
Wayne State University Wayne State University

Wayne State University Dissertations

January 2018

Real-Time Guarantees For Wireless Networked Sensing And Real-Time Guarantees For Wireless Networked Sensing And

Control Control

Yu Chen
Wayne State University, yuchen.wayne@gmail.com

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chen, Yu, "Real-Time Guarantees For Wireless Networked Sensing And Control" (2018). Wayne State
University Dissertations. 1918.
https://digitalcommons.wayne.edu/oa_dissertations/1918

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1918&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1918?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1918&utm_medium=PDF&utm_campaign=PDFCoverPages

REAL-TIME GUARANTEES FOR WIRELESS NETWORKED SENSING
AND CONTROL

by

YU CHEN

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2018

MAJOR: COMPUTER SCIENCE

Approved By:

Advisor Date

c©COPYRIGHT BY

YU CHEN

2018

All Rights Reserved

DEDICATION

To my wife, my parents, my parents-in-law, and my family.

ii

ACKNOWLEDGEMENTS

I am very grateful to my advisor Dr. Hongwei Zhang for his generous guidance,

support, and encouragement on conducting my Ph.D. research. His deep understanding of

his research field, diligent work ethic, and determination to pursue intellectual beauty has set

a perfect example for me both in my research and personal life. The most important thing

I learnt from Dr. Zhang through my Ph.D. journey is how to identify the right problem to

solve and how to tackle a problem I have never encountered before. I am also very grateful

to have Dr. Nathan Fisher as my another advisor and one of my dissertation committee

members. Whenever I have questions on my research, Dr. Fisher has been always there to

discuss with me, especially those related to real-time scheduling. I am also fortunate to have

Dr. Loren Schwiebert, Dr. Henguang Li, and Dr. Zichun Zhong as my committee members.

Despite their obligation in their departments, Dr. Schwiebert and Dr. Li have offered me

insightful suggestions on how to improve my writing and presentation. I want to specially

thank Dr. Zhong for agreeing to serve in my committee in short notice. I also want to thank

Dr. Schwiebert, Amber Dawkins, Lanita Stewart, Brandi Gonzales, Areej Salaymeh, and

other staff in my department for providing all the necessity to make my life easier. Thank

the Graduate School, especially Kristy Case, for her patience in helping me with all the

paperwork and format checking.

I want to express my sincere appreciation to my research collaborators and friends

for their kind help. Dr. Feng Lin, Dr. Le Yi Wang and Dr. George Yin have been

working with us to develop control algorithms for wireless networked sensing and control.

Dr. Patrick Gossman and Mr. Matthew Lessons selflessly provided us with all the IT support

we needed to build our testbed. I also enjoyed working with my lab members at Wayne State

University: Dr. Yuehua Wang, Dr. Xin Che, Dr. Qiao Xiang, Dr. Xiaohui Liu, Chuan Li,

Qing Ai, Pengfei Ren, and Lin Wang. During my job searching, I got a lot of referrals and

endorsement from my friends: Hai Jin, Dr. Bing Li (Google), Dr. Shufeng Huang (Cisco),

Dr. Yunsheng Wang (Kettering University), Dr. Qingsong Wen (Alibaba), Xianqiong Deng,

iii

Xueying Linghu (Amazon), Xuejiao Li (Tesla), and so on. Changxin Bai and Rui Chen

kindly helped me prepare the paperwork and logistics. Thank you all!

I owe my deepest gratitude to my family, who stood by me unconditionally for so

many years. My parents have been supportive to me in my whole life, no matter how hard

life is to them. My father fell down and injured his head badly last year when I was catching

on a deadline. To avoid distraction to me, they lied to me when he was in the hospital for

over two months. As soon as he returned home, he resumed working to pay the medical bill.

However, they always tell me “Don’t worry”. Last but not least, I want to thank my wife

for her endless love and understanding. We can only see each other a few times each year

due to long distance. Sometimes she complained, sometimes she cried, but she never left me

behind. She always has faith on me. While my father was ill, my wife, my in-laws, and my

families took my responsibility to take care of him. Without my family, I could not finish

my dissertation at all. I will love and take care of them for the rest of my life.

iv

TABLE OF CONTENTS
Dedication ii

Acknowledgements iii

LIST OF FIGURES x

LIST OF TABLES xi

CHAPTER 1: INTRODUCTION 1

1.1 Our Contributions . 1

1.2 Organization . 3

CHAPTER 2: A MAXIMAL CONCURRENCY AND LOW LATENCY
DISTRIBUTED SCHEDULING PROTOCOL FOR WIRELESS SEN-
SOR NETWORKS 4

2.1 Introduction . 4

2.2 The ONAMA Protocol . 6

2.2.1 Distributed MIS . 7

2.2.2 Pipelined precomputation . 9

2.2.3 Dynamic graph . 10

2.2.4 Implementation issues . 11

2.3 Evaluation . 13

2.3.1 Methodology . 13

2.3.2 Measurement results . 14

2.4 Related Work . 18

2.5 Summary . 22

CHAPTER 3: OPTIMAL REQUEST CLUSTERING FOR LINK RELIA-
BILITY GUARANTEE IN WIRELESS NETWORKED CONTROL 23

3.1 Introduction . 23

3.2 Migratory and Non-migratory Clustering Problem 25

3.2.1 System model . 25

3.2.2 Problems definition . 27

3.3 Optimal Algorithm for Migratory Clustering 28

3.3.1 Main idea . 28

v

3.3.2 The algorithms . 30

3.3.3 Correctness and complexity of the algorithms 31

3.4 Optimal Algorithm for Non-migratory Clustering 34

3.4.1 The algorithm . 34

3.4.2 Correctness and complexity of the algorithm 35

3.5 Simulation Results . 36

3.6 Related Work . 38

3.7 Summary . 39

CHAPTER 4: PROBABILISTIC PER-PACKET REAL-TIME GUARAN-
TEES FOR WIRELESS NETWORKED SENSING AND CONTROL 40

4.1 Introduction . 40

4.2 Related Work . 43

4.2.1 Real-time scheduling . 43

4.2.2 Reliability-oriented wireless transmission scheduling 44

4.3 System Model and Problem Statement . 45

4.3.1 Communication model . 45

4.3.2 Probabilistic QoS model . 46

4.3.3 Problem statement . 47

4.4 Wireless Scheduling Framework for Probabilistic Per-Packet Real-Time Com-
munication Guarantee . 48

4.4.1 Overview . 48

4.4.2 Requirement-reliability-resource (R3) mapping 50

4.4.3 Scheduling policy . 52

4.4.4 Admission policy . 54

4.4.5 Selection of packet generation period 56

4.5 Simulation Experiment . 60

4.5.1 Simulation methodology . 60

4.5.2 Simulation results . 61

vi

4.6 Extensions . 64

4.6.1 Impact of timescales of real-time communication guarantee 65

4.6.2 Extension to multichannel settings 71

4.6.3 Impact of control signaling unreliability 72

4.6.4 Distributed solution . 72

4.7 Concluding remarks . 72

CHAPTER 5: PROBABILISTIC PER-PACKET REAL-TIME GUARAN-
TEE WITH JITTER CONTROL 76

5.1 Introduction . 76

5.2 Related Work . 76

5.3 System Model and Problem Statement . 78

5.3.1 System model . 78

5.3.2 Problem statement . 80

5.4 Offline and Online Scheduling for Probabilistic Per-Packet Real-Time Guar-
antee with Jitter Control . 80

5.4.1 Overview . 80

5.4.2 Transmission opportunities estimator 81

5.4.3 Deadlines optimizer . 82

5.4.4 Jitter-EDF scheduler . 84

5.5 Simulation . 86

5.5.1 Simulation setup . 86

5.5.2 Simulation results . 87

5.6 Concluding Remarks . 89

CHAPTER 6: CONCLUSION 90

6.1 Summary of Contributions . 90

6.2 Future Research Directions . 90

APPENDIX: PUBLICATIONS 92

REFERENCES 94

ABSTRACT 105

vii

AUTOBIOGRAPHICAL STATEMENT 107

viii

LIST OF FIGURES

Figure 2.1 NAMA’s concurrency loss. 5

Figure 2.2 Pipelined precomputation. 11

Figure 2.3 Mean concurrency in NetEye. 16

Figure 2.4 Packet delivery ratio (PDR) of PRKS-NAMA in NetEye. 16

Figure 2.5 Packet delivery ratio (PDR) of PRKS-ONAMA in NetEye. 17

Figure 2.6 Mean throughput in NetEye. 17

Figure 2.7 Mean delay in NetEye. 18

Figure 2.8 Packet delivery ratio (PDR) of PRKS-NAMA in Indriya. 18

Figure 2.9 Packet delivery ratio (PDR) of PRKS-ONAMA in Indriya. 19

Figure 2.10 Mean concurrency in Indriya. 19

Figure 2.11 Mean network throughput in Indriya. 20

Figure 2.12 Mean delay in Indriya. 20

Figure 3.1 An illustration of migratory and non-migratory clustering. 26

Figure 3.2 The table of solutions for OPT (n, l) in Algorithm 2. 32

Figure 3.3 An illustration of temporal reuse of a service level. 34

Figure 3.4 Total cost vs. number of service levels L (number of requests N = 100). 37

Figure 3.5 Total cost vs. number of requests N (number of service levels L = 20). . 37

Figure 4.1 System model: one AP and n sensors. 45

Figure 4.2 An example showing the uncertainty of wireless channel. 49

Figure 4.3 Architecture of the proposed framework. 50

Figure 4.4 QoS satisfaction ratio: different application requirements. 62

Figure 4.5 QoS satisfaction ratio: different link reliability. 63

Figure 4.6 Idleness ratio: different application requirements. 64

Figure 4.7 Idleness ratio: different link reliability. 65

Figure 4.8 Timescale analysis. 66

Figure 4.9 Relation between Ki and m∗i , where ri = 0.9, qi = 0.9999, and Ti = 100. 68

ix

Figure 4.10 Relation between Ki and m∗i , where ri = 0.99, qi = 0.9999, and Ti = 100. 69

Figure 4.11 Relation between Ki and P ∗i , where ri = 0.9, qi = 0.9999. 70

Figure 4.12 Relation between Ki and Pi, where ri = 0.99, qi = 0.9999. 71

Figure 5.1 Timing for link i. 78

Figure 5.2 Architecture of the proposed framework. 81

Figure 5.3 Default EDF. 85

Figure 5.4 Jitter-EDF. 85

Figure 5.5 Jitter-EDF vs EDF for the case of 3 links. 88

Figure 5.6 Jitter-EDF vs EDF for the case of 10 links. 88

x

LIST OF TABLES

Table 4.1 Comparison of recent studies. 74

Table 4.2 Long-term average timely delivery ratio vs short-term performance. . . 75

Table 5.3 Simulation setup. 87

xi

1

CHAPTER 1: INTRODUCTION

Wireless networks are increasingly being explored for mission-critical sensing and con-

trol in emerging domains. For instance, in connected and autonomous vehicle, information

from roadside unit and other cars must be delivered to the car in order to perform path

planning and motion control in a timely manner. If the transmission fails or if the packets

are not delivered on time, a car accident may well happen. For Industrial 4.0, reliable and

timely communication between distributed sensors and controller plays a crucial role for the

control decision. Out-of-date information will often be irrelevant and even leads to negative

effects to the system. Therefore, the timely detection, processing, and delivery of informa-

tion are often indispensable requirements in wireless networked sensing and control (WSC).

However, WSC differs dramatically from the traditional real-time (RT) systems due to its

wireless nature. New design objective and perspective are necessary to achieve real-time

guarantees.

1.1 Our Contributions
Towards providing guaranteed reliability and timeliness for wireless sensing and con-

trol, we have made the following contributions.

• Optimal Node Activation Multiple Access (ONAMA) scheduling protocol.

As the first step, we addressed the problem of predictable reliability (in terms of packets

delivery ratio). We proposed the ONAMA protocol that schedules maximal number

of concurrent transmissions while ensuring reliability. ONAMA has two pillars: a

distributed MIS algorithm tailored to wireless characteristics and the pipelined pre-

computation technique to reduce DMIS’s long delay. Extensive experiments on two

testbeds, each with 127+ nodes, have independently shown that it increases concur-

rency by a factor of 3.7, increases throughput by a factor of 3.0, and reduces delay by

a factor of 5.3 compared to the state of the art, while still catering to links’ reliability

requirements. .

2

• Optimal request clustering algorithms for heterogeneous link reliability re-

quirements. In previous work, we assumed that each link only has one reliability

requirement. In practice, however, each link may need to support various applica-

tions that require heterogeneous link reliability. One challenge for resource-constraint

embedded devices is that they may only be able to maintain a limited number of re-

quirements. Then, the problem is how to map heterogeneous reliability requirements

into a limit set of service levels. We proposed two algorithms and formally proved their

optimality.

• A framework for probabilistic per-packet real-time guarantees. After the

predictable link reliability can be ensured, we continued to pursue the timeliness of

transmissions. A probabilistic framework for per-packet real-time wireless communica-

tion guarantees was therefore proposed. Our notion of real-time differs fundamentally

from existing work in the sense that it ensures in an arbitrarily long execution history,

a randomly selected packet will meet its deadline in a user-specified probability. By R3

mapping, the upper-layer requirement and the lower-layer link reliability are translated

into the number of transmission opportunities needed. By optimal real-time communi-

cation scheduling as well as admission test and traffic periods optimization, the system

utilization is maximized while the schedulability is maintained. The proposed admis-

sion test is proved to be both sufficient and necessary. The simulation results show that

the proposed scheme can meet the probabilistic real-time communication requirement.

• Wireless probabilistic per-packet real-time guarantees with jitter control.

Message transmissions in wireless network may not only experience delay but delay

variations (i.e., jitter) due to various factors such as scheduling algorithm, online traffi-

cload changes, channel fading, and environment dynamics. Besides meeting the dead-

lines of packets delivery, smaller delay jitter is often favorable since it means more

stable transmissions. To achieve this goal, we proposed a two-level solution: the offline

component explores the extra capacity by optimizing the deadlines, while the online

3

component further reduces the jitter by carefully considering the transmission order

between different links.

1.2 Organization
The rest of this dissertation is organized as follows. In Chapter 2 we present the

ONAMA protocol and experimental results. In Chapter 3, we propose two algorithms for

optimal request clustering to guarantee heterogeneous link reliability requirements. A prob-

abilistic framework for per-packet real-time wireless communication guarantees is then pro-

posed in Chapter 4. We further investigate the problem of jitter control while ensuring

deadlines in Chapter 5. We discuss the research plan and conclude the dissertation in Chap-

ter 6.

4

CHAPTER 2: A MAXIMAL CONCURRENCY AND LOW
LATENCY DISTRIBUTED SCHEDULING PROTOCOL FOR

WIRELESS SENSOR NETWORKS

2.1 Introduction
Due to the broadcast nature of wireless communication, access to the shared wireless

channel has to be coordinated to avoid interference. There are generally two ways to achieve

this, contention-based [10][11][12][14] and TDMA-based [6][8][9][13].Contention-based pro-

tocols are easy to realize, but their performance can be highly dynamic and unpredictable

owing to collision and random backoff, especially when node density is high and traffic load

is heavy. This explains the prevalence of TDMA-based protocols in scenarios where quality

of service (e.g., high throughput, high reliability, and low delay) has to be provided. For

instance, the WirelessHART [19] and ISA SP100.11a [18] standards defined for industrial

monitoring and control are both TDMA-based.

Conflict graph has been used to model wireless interference between neighboring

nodes [7]. In a conflict graph, a node represents a contention entity. It can be either a

node or a transmission link in the original network. A link between two nodes exists if data

transmissions of the two represented contention entities interfere with each other according

to an interference model (e.g., the Physical-Ratio-K model [36]). Once we acquire scheduling

for a conflict graph, it is straightforward to translate it to the corresponding wireless network.

From now on, graph is synonymous with conflict graph.

To avoid collision, a series of protocols have been proposed to schedule concurrent

transmissions conflict-free in multi-hop wireless networks. In the Node Activation Multiple

Access protocol (NAMA)[6], a node only accesses the channel if its priority is higher than

all of its conflicting neighbors’, where the priority is a hash function of its unique ID and

the current time slot. While NAMA ensures no two nodes transmit simultaneously if they

interfere with each other, it can lead to severe concurrency loss and channel underutilization.

This work is supported in part by NSF awards CNS-1136007, CNS- 1054634, GENI-1890, and GENI-
1633.

5

Figure 2.1 illustrates such an example. In the conflict graph below, the number inside each

node represents its priority. There is a link between two nodes if their transmissions collide.

According to NAMA, only node with priority 7 can be active although nodes with priority

1, 2, 3, and 4 can transmit as well without causing collision.

Figure 2.1: NAMA’s concurrency loss.

Given the growing spectrum deficit resulted from ever-increasing demands and fixed

amount of spectrum, we aim to squeeze the most capacity out of the limited spectrum. And

we propose the Optimal Node Activation Multiple Access (ONAMA) scheduling protocol that

activates as many nodes as possible while ensuring collision-free scheduling. It formulates

the scheduling problem into finding a maximal independent set in the conflict graph. In

graph theory, an independent set is a set of nodes in a graph, none of which are adjacent.

An independent set is maximal if adding any other node makes it no longer an independent

set. ONAMA includes the distributed maximal independent set (DMIS) algorithm, which

identifies a maximal independent set (MIS) of a graph given all node priorities, calculated

the same way as NAMA does.

NAMA can compute the schedule for each slot on the fly because it requires no packet

exchange. By contrast, it takes multiple rounds of packet exchange for DMIS to find the

schedule (i.e., MIS) for a slot. What’s worse, the wireless channel is susceptible to packet

6

loss. If ONAMA also computes the schedule on the fly, it introduces significant delays for

data delivery, especially in large networks. To reduce delay incurred by MIS computation

while activating as many nodes as possible, we decouple the computation of MIS from data

transmission by precomputing it in advance. When a certain slot comes, ONAMA simply

looks up the precomputed MIS on the fly and activates a node if and only if it is in the MIS.

To further reduce delay, we organize the precomputation of MISs for consecutive slots in a

pipeline.

Contributions of this paper. (1) We develop a distributed scheduling protocol ONAMA

that attains maximal activation in a multi-hop wireless network while causing no collision,

even if the network is dynamic. It greatly enhances channel spatial reuse compared to the

state of the art. (2) We devise a novel technique called pipelined precomputation to address

the excessive delay in basic ONAMA. (3) We implement ONAMA on extremely resource-

constrained TelosB [2] motes using TinyOS [3]. Evaluation in two independent testbeds has

verified it increases concurrency by a factor of 3.7, increases throughput by a factor of 3.0,

and reduces delay by a factor of 5.3 compared to existing work while maintaining reliability.

Organization of this paper. Section 2.2 details the ONAMA protocol. We evaluate it

comprehensively in Section 2.3. Section 3.6 discusses related work. We wrap up the article

by drawing some conclusions and pointing out some future directions.

2.2 The ONAMA Protocol
We elaborate on the design and implementation of the ONAMA protocol in this

section. First we introduce the baseline version of ONAMA, namely the distributed MIS

(DMIS) algorithm, to compute the MIS of a graph in a fully decentralized way. Next, we

reduce DMIS’s excessive delay by a novel approach called pipelined precomputation. Finally

we tackle some challenges in implementing ONAMA on resource-scarce embedded devices.

We assume time on all nodes is synchronized and divided into slots. This can be

attained by, for example, running a time synchronization protocol [37]. We also assume each

node has a unique ID.

7

2.2.1 Distributed MIS

Inspired by the observation that NAMA can severely underutilize the channel, we

decide to activate as many nodes as possible while still ensuring no two neighboring nodes

are active together. In other words, we activate a maximal independent set of a graph in each

slot through the following distributed MIS algorithm. Even though it resembles some other

existing distributed MIS algorithms in appearance, especially the FastMISv2 algorithm [5],

it is essentially different from them to factor in the peculiarities of wireless sensor networks,

i.e., limited bandwidth, memory, and computational power.

In DMIS, a node stays in one of three states below at any given time:

• UNDECIDED: it has not decided whether to join the MIS or not.

• ACTIVE: it joins the MIS.

• INACTIVE: it does not join the MIS.

Initially, all nodes are UNDECIDED. In any slot t, each node computes the priority of itself

and its neighbors according to Equation 2.1

pi = Hash(i⊕ t)⊕ i. (2.1)

i is the node id, Hash(x) is a fast message digest generator that returns a random integer

by hashing x, and pi is i’s priority. ⊕ concatenates its two operands. Note the second ⊕ is

necessary to guarantee all nodes’ priorities are distinct even when Hash() returns the same

number on different inputs. Based on the priority for each node, DMIS computes a MIS for

slot t in multiple phases. Each phase consists of three steps:

1. Node v exchanges nodal states with its neighbors.

2. If node v’s priority is higher than all its ACTIVE and UNDECIDED neighbors’, it

enters the MIS by marking itself ACTIVE; conversely, if any of its higher priority

neighbors is ACTIVE, it marks itself INACTIVE.

3. Node v proceeds to the next phase only if its state is UNDECIDED.

8

When no node is UNDECIDED, the algorithm terminates. Theorem 2.2.1 shows DMIS does

terminate in finite phases.

Theorem 2.2.1. DMIS terminates in finite phases.

Proof. Given a graph G and distinct priorities for all its nodes, in the first phase, there are

a set of nodes A going from UNDECIDED to ACTIVE because their priorities are higher

than all of their neighbors’. In the following phase, all neighbors of A, denoted as I, become

INACTIVE. Removing all nodes in {A ∪ I} and their adjacent links from G, we denote the

resulting subgraph as G′ and the node set of G′ as V (G′). No node in A is adjacent with

any node in V (G′) because otherwise that node in V (G′) would be INACTIVE and in I. So

removing all nodes in A and their adjacent links from G does not affect the ensuing phases.

Similarly, removing all nodes in I and their adjacent links from G does not affect neither

since a node becomes ACTIVE or INACTIVE irrespective of its INACTIVE neighbors in

phase 2. After the first two phases, we only have to run DMIS on the residual subgraph G′.

After two more phases, G′ becomes G′′. This process continues till the residual subgraph is

empty. Because some nodes are removed every time we go from a graph to its subgraph and

there are finite nodes in a graph, DMIS terminates in finite phases.

Analogous to complexity analysis in [5], it’s easy to prove that DMIS terminates in

O(log(n)) phases on average, where n is the number of nodes in the graph. Interested readers

can refer to [5] for more details of the proof. Theorem 2.2.2 shows DMIS finds a MIS of the

graph.

Theorem 2.2.2. The set S of all ACTIVE nodes is a MIS of the graph after DMIS termi-

nates.

Proof. We prove the theorem in two steps.

1. S is an independent set.

We prove this by contradiction. Suppose S is not an independent set, then there exist

two adjacent nodes u and v in S. Since a node only becomes ACTIVE if its priority is

higher than all its ACTIVE and UNDECIDED neighbors’ and u is ACTIVE, pu > pv.

Likewise, pv > pu. Contradiction. Thus S is an independent set.

9

2. The independent set S is maximal.

When DMIS terminates, a node is either ACTIVE or INACTIVE. ∀u 6∈ S, it is INAC-

TIVE, which means there exists an ACTIVE neighbor v ∈ S, whose priority is higher

than u’s. {u ∪ S} is not independent since u and v are adjacent. Hence S is a MIS.

The resulting MIS is the set containing all ACTIVE nodes, which are to be activated

in slot t. It is noteworthy that exchanged nodal state does not include priority, which is

computed locally even for neighbors’.

2.2.2 Pipelined precomputation

One salient feature of NAMA is that it requires no packet exchange to compute a

schedule and can thus be called on the fly. In a TDMA setting, a node can call NAMA as a

subroutine at the beginning of a slot to instantaneously determine if it should be active in

that slot. The idea of doing the same for DMIS is enticing, but the ability to do so proves

elusive. This is because, unlike NAMA, running DMIS requires multiple phases and each

phase incurs significant delay mainly due to contention to access the shared channel and

unreliable channel in step 1. The resulting excessive delay for data delivery is detrimental

for a wide range of time-sensitive applications.

To reduce DMIS’s delay while retaining its high concurrency, we decouple it from

data transmission by precomputing MIS of a slot M slots in advance. M is chosen such

that DMIS converges within M slots, at least with high probability. Ideally, M is set as

the product of the number of phases it takes for DMIS to complete and the number of slots

needed for every node to exchanges its nodal status with all its neighbors in each phase.

To determine the former, we log the conflict graphs during runtime and execute DMIS over

them offline to see how many phases needed for its completion. The latter depends on the

control signaling scheme and qualities of links between a node and its neighbors. In reality,

M is also bounded by available memory as we will elaborate in subsection 2.2.4.

10

In slot t, DMIS starts computing MIS for future slot (t + M) using nodes’ priorities

at slot (t + M). The intermediate result, i.e., the current MIS, is stored till slot (t + M).

When time reaches slot (t+M), a node simply looks up the precomputed MIS and decides

to become active or silent, without computing it on the fly like in NAMA. Since it takes M

slots to compute the MIS for each slot, in slot t, MISs for slot (t+ 1), (t+ 2), ..., (t+M) are

being computed. We organize their computation into a pipeline, where the MIS computation

of consecutive M slots overlaps. This is more efficient than computing them sequentially.

Moreover, we aggregate a vector of M states and exchange them in a single control packet

at once, other than convey each of the M states using a separate packet. This greatly saves

channel resources.

Figure 2.2 shows an example of the proposed precomputed pipeline in action when

M is 4. The x-axis denotes time in slot, the y-axis denotes the slot whose MIS is being

computed. The computation of MIS for slot 4 starts at slot 0 and continues in slots 1, 2, and

3. In slot 4, MIS for this slot has been precomputed and is ready for immediate activation.

Similarly, MIS for slot 5 is ready at slot 5, MIS for slot 6 is ready at slot 6, and so on. In

slot 3, MISs for the upcoming slots 4, 5, 6, and 7 are being computed simultaneously.

2.2.3 Dynamic graph

A graph changes over time as nodes join or leave the network, links establish or break.

This change confuses DMIS because it assumes the graph remains static before it converges.

We solve this issue by a snapshot-base approach. Specifically, when starting to compute

the MIS for a future slot (t + M) in slot t, we take a snapshot of the graph and use it for

the remaining computation even the graph changes within M slots. Hence, the graph is

consistent for each call of DMIS. One potential side effect of this approach is that ONAMA

defers the usage of the latest graph, which may degrade application performance at upper

layer. Even if this is the case, the degradation can be mitigated by making M smaller as we

shall discuss in subsection 2.2.4.

11

Figure 2.2: Pipelined precomputation.

Putting all building blocks together, we present the ONAMA protocol in Algorithm 1

as follows:

2.2.4 Implementation issues

A typical embedded device is equipped with extremely limited memory. For in-

stance, a TelosB [2] mote has only 10 KB of RAM. Implementing ONAMA on such resource-

constrained devices poses an additional challenge that is not found on resource-rich ones. To

overcome this challenge, we expose several key parameters for fine tuning to let upper layer

trade off between memory usage and performance. There are two places in ONAMA that

can expend significant amount of memory, especially when the network is large.

First, each node maintains a table containing all its potential neighbors with size

L. To store graph snapshot for each slot, a node needs 1 bit for each node in its neighbor

table, indicating whether they interfere or not. It thus costs each node L ∗M bits to store

local graph snapshots. To reduce snapshot footprint, we take snapshots every other G slots,

instead of every slot. After each snapshot, DMIS uses it to compute the MIS of the next

12

Algorithm 1 Pipelined precomputation for M slots ahead
1: /* Pipelined precomputation for M slots ahead */
2: for i ∈ [t+ 1, t+M]
3: call DMIS to precompute state for future slot i;
4: end for
5: Procedure DMIS
6: /* Keep on computing my state until it is decided */
7: while my state is UNDECIDED
8: Exchange nodal states with my neighbors;
9: Compute priorities for myself and my neighbors using Eq. 1;

10: if my priority is higher than all ACTIVE and UNDECIDED neighbors
11: Set my state as ACTIVE;
12: else if any of my higher priority neighbors is ACTIVE
13: Set my state as INACTIVE;
14: end if
15: end while

G consecutive slots. This reduces snapshot footprint by a factor of G. Nevertheless, larger

G is not always desirable since it makes the protocol less agile to graph change. G can be

tuned to strike a balance between memory consumption and protocol agility.

Second, in step 1 of a phase in DMIS, a node exchanges states with neighbors by

sending and receiving control packets, which can piggyback upper layer payload as well if

space permits. We further divide each slot into S subslots, out of which one is reserved

for data packets and the rest for control packets. Only one data or control packet can be

transmitted by a node in each subslot. In total, each node stores L ∗M intermediate states

for pipelined precomputation. On the one hand, because a fixed number of control packets

are needed for the convergence of DMIS for a slot on a given graph, a larger S packs more

control packets into a slot and thus lessens M and memory expenditure. On the other hand,

a larger S also increases control overhead and lowers channel utilization for data delivery. A

judicious selection of S again depends on memory consumption and performance tradeoff.

13

2.3 Evaluation

2.3.1 Methodology

We test ONAMA as a component of the PRK-based scheduling (PRKS) protocol.

PRKS [37] is a TDMA-based distributed protocol to enable predictable link reliability

based on the Physical-Ratio-K (PRK) interference model [36]. The PRK model marries

the amenability to distributed protocol design of the ratio-K model (i.e., interference range

= K * communication range) and the high fidelity of the signal-to-interference-plus-noise

ratio (SINR) model. Through a control-theoretic approach, PRKS instantiates the PRK

model parameters according to in-situ network and environment conditions so that each link

meets its reliability requirement after convergence. As stated in Section 2.2, PRKS essen-

tially defines a conflict graph for a given wireless network: a node in the graph denotes a

link with data transfer in the network, and a link exists between two nodes in the graph if

the corresponding links in the network interference with each other according to the PRK

model and its instantiated parameters. It is noteworthy that even the underlying network

is (semi-)static, the conflict graph is dynamic due to the constantly changing PRK model

parameters. Under the condition that link reliability is ensured, PRKS schedules as many

nodes as possible in the conflict graph, which is exactly what ONAMA intends to do. Be-

sides ONAMA, PRKS contains many other components such as link estimator, controller,

forwarder, time synchronization, and logging. The runtime interactions and resource sharing

between ONAMA and them can cause undesirable effects that do not manifest when running

ONAMA in isolation. By integrating ONAMA as a part of complex applications like PRKS,

we can test the robustness of its design and implementation under dynamic conflict graphs.

To demonstrate the benefits of ONAMA, we compare the following two PRKS vari-

ants:

• PRKS-NAMA: PRKS running on top of NAMA.

• PRKS-ONAMA: PRKS running on top of ONAMA.

14

At the beginning of a time slot, every node calls the NAMA or ONAMA component to

decide whether any incident links shall be active in this slot. We measure their performances

in two sensor network testbeds, NetEye [4] and Indriya [1]. Indriya is a wireless sensor

network deployed across three floors of the School of Computing at the National University

of Singapore, while NetEye is a wireless sensor network testbed on the third floor of the

Department of Computer Science at Wayne State University. In both testbeds, we set M ,

G, and S to be 112, 16, and 10, respectively.

Network and traffic settings. In NetEye and Indriya, we choose each node with prob-

ability 0.8 and 0.5, respectively, and the resulting set of nodes forming a random network.

NetEye deploys 130 TelosB motes in a grid with every two closest neighboring motes sep-

arated by 2 feet. The random network is generated by using a subset of the 130 motes in

experiment, in particular, using each node in NetEye with a probability of 0.8. Similarly,

nodes in Indriya are chosen with a probability of 0.5. For each chosen node A, another node

B (also in the random network) is chosen such that the packet delivery ratio (PDR) of the

link from A to B is at least 95% in the absence of interference. For each link, the sender

transmits a 128-byte packet to the receiver every 20 ms. Data transmission power is fixed

at -25dBm, i.e., power level 3 in TinyOS.

2.3.2 Measurement results

NetEye testbed. For various PDR requirements, Figure 2.3 shows the mean concur-

rency (i.e., number of concurrent transmissions in a time slot) of PRKS-NAMA and PRKS-

ONAMA, as well as a state-of-the-art centralized scheduling protocol iOrder [17], which

also activates as many links as possible while ensuring each link meets its PDR require-

ment. Not only does PRKS-ONAMA significantly increase concurrency over PRKS-NAMA

by up to 270%, but also it achieves a concurrency equal or close to that of iOrder despite

its distributed nature. This clearly demonstrates the effectiveness of DMIS in ONAMA to

activate more links simultaneously. It is worthwhile to note that though ONAMA seems to

outperform iOder in some regions, they are the same statistically speaking.

15

Figures 2.4 and 2.5 show the boxplots of PDR in PRKS-NAMA and PRKS-ONAMA

for different PDR requirements, respectively. We see even though PRKS-ONAMA improves

concurrency and channel reuse enormously, it still guarantees that link PDRs meet re-

quirements as PRKS-NAMA does. Because of higher concurrency without PDR sacrifice,

PRKS-ONAMA’s throughput is expected to be higher than PRKS-NAMA’s as verified by

Figure 2.6. Specifically, PRKS-ONAMA’s throughput is 3.0, 2.9, 2.7, 2.5 times of PRKS-

NAMA’s when the PDR requirement is 70%, 80%, 90%, and 95%, respectively. We also note

that as PDR requirement increases, throughputs in both protocols decrease due to lower

concurrency. Figure 2.7 shows PRKS-ONAMA reduces the mean delay of PRKS-NAMA by

a factor of 5.3, 4.6, 4.0, and 3.8 when the PDR requirement is 70%, 80%, 90%, and 95%,

respectively, where the delay is defined as the difference between the packet transmission

time and reception time. This significant improvement is due to both DMIS and pipelined

precomputation in ONAMA. Specifically, with a larger concurrency from DMIS, a node

has more transmission opportunities. Given a same PDR requirement, ONAMA has more

chances to transmit than NAMA, thus delivers data faster. In addition, ONAMA’s pipelined

precomputation does not require computing transmission slot on-the-fly as NAMA does, it

simply determines to be active or not according to the precomputed states.

Indriya testbed. Figures 2.8 and 2.9 show the link PDRs of PRKS-NAMA and PRKS-

ONAMA under different PDR requirements in Indriya, both meeting their requirements as

in NetEye.

Figures 2.10, 2.11, and 2.12 show the mean concurrency, mean throughput, and mean

delay of both protocols under different PDR requirements in Indriya, respectively. We see

similar relative performance as in NetEye but the degree of improvement is smaller. For

instance, PRKS-ONAMA’s throughput is only 1.5, 1.3, 1.3, 1.4 times of PRKS-NAMA’s

when the PDR requirement is 70%, 80%, 90%, and 95%. This is because links in Indriya are

sparser and a larger portion of them are already activated using NAMA. It is also worthwhile

16

70 80 90 95
0

2

4

6

8

10

12

PDR requirement (%)

C
o
n
c
u
rr

e
n
c
y
 (

p
a
c
k
e
ts

 p
e
r

s
lo

t)

PRKS−NAMA
PRKS−ONAMA
iOrder

Figure 2.3: Mean concurrency in NetEye.

70 80 90 95
70

75

80

85

90

95

100

P
D

R
 (

%
)

PDR requirement (%)

Figure 2.4: Packet delivery ratio (PDR) of PRKS-NAMA in NetEye.

17

70 80 90 95
70

75

80

85

90

95

100
P

D
R

 (
%

)

PDR requirement (%)

Figure 2.5: Packet delivery ratio (PDR) of PRKS-ONAMA in NetEye.

70 80 90 95
0

500

1000

PDR requirement (%)

T
h
ro

u
g
h
p
u
t
(p

a
c
k
e
ts

/s
e
c
)

PRKS−NAMA
PRKS−ONAMA

Figure 2.6: Mean throughput in NetEye.

18

70 80 90 95
0

100

200

300

400

500

PDR requirement (%)

L
a

te
n

c
y
 (

m
s
)

PRKS−NAMA

PRKS−ONAMA

Figure 2.7: Mean delay in NetEye.

to note that though ONAMA seems to have larger concurrency than iOder in some regions

of Figure 2.10, they are the same statistically speaking.

70 80 90 95
70

75

80

85

90

95

100

P
D

R
 (

%
)

PDR requirement (%)

Figure 2.8: Packet delivery ratio (PDR) of PRKS-NAMA in Indriya.

2.4 Related Work
There are a plethora of protocols to schedule transmissions collision-free in ad hoc

networks, such as NAMA and HAMA, to name a few. In Node Activation Multiple Access

19

70 80 90 95
70

75

80

85

90

95

100
P

D
R

 (
%

)

PDR requirement (%)

Figure 2.9: Packet delivery ratio (PDR) of PRKS-ONAMA in Indriya.

70 80 90 95
0

5

10

15

20

PDR requirement (%)

C
o
n
c
u
rr

e
n
c
y
 (

p
a
c
k
e
ts

 p
e
r

s
lo

t)

PRKS−NAMA
PRKS−ONAMA
iOrder

Figure 2.10: Mean concurrency in Indriya.

20

70 80 90 95
0

1000

2000

3000

PDR requirement (%)

T
h
ro

u
g
h
p
u
t
(p

a
c
k
e
ts

/s
e
c
)

PRKS−NAMA
PRKS−ONAMA

Figure 2.11: Mean network throughput in Indriya.

70 80 90 95
0

20

40

60

80

PDR requirement (%)

L
a
te

n
c
y
 (

m
s
)

PRKS−NAMA

PRKS−ONAMA

Figure 2.12: Mean delay in Indriya.

21

protocol (NAMA) [6], each node generates a unique priority by hashing and only accesses

the channel if its priority is the higher than those of its one-hop and two-hop neighbors.

It achieves collision-free scheduling, but suffers from low channel utilization as some nodes

are not activated even their activations cause no collision. Hybrid Activation Multiple Ac-

cess protocol (HAMA) [16] builds upon and improves NAMA by activating non-contending

entities, both nodes and links, whenever possible, thus it utilizes channel more efficiently.

Unfortunately, it requires radios capable of code division multiplexing. In contrast with

HAMA, ONAMA fully utilizes channel without additional requirement on radios.

Orthogonally, plenty of work identifies MIS in a distributed fashion[14][15], with the

FastMISv2 algorithm in [5] being the closest to our work. Akin to DMIS in ONAMA, Fast-

MISv2 also runs in multiple phases; in each phase, FastMISv2 includes a node in the MIS

only if its priority is higher than those of all its neighbors, which are excluded from the MIS.

There are quite a few critical distinctions, though. (1) Priority is calculated from a pseu-

dorandom number generator (PRNG) with generally different seeds on different nodes, not

from a common hash function. A node obtains its neighbor’s priority by packet exchange,

unlike in DMIS where a node computes its neighbor’s priority directly, which expends pre-

cious channel resources. Additionally, a new priority is generated from PRNG in each phase,

which consumes large amount of MCU time on embedded devices, while DMIS only gen-

erates priority once before the first phase. (2) Designed for generic distributed settings,

FastMISv2 ignores control signalling and doesn’t address the unique challenge posed by un-

reliable wireless channel. By contrast, ONAMA tackles the challenge explicitly in control

signalling by incorporating wireless characteristics. (3) FastMISv2 does not handle the long

delay incurred by MIS computation, making it unsuitable for delay-sensitive applications.

(4) Lastly but importantly, FastMISv2 assumes a static graph and fails if the graph changes

over time.

Finally, unlike all the aforementioned existing work that is evaluated in simulation at

best, ONAMA is implemented on resource-limited devices and verified over two real-world

testbeds.

22

2.5 Summary
In this paper, we propose the ONAMA protocol that schedules maximal number of

concurrent transmissions collision-free in a multi-hop wireless network. ONAMA has two

pillars: a distributed MIS algorithm tailored to wireless characteristics and the pipelined pre-

computation technique to reduce DMIS’s long delay. Extensive experiments on two testbeds,

each with 127+ nodes, have independently shown that it increases concurrency by a factor

of 3.7, increases throughput by a factor of 3.0, and reduces delay by a factor of 5.3 compared

to the state of the art, while still catering to links’ reliability requirements. Not limited to

PRKS, ONAMA can be used as a primitive for other applications that require distributed

MIS activation. Moreover, pipelined precomputation can be a general technique employed by

other distributed applications, where some information is needed imminently but obtaining

it requires considerable amount of time. One of the future directions is to investigate power

control mechanisms to further improve the performance of ONAMA.

23

CHAPTER 3: OPTIMAL REQUEST CLUSTERING FOR LINK
RELIABILITY GUARANTEE IN WIRELESS NETWORKED

CONTROL

3.1 Introduction
Wireless networks are increasingly being explored for real-time control of physical

processes [20] [21]. In wireless networked control systems such as those in industrial automa-

tion [22] [23], ensuring predictable communication link reliabilities (usually characterized by

packet delivery ratios) among sensors, controllers, and actuators is critical. In such scenarios,

the application layer of each sender requests a certain link reliability, and its lower layers

try to deliver the associated data packets to the receiver at the requested reliability level.

Providing reliability less than what is requested may cause control failures, while provid-

ing reliability higher than the actual need could lead to underutilization of communication

resources.

To guarantee that packets are delivered at requested reliability levels, Zhang et al.

proposed PRKS for wireless networked control [37]. PRKS is a TDMA-based distributed

protocol to enable predictable link reliability based on the Physical-Ratio-K (PRK) interfer-

ence model [36]. Through a control-theoretic approach, PRKS instantiates the PRK model

parameters according to in-situ network and environment conditions so that each link meets

its reliability requirement. In particular, PRKS defines a conflict graph for a given wireless

network: a node in the graph denotes a link with data transfer in the network, and a link

exists between two nodes in the graph if the corresponding links in the network interfere

with each other according to the PRK model. Under the condition that link reliability is

ensured, PRKS schedules as many nodes as possible in the conflict graph.

What remains open is how to guarantee heterogeneous reliability requirements for

applications. PRKS has only considered the case when there is one reliability request for

each link. In wireless networked control, however, different reliability requests from different

applications need to be satisfied. For example, safety-critical information and non-safety-

24

critical information gathered at the sender may well need different reliability guarantees.

Ideally, the lower layer should maintain an infinite number of reliability levels to support

all types of applications. In practice, however, providing only a (small) set of quantized

reliability levels makes sense in many respects. Firstly, it is difficult and costly to support

infinite number of reliability levels, especially for resource-constrained embedded systems.

Secondly, performance analysis is more tractable with finite number of reliability levels. Then

an important question is as follows:

Given a set of reliability requests and the maximum number of service levels that can

be maintained, how to determine a set of service levels, and how to map each request to an

appropriate service level, such that each request is guaranteed and the total cost of mapping

is minimized?

In this paper, we formally formulate the problem as an optimal request clustering

problem in the sense that each service level acts as a cluster, while all the requests mapped

into a same service level are said to be within a same cluster. Theoretically, a service level

may pick any real number between 0 and 1 (i.e., packet delivery ratio is between 0 and

100%), making the problem intractable. Towards addressing the problem, we have made the

following contributions:

• We formulate and propose an optimal solution for the Migratory Clustering Problem,

where a request can migrate from one service level to another during its lifetime.

• We also formulate and propose an optimal solution for the Non-Migratory Clustering

Problem, where a request must stay at the same service level once it is assigned to a

certain level.

• Unlike most existing clustering algorithms that just minimize the clustering cost, our

algorithms also ensure that each reliability request is clustered to a service level no less

than it, thus the reliability is guaranteed.

• Our clustering algorithms take into account the lifetimes of requests. On the contrary,

most existing clustering algorithms did not consider the lifetimes of requests, thus a

25

current optimal clustering may not be optimal in the future due to the expiration of

some requests.

3.2 Migratory and Non-migratory Clustering Problem

3.2.1 System model

We consider a transmitting node in a multi-hop wireless control network. The node

may generate or forward data to next hop. Assume that time is slotted and indexed by

t ∈ {0, 1, 2, ...}.

Request. A request ri(t) is characterized by a triple (ri, ai, ei), where ri ∈ [0, 1] is the

required reliability, ai is the time when the request arrives at the node, and ei is the time

when the request expires, respectively. The required reliability stays unchanged during the

lifetime of the request, i.e., ri(t) = ri for t ∈ [ai, ei]. Figure 3.1(a) shows an example of 4

requests. In the example, request r1(t) arrives at t = a1 = 1 and expires at t = e1 = 4,

requiring a reliability of r1 = 0.8, and so on. Note that given a time instant t, the number

of live requests gathered at the node may be less than 4. Unlike bursty data traffic in the

regular Internet, data traffic in wireless networked control tend to be periodic (e.g., periodic

sensor sampling) and predictable [41]. Thus we assume, as in many existing studies [32] [80],

that the request information is known in this study.

Service level. A service level is the actual link reliability provided to a request. In a

running system, it usually requires certain memory and computation overhead to maintain

a service level [37]. It is therefore reasonable to assume that at any time t, the node can

only maintain L service levels. Upon its arrival, each request must be assigned to a service

level sj(t) ∈ [0, 1] (j ∈ {1, 2, ..., L}) immediately. A service level acts as a cluster and can

host multiple requests. Without ambiguity, we will use the terms service level and cluster

interchangeably in the paper.

Migratory and non-migratory clustering. We consider two types of clustering:

migratory and non-migratory clustering. The former allows a request to make a transition

to another cluster from one time instant to another, while the latter requires a request to stay

26

0 1 2 3 4 5 6 7 8 9 10 time

Required reliability

0.1

0.5

1

r1 = 0.8

r2 = 0.5

r3 = 1

r4 = 0.3

0 1 2 3 4 5 6 7 8 9 10 time

Service levels

0.1

0.5

1

r2

(a) An example of 4 requests

r1

0.3

0.8

0.3

0.8

r3

r2, r4

(b) Migratory clustering for the requests shown in (a)

0 1 2 3 4 5 6 7 8 9 10 time

Service levels

0.1

0.5

1 r1

0.3

0.8

(c) Non-migratory clustering for the requests shown in (a)

r1, r3

r3r1, r3

r2 r2, r4

r4

r4

Figure 3.1: An illustration of migratory and non-migratory clustering with 4 requests and 2

service levels. At any time t, only 2 service levels can be maintained.

27

in the same cluster once assigned. Figure 3.1(b) shows an example of migratory clustering

for the requests shown in Figure 3.1(a). For instance, request 1 is assigned to service level 0.8

from t = 1 to t = 3, and assigned to service level 1 from t = 3 to t = 4. Figure 3.1(c) shows

an example of non-migratory clustering for the same requests, where request 1 must stay at

service level 1 during its lifetime due to the non-migratory constraint. In both cases, there

are only two service levels maintained at any time. Generally, migratory clustering finds its

application in scenarios where migrating a request from one cluster to another introduces

negligible overhead. On the other hand, non-migratory clustering is more suitable for cases

where migration is expensive or infeasible. Therefore, we define the clustering cost as time-

dependent as follows:

ci(t)
ri(t)→sj(t)

=


sj(t)− ri, if sj(t) ≥ ri;

+∞, if sj(t) < ri.

(3.1)

The notation ri(t) → sj(t) denotes that a request ri(t) is mapped to a service level

sj(t) at time t. The definition is quite intuitive: if the provided reliability is higher than the

request, the cost is the difference between the service level and the request, accounting for the

overprovisioning of the resource; if a service level is lower than the request, the cost is infinite,

meaning the reliability requirement cannot be met, thus the clustering is not acceptable. The

hard constraint on reliability makes sense for wireless networked control since reliability lower

than the request may well lead to control divergence or even catastrophe.

3.2.2 Problems definition

Migratory Clustering Problem (MCP).

Given a set of requests r(t) = {r1(t), r2(t), ..., rN(t)}. For any i ∈ [1, N] and t ∈ [ai, ei],

ri(t) = ri. Let tmin = min{a1, ..., aN} and tmax = max{e1, ..., eN}. Denote a clustering

C = {s(tmin), ..., s(tmax)}, where s(t) = {s1(t), s2(t), ...} is a set of service levels at time t,

and ||s(t)|| ≤ L,∀t ∈ [tmin, tmax]. Then the problem is to find a clustering C∗ to

28

Minimize

N∑
i=1

ei∑
t=ai

ci(t)
ri(t)→sj(t)

, (3.2)

where the second summation is the total cost of clustering request ri(t) during its lifetime.

Non-Migratory Clustering Problem (NMCP).

Given a set of requests r(t) = {r1(t), r2(t), ..., rN(t)}. For any i ∈ [1, N] and t ∈ [ai, ei],

ri(t) = ri. Let tmin = min{a1, ..., aN} and tmax = max{e1, ..., eN}. Denote a clustering

C = {s(tmin), ..., s(tmax)}, where s(t) = {s1(t), s2(t), ...} is a set of service levels at time t,

and ||s(t)|| ≤ L,∀t ∈ [tmin, tmax]. Since ri(t) is mapped to a same sj(t) during its lifetime

t ∈ [ai, ei], the problem is to find a clustering C∗ to

Minimize
N∑
i=1

(ei − ai)× ci(ai)
ri(t)→sj(t)

. (3.3)

3.3 Optimal Algorithm for Migratory Clustering

3.3.1 Main idea

At first glance, the problem MCP appears very similar to the k -means clustering

problem. However, they are fundamentally different. Firstly, the directed distance between

a cluster member and the cluster center can be either positive or negative in the k -means

problem. In our problem, a service level cannot be lower than the requests assigned to it,

otherwise an infinite cost would incur. Secondly, k -means did not consider the lifetime of

the requests, thus a current optimal clustering may not be optimal in the future due to the

expiration of some members.

Minimize clustering cost at each time instant. Rewrite (3.2) into (3.4), the objective

is equivalent to minimize the total cost at each time instant.

Minimize

tmax∑
t=tmin

N∑
i=1

ci(t)
ri(t)→sj(t)

×Ii(t) (3.4)

29

Ii(t) =


1, if t ∈ [ai, ei];

0, otherwise.
(3.5)

The indicator Ii(t) is introduced since a request is not necessarily alive during the

whole period of [tmin, tmax]. A request is only assigned to a service level if it is still alive.

In the following, we further discuss some observations on how to minimize the total

cost at each time t. In particular, we first prove that we can narrow down the search space

into a finite set without performance loss, and then we present a dynamic programming

algorithm to find the optimal clustering.

Pruning search space. In theory, the service levels can be any real number in the

range [0, 1], making the problem intractable. Fortunately, we can leverage properties of the

problem to shrink the search space into a finite set.

Lemma 1. For MCP, at any time t, the reliability service levels must be selected from the

set of requests in order to minimize the cost.

Proof. We prove by contradiction. Without loss of generality, let r̃(t) = {r1(t), r2(t), ..., rM(t)}

be a set of live requests at time t sorted in non-decreasing order of reliability, and s(t) =

{s1(t)∗, s2(t)∗, ..., sK(t)∗} an optimal clustering for r̃(t). Assume there is some sj(t)∗ /∈ r̃(t).

Case 1. sj(t)
∗ < r1(t). In this case, if any request is assigned to sj(t)∗, it would

introduce a cost of +∞ according to (3.1), which obviously is not optimal; if no request is

assigned to sj(t)∗, this service level would be wasted, meaning that we could have a better

clustering by choosing another service level, thus sj(t)∗ is not optimal either.

Case 2. sj(t)∗ > rM(t). In this case, if we move sj(t)∗ to rM(t), the cost would be

further reduced, meaning sj(t)∗ is not optimal.

Case 3. rm(t) < sj(t)
∗ < rn(t) for some requests rm(t) and rn(t). In this case, similar

to Case 2, we could reduce the cost by moving sj(t)∗ to rm(t). By doing this, the costs for

clustering requests lower than rm(t) would reduce, while the costs for clustering requests

30

higher than rn(t) remain unchanged. Overall, the total cost would reduce, meaning sj(t)∗ is

not optimal.

Lemma 2. At any time t, the highest-reliability request from the current live set must be

selected as a service level.

Proof. This property is straightforward noting that assigning a service lower that than the

request leads to infinite cost. If we do not include a service level that equal to the highest

live request at current time, there is no service level that can host this request.

Dynamic programming. Inspired by an edge detection algorithm [29], we adopt a

dynamic programming subroutine MCP-Slot to find an optimal clustering for the live requests

at time t.

3.3.2 The algorithms

Given a set of live requests at a time slot, Algorithm 2 optimally clusters these

requests into different service levels. In the algorithm, OPT (n, l) denotes the optimal cost

for clustering the first n requests using l service levels, as shown in Figure 3.2. Line 3 of the

algorithm shows that the cost is 0 if there is no request alive at current time. Line 5 means

the clustering cost is 0 if there is no service level available thus no clustering is performed.

Line 6 denotes that only one service level is available for clustering. In this case, the highest

request, i.e., rn, is selected as the service level according to Lemma 2. Lines 7 to 12 compute

the optimal cost for OPT (n, l) for other n and l. If n ≤ l, the cost is 0 since each request

can make itself as a service level. Otherwise, dynamic programming is applied. The key idea

is, to cluster n requests into l levels, we first find the optimal cost of clustering the first k

requests into l − 1 levels, then cluster the remaining requests, i.e., {rk+1, rk+2, ..., rn}, into

the l-th level. According to Lemma 2, the l-th level must be rn. Among all possible choices

of k, we find the one leading to the least cost. This process iterates until N requests are

clustered. At last, return the optimal cost of clustering N requests into L levels.

31

Note that our solution differs from the aforementioned algorithm [29] in several ways.

Firstly, rather than restricting the search space into a finite set without justification, we first

weaken this assumption and then prune the search space without any performance loss (i.e.,

Lemma 1). Secondly, the signal processing algorithm uses a cluster-wise fitness function

without the notion of cluster center, while we use a request-wise cost function and require

that the value of a cluster center is no less than all of its members. Thirdly, the existing

algorithm does not specify how to determine opt(j) for j = 0, 1, ..., n.

Algorithm 2 MCP-Slot
1: Sort current live requests in non-decreasing order of the required reliability;
2: for l = 0 to L
3: OPT (0, l) = 0;
4: end for
5: for n = 1 to N
6: OPT (n, 0) = 0;

7: OPT (n, 1) =
n∑

i=1

|rn − ri|;

8: end for
9: for l = 2 to L

10: for n = 1 to N
11: if n ≤ l
12: OPT (n, l) = 0;
13: else

14: OPT (n, l) = min
l−1≤k≤n−1

{OPT (k, l − 1) +
n∑

i=k+1

|rn − ri|};

15: end if
16: end for
17: end for
18: return OPT (N,L)

Then, we can apply Algorithm 2 to generate the clustering for each time instant

between tmin and tmax. We denote this algorithm as Algorithm 3.

3.3.3 Correctness and complexity of the algorithms

Given that the Algorithm MCP-Slot is a basic element of Algorithm MCP, we analyze

the correctness of MCP-Slot.

32

0 0 0 0 0

0

0

0

0

0

0

0

0 1 2
...

L

0

1

2

3

...

N

Figure 3.2: The table of solutions for OPT (n, l) in Algorithm 2. Fill the table from bottom

to top, left to right. When filling in box, we only need to look at boxes we have already filled

in.

33

Algorithm 3 MCP-Opt
1: tmin =min{ai}, tmax =max{ei};
2: for t = tmin to tmax

3: Current live requests set r̃(t) = ∅;
4: for i = 1 to N
5: if ai ≤ t ≤ ei
6: r̃(t) = ri ∪ r̃(t);
7: end if
8: end for
9: Call Algorithm 2 to compute a clustering for r̃(t);

10: end for

Theorem 3.3.1. Given a set of live requests at time t, Algorithm 2 gives an optimal clus-

tering for that time instant.

Proof. For l = 1, OPT (n, 1) =
n∑

i=1

|rn − ri| is the only way of clustering due to Lemma 2.

For l > 1, we just need to show that OPT (n, l) = min
l−1≤k≤n−1

{OPT (k, l− 1) +
n∑

i=k+1

|rn − ri|}

is actually optimal. To compute OPT (n, l), we only have two choices for service level l:

Case 1. Leave l: This means that the introduction of the l-th service level will not

reduce the cost obtained by clustering n requests over l − 1 levels. Thus, OPT (n, l) =

OPT (n, l − 1).

Case 2. Take l: Then we have one more service level to use. The best we can do is

to assign k requests into l − 1 levels, and n− k requests into the l-th level. In determining

what k is, we exhaustively search a k such that the cost is minimized. In this case, therefore,

OPT (n, l) = min
l−1≤k≤n−1

{OPT (k, l− 1) +
n∑

i=k+1

|rn − ri|}. Note that the term
n∑

i=k+1

|rn − ri| is

due to Lemma 2.

Taking two cases together, we have OPT (n, l) = min{ min
l−1≤k≤n−1

{OPT (k, l − 1) +

n∑
i=k+1

|rn−ri|}, OPT (n, l−1)}. Due to the cost function we use, it is clear that the clustering

cost decreases as the number of service levels increases, thus we can ignore Case 1.

The complexity of Algorithm 2 is dominated by the loop block from line 7 to line

12. Clearly, it is O(LN2). Therefore, the complexity of Algorithm 3 is O(LN2T), where

T = tmax − tmin.

34

3.4 Optimal Algorithm for Non-migratory Clustering
Unlike MCP, which finds an optimal clustering at each time instant independently,

NMCP must determine the service level for each request upon its arrival, and each request

stays at the same level during its lifetime.

3.4.1 The algorithm

We propose Algorithm 4 to solve the NMCP problem. In the algorithm, OPT (n, l)

denotes the optimal cost for clustering the first n requests using l service levels for any pos-

sible combinations of n and l. The dynamic programming procedure is similar to Algorithm

2. The major difference lies in the way of mapping a set of requests into a service level.

The function MAPPING() maps a set of input requests using one service level. Note that

there may be temporal reuse of this service level. Figure 3.3 illustrates this. In the example,

there are 7 requests and only one service level is maintained. The function MAPPING()

first partitions the requests into 2 disjoint subsets such that any request from first subset

will not overlap with any request from second subset in time. These two subsets therefore

can use their own service levels without violating the constraint of only one service level

maintained at any time. Within each subset, the highest request is selected as the service

level. In practice, the number of disjoint subsets determines the degree of temporal reuse of

a service level.

0 time

Required reliability

1

B

C

A

D E

F

G

(a) A set of requests (b) Conflict relations of lifetimes

Figure 3.3: An illustration of temporal reuse of a service level.

35

Algorithm 4 NMCP-Opt
1: for l = 1 to L
2: OPT (0, l) = 0;
3: end for
4: for n = 1 to N
5: OPT (n, 0) = 0;
6: OPT (n, 1) =MAPPING([r1, ..., rn]);
7: end for
8: for l = 2 to L
9: for n = 1 to N

10: if n ≤ l
11: OPT (n, l) = 0;
12: else
13: OPT (n, l) = min

l−1≤k≤n−1
{OPT (k, l − 1) +

MAPPING([rk+1, ..., rN]};
14: end if
15: end for
16: end for
17: return OPT (N,L)
18: MAPPING(r)
19: Partition set r into disjoint subsets such that requests from different subsets do not

overlap with each other in lifetime;
20: for each disjoint subset
21: Make the highest request in the subset as the center;
22: Compute the overall cost of this subset;
23: end for
24: return Total cost of all disjoint subsets;

3.4.2 Correctness and complexity of the algorithm

Theorem 3.4.1. Given a set of requests, Algorithm 4 gives an optimal clustering for NMCP.

Proof. For l = 1, OPT (n, 1) = MAPPING([r1, ..., rn]) is the only way of clustering to min-

imize cost without violating reliability requirement. For l > 1, assume we have computed

and stored the optimal clustering for the first n − 1 requests. To compute OPT (n, l), we

assign k requests into l−1 levels, and n−k requests into the l-th level. In determining what

k is, we exhaustively search a k such that the cost is minimized. We consider the following

two cases:

36

Case 1. There is no overlapping in lifetime between any two of the requests in

[rk+1, ..., rn]. In this case, the function MAPPING() partitions the requests into n − k

disjoint subsets (i.e., each request make itself a cluster). Thus the cost is 0, which is optimal.

Case 2. There is overlapping in lifetime between some requests in [rk+1, ..., rn]. With-

out loss of generality, suppose the n − k requests are partitioned into m disjoint subsets.

Due to temporal reuse of one service level and exhaustive search of k, the clustering is

optimal.

The function MAPPING() can be easily implemented in O(N2), thus the complexity

of Algorithm 4 is O(LN3).

3.5 Simulation Results
In this section, we compare the proposed optimal algorithms with a variant of the

well known k -means clustering via MATLAB simulations. The k -means clustering does not

guarantee reliability by default. To allow it comparable with our algorithms, we modify it

by making the service level of each cluster be the highest request in the cluster. We also

use M-k -means and N-k -means to denote migratory and non-migratory k -means clustering,

respectively. Figure 3.4 shows the total cost of different methods when 100 requests and 100

time slots are simulated. The reliability of each request is randomly generated from [0, 1], and

the arrival time and expiration time are randomly picked from [1, 100]. The result shows that

both MCP-Opt and NMCP-Opt outperform their counterparts M-k -means and N-k -means.

The reason is because k -means clustering randomly initializes the cluster centers and does

not guarantee global optimality by design. In addition, MCP-Opt outperforms NMCP-Opt

since MCP can optimize the clustering on a time slot basis while NMCP does not have such

degree of freedom. In all cases, the cost decreases as the number of service levels increases.

However, the performance gain becomes negligible when the service level reaches certain

threshold. Figure 3.5 shows the total cost of different methods when 20 service levels and

100 time slots are used. As the number of requests increases, the cost also increases in all

cases.

37

Figure 3.4: Total cost vs. number of service levels L (number of requests N = 100).

Figure 3.5: Total cost vs. number of requests N (number of service levels L = 20).

38

3.6 Related Work
Clustering has been well studied in machine learning under the context of unsuper-

vised learning, where no labels (or cluster centers) are available beforehand [26]. Among all

the clustering algorithms, k -means [27] and its variants [28] are widely used. The basic idea

of k -means is to first randomly pick k cluster centers; then assign the input points to the

closest centers; update the new cluster centers as the means of the points in each cluster. Re-

peat this procedure until no further improvement can be made. The k -means algorithm has

the following drawbacks. Firstly, it does not guarantee global optimality due to the random

initialization of the cluster centers. A large gap between local optimum and global optimum

may exist. Secondly, the Euclidean distance between the point and its cluster center is used

to measure the clustering quality, which may lead to unsatisfactory clustering.

Clustering has also been considered in signal processing. Edge detection, in partic-

ular, finds a set of edge pixels within an image row (or column) as a problem of optimally

partitioning that row into a set of segmentations [29] [30]. An algorithm based on dynamic

programming is guaranteed to find the global optimum. The proposed algorithm, however,

has the following drawbacks. Firstly, it restricts the search space to a finite set assuming

that this will not result in significant resolution loss. In practice, the search space is infinite,

thus such assumption is open to justification. Secondly, the proposed algorithm does not

consider the lifetime of the input. Assuming data points never disappear after arrival, it

takes a one-shot clustering for all the input points. In reality, however, old data points may

disappear over time and should not be considered for clustering. For example, in real-time

scheduling [80], each data packet is associated with a deadline. It is either transmitted before

the deadline or discarded if the deadline has been missed.

39

3.7 Summary
We have propose two algorithms to address the problem of clustering heterogeneous

reliability requirements into a limit set of service levels. Our solutions are optimal, and they

also provide guaranteed reliability, which is critical for wireless networked control. Future

work includes incorporating our algorithms into a running system by considering the wireless

channel conditions and medium access control [37].

40

CHAPTER 4: PROBABILISTIC PER-PACKET REAL-TIME
GUARANTEES FOR WIRELESS NETWORKED SENSING AND

CONTROL

4.1 Introduction
Embedded wireless networks are increasingly being explored for mission-critical sens-

ing and control in many domains. In real-time augmented vision, for instance, wireless

networks can enable the fusion of real-time video streams from spatially distributed cameras

to eliminate the line-of-sight constraint of natural human vision and thus enable seeing-

through obstacles [40]. In industrial automation, wireless-enabled mobile, pervasive, and

reconfigurable instrumentation and the significant cost of planning, installing, and maintain-

ing wired network cables have made wireless networks attractive for industrial monitoring

and control; industrial wireless networking standards such as WirelessHART, ISA100.11a,

and WIA-PA have also been deployed in practice [41]. Machine-type communication for

real-time sensing and control has also become a major focus of the emerging 5G wireless

network research and development [47].

Unlike traditional, best-effort wireless networks, reliable and real-time delivery of mes-

sages is critical in wireless networked sensing and control (WSC) systems [54]. In industrial

WSC systems, for instance, the reliability and timeliness of data delivery directly impact the

safety and optimality of sensing and control tasks. Since WSC differs dramatically from the

traditional throughput-centric wireless networks due to its mission-critical nature, new de-

sign objectives and perspectives are necessary for offering real-time Quality of Service (QoS)

in WSC systems.

Per-packet real-time communication guarantee. Wireless communication inherently

introduces non-zero packet error probability due to factors such as the uncertainty of lossy

links and the contention among different nodes/links, and it introduces non-zero delay due

to shared wireless medium and the time taken to transmit each packet. There exist a

few recent studies that consider real-time communication guarantees in wireless networks

41

[38, 39, 50, 51, 70, 71, 72], as shown in Table 4.1. Focusing on the long-term ratio of

packets that are delivered before their deadlines, the existing frameworks do not ensure

short-term timeliness. For example, consider the scenario shown in Table 4.2. A sensor

node periodically sends data to a controller. The controller makes control decision in each

period based on the information it collects and requires that at least 90% of the packets are

received in time. Otherwise, control failure or even catastrophe may happen. In both cases,

the average timely delivery ratios are 90%. In the second case, however, period 2 and period

4 fail to achieve the required delivery ratio due to channel fading, thus the system is subject

to transient instability.

In many real-time WSC systems, stringent per-packet real-time communication guar-

antee is important since it is needed for predictable system performance. For example, in

industrial real-time augmented reality applications [55][56][57], real-time delivery of each

packet enables seamless, naturalistic 3D reconstruction of real-world scenes (e.g., industrial

processes), and consecutive packet loss (which may happen if we only ensure long-term timely

delivery ratio) may well lead to uncomfortable human experience. In networked feedback

control, consecutive packet loss may well lead to system instability and cause safety concerns;

in addition, a packet of sample data will be dropped if the packet has not been successfully

delivered by the time a new sample data is collected, and, in this case, the probabilistic

guarantee of real-time delivery of each packet enables the modeling of the packet drop pro-

cess as a random sampling process, thus facilitating the use of random sampling theories

to characterize the impact of probabilistic wireless communication on networked control

[60][61][62][63][64][65] and facilitating the joint design of wireless networking and networked

control as well as the development of field-deployable WSC systems.

Another feature of most WSC systems is that traffic periods (i.e., inter-packet in-

tervals) are allowed to vary within a certain range as long as such changes do not affect

critical sensing and control functions [68, 69]. So there exist the challenge and opportunity

42

of selecting the optimal traffic periods for optimal sensing and control performance while

ensuring that the required real-time communication requirements are satisfied.

Contributions. For ensuring probabilistic real-time communication guarantee of each

packet as required by real-time WSC systems, this work proposes a probabilistic real-time

wireless communication framework that effectively integrates real-time scheduling theory

with wireless communication. Major contributions are as follows:

• The per-packet probabilistic real-time QoS is formally modeled. To the best of our

knowledge, this paper is the first to propose such notion of timeliness. Existing for-

mulations and designs do not ensure the stringent per-packet assurance as required by

WSC systems, since improving the average performance of the network in the long-term

does not guarantee short-term QoS.

• R3 mapping is proposed to translate the upper-layer requirement and the lower-layer

link reliability into the optimal number of transmission opportunities reserved for each

packet.

• An optimal real-time scheduling algorithm and a sufficient and necessary admission

test are proposed and formally proved.

• Algorithms are proposed to select packet generation periods to maximize system utility.

Organization of the rest of paper. Section 5.2 summarizes related work. In Sec-

tion 5.3, we present the system model and problem statement. In Section 4.4, a probabilistic

per-packet real-time communication framework is proposed and an optimization problem

is formulated and solved. Experimental results are presented in Section 5.5. Section 4.6

addresses the impact of the timescales of real-time communication, multi-channel settings,

control signaling unreliability, and distributed implementations. Finally, Section 5.6 con-

cludes the paper.

43

4.2 Related Work

4.2.1 Real-time scheduling

In traditional real-time systems such as computer processors, the most commonly

used scheduling policies are priority-driven, including fixed-priority and dynamic-priority

schemes. A fixed-priority algorithm assigns the fixed/same priority to all jobs (i.e., instances

of a task) in each task. For example, the Rate Monotonic algorithm [44] assigns priority based

on the rate (or period): the shorter the period of a task, the higher its priority. Another

example is the Deadline Monotonic algorithm [45], which assigns a higher priority to a job

with a shorter relative deadline. In contrast, dynamic-priority scheduling algorithms assign

priorities dynamically. The Earliest Deadline First (EDF) algorithm [44] is a preemptive

priority-based dynamic scheduling algorithm. The scheduler always schedules the active

task with the earliest absolute deadline.

Time-Sensitive-Networking (TSN) [41] has recently been proposed to enable real-time

communication in industrial networks. Focusing on extending the IEEE 802.1-standards-

based Ethernet networks, TSN-oriented work examines issues in real-time wired communi-

cation instead of real-time wireless communication.

Real-time scheduling for wireless network has drawn increasing interest recently. By

leveraging real-time scheduling theory for processors and incorporating unique wireless char-

acteristics, a Conflict-aware Least Laxity First algorithm was proposed for WirelessHART

[50]. Analysis for EDF in wireless sensor-actuator networks was investigated [51]. The key

insight from these work is to draw an analogy between wireless channel and a processor such

that the classic real-time theories can be leveraged. However, they did not reveal the inherent

relationship between the application requirement, link reliability, and resource reservation.

They also did not ensure short-term probabilistic real-time packet delivery. There also exist

other research efforts that consider real-time communication guarantees in wireless networks

[38][39]. Modeling the delivery ratio of packets that meet their deadlines as a long-term,

asymptotic average over multiple (and infinitely many) transmission periods, the proposed

44

frameworks in those studies do not assure short-term timeliness either. IEEE 802.15.4 or

802.11 based real-time protocols have also been investigated for mission-critical industrial

systems. A real-time message-scheduling algorithm was proposed for IEEE 802.15.4-based

industrial WSNs [70]. An analysis of the real-time performance that can be achieved in

QoS-enabled 802.11 networks has been carried out [71]. RT-WiFi is a TDMA data link layer

protocol based on 802.11 physical layer to provide deterministic timing guarantee on packet

delivery in wireless control systems [72]. Again, these methods have not been designed for

applications that need per-packet real-time guarantees. Probabilistic real-time scheduling

methods have also been proposed for WirelessHART [34] and fault-tolerant EDF scheduling

[35], but they have not considered the real-time wireless scheduling problems studied in this

paper either.

4.2.2 Reliability-oriented wireless transmission scheduling

Providing predictable link reliability is critical in WSC systems. To guarantee that

packets are delivered at requested reliability levels, Zhang et al. proposed PRKS for wireless

networked control [37]. PRKS is a TDMA-based distributed protocol to enable predictable

link reliability based on the Physical-Ratio-K (PRK) interference model [36]. Through a

control-theoretic approach, PRKS instantiates the PRK model parameters according to in-

situ network and environment conditions so that each link meets its reliability requirement.

In particular, PRKS defines a conflict graph for a given wireless network: a node in the

graph denotes a link with data transfer in the network, and a link exists between two nodes

in the graph if the corresponding links in the network interfere with each other according

to the PRK model. Under the condition that link reliability is ensured, PRKS schedules as

many nodes as possible in the conflict graph. Based on the predictable link reliability as

ensured by algorithms such as PRKS, this paper develops the framework and algorithm for

ensuring predictable per-packet real-time communication.

45

4.3 System Model and Problem Statement
This section presents the system models and real-time communication scheduling

problem considered in this paper.

4.3.1 Communication model

Similar to [52][53], the system consists of n wireless sensors and one controller, i.e.,

access point (AP), as shown in Figure 4.1. All the sensors are within the communication

1

2

3

n

AP

p1
p2

p3

pn

Figure 4.1: System model: one AP and n sensors.

range of the controller. Time is slotted and synchronized across the controller and sensors,

and the wireless transmissions between the sensors and controller are scheduled in a TDMA

manner. For simplicity of presentation, our discussion focuses on a centralized master-slave

architecture where the scheduler lies in the AP. At the beginning of each time slot, the AP

broadcasts a short control signaling message to indicate the sensor that shall transmit in

the current time slot. For simplicity of presentation, we assume that the control signaling is

46

reliable (e.g., through transmission power control). (We will discuss how to address potential

unreliability in control signaling in Section 4.6.3, and we will discuss potential distributed

approaches in Section 4.6.4.) The duration of a time slot is the time required for the controller

to send the control packet plus the time for a sensor to transmit a data packet of certain

fixed length. All the time slots are of the same length. To avoid transmission collision, there

can be at most one active sensor transmitting at each time slot.

The link reliability between a sensor i and the controller is pi, meaning that a packet

transmission succeeds in probability pi. Similar to [46], the event of successful transmissions

along a link is assumed to be i.i.d. over time, thus whether a packet can be successfully

delivered at a time slot is independent of the status of earlier transmissions. Note that the

communication along a wireless link may well be i.i.d. in practice when mechanisms such as

transmission power control is used to ensure a certain communication reliability at each time

instant based on in-situ wireless channel conditions. In addition, as we will discuss in more

detail in Section 5.4.2, our methodologies of probabilistic real-time scheduling also applies

to other wireless link models such as Markovian models and links with deep fading.

4.3.2 Probabilistic QoS model

The traffic on link i is characterized by a 4-tuple (Ti, Ti,max, Di, Pi):

• Period Ti: sensor i generates one data packet every Ti time slots. Wireless networked

control can usually tolerate a flexible traffic period, provided the period is chosen below

an upper bound Ti,max, since a traffic period too large may not generate sufficient

packets for the control application. In a very general framework, Ti is the design

variable to represent the possible choices of the designer at the stage of the system

design.

• Relative deadline Di: for client i, each packet is associated with a relative deadline

Di in units of time slots. A packet arriving at time slot t should be successfully

delivered no later than time slot t + Di; otherwise, the packet is dropped. Since

the node always sends new sensing and control signal, Di ≤ Ti. In this paper, Di

47

and Ti are assumed to be equal, and this scenario is usually referred to as implicit

deadline in classic real-time systems and finds its application in various areas [48]. Note

that heterogeneous deadlines across different links are considered since more stringent

deadlines are assigned to more critical sensor nodes in practice.

• Application requirement Pi: due to inherent dynamics and uncertainties in wireless

communication, real-time communication guarantees are probabilistic in nature. Thus

a probabilistic QoS metric is defined.

Definition 1 Link imeets probabilistic per-packet real-time guarantee if ∀j, Prob{Fij ≤

Di} ≥ Pi, where Fij is the delay (measured in the number of time slots) in successfully

delivering the j-th packet of link i. Intuitively, the probabilistic per-packet real-time
guarantee for link i ensures that in an arbitrarily long execution history, a randomly

selected packet of link i will meet the deadline Di at least in probability Pi.

Remarks. Considering TDMA scheduling in this work, the parameters Ti, Ti,max, and Di

are all integers for each link i. The proposed probabilistic QoS model differs fundamentally

from the classic soft-real-time model where the QoS metric is the long-term timely delivery

ratio (i.e., the long-term ratio of the number of packets successfully delivered in time to the

total number of packets transmitted).

4.3.3 Problem statement

Based on the system model, an important question to ask is as follows. Given a set of

n links with each link i having a link reliability pi and periodic traffic (Ti, Ti,max, Di, Pi), where

Di = Ti and Ti can vary in a range with an upper bound Ti,max, are the set of links schedulable

to meet the probabilistic per-packet real-time communication requirements? If yes, find a

set of optimal periods such that the system utility (to be defined precisely in Section 4.4.5)

is maximized while ensuring real-time schedulability; If no, indicate the infeasibility.

To answer this question, a probabilistic real-time wireless communication framework

is proposed in the next section.

48

4.4 Wireless Scheduling Framework for Probabilistic Per-
Packet Real-Time Communication Guarantee

4.4.1 Overview

Compared with scenarios where every packet transmission is successful, probabilistic

communication errors in wireless systems lead to increased delays in delivering packets to

their destinations and thus introduce additional deadline violations and packet drops. This

additional packet drop may well cause non-negligible degradation in the quality of data

delivery. Thus, the decision regarding whether a set of links is schedulable must take into

consideration the inherent nature of probabilistic wireless communication.

For example, consider a simple case where there are two links and each link generates

one packet in a period of 3 time slots. If there are no channel errors (as assumed in classic

real-time systems), the required delay guarantee can be provided to every packet of every link

(Figure 4.2(a)). In the presence of slight channel errors (Figure 4.2(b)), the delay experienced

by each packet is increased by at most one time slot, but both links can still deliver their

packets on time. Figure 4.2(c) shows the case when the links are not schedulable. At the

third time slot, both links need to send out the packet since this is the last slot in current

period. However, only one can send, and the other has to drop its packet. Thus packet drop

happens.

For a packet that needs to be successfully delivered across a link i within deadline

Di and in probability no less than Pi, the requirement can be decomposed into two sub-

requirements: 1) successfully delivering the packet in probability no less than Pi, and 2) the

time taken to successfully deliver the packet is no more than Di if it is successfully delivered.

Given a specific link reliability pi, the first sub-requirement translates into the required

minimum number of transmission opportunities that need to be provided to the transmission

of the packet. Then, the second sub-requirement requires that these minimum number of

transmission opportunities are used within deadline Di. That is, the original problem of

49

0 1 2 3 4 5 6

S ...S

0 1 2 3 4 5 6
time slot

(a)

S ...S

link 1

link 2

0 1 2 3 4 5 6

F ...S

0 1 2 3 4 5 6
time slot

(b)

S ...F

link 1

link 2

S

S

0 1 2 3 4 5 6

F ...

0 1 2 3 4 5 6
time slot

(c)

S ...F

link 1

link 2

SD

D

S

F

D

received

failed

dropped

deadline

Figure 4.2: An example showing the uncertainty of wireless channel.

50

ensuring probabilistic per-packet real-time delivery is decomposed into two sub-problems of

ensuring probabilistic delivery reliability and real-time packet transmission respectively.

With the above observation, an architecture for solving the probabilistic per-packet

real-time scheduling problem of Section 5.3.2 is shown in Figure 4.3. Given a set of links with

{pi, Pi}

{Ti,max}

{Ti,OPT}

{Xi}

i = 1, 2, ..., n

{Ti,max}
Feasible

Figure 4.3: Architecture of the proposed framework.

each link i having link reliability pi, application requirement Pi, and traffic (Ti, Ti,max, Di),

the “R3 Mapping" component uses pi and Pi of link i to compute Xi, i.e., the number of

time slots (i.e., transmission opportunities) needed to ensure the successful delivery of a

packet along link i in probability Pi. Then the “Admission Test" component determines

whether the links are schedulable or not based on Xi and the input Ti,max. If schedulable,

a set of optimal periods Ti,OPT are computed based on Xi, Ti, and Ti,max. Then the links

are scheduled using an optimal real-time scheduling algorithm based on the optimal traffic

periods, the transmission opportunities reserved, and delivery deadlines. In the following,

we elaborate on each component of the framework.

4.4.2 Requirement-reliability-resource (R3) mapping

R3 mapping is invoked to compute the number of transmission opportunities needed

to ensure successful delivery a packet along each link with the required probability guarantee.

51

Theorem 4.4.1. Given link reliability pi and application requirement Pi, the minimum num-

ber of time slots (or transmission opportunities) needed to ensure successful delivery of a

packet for link i in probability Pi, denoted as Xi, is as follows:

Xi = dlog1−pi(1− Pi)e. (4.1)

Proof. Let

Qi = Prob{A packet delivered within Xi transmissions}

= 1− Prob{Fail all Xi transmissions}

= 1− (1− pi)(1− pi)...(1− pi)︸ ︷︷ ︸
Xi

= 1− (1− pi)Xi .

(4.2)

To achieve the application requirement Pi,

Qi = 1− (1− pi)Xi ≥ Pi. (4.3)

Thus, the minimum number of transmissions needed is Xi = dlog1−pi(1− Pi)e.

Note that the Xi reserved time slots do not have to be Xi consecutive time slots, and,

for real-time packet delivery, the Xi time slots only have to be before the delivery deadline

of the packet. By R3 mapping, the number of transmission opportunities needed to ensure

probabilistic packet delivery success (i.e., Xi) is derived from the channel statistics and the

application requirement, thus transforming the probabilistic real-time delivery requirement

into a problem involving the reservation of a deterministic number of transmission opportu-

nities for each link. This transformation facilitates the application/extension of traditional

real-time CPU scheduling theory to the real-time wireless transmission scheduling as we will

explain in Sections 4.4.3 and 4.4.4.

52

The above derivation of Xi is based on the link model where the per-packet trans-

mission success probability along link i is pi, which is a valid model for cases where the

per-packet transmission reliability is controlled at a certain level (e.g., pi) using techniques

such as channel-aware transmission power control. For cases where other models such as

Markovian models or empirical models of packet transmission successes [66][67] may be more

appropriate (e.g., when no mechanism is adopted to ensure a certain per-packet communi-

cation reliability in the presence of channel deep fading), the derivation of Xi needs to be

revised accordingly, but the rest of our probabilistic real-time scheduling framework would

still apply. As a first step in studying scheduling with probabilistic per-packet real-time

guarantees, we focus on scenarios where the per-packet transmission reliability is controlled

at pi, and we relegate the detailed studies of alternative link models as future work.

4.4.3 Scheduling policy

Priority-based scheduling algorithms are usually used in real-time systems [44][45].

Consider the better resource utilization and agility that a dynamic-priority algorithm can

achieve, in this paper, a dynamic-priority scheduling algorithm based on the Earliest Deadline

First (EDF) concept is used. In the algorithm, we define the deadline of a link as the deadline

of the packet that needs to be delivered across the link; if there is no packet that is yet to

be delivered across the link at a time slot, we regard the link’s deadline as positive infinity

at the time slot. Then, at each time slot, the link with the earliest deadline is scheduled by

the algorithm. This can be represented by Algorithm 5.

In the following, the proposed scheduling algorithm is shown to be feasibility-optimal.

Theorem 4.4.2. (Feasibility Optimality of Algorithm 5) Algorithm 5 can produce a feasible

schedule for a set of links L with arbitrary deadlines Di on a single wireless channel if and

only if there exists any algorithm that can schedule the transmissions of links L to ensure

the required probabilistic per-packet real-time guarantee.

Proof. The theorem is proved by transforming the wireless packet transmission scheduling

problem into a real-time CPU scheduling problem [48] in the following manner: treat each

53

Algorithm 5 Scheduling algorithm
1: for each time slot
2: target_link_index = 0;
3: min_deadline = ∞;
4: for i = 1 to n
5: if link[i].deadline < min_deadline
6: min_deadline = link[i].deadline;
7: target_link_index = i;
8: end if
9: end for

10: Schedule link[target_link_index];
11: end for

link i as a task i; then each packet j along link i corresponds to a job j of task i, and the

number of transmission opportunities Xi required to ensure the probabilistically successful

delivery of a packet corresponds to the execution time Ci in task scheduling. Accordingly,

the traffic demand {(Ti, Ti,max, Di, Pi)}i=1...n can be transformed into a task system J =

{(Ti, Di, Xi)}i=1...n of n periodic tasks, with each task i specified by its period Ti, relative

deadline Di, and execution time Xi = dlog1−pi(1 − Pi)e. In a task i (i = 1 . . . n), a job is

repeated every Ti time slots, and every instance of the repeating job has a relative deadline

of Di and an execution time of Xi. Then, Algorithm 5 is the same as the EDF algorithm for

preemptive CPU scheduling except for the following differences: 1) the task system J is such

that the units of time is a time slot, and the period of a task as well as the arrival time, relative

deadline, and execution time of each job of the task are all integers (instead of being real

numbers as in a preemptive CPU scheduling problem setup); 2) given that the transmission

of a packet in a time slot cannot be interrupted in general, the transmission along a link i can

only preempt the transmission along another link i′ at the boundary of two consecutive time

slots, thus a task in the corresponding task system can be preempted only at the boundary

of consecutive time slots (instead of being at any arbitrary point in time as in a preemptive

CPU scheduling problem setup), and the task system is a limited preemptive system. Just as

the EDF scheduling algorithm is optimal for preemptive single CPU scheduling, Algorithm

54

5 is optimal for the aforementioned task system J = {(Ti, Di, Xi)}i=1...n, and the proof is

based on induction as follows.

Let ∆ denote an arbitrarily small positive number of time slots. Consider a schedule

S for J in which all deadlines are met, and let [t0, t0 + ∆) denote the first time interval over

which this schedule makes a scheduling decision different from the one made by Algorithm

5. Suppose that a job/packet j1 = (a1, e1, d1) with arrival time a1, execution time e1,

and deadline d1 is scheduled in S over this interval, while another job j2 = (a2, e2, d2) is

scheduled in Algorithm 5. Since S meets all the deadlines, it is the case that S schedules j2

to completion by the end of time slot d2. In particular, this implies that S schedules j2 for

an amount at least ∆ prior to d2. But by the definition of Algorithm 5, d2 ≤ d1; hence, S

schedules j2 for an amount at least ∆ prior to d1 as well. Now the new schedule S ′ obtained

from S by swapping the executions of j1 and j2 of length ∆ time slots each would agree

with Algorithm 5 over [0, t0 + ∆). The proof of optimality of Algorithm 5 now follows by

induction on time, with S ′ playing the role of S in the above argument.

4.4.4 Admission policy

Given an arbitrary set of links, it is not always possible to find a schedule to meet

the probabilistic deadlines. Therefore, an admission policy is needed to determine whether

the set of links is feasible. In this paper, a reservation-based admission policy is used. Since

link i generates one packet every Ti time slots, by R3 mapping, it is known that it needs

to reserve Xi time slots to ensure the probabilistic per-packet real-time delivery. Thus the

admission test is such that if the test is passed, each link is guaranteed for a certain number

of reserved transmission opportunities.

Definition 2 (Work density) The work density of link i, denoted by ρi, is defined as the

ratio of the number of transmission opportunities needed to ensure the required probabilistic

real-time communication guarantee along link i to the traffic period of link i. That is,

ρi =
Xi

Ti
. (4.4)

55

Then, we have

Theorem 4.4.3. A set of n links is schedulable if and only if

n∑
i=1

ρi ≤ 1. (4.5)

Proof. As we have shown in the proof of Theorem 2 earlier, the real-time wireless transmis-

sion scheduling problem considered in this work can be transformed into a special preemptive

CPU scheduling problem, and the EDF-based Algorithm 5 is optimal just as the EDF algo-

rithm is optimal for real-time preemptive single CPU scheduling. For real-time preemptive

single CPU scheduling, Liu [48] has shown, by Theorem 6.1 of [48], that a task system is

schedulable if and only if the total work density of the task system is no more than 1. The

proof of Theorem 6.1 on pages 124-126 of Reference [48] can be directly applied to prove

Theorem 3 here, since the proof of Theorem 6.1 in Reference [48] applies to the special task

system J presented in the proof of Theorem 2 earlier. For conciseness of presentation, we

skip the detailed proof here.

Since the upper bound of period for each link is known, besides Theorem 3, a simple

infeasibility test can be applied to avoid further searching by the following lemma.

Lemma 1 Given a set of n links, if the schedulability condition from Theorem 3 is not

satisfied for Ti,max, i = 1, .., n, then it is not satisfied for any Ti < Ti,max.

Proof. If the link set fails the schedulability test in Theorem 3, then

n∑
i=1

Xi

Ti,max

> 1.

Using any Ti < Ti,max will lead to
n∑

i=1

Xi

Ti
>

n∑
i=1

Xi

Ti,max

> 1.

This concludes the proof.

56

Then the admission test is summarized as Algorithm 6.

Algorithm 6 Admission test
1: total_density ← 0;
2: for i = 1 to n
3: Compute Xi = dlog1−pi(1− Pi)e;

4: total_density ← total_density +
Xi

Ti,max

;

5: if total_density > 1
6: return Infeasible;
7: end if
8: end for
9: return Feasible;

4.4.5 Selection of packet generation period

In this section, we address the issue of selecting the optimal packet generation periods

while ensuring schedulability for a set of feasible links. Without loss of generality, assume the

utility function is concave and monotonically increasing. Since Ti is an integer (i.e., number

of time slots), the optimization problem to solve becomes a discrete optimization problem.

More precisely, this problem is:

Maximize
Ti,i=1...n

n∑
i=1

Ui

(1

Ti

)
, (4.6)

subject to:
n∑

i=1

Xi

Ti
≤ 1, (4.7)

Ti ≤ Ti,max, i = 1, ..., n. (4.8)

The maximization is with respect to Ti’s. The utility function Ui increases as the period Ti

decreases, which is quite intuitive. The optimal solution for this problem can be obtained

using Branch-and-Bound methods, especially when the problem size is small. Given that

the time complexity of branch-and-bound methods is as high as that of exhaustive search

in the worst case (i.e., O(Ti,max
n)), however, here we also turn to pursue a more efficient

57

approximation algorithm for problems of larger sizes. The basic idea is to transform the

problem by replacing the discrete variable Ti with real number ti, then solve the new problem

using convex optimization technique. We first transform the problem as

Maximize
ti,i=1...n

n∑
i=1

Ui

(1

ti

)
, (4.9)

subject to:
n∑

i=1

Xi

ti
≤ 1, (4.10)

ti ≤ Ti,max, i = 1, ..., n. (4.11)

For ease of mathematical derivation, replace
1

ti
above with fi, where fi is the sensing

frequency. Then the optimization problem can be rewritten as:

Maximize
fi,i=1...n

n∑
i=1

Ui(fi), (4.12)

subject to:
n∑

i=1

Xifi ≤ 1, (4.13)

fi,min ≤ fi, i = 1, ..., n, (4.14)

where fi,min =
1

Ti,max

is the lower bound of the sensing frequency. By transforming E.q.

(4.10) into E.q. (4.13), we perform derivation over fi rather than ti when apply the KKT

conditions.

Introducing Lagrange multipliers λ for the inequality constraints
n∑

i=1

Xifi ≤ 1, and

λi for the inequality constraints fi,min ≤ fi, it follows that

I(f1, ..., fn) =
n∑

i=1

Ui(fi)− λ(
n∑

i=1

(Xifi − 1))−

n∑
i=1

(λi(fi,min − fi)).

58

Then the KKT conditions can be obtained as

∇fI(f1, ..., fn) = 0,

n∑
i=1

Xifi − 1 ≤ 0,

fi,min − fi ≤ 0, i = 1, ..., n,

λ(
n∑

i=1

Xifi − 1) = 0,

λi(fi,min − fi) = 0, i = 1, ..., n,

λ ≥ 0,

λi ≥ 0, i = 1, ..., n.

The first condition can be further expanded into n equations:

∇fI(f1, ..., fn) =



∂I(f1, ..., fn)

∂f1
∂I(f1, ..., fn)

∂f2
...

∂I(f1, ..., fn)

∂fn


=



d

df1
U1(f1)− λX1 + λ1

d

df2
U2(f2)− λX2 + λ2

...
d

dfn
U3(fn)− λXn + λn


= 0.

59

For simplicity, rewrite the above equations as



d

dfi
Ui(fi)− λXi + λi = 0, i = 1, ..., n,

n∑
i=1

Xifi − 1 ≤ 0,

fi,min − fi ≤ 0, i = 1, ..., n,

λ(
n∑

i=1

Xifi − 1) = 0,

λi(fi,min − fi) = 0, i = 1, ..., n,

λ ≥ 0,

λi ≥ 0, i = 1, ..., n.

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.15e)

(4.15f)

(4.15g)

Rewrite E.q. (4.15a) as λ =

d
dfi
Ui(fi) + λi

Xi

. Since the utility function Ui(fi) is monotonically

increasing with fi,
d

dfi
U(fi) > 0. In addition, Xi > 0 and λi ≥ 0, thus λ > 0. Then, E.q.

(4.15d) implies that
n∑

i=1

Xifi = 1. In this case, the problem becomes:

Maximize
fi,i=1...n

n∑
i=1

Ui(fi), (4.16)

subject to:
n∑

i=1

Xifi = 1, (4.17)

fi,min ≤ fi, i = 1, ..., n. (4.18)

Thus, the problem to be addressed contains only the equality and lower bound con-

straints. For many simple utility functions, closed form solutions can be obtained; in general,

a set of optimal periods ti,OPT can be obtained in time O(nlogn) by using the OPT-L algo-

60

rithm [49]. Then we can approximate the optimal period Ti,OPT by taking ceiling on
1

fi,OPT

for 1 ≤ i ≤ n, that is, letting Ti,OPT = d 1

fi,OPT

e.

Algorithm 7 summarizes our approach to selecting the packet generation periods.

Algorithm 7 Selection of packet generation period
1: if problem size is small (e.g., n ≤ 30)
2: Use branch-and-bound method to solve (4.6)-(5.13).
3: else
4: Use the OPT-L algorithm [49] to solve (4.16)-(4.18);

5: Ti,OPT = d 1

fi,OPT

e, 1 ≤ i ≤ n.

6: end if

4.5 Simulation Experiment
The proposed admission control and scheduling algorithm are denoted as prob-QoS.

In this section, the performance for prob-QoS is evaluated via Matlab simulation. We first

discuss the simulation methodology and then show the results.

4.5.1 Simulation methodology

• Packet loss model. The packet reception is modeled with Bernoulli trials, i.e., a

transmission will succeed with probability p, where 0 ≤ p ≤ 1.

• Performance metrics. Regarding the performance metrics, QoS satisfaction ratio

and idleness ratio are used. First, QoS satisfaction ratio is the ratio that the required

per-packet QoS is guaranteed. It is the primary goal of this work. Second, since

the number of time slots needed Xi is estimated based on the channel statistics, it is

possible that a slot assigned to a link at certain time is not used since it has already

successfully delivered the packet. In this case, the remaining slots reserved for this link

will be idle. The idleness ratio is the ratio between the idle slots and the total slots

reserved. In the premise of QoS satisfaction, a smaller idleness ratio is favored since it

implies higher channel utilization.

61

• Application settings. For reflecting the mission-critical scenarios, consider the cases

when the application requirement Pi for each link is set to 90%, 95%, or 99% respec-

tively. To understand the impact of link reliability pi, experiments with varying pi are

also performed. The number of links n is 16, period T and deadline D are 100 time

slots. This setting is to ensure there is feasible solution for the admission test.

• Baseline algorithm. To evaluate the per-packet real-time guarantee, the proposed

scheme is compared with the state-of-the-art debt-based algorithm [38]. The debt of a

client i at time t is defined as the number of time slots needed by i minus the actual

number of time slots it has transmitted by t. At each time slot, the AP schedules the

client with largest debt.

4.5.2 Simulation results

Figure 4.4 compares the QoS satisfaction ratios of prob-QoS and debt-based algorithm

when the link reliability p = 0.6. As shown in the figure, prob-QoS can always guarantee per-

packet QoS for all requirements, while the debt-based algorithm fails all cases. The reason

is because prob-QoS reserves enough resource for each packet by R3 mapping and admission

test, while the debt-based algorithm only focuses on long-term average performance and

ignores short-term fluctuations

Figure 4.5 evaluates the QoS satisfaction ratio by fixing the application requirement

to 99% and varying the link reliability. As shown in the figure, prob-QoS always ensures

99% QoS satisfaction ratio while the debt-based algorithm fails to.

For the idleness ratio, similar experiments are conducted. Figure 4.6 shows the case

when the link reliability is 0.6 for both algorithms. As shown in the figure, prob-QoS has

a larger idleness ratio than the debt-based algorithm. This is because the primary design

objective of prob-QoS is to ensure per-packet real-time QoS. By Definition 1, such per-packet

QoS must be satisfied for a randomly picked packet in an arbitrarily long execution history.

Mission-critical applications require predictable behaviors under all possible circumstances,

thus the conservativeness of reservation is the cost that needs to be taken, otherwise the

62

Figure 4.4: QoS satisfaction ratio: prob-QoS vs debt-based algorithm with different appli-

cation requirements.

63

Figure 4.5: QoS satisfaction ratio: prob-QoS vs debt-based algorithm with different link

reliability.

64

required QoS cannot be met. Figure 4.7 shows similar results when the application require-

ment is set to 99% and link reliability varies. In Section 4.6.1, the inherent tradeoff between

throughput and real-time guarantees will be discussed in detail.

Figure 4.6: Idleness ratio: prob-QoS vs debt-based algorithm with different application

requirements.

4.6 Extensions
The previous sections have focused on centralized schemes to ensure per-packet real-

time communication guarantees in single-channel settings. In this section, we discuss the

impact of the timescale of real-time communication guarantees on system throughput, how

to leverage multiple wireless channels, how to address the impact of control signaling unre-

liability, and how to implement the proposed algorithms in a distributed manner.

65

Figure 4.7: Idleness ratio: prob-QoS vs debt-based algorithm with different link reliability.

4.6.1 Impact of timescales of real-time communication guarantee

Targeting applications such as industrial control and augmented reality which are

sensitive to the delay and loss of every packet (or every few consecutive packets), the studies

in this paper have mainly focused on how to ensure probabilistic short-term, per-packet

communication delay bound. Existing studies such as those by Hou et al. [38, 39], on the

other hand, have focused on how to ensure a certain long-term, asymptotic average ratio

of packets that are delivered before deadlines, instead of ensuring probabilistic real-time

delivery of each packet. Therefore, a question worth asking is how the timescales (e.g.,

short-term vs. long-term) of real-time communication guarantees impact network behavior

such as throughput and per-packet delivery reliability.

To answer the above question, here we examine the question of how to schedule the

transmissions of packets so that, for each link i, out of every “window" of Ki consecutive

packets, the probability Pi(mi, pi, Ki, ri) for ri fraction of theKi packets to be delivered before

66

deadlines is no less than qi. In this case, Ki is the “timescale of real-time communication

guarantee", and here we intend to understand the impact of Ki on network behavior such

as throughput. To facilitate the analysis, we assume that, for each link i, each period has Ti

time slots, and, as before, the per-transmission reliability along link i is pi. Figure 4.8 shows

... ...

period

time slot

timescale Ki

per-packet reliability Pi(mi)

per-transmission reliability pi

Figure 4.8: Timescale analysis.

the setup for the analysis. (Note that, as special cases of the analytical setup, the problem

considered in the previous sections of this paper is such that Ki = 1, ri = 1, and qi = Pi,

and the problems considered by Hou et al. [38, 39] are such that Ki =∞.)

Given that, with techniques such as power control, the per-transmission reliability

can be controlled to be i.i.d., the number of transmission opportunities reserved for each

packet is assumed to be the same and denoted by mi. That is, each packet is transmit-

ted until success or up to mi times in each period, and 1 ≤ mi ≤ Ti. Let Pi(mi) ,

Prob{Per-packet delivery success}, then

Pi(mi) = Prob{A packet delivered within mi transmissions}

= 1− Prob{Fail all mi transmissions}

= 1− (1− pi)(1− pi)...(1− pi)︸ ︷︷ ︸
mi

= 1− (1− pi)mi .

(4.19)

67

Let Pi(mi, pi, Ki, ri) be the probability that the real-time delivery ratio along link i

is at least ri for every Ki consecutive packets, then

Pi(mi, pi, Ki, ri)

= Prob{At least dKirie packets out of every Ki packets

are delivered before deadlines}

=

Ki∑
K′

i=dKirie

Prob {K ′i packets out of every Ki packets

are delivered before deadlines}

=

Ki∑
K′

i=dKirie

(
Ki

K ′i

)
· Pi(mi)

K′
i · (1− Pi(mi))

Ki−K′
i .

(4.20)

Given that Pi(mi) and Pi(mi, pi, Ki, ri) are non-decreasing with mi, the transmission

scheduling scheme should be such that the minimum number of transmission opportunities

are reserved for each packet to ensure that Pi(mi, pi, Ki, ri) ≥ qi, if possible. When pi and Ti

are relative small while ri and qi are large, it may be infeasible to ensure Pi(mi, pi, Ki, ri) ≥ qi

even with mi = Ti, and the problem is infeasible in this case. For understanding the impact

of the timescales of real-time communication guarantee, it is enough for the analysis in this

section to focus on cases where the problem is feasible. With this assumption, the transmis-

sion scheduling scheme reserves m∗i (Ki, pi, ri, qi) number of transmission opportunities for

each packet, with m∗i specified as follows:

m∗i (Ki, pi, ri, qi) = argmin
mi

Pi(mi, pi, Ki, ri) ≥ qi. (4.21)

It is difficult to derive the close-form, analytical solution for computing m∗i (Ki, pi, ri, qi),

but, given that Pi(mi, pi, Ki, ri) is non-decreasing with mi, m∗i (Ki, pi, ri, qi) can be found by

numerically searching from 1, 2, . . . until the first mi such that Pi(mi, pi, Ki, ri) ≥ qi.

To understand the impact of the timescales of real-time communication guarantee

(i.e., Ki), Figures 4.9 and 4.10 show the impact of Ki on m∗i for different parameter config-

68

Figure 4.9: An example showing the relation betweenKi andm∗i , where ri = 0.9, qi = 0.9999,

and Ti = 100.

69

Figure 4.10: An example showing the relation between Ki and m∗i , where ri = 0.99, qi =

0.9999, and Ti = 100.

70

urations. The figures show that the overall trend is such that m∗i decreases as Ki increases,

even though there exist transient perturbations (i.e., m∗i increases with Ki) embedded into

the overall trend. The overall trend is clearer when the per-transmission reliability pi is lower,

and m∗i becomes less sensitive to Ki as the per-transmission reliability pi increases. Given

that the supportable network throughput increases with decreasing m∗i , the observations

show that, when the per-transmission reliability is low (e.g., 0.1), the supportable network

throughput increases in a non-negligible manner with increasing Ki. On the other hand, as

the per-transmission reliability increases, the supportable network throughput becomes less

sensitive to Ki. (Similar phenomena have been observed for other parameter configurations,

but details are omitted here due to space constraint.)

For a given m∗i and pi, there exists a corresponding per-packet success probability

P ∗i . Note that, for a given Ki, ri, and qi, P ∗i is the same no matter what pi is; that is, pi

impacts the choice of m∗i to ensure the required P ∗i . Figures 4.11 and 4.12 show the relation

0 500 1000 1500
0.9

0.92

0.94

0.96

0.98

1

K
i

P
i*

Figure 4.11: An example showing the relation between Ki and P ∗i , where ri = 0.9, qi =

0.9999.

between P ∗i and Ki for the same parameter configurations as those for Figures 4.9 and 4.10

respectively. The figures show that, as Ki increases, P ∗i tends to decrease as an overall trend

71

0 500 1000 1500
0.996

0.997

0.998

0.999

1

1.001

K
i

P
i*

Figure 4.12: An example showing the relation between Ki and Pi, where ri = 0.99, qi =

0.9999.

(despite transient perturbations) and converges to ri as Ki goes to infinity. When Ki is

small, P ∗i tends to be higher than ri to ensure Pi(m
∗
i , pi, Ki, ri) ≥ qi.

4.6.2 Extension to multichannel settings

In the previous sections, single channel settings are considered. When multiple chan-

nels are available for packet transmissions, the proposed scheme can be extended. The mul-

tichannel wireless scheduling problem is similar to the multiprocessor real-time scheduling,

with each available channel treated as a processor.

In multiprocessor real-time scheduling, different tasks are assigned to different proces-

sors. At any moment in time, there is only one active task on each processor while multiple

tasks are running in parallel on different processors. Similarly, in multichannel wireless

scheduling, transmission links are assigned to different channels, and within each channel,

one link is scheduled to transmit at a time.

Then, by multi-core real-time scheduling theory [58], the P-Fair scheduling algorithm

[58] is the optimal, capacity-achieving scheduling algorithm, and the real-time communica-

tion requirements of the n mutually-interfering links (see Section 5.3.2) can be satisfied if

72

the following condition holds:
n∑

i=1

ρi ≤ m, (4.22)

where ρi is the work density of link i as defined by (4.4), and m is the number of available

channels. For the usual case when Di = Ti for every link i (i.e., packet delivery deadline

equals packet generation interval), Condition (4.22) is also a necessary condition.

4.6.3 Impact of control signaling unreliability

The presentations in this paper so far have assumed that the delivery of control

signaling packets along the downlinks from the AP to sensors is perfectly reliable. When the

downlink reliability is less than 1, the loss of a control signal will lead to the situation where

no sensor transmits in the corresponding time slot, which can be treated as a packet loss.

To deal with this in our framework, we just need to reflect the downlink unreliability in the

“adjusted" uplink reliability from each sensor to AP. That is, if pdi is the downlink reliability

from the AP to sensor i, the “adjusted" uplink reliability becomes pdi ∗ pi for link i, and then

the rest of the framework applies.

4.6.4 Distributed solution

Although a centralized network with a base station is considered in this paper, it is

possible to extend the solution to a distributed scenario. Assume an ad hoc network with

multiple sender-receiver pairs. Since the traffic pattern is deterministic for each link (i.e.,

the traffic period and deadline are known), such information can be shared among links

through information exchange before transmissions. As a consequence, each link is aware of

the packet arrival and deadline requirement of other interfering links, and then a distributed

EDF scheduler can run at each link synchronously [59].

4.7 Concluding remarks
In this paper, a probabilistic framework for per-packet real-time wireless communica-

tion guarantees is proposed. The notion of real-time in this paper differs fundamentally from

73

existing work in the sense that it ensures in an arbitrarily long execution history, a randomly

selected packet will meet its deadline in a user-specified probability. By R3 mapping, the

upper-layer requirement and the lower-layer link reliability are translated into the number

of transmission opportunities needed. By optimal real-time communication scheduling as

well as admission test and traffic period optimization, the system utilization is maximized

while the schedulability is maintained. The proposed admission test is proved to be both

sufficient and necessary. The simulation results show that the proposed scheme can meet

the probabilistic real-time communication requirement.

For future work, we plan to integrate the proposed probabilistic real-time framework

with PRKS [37], where the link reliability is guaranteed by PRKS and the timeliness is

provided by the proposed framework in this paper. Another interesting direction would

be to consider aperiodic traffic coexisting with real-time traffic, in which case the channel

utilization can potentially be improved by allowing the aperiodic traffic to utilize the time

slots that are left idle by the periodic, real-time traffic. We have assumed that the per-

packet transmission status (i.e., success or failure) is independent across different links in

this work, and a future direction is to consider spatial link correlation and diversity in

real-time scheduling which may increase system real-time capacity (i.e., amount of data

deliverable within certain deadlines). Detailed study of alternative link models (e.g., when

the communication reliability across a link is not i.i.d.) and distributed implementation of

the proposed scheduling algorithm is also an interesting future direction. This study has

focused on link-level scheduling, and an interesting future extension will be to consider end-

to-end real-time guarantees which address the delay introduced by computational tasks and

multi-hop communications.

74

Ta
bl
e
4.
1:

C
om

pa
ri
so
n
of

re
ce
nt

st
ud

ie
s
th
at

co
ns
id
er

re
al
-t
im

e
co
m
m
un

ic
at
io
n
gu

ar
an

te
es

in
w
ir
el
es
s
ne
tw

or
ks
.

P
ap

er
M
od

el
A
lg
or
it
hm

A
pp

lic
at
io
ns

[3
8]

N
w
ir
el
es
s
cl
ie
nt
s
an

d
on

e
ac
ce
ss

po
in
t,

ho
m
og
en
eo
us

de
la
y
re
qu

ir
em

en
t.

La
rg
es
t
D
eb
t
F
ir
st
.

V
oI
P,

V
id
eo

st
re
am

in
g.

[3
9]

N
w
ir
el
es
s
cl
ie
nt
s
an

d
on

e
ac
ce
ss

po
in
t,

he
te
ro
ge
ne
ou

s
de
la
y
re
qu

ir
em

en
t.

P
se
ud

o-
de
bt
-b
as
ed

Sc
he
du

lin
g.

V
oI
P,

V
id
eo

st
re
am

in
g.

[5
0]

A
W

ir
el
es
sH

A
R
T

ne
tw

or
k
co
ns
is
ti
ng

of
fie
ld

de
vi
ce
s,

on
e
ga
te
w
ay
,a

nd
a
ne
tw

or
k
m
an

ag
er
.

B
ra
nc
h-
an

d-
B
ou

nd
(O

pt
im

al
);

C
on

fli
ct
-a
w
ar
e
Le

as
t
La

xi
ty

F
ir
st

(H
eu
ri
st
ic
).

W
ir
el
es
sH

A
R
T
.

[5
1]

A
w
ir
el
es
s
ne
tw

or
k
co
ns
is
ti
ng

of
a
se
t
of

fie
ld

de
vi
ce
s,

a
ga
te
w
ay
,a

nd
m
ul
ti
pl
e
ac
ce
ss

po
in
ts
.

E
ar
lie
st

D
ea
dl
in
e
F
ir
st

(E
D
F
).

W
ir
el
es
s
Se
ns
or
-A

ct
ua

to
r
N
et
w
or
ks

(W
SA

N
s)
.

[7
0]

A
n
IE

E
E

80
2.
15
.4

ne
tw

or
k
op

er
at
in
g
in

be
ac
on

-e
na

bl
ed

m
od

e
an

d
w
it
h
a
st
ar

to
po

lo
gy
.

A
di
st
an

ce
co
ns
tr
ai
ne
d
re
al
-t
im

e
off

-li
ne

m
es
sa
ge

sc
he
du

lin
g
al
go
ri
th
m
.

In
du

st
ri
al

W
ir
el
es
s
Se
ns
or

N
et
w
or
ks
.

[7
1]

A
ty
pi
ca
li
nf
ra
st
ru
ct
ur
e
W

LA
N
.

Q
oS

-e
na

bl
ed

80
2.
11
e
sc
he
m
e.

In
du

st
ri
al

ne
tw

or
ks
.

[7
2]

A
n
IE

E
E

80
2.
11

ne
tw

or
k.

A
T
D
M
A

da
ta

lin
k
la
ye
r
pr
ot
oc
ol

ba
se
d
on

IE
E
E

80
2.
11

ph
ys
ic
al

la
ye
r
to

pr
ov

id
e

de
te
rm

in
is
ti
c
ti
m
in
g
on

pa
ck
et

de
liv

er
y.

W
ir
el
es
s
C
yb

er
-P

hy
si
ca
lC

on
tr
ol

A
pp

lic
at
io
ns
.

75

Table 4.2: Two cases with the same long-term average timely delivery ratio but different

short-term performance.

Case Period 1 Period 2 Period 3 Period 4
1 90% 90% 90% 90%
2 99% 79% 99% 83%

76

CHAPTER 5: PROBABILISTIC PER-PACKET REAL-TIME
GUARANTEE WITH JITTER CONTROL

5.1 Introduction
Wireless networked sensing and control (WSC) systems typically comprise a controller

and multiple spatially distributed sensors and actuators. The sensors sense data periodically

from the physical world and send it to the controller. The controller processes the sensing

data to generate control actions for the actuators. For WSC, control performance strongly

depends on the timely delivery of the sensing information. If not delivered by a certain

deadline, it may degrade the performance of the system and even jeopardize its stability.

However, the message transmissions in wireless network may experience delay and delay

variations (i.e., jitter) due to various factors such as scheduling algorithm, online trafficload

changes, channel fading, and environment dynamics.

One interesting problem is how to reduce delay jitter while ensuring that packets are

delivered by their deadlines.

5.2 Related Work
The problem of delay jitter control has been studied for many years in real-time

systems. In the following, we will briefly review some representative work in this field.

Cervin et al. [81] proposed the concept of jitter margin and combined it with real-

time theory to guarantee the schedulability and stability of the system. A lower bound under

EDF scheduling is found by estimating the worst-case and best-case response time. However,

they did not discuss how to achieve the bound.

A indirect way of reducing jitter in real-time systems is to assign tasks tighter dead-

lines. Based on EDF scheduling, Baruah et al. [76] proposed to assign shorter relative

deadlines to a task set such that the jitter is reduced while the schedulability is maintained.

The intuition is that, as long as the schedule is feasible, the jitter will be upper bounded by

Di −Ci, where Di and Ci are the relative deadline and worst-case execution time (WCET).

A major drawback is that the task set may not be schedulable any more after advancing

77

deadlines. In practice, this method only works when the system has a low utilization. Work-

ing on this line, [93] proposed an adaptive approach to minimize jitter for a set of tasks. The

approach formulates the jitter minimization problem as an optimization problem and devel-

oped a heuristic to solve the optimization problem. Instead of just reducing deadline, this

approach adaptively adjust deadlines to explore the full design space to reduce the overall

jitter. However, both methods are offline algorithms based on the WCET. In general, the

actual execution time is much less than the WCET. Thus, these algorithms leave the system

unnecessarily idle.

Another approach to reduce jitter in real-time systems is to divide each task into

three subtasks, i.e., input, processing, and output [83]. The key idea is to always execute the

input subtask at the beginning of the period and the output subtask at the end. By applying

this method, the input and output subtasks are always separated by exactly one period,

leading to fixed input-output delay thus reducing jitter. However, by inserting idleness

between the input and the output, not only the average delay is unnecessarily increased,

but extra interference is introduced due to more contention at a same time. In addition,

such decomposition of a task introduces more complexity and may not be feasible at all in

practice.

Another heuristic to reduce scheduling-induced jitter is to disable preemption during

tasks execution. The intuition is to minimize the difference between the time a job’s start

and completion times. One clear drawback of this method is the reduction of schedulability

due to non-preemption.

In communication networks, a buffer can be deployed at the receiver side to smooth

out delay jitter [90]. Basically, if a packet arrives earlier than its assigned deadline at the

receiver, it will be hold for the remaining time and only delivered to the application unitil

the deadline is reached. Thus, the delay jitter can be zero. However, such mechanism is

fundamentally the same as the task splitting approach, i.e., the delay is always as large as

the deadline.

78

5.3 System Model and Problem Statement

5.3.1 System model

Consider a wireless network with a centralized controller and N sensors. All the sen-

sors are within the communication range of the controller. Time is slotted and synchronized

across the controller and sensors, and the wireless transmissions between the sensors and

controller are scheduled in a TDMA manner. At the beginning of each time slot, the con-

troller broadcasts a short control signaling message to indicate the sensor that shall transmit

in the current time slot. The duration of a time slot is the time required for the controller to

send the control packet plus the time for a sensor to transmit a data packet of certain fixed

length. All the time slots are of the same length. To avoid transmission collision, there can

be at most one active sensor transmitting at each time slot.

The transmission link between the controller and sensor i is characterized by a 4-tuple

(Ti, Di, pi, Pi) as shown in Figure 5.1.

Figure 5.1: Timing for link i.

• Ti: sampling period. Sensor i periodically generates one data packet at time slot

ri,k = kTi (k = 0, 1, 2, ...). In a very general framework, Ti is the design variable to

represent the possible choices of the designer at the stage of the system design. Note

that in our system model, Ti is a positive integer.

79

• Di: relative deadline for sensing data delivery, which is also a positive integer. For

sensor i, each packet is associated with a relative deadline Di in units of time slots. A

packet arriving at time slot t should be successfully delivered no later than time slot

t+Di; otherwise, the packet is dropped. Since the node always sends new sensing and

control signal, Di ≤ Ti. In this paper, Di and Ti are assumed to be equal, and this

scenario is usually referred to as implicit deadline in classic real-time systems and finds

its application in various areas. Note that heterogeneous deadlines across different links

are considered since more stringent deadlines are assigned to more critical sensor nodes

in practice.

• pi: link reliability between sensor i and the controller. A packet transmission succeeds

in probability pi. The event of successful transmissions along a link is assumed to be

i.i.d. over time, thus whether a packet can be successfully delivered at a time slot is

independent of the status of earlier transmissions.

• Pi: application requirement. Due to inherent dynamics and uncertainties in wireless

communication, real-time communication guarantees are probabilistic in nature. Thus

a probabilistic QoS metric is defined.

Definition 1 Link i meets probabilistic per-packet real-time guarantee if

∀k, Prob{fi,k ≤ kTi +Di} ≥ Pi, (5.1)

where fi,k is the time (measured in time slots) when link i’s successfully delivers its

k-th packet to the controller.

Intuitively, the probabilistic per-packet real-time guarantee for link i ensures that in

an arbitrarily long execution history, a randomly selected packet of link i will meet the

deadline Di at least in probability Pi.

80

5.3.2 Problem statement

Jitter for link i is defined as

Ji =
max

k
(fi,k − ri,k)−min

k
(fi,k − ri,k)

Ti
. (5.2)

Intuitively, Ji is the normalized difference between the largest and smallest transmission

times among all packets of link i. The overall jitter of all the links is therefore denoted as

J =
N∑
i=1

Ji
N
. (5.3)

The goal of this paper is to minimize J under the constraint of E.q. (5.1). To answer

this question, a probabilistic real-time wireless communication framework is proposed in the

next section.

5.4 Offline and Online Scheduling for Probabilistic Per-
Packet Real-Time Guarantee with Jitter Control

5.4.1 Overview

An architecture for solving the probabilistic per-packet real-time scheduling problem

is shown in Figure 5.2.

First, the “Transmission Opportunities Estimator" uses pi and Pi of link i to com-

pute Xi, i.e., the number of time slots needed to ensure the successful delivery of a packet

along link i in probability Pi. Then the “Deadlines Optimizer" determines whether the links

are schedulable or not based on Xi and the input Ti,max. If schedulable, a set of optimal

deadlines Di,OPT are computed based on Xi and Ti. Then the links are scheduled using an

optimal real-time scheduling algorithm based on the optimal traffic periods, the transmis-

sion opportunities reserved, and delivery deadlines. In the following, we elaborate on each

component of the framework.

81

Figure 5.2: Architecture of the proposed framework.

5.4.2 Transmission opportunities estimator

Transmission opportunities estimator is invoked to compute the number of transmis-

sion opportunities needed to ensure successful delivery a packet along each link with the

required probability guarantee. Given link reliability pi and application requirement Pi, the

minimum number of time slots (or transmission opportunities) needed to ensure successful

delivery of a packet for link i in probability Pi, denoted as Xi, can be computed as follows

[112]. Let

Qi = Prob{A packet delivered within Xi transmissions}

= 1− Prob{Fail all Xi transmissions}

= 1− (1− pi)(1− pi)...(1− pi)︸ ︷︷ ︸
Xi

= 1− (1− pi)Xi .

(5.4)

82

To achieve the application requirement Pi,

Qi = 1− (1− pi)Xi ≥ Pi. (5.5)

Thus, the minimum number of transmissions needed is

Xi = dlog1−pi(1− Pi)e. (5.6)

Note that the Xi reserved time slots do not have to be Xi consecutive time slots, and, for

real-time packet delivery, the Xi time slots only have to be before the delivery deadline of

the packet.

5.4.3 Deadlines optimizer

Given the better resource utilization and agility that a dynamic-priority algorithm

can achieve, in this paper, a dynamic-priority scheduling algorithm based on the Earliest

Deadline First (EDF) concept is used. This can be represented by Algorithm 8 [112].

Algorithm 8 Default scheduling algorithm
1: for each time slot
2: target_link_index = 0;
3: min_deadline = ∞;
4: for i = 1 to N
5: if link[i].deadline < min_deadline
6: min_deadline = link[i].deadline;
7: target_link_index = i;
8: end if
9: end for

10: Schedule link[target_link_index];
11: end for

Theorem 5.4.1. A set of N links with implicit deadlines is schedulable under Algorithm 8

if and only if

U =
N∑
i=1

Xi

Ti
≤ 1, (5.7)

where U is the total utilization of the links.

83

Definition 2 (Extra capacity) If a set of links has a total utilization U < 1, it is said to

have an extra capacity of ∆U = 1− U .

The goal of the deadlines optimizer is to find a set of new deadlines (i.e., periods)

for the links when U < 1, so as to explore the extra capacity. An optimization problem is

formed and solved.

As the first step of optimization, we derive the objective function. Let’s revisit E.q.

(5.2). Since a packet delivered after its deadline will be dropped, the largest transmission

time is its relative deadline Di. On the other hand, the smallest transmission time is equal

to its number of transmission times Xi. Thus,

Ji =
Di −Xi

Ti
. (5.8)

Given the assumption that Ti = Di, the above equation can be rewritten as

Ji = 1− Xi

Di

. (5.9)

By inserting E.q. (5.9) into E.q. (5.3), we have

J =
N∑
i=1

1− Xi

Di

N
. (5.10)

Then the problem becomes the following:

Minimize
di,i=1...n

N∑
i=1

1− Xi

di

N
, (5.11)

subject to:
N∑
i=1

Xi

di
≤ 1, (5.12)

di ≤ Di, i = 1, ..., N. (5.13)

84

Basically, the deadlines optimizer finds a set of more stringent deadlines {di} to minimize the

jitter while maintaining the schedulability. This problem has similar structure with [112],

thus can be solved accordingly. After the processing of this component, the extra capacity

is leveraged. So far, the offline treatment of the links has been finished.

5.4.4 Jitter-EDF scheduler

The transmission opportunities estimator reserves Xi time slots for link i such that

the packet is guaranteed to deliver before the deadline at a high probability. However, such

reservation scheme may introduce certain pessimism. Due to the probabilistic nature of

wireless communication, it may take fewer time slots than Xi for a packet to be delivered.

Definition 3 (Spare time) If the k-th packet along link i tasks less than Xi time slots to

be successfully delivered, the remaining time slots reserved in the k-th period for link i is

called spare time.

An interesting question is then: when there is spare time, which link will take it?

Consider an example with three links. Assume that after the offline processing, the numbers

of transmission opportunities and optimal deadlines are obtained as follows: X1 = 3, D1 =

T1 = 8, X2 = 6, D2 = T2 = 16, X3 = 8, D3 = T3 = 32. As shown in Figure 5.3 and

Figure 5.4, link 1 only takes 2 time slots to successfully deliver its first packet, rather than

3 time slots. Therefore, we say there is one time slot spare time from time 2 to 8. When

spare time is available, the scheduler decides which link is going to take it.

Figure 5.3 shows an instance of the default EDF scheduling. At every time slot, the

EDF scheduler always schedules the active link who has the earliest absolute deadline. Thus,

when there is a spare slot at time 2, link 2 will take it. At time 19, since link 2 and link 3 have

a same deadline, i.e., 32, EDF will arbitrarily schedules a link between the two. At time 24,

only link 1 and link 2 are active and they have a same deadline. Again, EDF will schedule

either of them arbitrarily. As shown in this figure, the total jitter is J1 + J2 + J3 = 14/16.

Figure 5.4 shows the results of Jitter-EDF scheduling. The total jitter in this case is

9/16. Therefore, it has a smaller jitter than the default EDF.

85

Figure 5.3: Default EDF.

Figure 5.4: Jitter-EDF.

86

The reason is, though EDF guarantees to meet deadline requirement, it does not

consider jitter by design. In the worst scenario, EDF may pick an execution path that leads

to the largest jitter (as shown in Figure 5.3) even though 100% schedulability has been

achieved. This motivates us to consider the order of transmissions when the time windows

till deadlines of multiple links include the spare time slot(s).

Definition 4 (Remaining transmissions) For link i’s k-th packet, the remaining trans-

missions at time slot t is defined as the difference between Xi (i.e., the reserved transmission

opportunities for the k-th packet) and the number of transmissions link i has tried from time

slot k ∗ Ti to t.

Based on this, we propose a scheduling algorithm called Jitter-EDF as shown in

Algorithm 9. The algorithm gives the link with least remaining transmissions the highest

priority when multiple links have the same deadline. By doing this, the EDF property is

maintained to guarantee schedulability while the jitter is also reduced. The intuition is,

by scheduling the link that has least remaining transmissions first, that link can finish its

transmissions quickly and quit the contention for wireless channel. Thus, the interference

can be reduced for the whole system.

5.5 Simulation
In this section, the performance for the proposed Jitter-EDF is evaluated via Matlab

simulation.

5.5.1 Simulation setup

Two scenarios are considered: the first one has a small number of links and the other

has more links. Detailed parameters are shown in Table 5.3. All the periods and transmission

opportunities are integers. The tilization is guaranteed to be less than or equal to 1. The

case that the set of links is not feasible is not within the scope of this paper. The default

EDF algorithm is used as a baseline algorithm. In all cases, the simulation is repeated for

100 times. The average jitter is calculated for each case.

87

Algorithm 9 Jitter-EDF scheduling algorithm
1: for each time slot
2: min_deadline = ∞;
3: candidates = {};
4: for i = 1 to N
5: if link[i].deadline < min_deadline
6: min_deadline = link[i].deadline;
7: end if
8: end for
9: for i = 1 to N

10: if link[i].deadline == min_deadline
11: candidates = candidates ∪ i;
12: end if
13: end for
14: if candidates.size == 1
15: Schedule the only link in candidates set;
16: else
17: Schedule the link in candidates set that has the least remaining transmissions;
18: end if
19: end for

Table 5.3: Simulation setup.

of links Periods Transmission Opportunities
3 {8, 16, 32} {3, 6, 8}
10 {16, 17, 18, 20, 27, 34, 40, 50, 100, 150} {2, 3, 2, 2, 2, 3, 3, 2, 4, 4}

5.5.2 Simulation results

Figure 5.5 compares the overall jitter of our algorithm with EDF when there are 3

links. Bar graph with 95% confidence interval is drawn. The result shows our algorithm

can significantly reduce the jitter compared to the default EDF. In addition, EDF has a

larger variation in jitter compared to our algorithm. The reason is, EDF does not consider

the order of concurrent links who have the same deadline. On the contrary, our algorithm

always pick the one that has the least remaining transmission opportunities first, thus is

more deterministic.

Figure 5.6 shows the result when the number of links increases to 10. As shown in the

figure, our algorithm has better performance than default EDF in terms of average jitter.

88

EDF Jitter-EDF
0

0.1

0.2

0.3
A

v
g

 j
it
te

r

Figure 5.5: Jitter-EDF vs EDF for the case of 3 links.

EDF Jitter-EDF
0

0.1

0.2

0.3

0.4

A
v
g

 j
it
te

r

Figure 5.6: Jitter-EDF vs EDF for the case of 10 links.

89

5.6 Concluding Remarks
In this paper, we have aimed to minimize jitter while guaranteeing deadlines of packets

delivery. Our proposed solution consists of several building blocks: a transmission opportu-

nities estimator to reserve enough time slots for each link, a deadline optimizer to further

reduce deadlines so as to reduce the jitter whenever possible, and a jitter-aware EDF that

considers the transmission order when multiple links have a same deadline. The simulation

results show that our method performs better than the default EDF in terms of average

jitter.

In this study, we assume that each packet is generated at the beginning of each period.

For future work, we plan to investigate the case when packets are released in an asynchronous

way. In this case, the jitter could potentially be reduced by carefully decide the release times

of each packet.

This study has focused on single-hop transmission. An interesting future extension

will be to consider end-to-end jitter reduction where each hop may introduce different degrees

of delay variation.

90

CHAPTER 6: CONCLUSION

In this Ph.D. dissertation, we presented our research accomplishments to achieve

real-time guarantees for wireless networked sensing and control.

6.1 Summary of Contributions
In Chapter 2, we present a maximal concurrency and low latency distributed schedul-

ing protocol called ONAMA (Optimal Node Activation Multiple Access). It activates as

many nodes as possible while ensuring transmission reliability (in terms of packets delivery

ratio). We implemented and tested ONAMA on our NetEye testbed at Wayne State Uni-

versity as well as another testbed at NUS in Singapore. The results of both testbeds shows

that ONAMA can maximize throughput while maintaining reliability.

In Chapter 3, we propose algorithms to address the problem of clustering heteroge-

neous reliability requirements into a limit set of service levels. We formally prove that our

solutions are optimal, and they also provide guaranteed reliability.

In Chapter 4, a probabilistic framework for per-packet real-time wireless commu-

nication guarantees is proposed. The per-packet probabilistic real-time QoS was formally

modeled. By R3 mapping, the upper-layer requirement and the lower-layer link reliability are

translated into the number of transmission opportunities needed. By optimal real-time com-

munication scheduling as well as admission test and traffic period optimization, the system

utilization is maximized while the schedulability is maintained.

In Chapter 5, we study the problem of jitter control for wireless real-time packets

delivery. Our solution is a two-level algorithm. The offline component optimizes the dead-

lines to explore the extra capacity while the online component further reduces the jitter by

carefully considering the transmission orders of different links.

6.2 Future Research Directions
We plan to explore the following directions:

91

First, our study in this dissertation has focused on single-hop scenario. An interesting

future extension will be to consider end-to-end real-time guarantee where each hop may

introduce different delay and jitter.

Second, we plan to integrate our proposed framework and algorithms with PRKS,

where the link reliability is guaranteed by PRKS and the timeliness is provided by the

components proposed in this paper.

Third, we would like to consider aperiodic traffic coexisting with real-time traffic, in

which case the channel utilization can potentially be improved by allowing the aperiodic

traffic to utilize the time slots that are left idle by the periodic, real-time traffic.
We hope our work will shed lights for future research in mission-critical wireless

networked sensing and control system.

92

APPENDIX

Journal Publications
J1. Y. Chen, H. Zhang, N. Fisher, L. Y. Wang, G. Yin, “Probabilistic Per-Packet Real-

Time Guarantees for Wireless Networked Sensing and Control.” IEEE Transactions on

Industrial Informatics, accepted for publication.

J2. H. Zhang, X. Liu, C. Li, Y. Chen, X. Che, F. Lin, L. Y. Wang, G. Yin, “Scheduling

with Predictable Link Reliability for Wireless Networked Control.” IEEE Transactions

on Wireless Communications (TWC), accepted for publication.

J3. Y. Wang, Y. Chen, C. Li, H. Zhang, J. Rao, P. Gossman, J. Zhu, “VInsight: Enabling

Open Innovation in Networked Vehicle Sensing and Control.” IEEE Network, 30 (4),

34-44, 2016.

J4. X. Liu, Y. Chen, H. Zhang, “A Maximal Concurrency and Low Latency Distributed

Scheduling Protocol for Wireless Sensor Networks.“ International Journal of Distributed

Sensor Networks (Hindawi), 2015 (invited paper).

Conference Publications
C1. Y. Chen, H. Zhang, “Optimal Request Clustering for Link Reliability Guarantee in Wire-

less Networked Control.” IEEE Wireless Communications and Networking Conference

(WCNC), 2017.

C2. H. Zhang, X. Liu, C. Li, Y. Chen, X. Che, F. Lin, L. Y. Wang, G. Yin, “Scheduling with

Predictable Link Reliability for Wireless Networked Control.” IEEE/ACMInternational

Symposium on Quality of Service (IWQoS), 2015.

Posters
P1. H. Zhang, C. Li, Y. Chen, P. Ren, L. Wang, “Predictable Wireless Networking for

Real-Time Cyber-Physical-Human Systems.” ACM/IEEE International Conference on

Internet-of-Things Design and Implementation (IoTDI), 2017.

P2. H. Zhang, J. Hua, S. Shu, H. Jin, C. Li, Y. Chen, “Predictable Wireless Networking

and Collaborative 3D Vision for Real-Time Cyber-Physical-Human (CPH) Systems.”

US-Ignite Conference, 2017.

93

P3. H. Zhang, X. Liu, C. Li, Y. Chen, X. Che, F. Lin, L. Y. Wang, G. Yin, “PRK-Based

Scheduling for Predictable Link Reliability in Wireless Networked Sensing and Control.”

ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2013.

94

REFERENCES

[1] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda. Indriya: A low-cost, 3D wireless

sensor network testbed. Testbeds and Research Infrastructure. Development of Networks

and Communities, 302-316, 2012.

[2] TelosB sensor node. http://www.memsic.com.

[3] TinyOS. http://www.tinyos.net/.

[4] X. Ju, H. Zhang, and D. Sakamuri. NetEye: a user-centered wireless sensor network

testbed for high-fidelity, robust experimentation. International Journal of Communica-

tion Systems, 25(9):1213-1229, 2012.

[5] Algorithm "Fast MIS V2". http://dcg.ethz.ch/lectures/podc_allstars/lecture/

podc.pdf, 2013.

[6] L. Bao and J. J. Garcia-Luna-Aceves. A new approach to channel access scheduling for

Ad Hoc networks. In ACM MobiCom, 2001.

[7] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference on multi-hop

wireless network performance. Wireless networks, 11(4):471-487, 2005.

[8] C. Zhu and M. S. Corson. A five-phase reservation protocol (FPRP) for mobile ad hoc

networks. Wireless Networks, 7(4):371-384, 2001.

[9] I. Rhee, A. Warrier, J. Min, and L. Xu. DRAND: Distributed Randomized TDMA

Scheduling for Wireless Ad Hoc Networks. IEEE Transactions on Mobile Computing,

8(10):1384-1396, 2009.

[10] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless sensor

networks. In ACM SenSys, 2004.

[11] W. Ye and W. Wang. An energy-efficient MAC protocol for wireless sensor networks.

In IEEE INFOCOM, 2002.

[12] M. Sha, G. Xing, G. Zhou, S. Liu, and X. Wang. C-mac: model-driven concurrent

medium access control for wireless sensor networks. In IEEE INFOCOM, 2009.

http://www.memsic.com
http://www.tinyos.net/
http://dcg.ethz.ch/lectures/podc_allstars/lecture/podc.pdf
http://dcg.ethz.ch/lectures/podc_allstars/lecture/podc.pdf

95

[13] G. Zhou, T. He, J. A. Stankovic, and T. Abdelzaher. RID: radio interference detection

in wireless sensor networks. In IEEE INFOCOM, 2005.

[14] J. Ni, B. Tan, and R. Srikant. Q-CSMA: Queue-length-based CSMA/CA algorithms

for achieving maximum throughput and low delay in wireless networks. IEEE/ACM

Transactions on Networking, 20(3):825-836, 2012.

[15] M. Yves, J. M. Robson, S. D. Nasser, and A. Zemmari. An optimal bit complex-

ity randomized distributed MIS algorithm. Structural Information and Communication

Complexity, 323-337, 2010.

[16] L. B. L. Bao and J. Garcia-Luna-Aceves. Hybrid channel access scheduling in ad hoc

networks. In IEEE ICNP, 2002.

[17] X. Che, H. Zhang, and X. Ju. The case for addressing the ordering effect in interference-

limited wireless scheduling. IEEE Transactions on Wireless Communications, 13(9):5028-

5042, 2014.

[18] ISA SP100.11a. http://www.isa.org//MSTemplate.cfm?MicrositeID=1134&

CommitteeID=6891.

[19] WirelessHART. http://www.hartcomm.org/protocol/wihart/wireless_

technology.html.

[20] J. Baillieul and P. J. Antsaklis. Control and communication challenges in networked

real-time systems. Proceedings of the IEEE, 95(1):9-28, 2007.

[21] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam. The wireless control network:

a new approach for control over networks. IEEE Transactions on Automatic Control,

56(10):2305-2318, 2011.

[22] S. Han, X. Zhu, A. K. Mok, D. Chen, M. Lucas, and M. Nixon. Reliable and real-time

communication in industrial wireless mesh networks. in IEEE RTAS, 2011.

[23] A. Willig. Recent and emerging topics in wireless industrial communications: A selec-

tion. IEEE Transactions on Industrial Informatics, 4(2):102-124, 2008.

http://www.isa.org//MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891
http://www.isa.org//MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891
http://www.hartcomm.org/protocol/wihart/wireless_technology.html
http://www.hartcomm.org/protocol/wihart/wireless_technology.html

96

[24] H. Zhang, X. Liu, C. Li, Y. Chen, X. Che, F. Lin, L. Y. Wang, and G. Yin. Scheduling

with predictable link reliability for wireless networked control. In IEEE IWQoS, 2015.

[25] H. Zhang, X. Che, X. Liu, and X. Ju. Adaptive instantiation of the protocol interference

model in wireless networked sensing and control. ACM Transactions on Sensor Networks,

10(2), 2014.

[26] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data

streams: theory and practice. IEEE Transactions on Knowledge and Data Engineering,

15(3):515-528, 2003.

[27] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2):129-137, 1982.

[28] D. Arthur and S. Vassilvitskii. k -means++: the advantages of careful seeding. In ACM

SODA, 2007.

[29] B. Jackson, J. D. Scargle, D. Barnes, S. Arabhi, A. Alt, P. Gioumousis, E. Gwin,

P. Sangtrakulcharoen, L. Tan, and T. T. Tsai. An algorithm for optimal partitioning of

data on an interval. IEEE Signal Processing Letters, 12(2):105-8, 2005.

[30] J. D. Scargle and M. K. Quweider. Edge detection using dynamic optimal partitioning.

In IEEE ICASSP, 2006.

[31] R. Zurawski. Industrial communication technology handbook. CRC Press, 2014.

[32] I. Hou and P. R. Kumar. Scheduling periodic real-time tasks with heterogeneous reward

requirements. In IEEE RTSS, 2011.

[33] T. Carley, M. A. Ba, R. Barua, and D. B. Stewart. Contention-free periodic message

scheduler medium access control in wireless sensor/actuator networks. In IEEE RTSS,

2003.

[34] G. Alderisi, S. Girs, L. Lo Bello, E. Uhlemann, and M. BjÃűrkman. Probabilistic

scheduling and Adaptive Relaying for WirelessHART networks. IEEE ETFA, 2015.

97

[35] M. Short and J. Proenza. Towards efficient probabilistic scheduling guarantees for real-

time systems subject to random errors and random bursts of errors. IEEE ECRTS, 2013.

[36] H. Zhang, X. Che, X. Liu, and X. Ju. Adaptive instantiation of the protocol interference

model in wireless networked sensing and control. ACM Transactions on Sensor Networks,

10(2), 2014.

[37] H. Zhang, X. Liu, C. Li, Y. Chen, X. Che, F. Lin, L. Y. Wang, and G. Yin. Scheduling

with predictable link reliability for wireless networked control. In IEEE IWQoS, 2015.

[38] I. Hou, V. Borkar, and P. R. Kumar. A theory of QoS for Wireless. In INFOCOM,

2009.

[39] I. Hou, and P. R. Kumar. Scheduling heterogeneous real-time traffic over fading wireless

channels. In INFOCOM, 2010.

[40] A. Gosain, M. Berman, M. Brinn, T. Mitchell, C. Li, Y. Wang, H. Jin, J. Hua, and H.

Zhang. Enabling campus edge computing using GENI racks and mobile resources. In

ACM/IEEE SEC, 2016.

[41] R. Zurawski (Editor). Industrial Communication Technology Handbook, CRC Press,

2015.

[42] S. Boyd, and L. Vandenberghe. Convex Optimization, Cambridge University Press New

York, NY, USA, 2004.

[43] Y. Wu, G. Buttazzo, E. Bini, and A. Cervin. Parameter selection for real-time controllers

in resource-constrained systems. IEEE Transactions on Industrial Informatics, 6(4), pp.

610-620, 2010.

[44] C. L. Liu, and J. Layland. Scheduling algorithms for multiprogramming in a hard

real-time environment. Journal of the ACM, 20(1), 1973.

[45] J. Leung, and J. W. Whitehead. On the complexity of fixed priority scheduling of

periodic real-time tasks. Performance Evaluation, 2(4), 1982.

98

[46] X. Zhang, and M. Haenggi. Delay-optimal power control policies. IEEE Transactions

on Wireless Communications, 11(10), 2012.

[47] H. Shariatmadari et al. Machine-type communications: current status and future per-

spectives toward 5G systems. IEEE Communications Magazine, 53(9), 2015.

[48] J. Liu. Real-time systems, Prentice Hall PTR, 2000.

[49] H. Aydin, R. Melhem, and D. Mosse. Optimal reward-based scheduling of periodic

real-time tasks. In RTSS, 1999.

[50] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. Real-time scheduling for WirelessHART

networks. In RTSS, 2010.

[51] A. Saifullah et al. Analysis of EDF scheduling for wireless sensor-actuator networks. In

IWQoS, 2014.

[52] H. J. Korber, H. Wattar, and G. Scholl. Modular wireless real-time sensor/actuator net-

work for factory automation applications. IEEE Transactions on Industrial Informatics,

vol. 3, no. 2, pp. 111-119, May 2007.

[53] S. Vitturi, L. Seno, F. Tramarin, and M. Bertocco. On the rate adaptation techniques

of IEEE 802.11 networks for industrial applications. IEEE Transactions on Industrial

Informatics, vol. 9, no. 1, pp. 198-208, Feb. 2013.

[54] J. Heo, J. Hong, and Y. Cho. EARQ: energy aware routing for real time and reliable

communication in wireless industrial sensor networks. IEEE Transactions on Industrial

Informatics, vol. 5, no. 1, pp. 3-11, Feb. 2009.

[55] S. K. Ong, M. L. Yuan, and A. Y. C. NEE. Augmented reality applications in man-

ufacturing: a survey. International journal of production research, vol. 46, no. 10, pp.

2707-2742, 2008.

[56] S. Henderson and S. Feiner. Exploring the benefits of augmented reality documentation

for maintenance and repair. IEEE transactions on visualization and computer graphics,

vol. 17, no. 10, pp. 1355-1368, 2011.

99

[57] F. Lamberti et al. Challenges, opportunities, and future trends of emerging techniques

for augmented reality-based maintenance. IEEE Transactions on Emerging Topics in

Computing, vol. 2, no. 4, pp. 411-421, 2014.

[58] S. Baruah, and M. Bertogna, and G. Buttazzo. Multiprocessor Scheduling for Real-Time

Systems. Springer, 2015.

[59] T. L. Crenshaw, A. Tirumala, and S. Hoke. A robust implicit access protocol for real-

time wireless collaboration. In ECRTS, 2005.

[60] G. Yin and C. Tan and L.Y. Wang and C.Z. Xu. Recursive estimation algorithms

for power controls of wireless communication networks. Journal of Control Theory and

Applications, vol. 6, pp. 225-232, 2008.

[61] L. Xu and L.Y. Wang and G. Yin and H.W. Zhang. Communication information struc-

tures and contents for enhanced safety of highway vehicle platoons. IEEE Transactions

on Vehicular Technology, vol. 63, pp. 4206-4220, 2015.

[62] L.Y. Wang and A. Syed and G. Yin and A. Pandya and H. Zhang. Coordinated Vehicle

Platoon Control: Weighted and Constrained Consensus and Communication Network

Topologies. In Proc. 51st Conference on Decision and Control, 2012.

[63] L.Y. Wang and W. Feng and G. Yin. Joint state and event observers for linear switching

systems under irregular sampling. Automatica, vol. 49, pp. 894-905, 2013.

[64] F. Wu and G. Yin and L.Y. Wang. Stability of a pure random delay system with

two-time-scale Markovian switching. J. Different. Eqs., vol. 253, pp. 878-905, 2012.

[65] G. Yin and Y. Sun and L.Y. Wang. Asymptotic properties of consensus-type algorithms

for networked systems with regime-switching topologies. Automatica, vol. 47, pp. 1366-

1378, 2011.

[66] W. Jiao, M. Sheng, K. S. Lui, and Y. Shi. End-to-end delay distribution analysis

for stochastic admission control in multi-hop wireless networks. IEEE Transactions on

Wireless Communications, 13(3), 2014.

100

[67] Q. Liu, S. Zhou, and G. B. Giannakis. Cross-layer combing of adaptive modulation

and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless

Communications, 3(5), 2004.

[68] D. Seto, J. P. Lehoczky, and L. Sha. Task period selection and schedulability in real-time

systems. In RTSS, 1998.

[69] E. Bini and M. D. Natale. Optimal task rate selection in fixed priority system. In RTSS,

2005.

[70] S. Yoo et al. Guaranteeing Real-Time Services for Industrial Wireless Sensor Networks

With IEEE 802.15.4 Star Topolgy. IEEE Transactions on Industrial Electronics, 57(11),

2010.

[71] G. Cena, L. Seno, A. Valenzano and C. Zunino. On the Performance of IEEE 802.11e

Wireless Infrastructures for Soft-Real-Time Industrial Applications. IEEE Transactions

on Industrial Informatics, 6(3), 2010.

[72] Y. H. Wei. et al. RT-WiFi: Real-Time High-Speed Communication Protocol for Wireless

Cyber-Physical Control Applications. In RTSS, 2013.

[73] Tarek F Abdelzaher, Shashi Prabh, and Raghu Kiran. On real-time capacity limits of

multihop wireless sensor networks. In Real-Time Systems Symposium, 2004. Proceedings.

25th IEEE International, pages 359–370. IEEE, 2004.

[74] Gopal Agrawal, Biao Chen, Wei Zhao, and Sadegh Davari. Guaranteeing synchronous

message deadlines with the timed token medium access control protocol. Computers,

IEEE Transactions on, 43(3):327–339, 1994.

[75] Amir Aminifar, Petru Eles, and Zebo Peng. Jfair: a scheduling algorithm to stabilize

control applications. In Real-Time and Embedded Technology and Applications Sympo-

sium (RTAS), 2015 IEEE, pages 63–72. IEEE, 2015.

[76] Sanjoy Baruah, Giorgio Buttazzo, Sergey Gorinsky, and Giuseppe Lipari. Scheduling

periodic task systems to minimize output jitter. In Real-Time Computing Systems and

101

Applications, 1999. RTCSA’99. Sixth International Conference on, pages 62–69. IEEE,

1999.

[77] Sanjoy K Baruah, Deji Chen, and Aloysius K Mok. Jitter concerns in periodic task

systems. In Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE, pages

68–77. IEEE, 1997.

[78] Enrico Bini and Giorgio Buttazzo. The space of edf deadlines: the exact region and a

convex approximation. Real-Time Systems, 41(1):27–51, 2009.

[79] Giorgio Buttazzo and Anton Cervin. Comparative assessment and evaluation of jitter

control methods. RTNSâĂŹ07, page 163, 2007.

[80] Thomas W Carley, Moussa A Ba, Rajeev Barua, and David B Stewart. Contention-free

periodic message scheduler medium access control in wireless sensor/actuator networks.

In RTSS, pages 298–307, 2003.

[81] Anton Cervin, Bo Lincoln, Johan Eker, and Giorgio Buttazzo. The jitter margin and

its application in the design of real-time control systems. RTCSA, 2004.

[82] Fernanda Coutinho, Jorge Barreiros, Jose A Fonseca, and Ernesto Costa. Jitter mini-

mization with genetic algorithms. In Factory Communication Systems, 2000. Proceedings.

2000 IEEE International Workshop on, pages 267–273. IEEE, 2000.

[83] Alfons Crespo, Ismael Ripoll, and Pedro Albertos. Reducing delays in rt control: the

control action interval. In Proceedings of the 14th IFAC World Congress, pages 257–262,

1999.

[84] Rene L Cruz. A calculus for network delay. i. network elements in isolation. Information

Theory, IEEE Transactions on, 37(1):114–131, 1991.

[85] Hamza Dahmouni, André Girard, Mohamed Ouzineb, and Brunilde Sanso. The impact

of jitter on traffic flow optimization in communication networks. Network and Service

Management, IEEE Transactions on, 9(3):279–292, 2012.

[86] Robert I Davis and Nicolas Navet. Traffic shaping to reduce jitter in controller area

network (can). ACM SIGBED Review, 9(4):37–40, 2012.

102

[87] Marco Di Natale and John A Stankovic. Scheduling distributed real-time tasks with

minimum jitter. Computers, IEEE Transactions on, 49(4):303–316, 2000.

[88] Libin Dong, Rami Melhem, and Daniel Mossé. Effect of scheduling jitter on end-to-

end delay in tdma protocols. In Real-Time Computing Systems and Applications, 2000.

Proceedings. Seventh International Conference on, pages 223–230. IEEE, 2000.

[89] Emad Felemban, Chang-Gun Lee, Eylem Ekici, Ryan Boder, and Serdar Vural. Prob-

abilistic qos guarantee in reliability and timeliness domains in wireless sensor networks.

In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Commu-

nications Societies. Proceedings IEEE, volume 4, pages 2646–2657. IEEE, 2005.

[90] N Figuera and J Pasquale. Leave-in-time: A new service discipline for real-time commu-

nication in a packet-switching data network. In Proceedings of ACM SIGCOMMâĂŹ95,

pages 207–218, 1995.

[91] Xueying Guo, Rahul Singh, PR Kumar, and Zhisheng Niu. A high reliability asymp-

totic approach for packet inter-delivery time optimization in cyber-physical systems. In

Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking

and Computing, pages 197–206. ACM, 2015.

[92] Ching-Chih Han, Kwei-Jay Lin, and Chao-Ju Hou. Distance-constrained scheduling and

its applications to real-time systems. Computers, IEEE Transactions on, 45(7):814–826,

1996.

[93] Shengyan Hong, Xiaobo Sharon Hu, and Michael D Lemmon. Reducing delay jitter of

real-time control tasks through adaptive deadline adjustments. In Real-Time Systems

(ECRTS), 2010 22nd Euromicro Conference on, pages 229–238. IEEE, 2010.

[94] I Hou, PR Kumar, et al. Real-time communication over unreliable wireless links: a

theory and its applications. Wireless Communications, IEEE, 19(1):48–59, 2012.

[95] Praveen Jayachandran and Tarek Abdelzaher. Delay composition algebra: A reduction-

based schedulability algebra for distributed real-time systems. In Real-Time Systems

Symposium, 2008, pages 259–269. IEEE, 2008.

103

[96] Quan Leng, Yi-Hung Wei, Song Han, Aloysius K Mok, Wenlong Zhang, and Masayoshi

Tomizuka. Improving control performance by minimizing jitter in rt-wifi networks. In

Real-Time Systems Symposium (RTSS), 2014 IEEE, pages 63–73. IEEE, 2014.

[97] Bin Li, Ruogu Li, and Atilla Eryilmaz. Wireless scheduling design for optimizing both

service regularity and mean delay in heavy-traffic regimes. 2013.

[98] Bin Li, Ruogu Li, and Atilla Eryilmaz. Throughput-optimal scheduling design with

regular service guarantees in wireless networks. Networking, IEEE/ACM Transactions

on, 23(5):1542–1552, 2015.

[99] Cong Liu and Jian-Jia Chen. Bursty-interference analysis techniques for analyzing

complex real-time task models. In Real-Time Systems Symposium (RTSS), 2014 IEEE,

pages 173–183. IEEE, 2014.

[100] Manuel Lluesma, Anton Cervin, Patricia Balbastre, Ismael Ripoll, and Alfons Crespo.

Jitter evaluation of real-time control systems. In Embedded and Real-Time Computing

Systems and Applications, 2006. Proceedings. 12th IEEE International Conference on,

pages 257–260. IEEE, 2006.

[101] Sorin Manolache, Petru Eles, and Zebo Peng. Schedulability analysis of applications

with stochastic task execution times. ACM Transactions on Embedded Computing Sys-

tems (TECS), 3(4):706–735, 2004.

[102] Yishay Mansour and Boaz Patt-Shamir. Jitter control in qos networks. IEEE/ACM

Transactions on Networking (TON), 9(4):492–502, 2001.

[103] Pau Marti, Josep M Fuertes, Gerhard Fohler, and Krithi Ramamritham. Jitter com-

pensation for real-time control systems. In Real-Time Systems Symposium, 2001.(RTSS

2001). Proceedings. 22nd IEEE, pages 39–48. IEEE, 2001.

[104] Jerzy Martyna. Scheduling algorithm for delay and jitter reduction of periodic tasks

in real-time systems. Przeglad Elektrotechniczny, 87(1):236–239, 2011.

104

[105] Thomas Nolte, Hans Hansson, and Christer Norström. Minimizing can response-time

jitter by message manipulation. In Real-Time and Embedded Technology and Applications

Symposium, 2002. Proceedings. Eighth IEEE, pages 197–206. IEEE, 2002.

[106] Luca Santinelli and Liliana Cucu-Grosjean. Toward probabilistic real-time calculus.

ACM SIGBED Review, 8(1):54–61, 2011.

[107] Lui Sha, Shirish S Sathaye, and Jay K Strosnide. Analysis of dual-link networks for

real-time applications. Computers, IEEE Transactions on, 46(1):1–13, 1997.

[108] Rahul Singh, Xueying Guo, and Panganamala Ramana Kumar. Index policies for

optimal mean-variance trade-off of inter-delivery times in real-time sensor networks. In

Computer Communications (INFOCOM), 2015 IEEE Conference on, pages 505–512.

IEEE, 2015.

[109] Rajdeep Singh, I-Hong Hou, and P Roshan Kumar. Fluctuation analysis of debt

based policies for wireless networks with hard delay constraints. In INFOCOM, 2014

Proceedings IEEE, pages 2400–2408. IEEE, 2014.

[110] Ken Tindell. Adding time-offsets to schedulability analysis. Citeseer, 1994.

[111] Dinesh C Verma, Hui Zhang, and Domenico Ferrari. Delay jitter control for real-time

communication in a packet switching network. In Communications Software, 1991,’Com-

munications for Distributed Applications and Systems’, Proceedings of TRICOMM’91.,

IEEE Conference on, pages 35–43. IEEE, 1991.

[112] Yu Chen, Hongwei Zhang, Nathan Fisher, Le Yi Wang, George Yin. Probabilistic

Per-Packet Real-Time Guarantees for Wireless Networked Sensing and Control. IEEE

Transactions on Industrial Informatics, accepted for publication.

105

ABSTRACT

REAL-TIME GUARANTEES FOR WIRELESS NETWORKED SENSING
AND CONTROL

by

YU CHEN

May 2018

Advisor: Dr. Hongwei Zhang, Dr. Nathan Fisher

Major: Computer Science

Degree: Doctor of Philosophy

Wireless networks are increasingly being explored for mission-critical sensing and

control in emerging domains such as connected and automated vehicles, Industrial 4.0, and

smart city. In wireless networked sensing and control (WSC) systems, reliable and real-

time delivery of sensed data plays a crucial role for the control decision since out-of-date

information will often be irrelevant and even leads to negative effects to the system. Since

WSC differs dramatically from the traditional real-time (RT) systems due to its wireless

nature, new design objective and perspective are necessary to achieve real-time guarantees.

First, we proposed Optimal Node Activation Multiple Access (ONAMA) scheduling

protocol that activates as many nodes as possible while ensuring transmission reliability (in

terms of packets delivery ratio). We implemented and tested ONAMA on two testbeds both

with 120+ sensor nodes.

Second, we proposed algorithms to address the problem of clustering heterogeneous

reliability requirements into a limit set of service levels. Our solutions are optimal, and they

also provide guaranteed reliability, which is critical for wireless sensing and control.

Third, we proposed a probabilistic real-time wireless communication framework that

effectively integrates real-time scheduling theory with wireless communication. The per-

packet probabilistic real-time QoS was formally modeled. By R3 mapping, the upper-layer

requirement and the lower-layer link reliability are translated into the number of trans-

mission opportunities needed. By optimal real-time communication scheduling as well as

106

admission test and traffic period optimization, the system utilization is maximized while the

schedulability is maintained.

Finally, we further investigated the problem of how to minimize delay variation (i.e.,

jitter) while ensuring that packets are delivered by their deadlines.

107

AUTOBIOGRAPHICAL STATEMENT

Yu Chen received his B.S. and M.S. degrees in wireless communications from the

University of Electronic Science and Technology of China in 2007 and 2011, respectively.

He is currently a Ph.D. candidate in the Computer Science Department at Wayne State

University. His research interests include wireless networked control systems and cyber-

physical systems.

	Real-Time Guarantees For Wireless Networked Sensing And Control
	Recommended Citation

	Dedication
	Acknowledgements
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Our Contributions
	Organization

	CHAPTER 2: A MAXIMAL CONCURRENCY AND LOW LATENCY DISTRIBUTED SCHEDULING PROTOCOL FOR WIRELESS SENSOR NETWORKS
	Introduction
	The ONAMA Protocol
	Distributed MIS
	Pipelined precomputation
	Dynamic graph
	Implementation issues

	Evaluation
	Methodology
	Measurement results

	Related Work
	Summary

	CHAPTER 3: OPTIMAL REQUEST CLUSTERING FOR LINK RELIABILITY GUARANTEE IN WIRELESS NETWORKED CONTROL
	Introduction
	Migratory and Non-migratory Clustering Problem
	System model
	Problems definition

	Optimal Algorithm for Migratory Clustering
	Main idea
	The algorithms
	Correctness and complexity of the algorithms

	Optimal Algorithm for Non-migratory Clustering
	The algorithm
	Correctness and complexity of the algorithm

	Simulation Results
	Related Work
	Summary

	CHAPTER 4: PROBABILISTIC PER-PACKET REAL-TIME GUARANTEES FOR WIRELESS NETWORKED SENSING AND CONTROL
	Introduction
	Related Work
	Real-time scheduling
	Reliability-oriented wireless transmission scheduling

	System Model and Problem Statement
	Communication model
	Probabilistic QoS model
	Problem statement

	Wireless Scheduling Framework for Probabilistic Per-Packet Real-Time Communication Guarantee
	Overview
	Requirement-reliability-resource (R3) mapping
	Scheduling policy
	Admission policy
	Selection of packet generation period

	Simulation Experiment
	Simulation methodology
	Simulation results

	Extensions
	Impact of timescales of real-time communication guarantee
	Extension to multichannel settings
	Impact of control signaling unreliability
	Distributed solution

	Concluding remarks

	CHAPTER 5: PROBABILISTIC PER-PACKET REAL-TIME GUARANTEE WITH JITTER CONTROL
	Introduction
	Related Work
	System Model and Problem Statement
	System model
	Problem statement

	Offline and Online Scheduling for Probabilistic Per-Packet Real-Time Guarantee with Jitter Control
	Overview
	Transmission opportunities estimator
	Deadlines optimizer
	Jitter-EDF scheduler

	Simulation
	Simulation setup
	Simulation results

	Concluding Remarks

	CHAPTER 6: CONCLUSION
	Summary of Contributions
	Future Research Directions

	APPENDIX: PUBLICATIONS
	REFERENCES
	ABSTRACT
	AUTOBIOGRAPHICAL STATEMENT

