systems). On the other hand, the approach operates primarily on paths 

with diffuse primary samples and applies a weighting heuristic that biases the solution, 

i.e. the contribution weights do not reflect the probabilities used to sample the paths. 

 

Méndez-Feliu et al. (2006) remedy both problematics by normalizing the probabilities 

of the original samples relative to the pixels onto which these samples are reprojected. 

The weighting heuristic is also computed based on the probabilities with which a given 

sample is reprojected on all other possible pixels. Though constructing a general and 

unbiased Monte Carlo estimator, the proposed algorithm handles only camera motion. 

 

Similarly, Bekaert et al. (2002) accelerate path tracing by constructing an unbiased 

estimator that reuses eye paths. The reused paths are formed by reconnecting primary 

samples to secondary samples that appertain to paths generated through nearby pixels. 

 

Conversely, Sbert et al. (2004a; 2004b) restrict the scene dynamism to moving light 

sources. Sbert et al. (2004a) reuse light subpaths by reconnecting the moving light to 

the primary samples of the light subpaths generated in the previous and subsequent 

frames. Sbert et al. (2004b) assume punctiform light sources moving in a static scene 

and compute an unbiased estimator like the one proposed by the former approach. 
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Both techniques use a priori knowledge, about the light source animation paths, to 

generate all the frames (pre-processing phase) and then reuse paths across frames from 

both preceding and subsequent frames (animation phase). To avoid the restriction of 

a priori known animation paths and thus accommodate interactive applications, the 

latter approach restricts the reuse of paths to preceding frames. Nevertheless, both 

algorithms remain limited from a scene dynamism standpoint. By fixing objects and 

camera, neither method offers a generic solution for reconstructing and reusing paths. 

 

Sbert and Castro (2004) reuse both light and gathering subpaths. Light subpaths are 

reused as discussed by Sbert et al. (2004a). However, gathering subpaths are limited 

to a single edge and their reuse implies accruing, at every sample, the radiosity of the 

preceding and subsequent frames. Furthermore, the restriction of dynamism to light 

source movements and the assumption of a priori known animation paths are retained. 

 

Méndez-Feliu and Sbert (2006) combine light and camera animations to produce an 

array of frames that can be collated in a movie, based on the transformation of either 

the camera, the light source or both. In the case of camera animation, the proposed 

method uses the system designed by Havran et al. (2003) to recycle the direct diffuse 

illumination and the obscurances (Iones et al. 2003) computed for indirect illumination. 

Specular effects are handled by generating paths normally. For light animation, the 

direct illumination, specular effects and ambient light are computed for each frame, 

whereas obscurances are reused. Combined light and camera animations are computed 

by generating for every camera position the frames associated with all the light 

positions. The result is a high number of images that reflect the different combinations 

of light and camera transformations. Consequently, the exploration of the animation 

space is limited to the set of generated images. The proposed method is also limited 

by the assumptions of static objects and a priori knowledge about the animation paths. 
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Lai (2010) extends population Monte Carlo equal deposition energy redistribution 

with a temporal perturbation to render an entire animated sequence. In a pre-processing 

phase, the proposed algorithm uses path tracing to generate caustic paths and paths 

distributed uniformly across the image plane. Some of these paths are used as seeds, 

while others are used as substitutes in the resampling phase. A given number of spatial 

and temporal perturbations are applied to every seed path. Each perturbation is either 

accepted or rejected and the energy of the perturbed/original path is deposited at the 

associated pixel. The resampling phase excludes well-distributed and low-contribution 

paths, replacing them with substitute paths so as to maintain a constant path number. 

At the end of the redistribution-resampling process the residual energy of all processed 

paths is equally deposited onto a range of frames. The temporal perturbation generates 

a new path by applying rigid transformations to the first two vertices of the path and 

then extending the path either through specular bounces or by rigidly transforming the 

diffuse vertices. The locations of the specular vertices determine whether the temporal 

perturbation starts at the light source or at the camera. To be feasible, the proposed 

algorithm is implemented using a client-server paradigm. The server executes the pre-

processing phase, creates client tasks, collects client data, updates intermediate results 

and generates the necessary information for the next iteration. Each client renders a 

subset of the initial paths via an unbiased strategy that locally adapts the rendering 

parameters. The initial paths are distributed using their timestamps and rays are traced 

against a bounding box in the kd-tree only if their timestamps belong to the timestamp 

interval of that bounding box. To reduce memory pressure, the contributions of the 

paths that fall within a 20-frame radius from a central frame are stored in memory, 

whereas the other contributions are stored in buckets on the disk. Besides assuming 

predefined animation paths, the proposed algorithm also assumes low variation in the 

lighting condition to ensure convergence in similar iterations. Changes in illumination 

are processed exclusively by cutting the animation into smaller animated sequences. 

 

The path manipulation strategies reconstruct and reuse paths independently of the 

subpath or scene dynamism type. Light and eye subpaths are reconstructed generically 

and regardless of whether the transformations affected the camera, a light source or 

other scene objects. Moreover, predefined animation paths are not required. Tables 2.1 

and 2.2 compare the path manipulation algorithm with the perused temporal methods. 
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Method 
Dyna

mism 

Inter 

activity 

Re 

use 
Transport 

Memory 

footprint 
Artefacts 

Primary 

sample 

reconnection 

Bekaert et al. 

2002 

— — 
EP 

intra 

frame 

𝐿(𝑆|𝐷)∗𝐸

𝑀𝑃𝐿 = ∞
 

est. 

𝑂(𝐸𝑃) 
{

𝑈𝑛𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠
𝑇𝑖𝑙𝑒 𝑒𝑑𝑔𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑖𝑒𝑠
𝐴𝑐𝑐𝑒𝑛𝑡𝑢𝑎𝑡𝑒𝑑 𝑠𝑝𝑖𝑘𝑒 𝑛𝑜𝑖𝑠𝑒

 

Motion 

compensation 

Havran et al. 

2003 

Cam. 

Obj. 
PAP 

LP 

EP 

𝐿(𝑆|𝐷)+𝐷𝐸

𝑀𝑃𝐿 = ∞
 𝑂(𝐹𝐵) {

𝐵𝑖𝑎𝑠
𝐺𝑙𝑜𝑠𝑠 𝑛𝑜𝑖𝑠𝑒

 

Light source 

reconnection 

Sbert et al. 

2004a  

Lgt. PAP LP 
𝐿𝐷+𝐸

𝑀𝑃𝐿 = ∞
 

est. 

𝑂(𝑁𝑓𝑁𝑝Φ) 
𝑃𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑎𝑙𝑖𝑎𝑠𝑖𝑛𝑔
 

Light source 

reconnection 

Sbert et al. 

2004b 

Lgt. 
PAP 

UI 
LP 

(𝐿𝑆𝐷)(𝑆|𝐷)+𝐸

𝑀𝑃𝐿 = {
∞ 𝐿𝑃
1 𝐸𝑃

 𝐼𝐵 𝑛/𝑎 

Light source 

reconnection 

Sbert & Castro 

 2004 

Lgt. PAP 
LP 

GP 

𝐿𝐷+𝐸

𝑀𝑃𝐿 = {
∞ 𝐿𝑃

1 𝐺𝑃

 𝑂(5𝑁𝑓𝑁𝑝Φ) 𝑛/𝑎 

Unbiased 

motion 

compensation 

Méndez-Feliu 

et al. 2006 

Cam. PAP EP 
𝐿(𝑆|𝐷)∗𝐸

𝑀𝑃𝐿 = ∞
 𝐺𝑏 𝑛/𝑎 

Path 

manipulation 

algorithm 

Cam. 

Lgt. 

Obj. 

PAP 

UI 

LP 

EP 

𝐿(𝑆|𝐷)∗𝐸

𝐿𝑆+𝐷𝐸

𝑀𝑃𝐿 = ∞

 𝑂(𝑃𝑀𝐴) 
𝐼𝑓 𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑝𝑎𝑡ℎ𝑠
𝑎𝑟𝑒 𝑖𝑛𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒𝑙𝑦

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 ⟹ 𝑏𝑖𝑎𝑠

 

S
ym

b
o
ls

 Cam. – camera; Obj. – objects; Lgt. – lights 

PAP – predefined animation paths; UI – user input 

EP – eye subpaths; LP – light subpaths; GP – gathering subpaths 

MPL – maximum subpath length 

 𝑁𝑓 – frames number; 𝑁𝑝 – patches number; 𝑆𝑃𝑃 – samples per pixel 
 

C
o
m

p
le

xi
ti

es
 

{
 
 

 
 
𝐹𝐵 = 𝑁𝑓 ∙ (𝑘% + 𝑜𝑏𝑗𝑒𝑐𝑡𝑠) 𝑘 ∈ ℕ+

𝑆𝑧 = 4𝑏𝑦𝑡𝑒𝑠 ∙ 𝐼𝑚𝑔𝑤𝑖𝑑𝑡ℎ ∙ 𝐼𝑚𝑔ℎ𝑒𝑖𝑔ℎ𝑡 ∙ 𝑁𝑓
𝐼𝐵 = 𝑆𝑧 ∙ 𝐿𝑃
𝐺𝑏 = 𝑆𝑧 ∙ (5𝑏𝑦𝑡𝑒𝑠 + 5𝑏𝑦𝑡𝑒𝑠 ∙ 𝑆𝑃𝑃 ∙ (𝑁𝑓 − 1) + 6𝑏𝑦𝑡𝑒𝑠 ∙ 𝑆𝑃𝑃 + 4𝑏𝑦𝑡𝑒𝑠 ∙ 𝑆𝑃𝑃 ∙ 𝑁𝑓)

𝑃𝑀𝐴 = 𝜍𝜑𝑖 + |ℳ| 𝜍𝜑𝑖 ⟼ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.2)

 

 

Table 2.1: Comparison between the path manipulation algorithm & 1𝑠𝑡 set of temporal 

methods. Unless otherwise specified, reuse occurs between frames and (𝐿𝑆𝐷) indicates 

a light source with zero surface area & finite solid angle emission (Veach 1998, p. 232). 
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Method 
Dyna

mism 

Inter 

activity 

Re 

use 
Transport 

Memory 

footprint 
Artefacts 

Obscurances 

& motion 

compensation 

Méndez-Feliu 

& Sbert 2006 

Cam. 

Lgt. 
PAP IV 𝑂𝑏𝑠𝑐𝑢𝑟𝑎𝑛𝑐𝑒𝑠 𝑂(𝑂𝑏𝑠) 𝑛/𝑎 

Real-time 

instant 

radiosity 

Knecht 2009 

Cam. 

Lgt. 

Obj. 

Mat. 

RT IV 

(𝐿𝑆𝐷)(𝑆|𝐷)+𝐸

𝑀𝑃𝐿 = {
6 𝐿𝑃
1 𝐸𝑃

 𝑅𝐼𝑅 

{
 
 

 
 
𝐶𝑙𝑎𝑚𝑝𝑖𝑛𝑔 𝑏𝑖𝑎𝑠
𝑊𝑒𝑎𝑘 𝑉𝑃𝐿 𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙 𝑏𝑖𝑎𝑠
𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑠ℎ𝑎𝑑𝑜𝑤𝑠 𝑙𝑜𝑠𝑠
𝑇𝑒𝑚𝑝. 𝑎𝑙𝑖𝑎𝑠 (𝑉𝑃𝐿𝑠 < 256)
𝑇𝑒𝑚𝑝. 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟𝑠

 

Population 

Monte Carlo 

energy 

redistribution 

Lai 2010 

Cam. 

Obj. 
PAP 

LP 

EP 

𝐿(𝑆|𝐷)∗𝐸

𝐿(𝑆+𝐷|𝑆+)+𝐸

𝑀𝑃𝐿 = ∞

 

453 – 943 

Mbytes 

per frame 

{
𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑒𝑚𝑝. 𝑎𝑟𝑡𝑒𝑓𝑎𝑐𝑡𝑠
𝑁𝑜𝑖𝑠𝑖𝑒𝑟 𝑑𝑎𝑟𝑘 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

 

Sequential 

Monte Carlo 

instant 

radiosity 

Hedman et al. 

2016 

Cam. 

Lgt. 

PAP 

UI 
VPLs 

𝐿𝐷+𝐸

𝑀𝑃𝐿 = {
3 𝐿𝑃

1 𝐸𝑃

 
est. 

𝑅𝐼𝑅-𝑙𝑖𝑘𝑒 

{
 
 

 
 
𝐶𝑙𝑎𝑚𝑝𝑖𝑛𝑔 𝑏𝑖𝑎𝑠
𝑊𝑒𝑎𝑘 𝑉𝑃𝐿 𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙 𝑏𝑖𝑎𝑠
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑎𝑠
𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠 (𝑐𝑙𝑎𝑚𝑝𝑖𝑛𝑔)
𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑎𝑙𝑖𝑎𝑠𝑖𝑛𝑔
𝐹𝑙𝑖𝑐𝑘𝑒𝑟𝑖𝑛𝑔 (𝑣𝑒𝑟𝑦 𝑙𝑜𝑤)

 

Temporal 

image-space 

gradients 

Manzi et al. 

2016 

Cam. 

Obj. 

PAP 

UI 

RV 
inter 

frame 
 

EP 
intra 

frame 

𝐿(𝑆|𝐷)∗𝐸

𝑀𝑃𝐿 = ∞
 

Orders 

of 

Gbytes 

{
𝐹𝑙𝑖𝑐𝑘𝑒𝑟𝑖𝑛𝑔
𝐻𝑖𝑔ℎ-𝑠𝑝𝑒𝑒𝑑 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

 

Path 

manipulation 

algorithm 

Cam. 

Lgt. 

Obj. 

PAP 

UI 

LP 

EP 

𝐿(𝑆|𝐷)∗𝐸

𝐿𝑆+𝐷𝐸

𝑀𝑃𝐿 = ∞

 𝑂(𝑃𝑀𝐴) 
𝐼𝑓 𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑝𝑎𝑡ℎ𝑠
𝑎𝑟𝑒 𝑖𝑛𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒𝑙𝑦

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 ⟹ 𝑏𝑖𝑎𝑠

 

S
ym

b
o
ls

 

Cam. – camera; Lgt. – lights; Obj. – objects; Mat. – materials 

PAP – predefined animation paths; RT – real time; UI – user input 

IV – illumination values; LP – light subpaths; EP – eye subpaths 

VPLs – virtual point lights; RV – random variables 

MPL – maximum subpath length  

𝑁𝑙𝑓 – light frames number; 𝑁𝑟𝑓 – reused frames number 

C
o
m

p
le

xi
ti

es
 

{

𝑂𝑏𝑠 = 𝐼𝑚𝑔𝑤𝑖𝑑𝑡ℎ ∙ 𝐼𝑚𝑔ℎ𝑒𝑖𝑔ℎ𝑡 ∙ (1 + 𝑁𝑙𝑓 + 2 ∙ 𝑁𝑟𝑓 ∙ (1 + 𝑁𝑙𝑓))

𝑅𝐼𝑅 = |𝑏𝑢𝑓𝑓𝑒𝑟𝑠| + 𝑂(𝑉𝑃𝐿𝑠) + |𝑖𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑠ℎ𝑎𝑑𝑜𝑤 𝑚𝑎𝑝𝑠|

𝑃𝑀𝐴 = 𝜍𝜑𝑖 + |ℳ| 𝜍𝜑𝑖 ⟼ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.2)
 

Table 2.2: Comparison between the path manipulation algorithm & 2𝑛𝑑 set of temporal 

methods. Unless otherwise specified, reuse occurs between frames and (𝐿𝑆𝐷) indicates 

a light source with zero surface area & finite solid angle emission (Veach 1998, p. 232). 
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2.7 Conclusions 

 

The present chapter discussed the foundation of light transport theory, identified the 

best algorithm for the development of the light transport framework and analysed the 

current work in relation with the recent advancements in light transport simulation.  

 

The light transport theory began by defining the solid angle (section 2.1) and the 

radiometric quantities (section 2.2). Surface scattering (section 2.3) introduced the 

bidirectional scattering distribution function (subsection 2.3.1), with its specialization 

(subsection 2.3.2), as the main mathematical tools that describe the local behaviour of 

light. The scattering equation (subsection 2.3.4) served to derive the rendering equation. 

The analytic solution of the rendering equation (subsection 2.4.1) emphasized its 

properties, whereas the surface domain (subsection 2.4.2) and the path integral 

(subsection 2.4.3) formulations provided two different approaches to interpreting it. 

 

The review of the global illumination classes (section 2.5), identified the algorithms 

(subsection 2.5.8) that fulfilled the prerequisite established for the development of the 

light transport framework. Bidirectional path tracing (subsection 2.5.4.2) prevailed as 

the best development foundation, due to its robustness, lack of bias and simplicity. 

However, the goal of the current work is to simulate high-quality illumination effects 

in conditions of dynamic geometry. Consequently, the current work ports bidirectional 

path tracing to the temporal domain via an apparatus of sampling and reuse strategies. 

The path manipulation algorithm reconstructs and reuses paths across frames, with the 

result that the static path manipulation is replaced with a generation-evaluation-reuse 

cycle. The temporal aware approach circumvents the exhaustive regeneration of paths, 

reduces the computational load of the original algorithm and supports scene dynamism. 

 

The temporal aware manipulation of paths is the major difference between the path 

manipulation algorithm and the recent advances that use sampling oriented techniques 

to improve the efficiency of the light transport simulation (subsection 2.6.1). Unlike 

these algorithms, the proposed algorithm does not regenerate the entire path collection 

between iterations, instead it reconstructs and reuses paths on a frame-to-frame basis. 
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The implementation of the path manipulation algorithm (chapter 4) incorporates 

techniques developed in progressive Monte Carlo ray tracing (subsection 2.6.2). 

However, the focus is not on adapting bidirectional path tracing to the rigours of the 

stream processing technology. The aim is to support scene dynamism by explicitly 

exploiting the temporal coherence of illumination, through the reconstruction and 

reuse of entire light transport paths. Accelerated classic ray tracing (subsection 2.6.2) 

exploits temporal coherence, but only by refitting the acceleration structures and/or 

tracing packets of rays. Moreover, it does not compute the radiance equilibrium of a 

scene, as it traces only primary and secondary rays. The path manipulation algorithm 

exploits the temporal coherence of the paths used to estimate the rendering equation. 

 

Path reuse algorithms (subsection 2.6.3) accommodate scene dynamism by recycling 

path information. However, they restrict dynamism to certain objects and/or require 

predefined animation paths. Allowing only the camera or the light sources to move, 

implies that only the eye or light subpaths will be reused. The techniques that require 

predefined animation paths are precluded from being used in interactive applications. 

The path manipulation algorithm eliminates both limitations, by reconstructing and 

reusing subpaths generically and without the need for predefined animation paths. Any 

scene object can be transformed and the subpaths are reconstructed regardless of their 

type. As long as the objects and transformations can be deduced from the user’s actions, 

the path manipulation algorithm can also reconstruct subpaths based on the user input. 

The proposed algorithm equally supports user input and predefined animation paths, 

with the result that its applicability ranges from animation to interaction based systems. 

For example, the path manipulation algorithm can be used with CAD/CAM systems 

to design a commercial product or render a recorded assembling sequence. Chapter 5 

further details its applicability scope, by analysing its results in various scenarios. The 

next chapter delineates the theoretical foundation of the path manipulation algorithm. 
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Chapter 3 

 

Path manipulation strategies 

 

The essential contribution of the current work is the extension of bidirectional path 

tracing towards reusing paths in the temporal domain. To support the generation of a 

wide range of light phenomena, in conditions of dynamic geometry, path manipulation 

strategies reconstruct and reuse light transports paths across different rendering frames. 

 

This chapter defines path manipulation from a mathematical standpoint. Relying on 

the original formulation (Veach 1998, p. 302-307), the first section examines the local 

path sampling techniques and the sample contribution evaluation that underlie the 

bidirectional path tracing algorithm. The purpose of this first section is to establish the 

standard framework in which path sampling techniques operate and set the foundation 

for the mathematical description of the path manipulation algorithm. The next sections 

discuss the original contributions of this work and demonstrate that the path sampling 

techniques can be used to extend the path lifespan from a generation-evaluation cycle 

to a generation-evaluation-reuse one. Path sampling techniques are used in conjunction 

with path reuse to define an apparatus for path manipulation, capable of supporting 

dynamism in Monte Carlo light transport simulations. Regarding dynamism, the path 

manipulation algorithm addresses only the geometric transformations of the scene. It 

is presupposed that the emission and the scattering models are maintained unaltered. 

 

Section 3.2 defines the concepts of path validity and immutable contribution in the 

new generation-evaluation-reuse context. Section 3.3 analyses the first step of the path 

manipulation algorithm, which identifies the invalid paths and computes their anchors. 

Section 3.4 discusses the reconstruction of invalid paths and the evaluation of their 

contributions. As the second algorithmic step, reconstruction subsumes the primary 

anchor, two-chain and terminus anchor scenarios. The two-chain reconstruction covers 

the novel intra-subpath connectivity strategy. Section 3.5 gives a high-level description 

of the path manipulation algorithm, whereas section 3.6 carries a formal analysis on it. 



98 
 

3.1 Background: sampling and estimate computation 

 

Chapter 2 (subsection 2.5.4.2) briefly discussed the sampling and evaluation of paths 

in bidirectional path tracing. This section inspects the sampling techniques as the prime 

mechanism for path generation and emphasizes their role in the evaluation of the path 

contributions. A full mathematical derivation, with examples, identifies and computes 

the factors that define the contributions of the sampled paths. The goal of this analysis 

is to establish the primary concepts on which the path manipulation algorithm operates.  

 

3.1.1 Local path sampling techniques 

 

Bidirectional path tracing can generate a variety of illumination effects for an extended 

range of complex lighting, scattering and geometric models. Its robustness stems from 

optimally combining paths generated with different local sampling techniques into 

low-variance estimators. The local path sampling techniques and multiple importance 

sampling are the fundamental mechanisms that underlie bidirectional path tracing. 

 

The local path sampling techniques construct paths incrementally, based on the local 

information of the last sampled vertices. Three basic sampling methods are used to 

construct paths (Veach 1998, p. 226). The first method samples a vertex according to 

a predefined distribution over the scene surfaces. For instance, vertices on non-delta 

light sources are sampled according to the light source emissivity. Vertices on lenses 

are also sampled with this method. The second method uses a local probability density 

function to sample a direction that would produce the next path vertex by intersecting 

the closest surface. Most vertices are generated by sampling preceding BSDFs. The 

third method creates a complete path by connecting the visible vertices of two subpaths. 

 

The local path sampling techniques can generate paths arbitrarily from the light source, 

the camera or other scene surfaces. Bidirectional path tracing generates light transport 

paths by connecting a subpath sampled from the light to another sampled from the eye. 
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Figure 3.1: Paths of length 𝑘 = 2 may be sampled by (a) naïve path tracing, (b) path 

tracing with next event estimation, (c) tracing photons until they intersect surfaces 

visible from the camera or (d) tracing photons up to the camera (Veach 1998, p. 299). 

 

The path integral framework defines a measurement associated with a given pixel 𝑗 as: 

I𝑗 = ∫𝑓𝑗(�̅�)𝑑𝜇(�̅�)
Ӽ

(3.1) 

where �̅� = 𝑥0…𝑥𝑘 is a path of length 𝑘, 𝑑𝜇(�̅�) = 𝑑𝐴(𝑥0)…𝑑𝐴(𝑥𝑘) is the differential 

area-product measure and 𝑓𝑗(�̅�) is the measurement contribution function defined as: 

𝑓𝑗(�̅�) = 𝐿𝑒(𝑥0 → 𝑥1)𝐺(𝑥0 ↔ 𝑥1)

∏𝑓𝑠(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1)𝐺(𝑥𝑖 ↔ 𝑥𝑖+1)

𝑘−1

𝑖=1

𝑊𝑒
𝑗
(𝑥𝑘−1 → 𝑥𝑘) (3.2)

 

The path �̅� = 𝑥0…𝑥𝑘  is sampled according to a probability density 𝑝𝑠,𝑡. Sampling from 

𝑝𝑠,𝑡 means generating a complete light transport path by connecting a light subpath of 

random length 𝑠 and vertices 𝑦0…𝑦𝑠−1 to an eye subpath of random length 𝑡 and 

vertices 𝑧𝑡−1…𝑧0. The bidirectional path has the form �̅� ≡ �̅�𝑠,𝑡 = 𝑦0…𝑦𝑠−1𝑧𝑡−1…𝑧0. 

The connecting edge 𝑦𝑠−1𝑧𝑡−1 establishes the connection between the two subpaths. 

 

Bidirectional path tracing estimates integral (3.1) by drawing samples from different 

such probability density functions. An entire family of sampling techniques is obtained 

by varying the number of vertices in both the light and the eye subpath. For a path of 

length 𝑘 = 𝑠 + 𝑡 − 1, there are 𝑘 + 2 different sampling techniques that could generate 

the path. Figure 3.1 depicts the 4 techniques that could sample a path of length 𝑘 = 2. 
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Likewise, paths of length 𝑘 = 5 can be sampled through any of the seven techniques: 

𝑆𝑇1: 𝑠 = 0, 𝑡 = 6 [𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5]
𝐸

𝑆𝑇2: 𝑠 = 1, 𝑡 = 5 [𝑥0]
𝐿[𝑥1𝑥2𝑥3𝑥4𝑥5]

𝐸

𝑆𝑇3: 𝑠 = 2, 𝑡 = 4 [𝑥0𝑥1]
𝐿[𝑥2𝑥3𝑥4𝑥5]

𝐸

𝑆𝑇4: 𝑠 = 3, 𝑡 = 3 [𝑥0𝑥1𝑥2]
𝐿[𝑥3𝑥4𝑥5]

𝐸

𝑆𝑇5: 𝑠 = 4, 𝑡 = 2 [𝑥0𝑥1𝑥2𝑥3]
𝐿[𝑥4𝑥5]

𝐸

𝑆𝑇6: 𝑠 = 5, 𝑡 = 1 [𝑥0𝑥1𝑥2𝑥3𝑥4]
𝐿[𝑥5]

𝐸

𝑆𝑇7: 𝑠 = 6, 𝑡 = 0 [𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5]
𝐿

 

where 𝑆𝑇1≤𝑖≤7 is the 𝑖𝑡ℎ sampling technique and 𝐸/𝐿 identifies an eye or a light vertex. 

 

Each sampling technique corresponds to a different probability density 𝑝𝑠,𝑡 over the 

space of paths. This means that each technique samples different factors from the 

measurement contribution function (3.2) and thus accounts for different illumination 

effects. Bidirectional path tracing generates samples using all these techniques and 

combines them in low-variance estimators through multiple importance sampling, i.e.  

 𝐹 =∑∑𝑤𝑠,𝑡(�̅�𝑠,𝑡)
𝑓𝑗(�̅�𝑠,𝑡)

𝑝𝑠,𝑡(�̅�𝑠,𝑡)𝑡≥0𝑠≥0

(3.3) 

where 𝑤𝑠,𝑡 is the weighting function computed through a sample combination strategy. 

Veach and Guibas (1995) propose several heuristics that optimally combine samples. 
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3.1.2 Evaluation of the sample contribution 

 

A sample is a light transport path �̅�𝑠,𝑡 generated according to the probability density 

𝑝𝑠,𝑡 through the local path sampling techniques described in the previous subsection.  

 

The contribution of a sample �̅�𝑠,𝑡 can be defined using the multi-sample estimator (3.3): 

𝐶𝑠,𝑡 = 𝑤𝑠,𝑡(�̅�𝑠,𝑡)
𝑓𝑗(�̅�𝑠,𝑡)

𝑝𝑠,𝑡(�̅�𝑠,𝑡)
(3.4) 

 

Given �̅�𝑠,𝑡 is composed of independent subpaths, its contribution 𝐶𝑠,𝑡 can be factored 

into terms that depend either on one of the subpaths or on the connecting edge 𝑦𝑠−1𝑧𝑡−1: 

𝐶𝑠,𝑡 = 𝑤𝑠,𝑡𝜂𝑠𝒸𝑠,𝑡𝜂𝑡 (3.5) 

where 𝜂𝑠 is the factor dependent on the light subpath, 𝜂𝑡 is the factor dependent on 

the eye subpath and 𝒸𝑠,𝑡 is the factor dependent solely on the connecting edge 𝑦𝑠−1𝑧𝑡−1. 

 

The independent throughput of the light subpath 𝜂𝑠 can be computed recursively, 

based exclusively on the constituent 𝑠 vertices of the subpath, as demonstrated below: 

𝜂0 = 1

𝜂1 =
𝐿𝑒(𝑦0)

𝑃𝐴(𝑦0)

𝜂2 =
𝐿𝑒(𝑦0 → 𝑦1)

𝑃⊥(𝑦0 → 𝑦1)
𝜂1

𝜂𝑖 =
𝑓𝑠(𝑦𝑖−3 → 𝑦𝑖−2 → 𝑦𝑖−1)

𝑃⊥(𝑦𝑖−2 → 𝑦𝑖−1)
𝜂𝑖−1 3 ≤ 𝑖 ≤ 𝑠 (3.6)

 

where 𝐿𝑒 is the radiance emitted from a light source, 𝑃𝐴 is the probability of the first 

vertex 𝑦0 measured with respect to the light surface area and 𝑃⊥ is the probability of 

any subsequent light subpath vertex, measured with respect to the projected solid angle. 
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Formulae (3.6) exhibit a difference in measure between the probabilities of the first 

and the next vertices of the light subpath. This apparent inconsistency is justified by 

the fact that the geometrical factor 𝐺(𝑦𝑖−1 ↔ 𝑦𝑖) appears in the nominator of each 

𝜂𝑖+1|𝑖≥1, in accordance with the definition of the measurement contribution function. 

Also, the probabilities measured with respect to the surface area can be expressed as: 

𝑃𝐴(𝑦𝑖) = 𝑃
⊥(𝑦𝑖−1 → 𝑦𝑖)𝐺(𝑦𝑖−1 ↔ 𝑦𝑖) ∀𝑖 ≥ 1 (3.7) 

Therefore, the geometrical factors cancel each other out yielding the formulae in (3.6).   

 

The throughput of the eye subpath 𝜂𝑡 can be computed using the following formulae: 

𝜂0 = 1

𝜂1 =
𝑊𝑒(𝑧0)

𝑃𝐴(𝑧0)

𝜂2 =
𝑊𝑒(𝑧1 → 𝑧0)

𝑃⊥(𝑧0 → 𝑧1)
𝜂1

𝜂𝑖 =
𝑓𝑠(𝑧𝑖−1 → 𝑧𝑖−2 → 𝑧𝑖−3)

𝑃⊥(𝑧𝑖−2 → 𝑧𝑖−1)
𝜂𝑖−1 3 ≤ 𝑖 ≤ 𝑡 (3.8)

 

where 𝑊𝑒 is the responsivity of the sensor to incoming light and 𝑓𝑠 is the adjoint BSDF. 

 

The 𝒸𝑠,𝑡 term subsumes the residual factors of the measurement contribution function 

and depends uniquely on the scattering that occurs along the connecting edge 𝑦𝑠−1𝑧𝑡−1: 

𝒸𝑠,𝑡 = 𝑓𝑠(𝑦𝑠−2 → 𝑦𝑠−1 → 𝑧𝑡−1)𝐺(𝑦𝑠−1 ↔ 𝑧𝑡−1)𝑓𝑠(𝑦𝑠−1 → 𝑧𝑡−1 → 𝑧𝑡−2) ∀𝑠, 𝑡 > 0 (3.9) 

The BSDF is substituted by 𝐿𝑒(𝑦0 → 𝑧𝑡−1) for 𝑠 = 1 and by 𝑊𝑒(𝑦𝑠−1 → 𝑧0) for 𝑡 = 1. 

When 𝑠 = 0 or 𝑡 = 0, then 𝒸0,𝑡 = 𝐿𝑒(𝑧𝑡−1 → 𝑧𝑡−2) respectively 𝒸𝑠,0 = 𝑊𝑒(𝑦𝑠−2 → 𝑦𝑠−1). 

 

Formulae (3.6), (3.8) and (3.9) determine the unweighted contribution of a sample �̅�𝑠,𝑡: 

𝐶𝑠,𝑡
∗ ≡

𝑓𝑗(�̅�𝑠,𝑡)

𝑝𝑠,𝑡(�̅�𝑠,𝑡)
= 𝜂𝑠𝒸𝑠,𝑡𝜂𝑡 (3.10) 

where 𝑝𝑠,𝑡(�̅�𝑠,𝑡) is the probability density associated with the entire light transport path. 
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The probability density 𝑝𝑠,𝑡(�̅�𝑠,𝑡) can be computed as the product between the probability 

density of the light subpath 𝑝𝑠  and the probability density of the eye subpath 𝑝𝑡, that is 

𝑝𝑠,𝑡(�̅�𝑠,𝑡) = 𝑝𝑠𝑝𝑡 (3.11) 

The probability density of one subpath is independent of the other subpath and can be 

computed as the product of all the probability densities with which the subpath vertices 

were sampled. That is, both 𝑝𝑠 and 𝑝𝑡 can be computed recursively as indicated below: 

𝑝0 = 1

𝑝1 = 𝑃𝐴(𝑥0)

𝑝𝑖 = 𝑃
⊥(𝑥𝑖−2 → 𝑥𝑖−1)𝐺(𝑥𝑖−2 ↔ 𝑥𝑖−1)𝑝𝑖−1 2 ≤ 𝑖 ≤ {𝑠|𝑡} (3.12)

 

where 𝑥𝑖 is a generic reference to a vertex belonging to either a light or an eye subpath. 

 

To have a complete evaluation of the sample contribution (3.4), the weighting function 

𝑤𝑠,𝑡 must be computed. As opposed to the unweighted contribution 𝐶𝑠,𝑡
∗ , which depends 

uniquely on the information generated by sampling the path �̅�𝑠,𝑡 from the density 𝑝𝑠,𝑡, 

the weighting function 𝑤𝑠,𝑡 depends on all the probability densities with which �̅�𝑠,𝑡 

may be generated by the 𝑘 + 2 sampling techniques. Hence, 𝑠 + 𝑡 + 1 probability 

densities are required to determine 𝑤𝑠,𝑡. Let these probability densities be denoted by: 

𝑝𝑖 ≡ 𝑝𝑖,𝑘+1−𝑖 0 ≤ 𝑖 ≤ 𝑘 + 1 (3.13) 

where 𝑝𝑠 = 𝑝𝑠,𝑡 is the probability density associated with the actual generation of �̅�𝑠,𝑡.  

 

The actual probability density 𝑝𝑠 suffices to compute the other 𝑘 + 1 probability 

densities 𝑝0…𝑝𝑠−1, 𝑝𝑠+1…𝑝𝑘+1, as each of them can be defined relative to 𝑝𝑠 . Consider 

a path of length 𝑘 = 5, generated with a probability density 𝑝4 = 𝑝4,2 as in Figure 3.2. 
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Figure 3.2: Scattering events along a path of length 𝑘 = 5, sampled with a probability 

density 𝑝4,2. Vertices 𝑥0 − 𝑥3 compose the light subpath and 𝑥4 − 𝑥5 the eye subpath. 

 

As exemplified in subsection 3.1.1, a path of length 𝑘 = 5 can be sampled through 

𝑘 + 2 = 7 different techniques, each with its own probability density 𝑝0≤𝑖≤𝑘+1. Had 

the path been generated using the 𝑖𝑡ℎ sampling technique, then the probability density 

𝑝𝑖 could be computed via equation (3.11). This assumption yields the ensuing densities: 

𝑆𝑇1: 𝑠 = 0, 𝑡 = 6 𝑝0 = 𝑝0,6 = [𝑃𝐴(𝑥0)𝑃𝐴(𝑥1)𝑃𝐴(𝑥2)𝑃𝐴(𝑥3)𝑃𝐴(𝑥4)𝑃𝐴(𝑥5)]
𝐸

𝑆𝑇2: 𝑠 = 1, 𝑡 = 5 𝑝1 = 𝑝1,5 = [𝑃𝐴(𝑥0)]
𝐿[𝑃𝐴(𝑥1)𝑃𝐴(𝑥2)𝑃𝐴(𝑥3)𝑃𝐴(𝑥4)𝑃𝐴(𝑥5)]

𝐸

𝑆𝑇3: 𝑠 = 2, 𝑡 = 4 𝑝2 = 𝑝2,4 = [𝑃𝐴(𝑥0)𝑃𝐴(𝑥1)]
𝐿[𝑃𝐴(𝑥2)𝑃𝐴(𝑥3)𝑃𝐴(𝑥4)𝑃𝐴(𝑥5)]

𝐸

𝑆𝑇4: 𝑠 = 3, 𝑡 = 3 𝑝3 = 𝑝3,3 = [𝑃𝐴(𝑥0)𝑃𝐴(𝑥1)𝑃𝐴(𝑥2)]
𝐿[𝑃𝐴(𝑥3)𝑃𝐴(𝑥4)𝑃𝐴(𝑥5)]

𝐸

𝑆𝑇5: 𝑠 = 4, 𝑡 = 2 𝑝4 = 𝑝4,2 = [𝑃𝐴(𝑥0)𝑃𝐴(𝑥1)𝑃𝐴(𝑥2)𝑃𝐴(𝑥3)]
𝐿[𝑃𝐴(𝑥4)𝑃𝐴(𝑥5)]

𝐸

𝑆𝑇6: 𝑠 = 5, 𝑡 = 1 𝑝5 = 𝑝5,1 = [𝑃𝐴(𝑥0)𝑃𝐴(𝑥1)𝑃𝐴(𝑥2)𝑃𝐴(𝑥3)𝑃𝐴(𝑥4)]
𝐿[𝑃𝐴(𝑥5)]

𝐸

𝑆𝑇7: 𝑠 = 6, 𝑡 = 0 𝑝6 = 𝑝6,0 = [𝑃𝐴(𝑥0)𝑃𝐴(𝑥1)𝑃𝐴(𝑥2)𝑃𝐴(𝑥3)𝑃𝐴(𝑥4)𝑃𝐴(𝑥5)]
𝐿

 

where 𝑆𝑇1≤𝑖≤7 denotes the 𝑖𝑡ℎ sampling technique, 𝑥0≤𝒿≤5 refers to either a light (𝐿) or 

an eye (𝐸) subpath vertex and 𝑃𝐴(𝑥𝒿) is the surface area probability associated with 𝑥𝒿 . 
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However, the considered path was assumed to be generated with a probability density 

𝑝4 = 𝑝4,2. The probability densities 𝑝0 − 𝑝3 and 𝑝5 − 𝑝6 represent the other 𝑘 + 1 

ways in which the path could have been sampled and they must to be computed relative 

to 𝑝4. To do so, means to compute the ratio between adjacent probability densities, i.e. 

𝑝1
𝑝0
=
[𝑃𝐴(𝑥0)]

𝐿

[𝑃𝐴(𝑥0)]𝐸
=

𝑃𝐴(𝑥0)

𝑃⊥(𝑥1 → 𝑥0)𝐺(𝑥0 ↔ 𝑥1)

𝑝2
𝑝1
=
[𝑃𝐴(𝑥1)]

𝐿

[𝑃𝐴(𝑥1)]𝐸
=
𝑃⊥(𝑥0 → 𝑥1)𝐺(𝑥0 ↔ 𝑥1)

𝑃⊥(𝑥2 → 𝑥1)𝐺(𝑥1 ↔ 𝑥2)

⋮

𝑝6
𝑝5
=
[𝑃𝐴(𝑥5)]

𝐿

[𝑃𝐴(𝑥5)]𝐸
=
𝑃⊥(𝑥4 → 𝑥5)𝐺(𝑥4 ↔ 𝑥5)

𝑃𝐴(𝑥5)

 

where equality (3.7) was used to expand the probabilities measured with respect to the 

surface area. Expressing the probability densities with respect to the projected solid 

angle evinces the directions from which the vertices 𝑥0≤𝒿≤5, found in the nominator 

and the denominator of each fraction, are assumed to have been generated. Relative to 

how it was sampled, a vertex can be processed either in a forward or a reverse direction.  

 

The above probability density ratios can be generalised to paths of arbitrary length 𝑘: 

  
𝑝1
𝑝0
=
[𝑃𝐴(𝑥0)]

𝐿

[𝑃𝐴(𝑥0)]𝐸
=

𝑃𝐴(𝑥0)

𝑃⊥(𝑥1 → 𝑥0)𝐺(𝑥0 ↔ 𝑥1)

𝑝𝑖+1
𝑝𝑖
=
[𝑃𝐴(𝑥𝑖)]

𝐿

[𝑃𝐴(𝑥𝑖)]𝐸
=
𝑃⊥(𝑥𝑖−1 → 𝑥𝑖)𝐺(𝑥𝑖−1 ↔ 𝑥𝑖)

𝑃⊥(𝑥𝑖+1 → 𝑥𝑖)𝐺(𝑥𝑖 ↔ 𝑥𝑖+1)
0 < 𝑖 < 𝑘

𝑝𝑘+1
𝑝𝑘

=
[𝑃𝐴(𝑥𝑘)]

𝐿

[𝑃𝐴(𝑥𝑘)]𝐸
=
𝑃⊥(𝑥𝑘−1 → 𝑥𝑘)𝐺(𝑥𝑘−1 ↔ 𝑥𝑘)

𝑃𝐴(𝑥𝑘)
(3.14)

 

The other 𝑘 + 1 probability densities can be easily computed by using the probability 

density 𝑝𝑠 = 𝑝𝑠,𝑡 and the ratios defined in (3.14). Starting from 𝑝𝑠, the probability 

densities 𝑝𝑠+1…𝑝𝑘+1 can be computed recursively using the last two ratios in (3.14). 

The densities 𝑝0…𝑝𝑠−1 can be derived from the first ratio and the reciprocal 𝑝𝑖 𝑝𝑖+1⁄ . 
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Based on the probability densities 𝑝0≤𝑖≤𝑘+1, the weighting function 𝑤𝑠,𝑡 can finally be 

computed through any low-variance combination strategy (Veach and Guibas 1995). 

By using the power heuristic with an exponent ϐ = 2, the weights can be computed as: 

𝑤𝑠,𝑡(�̅�𝑠,𝑡) =
𝑝𝑠
2

∑ 𝑝𝑖
2

𝑖

(3.15) 

The evaluation of the weights can be optimized by exploiting the relative dependence 

of the probability densities 𝑝0…𝑝𝑠−1, 𝑝𝑠+1…𝑝𝑘+1 on the actual probability density 𝑝𝑠. 

The latter can be factored out of the sum ∑ 𝑝𝑖
2

𝑖  and used to simplify the fraction (3.15): 

𝑤𝑠,𝑡(�̅�𝑠,𝑡) =
𝑝𝑠
2

∑ 𝑝𝑖
2

𝑖

=
1

∑ (𝑝𝑖 𝑝𝑠⁄ )2𝑖
(3.16) 

As remarked by Veach (1998), the weighting function (3.16) depends solely on the 

probability density ratios (3.14). The fraction 𝑝𝑖 𝑝𝑠⁄  refers to a product of probability 

density ratios without the 𝑝𝑠 factor and does not require the computation of 𝑝0≤𝑖≤𝑘+1.  

 

For the path of length 𝑘 = 5, the actual density 𝑝4 = 𝑝4,2 can be factored out as shown: 

∑𝑝𝑖

6

𝑖=0

= 𝑝4
[𝑃𝐴(𝑥3)𝑃𝐴(𝑥2)𝑃𝐴(𝑥1)𝑃𝐴(𝑥0)]

𝐸

[𝑃𝐴(𝑥3)𝑃𝐴(𝑥2)𝑃𝐴(𝑥1)𝑃𝐴(𝑥0)]𝐿⏟                    
𝑝0

+ 𝑝4
[𝑃𝐴(𝑥3)𝑃𝐴(𝑥2)𝑃𝐴(𝑥1)]

𝐸

[𝑃𝐴(𝑥3)𝑃𝐴(𝑥2)𝑃𝐴(𝑥1)]𝐿⏟                
𝑝1

+

𝑝4
[𝑃𝐴(𝑥3)𝑃𝐴(𝑥2)]

𝐸

[𝑃𝐴(𝑥3)𝑃𝐴(𝑥2)]𝐿⏟            
𝑝2

+ 𝑝4
[𝑃𝐴(𝑥3)]

𝐸

[𝑃𝐴(𝑥3)]𝐿⏟        
𝑝3

+

𝑝4 +

𝑝4
[𝑃𝐴(𝑥4)]

𝐿

[𝑃𝐴(𝑥4)]𝐸⏟        
𝑝5

+ 𝑝4
[𝑃𝐴(𝑥4)𝑃𝐴(𝑥5)]

𝐿

[𝑃𝐴(𝑥4)𝑃𝐴(𝑥5)]𝐸⏟            
𝑝6

 

 

Finally, the weighted contribution of the path �̅�𝑠,𝑡 can be completely determined using: 

𝐶𝑠,𝑡 = 𝑤𝑠,𝑡𝐶𝑠,𝑡
∗ = 𝑤𝑠,𝑡𝜂𝑠𝒸𝑠,𝑡𝜂𝑡 

Such contributions are accrued through the multi-sample estimator 𝐹 = ∑ ∑ 𝐶𝑠,𝑡𝑡≥0𝑠≥0 . 
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3.2 Path validity and immutable contribution 

 

So far, path sampling has been analysed strictly as the fundamental tool underlying 

the versatility of bidirectional path tracing. It was essential to evince the role sampling 

techniques play in path generation and to peruse their interpretability and applicability 

with respect to the estimation of the measurement equation. Yet, for the set goal such 

an analysis would be incomplete if restricted to the generation and evaluation of paths. 

The reason for such incompleteness stands precisely in the fact that the path lifespan 

is limited to the generation-evaluation cycle. Paths are simply discarded after the 

evaluation of their contributions and the next frame is produced via a new generation-

evaluation cycle. Such a cycle imposes a static usage of paths and sampling techniques. 

 

To inject reuse within the generation-evaluation cycle of a path, it is necessary to 

redefine that path as an entity that spans different such cycles. Let �̅�𝑠,𝑡
𝜑𝑖 be a path 

sampled from a probability density 𝑝𝑠,𝑡 that brings the standard contribution to the 

multi-sample estimator (3.3). Let its contribution be assessed for the current frame 𝜑𝑖: 

𝐶𝑠,𝑡(�̅�𝑠,𝑡
𝜑𝑖) = 𝑤𝑠,𝑡(�̅�𝑠,𝑡

𝜑𝑖)
𝑓𝑗(�̅�𝑠,𝑡

𝜑𝑖)

𝑝𝑠,𝑡(�̅�𝑠,𝑡
𝜑𝑖)

 

The above contribution remains valid for all the frames 𝜑𝑖+1…𝜑𝑘−1 that were not 

altered via geometric transformations. If scene dynamism occurs between frames 𝜑𝑘−1 

and 𝜑𝑘, then the validity of �̅�𝑠,𝑡
𝜑𝑖 must be determined relative to the configuration 

existent in 𝜑𝑘. Figure 3.3 exemplifies how the transformation of two scene objects 

affects the validity of the paths between the given frame 𝜑𝑘−1 and its successor 𝜑𝑘. 

 

Two basic phenomena define the consistency of a path �̅�𝑠,𝑡
𝜑𝑖 relative to a new frame 𝜑𝑘 . 

Both underlie the measurement contribution function (3.2) and regard the propagation 

and the scattering events. Light propagation is described via the geometric operator: 

𝐿𝑖(𝑥𝑖, �⃗⃗� 𝑖) = (𝒫𝐿𝑜)(𝑥𝑖, �⃗⃗� 𝑖) = {
𝐿𝑜(𝜏(𝑥𝑖, �⃗⃗� 𝑖),−�⃗⃗� 𝑖) 𝑖𝑓 𝛼𝑚𝑖𝑛(𝑥𝑖 , �⃗⃗� 𝑖) < ∞

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3.17)
  

where 𝑥𝑖 is a path vertex, 𝛼𝑚𝑖𝑛(𝑥𝑖 , �⃗⃗� 𝑖) is the boundary distance function and 𝜏(𝑥𝑖, �⃗⃗� 𝑖) 

is the tracing function, which computes the first intersection along the ray (𝑥𝑖, �⃗⃗� 𝑖).  

The geometric operator assesses radiance and importance indistinctively: 𝑊𝑖 = 𝒫𝑊𝑜. 
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Figure 3.3: The geometric transformation of the scene between frames 𝜑𝑘−1 and 𝜑𝑘. 

Dynamic objects (navy) disrupt the left & right paths, without affecting the central path. 

 

The first condition for a valid contribution [𝑓𝑗(𝑥̅𝑠,𝑡
𝜑𝑖)]

𝜑𝑘
 is that the tracing function yield, 

on each segment of �̅�𝑠,𝑡
𝜑𝑖 , the same intersection that was obtained during path generation. 

That is, each vertex 𝑥𝑖 must retain its successor for the traced direction �⃗⃗� 𝑖 = 𝑥�̇�+1 − 𝑥�̇�̂ :  

[𝜏(𝑥𝑖 , �⃗⃗� 𝑖)]
𝜑𝑘 = 𝑥𝑖+1 0 ≤ 𝑖 < 𝑠 + 𝑡 − 1 (3.18) 

Condition (3.18) implies unobstructed visibility between any pair of vertices 𝑥𝑖 − 𝑥𝑖+1: 

[𝑉(𝑥𝑖 ↔ 𝑥𝑖+1)]
𝜑𝑘 = 1 0 ≤ 𝑖 < 𝑠 + 𝑡 − 1 (3.19) 



109 
 

If condition (3.19) holds, then the geometric operator preserves the propagation events, 

under the assumption that the emission and the scattering models remain unmodified. 

 

The second condition for [𝑓𝑗(�̅�𝑠,𝑡
𝜑𝑖)]

𝜑𝑘
 to be valid, is that the scattering along �̅�𝑠,𝑡

𝜑𝑖 be 

preserved as well. This requirement is ensured by the conservation of the propagation 

events and by the invariability of the emission and scattering models. The preservation 

of the scattering events, due to invariable propagation, can be demonstrated as follows: 

[𝒫𝐿𝑒(𝑥0, �⃗⃗� 0)]
𝜑𝑘⏟          

[𝐿𝑖(𝑥1,−�⃗⃗⃗� 0)]
𝜑𝑘

[𝑓𝑠(𝑥1, −�⃗⃗� 0, �⃗⃗� 1)𝒫𝐿𝑒(𝑥0, �⃗⃗� 0)]
𝜑𝑘⏟                    

[𝐿𝑜(𝑥1,�⃗⃗⃗� 1)]
𝜑𝑘

(3.20)

∥ ⟹ ∥
[𝒫𝐿𝑒(𝑥0, �⃗⃗� 0)]

𝜑𝑖⏟          
[𝐿𝑖(𝑥1,−�⃗⃗⃗� 0)]

𝜑𝑖

[𝑓𝑠(𝑥1, −�⃗⃗� 0, �⃗⃗� 1)𝒫𝐿𝑒(𝑥0, �⃗⃗� 0)]
𝜑𝑖⏟                    

[𝐿𝑜(𝑥1,�⃗⃗⃗� 1)]
𝜑𝑖

⋮

[𝒫𝐿𝑜(𝑥𝑠+𝑡−3, �⃗⃗� 𝑠+𝑡−3)]
𝜑𝑘⏟                

[𝐿𝑖(𝑥𝑠+𝑡−2,−�⃗⃗⃗� 𝑠+𝑡−3)]
𝜑𝑘

[𝑓𝑠(𝑥𝑠+𝑡−2, −�⃗⃗� 𝑠+𝑡−3, �⃗⃗� 𝑠+𝑡−2)𝒫𝐿𝑜(𝑥𝑠+𝑡−3, �⃗⃗� 𝑠+𝑡−3)]
𝜑𝑘⏟                                  

[𝐿𝑜(𝑥𝑠+𝑡−2,�⃗⃗⃗� 𝑠+𝑡−2)]
𝜑𝑘

∥ ⟹ ∥
[𝒫𝐿𝑜(𝑥𝑠+𝑡−3, �⃗⃗� 𝑠+𝑡−3)]

𝜑𝑖⏟                
[𝐿𝑖(𝑥𝑠+𝑡−2,−�⃗⃗⃗� 𝑠+𝑡−3)]

𝜑𝑖

[𝑓𝑠(𝑥𝑠+𝑡−2, −�⃗⃗� 𝑠+𝑡−3, �⃗⃗� 𝑠+𝑡−2)𝒫𝐿𝑜(𝑥𝑠+𝑡−3, �⃗⃗� 𝑠+𝑡−3)]
𝜑𝑖⏟                                  

[𝐿𝑜(𝑥𝑠+𝑡−2,�⃗⃗⃗� 𝑠+𝑡−2)]
𝜑𝑖

 

where 𝐿𝑒 is the light source radiance emitted from 𝑥0, 𝐿𝑖 is the radiance incident at a 

given vertex, 𝐿𝑜 is the radiance scattered from a given vertex, �⃗⃗� �̇� = 𝑥�̇�+1 − 𝑥�̇�̂ ,∀𝑖 ≥ 0 

and 𝑓𝑠𝒫 represents a single scattering step along the path �̅�𝑠,𝑡
𝜑𝑖. In fact, 𝑓𝑠𝒫 is a 

simplified version of the light transport operator 𝑇 = 𝐾𝒫, where 𝐾 is the scattering 

operator defined as 𝐿𝑜(𝑥𝑖, �⃗⃗� 𝑜) = (𝐾𝐿𝑖)(𝑥𝑖, �⃗⃗� 𝑜) = ∫ 𝑓𝑠(𝑥𝑖 , �⃗⃗� 𝑖, �⃗⃗� 𝑜)𝒟
𝐿𝑖(𝑥𝑖, �⃗⃗� 𝑖)|�⃗⃗� 𝑥𝑖 ∙ �⃗⃗� 𝑖|𝑑�⃗⃗� 𝑖. 

 

If scattering is preserved, then equations (3.6) and (3.8) hold. Note that condition (3.19) 

also implies unobstructed visibility along the connecting edge 𝑦𝑠−1𝑧𝑡−1 and thus a valid 

𝒸𝑠,𝑡 term (3.9). These norms secure an immutable contribution 𝑓𝑗(�̅�𝑠,𝑡
𝜑𝑖) for the frame 𝜑𝑘: 

𝑓𝑗(�̅�𝑠,𝑡
𝜑𝑘) = [𝑓𝑗(�̅�𝑠,𝑡

𝜑𝑖)]
𝜑𝑘
= 𝑓𝑗(�̅�𝑠,𝑡

𝜑𝑖) (3.21) 

An immutable contribution means that the path �̅�𝑠,𝑡
𝜑𝑖 is valid relative to the new scene 

configuration and is therefore immediately reusable. The lifespan of such a path can 

be extended from a generation-evaluation cycle to a generation-evaluation-reuse one. 
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3.3 Invalidation and anchor computation 

 

The previous section discussed the validity and the contribution of the paths unaltered 

by the geometric transformations of the scene. The current section examines the less 

trivial case of invalid paths, which cannot be directly reused in subsequent frames. The 

focus is on delineating the invalidation step of the path manipulation algorithm and on 

defining one of the primary concepts used in the reconstruction step, namely the anchor.   

 

A path �̅�𝑠,𝑡
𝜑𝑖  cannot be reused in a frame 𝜑𝑘 if the visibility of a single edge is occluded: 

∃𝑥𝑖, 𝑥𝑖+1 0 ≤ 𝑖 < 𝑠 + 𝑡 − 1 𝑠. 𝑡. [𝑉(𝑥𝑖 ↔ 𝑥𝑖+1)]
𝜑𝑘 = 0 (3.22) 

This scenario occurs when a subpath of �̅�𝑠,𝑡
𝜑𝑖 is disrupted by the ingress of an object 

inside its scope. Subpaths with occluded edges will be referred to as in-scope subpaths. 

 

The second invalidation scenario occurs when a vertex 𝑥𝑖 changes its position due the 

movement of the object on which it resides. This is the reverse of the previous scenario 

in that a subpath of �̅�𝑠,𝑡
𝜑𝑖 is disrupted by the egress of a vertex from within its scope. 

Subpaths with dynamic vertices will be hereafter referred to as out-of-scope subpaths. 

 

In both cases, equation (3.21) no longer holds and the path �̅�𝑠,𝑡
𝜑𝑖 must be reconstructed 

such that it becomes consistent with the new scene configuration 𝜑𝑘 . The key idea in the 

reconstruction of an invalid path is to maximize the reuse of existent path information. 

 

Assume for the moment, that the path �̅�𝑠,𝑡
𝜑𝑖 has been disrupted by a scene object that is 

neither the camera nor an existing light source. The transformation of the camera or 

of a light source implies the disruption of a subpath by the movement of its very first 

vertex and is treated in the discussion of the primary anchor reconstruction scenario. 
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Figure 3.4: The in-scope (right) and out-of-scope (centre) invalidations of a path (left). 

In the out-of-scope invalidation 𝑥𝑖+1 is positioned at its new location, while 𝑎𝑖+1 is 

determined by tracing a ray towards the old position of 𝑥𝑖+1. The in-scope invalidation 

depicts 𝑎𝑖+1 as the intersection between an occluder and the direction �⃗⃗� �̇� = 𝑥�̇�+1 − 𝑥�̇�̂ .   

 

Hence, the first step in reconstructing an invalid path is to determine whether one of 

its edges was disrupted and if so find the closest intersection along that specific edge. 

The closest intersection is determined by tracing a ray in the prior direction of the edge. 

Let 𝑥𝑖 − 𝑥𝑖+1 be a disrupted edge, with 0 ≤ 𝑖 ≤ {𝑠|𝑡} − 2. An out-of-scope invalidation 

is triggered by the movement of the vertex 𝑥𝑖+1. In this case, the closest intersection 

is determined by tracing a ray from 𝑥𝑖 towards the old position of 𝑥𝑖+1. An in-scope 

invalidation does not alter the end vertices of an edge, so a ray is always traced in the 

set direction �⃗⃗� �̇� = 𝑥�̇�+1 − 𝑥�̇�̂ . In both cases, the closest intersection is determined via: 

[𝜏(𝑥𝑖 , �⃗⃗� 𝑖)]
𝜑𝑘 = 𝑎𝑖+1 ≠ 𝑥𝑖+1 0 ≤ 𝑖 ≤ {𝑠|𝑡} − 2 (3.23) 

where vertex 𝑥𝑖+1 assumes the position prior to invalidation whenever 𝑥𝑖+1 is dynamic. 

Vertex 𝑎𝑖+1 is the new successor of 𝑥𝑖 and will be referred to as the anchor. The index 

𝑖 + 1 associated with the anchor is designated as the anchor level and it identifies the 

vertex from which the subpath will be reconstructed. Though the anchor replaces 

vertex 𝑥𝑖+1, it is sampled with the same projected solid angle probability as the latter:   

𝑃⊥(𝑥𝑖 → 𝑎𝑖+1) = 𝑃
⊥(𝑥𝑖 → 𝑥𝑖+1) (3.24) 

The anchor retains the 𝑃⊥ of the old successor, since the path up to 𝑥𝑖 and the direction 

�⃗⃗� 𝑖 are the same for both 𝑥𝑖+1 and 𝑎𝑖+1. Its surface area probability can be computed 

via (3.7). Figure 3.4 exemplifies the in-scope and the out-of-scope path invalidations.  
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Figure 3.5: The identification of collateral paths via the connecting edge visibility. 

Through its movement, the dynamic object (navy) clears the connecting edge of the 

top path and obstructs that of the bottom path. The top path is processed as collateral 

to reflect the fact that its constituent subpaths are no longer in the shadow of the 

dynamic object. The disruption between the subpaths of the bottom path prevents the 

evaluation of the contribution (3.5) and causes the subpaths to be treated as collateral. 

 

Condition (3.23) refers only to subpath edges and does not include the connecting edge. 

There are situations when the subpaths of �̅�𝑠,𝑡
𝜑𝑖 remain valid, but the connecting edge 

between them is obstructed. As the geometric structures of the constituent subpaths 

are valid, new paths can be formed by simply connecting the corresponding subpaths 

to other homologues. There may also be paths which in the previous frames have been 

occluded, like those with vertices in previously shadowed areas. The solution is to 

establish other connections for the given subpaths and re-evaluate their contributions. 

The paths with geometrically intact subpaths, yet with invalid contributions, will be 

referred to as collateral paths. They can be identified by observing the changes in 

𝑉(𝑦𝑠−1 ↔ 𝑧𝑡−1) across frames. Specific approaches to identifying collateral paths are 

detailed in chapter 4 (subsection 4.3.5). The collateral subpaths can be used to construct 

new paths, whose contributions can be evaluated with the tools explored in section 3.1. 

Figure 3.5 depicts two collateral paths identifiable via the connecting edge visibility. 

 

The location of the anchor on a subpath determines three reconstruction scenarios. 

Together these scenarios describe the second step of the path manipulation algorithm. 
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3.4 Reconstruction 

 

Reconstruction is the second step of the path manipulation algorithm and its goal is to 

maximize path reuse by reconnecting disrupted subpath chains into coherent subpaths. 

The reconstruction of invalid subpaths begins from the anchor and it branches into 

three scenarios relative to the anchor level. The primary anchor scenario processes 

out-of-scope subpaths disrupted by the movement of the camera or of a light source. 

The two-chain scenario uses a novel intra-subpath connectivity strategy to reconnect 

as many dysfunctional subpath chains as possible. The terminus anchor scenario treats 

subpaths invalidated along their last edges. All scenarios use the derivation presented 

in subsection 3.1.2, to delineate the contribution evaluation of the reconstructed paths. 

Contribution evaluation represents the third step of the path manipulation algorithm. 

 

3.4.1 Primary anchor reconstruction 

 

The current reconstruction scenario processes the out-of-scope subpaths disrupted by 

the movement of the vertices situated either on a light source or on the camera. Hence, 

the reconstruction target is any path �̅�𝑠,𝑡
𝜑𝑖 invalidated by the egress of either 𝑥0 or 𝑥𝑠+𝑡−1 

from within its scope. A dynamic vertex 𝑥0 entails the displacement of the first vertex 

of a light subpath due to the movement of a light source. Conversely, a dynamic vertex 

𝑥𝑠+𝑡−1 involves the dislocation of the first vertex of an eye subpath by the movement 

of the camera. The anchor succeeds either vertex and since it is the first point sample 

seen from a light source or from the camera, it will be referred to as the primary anchor. 

 

The first step in determining a primary anchor is to sample a new vertex, either on a 

light source or on the camera lens, using an a priori defined probability distribution 

over the corresponding surface. Then, a new direction can be generated from this vertex 

according to the emissivity of the light source or relative to the image plane associated 

with the camera. The first intersection found along the ray will be the primary anchor.  
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Once computed, the primary anchor can be reconnected to the rest of the invalid subpath 

via the intra-subpath connectivity strategy developed for the two-chain reconstruction. 

  

In the case of a failed intra-subpath connectivity attempt, the invalid subpath will be 

regenerated from the primary anchor by repeatedly sampling the BSDF of the last 

vertex. Independent connections are established for both the reconstructed subpath and 

its prior counterpart and their contributions are evaluated according to estimator (3.3). 

 

The primary anchor scenario is a variant of the two-chain reconstruction, as it requires 

special handling of the primary ray. Unlike scenario (3.23), which entails a change in 

the end vertex of a traced ray, the primary anchor reconstruction involves a change in 

the ray origin. This change requires that a new vertex and a new direction be sampled, 

since no guarantees can be offered regarding the appropriateness of the old direction. 

 

For example, a camera ray usually passes through some region of a pixel. When the 

camera moves, the old direction may become incongruent with the new position of the 

camera and of the pixel (e.g. the old direction may not pass through the same pixel). 

Similarly, a light source may be transformed in such a way that the old direction would 

actually penetrate its surface or it would altogether emanate from its non-emitting side. 

Figure 3.6 illustrates the logic of the primary anchor reconstruction for a light subpath. 
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Figure 3.6: The primary anchor reconstruction of a light subpath (top) triggered by 

the rotation of an area light source (bottom). A new vertex 𝑥0 is sampled on the light 

source and the newly generated direction intersects the surface on which the previous 

vertex 𝑥2 was located. The new anchor 𝑎1 is reconnected to the remaining vertex 𝑥3. 
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3.4.2 Two-chain reconstruction 

 

The two-chain reconstruction scenario processes both the in-scope and the out-of-scope 

paths that are divided in several chains around the anchor 𝑎𝑖+1, with 0 ≤ 𝑖 ≤ 𝑠 + 𝑡 − 3.  

 

Effectively, an 𝑎𝑖+1 anchor is located either on a light subpath, on an eye subpath or 

on the connecting edge between the two. The latter situation regards the collateral 

paths. As discussed in section 3.3, the solution to solving the disconnection between 

the two subpaths is to simply reconnect them to other subpaths and to evaluate the 

contributions of the newly constructed paths with the tools investigated in section 3.1.  

 

When the anchor is located on one of the subpaths, the invalidation affects that subpath 

alone and does not alter the other subpath or the connecting edge. Therefore, the chains 

that must be consolidated belong to the same subpath. The unaltered subpath is valid 

and its throughput is immutable. Consequently, the reconstruction can be performed 

independently on the altered subpath. This approach logically resembles the evaluation 

of the sample contribution discussed in subsection 3.1.2. Equation (3.5) decomposes 

the sample contribution into factors that depend either on just one subpath or on the 

connecting edge alone. The two-chain reconstruction scenario adopts a similar logic. 

 

3.4.2.1 Path factorization 

 

Analogous to the decomposition of the sample contribution, an invalid path �̅�𝑠,𝑡
𝜑𝑖  can be 

divided into three chains, based on the anchor position on the light or the eye subpath: 

�̅�𝑠,𝑡
𝜑𝑖 = 𝑥0…𝑥𝑠+𝑡−1 = {

𝑦0…𝑎𝑖+1, 𝑦𝑖+2…𝑦𝑠−1, 𝑧𝑡−1…𝑧0

𝑧0…𝑎𝑖+1, 𝑧𝑖+2…𝑧𝑡−1, 𝑦𝑠−1…𝑦0
(3.25) 

The third chain on either branch of the above factorization corresponds to the unaltered 

subpath. Its throughput is immutable and the denoted subpath can be instantly reused. 

The throughput on each subpath is evaluated independently via formula (3.6) or (3.8). 

As a valid subpath, this third chain can be safely removed from further consideration.     



117 
 

The two remaining chains form the invalid subpath. Factorization (3.25) is symmetric 

with respect to the subpath vertex notation and can be reformulated as indicated below: 

𝑦0…𝑎𝑖+1, 𝑦𝑖+2…𝑦𝑠−1

𝑧0…𝑎𝑖+1, 𝑧𝑖+2…𝑧𝑡−1
} = 𝑥0…𝑎𝑖+1, 𝑥𝑖+2…𝑥𝑛−1 ∀𝑛 = {𝑠|𝑡} (3.26) 

Through notation (3.26) the light and the eye subpath chains can be handled generically. 

Consequently, the above notation will be adopted throughout the rest of this analysis. 

 

3.4.2.2 Immutable first chain throughput 

 

Based on the path factorization, the two-chain reconstruction scenario can be refined 

to target an invalid path �̅�𝑠,𝑡
𝜑𝑖 that has a valid subpath connected to a severed one. The 

dysfunctional subpath comprises two chains. The first chain runs from the first vertex 

of the subpath all the way to the anchor, i.e. 𝑥0…𝑎𝑖+1. Conversely, the second chain 

subsumes the vertices located downstream from the anchor, i.e. 𝑥𝑖+2…𝑥𝑛−1, 𝑛 = {𝑠|𝑡}. 

 

The first chain of the dysfunctional subpath is valid and its throughput is immutable: 

[𝜂𝑖+2(𝑥0…𝑥𝑖𝑎𝑖+1)]
𝜑𝑘 = [𝜂𝑖+2(𝑥0…𝑥𝑖𝑥𝑖+1)]

𝜑𝑖 (3.27) 

The previous equality can be demonstrated by expanding the throughput with one step: 

[𝜂𝑖+2(𝑥0…𝑥𝑖𝑎𝑖+1)]
𝜑𝑘 = [𝜂𝑖+1(𝑥0…𝑥𝑖)]

𝜑𝑖
𝑓𝑠(𝑥𝑖−1 → 𝑥𝑖 → 𝑎𝑖+1)

𝑃⊥(𝑥𝑖 → 𝑎𝑖+1)

= [𝜂𝑖+1(𝑥0…𝑥𝑖)]
𝜑𝑖
𝑓𝑠(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1)

𝑃⊥(𝑥𝑖 → 𝑥𝑖+1)

= [𝜂𝑖+2(𝑥0…𝑥𝑖𝑥𝑖+1)]
𝜑𝑖 (3.28)

 

where scattering preservation was used in conjunction with property (3.24). For 𝑖 = 0, 

𝑓𝑠 is substituted either by 𝐿𝑒(𝑥0 → 𝑎1) or by 𝑊𝑒(𝑎1 → 𝑥0) based on the subpath type. 

For eye subpaths, 𝑓𝑠 must be replaced with the adjoint BSDF 𝑓𝑠
∗ to evaluate importance.       

 

On the other hand, the second chain requires a more complex analysis due to it being 

severed from the first chain. To consolidate the two chains into a functional subpath 

and to recreate a consistent flow, a valid intra-subpath connection must be established. 
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3.4.2.3 Intra-subpath connectivity strategy 

 

A viable connection could be established between the severed chains, if there existed 

a vertex in the second chain of the dysfunctional subpath which is visible from anchor: 

∃𝑥𝒿 ∈ 𝑥𝑖+2…𝑥𝑛−1 ∀𝑛 = {𝑠|𝑡} 𝑠. 𝑡. [𝑉(𝑎𝑖+1 ↔ 𝑥𝒿)]
𝜑𝑘
= 1 (3.29) 

The above condition is a necessary, but not a sufficient, condition for the connection 

𝑎𝑖+1 − 𝑥𝒿 to be established. To accept a tentative connection, the scattering properties 

of the connecting vertices and the probabilistic nature of subpaths must be considered. 

 

Regarding the properties of the connecting vertices 𝑎𝑖+1 and 𝑥𝒿, the decisive condition 

is to ensure sufficient scattering occurs along the edge 𝑎𝑖+1 − 𝑥𝒿. The evaluation of 

the throughput must consider the connecting edge 𝑎𝑖+1 − 𝑥𝒿 both as an outgoing and 

as an incoming direction. Let Λ𝑖+1,𝒿 be the contribution of the tentative connection:  

Λ𝑖+1,𝒿 = 𝑓𝑠(𝑥𝑖 → 𝑎𝑖+1 → 𝑥𝒿)𝐺(𝑎𝑖+1 ↔ 𝑥𝒿)𝑓𝑠(𝑎𝑖+1 → 𝑥𝒿 → 𝑥𝒿+1) (3.30) 

The second BSDF in the above equation will be evaluated only if 𝑥𝒿 has a successor. 

 

To avoid inadequately small contributions without introducing bias, the tentative 

connection contribution Λ𝑖+1,𝒿 is submitted to the following Russian roulette test: 

Λ𝑖+1,𝒿
∗ =

{
 

 
1

𝑞𝑖+1,𝒿
Λ

Λ𝑖+1,𝒿 𝜉 < 𝑞𝑖+1,𝒿
Λ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.31) 

where 𝜉 is a random number and 𝑞𝑖+1,𝒿
Λ  is the probability with which Λ𝑖+1,𝒿 is accepted: 

𝑞𝑖+1,𝒿
Λ = min {1,

Λ𝑖+1,𝒿

𝜘
} (3.32) 

where 𝜘 is chosen to reflect the throughput from the anchor onwards, had the subpath 

been generated through the conventional local path sampling techniques. Specifically: 

𝜘 = {
10−(𝑖+2) ∃𝑥𝒿+1

10−(𝑖+1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.33) 
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Contributions larger than 𝜘 are always evaluated, whereas smaller contributions are 

randomly discarded. Test (3.31) guarantees that the first and the second chain will be 

reconnected only if appropriate transport can be established along the disjoint subpath.    

 

The second important condition for establishing the connection 𝑎𝑖+1 − 𝑥𝒿, regards the 

sampling probability densities and the stochastic termination of subpaths. The sampling 

techniques discussed in subsection 3.1.1 generate subpaths randomly, based on locally 

defined probability density functions. The first technique samples a vertex on a surface 

using a predefined probability density function (PDF), whereas the second technique 

generates a subpath vertex by sampling a new direction from the local PDF. Each 

subpath vertex, and thus each subpath, is generated with a specific probability density.   

 

However, the sampling techniques do not address the termination of subpaths. Without 

a termination criterion, subpaths would be unnecessarily long and would consume the 

same volume of resources irrespective of their contributions. Russian roulette solves 

these problematics efficiently and without introducing bias. The appropriateness of 

the tentative contribution Λ𝑖+1,𝒿 is addressed by test (3.31). The stochastic feasibility 

of the tentative connection is established through another Russian roulette test. This 

second rejection test evaluates the probabilities associated with the scattering events 

along the connecting edge 𝑎𝑖+1 − 𝑥𝒿 and determines whether these events can occur. 

 

To evaluate the probabilities associated with the scattering events at 𝑎𝑖+1 and 𝑥𝒿, the 

edge 𝑎𝑖+1 − 𝑥𝒿 must be processed both as an outgoing and as an incoming direction. 

This means that the probability for scattering to occur, in and from the direction of the 

connecting edge, must be determined based on the probabilities 𝑃⊥(𝑎𝑖+1 → 𝑥𝒿|𝑥𝑖) 

and 𝑃⊥(𝑥𝒿 → 𝑥𝒿+1|𝑎𝑖+1). For clarity, the probabilities measured with respect to the 

projected solid angle indicate the other subpath vertex that conditions their definition. 
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Let 𝑞𝑖+1 be the probability for connecting the anchor 𝑎𝑖+1 to the second-chain vertex 𝑥𝒿: 

𝑞𝑖+1 = min {1,
𝑓𝑠(𝑥𝑖 → 𝑎𝑖+1 → 𝑥𝒿)

𝑃⊥(𝑎𝑖+1 → 𝑥𝒿|𝑥𝑖)
} (3.34) 

where (1 − 𝑞𝑖+1) is the probability with which 𝑎𝑖+1 fails to be connected to vertex 𝑥𝒿. 

 

The connecting probability 𝑞𝑖+1 suffices only if 𝑥𝒿 does not have a successor. If 𝑥𝒿 is 

followed by another vertex 𝑥𝒿+1, then the connectivity attempt must also consider the 

possibility that the subpath terminate at 𝑥𝒿 with probability (1 − 𝑞𝒿), where 𝑞𝒿 is the 

probability with which the subpath continues past vertex 𝑥𝒿 and is defined as follows: 

𝑞𝒿 = min {1,
𝑓𝑠(𝑎𝑖+1 → 𝑥𝒿 → 𝑥𝒿+1)

𝑃⊥(𝑥𝒿 → 𝑥𝒿+1|𝑎𝑖+1)
} (3.35) 

 

Probabilities (3.34) and (3.35) allow the subpath to terminate both at the anchor 𝑎𝑖+1 

and at the vertex 𝑥𝒿, similar to the way termination is enacted for the regular generation 

of subpaths. Veach (1998, p. 309) uses a similar continuation probability to control 

the subpath lengths. The connecting edge 𝑎𝑖+1 − 𝑥𝒿 is evaluated both as an outgoing 

and as incoming direction. In fact, the edge 𝑎𝑖+1 − 𝑥𝒿 causes a change in throughput 

along the subpath and the probabilities 𝑞𝑖+1 and 𝑞𝒿 assess the viability of this change. 

 

Hence, the probability for the tentative connection to occur can be defined as follows: 

𝑞𝑖+1,𝒿
𝑃 = 𝑞𝑖+1𝑞𝒿 ∀𝑥𝒿 ≠ 𝑥𝑛−1 (3.36) 

The tentative connection is rejected with probability (1 − 𝑞𝑖+1𝑞𝒿). Condition (3.36) is 

a continuation test evaluated simultaneously for two subpath vertices and thus it can 

be interpreted as a two-dimensional form of Russian roulette (chapter 2, equation 2.64). 

 

If the probabilities 𝑃⊥(𝑎𝑖+1 → 𝑥𝒿|𝑥𝑖) and 𝑃⊥(𝑥𝒿 → 𝑥𝒿+1|𝑎𝑖+1) are proportional to the 

BSDF, then the continuation probabilities 𝑞𝑖+1 and 𝑞𝒿 are the fractions of energy 

scattered, rather than absorbed, for the incoming directions 𝑥𝑖 → 𝑎𝑖+1 and 𝑎𝑖+1 → 𝑥𝒿. 
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Hence, if the tentative connection can be established with a probability 𝑞𝑖+1,𝒿
𝑃 , then the 

probabilities used to sample the vertices 𝑥𝒿 and 𝑥𝒿+1 must be updated as shown below: 

𝑃⊥(𝑥𝒿−1 → 𝑥𝒿|𝑥𝒿−2) = 𝑞𝑖+1𝑃𝑜𝑠
⊥(𝑥𝒿−1 → 𝑥𝒿|𝑥𝒿−2)

𝑎𝑛𝑑

𝑃⊥(𝑥𝒿 → 𝑥𝒿+1|𝑥𝒿−1) = 𝑞𝒿𝑃𝑜𝑠
⊥(𝑥𝒿 → 𝑥𝒿+1|𝑥𝒿−1)

(3.37) 

where 𝑃𝑜𝑠
⊥  denotes the probabilities with which vertices 𝑥𝒿 and 𝑥𝒿+1 were originally 

sampled. It is important to realize the nature of the intra-subpath connection. Firstly, 

the vertices 𝑥𝒿 and 𝑥𝒿+1 were sampled using different incident directions from the 

ones assumed for the tentative connection, i.e. 𝑥𝒿−2 → 𝑥𝒿−1 and 𝑥𝒿−1 → 𝑥𝒿 versus 

𝑥𝑖 → 𝑎𝑖+1 and 𝑎𝑖+1 → 𝑥𝒿. Secondly, the meaning of the intra-subpath connection is 

that of generating a subpath in multiple pieces, by connecting different subpath chains. 

Hence, the connection does not attempt to fit a probability density function to another 

one, nor does it fundamentally alter the probabilities with which the vertices were 

sampled. The latter are simply adapted to the criteria used to establish the intra-subpath 

connection, just as they are adapted when subpaths are terminated via Russian roulette. 

 

Viewing the intra-subpath connection as a method for generating subpaths, determines 

the approach to computing the multiple importance weights for the reconstructed paths. 

 

The sufficient condition for setting 𝑎𝑖+1 − 𝑥𝒿 is given by the connection probability: 

𝑞𝑖+1,𝒿 = {
𝑞𝑖+1,𝒿
Λ ∙ 𝑞𝑖+1,𝒿

𝑃 ∀𝑥𝒿 ≠ 𝑥𝑛−1

𝑞𝑖+1,𝒿
Λ ∙ 𝑞𝑖+1 𝑥𝒿 = 𝑥𝑛−1

(3.38) 

The index of the connecting vertex 𝑥𝒿 is designated as the welding level and it 

identifies the vertex where the subpath was reconnected. A pair of anchor-welding 

levels forms a reconstruction level and marks a single instance in the reconstruction 

of a subpath. A subpath has as many reconstruction levels as the number of instances 

it was invalidated. A failed intra-subpath connection assigns to that specific anchor 

level a welding level equal to −1. A subpath with a welding level of −1 is regenerated 

from its last anchor through the standard path sampling techniques (subsection 3.1.1).   
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Figure 3.7: The two-chain reconstruction scenario triggered by an in-scope (right) & 

an out-of-scope (centre) invalidation of a subpath (left). For the out-of-scope subpath, 

the anchor 𝑎𝑖+1 is reconnected to the nearest vertex 𝑥𝑖+2, yielding the subpath 

𝑥𝑖−1…𝑥𝑖+3. For the in-scope subpath, the intra-subpath connection fails for vertex 

𝑥𝑖+2, but succeeds for vertex 𝑥𝑖+3. The subpath is also regenerated normally from 𝑥𝑖+3 

to fulfil the minimum length criterion. The final reconstructed subpath is 𝑥𝑖−1…𝑥𝑖+5. 

 

A successful connection allows the two severed chains to be reconnected into a single 

subpath of the form 𝑥0…𝑎𝑖+1𝑥𝒿 …𝑥𝑛−1. However, if the tentative connection fails then 

the first chain 𝑥0…𝑎𝑖+1 must be regenerated from the anchor using the path sampling 

techniques described in subsection 3.1.1. A successfully reconnected subpath must 

also be regenerated from its last vertex, if its length is shorter than a minimum length. 

Generally, the length of a subpath is determined through the continuation probability: 

𝑞𝑖 = min {1,
𝑓𝑠(𝑥𝑖−1 → 𝑥𝑖 → 𝑥𝑖+1)

𝑃⊥(𝑥𝑖 → 𝑥𝑖+1)
} (3.39) 

That is, a subpath is either extended past vertex 𝑥𝑖 with probability 𝑞𝑖 or is terminated 

at the same vertex with probability (1 − 𝑞𝑖). Normally, 𝑞𝑖 = 1 is imposed on the first 

few vertices of the subpath (Veach 1998, p. 309). The number of vertices with a fixed 

𝑞𝑖, determines the minimum subpath length on which Russian roulette is not applied. 

Consequently, any reconnected subpath with a shorter length than the minimum one 

must be regenerated from its last vertex through the standard path sampling techniques. 

 

Once reconstructed, the subpaths are used to establish bidirectional connections and 

the contributions of the resultant paths are evaluated as described next. Figure 3.7 

illustrates the two-chain reconstruction of an in-scope and of an out-of-scope subpath. 
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3.4.2.4 Contribution evaluation 

 

The current subsection investigates the contribution evaluation of those paths which 

have at least a subpath reconstructed via the intra-subpath connectivity strategy. Paths 

composed of subpaths entirely regenerated from the anchor, through the standard path 

sampling techniques, can be evaluated with the tools delineated in subsection 3.1.2. 

 

The intra-subpath connection reconnects the severed chains into a functional subpath 

𝑥0…𝑎𝑖+1𝑥𝒿…𝑥𝑛−1. The first chain has an immutable throughput (equation 3.27). The 

throughput of the second chain can be computed based on the established connection: 

[𝜂𝑛−𝒿(𝑥𝒿…𝑥𝑛−1)]
𝜑𝑘
=

𝑓𝑠(𝑥𝑖 → 𝑎𝑖+1 → 𝑥𝒿) ∙ 𝐺(𝑎𝑖+1 ↔ 𝑥𝒿)

𝑞𝑖+1,𝒿
Λ ∙ 𝑃⊥(𝑥𝒿−1 → 𝑥𝒿|𝑥𝒿−2) ∙ 𝐺(𝑥𝒿−1 ↔ 𝑥𝒿)

∙

𝑓𝑠(𝑎𝑖+1 → 𝑥𝒿 → 𝑥𝒿+1)

𝑃⊥(𝑥𝒿 → 𝑥𝒿+1|𝑥𝒿−1)
∙ … ∙

𝑓𝑠(𝑥𝑛−3 → 𝑥𝑛−2 → 𝑥𝑛−1)

𝑃⊥(𝑥𝑛−2 → 𝑥𝑛−1|𝑥𝑛−3)

(3.40)

=
𝑓𝑠(𝑥𝑖 → 𝑎𝑖+1 → 𝑥𝒿)

𝑞𝑖+1,𝒿
Λ ∙ 𝑞𝑖+1 ∙ 𝑃⊥(𝑎𝑖+1 → 𝑥𝒿|𝑥𝑖)

∙

𝑓𝑠(𝑎𝑖+1 → 𝑥𝒿 → 𝑥𝒿+1)

𝑃⊥(𝑥𝒿 → 𝑥𝒿+1|𝑥𝒿−1)
∙ … ∙

𝑓𝑠(𝑥𝑛−3 → 𝑥𝑛−2 → 𝑥𝑛−1)

𝑃⊥(𝑥𝑛−2 → 𝑥𝑛−1|𝑥𝑛−3)

 

where the probabilities (3.37) and (3.32) were used to express the final probabilities 

of the connecting vertices. The geometric factors associated with vertex 𝑥𝒿 do not 

cancel each other out and thus the initial probability with which 𝑥𝒿 was sampled can 

be replaced with 𝑞𝑖+1 ∙ 𝑃
⊥(𝑎𝑖+1 → 𝑥𝒿|𝑥𝑖), by virtue of the subsequent transformation: 

𝑃⊥(𝑎𝑖+1 → 𝑥𝒿|𝑥𝑖) = 𝑃𝑜𝑠
⊥(𝑥𝒿−1 → 𝑥𝒿|𝑥𝒿−2)

𝑑(𝑥𝒿−1 → 𝑥𝒿)
⊥

𝑑(𝑎𝑖+1 → 𝑥𝒿)
⊥

= 𝑃𝑜𝑠
⊥(𝑥𝒿−1 → 𝑥𝒿|𝑥𝒿−2) (

𝑑(𝑥𝒿−1 → 𝑥𝒿)
⊥

𝑑𝐴(𝑥𝒿)
∙

𝑑𝐴(𝑥𝒿)

𝑑(𝑎𝑖+1 → 𝑥𝒿)
⊥)

= 𝑃𝑜𝑠
⊥(𝑥𝒿−1 → 𝑥𝒿|𝑥𝒿−2)

𝐺(𝑥𝒿−1 ↔ 𝑥𝒿)

𝐺(𝑎𝑖+1 ↔ 𝑥𝒿)
(3.41)

 

For the vertices 𝑥𝒿+1…𝑥𝑛−1 the projected solid angle probabilities remain unchanged. 
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If the reconstructed subpath has a subminimal length and is therefore regenerated from 

its last vertex, then the throughput on the chain 𝑥𝑛−1…𝑥𝑣 , ∀𝑣 ≥ 𝑛 − 1 can be evaluated 

via the recursive mechanism delineated by either formula (3.6) or (3.8). Like the latter, 

equation (3.40) must be applied with the adjoint BSDF when evaluating eye subpaths.  

 

The throughput on the entire, reconstructed subpath can be computed as shown below:  

[𝜂𝑖+2+𝑛−𝒿(𝑥0…𝑎𝑖+1𝑥𝒿 …𝑥𝑛−1)]
𝜑𝑘
= [𝜂𝑖+2(𝑥0…𝑎𝑖+1)𝜂𝑛−𝒿(𝑥𝒿…𝑥𝑛−1)]

𝜑𝑘 (3.42) 

The throughput of a subpath extended from its last vertex 𝑥𝑛−1 can be defined similarly. 

 

The last bit of information, required before establishing a bidirectional connection, is 

the probability density of the reconstructed subpath. The probability density of the first 

chain is easily updated via [𝑝𝑖+2(𝑥0…𝑎𝑖+1)]
𝜑𝑘 = 𝑃𝐴(𝑥0)…𝑃𝐴(𝑎𝑖+1). The probability 

density of the second chain can be defined using the projected solid angle probabilities: 

[𝑝𝑛−𝒿(𝑥𝒿…𝑥𝑛−1)]
𝜑𝑘
= 𝑞𝑖+1,𝒿

Λ ∙ 𝑞𝑖+1 ∙ 𝑃
⊥(𝑎𝑖+1 → 𝑥𝒿|𝑥𝑖) ∙ 𝐺(𝑎𝑖+1 ↔ 𝑥𝒿) ∙

𝑞𝒿 ∙ 𝑃𝑜𝑠
⊥(𝑥𝒿 → 𝑥𝒿+1|𝑥𝒿−1) ∙ 𝐺(𝑥𝒿 ↔ 𝑥𝒿+1) ∙

⋮

𝑃⊥(𝑥𝑛−2 → 𝑥𝑛−1|𝑥𝑛−3) ∙ 𝐺(𝑥𝑛−2 ↔ 𝑥𝑛−1)

= 𝑃𝐴(𝑥𝒿)𝑃𝐴(𝑥𝒿+1)…𝑃𝐴(𝑥𝑛−1) (3.43)

 

Consequently, the probability density of the entire subpath can be computed as follows: 

[𝑝𝑖+2+𝑛−𝒿(𝑥0…𝑎𝑖+1𝑥𝒿…𝑥𝑛−1)]
𝜑𝑘
= 𝑃𝐴(𝑥0)…𝑃𝐴(𝑎𝑖+1)𝑃𝐴(𝑥𝒿)…𝑃𝐴(𝑥𝑛−1) (3.44) 

Equations (3.42) and (3.44) render the subpath amenable to bidirectional connections.  

 

The light transport path, which is obtained by connecting the reconstructed subpath to 

another homologue, can be evaluated with the tools discussed in subsection 3.1.2. 

Because the intra-subpath connection is essentially a strategy for generating a subpath 

in multiple pieces, it does not affect the evaluation of the sample contribution. That is, 

a vertex is always evaluated either from the direction of the light source or from the 

direction of the camera. The group of sampling techniques is not altered by the path 

generation method. Hence, the weights can be computed normally via equation (3.16). 



125 
 

The sufficient condition (3.38) ensures that only subpaths with appropriate throughput 

are generated by the intra-subpath connectivity strategy. Subpaths which fail to comply 

with the sufficient condition are sampled over the path space through the conventional 

techniques. As a subpath generation method, the intra-subpath connectivity strategy 

does not restrict the sampling of the path space. Subpaths are generated in multiple 

pieces, only if the scattering (3.32) and the probabilistic (3.36) conditions are fulfilled. 

 

Hence, the contribution of a reconstructed path can be evaluated via equation (3.4). 

The correctness of the generated result depends on the complete identification of the 

invalid paths. That is, all the invalid paths must be identified and their subpaths must 

be appropriately processed so that they can form viable bidirectional connections. The 

next two chapters further analyse the identification and reconstruction of invalid paths. 

 

3.4.3 Terminus anchor reconstruction 

 

The terminus anchor scenario reconstructs the in-scope and the out-of-scope subpaths 

that are disrupted along their last edge. That is, the reconstruction target is any subpath 

with an 𝑎𝑠−1 or an 𝑎𝑡−1 anchor. Such an anchor is generated when the invalidation 

scenario (3.23) is verified on the edge 𝑥𝑖 − 𝑥𝑖+1, 𝑖 = {𝑠|𝑡} − 2. As the terminus of the 

invalid subpath, the anchor no longer divides the latter into two dysfunctional chains: 

𝑥0…𝑥𝑛−2𝑎𝑛−1 ∀𝑛 = {𝑠|𝑡} (3.45) 

The above chain defines the entire structure of the invalid subpath. Designated as a 

single-chain subpath, such an invalid subpath is a special case of the two-chain subpath. 

Thus, the terminus anchor scenario is a simplification of the two-chain reconstruction. 

 

Just like in the previous scenario, the invalidation affects only one of the subpaths. 

Hence, the invalid subpath can be reconstructed independently of the valid subpath, 

which can be immediately reused to construct and evaluate a new light transport path. 
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Figure 3.8: The terminus anchor reconstruction triggered by an in-scope (centre) and 

an out-of-scope (right) invalidation of a subpath (left). The in-scope invalidation shows 

𝑎𝑖+2 as the intersection between an occluder and the direction �⃗⃗� �̇�+1 = 𝑥�̇�+2 − 𝑥�̇�+1̂ . The 

single-chain subpath 𝑥𝑖−1…𝑎𝑖+2 is terminated at 𝑎𝑖+2 with probability (1 − 𝑞𝑖+2). In 

the out-of-scope invalidation vertex 𝑥𝑖+2 moves backwards along the direction �⃗⃗� 𝑖+1, 

generating the anchor 𝑎𝑖+2. The subpath is extended conventionally from 𝑎𝑖+2 to 𝑥𝑖+6. 

 

The terminus anchor preserves the structural unity of the invalid subpath and just like 

the first chain (equation 3.27) the single-chain subpath has an immutable throughput: 

[𝜂𝑛(𝑥0…𝑥𝑛−2𝑎𝑛−1)]
𝜑𝑘 = [𝜂𝑛(𝑥0…𝑥𝑛−2𝑥𝑛−1)]

𝜑𝑖 

The probability density of a single-chain subpath can be computed easily, as follows: 

[𝑝𝑛(𝑥0…𝑥𝑛−2𝑎𝑛−1)]
𝜑𝑘 = 𝑃𝐴(𝑥0)…𝑃𝐴(𝑥𝑛−2)𝑃𝐴(𝑎𝑛−1) 

Formulae (3.24) and (3.7) fully define the surface area probability associated with 𝑎𝑛−1 . 

 

However, a single-chain subpath 𝑥0…𝑥𝑛−2𝑎𝑛−1 must be given the opportunity to be 

extended from its anchor. As the subpath is extended from 𝑎𝑛−1, through the standard 

path sampling techniques discussed in subsection 3.1.1, the minimum subpath length 

and the random termination criteria are fulfilled through the continuation probability 

(3.39). The throughput on the new portion of the subpath can be evaluated with the 

tools described in subsection 3.1.2. Once reconstructed, a single-chain subpath can be 

used to construct and evaluate a new light transport path. Figure 3.8 illustrates the 

terminus anchor reconstruction applied on an in-scope and on an out-of-scope subpath. 
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Figure 3.9: A high-level description of the propounded path manipulation algorithm. 
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3.5 High-level algorithm description 

 

Sections 3.2 - 3.4 analysed the major steps of the path manipulation algorithm. This 

section uses the outlined steps to provide a high-level description of the proposed 

algorithm. The algorithmic precis relies on the information synthesized in Figure 3.9. 

 

For a collection of paths, the path manipulation algorithm first checks (line 3) whether 

there are subpaths with initial vertices displaced by the movement of the camera or of 

a light source. The primary anchor reconstruction (subsection 3.4.1) starts by sampling 

a new vertex (line 4) and a new direction (line 5) for each out-of-scope subpath. The 

primary anchor is given by the closest ray-primitive intersection (line 6). Using the 

intra-subpath connectivity strategy (subsections 3.4.2.3 - 3.4.2.4), the path manipulation 

algorithm completes the reconstruction (lines 14 - 22) of a first-vertex invalid subpath.  

 

Subsequent invalidations of the subpaths are processed with the two-chain scenario 

(subsection 3.4.2). As discussed in section 3.3, an out-of-scope subpath is identified 

by tracing a ray from the previous vertex towards the old position of the dynamic 

vertex (line 10). An in-scope subpath is identified by tracing a ray in the direction of 

the assessed edge (line 12). If the algorithm identifies a visible second-chain vertex 

(equation 3.29) for the computed anchor (line 13), then it computes the probabilities 

required for the establishment of the intra-subpath connection. The contribution of the 

tentative connection is subjected to the rejection test (3.31), whereas its stochastic 

viability is evaluated based on the probability (3.36). If both Russian roulette tests are 

successful (line 16), then the subpath chains are reconnected (line 17). The condition 

displayed on line 16, represents the implementation of the sufficient condition (3.38). 

Like the sufficient condition, the implementation discriminates between multi-vertex 

and single-vertex second chains. It also evinces the two-dimensional aspect of the 

rejection test (3.36). Whenever the subpath length is subminimal or the intra-subpath 

connection fails, the subpath is conventionally regenerated (subsection 3.1.1) from its 

last vertex (line 19). By evaluating its throughput (line 20) and its probability density 

(line 21), the algorithm entirely reconstructs and renders reusable the invalid subpath. 
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The terminus anchor scenario (subsection 3.4.3) reconstructs only the out-of-scope 

subpaths with a dynamic last vertex. All the other subpaths are reconstructed with the 

two-chain scenario (lines 7 - 22). The terminus anchor reconstruction (lines 23 - 28) 

first computes the anchor along the ray traced from the penultimate vertex to the old 

position of the dynamic last vertex. Then, it conventionally regenerates the subpath 

from the anchor (line 26) and assesses its throughput and probability density (line 27). 

 

The path manipulation algorithm finishes by identifying and evaluating the collateral 

paths (lines 29 - 32). Conceptually, the collateral paths are identified by checking the 

visibility of the connecting edge (section 3.3). Specific approaches to identifying the 

collateral paths are discussed in chapter 4 (subsection 4.3.5). The collateral subpaths 

are reused to construct and evaluate complete light transport paths (subsection 3.1.2). 

 

3.6 Algorithm analysis 

 

The performance extremes of the path manipulation algorithm can be analysed using 

worst-case and best-case scenarios. One category of worst-case scenarios occurs when 

all the eye subpaths must be both reconstructed and re-evaluated, as is the case of the 

camera transformation. In such a case, the path manipulation algorithm must resample 

all the primary rays and recompute all the primary anchors (Figure 3.9, lines 4 - 6). 

The number of subpaths reconnected via the intra-subpath connection depends on the 

scattering properties of the connecting vertices and on the probability for scattering to 

occur in and from the direction of the connecting edge (Figure 3.9, line 16). Hence, 

the intra-subpath connectivity varies across scenes and it impacts both the retracing of 

rays and the conventional regeneration of subpaths. The latter (Figure 3.9, line 19) is 

obviated with each successful, non-subminimal, intra-subpath connection. When an 

intra-subpath connection fails, the second-chain vertices to which an anchor failed to 

be connected are no longer considered and thus the retracing of their associated rays 

is circumvented. However, each unconnected subpath is conventionally regenerated 

from its anchor. A high number of unconnected primary anchors affects performance, 

since the algorithm must entirely regenerate those subpaths. Performance decreases 

also with the exhaustive re-evaluation of the eye subpaths (Figure 3.9, lines 20 - 22). 



130 
 

Concrete performance and reconstruction analysis, for two camera transformation 

examples, is carried in chapter 5 (section 5.3 and subsections 5.5.4 - 5.5.5). Compared 

to the path manipulation algorithm, the spatio-temporal architecture proposed by 

Havran et al. (2003) attains superior reuse for camera transformation, by reprojecting 

the primary samples of full eye subpaths across a range of previous and subsequent 

frames. Yet, the weighting heuristic adopted by the latter approach biases the solution. 

Moreover, light and eye subpaths are conventionally regenerated from the points where 

they intersected dynamic objects. The path manipulation algorithm reconstructs these 

subpaths as well, with the advantage that the secondary chains of the invalid subpaths 

can be effectively reused. Besides, it can operate without predefined animation paths. 

 

Méndez-Feliu et al. (2006) enhance the spatio-temporal architecture with an estimator 

that unbiasedly combines reprojected eye subpaths and supports non-diffuse materials. 

However, this approach not only requires predefined animation paths, but also restricts 

dynamism to camera transformation. Consequently, it surpasses the path manipulation 

algorithm only under such conditions and fails to propound a path reuse strategy for 

other types of transformation, such as those involving scene objects or light sources. 

 

Another worst-case scenario for the path manipulation algorithm occurs when the only 

light source of the scene is transformed. Such a case entails the reconstruction of all 

the light subpaths, the reconstruction of the in-scope and out-of-scope eye subpaths 

and the re-evaluation of all the eye subpaths. The alteration of the sole light source 

disrupts all the light subpaths and the path manipulation algorithm must reconstruct 

them via the primary anchor and two-chain scenarios (Figure 3.9, lines 3 - 22). The 

light source transformation also disrupts some of the generated eye subpaths, which 

must be reconstructed with the two-chain scenario (Figure 3.9, lines 7 - 22). Though 

the remaining eye subpaths preserve their structures, they are identified as collateral 

since their contributions change due to the reconstruction of all the light subpaths. The 

high-level description of the path manipulation algorithm handles such eye subpaths 

implicitly (Figure 3.9, line 33). Hence, all the eye subpaths must be re-evaluated. An 

example of a single light source transformation is analysed in chapter 5 (section 5.2). 
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Relative to the path manipulation algorithm, the strategy devised by Sbert et al. (2004a) 

always reuses whole light subpaths, by reconnecting the dynamic light source to the 

primary samples of the light subpaths generated in the anterior and posterior frames. 

However, this approach necessitates predefined animation paths and is restricted to 

light source transformations. Therefore, it does not provide equivalent strategies to 

those used by the path manipulation algorithm for the reconstruction and reuse of 

invalid subpaths ascribable to camera or other object transformations. The algorithm 

proposed by Sbert et al. (2004b) simply limits the reuse of light subpaths to preceding 

frames and thus adapts the previous strategy to interactive applications. Hence, in 

terms of reuse these two advancements do not depart considerably from each other. 

Neither does the method proposed by Sbert and Castro (2004), which adopts the same 

strategy for reusing light subpaths. Given the assumptions of predefined animation 

paths, static camera and static objects, this approach also reuses gathering subpaths of 

length 1, to accumulate the radiosity from all other frames at the current samples. The 

path manipulation algorithm can reuse subpaths beyond these working assumptions. 

 

The best-case scenarios for the path manipulation algorithm are those transforming 

other objects than the camera and involving multiple light sources. A dynamic object 

invalidates less subpaths than a dynamic camera and does not cause the exhaustive 

reconstruction and re-evaluation of subpaths. Similarly, the transformation of a light 

source in a multi-light scene invalidates a limited number of subpaths. In such a case, 

the directly invalidated subpaths are those affiliated with the transformed light source 

and those disrupted by its geometry. The indirectly invalidated subpaths are the ones 

whose contributions change due to their connections with the altered light source and 

its affiliated subpaths. Hence, the path manipulation algorithm must reconstruct and/or 

re-evaluate only the disrupted and collateral subpaths. Performance in such scenarios 

is drawn from both the algorithmic strategies and the lower number of processed 

subpaths. As discussed for the first worst-case scenario, the intra-subpath connectivity 

impacts the retracing of rays (Figure 3.9, line 13) and the conventional regeneration 

of subpaths (Figure 3.9, lines 18 - 19). Chapter 5 analyses the factors that influence 

the intra-subpath connectivity (subsection 5.1.3), the implementation strategies that 

are performance sources (section 5.6) and concrete examples (sections 5.1, 5.4 - 5.5). 
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The algorithm propounded by Lai (2010) exhibits similar capabilities to the path 

manipulation algorithm, in that it can reuse paths invalidated anywhere along their 

lengths. A path is reused across a range of frames via a temporal perturbation, which 

rigidly transforms the first two vertices of the path and then extends the latter either 

through specular bounces or by rigidly transforming the diffuse vertices. Light source, 

object and camera transformations can all be supported. Practically though, changes 

in illumination are processed only by cutting the animation into smaller sequences, 

which conforms with the presupposition of low variation in the lighting condition. 

Another requirement of this algorithm concerns the predefined animation paths. Still, 

its reuse per path can be higher than for the path manipulation algorithm, because the 

reconstruction of a path is conditioned only by the visibility between the transformed 

vertices. The path manipulation algorithm considers not only the visibility along the 

intra-subpath connection, but also its scattering and stochastic properties. Yet, the path 

manipulation algorithm has the advantage of being applicable to interactive systems. 

 

The cost of rendering a frame without path reuse, through bidirectional path tracing is: 

𝑁𝜏(𝜍𝓇 + 𝜍𝜏 + 𝜍𝜂)(𝑁𝐸𝑃 + 𝑁𝐿𝑃)⏟                  
𝑠𝑢𝑏𝑝𝑎𝑡ℎ
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+ 𝑁𝜏
2𝜍𝑒𝑣𝑎𝑙𝑁𝐸𝑃⏟      
𝑝𝑎𝑡ℎ

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

(3.46)
 

where 𝑁𝜏 is the average number of vertices per subpath, 𝜍𝓇 is the cost of sampling a 

ray, 𝜍𝜏 is the cost of computing the first scene intersection by tracing a ray, 𝜍𝜂 is the 

cost of evaluating the throughput of a vertex, 𝜍𝑒𝑣𝑎𝑙 is the cost of evaluating the 

contribution of a path constructed by connecting an eye and a light subpath vertex, 

𝑁𝐸𝑃 is the number of eye subpaths and 𝑁𝐿𝑃 is the number of light subpaths. The cost 

of the first subpath vertex was assumed to be equivalent to that of the other vertices, 

although it is generated by sampling a predefined surface distribution. For a successful 

bidirectional connection, the evaluation cost 𝜍𝑒𝑣𝑎𝑙 also includes the cost of assessing 

the visibility between the eye and light vertices. Otherwise, it reduces to the latter. 

Since additional samples are extracted by connecting each eye vertex to all the vertices 

of a light subpath, there are a total of 𝑁𝜏 × 𝑁𝜏 contribution evaluations per eye subpath. 
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The cost of rendering a frame with the path manipulation algorithm in the worst-case, 

when the camera transformation yields a majority of unconnected primary anchors, is: 

𝑁𝜏(𝜍𝓇 + 𝜍𝜏 + 𝜍𝜂)𝑁𝐸𝑃⏟              
𝑒𝑦𝑒 𝑠𝑢𝑏𝑝𝑎𝑡ℎ
𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+ 𝜍𝑟𝑒𝑐𝑜𝑛𝑁𝐼𝐿𝑃⏟      
𝑙𝑖𝑔ℎ𝑡 𝑠𝑢𝑏𝑝𝑎𝑡ℎ
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝑁𝜏
2𝜍𝑒𝑣𝑎𝑙𝑁𝐸𝑃⏟      
𝑝𝑎𝑡ℎ

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

(3.47)
 

which is comparable to the cost of bidirectional path tracing, with the difference that 

the reconstruction of 𝑁𝐼𝐿𝑃 invalid light subpaths is less expensive than the complete 

regeneration of all the light subpaths. When the camera is not modelled as part of the 

scene, it does not invalidate the light subpaths and the cost for their reconstruction 

reduces completely. The reconstruction cost per eye/light subpath can be estimated via: 

𝜍𝑟𝑒𝑐𝑜𝑛 = 𝑁𝑎(𝑁𝒿𝜍𝜏 + (𝑁𝜏 − 𝑁𝒿)𝜍𝜂)⏟                
𝑖𝑛𝑡𝑟𝑎−𝑠𝑢𝑏𝑝𝑎𝑡ℎ
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

+ (𝑁𝜏 − 𝑁𝑣 − 1)(𝜍𝓇 + 𝜍𝜏 + 𝜍𝜂)⏟                  
𝑠𝑢𝑏𝑝𝑎𝑡ℎ

𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

(3.48)
 

where 𝑁𝒿 is the average number of vertices up to 𝑥𝒿 (equation 3.29) for which a ray is 

traced and 𝑁𝑣 is the average number of vertices preceding the vertex from which the 

subpath is conventionally regenerated. The vertices 𝑥ℓ+1…𝑎𝑖+1𝑥𝑖+2…𝑥𝒿−1 only require 

that rays be traced, without the need to sample those rays or evaluate the throughput 

of the vertices. The rays are traced between vertices, so they need not be sampled. The 

vertices 𝑥ℓ…𝑎𝑖+1 represent a fist chain with immutable throughput (equation 3.27). 

Vertex 𝑥ℓ refers to 𝑥0 for the first invalidation of the subpath and to the first vertex 

succeeding the penultimate anchor for any subsequent invalidations. The vertices 

𝑥𝑖+2…𝑥𝒿−1 represent the second-chain vertices to which the anchor failed to be 

connected and thus they only require that visibility rays be traced between them and 

the anchor 𝑎𝑖+1. The connecting vertex 𝑥𝒿 requires both a visibility ray originating at 

the anchor and the evaluation of its throughput. Hence, the cost of reconstructing the 

subpath up to 𝑥𝒿 is 𝑁𝒿𝜍𝜏. Since the anchor 𝑎𝑖+1 is connected to 𝑥𝒿, the vertices 

𝑥𝒿+1…𝑥𝑁𝜏−1 only require that their throughput be updated, without any retracing 

involved. Hence, the cost of reconstructing the subpath from 𝑥𝒿 is (𝑁𝜏 − 𝑁𝒿)𝜍𝜂. On 

average a subpath is assumed to be invalidated 𝑁𝑎 times, which corresponds to the 

average number of anchors per subpath. As such, a multiply invalidated subpath has 

an intra-subpath connection cost of 𝑁𝑎(𝑁𝒿𝜍𝜏 + (𝑁𝜏 − 𝑁𝒿)𝜍𝜂). When a subpath has an 

unconnected anchor or a subminimal length, it will be conventionally regenerated 

from the vertex with index 𝑣 = {𝑖 + 1|𝑁𝜏 − 1}. Hence, the conventional regeneration 

cost is (𝑁𝜏 − 𝑁𝑣 − 1)(𝜍𝓇 + 𝜍𝜏 + 𝜍𝜂). Adding the last two costs yields the cost (3.48). 
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Using the reconstruction cost per subpath, the rendering cost of the path manipulation 

algorithm in the case when the only light source of the scene is transformed, becomes: 

𝜍𝑟𝑒𝑐𝑜𝑛(𝑁𝐿𝑃 + 𝑁𝐼𝐸𝑃)⏟            
𝑠𝑢𝑏𝑝𝑎𝑡ℎ

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝑁𝜏
2𝜍𝑒𝑣𝑎𝑙𝑁𝐸𝑃⏟      
𝑝𝑎𝑡ℎ

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

(3.49)
 

where the limited number of reconstructed eye subpaths 𝑁𝐼𝐸𝑃 contrasts the total 

number of light subpaths which undergo reconstruction. As explained for the second 

worst-case scenario, all the eye subpaths are re-evaluated. In all the other scenarios, 

the rendering cost of the path manipulation algorithm can be deduced via equation 

(3.49) by substituting 𝑁𝐿𝑃 with 𝑁𝐼𝐿𝑃 and 𝑁𝐸𝑃 with 𝑁𝐼𝐸𝑃. The reconstruction and/or 

re-evaluation of a subset of disrupted and collateral subpaths augments performance. 

 

However, the reconstruction cost per subpath (3.48) is a loose upper bound since not 

every subpath needs to be conventionally regenerated. Besides, a failed intra-subpath 

connection entails a purely tracing cost (𝑁𝜏 − ℓ − 1)𝜍𝜏 instead of the tracing-evaluation 

cost 𝑁𝒿𝜍𝜏 + (𝑁𝜏 − 𝑁𝒿)𝜍𝜂 .  A more accurate reconstruction cost per subpath is given by: 

∑(𝒿 − ℓ)𝜍𝜏 + 𝛿𝑖+1,𝒿 (𝜍𝑞𝑖+1,𝒿
Λ + 𝜍𝜂) + (𝑁𝜏 − 𝒿 − 1)

𝑁𝑎
#

1

(𝛿𝑖+1,𝒿𝜍𝜂 + (1 − 𝛿𝑖+1,𝒿)𝜍𝜏)
⏟                                                

𝑖𝑛𝑡𝑟𝑎−𝑠𝑢𝑏𝑝𝑎𝑡ℎ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

+

(1 − 𝛿𝑖+1,𝒿 + 𝛿𝑖+1,𝒿𝛿𝑣,𝜏)(𝑁𝜏 − 𝑁𝑣
# − 1)(𝜍𝓇 + 𝜍𝜏 + 𝜍𝜂)⏟                                

𝑠𝑢𝑏𝑝𝑎𝑡ℎ 𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
(3.50) 

where 𝑁𝑎
# is the actual number of invalidations per subpath, 𝜍𝑞𝑖+1,𝒿

Λ  is the cost of 

computing the probability 𝑞𝑖+1,𝒿Λ  (equation 3.32) and 𝛿𝑖+1,𝒿 is defined as follows: 

𝛿𝑖+1,𝒿 = {
1 𝑎𝑖+1 − 𝑥𝒿 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑤𝑖𝑡ℎ 𝑞𝑖+1,𝒿

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.51) 

where 𝑞𝑖+1,𝒿 is defined by equation (3.38). The value of 𝛿𝑖+1,𝒿 determines which terms 

in equation (3.50) are evaluated. The vertices 𝑥ℓ+1…𝑥𝒿 only require that rays be traced. 

If the intra-subpath connection 𝑎𝑖+1 − 𝑥𝒿 is established, then the throughput at vertex 

𝑥𝒿 is evaluated with cost 𝜍𝑞𝑖+1,𝒿
Λ + 𝜍𝜂 and the throughput of the vertices 𝑥𝒿+1…𝑥𝑁𝜏−1 

is evaluated with cost (𝑁𝜏 − 𝒿 − 1)𝜍𝜂. When the intra-subpath connection fails, the 

latter cost changes from a throughput evaluation cost to a tracing cost (𝑁𝜏 − 𝒿 − 1)𝜍𝜏. 
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A subpath with an unconnected anchor (𝛿𝑖+1,𝒿 = 0) or a subminimal length (𝛿𝑣,𝜏 = 1) 

will be regenerated from its last vertex. The subminimal length case is expressed via:  

𝛿𝑣,𝜏 = {
1 𝑁𝑣

# < 𝑁𝜏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.52) 

where 𝑁𝑣
# is the actual number of vertices preceding the vertex from which the subpath 

is conventionally regenerated. Condition (1 − 𝛿𝑖+1,𝒿 + 𝛿𝑖+1,𝒿𝛿𝑣,𝜏) ensures that the subpath 

is regenerated only in one of the two cases mentioned above. Still, both an unconnected 

subpath and a successfully reconnected, subminimal subpath are regenerated with a 

cost equal to  (𝑁𝜏 − 𝑁𝑣
# − 1)(𝜍𝓇 + 𝜍𝜏 + 𝜍𝜂). Hence, the overall reconstruction cost per 

subpath is the cost of a single regeneration added to the sum of all reconnection costs. 

 

The images rendered with the path manipulation algorithm may suffer from bias if the 

collateral paths are inadequately reconstructed. The methods delineated in chapter 4 

(subsection 4.3.5), may not suffice in some cases and certain collateral paths will not 

be adapted to the scene configuration. The example analysed in chapter 5 (section 5.4) 

is such a case. However, the strong intuition is that the reconstruction of collateral 

paths can be stabilised through further investigation. Tables 2.1 and 2.2 contextualise 

the path manipulation algorithm using various criteria, including rendering artefacts. 

 

3.7 Conclusions 

 

This chapter discussed the theoretical foundation of the path manipulation algorithm. 

Defined as an apparatus of sampling and reuse strategies, path manipulation addresses 

the restriction of static geometry imposed on Monte Carlo light transport simulations.  

 

Despite generating a variety of illumination effects for generic scene configurations, 

bidirectional path tracing fails to accommodate scene dynamism. The slightest change 

of a scene causes the full recomputation of the illumination solution. The disposal of 

paths, immediately after the evaluation of their contributions, limits the path lifespan 

to a generation-evaluation cycle and imposes a static use of the sampling techniques.  
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The path manipulation algorithm supplants the static manipulation of paths with a 

generation-evaluation-reuse cycle and ports bidirectional path tracing to the temporal 

domain. By reconstructing and reusing paths, the novel algorithm supports dynamism. 

 

The concepts of immutable contribution and path validity (section 3.2) defined the 

norms that identify the subpaths which can be immediately reused in the rendering of 

the altered scene. Path invalidation and anchor computation (section 3.3) identified the 

subpaths that breach the validity criteria and must be reconstructed for ensuing frames. 

 

Based on the location of the anchor on an invalid subpath, reconstruction (section 3.4) 

branched into three scenarios. The primary and terminus anchor reconstructions treated 

the antipodal cases when the anchor either follows the first vertex (subsection 3.4.1) 

or replaces the last vertex (subsection 3.4.3) of an invalid subpath. The two-chain 

reconstruction (subsection 3.4.2) treated subpaths split in two chains around the anchor. 

 

The foremost contribution is the elaboration of the intra-subpath connectivity strategy 

(subsection 3.4.2.3), which reconnects two dysfunctional chains of the same type into 

a functional subpath. The novel strategy uses the scattering and stochastic properties 

of the connecting vertices to set an intra-subpath connection. Tentative contributions 

with insufficient throughput are discarded without introducing bias (test 3.31). Also, 

the stochastic viability of the tentative connection is determined via a two-dimensional 

rejection test (3.36). Unlike conventional path generation methods, which use Russian 

roulette only to control the subpath lengths, the current approach uses such tests also 

throughout the connectivity process. A successful intra-subpath connection generates 

a subpath in more than one piece by reusing existent path information. Consequently, 

the two-chain reconstruction is a path generation approach that maximizes path reuse. 

 

The outcome is the extension of bidirectional path tracing towards reusing paths in the 

temporal domain. As demonstrated in section 3.4, the path manipulation algorithm 

reconstructs the light and eye subpaths generically, without regard to whether a light 

source, the camera or another object was transformed. Moreover, predefined animation 

paths are not required. Chapter 4 delineates the implementation of the algorithm and 

chapter 5 examines cases in which the algorithm can operate without animation paths.  
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Chapter 4 

 

Light transport framework implementation 

 

The practical goal of the current work is to implement a Monte Carlo light transport 

framework that uses path manipulation strategies to simulate a wide variety of 

illumination effects in conditions of dynamic geometry. Defined as an apparatus of 

sampling and reuse strategies, path manipulation obviates the regeneration of the 

entire collection of light transport paths, by reconstructing only those paths that are 

invalidated by the changes of the scene. The result is a Monte Carlo algorithm that 

reduces the heavy computational load generally associated with this class of methods. 

 

This chapter discusses the implementation details of the path manipulation algorithm. 

The proposed algorithm extends bidirectional path tracing towards reusing paths in 

the temporal domain. The path manipulation strategies, investigated in the previous 

chapter, reconstruct subpaths independently of their type and of the scene dynamism.   

 

The first section of this chapter presents the algorithms implemented in the light 

transport framework. The next section examines the architecture of the framework and 

identifies the building blocks that define the pipeline of both the standard and the path 

manipulation algorithm. The schematic flow of bidirectional path tracing concludes 

this second section. The third section recasts the standard Monte Carlo pipeline to 

accommodate the path manipulation strategies. A new building block is used, together 

with the existing ones, to fully describe the reconstruction process. The essential 

difference between the standard and the reconstruction pipeline refers to whether a 

collection of light transport paths is discarded or preserved between frames. This 

discrimination governs the variations and the similarities between the two pipelines. 

The chapter concludes with the schematic flow of the path manipulation algorithm.  
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4.1 Supported Monte Carlo algorithms 

 

The light transport framework supports three Monte Carlo ray tracing algorithms. 

These algorithms are variants of published light transport methods and they reflect the 

modular implementation of the light transport framework. Each algorithm is obtained 

by varying the functionality of the building blocks that define the Monte Carlo pipeline. 

 

The first algorithm generates a collection of light subpaths and uses it to establish 

bidirectional connections with eye subpaths of length 1. Every prefix of a light subpath 

is connected to a primary sample and the contribution of the resultant path is accrued 

at the apposite pixel. This approach is similar to instant radiosity (Keller 1997), except 

that pseudorandom numbers replace the low-discrepancy sequences used to sample the 

virtual point lights and path contributions are evaluated using Monte Carlo integration. 

 

The second algorithm is a path tracer with next event estimation (Kajiya 1986; Dutré 

and Willems 1995), which samples a group of eye subpaths, connects each eye subpath 

vertex to each light source and evaluates the overall radiance scattered towards the eye. 

 

Bidirectional path tracing (Veach 1998, p. 297) is the third Monte Carlo algorithm 

implemented in the light transport framework. As a generalization of the other two 

algorithms, it generates paths by connecting each vertex of an eye subpath to all the 

vertices of a randomly selected light subpath. The path manipulation strategies process 

the light and eye subpaths generically and irrespective of the scene dynamism type. 

Hence, the extension of bidirectional path tracing to the temporal domain emphasizes 

the generality of the path manipulation algorithm. Path reuse methods usually require 

animation paths, restrict dynamism or fail to reconstruct both light and eye subpaths. 

Previous work is scrutinised in chapter 2 (subsection 2.6.3) and chapter 3 (section 3.6). 

 

The path manipulation strategies are not restricted to a bidirectional approach but can 

be used to extend most path reliant algorithms towards reusing samples in the temporal 

domain. That is, path manipulation can be used with gathering and shooting methods. 
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4.2 The standard Monte Carlo pipeline 

 

The light transport framework is structured on building blocks, so as to easily define 

the pipelines of the standard and reconstruction algorithms. The rationale behind the 

building blocks is to easily change the behaviour at one stage of the pipeline or to 

replace an entire building block with another. The standard Monte Carlo pipeline 

consists of three phases: path generation, contribution evaluation and image synthesis. 

 

Path generation starts by tracing packets of primary rays and by computing the first 

scene intersections. From the primary samples, subpaths are extended progressively 

by sampling the local probability densities and by marching the generated rays in 

parallel. Subsequently, the complete subpaths enter the contribution evaluation phase. 

The first task of the estimator block is to establish connections using the information 

provided by the visibility tester. The contributions of the light transport paths are then 

evaluated according to the specific Monte Carlo algorithm. The image synthesis phase 

uses the radiance stored at the roots of the eye subpaths to generate the current frame. 

Figure 4.1 illustrates the building blocks used in the standard Monte Carlo pipeline. 

Note that every iteration of the rendering process fully regenerates the path collection. 

 

 
Figure 4.1: The three major phases that constitute the standard Monte Carlo pipeline. 
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The modular design of the light transport framework has two important advantages. 

The first advantage is flexibility in defining the standard Monte Carlo algorithms, 

whereas the second advantage is augmentation in deriving the path manipulation 

algorithm. The standard Monte Carlo algorithms are implemented by simply varying 

the functionality of certain building blocks, while the novel algorithm is implemented 

by merely replacing some of the building blocks utilized in the path generation phase. 

 

The framework also has a hybrid architecture, which combines techniques from both 

offline and progressive Monte Carlo light transport simulation, with the purpose of 

improving accuracy as well as performance. The used offline techniques refer mainly 

to efficient sample generation and variance reduction. The progressive techniques are 

targeted at expediting the execution. Together, offline and progressive optimization 

techniques determine the structure of the building blocks comprised in the framework.  

 

The blocks of the contribution evaluation and image synthesis phases execute the same 

tasks in the path manipulation algorithm, while the blocks of the path generation phase 

serve the path reconstructor block (section 4.3) in replacing the generation of paths 

with their reconstruction. Thus, the building blocks described next also serve to define 

the pipeline of the path manipulation algorithm. The reconstruction pipeline is derived 

from the standard Monte Carlo pipeline by simply replacing the path generation phase. 

 

Thus, in terms of design, modularity is the substance of the light transport framework. 

From a code perspective, the light transport framework entails several contributions. 

As the first one accomplished within Optis, the implementation of bidirectional path 

tracing is a contribution. Another contribution is the first in-house implementation of 

the recursive multiple importance sampling schema (van Antwerpen 2011b). The 

adaptation of the path generation method proposed by Novák et al. (2010) completes 

the list of first in-house implementations. The version developed in the light transport 

framework terminates subpaths stochastically, rather than tracing them up to a user 

predefined length and then extending them up to a maximum length derived from the 

average scene reflectance. The essence of this work is the path manipulation algorithm 

and as such the path reconstructor is the crux in the implementation of the framework. 



141 
 

4.2.1 Ray generation 

 

The ray generator starts the execution of the standard pipeline by generating packets 

of primary rays. Depending on the algorithm, the primary rays are generated from the 

camera (path tracing), from the light sources (light tracing) or from both directions 

(bidirectional path tracing). Throughout the path generation phase, the ray generator 

samples the rays used to progressively extend the unterminated subpaths. If multiple 

subpaths are used per light source or per pixel, then the generator also spawns the 

primary rays for the new subpaths that replace the terminated ones. For the evaluation 

of the path contributions, the generator supplies the visibility tester with shadow rays. 

 

Generally, the number of rays traced per frame amounts to orders of millions. To avoid 

prohibitive execution costs, without sacrificing the flexibility of the modular approach, 

the GPU is used as a ray tracing processor. The ray generator is capable of spawning 

large batches of rays, either directly on the GPU or on the CPU. The primary rays that 

originate at the camera and cross the image plane, are generated directly on the device 

using a dedicated CUDA kernel (Sanders and Kandrot 2012). The rays that start at the 

light sources, extend subpaths, restart new subpaths or assess visibility are generated 

and packed on the host. Yet, all rays are traced on the GPU. To ensure a transparent 

communication between the device and the host, memory allocations, data formatting 

and copy operations are abstracted in a designated memory management class (buffer). 

 

The generated rays must form packets large enough to ensure an appropriate workload 

for the GPU. A high rate of device occupancy results in a good utilization of the GPU 

resources and in an equipoise to the costs associated with the transfer of data over the 

PCIe bus. Most ray generation routines produce packets of rays. When a calling 

function requests a single ray from the generator, it will preserve the ray packet 

approach by accumulating multiple such isolated rays before transferring them to the 

ray tracing engine. Tracing packets of rays means that the path generation process 

concurrently extends multiple subpaths, with one segment at a time, by marching the 

sampled rays in parallel. In other words, the path generator does not extend one 

subpath at a time until it terminates, rather it extends batches of subpaths in parallel. 
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When a subpath terminates and the requested number of samples is not reached, that 

subpath will be automatically replaced with a new one, to retain a compact marching of 

paths for as long as possible. This path generation process is similar to the one proposed 

by Novák et al. (2010), except that no limitation is imposed on the lengths of subpaths. 

 

4.2.2 Point sample computation 

 

The sampler receives the packets of rays from the ray generator and determines the 

closest intersections between the received rays and the scene geometry. The computed 

intersections are the next point samples of those subpaths to which the rays correspond.   

 

The ray generator catalyses the tracing of rays on the device by generating the primary 

rays with CUDA kernels. However, the sampler is the core of the hybrid design. One 

task performed by the sampler is the computation of the intersections between the 

geometry and the ray packets received from the ray generator. The sampler creates an 

OptiX Prime query, associates the ray buffer with the query, specifies the format of 

the intersection buffer and instructs the Prime API (NVIDIA 2017) to execute the 

query. Prime builds the ray acceleration structure, performs the ray traversal, computes 

the primitive intersections and populates the intersection buffer with the tracing results. 

The ray traversal and intersections are executed on the device. The sampler brings the 

intersection data on the host, computes the samples and appends them to the subpaths. 

 

4.2.3 Path generation 

 

The path generator represents the main processing loop of the path generation phase 

and it coordinates the generation, extension, termination and regeneration of subpaths. 

 

First, the renderer instructs the ray generator to produce a batch of primary rays and 

to initialize the corresponding subpaths by creating their roots. A root is the very first 

vertex of a subpath, sampled directly either on a light source or on the camera lens. 



143 
 

 
Figure 4.2: The generation of paths depicted as a processing loop of the path generator. 

 

Then, the renderer launches the path generation loop by invoking the path generator 

with the buffer of initialized subpaths and the batch of primary rays. The path generator 

sends the subpaths and the primary rays to the sampler and waits for the latter to trace 

the rays and to compute the primary samples. Using the BSDFs of the primary vertices, 

the path generator samples the rays that will determine the next vertices of the subpaths. 

 

The subpaths whose rays did not intersect the geometry or which failed to satisfy the 

continuation criteria are terminated. For each terminated subpath, the path generator 

will restart another one, if the requested number of samples is not exceeded. These 

operations, except for the initialization performed by the ray generator, are repeated 

until no active subpath is left in the queue of the processing loop. An active subpath 

is an unterminated subpath. Figure 4.2 details the events handled by the path generator. 

 

The path generator maximizes the device performance by marching in parallel as many 

rays as feasible. To maintain a compact grid of rays for as long as possible, the path 

generator alternates the extension of the active subpaths with the regeneration of the 

terminated ones. After sampling the new rays (Figure 4.2, step 4), the path generator 

separates the active subpaths from the terminated ones and executes the regeneration 

routine (Figure 4.2, step 5). The active subpaths and their next-bounce rays are kept 

in the same buffer, whereas the terminated subpaths are stored in the buffer that will 

be dispatched to the contribution evaluation routine. The locations of the terminated 

subpaths in the active buffer are filled with new subpaths that have identical affiliations 

to the terminated ones. Every new subpath is assigned both a root and a primary ray. 



144 
 

 

Figure 4.3: The generation of 𝑁 subpaths. Subpath �̅�2 randomly terminates at vertex 

𝑥𝑖+2 and no other subpath is restarted in its place, as the required number of samples 

for its affiliation is reached. The grid of subpaths will be compacted to 𝑁 − 1 subpaths. 

Subpath �̅�3 terminates at 𝑥𝑗 and a new subpath is restarted in its place. Subpaths �̅�1 

and �̅�𝑁 are extended from vertex 𝑥𝑖+1, respectively 𝑥𝑣+1, by sampling the local BSDF. 

 

The primary ray is generated by invoking the ray generator with the corresponding 

light source or pixel. The affiliation is a pair that stores the identifier of a light source 

or the coordinates of a pixel and associates a subpath with a specific light source/pixel. 

The affiliation is used to keep track of the actual number of subpaths generated per 

light source or per pixel. If the number of subpaths generated for a given affiliation is 

equal to the specified threshold, then the regeneration routine will supress the creation 

of a new subpath and will compress the active subpath buffer. By reducing the grid of 

active subpaths, the path generation loop does not benefit from the same device 

performance throughout its execution. As the number of regenerated subpaths declines, 

the number of idle threads increases and performance drops. However, the goal is to 

extend bidirectional path tracing towards reusing paths in the temporal domain and 

not to develop techniques targeted at obtaining an optimal performance from the GPU. 

 

The path generator retains a compact grid of rays by also bundling individual rays. 

The extension routine (Figure 4.2, step 4) packs all the next-bounce rays sampled by 

the ray generator. The regeneration routine (Figure 4.2, step 5) interleaves the buffer 

of extension rays with the primary rays generated for the newly restarted subpaths. 

Each ray in the current bundle is mapped to its corresponding active subpath. Once 

packed, the extension and primary rays are sent to the sampler to be traced on the GPU. 

Figure 4.3 illustrates the extension of subpaths with the regeneration of new subpaths. 
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Though implementing progressive strategies, the path generator is not a pure GPU 

approach to sampling paths. Unlike the method proposed by Novák et al. (2010), the 

path generator does not condition the lengths of the subpaths, but terminates the latter 

stochastically. The extension routine is responsible for sampling the next-bounce rays 

and for terminating subpaths. To sample the next-bounce rays, the extension routine 

invokes the ray generator with the last vertex of each active subpath. The ray generator 

samples a new propagation ray based on the local probability density function of the 

last subpath vertex. Each propagation ray has a specific probability and the extension 

routine uses this probability in a Russian roulette test, to determine the length of a 

subpath. The continuation probability 𝑞𝑖 = min {1,
𝑓𝑠(𝑥𝑖−1→𝑥𝑖→𝑥𝑖+1)

𝑃⊥(𝑥𝑖→𝑥𝑖+1)
} is used to decide 

whether a subpath should be extended past or be terminated at vertex 𝑥𝑖. Generally, 

𝑞𝑖 = 1 is imposed on the first few vertices of each subpath, to avoid any extra variance 

caused by short subpaths (Veach 1998, p. 309). The number of vertices with fixed 𝑞𝑖, 

determines the minimum subpath length on which Russian roulette in not applied. The 

extension routine takes a parameter that specifies the minimum subpath length and 

uses it to suppress Russian roulette. A subpath terminates in three other circumstances. 

 

One such circumstance refers to a propagation ray failing to intersect the geometry. In 

this case, the ray exits the scene and does not produce the next subpath vertex. Total 

absorption also causes a subpath to terminate, as does the random intersection of a 

light source to an eye subpath. The latter case regards a path sampled with zero vertices 

on the light subpath via naïve path tracing (i.e. 𝑠 = 0). When all the active subpaths 

terminate, the path generation loop exits and the contribution evaluation phase begins. 
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4.2.4 Visibility computation 

 

The visibility tester computes visibility either between point samples or between light 

sources and point samples. For the path tracer, it computes the visibility between each 

vertex of an eye subpath and the light sources present in the scene. For the light tracing 

algorithm and for bidirectional path tracing it computes both types of visibility, i.e. 

light sources – point samples and inter-sample. Like the path generator, the visibility 

tester performs its computations by simultaneously processing multiple paths. Given 

a buffer of paths, the tester assesses visibility breadthwise across all paths, rather than 

depth-wise along a single path at a time.  For bidirectional path tracing, this approach 

facilitates the efficient extraction of additional samples from multiple paths at once. 

Veach (1998, p. 300) suggested that additional samples can be efficiently generated 

from the same path, by joining each prefix of the light subpath to each suffix of the 

eye subpath. The tester computes a one-to-one vertex visibility for many paths at once. 

 

Bidirectional path tracing entails the most generic approach to computing visibility. 

Given a buffer of eye subpaths, the renderer selects as many random light subpaths as 

the number of eye subpaths. Then, the tester determines the visibility between the 

primary samples of the eye subpaths and the first vertices of the light subpaths. All the 

eye subpaths whose assigned light subpaths still have vertices are selected and the 

tester assesses the visibility between their primary samples and the secondary vertices 

of the light subpaths. This process continues until all the primary samples have been 

connected to all the vertices of their assigned light subpaths. Then, the renderer selects 

the next level of eye subpath vertices. A vertex level refers to all the vertices in a 

subpath buffer, which have the same index. For example, the 𝑖𝑡ℎ vertex level refers to 

all the vertices in a subpath buffer which have the 𝑖𝑡ℎ index in their subpaths. To every 

selected vertex, the render assigns a new random light subpath and the tester assesses 

the visibility between each eye vertex and all the vertices of its allotted light subpath. 

That is, the current level of eye vertices is progressively connected to all the levels of 

the assigned light subpaths. The visibility computation ends when all the vertices of 

the eye subpaths have been processed. Figure 4.4 illustrates the visibility computation 

between each vertex of an eye subpath and all the vertices of the allotted light subpath. 
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Figure 4.4: The bidirectional visibility (navy dashed lines) is determined by tracing 

shadow rays between each vertex of the eye subpath and every vertex of the randomly 

assigned light subpath. Unobstructed shadow rays represent feasible path connections. 

 

The light tracing algorithm specializes the bidirectional visibility computations, in that 

only the primary samples need to be connected to randomly assigned light subpaths. 

As discussed in section 4.1, this approach generates eye subpaths of length 𝑘 = 1 and 

progressively connects the primary samples to all the vertices of the allotted light 

subpaths. The path tracing algorithm progressively selects the vertex levels of a grid 

of eye subpaths and invokes the tester to compute the visibility between each vertex 

in the selected level and all the light sources present in the scene. All the visibility 

information is computed by tracing shadow rays between the eye and the light vertices. 

 

For light tracing and for bidirectional path tracing, the visibility tester invokes the ray 

generator with the buffers of light and eye subpaths and with a vertex level for each 

buffer. For path tracing, the visibility tester invokes the ray generator with the set of 

light sources and with the buffer of eye subpaths and its associated vertex level. The 

ray generator computes the shadows rays. The visibility tester dispatches the shadow 

ray buffer to the sampler, which traces the rays and determines their intersections with 

the geometry. The resultant intersection buffer contains the visibility information that 

the estimator uses to establish bidirectional connections. Hence, the visibility tester is 

as a lightweight wrapper class that abstracts the details of the visibility computations. 

All paths, except for the unidirectional paths, require visibility computations when 

establishing their connections. Figure 4.5 illustrates the visibility computation process.   
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Figure 4.5: The different operations executed by the tester when determining visibility. 

 

4.2.5 Contribution evaluation  

 

The estimator is the engine of the contribution evaluation phase. It efficiently draws 

multiple samples from the generated paths (Veach 1998, p. 300), evaluates the path 

contributions and computes the power heuristic weights (Veach and Guibas 1995). 

 

The most basic approach to sampling multiple paths �̅�𝑠,𝑡 is to generate a separate light 

and eye subpath for each path. A path �̅�𝑠,𝑡 is randomly sampled with 𝑠 vertices on the 

light subpath and 𝑡 vertices on the eye subpath and has an associated probability 

density 𝑝𝑠,𝑡. The subpath connection is established between the vertices 𝑦𝑠−1 and 𝑧𝑡−1. 

Additional paths can be generated from the same pair of light and eye subpaths, by 

connecting each prefix of the light subpath to each suffix of the eye subpath. Like this, 

several paths can be extracted at once from a whole group of sampling techniques 𝑝𝑠,𝑡. 

 

This path generation approach has several advantages. Firstly, path information is 

reused among the paths generated from the same subpath pair. Secondly, the additional 

paths are sampled with zero costs. Lastly, the use of multiple samples reduces variance.  
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Like the method proposed by Novák et al. (2010), the estimator connects each vertex 

of an eye subpath to a randomly assigned light subpath. Multiple paths are extracted 

at once, by connecting each eye vertex to all the vertices of the assigned light subpath.  

 

There are several advantages to connecting each eye vertex to a new light subpath. 

The paths extracted from the same pair of subpaths are correlated. By increasing the 

number of independently generated paths, this correlation decreases. The random 

permutation of the light subpaths among the eye subpath vertices further reduces the 

correlation. Novák et al. (2010) observe that the deterministic noise, caused by 

connecting the same light subpath to all the vertices of an eye subpath, decreases by 

permuting the light subpaths among the eye vertices (intra-subpath permutation) and 

implicitly across the different eye subpaths (inter-subpath permutation). The rationale 

is that the random assignment of the low and the high contribution subpaths distributes 

the radiance of the complete light transport paths more evenly across the image plane. 

 

For bidirectional path tracing, the renderer selects as many random light subpaths as 

the number of eye subpaths (Figure 4.6, step 2). Then, the visibility tester computes 

the intersection buffer for the primary samples of the eye subpaths and the first vertices 

of the light subpaths (Figure 4.6, step 3). The estimator uses the intersection buffer to 

establish bidirectional connections and to evaluate the contributions of the resultant 

paths (Figure 4.6, step 4). Subsection 3.1.2 of the previous chapter minutely discusses 

the evaluation of the path contribution. Next, only the primary samples whose light 

subpaths have unprocessed vertices (Figure 4.6, step 5) are connected to the next level 

of light vertices. The visibility and the evaluation steps are repeated until all the vertex 

levels of the light subpaths are exhausted. Then, the renderer selects the next level of 

eye subpath vertices (Figure 4.6, step 1) and repeats the entire visibility-evaluation 

process (Figure 4.6, steps 2 - 5). The evaluation loop exits when all the eye vertices 

have been processed. Figure 4.6 illustrates the entire contribution evaluation process. 
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Figure 4.6: The processing loop which forms and evaluates full light transport paths. 

 

The evaluation routine (Figure 4.6, step 4) computes the contribution 𝐶𝑠,𝑡 = 𝑤𝑠,𝑡𝜂𝑠𝒸𝑠,𝑡𝜂𝑡  

(chapter 3, equation 3.5). The term 𝜂𝑠 is the throughput on the light subpath and 𝜂𝑡 is 

the throughput on the eye subpath. The throughput is computed and stored at each 

vertex during the subpath generation. If two subpaths can be successfully connected, 

then the evaluation routine computes 𝒸𝑠,𝑡 and the weight 𝑤𝑠,𝑡. Two methods are used 

to compute the power heuristic weight with an exponent ϐ = 2. One method aims to 

reduce the memory footprint, whereas the other aims to reduce the execution time. 

 

The first method computes the weights using the approach proposed by Veach (1998). 

Besides the throughput, each subpath vertex stores the geometric factor 𝐺, the forward 

probability and the reverse probability. The forward probability is the projected solid 

angle probability with which a vertex was sampled, i.e. 𝑃⊥(𝑥𝑖−1 → 𝑥𝑖), ∀𝑖 ≥ 1. The 

reverse probability is the projected solid angle probability with which a vertex could 

have been sampled from the opposite direction, i.e. 𝑃⊥(𝑥𝑖+1 → 𝑥𝑖), ∀𝑖 < {𝑠|𝑡} − 1. 

Pharr and Humphreys (2004, p. 663) discuss concrete methods for computing the 

vertex probabilities. All three terms are used to compute the probability density ratios 

discussed in chapter 3 (equation 3.14). The probability density ratios regard the other 

techniques that could have sampled the given path. By parsing both subpaths in the 

reverse direction, all the probability density ratios associated with the 𝑘 + 2 sampling 

techniques are computed and summed to the final weight (chapter 3, equation 3.16). 

This weight computation method consumes slightly less memory than the ensuing one. 
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The second method, minimizes the work required to compute the multiple importance 

sampling (MIS) weights, by storing partial weights at each subpath vertex. Based on 

the recursive MIS computation proposed by van Antwerpen (2011b), this method 

computes the partial, power heuristic weights up to the antepenultimate vertex. The 

partial weights are still computed using the probability density ratios. Yet, the partial 

weight of each vertex also depends on the weight of the prior vertex (𝑤𝑖−1 = 0, 𝑖 = 0). 

Like the throughput, the MIS weights are computed and stored at each subpath vertex: 

𝑤0 = (
𝑃⊥(𝑥1 → 𝑥0)𝐺(𝑥0 ↔ 𝑥1)

𝑃𝐴(𝑥0)
)

ϐ

𝑖 = 0

𝑤𝑖 = (
𝑃⊥(𝑥𝑖+1 → 𝑥𝑖)𝐺(𝑥𝑖 ↔ 𝑥𝑖+1)

𝑃⊥(𝑥𝑖−1 → 𝑥𝑖)𝐺(𝑥𝑖−1 ↔ 𝑥𝑖)
)

ϐ

(1 + 𝑤𝑖−1) ∀𝑖 ≥ 1 (4.1)

 

 

The partial weights of the last two vertices of a subpath, are computed based on the 

established connection. The connecting edge is used both as an outgoing and as an 

incoming direction in the computation of the vertex probabilities. For a path �̅�𝑠,𝑡 

connected between the light vertex 𝑦𝑠−1 and the eye vertex 𝑧𝑡−1, the following 

probabilities are computed using the connecting edge 𝑦𝑠−1𝑧𝑡−1: 𝑃
⊥(𝑧𝑡−1 → 𝑦𝑠−1|𝑧𝑡−2), 

𝑃⊥(𝑦𝑠−1 → 𝑦𝑠−2|𝑧𝑡−1), 𝑃
⊥(𝑦𝑠−1 → 𝑧𝑡−1|𝑦𝑠−2) and 𝑃⊥(𝑧𝑡−1 → 𝑧𝑡−2|𝑦𝑠−1). When the 

path has a single vertex on one of the subpaths, the fourth or the second probability 

need not be computed, whereas the first or the third probability is computed as if the 

direction 𝑧𝑡−1 → 𝑦𝑠−1 or 𝑦𝑠−1 → 𝑧𝑡−1 emanated from the camera, respectively from 

the light source. If the path is sampled with zero vertices on one of the subpaths, then 

the last subpath vertex is assumed to have been sampled on the lens/light source and 

the first/third probability is computed just like for the single vertex subpath. With these 

probabilities, the partial weights of the last subpath vertices 𝑤𝑠−1 and 𝑤𝑡−1 can finally 

be computed, yielding the total weight 𝑤𝑠,𝑡 = 1 (1 + 𝑤𝑠−1 + 𝑤𝑡−1)⁄ . The evaluation 

routine finishes by adding the weighted contributions to the roots of the eye subpaths. 

 

There are several specializations of the contribution evaluation process. Firstly, the 

eye subpath vertices that randomly intersect the light sources are processed separately 

from the rest of the paths, as they do not require the connectivity logic. The throughput 

and the MIS weight can be readily obtained from the given eye subpath, with the result 



152 
 

that the evaluation of the path contribution reduces to a product between the MIS 

weight, the throughput of the eye subpath and the emitted radiance of the intersected 

light source. These paths are sampled with naïve path tracing and they are designated 

as zero light vertices (𝑆0) subpaths. The vertices of an 𝑆0 subpath, which precede the 

vertex that intersected the light source, are processed normally with the evaluation 

routine. Bidirectional path tracing connects each eye vertex to a random light subpath. 

 

The light tracing algorithm represents another special evaluation case, in that eye 

subpaths are generated with length 𝑘 = 1 and thus only the primary samples need to 

be connected to random light subpaths. Still, the evaluation loop remains unmodified.  

 

The path tracing algorithm specializes more acutely the evaluation process. It only 

connects the eye subpath vertices to the light sources and in doing so it eliminates the 

inner loop of Figure 4.6, which harvests the light vertex levels. Hence, the evaluation 

process reduces to executing steps 1, 3 and 4. Step 4 regards the evaluation routine, 

which also reduces to connecting the eye subpath vertices to the light sources and to 

estimating the next events. Given an eye subpath vertex 𝑧𝑖, the next event is computed 

as 𝑓𝑗(𝑦0𝑧𝑖 … 𝑧0) = 𝐿𝑒(𝑦0 → 𝑧𝑖)𝐺(𝑦0 ↔ 𝑧𝑖)𝑓𝑠(𝑦0 → 𝑧𝑖 → 𝑧𝑖−1)𝜂𝑖+1(𝑧𝑖), where 𝑦0 is a vertex 

on a light source and 𝜂𝑖+1 is the throughput evaluated at 𝑧𝑖 (chapter 3, equation 3.8). 

 

4.2.6 Image synthesis 

 

The camera is used in the image synthesis phase to construct and serialize the frames. 

Its task is to parse the buffer of eye subpaths and to assign the radiance of each subpath 

root to the affiliated pixel. The current frame is serialized and composited with the 

prior frames. If the renderer must execute additional iterations, the pipeline will resume 

with the path generation phase, otherwise the composite frame will also be serialized. 

 

With the image synthesis phase, the standard Monte Carlo pipeline comes to an end. 
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4.2.7 Bidirectional path tracing 

 

Figure 4.7 illustrates the schematic flow of the implemented bidirectional path tracer.  

 
Figure 4.7: Bidirectional path tracing defined via the standard pipeline functionality. 
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The bidirectional path tracing algorithm begins by instructing the ray generator to 

sample the primary and the light source rays. Then, it invokes the path generator 

(Figure 4.2) with the buffer of primary rays, respectively with the buffer of light source 

rays. Once the path generator sampled the requested number of eye and light subpaths, 

the bidirectional path tracer invokes the estimator to compute the 𝐺 factors, the reverse 

probabilities and the partial MIS weights for all the subpaths in each buffer. Next, the 

estimator connects the eye and the light subpaths and evaluates the contributions of the 

resultant paths (Figure 4.6). Finally, the radiance values stored at the roots of the eye 

subpaths are used to generate the current frame. The latter is serialized and composited 

with the previous frames. If the bidirectional path tracer must execute other iterations, 

the entire process will recommence, otherwise the composite frame will be serialized.     

 

The flow presented in Figure 4.7 can be easily modified to define both the path tracer 

and the light tracing algorithm, as both are specializations of the bidirectional approach. 

Subsections 4.2.4 and 4.2.5 discussed the specializations entailed by these algorithms.  

 

4.3 The reconstruction pipeline 

 

The practical goal of the current work is to extend bidirectional path tracing towards 

reusing paths in the temporal domain, with the purpose of supporting scene dynamism. 

 

Due to its modular design, the standard Monte Carlo pipeline (Figure 4.1) can fit the 

path manipulation strategies with a minimal change to its overall structure. The main 

difference between the standard and the reconstruction pipeline stands in the use that 

is made of paths between frames. The standard pipeline regenerates the light transport 

paths with each frame, whereas the reconstruction pipeline preserves the paths and 

adapts them to the new scene configuration. In fact, the path manipulation algorithm 

substitutes only the path generation phase of the standard pipeline, leaving the other 

two phases unaltered. The remainder of this chapter examines the building block that 

implements the path manipulation strategies and defines the reconstruction pipeline. 
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4.3.1 Invalidation and anchor computation 

 

The reuse of paths in conditions of dynamic geometry, entails the reconstruction of 

the subpaths that were invalidated by the transformations of the geometry, in such a 

way that they become consistent with the new scene configuration. The first step in 

the reconstruction process is to identify the invalid subpaths. A path unaltered by the 

geometric transformations has an immutable contribution and can be instantly reused. 

 

The building block that identifies and reconstructs the invalid subpaths is the path 

reconstructor. Chapter 3 (section 3.3) defined two types of invalid subpaths, namely 

the in-scope and the out-of-scope subpaths. An in-scope subpath is a subpath with at 

least one edge disrupted by the interposition of an object. An out-of-scope subpath is 

a subpath disrupted by the egress of one of its vertices from within its scope. The path 

reconstructor identifies the in-scope subpaths by searching for occluded edges. The 

out-of-scope subpaths are determined by searching for dynamic subpath vertices. One 

identification routine is used per type of invalid subpath. Also, the path reconstructor 

processes the light subpath buffer independently of the analogous eye subpath buffer. 

 

Like the other building blocks, the path reconstructor determines the invalid subpaths 

by concurrently testing multiple subpaths. The invalidation and the reconstruction of 

subpaths progress one subpath edge at a time across multiple subpaths, rather than 

exhaustively on a single subpath at a time. That is, the breadthwise processing of paths 

is maintained. The reconstruction routine starts by selecting all the subpaths with a 

given vertex level. Then, it invokes the two identification routines with the resultant 

subpath buffer. Figure 4.8 depicts the identification of both types of invalid subpaths. 
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Figure 4.8: The identification process of the in-scope and of the out-of-scope subpaths. 

  

The in-scope identification routine (Figure 4.8, step 3) determines the invalid subpaths 

by computing the visibility along the edges that connect the current vertices to their 

successors. The current vertices are simply the vertices included in the current vertex 

level. Before computing visibility, the initial subpath buffer is parsed once more to 

identify all the subpaths which have at least one vertex level past the current one. The 

new subpath buffer is dispatched to the visibility tester for the computation of the 

intersection buffer. The visibility tester instructs the ray generator to produce the rays 

between the current vertices and their successors, i.e. the inter-level rays. The sampler 

traces the inter-level rays and determines the closest intersections. The edges with new 

intersections correspond to invalid subpaths. The closest intersection along a subpath 

edge, other than the original successor, is the anchor of the invalid subpath (chapter 3, 

equation 3.23). The sampler brings the intersection buffer on the host, computes the 

anchors and substitutes the old successors with the anchors. Each anchor has the same 

sampling probability and throughput as the replaced successor (chapter 3, equations 

3.24 and 3.27). Each anchor level is stored with the invalid subpath, to ensure that the 

latter is correctly reconstructed. An anchor level is simply the index of an anchor in 

the invalid subpath. The anchor levels are also used to gather statistical data about the 

reconstruction process. This data is provided for each test inspected in the next chapter. 
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Figure 4.9: The identification of the in-scope subpaths & the computation of anchors. 

 

Special care must be taken when the inter-level rays intersect the light sources, 

yielding 𝑆0 subpaths. An anchor located on a light source requires that all the vertices 

succeeding the anchor be discarded. 𝑆0 subpaths are computationally less expensive 

than the rest of the invalid subpaths, as they no longer need to be reconstructed from 

the anchor. Figure 4.9 summarizes the identification of the in-scope invalid subpaths. 

 

The out-of-scope identification routine (Figure 4.8, step 2) avoids the exhaustive 

testing of subpath edges (chapter 3, equation 3.18) by considering only the edges with 

a dynamic vertex. Given an out-of-scope subpath is disrupted by the movement of one 

of its vertices, the current identification routine can benefit from this self-deformation 

by tracing only the edges with a dynamic vertex. Hence, the out-of-scope identification 

routine begins by selecting only the subpaths that have a dynamic vertex at the current 

vertex level. The dynamic vertices are identified either through their association with 

a dynamic object or through the flags that signal the transformation of the camera or 

of a light source. Each subpath vertex stores the identifier of the primitive that contains 

it. This identifier is retrieved when the sampler traces the rays and computes their 

intersections with the geometry. By knowing the dynamic objects, the subpaths with 

dynamic vertices can be easily identified. The camera transformation flag identifies 

all the eye subpaths as invalid, since all the roots of the subpaths are altered by the 

transformation of the camera. On the other hand, the light source transformation flag 

identifies as invalid only those subpaths that are affiliated with the altered light source.  
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Figure 4.10: The identification of the in-scope (left) and of the out-of-scope (right) 

invalid subpaths for the 𝑖𝑡ℎ vertex level. The in-scope subpaths are identified by 

tracing rays between the vertices 𝑥𝑖 and 𝑥𝑖+1. Only the subpaths �̅�2, �̅�3 and �̅�𝑁 are 

identified as invalid. The out-of-scope subpaths are identified by tracing rays between 

the prior vertices 𝑥𝑖−1 and the old positions (hollow circles) of the dynamic vertices 

𝑥𝑖 (grey circles). Vertex 𝑥𝑖 of the subpath �̅�2 moves towards 𝑥𝑖−1 and yields the anchor 

𝑎𝑖 . The inter-level ray of the subpath �̅�𝑀 fails to produce an anchor by exiting the scene. 

 

For the subpaths invalidated by the transformation of their roots, new primary rays are 

sampled (chapter 3, subsection 3.4.1). The out-of-scope subpaths are identified by 

tracing rays between the previous level of vertices and the current level of dynamic 

vertices (chapter 3, equation 3.23). The inter-level ray of a dynamic root cannot be 

generated using this approach, as there is no preceding vertex and the old direction 

may be incongruous with the new camera/light source configuration. The other vertex 

levels are processed by tracing rays between the predecessors and the dynamic vertices. 

 

The anchors of the out-of-scope subpaths are computed just as for the in-scope 

subpaths. The out-of-scope and the in-scope identification routines differ only in that 

the former routine processes exclusively subpaths with dynamic vertices, whereas the 

latter routine processes all subpaths. Hence, the out-of-scope routine first selects the 

subpaths with dynamic vertices and then executes the visibility (Figure 4.9, step 1) 

and the anchor computations (Figure 4.9, step 2). The in-scope and the out-of-scope 

identification routines execute one step of the identification process (Figure 4.8). That 

is, they process only one vertex level across multiple subpaths. The reconstruction 

process continues until all the vertex levels of the subpaths are exhausted. Figure 4.10 

illustrates the identification and the anchor computation for both types of invalidation. 
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4.3.2 Intra-subpath reconnection 

 

After one identification step, the reconstruction process reconnects as many in-scope 

and out-of-scope subpaths as possible using the two-chain scenario. The computation 

of the anchors generated the first chains of the invalid subpaths. The first chain 

subsumes all the vertices up to the anchor, whereas the second chain includes all the 

vertices downstream from the anchor. The throughput of the first chain is immutable 

(chapter 3, equation 3.27) and it is stored at every vertex during subpath generation. 

 

The path reconstructor must reconnect the first and the second chains of the invalid 

subpaths. The necessary condition for an intra-subpath connection is to find a second 

chain vertex visible from the anchor (chapter 3, equation 3.29). The reconnection 

routine uses the inter-level visibility routine (Figure 4.9, step 1) to generate the shadow 

rays between the anchors and their successors and to compute the intersection buffer. 

 

For each visible ray, the reconnection routine computes the sufficient condition 

(chapter 3, equation 3.38). First, the tentative connection contribution is computed by 

considering the connecting edge both as an outgoing and as an incoming direction. 

Then, the tentative connection contribution is passed through a Russian roulette test 

(chapter 3, equation 3.31) to randomly discard any tentative connection with a smaller 

contribution than a given threshold 𝜘. The probability for scattering to occur, in and 

from the direction of the connecting edge, is also computed. The stochastic viability 

of the tentative connection is determined by means of another Russian roulette test 

(chapter 3, equation 3.36). The reconnection routine combines these two rejection 

tests to determine whether the tentative intra-subpath connection can be established. 

 

If the intra-subpath connection succeeds, the radiance and the probabilities of the first 

two vertices ensuing the anchor are updated using the data computed for the sufficient 

condition. The anchor level is paired with the welding level, i.e. with the index of the 

immediate successor. The pair of anchor-welding levels is stored in the subpath. Then, 

the throughput of the second chain is re-evaluated (chapter 3, equations 3.40 & 3.42). 
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Figure 4.11: The reconnection routine with the new intra-subpath connectivity strategy. 

 

If the intra-subpath connection fails and the second chain still has unprocessed 

vertices, then the reconnection routine selects the next vertex in the second chain. The 

intra-subpath connection attempt is resumed with the new pair of connecting vertices. 

The reconnection routine executes until all the invalid subpaths are reconnected or the 

vertices of their second chains are exhausted. Figure 4.11 shows the reconnection loop. 

 

Like the identification methods, the reconnection routine processes a single vertex 

level at a time. The reconstruction routine executes until all the vertex levels of the 

subpaths are processed. This ensures that subpaths are adequately reconstructed even 

if they are invalidated several times. Multiply invalidated subpaths store as many 

reconstruction levels as the number of invalidation instances. A reconstruction level 

simply denotes an anchor-welding pair. When the reconstruction routine concludes, 

all the invalid subpaths are collected and dispatched to the regeneration routine. Figure 

4.12 includes the reconnection routine in the identification loop (Figure 4.8) and yields 

the reconstruction routine. Figure 4.13 illustrates the reconstruction of invalid subpaths.  
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Figure 4.12: The progressive reconstruction of in-scope and of out-of-scope subpaths. 

 

4.3.3 Subpath regeneration 

 

The reconstruction routine concludes by collecting all the invalid subpaths. The 

resultant buffer also includes subpaths that either have subminimal lengths or could 

not be reconnected through intra-subpath connections. In both cases, the subpaths need 

to be regenerated from their last vertices. The subpath regeneration is performed via 

the standard local path sampling techniques discussed in chapter 3 (subsection 3.1.1). 

 

The regeneration routine begins by selecting the subminimal and the unconnected 

subpaths. A subminimal subpath is a subpath that does not intersect any light source 

and has a shorter length than the minimum subpath length (subsection 4.2.3). An 

unconnected subpath is a subpath that has a failed intra-subpath connection and a last 

anchor level paired with a welding level of −1. The subminimal subpaths are directly 

stored in the buffer that will be sent to the path generation routine. The unconnected 

subpaths are first subjected to the continuation test (subsection 4.2.3) and only the ones 

which pass the test and can be further extended are inserted in the regeneration buffer. 
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Figure 4.13: The reconstruction of the in-scope (top) and of the out-of-scope (bottom) 

subpaths. For the in-scope subpath �̅�2 the intra-subpath connection fails between 

vertices 𝑎𝑖+1 − 𝑥𝑖+2 but succeeds at vertex 𝑥𝑖+3. The anchor 𝑎𝑖+1 of the subpath �̅�3 

cannot be reconnected to any ensuing vertex, whereas for the subpath �̅�𝑁 it has no 

other vertices to be connected to. The in-scope subpaths �̅�3 and �̅�𝑁 will be regenerated 

from the anchor. For the out-of-scope subpath �̅�1 the intra-subpath connection 

succeeds at the first successor 𝑥𝑖+1, whereas for the subpath �̅�2 it fails. The inter-level 

ray of the subpath �̅�𝑀 exits the scene without generating an anchor. The out-of-scope 

subpaths �̅�2 and �̅�𝑀 will be regenerated from vertex 𝑎𝑖, respectively from vertex 𝑥𝑖−1. 

 

The minimum subpath length is used to avoid any extra variance arising from short 

subpaths. By applying the continuation test, the invalid subpaths are appropriately 

regenerated. No subminimal subpath is constrained to have a shorter length than the 

specified minimum, just as no unconnected subpath is extended more than necessary.  
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Figure 4.14: The joint regeneration process for subminimal & unconnected subpaths. 

 

The selection routine (Figure 4.14, step 1) suppresses the use of Russian roulette on 

subminimal subpaths and dispatches the latter to the standard path generation routine. 

Should Russian roulette be applied sooner than actually required, the lower energy 

transported by the subminimal subpaths will cause darker regions to appear in the 

current frame. Similarly, unconnected subpaths extended more than necessary, due 

to the suppression of Russian roulette at their last anchors, will carry more energy 

than the rest of the subpaths and will cause brighter regions to appear in the frame. 

Consequently, the selection routine is pivotal to the correct regeneration of subpaths. 

 

Next, the regeneration routine instructs the ray generator to produce the continuation 

rays for the selected subpaths (Figure 4.14, step 2). For the unconnected subpaths, the 

continuation rays are generated from the last anchors that could not be reconnected via 

the intra-subpath connectivity strategy. For the subminimal subpaths, the continuation 

rays are generated from their last vertices. All the continuation rays are generated by 

sampling the local probability density functions defined at the last subpath vertices. 

 

Using the selected subpaths and the continuation rays, the regeneration routine invokes 

the path generator to extend the subpaths (Figure 4.14, step 3). Once the path generation 

loop completed, the regenerated and the reconstructed subpaths are merged in a single 

buffer. By invoking the path generator (Figure 4.2), the path reconstructor seamlessly 

re-enters the standard Monte Carlo pipeline. This interoperability is the advantage of 

the modular design. Figure 4.14 outlines the steps executed by the regeneration routine. 
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4.3.4 Contribution re-evaluation 

 

The regeneration routine re-enters the standard Monte Carlo pipeline by invoking the 

path generation routine with the subminimal and unconnected subpaths (Figure 4.14, 

step 3). Still, the reconstructed subpaths can be reused in bidirectional connections 

only after the estimator computes their geometric factors, reverse probabilities and 

partial MIS weights. Once this information is computed, the reconstructed and the 

valid light subpaths are merged and the resultant buffer is used to randomly assign 

light subpaths to each vertex of the reconstructed eye subpaths. The contributions of 

the full light transport paths are evaluated normally, as delineated in subsection 4.2.5.   

 

When the camera is altered, all the eye subpaths are reconstructed and re-evaluated. 

In the case of a light source transformation, only the affiliated light subpaths and the 

subpaths disrupted by the geometry of the light source are reconstructed. The latter 

category of subpaths also includes light subpaths (besides eye subpaths), if there are 

multiple light sources present in the scene. However, the contributions of all the eye 

subpaths that were connected to the altered light source and to its affiliated light 

subpaths change implicitly. Thus, all the eye subpaths with disrupted geometry or with 

invalid contributions are re-evaluated. The subpaths with intact geometric structures, 

yet with invalid contributions, are designated as collateral. If the only light source of 

the scene was transformed, then the entire buffer of eye subpaths is re-evaluated. 

Otherwise, only the disrupted and the collateral eye subpaths are re-evaluated. The 

collateral eye subpaths are identified through a field that associates each eye vertex 

with a random light subpath. All the eye subpaths that have a vertex associated with a 

reconstructed light subpath are re-evaluated through the process depicted in Figure 4.6. 

 

The transformation of an object that is neither the camera nor a light source, does not 

require the re-evaluation of the full buffer of eye subpaths. Neither does the alteration 

of a light source when there are multiple light sources in the scene. The next subsection 

discusses the identification and re-evaluation of collateral subpaths for such changes. 
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4.3.5 Collateral subpath identification and re-evaluation 

 

The path reconstructor currently implements two methods for identifying the collateral 

subpaths. The first method identifies the collateral subpaths by parsing the eye subpath 

buffer and selecting the subpaths that have a vertex within the surrounding perimeter 

of a transformed object. Currently, the perimeter comprises two extents. The first 

extent is computed before the transformation of the object and is as wide as the size 

of the bounding box determined at that moment. The second extent starts from the 

altered object and is as wide as its bounding box. Both extents are computed in the 

same way, but at different moments in the lifespan of a dynamic object. Thus, any eye 

subpath with a vertex either in the first or in the second extent is identified as collateral. 

 

However, this method is limited to simple transformations and is not effective when 

more complex transformations are applied to the scene. For this reason, the second 

method uses both a shadowing identifier and the association between an eye vertex 

and a light subpath to select the collateral subpaths. Each eye vertex stores the identifier 

of its allotted light subpath. All the eye subpaths which have a vertex associated with 

a reconstructed light subpath, are identified as collateral. Furthermore, each subpath 

stores a shadowing identifier, which is set to the identifier of the primitive that first 

obstructs a connection between the given eye subpath and its allotted light subpaths. 

The estimator connects each eye subpath vertex to a random light subpath (Figure 4.6). 

As soon as the estimator detects an obstructed connection between an eye subpath 

vertex and a light subpath, it will set the shadowing identifier to the identifier of the 

occluding primitive. If a subpath already has its shadowing identifier set and another 

occlusion is detected, the estimator will not set the identifier to the currently occluding 

primitive. Like this, the lower vertex levels are prioritized over the higher ones, which 

usually contribute less to the image. All the subpaths which have a nonnegative 

shadowing identifier, are identified as collateral. This method returns more collateral 

subpaths than the first one, as it considers both subpaths with invalid contributions and 

subpaths from the shadow areas cast by the static objects. Yet, it is more efficient at 

identifying the collateral subpaths for generic scene transformations. Regardless of the 

identification method, the collateral subpaths are randomly connected to light subpaths 

and the resultant paths are evaluated through the process described in subsection 4.2.5. 
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Figure 4.15: The identification of collateral subpaths using the perimeter method (top) 

and the shadowing identifier and light subpath association method (bottom). Both eye 

subpaths �̅�𝑖 and �̅�𝑗 are identified as collateral since �̅�𝑖 has a vertex within the extent 

(dashed grey zones) of the object before transformation, while �̅�𝑗 has a vertex within 

the extent of the altered object (navy). Eye subpath �̅�𝑘 stores as shadowing identifier 

the index of the first intersected primitive belonging to object 2. However, it does not 

store any identifier associated with object 1, since the occlusion occurs at a higher 

light vertex level and the shadowing identifier is already set. The light subpath allotted 

to vertex 𝑧1 of the eye subpath �̅�𝑙 is invalidated and will be reconstructed, causing �̅�𝑙 

to be identified as collateral, even though the connection 𝑦5 − 𝑧1 is not occluded. The 

collateral subpath identification is similar for higher vertex levels of the eye subpaths. 
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Figure 4.15 exemplifies the identification of collateral subpaths using the two methods. 

Neither method is optimal, in the sense that all the vertices of the collateral subpaths 

are reconnected to newly selected light subpaths, even if their contributions are valid. 

Multiple paths are generated from the same eye subpath, by connecting each of its 

vertices to all the vertices of a randomly assigned light subpath. An eye subpath is 

identified as collateral based on the properties of one of its vertices. Yet, the evaluation 

routine establishes bidirectional connections not just for one vertex of the collateral 

subpath, but for all its vertices. This yields redundant computations, as the connections 

between some of the eye vertices and their light subpaths are still valid. Ideally, only 

the eye vertices with affected connections should be re-evaluated. Despite being more 

time-consuming, the exhaustive re-evaluation of collateral subpaths is not detrimental. 

 

The re-evaluation of the collateral subpaths concludes the evaluation phase. Before 

the current frame is serialized and composited with the prior frames, the reconstruction 

levels of each subpath are cleared. The flushing of the anchor-welding pairs ensures 

that the reconstruction process does not leak between frames. That is, the subpaths 

reconstructed in a previous frame are reprocessed only if they are invalid for the 

current frame. The image synthesis phase concludes the entire reconstruction process. 

 

4.3.6 The path manipulation algorithm 

 

The path manipulation algorithm supports dynamism by extending bidirectional path 

tracing to reuse paths in the temporal domain. The generated subpaths are reconstructed 

such that the coherence of the light flow is preserved between rendering frames. By 

reconstructing and reusing paths, the path manipulation algorithm supplants the static 

usage of paths and of sampling techniques with a generation-evaluation-reuse cycle. 

 

The path manipulation algorithm starts by identifying the invalid subpaths. The 

identification of the invalid subpaths (Figure 4.8) is performed based on the type of 

subpath deformation. The in-scope subpaths are identified by searching for obstructed 

edges, whereas the out-of-scope subpaths are identified by searching for edges with 
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dynamic vertices. The in-scope and the out-of-scope routines compute the anchors of 

all the identified subpaths. The anchor computations effectively create the first chains 

of the invalid subpaths. The reconnection routine (Figure 4.11) uses the intra-subpath 

connectivity strategy to establish all the possible connections between the first and the 

second chains of the invalid subpaths. When all the vertex levels in the subpath buffer 

have been processed, the reconstruction routine (Figure 4.12) collects and dispatches 

all the invalid subpaths to the regeneration routine (Figure 4.14). The regeneration 

routine appropriately selects and extends the subminimal and unconnected subpaths. 

The regenerated and the reconstructed subpaths are merged in a single buffer. The 

estimator computes the geometric factors, the reverse probabilities and the partial MIS 

weights for each subpath in the given buffer. The light subpaths are processed 

independently of the eye subpaths. The reconstructed and the valid light subpaths are 

merged and the resultant buffer is used to assign a random light subpath to each vertex 

of the reconstructed eye subpaths. The same buffer is used to assign random light 

subpaths to the identified, collateral subpaths (subsection 4.3.5). Then, the estimator 

evaluates the contributions of all the resultant paths (Figure 4.6). Finally, the camera 

constructs the current frame, composites it with the prior frames and serializes it. If 

the path manipulation algorithm must execute additional iterations, the pipeline will 

resume with the identification of the invalid subpaths, otherwise it will serialize the 

composite frame. Figure 4.16 illustrates the schematic flow of the path manipulation 

algorithm. Note that the reconstruction pipeline replaces only the path generation phase. 

 

4.4 Conclusions 

 

This chapter discussed the implementation of the light transport framework. The focal 

characteristic of the light transport framework is modularity. The building blocks that 

compose the framework, define both the standard Monte Carlo algorithms (section 4.1) 

and the path manipulation algorithm (subsection 4.3.6). The standard algorithms entail 

different degrees of generality and they are implemented by varying the functionality 

of the blocks that define the standard Monte Carlo pipeline (section 4.2). The path 

manipulation algorithm is defined by the reconstruction pipeline, which is simply an 

adaptation of the standard Monte Carlo pipeline to the path manipulation strategies. 
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Figure 4.16: The path manipulation algorithm defined via the path reconstructor block. 

                   

               

                       

           

          
             

          

                                              

                  

           

        

          

                 

             

       

           

         

             

                 

               

             

                  

         

            

          

            

         

              

          

              

         

                   

                 

              

                 

            

                  

                  

        

             

                    
         

               

     

               

                    

         

             

         

             

           

                

             

         

             

           

           

         

                  

     

   

  

      



170 
 

The standard pipeline includes the path generation, contribution evaluation and image 

synthesis phases. The path generation phase is implemented with the functionality of 

the ray generator, sampler and path generator blocks (subsections 4.2.1 - 4.2.3). The 

path generation process reflects the style of the progressive Monte Carlo methods. 

Subpaths are generated using a similar approach to Novák et al. (2010), except that 

they are stochastically terminated via the Russian roulette test proposed by Veach 

(1998, p. 309) and the primary rays of the restarted subpaths are always resampled. 

The latter decision is particularly beneficial for effects like motion blur and depth of 

field. The contribution evaluation phase uses the visibility tester and estimator blocks 

(subsections 4.2.4 - 4.2.5) to construct and assess bidirectional paths. Multiple paths 

are efficiently generated from the same pair of subpaths (Veach 1998, p. 300), with 

the advantages of zero costs and reduced variance. However, each eye subpath vertex 

is connected to a random light subpath (Novák et al. 2010), to reduce the deterministic 

noise and path correlation. Two methods (Veach 1998; van Antwerpen 2011b) are used 

to compute the multiple importance sampling weights that reduce variance. Finally, 

the image synthesis phase uses the camera (subsection 4.2.6) to produce the frames. 

 

The above state-of-the-art techniques improve both accuracy and performance. Still 

for a similar image quality, the path manipulation algorithm outperforms bidirectional 

path tracing (subsection 4.2.7). The performance and statistical properties of the path 

manipulation algorithm are analysed in chapter 5. The reconstruction pipeline, which 

defines the proposed algorithm, replaces only the path generation phase of the standard 

pipeline. Instead of regenerating the entire collection of paths, the path reconstructor 

retains and adapts the paths to the new scene configuration (subsections 4.3.1 - 4.3.3). 

After identifying and reconnecting the invalid subpaths, the reconstructor seamlessly 

re-enters the standard pipeline. Thus, the reconstructed and the collateral subpaths 

(subsection 4.3.5) are re-evaluated through the standard process. By reconstructing 

and reusing paths, the path manipulation algorithm extends bidirectional path tracing 

to the temporal domain and supports scene dynamism. Still, the path manipulation 

strategies reconstruct paths regardless of the subpath or scene dynamism type. Hence, 

they can extend most path reliant algorithms to reuse paths in the temporal domain. 
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Chapter 5 

 

Results 

 

This chapter analyses the results of the path manipulation algorithm. By reconstructing 

and reusing paths, the path manipulation algorithm extends bidirectional path tracing 

to the temporal domain and supports scene dynamism for high-quality light transport 

simulations. The next sections evince its performance over bidirectional path tracing. 

 

Five tests are detailed in this chapter. The first three execute affine transformations 

inside the Cornell box. As a rendering benchmark, the Cornell box enables the easy 

identification of illumination effects/artefacts and thus it is used to ensure the path 

manipulation algorithm satisfactorily conforms to this standard. These tests cover 

the major dynamism types by transforming an object (section 5.1), the light source 

(section 5.2) or the camera (section 5.3). As an influencing factor of the intra-subpath 

connectivity, the number of transformation units is specified for each test. Subsection 

5.1.3 discusses the factors that influence the intra-subpath connectivity. Devised for 

product assembling/disassembling sequences in CAD/CAM systems, the fourth test 

applies affine transformations to various body parts. Its rationale is to emulate a typical 

project undertaken by Optis and to emphasize the flexibility of the proposed algorithm 

in operating without predefined animation paths. By transforming multiple objects, 

this test lends itself to scalability analysis. The fifth test emulates another Optis project 

and evinces the generality of the reconstruction process by combining object, light 

source and camera transformations. Both tests are important to various industries, like 

the automotive and architectural sectors that Optis serves, as they exhibit dynamism 

with increased performance. All five tests examine the information gathered from the 

reconstruction process and use a breakdown of the execution time to inspect the 

performance gap between bidirectional path tracing and the path manipulation 

algorithm. The exposition also addresses the intra-subpath connection viability. The 

results were produced using a 24GB memory, a 2.6 GHz Intel Core i7 processor with 

4 cores and an NVIDIA GeForce GTX 980M graphics card with 1536 CUDA cores. 
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Configuration 
Scenes 

Cornell box Motorbike Bathroom 

Image resolution 512 × 512 720 × 486 640 × 512 

Light sources 1 3 24 

Triangles 48 117,794 1,120,562 

Samples per light source 5000 1000 200 

Samples per pixel 100/100/90 100 80 

Samples per pixel in reference image 10,000 40,100 10,240 

Intel Core i7 processor {
cores = 4

frequency = 2.6 GHz
 

NVIDIA GeForce GTX 980M {
CUDA cores = 1536

graphics clock = 1038 MHz
 

Table 5.1: Test configuration for the rendered scenes. In the case of the Cornell box 

100 samples per pixel are generated for the translation of the cube and of the light 

source, whereas 90 samples per pixel are generated for the rotation of the camera. 

 

Table 5.1 enumerates the parameters used to configure all of the discussed tests. A 

subpath stores its identifier, a termination flag, the intersected light source identifier, 

the shadowing identifier, its affiliation, the reconstruction levels and its vertices. These 

members, except the boolean termination flag and vertices, are coded using integers. 

Assuming the size of both a boolean and an integer is 4 bytes, the first five members 

require 24 bytes of memory. Each subpath vertex stores the containing triangle 

identifier, the affiliated light subpath identifier, an intersection value, a surface point, 

the radiance/importance, the forward and reverse probabilities, the geometric factor 

and the partial MIS weights. The integer identifiers with the other floating-point based 

members amount to 60 bytes. By conservatively bounding the reconstruction levels 

to the subpath length, the memory per average length subpath can be estimated via: 

𝜍𝑆𝑃 = 24𝑏𝑦𝑡𝑒𝑠 + (𝑁𝜏 − 1) ∙ 8𝑏𝑦𝑡𝑒𝑠⏟          
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠

+ 𝑁𝜏 ∙ 60𝑏𝑦𝑡𝑒𝑠⏟        
𝑠𝑢𝑏𝑝𝑎𝑡ℎ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

(5.1)
 

where 𝑁𝜏 is the average number of vertices per subpath. The subpath buffer also stores 

the number of samples (1 integer) per affiliation (2 integers). The memory required by 

subpaths per test can be estimated using their reported number and average length via:  

𝜍𝜑𝑖 = (𝑁𝐸𝑃 + 𝑁𝐿𝑃)⏟        
𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝑠

𝜍𝑆𝑃 + (𝑁𝑝𝑖𝑥𝑒𝑙𝑠 + 𝑁𝑙𝑖𝑔ℎ𝑡𝑠)⏟            
𝑡𝑜𝑡𝑎𝑙 𝑎𝑓𝑓𝑖𝑙𝑖𝑎𝑡𝑖𝑜𝑛𝑠

∙ 12𝑏𝑦𝑡𝑒𝑠 (5.2)
 

where 𝑁𝐸𝑃/𝐿𝑃 is the number of eye/light subpaths. Chapter 6 reports the total memory 

used by the path manipulation algorithm per scene. The reported memory regards any 

amount of memory used throughout execution, not just that allocated for the subpaths. 
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5.1 Cornell box: geometry transformation 

 

One of the experiments used to analyse the path manipulation algorithm refers to 

rendering ten 512 × 512 frames of the Cornell box, with a white cube being translated 

2 units on the 𝑋 axis. The first frame of this animation sequence is rendered with the 

bidirectional path tracing algorithm implemented in the light transport framework. The 

rest of the animation frames are generated with the path manipulation algorithm, which 

reconstructs and reuses the existing paths. Figure 5.1 illustrates three instances of the 

moving cube, as it progresses from the centre of the scene towards the green wall. The 

frames were produced using 100 samples per pixel and 5000 samples per light source. 

 
Figure 5.1: Comparison between the path manipulation algorithm and bidirectional 

path tracing using an equal number of samples per pixel, respectively per light source. 



174 
 

Algorithm 

 

Steps 

Bidirectional path tracing Path manipulation 

Frame 

2 

Frame 

5 

Frame 

10 

Frame 

2 

Frame 

5 

Frame 

10 

EPs generation 621.908s 675.491s 714.087s ― ― ― 

LPs generation 112.920s 99.641s 100.243s ― ― ― 

Invalid EPs 

reconstruction 
― ― ― 109.584s 105.146s 107.359s 

Invalid LPs 

reconstruction 
― ― ― 0.282s 0.297s 0.297s 

EPs 

regeneration 
― ― ― 24.209s 22.67s 27.112s 

LPs 

regeneration 
― ― ― 0.031s 0.078s 0.047s 

Collateral EPs 

identification 
― ― ― 17.877s 6.532s 24.972s 

EPs throughput 

evaluation 
84.549s 35.785s 57.956s 11.517s 9.251s 12.944s 

LPs throughput 

evaluation 
0.031s 0s 0.031s 0s 0s 0s 

Bidirectional 

contribution 

evaluation 

985.224s 1074.22s 1137.29s 492.907s 437.011s 449.887s 

Total 

execution time 
1804.79s 1885.56s 2009.86s 657.98s 582.11s 625.149s 

Table 5.2: Breakdown of the execution time employed by bidirectional path tracing, 

respectively by the path manipulation algorithm in generating the 2𝑛𝑑, 5𝑡ℎ and 10𝑡ℎ 

animation frame. EPs denotes the eye subpaths, while LPs denotes the light subpaths.  

 

The reference frames were generated with bidirectional path tracing using 10,000 

samples per pixel. The root mean squared errors, reported throughout this chapter, 

were computed by taking the square root from the relative mean squared errors. The 

relative mean squared error, for a given image, was defined as the mean over all pixel 

errors. The error of a pixel was computed as ∑ (I𝑗
 𝒾 − 𝑅𝑗

𝒾)𝒾

2
(�̅�𝑗
2 + 𝜖)⁄ , where 𝒾 sums 

the squared difference between the evaluated and reference pixels over the colour 

channels, �̅�𝑗 is the mean of all colour channels of the 𝑗𝑡ℎ reference pixel and 𝜖 = 0.001. 

The relative mean squared error formula is the one proposed by Bauszat et al. (2017). 
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5.1.1 Gain analysis 

 

The comparable root mean squared errors, associated with the frames depicted in 

Figure 5.1, corroborate the assertion that the path manipulation algorithm does not 

enhance bidirectional path tracing with additional sampling strategies (chapter 2, 

subsection 2.6.1). For a given number of samples, the proposed algorithm attains a 

similar image quality in a reduced amount of time. Table 5.2 details the performance 

gain of the path manipulation algorithm over the baseline. A considerable reduction in 

the execution time occurs between the path generation and path reconstruction phases. 

 

The average decrease between the generation of paths (Table 5.2, steps 1-2) and their 

reconstruction (Table 5.2, steps 3-7) is 80.77%. This performance gap is determined 

by the operations executed in each phase. The path generation routine (chapter 4, 

subsection 4.2.3) determines the ray-primitive intersections, appends the computed 

vertices to the corresponding subpaths, samples the next-bounce rays, determines the 

subpath lengths and regenerates the primary rays for all the terminated subpaths whose 

affiliation count does not exceed the specified number of samples. The invalid subpath 

identification routines (chapter 4, subsection 4.3.1) are more lightweight than the path 

generation routine, since they only retrace existent rays and compute the anchors. The 

intra-subpath connectivity strategy (chapter 4, subsection 4.3.2) contributes to the 

performance improvement by maximizing the path reuse. The reconnection of 

disrupted subpaths recycles path information, obviates subpath regeneration and 

reduces the number of edges that need to be retraced. Regeneration is circumvented 

for all the subpaths which do not have unconnected anchors or subminimal lengths. 

The reconnection routine reduces the number of traceable edges by discarding the 

vertices to which an anchor failed to be connected. Hence, the identification routines 

may benefit from the effect of the reconnection routine for higher-order vertex levels. 

 

The regeneration routine (chapter 4, subsection 4.3.3) invokes the path generation 

routine with the collection of unconnected and subminimal subpaths, which is usually 

smaller than the full collection of subpaths. Similarly, the collateral identification 

routines (chapter 4, subsection 4.3.5) return a moderate number of subpaths. For the 

current test, the perimeter method was used to identify the collaterally invalid subpaths. 
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The reconstruction phase directly impacts the contribution evaluation phase. The 

throughput is evaluated only for the reconstructed light and eye subpaths (Table 5.2, 

steps 8-9), as the geometric structures of the collateral subpaths are intact and do not 

require throughput evaluation. Being considerably less than the total number of 

subpaths, the reconstructed subpaths require an average of only 20.60% from the 

execution time used to evaluate the throughput of all the generated subpaths. The 10𝑡ℎ 

step detailed in Table 5.2 refers to establishing bidirectional connections between the 

light and eye subpaths and to evaluating the contributions of the light transport paths. 

 

Bidirectional path tracing evaluates all the generated subpaths, whereas the path 

manipulation algorithm evaluates only the reconstructed and collateral subpaths. Due 

to the reduced number of subpaths, the path manipulation algorithm gains an average 

of 56.57% execution time during the evaluation of the contributions. The total gain of 

the proposed algorithm over bidirectional path tracing is 67.18% across the three frames. 

 

5.1.2 Reconstruction analysis 

 

Table 5.3 provides the information collected during the reconstruction of the 9 

animation frames. Note that the average number of discarded rays amounts to 9.65% 

from the total number of generated rays. This percentage gives the rays that are not 

traced by the identification routines, as they are discarded during the reconstruction 

process. The average number of connected subpaths is approximately 1.18% from the 

total number of subpaths, whereas the average number of unconnected subpaths 

represents 15.96% from the total number of subpaths. The intra-subpath connectivity 

strategy ensures that only subpath chains with sufficiently large contributions are 

reconnected. The throughput from the anchor onwards must be proportional to the 

throughput that would be obtained on the subpath, had the latter been generated via 

the conventional local path sampling techniques. The reconnection routine randomly 

discards subpath chains with small throughput. Furthermore, subpath chains are not 

reconnected if the probabilities for scattering to occur, in and from the direction of the 

connecting edge, fail to pass the Russian roulette test. These two conditions are rather 

strong and they dictate the connected-unconnected proportion observed in Table 5.3.  
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Average # % 

Invalid primary rays 1,865,139 1.4521 

Invalid higher-order rays 2,909,361 2.2651 

Discarded rays 12,391,727 9.6480 

Total generated rays 128,438,276 100 

Out-of-scope subpaths 3,463,425 13.2093 

In-scope subpaths 997,044 3.8026 

Connected subpaths 308,989 1.1784 

Unconnected subpaths 4,185,561 15.9636 

Processed subpaths 4,458,372 17.0040 

Total generated subpaths 26,219,400 100 

Subpath length 4 ― 

Invalid subpath identification time 60.6799s 54.6709 

Reconnection time 47.8354s 43.0984 

Total reconstruction time 110.9911s 100 

Table 5.3: The reconstruction information gathered from the 9 frames generated with 

the path manipulation algorithm. The percentage column in the ray section is computed 

relative to the total generated rays, while for the subpath section is computed relative 

to the total generated subpaths. The 1𝑠𝑡 and 2𝑛𝑑 rows in the time section regard steps 

3-4 from Table 5.2 and are computed relative to the total reconstruction time (seconds). 

 

When an intra-subpath connection fails, the given subpath is regenerated from its 

unconnected anchor. This means that the figure reported for the unconnected subpaths 

may include subpaths which are reconnected at lower vertex levels, but contain 

unconnected anchors at higher levels. The conditions of the intra-subpath connection 

effectively eliminate unusual patterns, such as brighter or darker regions. Similarly, 

the use of Russian roulette, in selecting the subpaths that must be regenerated, prevents 

any artefact from appearing in the reconstructed frames (chapter 4, subsection 4.3.3). 
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Figure 5.2: The convergence behaviour of the path manipulation algorithm exhibited 

at rendering the 5𝑡ℎ cube animation frame with 2, 8, 32, … 2048 samples per pixel. 

 

The number of reconstructed subpaths represents 17% from the number of generated 

subpaths. As discussed, this percentage has a direct impact on the re-evaluation of the 

subpath throughput and on the contribution evaluation of the resultant paths. The last 

3 rows in Table 5.3 report the time used strictly for the identification and reconnection 

of invalid subpaths. The last row corresponds to the sum between step 3 and step 4 in 

Table 5.2, averaged over 9 frames. The previous two rows represent the portion from 

this average that is used to identify the invalid subpaths, respectively to reconnect them. 

 

Figure 5.2 plots the root mean squared errors computed for the 5𝑡ℎ animation frame 

rendered with the path manipulation algorithm using an increasing number of samples 

per pixel. The RMSE plots for the other 8 reconstructed frames and for the frames 

rendered with bidirectional path tracing closely follow the one depicted in Figure 5.2. 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048 2176

R
el

at
iv

e 
R

M
SE

Samples per pixel



179 
 

5.1.3 Intra-subpath connectivity factors 

 

The test analysed in this section regards the translation of a white cube, 2 units on the 

𝑋 axis. The scattering properties of the dynamic object and the applied transformations 

affect the intra-subpath connectivity. For example, by altering the colour of the moving 

cube from white to blue, while maintaining the same brightness, reduces the connected 

subpaths to 0.58% and increases the unconnected subpaths to 16.45% from the total 

number of generated subpaths. This test suggests that subpaths with higher energy at 

the connecting vertices have higher probabilities of being reconnected, which is in 

conformance with the sufficient throughput condition used to establish intra-subpath 

connections. Likewise, the closer the connecting edge matches the distributions of the 

connecting vertices, the higher the probability for the subpath chains to be reconnected. 

 

The transformation type is another factor that influences the intra-subpath connectivity. 

Closely spaced transformations slightly increase the intra-subpath connectivity, unlike 

ampler transformations. Table 5.4 shows the connected and unconnected percentages 

for the white cube and for translations that double the magnitude of their 𝑋 component. 

For the analysed tests, the transformation steps were adapted to the scene dimensions. 

 

The intra-subpath connectivity is also a function of the subpath length. Figure 5.3 plots 

the connectivity percentage and the connected-unconnected ratio, for the original test 

(2-unit translations of the white cube on the 𝑋 axis) and for increasing subpath lengths. 
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Translation units on 𝑿 axis Connected subpaths Unconnected subpaths 

-0.5 1.4871% 15.1149% 

-1.0 1.3281% 15.1923% 

-2.0 1.1784% 15.9636% 

-4.0 1.0395% 16.8775% 

Table 5.4: The influence of the transformation type on the intra-subpath connectivity. 

 

 

 

Figure 5.3: The intra-subpath connectivity modelled as a function of the subpath length. 
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5.2 Cornell box: light translation 

 

This section examines another test performed on the Cornell box. Instead of translating 

the white cube, the current test translates the light source 2 units along the 𝑍 axis. The 

first frame of this animation sequence is rendered with bidirectional path tracing, while 

the other 9 frames are rendered with the path manipulation algorithm. Figure 5.4 

depicts the 2𝑛𝑑, 7𝑡ℎ and 9𝑡ℎ frame of the light source animation. The 512 × 512 frames 

were generated with 100 samples per pixel and 5000 samples per light source. The 

references were generated with 10,000 samples per pixel via bidirectional path tracing. 

 

Figure 5.4: Equal-sample comparison of the baseline and path manipulation algorithm. 
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Algorithm 

 

Steps 

Bidirectional path tracing Path manipulation 

Frame 

2 

Frame 

7 

Frame 

9 

Frame 

2 

Frame 

7 

Frame 

9 

EPs generation 665.534s 710.402s 763.086s ― ― ― 

LPs generation 116.113s 102.021s 102.357s ― ― ― 

Invalid EPs 

reconstruction 
― ― ― 66.773s 63.426s 66.752s 

Invalid LPs 

reconstruction 
― ― ― 0.126s 0.373s 0.417s 

EPs 

regeneration 
― ― ― 1.214s 2.202s 2.336s 

LPs 

regeneration 
― ― ― 0.112s 0.128s 0.11s 

Collateral EPs 

identification 
― ― ― 8.198s 4.287s 5.659s 

EPs throughput 

evaluation 
91.328s 37.763s 37.868s 2.995s 2.981s 3.807s 

LPs throughput 

evaluation 
0.014s 0.01s 0.011s 0.01s 0.011s 0.012s 

Bidirectional 

contribution 

evaluation 

1067.62s 1075.89s 1183.95s 1200.62s 1193s 1159.31s 

Total 

execution time 
1940.76s 1926.24s 2087.43s 1280.79s 1267.22s 1239.23s 

Table 5.5: Breakdown of the execution time employed by bidirectional path tracing, 

respectively by the path manipulation algorithm in generating three animation frames. 

 

5.2.1 Gain analysis 

 

As discussed in chapter 3, section 3.6, the current test represents one of the worst-case 

scenarios for the path manipulation algorithm, since the entire buffer of eye subpaths 

must be re-evaluated. Table 5.5 reports the execution time for each step of the path 

manipulation algorithm. The obtained performance gain is prevalently the result of the 

path reconstruction phase. Though the invalid subpath identification routines trace the 

vast majority of rays, they are considerably faster than the generation of subpaths. 
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The rays need not be sampled, as they are determined by the existent subpath edges, 

and the anchors are computed only for a small number of invalid subpaths. The invalid 

subpaths include all the light subpaths, the out-of-scope and the in-scope eye subpaths. 

  

The reduced number of invalid subpaths positively impacts the regeneration step, 

which requires between 1.33 and 2.45 seconds to execute. The collateral identification 

routines return all the eye subpaths for re-evaluation, as all of them are connected to 

the light subpaths generated from the single, altered light source. The reported time 

refers to clearing subpath fields, like the root radiance and the shadowing identifier 

(chapter 4, subsections 4.2.6 and 4.3.5). The average time gain of the reconstruction 

phase (Table 5.5, steps 3-7) over the generation phase (Table 5.5, steps 1-2) is 90.95%. 

 

The throughput evaluation on the reconstructed subpaths maintains the performance 

gain and saves 92.90% of the execution time used to evaluate the throughput of all the 

subpaths. However, the contribution evaluation routine (chapter 4, subsection 4.2.5) 

processes the entire subpath collection and the execution time per frame is comparable 

to the one reported for bidirectional path tracing. The net gain of the path manipulation 

algorithm over bidirectional path tracing is 36.28% across the three animation frames. 

 

5.2.2 Reconstruction analysis 

 

Table 5.6 synthesizes the information gathered from the reconstruction of the 9 light 

animation frames. Note that the number of discarded rays is considerably smaller than 

the total number of generated rays. Hence, the in-scope identification routine traces 

the vast majority of rays. This fact is reflected by the execution time reported for the 

identification of invalid subpaths, which takes 99.09% from the total reconstruction 

time. The processed subpaths amount to only 7.24% from the total number of generated 

subpaths, of which 6.12% are 𝑆0 subpaths and 1.12% are unconnected subpaths. In 

this scenario, the 𝑆0 subpaths are obtained from the invalid eye subpaths whose 

primary rays directly intersect the light source, due to its sufficiently large surface. 

With an anchor on the light source, the 𝑆0 subpaths do not necessitate reconstruction 

and are thus less computationally expensive than the other invalid subpaths. Being the 

bulk of the processed subpaths, they justify the low reconnection time of 0.43 seconds. 
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Average # % 

Invalid primary rays 655,308 0.5147 

Invalid higher-order rays 1,243,384 0.9766 

Discarded rays 991,046 0.7784 

Total generated rays 127,310,450 100 

Out-of-scope subpaths 1,562,511 5.9593 

In-scope subpaths 336,172 1.2821 

S0 subpaths 1,604,396 6.1191 

Unconnected subpaths 294,295 1.1224 

Processed subpaths 1,898,683 7.2415 

Total generated subpaths 26,219,400 100 

Subpath length 4 — 

Invalid subpath identification time 62.7958s 99.0854 

Reconnection time 0.4348s 0.6860 

Total reconstruction time 63.3754s 100 

Table 5.6: The reconstruction information gathered from the 9 light animation frames. 

 

5.2.3 Bias analysis 

 

Figure 5.5 illustrates the positive-negative (red-green) differences for the 2𝑛𝑑 and 7𝑡ℎ 

frame. The frames were generated with 100 samples per pixel and 5000 samples per 

light source. Each positive-negative difference is computed between the reference 

image and the frame generated either with the path manipulation algorithm or with 

bidirectional path tracing. Though the high-frequency noise is clearly visible, it does 

not differ significantly across the differently generated images. Like the root mean 

squared errors reported in Figure 5.4, the positive-negative differences indicate that 

the path manipulation algorithm exhibits a similar convergence behaviour to the 

bidirectional path tracing algorithm implemented in the light transport framework. 
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Figure 5.5: Comparison between the path manipulation algorithm and bidirectional 

path tracing using the positive-negative differences computed on two different frames. 

 

5.3 Cornell box: camera rotation 

 

The last test executed on the Cornell box involves the rotation of the camera 10° 

around the 𝑍 axis. The camera animation subsumes eleven 512 × 512 frames, all 

rendered with the path manipulation algorithm, except the first frame which is rendered 

with bidirectional path tracing. Figure 5.6 depicts the 2𝑛𝑑, 6𝑡ℎ and 11𝑡ℎ frame. Each 

frame was generated with 90 samples per pixel and 5000 samples per light source. The 

references were rendered with 10,000 samples per pixel via bidirectional path tracing.  
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Figure 5.6: Equal-sample comparison of the baseline and path manipulation algorithm. 

 

5.3.1 Gain analysis 

 

The transformation of the camera represents another worst-case scenario for the path 

manipulation algorithm, because all the eye subpaths must be both reconstructed and 

re-evaluated. Table 5.7 compares the execution time consumed by each step of the 

path manipulation algorithm against the time engaged in executing each step of 

bidirectional path tracing. Analogous to the light animation, the performance gain 

obtained for the current test is preponderantly the result of the reconstruction phase. 

The light subpaths remain immutable and the time reported for their reconstruction is 

the time needed, by the in-scope identification routine, to check for disrupted edges. 
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Algorithm 

 

Steps 

Bidirectional path tracing Path manipulation 

Frame 

2 

Frame 

6 

Frame 

11 

Frame 

2 

Frame 

6 

Frame 

11 

EPs generation 598.446s 628.773s 693.547s ― ― ― 

LPs generation 101.803s 101.961s 102.561s ― ― ― 

Invalid EPs 

reconstruction ― ― ― 172.862s 179.846s 191.25s 

Invalid LPs 

reconstruction ― ― ― 0.112s 0.148s 0.145s 

EPs 

regeneration ― ― ― 147.083s 154.555s 163.575s 

LPs 

regeneration ― ― ― 0.039s 0.009s 0.291s 

Collateral EPs 

identification ― ― ― 0s 0s 0s 

EPs throughput 

evaluation 
35.378s 34.419s 35.462s 37.513s 39.889s 44.673s 

LPs throughput 

evaluation 
0.01s 0.01s 0.011s 0.001s 0.001s 0s 

Bidirectional 

contribution 

evaluation 

958.287s 982.067s 1053.56s 949.439s 942.079s 981.961s 

Total 

execution time 
1694.08s 1747.39s 1885.3s 1309.59s 1319.43s 1384.83s 

Table 5.7: Breakdown of the execution time employed by bidirectional path tracing, 

respectively by the path manipulation algorithm in generating three animation frames. 

 

Also, the regeneration of the light subpaths concerns mainly the subminimal subpaths. 

The collateral identification routines return immediately, since the collaterally invalid 

subpaths are excluded through the invalidation and reconstruction of all eye subpaths. 

 

The reconstruction of the eye subpaths presents interesting aspects. The out-of-scope 

identification routine traces only the primary rays. The reconnection routine connects 

a small number of subpath chains and discards most of the higher-order rays. As such, 

the in-scope identification routine traces a reduced number of higher-order rays. 

Though the out-of-scope identification routine checks for higher-order dynamic 

vertices, it does not trace any higher-order ray, since it fails to detect such vertices. 
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Moreover, the reconnection routine is not executed for higher-order vertex levels, as 

no higher-order disrupted edge is identified. Hence, the reconstruction process traces 

all the primary rays, computes the primary anchors, reconnects a few of the latter to 

their secondary chains and examines the remaining higher-order rays for invalidations. 

 

The regeneration routine invokes the path generation routine with most of the eye 

subpaths, yet the 𝐸𝑃𝑠 regeneration time is 1 4⁄  of the 𝐸𝑃𝑠 generation time per frame. 

The difference is that, for the regeneration step, the number of requested subpaths is 

already in place and the terminated subpaths no longer need to be replaced with new 

ones. During generation, the size of the active subpath buffer mostly equals the image 

resolution. Throughout generation, the size of the terminated subpath buffer increases 

proportionally with the requested number of samples per pixel. The regeneration 

routine processes the complete subpath buffer. A larger buffer of subpaths entails a 

larger buffer of rays, which ensures a higher rate of device occupancy and a better 

equipoise to the costs associated with the transfer of data over PCIe bus. As discussed 

in chapter 4 (subsections 4.2.1 - 4.2.2), all the rays are traced on the GPU. On the other 

hand, processing the complete subpath buffer obviates the replacement of terminated 

subpaths. The generation routine replaces with a new subpath any terminated subpath, 

whose affiliation count is below the specified number of samples. This operation 

involves the sampling of a new primary ray and the initialization of a new subpath. 

For the current test, suppressing the replacement of the terminated subpaths saves 

more than 23 million (512 × 512 × 89) such operations. Overall the reconstruction 

phase gains 54.63% from the execution time used for the generation of all the subpaths. 

 

The throughput evaluation for the eye subpaths exacts a comparable amount of time 

on both algorithms, yet the path manipulation algorithm circumvents this step for the 

valid light subpaths. The contribution evaluation routine processes all the generated 

subpaths and its execution time per frame is comparable across the two algorithms. 

The gain of the path manipulation algorithm over bidirectional path tracing is 24.58%. 
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Average # % 

Invalid primary rays 23,592,960 20.6905 

Invalid higher-order rays 3 0 

Discarded rays  90,313,569 79.2032 

Total generated rays 114,027,650 100 

Out-of-scope subpaths 23,592,960 99.9788 

In-scope subpaths 4 0 

S0 subpaths 1,539,669 6.5245 

Unconnected subpaths 22,053,294 93.4542 

Processed subpaths 23,592,961 99.9788 

Total generated subpaths 23,597,960 100 

Subpath length 4 ― 

Invalid subpath identification time 90.8126s 50.6747 

Reconnection time 87.3765s 48.7576 

Total reconstruction time 179.2056s 100 

Table 5.8: The reconstruction information gathered from the camera animation frames. 

 

5.3.2 Reconstruction analysis 

 

Table 5.8 reports the information gathered from the reconstruction of the 10 camera 

animation frames. Note that the number of invalid primary rays corresponds to the 

image resolution multiplied by the number of samples per pixel (512 × 512 × 90). 

The discarded rays constitute 79.20% from the total number of generated rays and 

most of them are eliminated during the single execution of the reconnection routine. 

As discussed, the reconnection routine is executed solely for the primary anchors. 

Hence, the indicated reconnection time quantifies the reconnection and deletion 

operations performed exclusively at the primary vertex level of the invalid subpaths. 
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The invalid subpath identification time quantifies several executions of the eponymous 

routines. The bulk of processing is performed throughout the first invocation of the 

out-of-scope identification routine, when all the regenerated primary rays are traced 

and the primary anchors are computed. The remaining invocations of the out-of-scope 

and in-scope identification routines, just search for dynamic vertices and disrupted 

edges. As most of the higher-order edges are discarded, 93.45% of the processed 

subpaths are unconnected and undergo regeneration. The figure reported for the 𝑆0 

subpaths includes both the eye subpaths that intersect the light source and the eye 

subpaths that are reconnected from their primary anchors. However, the vast majority 

of the 𝑆0 subpaths regards eye subpaths whose primary rays directly intersect the 

light source, due to its sufficiently large surface. The 𝑆0 subpaths do not necessitate 

reconstruction and are less computationally expensive than the other invalid subpaths. 

 

5.4 Computer-aided assembly design 

 

The path manipulation algorithm reconstructs and reuses paths without being limited 

by the necessity of predefined animation paths. As long as the controller of the system 

(Reenskaug 1979) can determine from the user’s actions the selected components and 

the intended transformations, the path manipulation algorithm can also work with 

input specified directly by the user. This characteristic is particularly important for 

applications that require direct interaction with the scene, like the simulation and 

design software used in commercial industries. Optis serves industries like aerospace, 

automotive industry, light design, architecture, energy design, beautification products, 

and consumer goods. These industries use their design phase simulations to drive the 

production process. Optis’ physically-based renderer provides robust solutions at the 

cost of protracted executions (chapter 1, section 1.1). The main in-house challenge 

was to reduce execution time, while maintaining the simulation quality. Optis serves 

extensively the automotive sector, which relies on CAD/CAM systems to design its 

products. This test was devised for product assembling/disassembling sequences in 

CAD/CAM systems. The idea is to render physically plausible illumination effects in 

a dynamic, product design context, while reducing execution time. Better performance 

entails reduced production time and costs. The test consists of two 720 × 486 frames, 

rendered with 100 samples per pixel and 1000 samples for each of the 3 light sources. 



191 
 

 

Figure 5.7: The initial configuration from which product disassembling commences. 

 

5.4.1 Test configuration 

 

The first frame contains the assembled product and represents the initial configuration. 

The second frame represents an instance in the disassembling process, in which 

various product components are transformed to expose previously hidden elements. 

The initial frame is rendered with bidirectional path tracing, whereas the second frame 

is reconstructed using the path manipulation algorithm. The transformations of the 

different components were defined to emulate the actions performed in assembly 

planning and they entail various translations and rotations. The current test lends itself 

to scalability analysis, as multiple parts are transformed and positioned to cover most 

of the image. The collateral subpaths were identified via the shadowing identifier and 

light subpath association routine. Figure 5.7 depicts the first frame of the product 

disassembling test, whereas Figure 5.8 compares the images of the second frame, 

rendered with both bidirectional path tracing and the path manipulation algorithm. The 

reference was generated with 40,100 samples per pixel via bidirectional path tracing. 
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Figure 5.8: Baseline and novel algorithm equal-sample comparison for the 2𝑛𝑑 frame. 
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Algorithm 

 

Steps 

Bidirectional path 

tracing 

Path 

manipulation 

Frame 2 Frame 2 

EPs generation 526.442s ― 

LPs generation 182.137s ― 

Invalid EPs reconstruction ― 134.69s 

Invalid LPs reconstruction ― 1.559s 

EPs regeneration ― 74.295s 

LPs regeneration ― 0.326s 

Collateral EPs identification ― 7.464s 

EPs throughput evaluation 47.972s 16.541s 

LPs throughput evaluation 0.032s 0.009s 

Bidirectional contribution evaluation 493.711s 129.618s 

Total execution time 1250.52s 366.345s 

Table 5.9: Breakdown of the execution time employed by bidirectional path tracing, 

respectively by the path manipulation algorithm in generating the disassembly frame. 

 

5.4.2 Gain analysis 

 

To generate all the subpaths for the second frame, bidirectional path tracing employed 

708.58 seconds. To reconstruct them, the path manipulation algorithm required only 

218.33 seconds. Consequently, the time gain acquired by the path reconstruction phase 

(Table 5.9, steps 3-7) over the path generation phase (Table 5.9, steps 1-2) is 69.19%. 

 

The evaluation of the throughput on the reconstructed subpaths (Table 5.9, steps 8-9) 

exhibits a similar performance gain and saves 65.52% of the time used to evaluate the 

throughput of all the subpaths. The contribution evaluation routine benefits from the 

reduced number of processed subpaths and extracts a performance gain of 73.75%. 

The reconstruction and evaluation phases gain 70.70% of the overall execution time. 

Figure 5.9 compares the two algorithms via the frame’s positive-negative differences.  
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Figure 5.9: Comparison between bidirectional path tracing and the path manipulation 

algorithm using the positive-negative differences computed on the disassembly frame. 

 

As mentioned in chapter 3, section 3.6, the path manipulation algorithm suffers from 

bias when the collateral subpaths are inappropriately reconstructed. In this case, the 

shadowing identifier and light subpath association routine does not suffice and certain 

collateral subpaths are not reconstructed. These unprocessed collateral subpaths cause 

bias (excessively green regions) by retaining the previous shadows. Note that the other 

image regions (bodywork, fuel tank, exhaust silencers, etc.) are correctly reconstructed. 

The bias could be completely removed by conventionally regenerating all the subpaths 

affiliated with the pixels of the affected regions, which would still be less expensive 

than the exhaustive regeneration of subpaths entailed by bidirectional path tracing. 
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Average # % 

Invalid primary rays 11,804,075 12.9502 

Invalid higher-order rays 2,041,465 2.2397 

Discarded rays 21,199,686 23.2581 

Total generated rays 91,149,533 100 

Out-of-scope subpaths 6,749,255 19.2863 

In-scope subpaths 7,095,050 20.2745 

S0 subpaths 10,971,291 31.3510 

Unconnected subpaths 2,871,670 8.2059 

Processed subpaths 13,840,558 39.5501 

Total generated subpaths 34,995,000 100 

Subpath length 3 — 

Invalid subpath identification time 92.1078s 67.6026 

Reconnection time 42.3830s 31.1070 

Total reconstruction time 136.2490s 100 

Table 5.10: The reconstruction information associated with the disassembly frame. 

 

5.4.3 Reconstruction analysis 

 

Table 5.10 reports the information derived from the reconstruction of the second frame. 

The light sources used to illuminate the scene have surfaces wide enough to increase 

the probabilities of being randomly intersected by the eye subpaths. In fact, most of 

the connected subpaths are 𝑆0 subpaths. The reconnected subpaths amount to 7,207. 

Like for bidirectional path tracing, the 𝑆0 subpaths constitute a performance source 

for the path manipulation algorithm, as they do not necessitate reconstruction and are 

less computationally expensive than the other invalid subpaths. The discarded rays, 

which in the second frame accrue to 23.26% from the total generated rays, are another 

performance source. The first frame was rendered in 1154.73 seconds, while the second 

frame was reconstructed in 366.35 seconds, yielding a net performance gain of 68.27%. 
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5.5 Interior architecture 

 

The significance of Monte Carlo ray tracing increased with the engagement of the 

latter in a multitude of industrial sectors. Optis supports the design of energy-efficient 

lit buildings through accurate illumination and appearance simulations. Architecture 

uses extensively Monte Carlo ray tracing for accurate light transport simulations. In 

such a context, performance is another factor that directly impacts the production 

cycle. Fast executions imply additional flexibility in accommodating scene dynamism, 

an appealing trait in most sectors as it permits the transformation of the objects and an 

evolving perspective of the scene. The path manipulation algorithm supports scene 

dynamism by extending bidirectional path tracing to reuse paths in the temporal 

domain. The devised strategies reconstruct subpaths generically, regardless of whether 

the camera, a light source or another object was transformed. This test was ideated as 

an interior architecture scenario, in which different scene elements are altered to create 

a different perspective. By combining object, light source and camera transformations, 

the proposed algorithm is analysed in a realistic use case that emphasizes its features. 

 

5.5.1 Test configuration 

 

The test starts from an initial configuration and alters different scene objects across 

three frames. The initial frame is generated with bidirectional path tracing, whereas 

the other three frames are reconstructed with the path manipulation algorithm. The 

frames were rendered with a size of 640 × 512, using 80 samples per pixel and 200 

samples for each of the 24 light sources. The references were generated with 10,240 

samples per pixel via bidirectional path tracing. Figure 5.10 illustrates the first two 

frames generated for this test. The second frame represents the first step in the redesign 

of the illustrated building interior and it involves the repositioning of the mirror, 

together with all the elements that compose the washbasin. The perimeter method was 

used to identify the collaterally invalid subpaths. The insets displayed on the right 

column emphasize the changes determined by the repositioning of the objects. Both 

the cones of light cast on the tiled wall and the shadows cast by the washbasin are 

appropriately reconstructed. Figure 5.11 compares the images obtained by rendering 

this second frame with bidirectional path tracing and the path manipulation algorithm. 
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Figure 5.10: The 1𝑠𝑡 and 2𝑛𝑑 frame used in the adaptive redesign of a building interior. 

 

5.5.2 Frame 2: reconstruction analysis 

 

The reconstruction process discarded 10.35% from the total of 124,347,106 generated 

rays. This percentage regards the number of eliminated rays, which are not traced by 

the identification routines. The percentages of invalid primary and higher-order rays 

are comparable and amount to 1.46%, respectively to 1.80% from the total number of 

generated rays. The total number of subpaths used to render each frame is 26,219,183. 

For the reconstruction of the second frame, approximately 15.45% of the total number 

of subpaths were processed. Out of these subpaths, 7.13% were identified as in-scope 

subpaths and 8.33% as out-of-scope subpaths. The unconnected subpaths equal 15.39% 

from the total number of subpaths, whereas the connected subpaths amount to 0.07%. 
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Figure 5.11: Baseline & novel algorithm equal-sample comparison for the 2𝑛𝑑 frame. 



199 
 

The repositioning of the objects entails a wide translation (96 units on the 𝑋 axis) and 

hence reduces the probabilities for subpath chains to be reconnected (subsection 5.1.3). 

 

The initial frame required 5443.15 seconds to render, whereas the path manipulation 

algorithm reconstructed the 2𝑛𝑑 frame in 1157.58 seconds, gaining 78.73% execution 

time. The reduced number of processed subpaths positively impacts the regeneration 

step and the evaluation phase. The performance of the reconstruction process is further 

detailed in subsection 5.5.5. The average subpath length, for each rendered frame, is 4. 

 

5.5.3 Frame 3: reconstruction analysis 

 

The third frame of the current test represents the second step in the adaptive redesign 

of the bathroom and it involves the repositioning of the wall lamp geometry, with its 

associated light source, to the right of the mirror. For this frame, the collateral subpaths 

were identified via the shadowing identifier and light subpath association routine. 

Figure 5.12 displays the second and third frames, together with a zoom on some of the 

changes caused by the translation of the light source. Note the changes in the highlights 

and shadows cast by the altered light source. Figure 5.13 illustrates the third frame, 

generated with both bidirectional path tracing and the path manipulation algorithm. 

 

The rays discarded throughout the reconstruction process amount to 1.10% from the 

total of 124,198,261 sampled rays. The invalid primary and higher-order rays equal 

0.11%, respectively 0.32% from the total number of sampled rays. The number of 

subpaths used to generate the third frame is the same as for the other two frames. Out 

of the generated subpaths, 1.04% were identified as in-scope subpaths and 1.01% as 

out-of-scope subpaths, yielding a total of 2.05% processed subpaths. The connected 

subpaths equal 0.015% from the total number of subpaths, whereas the unconnected 

ones equal 2.032%. Like for the second frame, the translation step is wide and spans 

190 units on the 𝑋 axis. However, the connected-unconnected ratio improves due to 

the reduced size of the wall lamp. In fact, all the reported figures are low due to the 

size of the lamp. The third frame was reconstructed in 2171.66 seconds, which saves 

60.10% of the time used to process the total number of subpaths for the first frame. 
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Figure 5.12: The results of the transformations applied in the 2𝑛𝑑  interior-redesign step. 

 

Compared to the second frame, the third frame loses in performance though 7.55 less 

subpaths are processed. The reconstruction process discards 11,507,756 less rays in 

the third frame, which is the number of extra rays tested by the identification routines. 

Also, more collateral subpaths are identified and thus the re-evaluation time increases. 
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Figure 5.13: Baseline & novel algorithm equal-sample comparison for the 3𝑟𝑑 frame. 
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Figure 5.14: Baseline & novel algorithm equal-sample comparison for the 4𝑡ℎ frame. 



203 
 

5.5.4 Frame 4: reconstruction analysis 

 

The last step of the redesign test consists in translating the camera 100 units closer to 

the main scene objects. Figure 5.14 displays the fourth and last frame, rendered with 

bidirectional path tracing and the path manipulation algorithm respectively. During 

the reconstruction of this frame, 78.88% of the rays were discarded, from the total of 

124,254,126 rays. The primary rays constitute the majority of invalid rays and they 

amount to 21.10% from the number of generated rays. Together the discarded and 

invalid rays accrue to 99.98%, which is exactly the percentage of processed subpaths. 

By moving the camera all the eye subpaths are invalidated, whereas the light subpaths 

remain unaltered and constitute the percentage of unprocessed subpaths. The total 

number of subpaths generated per frame is 26,219,183. Out of these subpaths, 99.98% 

are out-of-scope, 0.47% are connected and 99.51% are unconnected. The fourth frame 

was reconstructed in 2565.92 seconds, gaining 52.86% from the time used to process 

the above number of subpaths. Compared to the 2𝑛𝑑 and 3𝑟𝑑 frames, the rendering of 

the 4𝑡ℎ frame discards considerably more rays and thus engages 1.72×, respectively 

2.55× less time in the reconstruction of invalid subpaths. Table 5.11 details the time 

employed to render each frame with the baseline and the path manipulation algorithm. 

 

5.5.5 Gain analysis 

 

The reduced number of processed subpaths positively impacts the reconstruction phase 

(Table 5.11, steps 3-7) of both the second and the third frame. The reconstruction of 

the 2𝑛𝑑 frame gains 44.36% execution time over the corresponding generation phase 

(Table 5.11, steps 1-2), whereas the reconstruction of the 3𝑟𝑑 frame gains 27.32%. 

Due to the extra number of rays traced by the identification routines, the reconstruction 

of invalid subpaths (Table 5.11, steps 3-4) takes 1.48× longer for the 3𝑟𝑑 frame than 

it does for the 2𝑛𝑑 frame. Recall that 10.35% of the generated rays were discarded in 

the second frame, compared to only 1.10% discarded in the third frame. However, the 

larger size of the repositioned objects invalidates more subpaths in the 2𝑛𝑑 frame and 

triggers a longer regeneration step (Table 5.11, steps 5-6) as compared to the 3𝑟𝑑 frame. 



204 
 

Algorithm 

 

Steps 

Bidirectional path tracing Path manipulation 

Frame 

2 

Frame 

3 

Frame 

4 

Frame 

2 

Frame 

3 

Frame 

4 

EPs generation 1007.11s 1084.43s 1060.33s ― ― ― 

LPs generation 238.854s 247.371s 232.989s ― ― ― 

Invalid EPs 

reconstruction ― ― ― 595.789s 893.253s 337.837s 

Invalid LPs 

reconstruction ― ― ― 20.733s 21.562s 21.389s 

EPs 

regeneration ― ― ― 61.694s 22.136s 444.046s 

LPs 

regeneration ― ― ― 3.868s 2.720s 2.836s 

Collateral EPs 

identification ― ― ― 11.217s 28.245s 0.261s 

EPs throughput 

evaluation 
50.217s 50.216s 49.936s 17.940s 7.845s 76.265s 

LPs throughput 

evaluation 
0.309s 0.343s 0.32s 0.065s 0.061s 0.069s 

Bidirectional 

contribution 

evaluation 

4221.47s 3987.64s 4312.85s 445.006s 1195.21s 1677.93s 

Total 

execution time 
5518.21s 5370.29s 5656.67s 1157.58s 2171.66s 2565.92s 

Table 5.11: Breakdown of the execution time employed by bidirectional path tracing, 

respectively by the path manipulation algorithm in rendering the three redesign frames. 

 

From the reconstruction time reported for the 2𝑛𝑑 frame, 418.0 seconds were used to 

identify the invalid subpaths and 195.9 seconds were used to reconnect them. Likewise, 

768.73 seconds and 142.37 seconds were used to identify and reconnect the invalid 

subpaths for the 3𝑟𝑑 frame. Compared to these two frames, the 4𝑡ℎ frame gains notable 

time in the reconstruction of the invalid subpaths. Specifically, 239.76 seconds were 

used to identify the invalid subpaths and 117.76 seconds were used to reconnect them. 

Yet, the fourth frame requires considerably more time in the regeneration step. The 

discarded rays (78.88%) account for this difference in execution time. Relative to the 

generation phase, the reconstruction phase of 4𝑡ℎ frame gains 37.65% execution time. 
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Figure 5.15: The convergence behaviour shown by the path manipulation algorithm & 

bidirectional path tracing at rendering the 3𝑟𝑑 frame with increasing samples per pixel. 

 

The time reported for the throughput evaluation (Table 5.11, steps 8-9) is proportional 

to the number of processed subpaths and increases from the lowest value in the third 

frame to the highest value in the fourth frame. The collateral identification routine used 

in the third frame returns more subpaths for re-evaluation than the one used in the 

second frame, hence the longer execution time reported by 10𝑡ℎ step in Table 5.11. The 

net performance gain of the path manipulation algorithm over bidirectional path tracing 

is 79.02% for the second frame, 59.56% for the third frame and 54.64% for the fourth 

frame. Figure 5.15 illustrates the convergence behaviour of both the path manipulation 

algorithm and bidirectional path tracing, for the 3𝑟𝑑 frame of the interior redesign test. 

 

5.6 Conclusions 

 

This chapter investigated the performance and the statistical properties of the path 

manipulation algorithm. The first three sections examined the results obtained by 

transforming an object, the light source and the camera of the Cornell box. Subsection 

5.1.3 presented the factors that influence the intra-subpath connectivity. Section 5.4 

addressed the scalability of the algorithm by transforming various objects. Section 5.5 

evinced its generality by combining object, light source and camera transformations. 
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In all tests, the path manipulation algorithm outperformed bidirectional path tracing 

and produced images with a comparable quality. The overall performance gain of the 

proposed algorithm over the baseline ranged from 24.58% to 79.02% across the five 

examined tests. The efficiency of the path manipulation algorithm is underlain by the 

lightweight invalid subpath identification routines (chapter 4, subsection 4.3.1) and by 

the intra-subpath connectivity strategy (chapter 4, subsection 4.3.2). The identification 

routines perform less operations than the path generation routine (chapter 4, subsection 

4.2.3), whereas the reconnection routine reuses path information, obviates subpath 

regeneration and reduces the traceable edges. The number of subpaths invalidated and 

reconstructed by the proposed algorithm, also influences the overall performance gain. 

 

The least efficient scenarios occur when the camera or the only light source of the 

scene is transformed. The transformation of the camera entails the reconstruction and 

re-evaluation of all the eye subpaths. Consequently, performance is drawn only from 

the reconstruction phase, since the evaluation phase performs the same operations for 

both the path manipulation algorithm and bidirectional path tracing. Another source 

of performance for the Cornell box camera rotation, besides the identification and 

reconnection routines, is the regeneration routine. As discussed in subsection 5.3.1, a 

better execution time is obtained by regenerating the entire subpath buffer and by 

suppressing the replacement of the terminated subpaths. A similar effect can be 

observed for the camera translation in the 4𝑡ℎ frame of the redesign test (Table 5.11). 

 

The Cornell box contains one light source, whose translation causes the re-evaluation 

of all the eye subpaths. Due to the low number of reconstructed subpaths both the 

reconstruction phase and the throughput evaluation step exhibit high performance 

(subsection 5.2.1). Yet, the re-evaluation of all the eye subpaths reduces drastically 

the performance gain. The translation of only a small light source, from the 24 

comprised ones, impacts less acutely the performance of the 3𝑟𝑑 redesign frame. 

Though the collateral identification routine returns a substantial number of subpaths, 

the re-evaluation of these subpaths is 3.34× faster than the evaluation of all the eye 

subpaths (subsection 5.5.5). The reconstruction phase of the 3𝑟𝑑 redesign frame is 

notably less efficient than the Cornell box homologue. However, combined with the 

evaluation phase, it yields a better overall performance than the one of the Cornell box. 
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The best scenarios for the path manipulation algorithm are those that contain multiple 

light sources and transform other objects than the camera. Across the analysed tests, 

such scenarios (sections 5.1 & 5.4, subsections 5.5.2 & 5.5.3) exhibited a performance 

gain superior to 50%. Performance depends on the number of retraced edges, the 

percentage of connected/𝑆0 subpaths, the number of regenerated subpaths, the subpath 

length, the number of re-evaluated subpaths and the scene configuration. The number 

of retraced edges determines the invalid subpaths identification time, whereas the 

connected subpaths reduce the regeneration necessity and increase path reuse. The 

subpath length affects both the regeneration and the re-evaluation process. The scene 

impacts performance through its light sources and materials. For example, scenes with 

large area light sources generate more 𝑆0 subpaths than the ones with small light 

sources. As they do not require reconstruction, 𝑆0 subpaths are a performance source. 

Similarly, the scattered energy and materials influence the intra-subpath connectivity. 

 

The inspected tests are emblematic of the tests executed during the current research. 

For instance, the disassembly test uses similar concepts to a test carried on Newton’s 

cradle, which applies combined affine transformations to the suspended spheres. The 

3𝑟𝑑 redesign frame emulates another test, in which a desk lamp, with its disk light 

source, is translated and rotated to illuminate various desk regions. The Cornell box 

was used to translate two cubes instead of one. Regardless of the light sources and 

materials, all the tests exhibited increased performance and comparable image quality. 

 

The path manipulation algorithm can benefit various industrial sectors and preliminary 

discussions were carried with Optis, to integrate it in the in-house rendering software. 
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Chapter 6 

 

Future developments 

 

The path manipulation algorithm extends bidirectional path tracing to reuse paths in 

the temporal domain, with the purpose of generating a variety of illumination effects 

in conditions of dynamic geometry. Its core is an intra-subpath connectivity strategy, 

which reconnects the disrupted chains of an invalid subpath based on the scattering 

and stochastic properties of the connecting vertices. A tentative connection with 

insufficient throughput, along the edge that connects the subpath chains, is rejected 

without introducing bias. Also, an intra-subpath connection is established only if the 

probabilities for scattering to occur, in and from the direction of the connecting edge, 

pass the rejection test. A failed intra-subpath connection causes the subpath to be 

regenerated from its unconnected anchor. Chapter 5 analysed the statistical properties 

and the performance gain of the novel algorithm. For the same number of samples, the 

execution time gain of the path manipulation algorithm ranged from 24.58% to 79.02%. 

This chapter reflects on the intra-subpath connectivity strategy, proposes performance 

improvements, addresses current limitations and suggests future avenues of research.  

 

Currently, the path manipulation algorithm discards the vertices to which an anchor 

failed to be connected. The vertices that succeed an anchor compose the secondary 

subpath chain and the disposal of more than two vertices results in eliminating such a 

chain. The connectivity percentage could be improved by storing these secondary 

chains and using them to establish intra-subpath connections with other unconnected 

anchors. The simplest approach would be to randomly assign a secondary chain to an 

unconnected anchor and attempt to reconnect them via an intra-subpath connection. 

Yet, this approach may not considerably increase the connectivity percentage due to 

visibility issues, insufficient throughput or low intra-subpath connection probabilities. 
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Another approach would be to extrapolate some of the concepts that underlie the 

probabilistic connections (Popov et al. 2015) and compute a probability mass function 

based on the contribution of the tentative intra-subpath connection. The probability 

mass function, for a given subpath, could be computed by normalizing the tentative 

connection contribution with the sum of the contributions of all the connections that 

could be established between the unconnected anchor and the stored secondary chains. 

The inverse transform sampling method could be used to select the actual secondary 

chain. Once connected to an anchor, a secondary chain would be removed from the 

pool of chains. Yet, this approach may be expensive if there are many secondary chains 

and unconnected anchors. An option would be to sample a smaller number of secondary 

chains from the initial pool and use only those chains to compute the probability mass 

functions for a given anchor. The throughput and probability density for a reconnected 

subpath would have to consider the probability mass function rather than probability 

(3.32). By computing the probability mass function for each unconnected anchor, the 

introduced correlation would have less effect on variance than the interpolation of the 

probability mass functions from proximate anchors. In fact, correlation would regard 

the efficient extraction of additional samples (Veach 1998, p. 307). Hence, the paths 

constructed from the reconnected subpaths could be evaluated as detailed in chapter 3, 

subsection 3.1.2. Variations of these approaches may also be implemented and used as 

concrete bases to determine the trade-offs between performance and code complexity. 

 

The performance of the current system could be further improved by developing a 

space-partitioning data structure that would correlate the scene geometry with the path 

information. Currently, the in-scope routine identifies the invalid subpaths by tracing 

all of the generated rays, except for the discarded ones. This computational effort could 

be reduced by inserting, in the cells of an acceleration structure, both geometric and 

path information. For instance, a cell could associate each primitive that contains a 

subpath vertex with the corresponding subpath identifier and vertex level. The 𝑖𝑡ℎ 

vertex level regards the 𝑖𝑡ℎ vertex of a subpath. Methods in fast ray tracing (chapter 2, 

subsection 2.6.2) either update/rebuild the dynamic parts of an acceleration structure 

or rebuild only the acceleration structures composed entirely of dynamic objects. A 

cell selected for update/rebuild would then trigger the rebuild of the list containing the 

subpath identifier-vertex level pairs and the retracing of the rays associated with the 
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indicated vertices. Such an approach would eliminate the exhaustive ray retracing and 

potentially the out-of-scope identification routine. A subpath vertex has incident and 

exitant rays and their retracing may identify both in-scope and out-of-scope subpaths. 

 

Storing the light and eye subpaths in the main memory can become infeasible for 

higher image resolutions and numerous subpaths per pixel or light source. The tests 

examined in the previous chapter used between 80 and 100 subpaths per pixel to 

render images with resolutions from 0.25 to 0.33 megapixel. These configurations 

occupied 80% to 99% of the physical memory. Figure 6.1 illustrates the near-linear 

increase in the usage of the physical memory, that was caused by rendering the three 

scenes used in the previous chapter, with an increasing number of subpaths per pixel.  

 

The memory limitations could be alleviated by implementing a caching scheme that 

stores in memory some of the subpaths and saves the rest on the disc. For example, 

the image could be divided in blocks of pixels and the requested number of subpaths 

could be simultaneously generated for all the pixels in a block. The pixels for which 

the number of subpaths reached the specified threshold, could be replaced with other 

pixels. The affiliation (chapter 4, subsection 4.2.3) would keep track of the generated 

subpaths per pixel, would trigger the replacement of the terminated subpaths with 

new ones and would determine the replacement of the pixels whose subpaths are all 

terminated. The terminated subpaths could be stored on and retrieved from the disc 

using threads. Like the subpath generation, the throughput and contribution evaluation 

could be executed on subpath blocks. The current implementation already evaluates 

the throughput and the path contributions, by diving the subpath buffer in blocks, 

based on the number of subpaths per affiliation. The caching scheme would require 

the redesign of the throughput and contribution evaluation steps, so that a subpath 

block could undergo both steps before being stored on the disc. The same processing 

and caching schemes could be used with the light subpaths, by grouping light sources 

instead of pixels. As evinced in chapter 4, section 4.3, the path manipulation algorithm 

replaces only the path generation phase of the standard Monte Carlo pipeline, leaving 

the other phases unaltered. Subpaths could also be reconstructed by diving, storing 

and retrieving the subpath buffer in blocks. The size of a block could be set to the one 

used for the generation of subpaths, or it could be assigned multiples of the warp size.  
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Figure 6.1: The total memory usage associated with rendering 1-64 subpaths per pixel. 

 

Currently, subpaths are reconstructed by dividing the subpath buffer based on the 

number of subpaths per affiliation. The remaining steps would be to store the blocks 

and retrieve all the reconstructed subpaths, so that they can be processed by the next 

phases. The blocks could be stored and retrieved asynchronously, as other blocks 

would be processed, with the advantage that I/O latencies would be minimized. The 

invalid subpaths could be stored, in a separate file, as they would be identified and 

reconstructed. This approach would facilitate the retrieval of blocks composed entirely 

of reconstructed subpaths and thus the processing of the latter by the subsequent 

phases of the path manipulation algorithm. The identification of the most appropriate 

storing/retrieval approach would require further investigation (Eisenacher et al. 2013). 

The identification of collateral subpaths would also benefit from further investigation 

that would stabilise it and would preclude scenarios affected by bias such as test 5.4. 

 

The frames generated for the Cornell box tests were collated in AVI files and were 

inspected for artefacts caused by the loss of temporal coherence, such as flickering. 

The videos did not exhibit such artefacts. Producing animated sequences for more 

complex environments, analysing their temporal coherence and potentially combating 

temporal artefacts constitute another line of investigation. Lastly, it would be interesting 

to integrate the intra-subpath connectivity strategy with other point sampling methods.  
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Chapter 7 

 

Conclusions 

 

The current work introduced the path manipulation algorithm as a tool that extends 

bidirectional path tracing to reuse paths in the temporal domain. The previous chapters 

demonstrated that the path manipulation algorithm effectively addresses the restriction 

of static geometry commonly encountered in Monte Carlo light transport simulations. 

 

Bidirectional path tracing can generate a variety of illumination effects for an extended 

range of complex lighting, scattering and geometric models. Its robustness stems from 

optimally combining paths, generated with different local path sampling techniques, 

in low-variance estimators. The local path sampling techniques together with multiple 

importance sampling are the key mechanisms that underlie bidirectional path tracing. 

 

Though versatile, bidirectional path tracing is computationally expensive. As reported 

in chapter 5, the sampling operations and contribution evaluations required orders of 

minutes to produce results with moderate levels of variance. Since it does not support 

dynamism, bidirectional path tracing discards the generated paths immediately after 

the evaluation of their contributions and recomputes the illumination solution for the 

slightest scene transformation. Hence, each frame is rendered with the same timescale.  

 

The balance between the accuracy and the time complexity of the Monte Carlo light 

transport simulation bears considerable significance for numerous industries. Chapter 

5 demonstrated that the path manipulation algorithm outperforms bidirectional path 

tracing. On the one hand, its performance gain can be used to generate additional paths 

and thus further reduce variance. On the other hand, the path manipulation algorithm 

provides more flexibility by supporting dynamism and an evolving scene perspective. 
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Most path reuse algorithms (chapter 2, subsection 2.6.3) support dynamism by relying 

on limiting assumptions, which range from restricting the type of dynamic object to 

requiring predefined animation paths. Chapter 3 showed that the path manipulation 

algorithm reconstructs and reuses paths regardless of the subpath or scene dynamism 

type and without the need for predefined animation paths. Light and eye subpaths are 

processed independently of the camera, light source or other object transformations. 

This flexibility is underlain by the path manipulation strategies, which reconstruct 

subpaths generically and extend their lifespan to a generation-evaluation-reuse cycle. 

 

The concepts of path validity and immutable contribution were introduced to identify 

the subpaths that can be immediately reused in the rendering of the transformed scene. 

The subpaths which breach the validity criteria are identified as invalid and the first 

step in their reconstruction is to compute their anchors. The location of the anchor on 

an invalid subpath was used to describe three reconstruction scenarios. The primary 

and terminus anchor reconstructions process the antipodal cases when the anchor 

either follows the first vertex or replaces the last vertex of an invalid subpath. The 

two-chain reconstruction processes subpaths split into two chains around the anchor. 

 

Chapter 3 evinced that the path manipulation algorithm obviates the regeneration of 

the entire path collection, ports bidirectional path tracing to the temporal domain and 

supports dynamism. The core of the path manipulation algorithm is an intra-subpath 

connectivity strategy, which reconnects two disrupted chains of the same type into a 

functional subpath. The novel strategy uses the scattering and the stochastic properties 

of the connecting vertices to determine whether an intra-subpath connection can be 

established on the invalid subpath. Tentative connections with insufficient throughput 

are discarded without introducing bias. Similarly, the stochastic viability of a tentative 

connection is determined via a two-dimensional rejection test. Unlike conventional 

path generation methods, which use Russian roulette only to control the subpath 

lengths, this strategy uses such a test also during the connection process. A successful 

tentative connection generates a subpath in more than one piece by reusing existing 

information. As a path generation strategy, the intra-subpath connection does not affect 

the computation nor the weighting of the path contributions. A subpath which fails to 

meet the intra-subpath connection criteria, is regenerated from its unconnected anchor. 
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Bidirectional path tracing and the path manipulation algorithm are comprised in the 

light transport framework (chapter 4). The latter provided Optis with the first-ever 

implementation of bidirectional path tracing and of two state-of-the-art methods. 

Subpaths are generated using a similar approach to Novák et al. (2010), except that 

they are terminated via the Russian roulette test proposed by Veach (1998, p. 309) and 

the primary rays of the restarted subpaths are always resampled. Multiple paths are 

efficiently generated from the same pair of subpaths (Veach 1998, p. 300), with the 

advantages of zero costs and reduced variance. However, each eye subpath vertex is 

connected to a random light subpath (Novák et al. 2010), to reduce the deterministic 

noise and path correlation. The variance-reduction weights, are also computed via the 

recursive multiple importance sampling schema proposed by van Antwerpen (2011b). 

 

These state-of-the-art techniques improve both accuracy and performance. Still, for a 

comparable image quality the path manipulation algorithm outperforms bidirectional 

path tracing, while supporting dynamism. Chapter 5 showed that the efficiency of the 

novel algorithm is underlain by the lightweight invalid subpath identification routines 

and by the intra-subpath connectivity strategy. The identification routines execute 

fewer operations than the path generation routine, whereas the reconnection routine 

reuses path information, avoids subpath regeneration and reduces the traceable edges. 

 

The path manipulation algorithm can benefit various industries through its abilities to 

support scene dynamism, reconstruct subpaths generically and operate without being 

restricted by the necessity of predefined animation paths. The tests that emulate Optis’ 

projects evinced the capabilities of the path manipulation algorithm for the automotive 

and interior redesign sectors. These results led to discussions with Optis regarding the 

integration of the path manipulation algorithm with the in-house rendering software.  
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