292 research outputs found

    Lp stability of networked control systems implemented on WirelessHART

    Get PDF
    International audienceThis paper provides results on input-output Lp stability of networked control systems (NCSs) implemented over WirelessHART (WH). WH is a communication protocol widely used in process instrumentation. It is mainly characterised by its multi-hop structure, slotted communication cycles, and the possibility to simultaneously transmit over different frequencies. We propose a non-linear hybrid model of WH-NCSs that is able to capture these network functionalities, and that it is more general than existing models in the literature. Particularly, the multi-hop nature of the network is translated into an interesting mathematical structure in our model. We then follow the emulation approach to stabilise the NCS. We first assume that we know a stabilising controller for the plant without the network. We subsequently show that, under reasonable assumptions on the scheduling protocol, stability is preserved when the controller is implemented over the network with sufficiently frequent data transmission. Specifically, we provide bounds on the maximum allowable transmission interval (MATI) under which all protocols that satisfy the property of being persistently exciting (PE) lead to Lp stable WH-NCSs. These bounds exploit the mathematical structure of our WH-NCS model, improving the existing bounds in the literature. Additionally, we explain how to schedule transmissions over the hops to satisfy the PE property. In particular, we show how simultaneous transmissions over different frequency channels can be exploited to further enlarge the MATI bound

    Supervisory Wireless Control for Critical Industrial Applications

    Get PDF

    Cyber-Physical Co-Design of Wireless Control Systems

    Get PDF
    Wireless sensor-actuator network (WSAN) technology is gaining rapid adoption in process industries because of its advantages in lowering deployment and maintenance cost in challenging environments. While early success of industrial WSANs has been recognized, significant potential remains in exploring WSANs as unified networks for industrial plants. This thesis research explores a cyber-physical co-design approach to design wireless control systems. To enable holistic studies of wireless control systems, we have developed the Wireless Cyber-Physical Simulator (WCPS), an integrated co-simulation environment that integrates Simulink and our implementation of WSANs based on the industrial WirelessHART standard. We further develop novel WSAN protocols tailored for advanced control designs for networked control systems. WCPS now works as the first simulator that features both linear and nonlinear physical plant models, state-of-art WirelessHART protocol stack, and realistic wireless network characteristics. A realistic wireless structural control study sheds light on the challenges of WSC and the limitations of a traditional structural control approach under realistic wireless conditions. Systematic emergency control results demonstrate that our real-time emergency communication approach enables timely emergency handling, while allowing regular feedback control loops to effectively share resources in WSANs during normal operations. A co-joint study of wireless routing and control highlights the importance of the co-design approach of wireless networks and control

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks

    Get PDF
    With the emergence of industrial standards such as WirelessHART, process industries are adopting Wireless Sensor-Actuator Networks (WSANs) that enable sensors and actuators to communicate through low-power wireless mesh networks. Industrial monitoring and control applications require real-time communication among sensors, controllers and actuators within end-to-end deadlines. Deadline misses may lead to production inefficiency, equipment destruction to irreparable financial and environmental impacts. Moreover, due to the large geographic area and harsh conditions of many industrial plants, it is labor-intensive or dan- gerous to change batteries of field devices. It is therefore important to achieve long network lifetime with battery-powered devices. This dissertation tackles these challenges and make a series of contributions. (1) We present a new end-to-end delay analysis for feedback control loops whose transmissions are scheduled based on the Earliest Deadline First policy. (2) We propose a new real-time routing algorithm that increases the real-time capacity of WSANs by exploiting the insights of the delay analysis. (3) We develop an energy-efficient routing algorithm to improve the network lifetime while maintaining path diversity for reliable communication. (4) Finally, we design a distributed game-theoretic algorithm to allocate sensing applications with near-optimal quality of sensing

    Real-Time Guarantees For Wireless Networked Sensing And Control

    Get PDF
    Wireless networks are increasingly being explored for mission-critical sensing and control in emerging domains such as connected and automated vehicles, Industrial 4.0, and smart city. In wireless networked sensing and control (WSC) systems, reliable and real- time delivery of sensed data plays a crucial role for the control decision since out-of-date information will often be irrelevant and even leads to negative effects to the system. Since WSC differs dramatically from the traditional real-time (RT) systems due to its wireless nature, new design objective and perspective are necessary to achieve real-time guarantees. First, we proposed Optimal Node Activation Multiple Access (ONAMA) scheduling protocol that activates as many nodes as possible while ensuring transmission reliability (in terms of packets delivery ratio). We implemented and tested ONAMA on two testbeds both with 120+ sensor nodes. Second, we proposed algorithms to address the problem of clustering heterogeneous reliability requirements into a limit set of service levels. Our solutions are optimal, and they also provide guaranteed reliability, which is critical for wireless sensing and control. Third, we proposed a probabilistic real-time wireless communication framework that effectively integrates real-time scheduling theory with wireless communication. The per- packet probabilistic real-time QoS was formally modeled. By R3 mapping, the upper-layer requirement and the lower-layer link reliability are translated into the number of trans- mission opportunities needed. By optimal real-time communication scheduling as well as admission test and traffic period optimization, the system utilization is maximized while the schedulability is maintained. Finally, we further investigated the problem of how to minimize delay variation (i.e., jitter) while ensuring that packets are delivered by their deadlines
    • …
    corecore