
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Winter 12-15-2014

Real-Time and Energy-Efficient Routing for
Industrial Wireless Sensor-Actuator Networks
Chengjie Wu
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Engineering Commons

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Wu, Chengjie, "Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks" (2014). Engineering and
Applied Science Theses & Dissertations. 65.
https://openscholarship.wustl.edu/eng_etds/65

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/65?utm_source=openscholarship.wustl.edu%2Feng_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Chenyang Lu, Chair

Kunal Agrawal
Roger D. Chamberlain

Octav Chipara
Christopher D. Gill
Humberto Gonzalez

Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks
by

Chengjie Wu

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

December 2014
Saint Louis, Missouri

c© 2014, Chengjie Wu

Table of Contents

List of Figures . v

List of Tables . vii

Acknowledgments . viii

Abstract . x

Chapter 1: Introduction . 1

Chapter 2: Network Model of Wireless Sensor-Actuator Networks 3
2.1 Routing Model . 4
2.2 Transmission Scheduling Model . 6

Chapter 3: Delay Analysis of EDF Scheduling for Wireless Sensor-Actuator
Networks . 8
3.1 Introduction . 8
3.2 Related Works . 10
3.3 EDF Scheduling . 11
3.4 Worst-Case End-to-End Delay Analysis . 12

3.4.1 Terminology . 12
3.4.2 Conflict and Contention Delays . 14
3.4.3 Upper Bound of Interferences . 15
3.4.4 Improved Delay Analysis . 19
3.4.5 Complexity Analysis . 23

3.5 Evaluation . 23
3.5.1 Experiments on a WSAN Testbed . 24
3.5.2 Simulations on Random Topologies 27
3.5.3 Comparative Study of Scheduling Policies 29

3.6 Summary . 31

Chapter 4: Real-Time Routing for Wireless Sensor-Actuator Networks . . 33
4.1 Introduction . 33
4.2 Related Work . 34
4.3 Problem Formulation . 35

ii

4.4 Conflict Delay Analysis . 36
4.5 Real-Time Routing . 40

4.5.1 Conflict-Aware Routing . 40
4.5.2 Iterative Conflict-Aware Routing . 43

4.6 Evaluation . 45
4.6.1 Experiments on a WSAN Testbed . 47
4.6.2 Simulations . 48

4.7 Summary . 54

Chapter 5: Energy-Efficient Routing for Wireless Sensor-Actuator Networks 55
5.1 Introduction . 55
5.2 Related Work . 57
5.3 Energy Consumption Model . 58
5.4 Graph Route Lifetime Maximization Problem 60
5.5 Lifetime Maximization Graph Routing Algorithms 62

5.5.1 Integer Programming . 63
5.5.2 Linear Programming Relaxation . 65
5.5.3 Greedy Heuristic . 65

5.6 Evaluation . 69
5.6.1 Experiments on a WSAN Testbed . 69
5.6.2 Simulations . 72

5.7 Summary . 75

Chapter 6: Distributed Application Allocation in Shared Sensor Networks 76
6.1 Introduction . 76
6.2 Related Works . 78
6.3 Problem Formulation . 80

6.3.1 QoM Formulation . 80
6.3.2 Application Allocation Problem Formulation 82

6.4 Submodular Game . 83
6.4.1 Submodular Game Formulation . 84
6.4.2 Submodular Game Algorithm . 87

6.5 Convergence and Approximation Bound . 88
6.5.1 Submodularity . 89
6.5.2 Convergence and Pure Nash Equilibrium 90
6.5.3 Valid Utility Game and Approximate Nash Equilibrium 91

6.6 Evaluation . 94
6.7 Summary . 101

Chapter 7: Conclusion . 102

References . 104

iii

Vita . 121

iv

List of Figures

2.1 Topology of a typical WSAN . 4
2.2 Source and Graph Routing . 5
2.3 Transmission Scheduling Examples . 6

3.1 Worst-case workload of flow Fl . 15
3.2 An example to show conflict delay . 17
3.3 An example for Observation 1 . 20
3.4 Worst-case scenario under Observation 1 . 20
3.5 Topology of the WSAN Testbed . 25
3.6 Cumulative Histogram of Link Qualities . 25
3.7 End-to-End Delays . 26
3.8 Schedulability Analysis on Random Topology 28
3.9 Comparison of Different Scheduling Policies 30

4.1 An example showing conflict delay . 37
4.2 An example of the CAR algorithm. Red lines represent the route of flow Fh.

Blue lines represent the route of flow Fl. 42
4.3 Topology of the WSAN Testbed . 45
4.4 Delays . 46
4.5 Acceptance Ratio in Simulation . 48
4.6 Acceptance Ratio in Analysis . 49
4.7 Delays in Simulation . 50
4.8 Delays in Analysis . 51
4.9 Execution Time . 53
4.10 Number of Iterations . 53

5.1 Transaction timing in one time slot [26] . 58
5.2 Reduction . 61
5.3 Topology of the WSAN Testbed . 69
5.4 Cumulative Histogram of Link Qualities . 70
5.5 Expected Network Lifetime relative to SP 70
5.6 Expected Lifetime Relative to Optimal Solution 72
5.7 Simulation Results on Testbed Topology . 73

6.1 Covariance Cover Ratio . 95
6.2 Number of Rounds . 95

v

6.3 Number of messages per node . 96
6.4 QoM Performance Analysis . 97
6.5 Comparison between VR and CC . 98
6.6 Variance Reduction . 99
6.7 Execution Time . 99
6.8 Cost Analysis . 100

vi

List of Tables

3.1 Delivery Ratios of Flows . 25

5.1 Representative Radio Parameters . 60
5.2 Expected energy consumption of devices to transmit or receive a packet . . . 60
5.3 Delivery Ratios of Flows . 70

vii

Acknowledgments

First, I would like to thank my advisor Dr. Chenyang Lu for his continuous guidance and

advice both in research and my personal growth. He has introduced me to important research

areas, taught me how to find real-world high-impact questions and how to appreciate the

beauty and simplicity in real research.

My sincere gratitude goes to my committee members Dr. Kunal Agrawal, Dr. Roger Cham-

berlain, Dr. Octav Chipara, Dr. Christopher Gill and Dr. Humberto Gonzalez. Thanks for

their patient advices on my dissertation.

I am grateful to my current and previous intelligent colleagues in the our research group. My

gratitude goes to Greg Hackmann, Yong Fu, Abusayeed Saifullah, Mo Sha, Sisu Xi, Lanshun

Nie, Bo Li, Rahav Dor, Jing Li, Dolvara Gunatilaka, Chong Li and Chao Wang.

Finally, I would like to give my deepest gratitude to my parents Keqin Wu and Shufang

Wang, my wife Guannan He, and my daughter Ellie Wu. I couldn’t be myself without their

endless love and support.

Chengjie Wu

Washington University in Saint Louis

December 2014

viii

Dedicated to my parents, my wife, and my daughter

ix

ABSTRACT OF THE DISSERTATION

Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks
by

Chengjie Wu
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2014

Professor Chenyang Lu, Chair

With the emergence of industrial standards such as WirelessHART, process industries are

adopting Wireless Sensor-Actuator Networks (WSANs) that enable sensors and actuators

to communicate through low-power wireless mesh networks. Industrial monitoring and con-

trol applications require real-time communication among sensors, controllers and actuators

within end-to-end deadlines. Deadline misses may lead to production inefficiency, equipment

destruction to irreparable financial and environmental impacts. Moreover, due to the large

geographic area and harsh conditions of many industrial plants, it is labor-intensive or dan-

gerous to change batteries of field devices. It is therefore important to achieve long network

lifetime with battery-powered devices.

This dissertation tackles these challenges and make a series of contributions. (1) We present

a new end-to-end delay analysis for feedback control loops whose transmissions are sched-

uled based on the Earliest Deadline First policy. (2) We propose a new real-time routing

algorithm that increases the real-time capacity of WSANs by exploiting the insights of the

delay analysis. (3) We develop an energy-efficient routing algorithm to improve the network

lifetime while maintaining path diversity for reliable communication. (4) Finally, we design

a distributed game-theoretic algorithm to allocate sensing applications with near-optimal

quality of sensing.

x

Chapter 1

Introduction

With the emergence of industrial standards such as WirelessHART [26] and ISA100 [16],

process industries are adopting Wireless Sensor-Actuator Networks (WSANs) that enable

sensors and actuators to communicate through low-power wireless mesh networks [184].

Industrial process control applications impose stringent end-to-end latency requirements on

data communication. To support a feedback control loop, the network periodically delivers

data from sensors to a controller and then delivers its control input data to the actuators

within an end-to-end deadline. Consequences of deadline misses in data communication

may range from production inefficiency, equipment destruction to irreparable financial and

environmental impacts.

To meet the stringent real-time performance requirements of control systems, there is a

critical need for fast end-to-end delay analysis for real-time flows that can be used for online

admission control. We present a new end-to-end delay analysis for periodic flows whose

transmissions are scheduled based on the Earliest Deadline First (EDF) policy. Our analysis

comprises novel techniques to bound the communication delays caused by channel contention

and transmission conflicts in a WSAN. Furthermore, we propose a technique to reduce the

pessimism in admission control by iteratively tightening the delay bounds for flows with short

deadlines. Experiments on a WSAN testbed and simulations demonstrate the effectiveness

of our analysis for online admission control of real-time flows.

Routing has significant impacts on reliability, real-time capacity and network lifetime. The

core contributions of this dissertation tackles the real-time communication and network life-

time problems in WSAN routing. We first design real-time routing algorithms that leverage

the insights from the delay analysis. By incorporating conflict delays in the routing decisions,

1

our real-time routing algorithms allow WSANs to accommodate more feedback control loops

while meeting their deadline constraints.

Our second contribution to routing addresses the energy constraints of field devices in

WSANs. Since many industrial devices operate on batteries in harsh environments where

changing batteries are labor-intensive, WSANs need to achieve long network lifetime. To

meet industrial demand for long-term reliable communication, we propose efficient graph

routing designs to maximize network lifetime of WSANs. We first formally formulate the

network lifetime maximization problem for WSANs under graph routing and prove it is

NP-complete. We then propose the optimal algorithm and two more efficient algorithms

to prolong the network lifetime of WSANs. Experiments in a physical testbed and simula-

tions show our linear programming relaxation and greedy heuristics can improve the network

lifetime by up to 50% while preserving the reliability benefits of graph routing.

Besides industrial WSANs, we have seen wireless sensor networks built as an integrated in-

frastructure shared by multiple environmental monitoring applications. Given the resource

constraints of sensor devices, it is important to optimize the allocation of applications to

maximize the overall quality of sensing. Recent solutions to this challenging application al-

location problem are centralized in nature, limiting their scalability and robustness against

network failures and dynamics. We present a distributed game-theoretic approach to allo-

cate monitoring applications. We first transform the application allocation problem to a

submodular game and then develop a decentralized algorithm that only employs localized

interactions among neighboring devices. We prove that the network can converge to a pure

strategy Nash equilibrium with an approximation bound of 1/2. Simulations based on three

real-world datasets demonstrate that our algorithm is competitive against a state-of-the-art

centralized algorithm in terms of quality of sensing.

The rest of this dissertation is organized as follows. Chapter 2 introduces the WSAN system

model we used in our dissertation. Chapter 3 presents our end-to-end delay analysis for

Earliest Deadline First (EDF) scheduling policy. Chapter 4 presents our real-time routing

design. Chapter 5 presents our energy-efficient graph routing design. Chapter 6 discuss our

distributed application allocation design in shared sensor networks. Chapter 7 concludes

this dissertation.

2

Chapter 2

Network Model of Wireless

Sensor-Actuator Networks

We consider a WSAN architecture based on the WirelessHART standard [26]. A WSAN (as

shown in Figure 2.1) consists of a gateway, multiple access points, and a set of field devices.

The gateway is wired to the access points. The access points and network devices are all

equipped with half-duplex radio transceivers compatible with the IEEE 802.15.4 physical

layer. The gateway communicates with field devices, such as sensors or actuators, through

the access points. The access points and the field devices form a wireless mesh network. We

use network device to refer any device in the system, including the gateway, an access point

and a field device.

The WSAN adopts centralized network management, where a network manager (usually

running in the gateway) manages all devices. The network manager gathers the network

topology information from the network devices, and generates and disseminates the routes

and transmission schedule to all network devices. This centralized network management

architecture, adopted by the WirelessHART standard, enhances the predictability and visi-

bility of network operations at the cost of scalability.

The WSAN adopts a Time Division Multiple Access (TDMA) MAC layer protocol on top of

the IEEE 802.15.4 physical layer. All devices across the network are synchronized. Time is

divided into 10 ms slots, and each time slot can accommodate one data packet transmission

and its acknowledgment. The WSAN supports multi-channel communication using channels

defined in the IEEE 802.15.4 standard. Only one transmission is scheduled on each channel

across the whole network to avoid potential collision between concurrent transmissions in a

3

v1

v2

v3

A1

G

A2

Network Manager

Sensor

Actuator

Controller

Access
Point

Gateway

Access
Point

Figure 2.1: Topology of a typical WSAN

same channel. While this conservative design reduces network throughput and scalability, it

avoids interference between transmissions within the network and thereby enhances reliability

and predictability, which are important for industrial applications.

2.1 Routing Model

As specified in the WirelessHART standard, WSANs adopt both source routing and graph

routing. In source routing, a single path from the source to the destination is used to deliver

packets, as shown in Figure 2.2(a).

In graph routing, redundant routes are provided to handle link failures, as shown in Figure

2.2(b). In a graph route, a single path is used as primary path (solid arrows in Figure

2.2(b)). For each network device on the primary path, except the destination, a backup

path (dashed arrows in Figure 2.2(b)) is provided to handle link failures. For example,

backup path u→ w → d is built to handle the failure of link −→uv.

We study a network topology G = (V,E) as a set of network devices V and directed links

between network devices E. A link here can be a wireless link between two field devices, a

4

u v ds

(a) Source Route

backup pathprimary path

u v d

x y z

w

s

(b) Graph Route

Figure 2.2: Source and Graph Routing

wireless link between an access point and a field device, or a wired link between an access

point and the gateway. We define a graph route as follows:

Definition 1. Given a source s and a destination d, a graph route R = {φ0, φ1, · · · , φk} is

a set of paths from s to d. φ0 is the primary path. Every network device vi on the primary

path φ0, except the destination d, has a backup path φi from itself to the destination which

does not include vi’s outgoing link on the primary path.

Clearly, a graph route can tolerate any single link failure. If a link on the primary path fails,

there is a backup path to tolerate this failure.

A WSAN can support multiple process control loops, each of which introduces a periodic

data flow in the network. Each flow has a period, a sensor, and an actuator. For each flow,

there are two graph routes: an uplink graph route and a downlink graph route. The uplink

graph route starts from the sensor and ends at the gateway. A downlink route starts from

the gateway and ends at the actuator.

5

u v ds
1, 2 3, 4 5, 6

(a) Transmission scheduling on a source route

backup pathprimary path

u v d

x y z

w

s
1, 2 3, 4 5, 6

3
4 5

7

5 7

8

(b) Transmission scheduling on a graph route

Figure 2.3: Transmission Scheduling Examples

2.2 Transmission Scheduling Model

In a WSAN, a time slot can be a dedicated slot or a shared slot. In a dedicated slot, only

one transmission is scheduled. However, in a shared slot, multiple contending transmissions

can be scheduled.

In source routing, only dedicated slots are used. As shown in Figure 2.3(a), one transmission

and one retransmission are scheduled on dedicated slots for each link on the source route to

handle a transmission failure.

In graph routing, both dedicated slots and shared slots are used. For each device on the

primary path, the network manager allocates two dedicated slots for a transmission and a

retransmission on its outgoing link on the primary path, followed by a third shared slot on

its outgoing link on its backup path. Thus, each link on the primary path is assigned two

dedicated slots and links on backup paths are assed to shard slots. Since a WSAN usually

employs only high-quality links, shared slots are therefore assigned to backup paths to reduce

delay and enhance bandwidth

6

We show an example of scheduling on a graph route in Figure 2.3(b). Each transmission on

the primary path is scheduled twice on dedicated slots, and each transmission on the backup

path is scheduled only once on a shared slot. Note we use three channels in this example,

so transmissions
−→
vd,−→uw, and −→yz can be scheduled in the same time slot 5 on three different

channels.

7

Chapter 3

Delay Analysis of EDF Scheduling for

Wireless Sensor-Actuator Networks

Industry is adopting Wireless Sensor-Actuator Networks (WSANs) as the communication

infrastructure for process control applications. To meet the stringent real-time performance

requirements of control systems, there is a critical need for fast end-to-end delay analysis

for real-time flows that can be used for online admission control. This chapter presents a

new end-to-end delay analysis for periodic flows whose transmissions are scheduled based

on the Earliest Deadline First (EDF) policy. Our analysis comprises novel techniques to

bound the communication delays caused by channel contention and transmission conflicts in

a WSAN. Furthermore, we propose a technique to reduce the pessimism in admission control

by iteratively tightening the delay bounds for flows with short deadlines. Experiments on

a WSAN testbed and simulations demonstrate the effectiveness of our analysis for online

admission control of real-time flows.

3.1 Introduction

With the emergence of industrial standards such as WirelessHART [26] and ISA100 [16],

process control industries are adopting Wireless Sensor-Actuator Networks (WSANs) in

which sensors and actuators communicate through low-power multi-hop wireless mesh net-

works [184]. Since excessive communication delay may lead to severe degradation of control

performance or even instability of the control system, it is critical to estimate worst-case

end-to-end communication delays for real-time flows in WSANs [182]. Moreover, fast delay

8

analysis is needed for online admission control and network reconfiguration in response to

dynamic changes of channel conditions in industrial environments.

In this chapter, we present a new delay analysis for periodic flows in WSANs in which

transmissions are scheduled based on the Earliest Deadline First (EDF) policy, a common

real-time scheduling policy that has been found to be an effective transmission scheduling

policy for real-time WSANs in recent studies [172].

Our new delay analysis can be used to derive end-to-end delay bounds for real-time flows

in WSANs. The key feature of our analysis lies in a novel approach to combine two types

of delays in a WSAN: contention delays due to limited number of wireless channels, and

conflict delays caused by conflicts among concurrent wireless transmissions involving a same

device. Furthermore, we reduce the pessimism in admission control by iteratively tightening

the delay bounds for flows with short deadlines.

We evaluate our delay analysis through experiments on a 63-node WSAN testbed and sim-

ulations. The experiment results demonstrate our delay analysis provides safe bounds of

real end-to-end delays. The simulation results show that our delay analysis is effective in

term of acceptance ratio when used for admission control. We also provide a comprehensive

simulation study that compares a state-of-the-art fixed priority scheduling algorithm [171]

and a dynamic priority scheduling algorithm [172]. Our simulations show EDF outperforms

fixed priority scheduling [171] in term of real-time performance, while delivering competitive

acceptance ratios to the existing dynamic priority scheduling policy at lower computational

cost.

The rest of the chapter is organized as follows. Section 3.2 reviews related works. Section

3.3 describes the EDF scheduling policy. Section 3.4 presents the delay analysis. Section 3.5

evaluates our delay analysis through experiments and simulations. Section 3.6 concludes the

chapter.

9

3.2 Related Works

Real-time transmission scheduling in wireless sensor networks received considerable atten-

tion [186]. In contrast to previous works on traditional sensor networks, our research in-

vestigates real-time WSANs based on recent industrial standards such as WirelessHART

with unique features. For example, our analysis is designed for wireless mesh networks

running a multi-hop and multi-channel TDMA protocol. In contrast, the network model in

previous works is based on single channel [27,59,61,107,151,155], or CSMA/CA MAC proto-

col [151,173]. While some earlier works [27,59,61,107,155] analyze fixed priority scheduling

in wireless networks, we focus on EDF scheduling, which is a dynamic priority scheduling pol-

icy. The probabilistic delay analyses for EDF proposed in [104] are not suitable for industrial

WSANs that require safe bounds on network delays. Earlier efforts on real-time schedula-

bility analysis for EDF [45,46] adopt a cellular network structure and require wireless nodes

with full-duplex transceivers.

In the area of industrial WSANs, earlier works study the transmission scheduling for WSANs

with simple topologies such as linear [214], tree [180, 211] and cluster tree topologies [192].

Transmission scheduling of real-time flows for arbitrary WSAN topologies has been studied

in [172]. It presents a real-time scheduling algorithm based on branch-and-bound and a

dynamic priority scheduling algorithm called C-LLF. However, it does not present any delay

analysis to derive its delay bound, therefore requires laying out the entire transmission

schedule of the whole network, which incurs high computation delays in admission control.

Near optimal rate selection for fixed priority scheduling has been studied in [167,168]. End-

to-end delay analysis for fixed priority scheduling in WSANs has been proposed in [169,170].

The performance of fixed priority scheduling highly depends on the priority assignment,

which is proven to be a difficult problem, and near-optimal priority assignment algorithms

incur significant computational cost when used online.

While dynamic priority scheduling represents an attractive alternative to fixed priority

scheduling, end-to-end delay analysis for dynamic priority scheduling has not been studied for

WSANs. Our work provides an end-to-end delay analysis for EDF scheduling policy, which

is a commonly used dynamic priority scheduling algorithm in real-time systems [32, 38, 39]

and outperforms the state-of-the-art fixed priority scheduling algorithms in WSANs in our

simulation study.

10

3.3 EDF Scheduling

The WirelessHART standard supports two types of routing: source routing and graph rout-

ing. Source routing provides a single route for each flow, whereas graph routing provides

multiple redundant routes in a routing graph and therefore enhances reliability through route

diversity. Our analysis currently assumes source routing and can be easily extended to a

model where each flow has multiple source routes and send redundant packets through every

route to enhance reliability. Supporting graph routing is part of our future work.

We consider a set of periodic flows F = {F1, F2, · · · , FN} to be scheduled on m channels.

Each flow

Fk = (Dk, Tk, αk, φk, Ck)

is characterized by a relative deadline Dk, a period Tk, a start time αk, a route φk and an

transmission count Ck. The route φk is composed of a sequence of links in the network

from the source device sk to the destination device ak. To enhance reliability, at most κ

(re)transmissions are scheduled for one link. Once the sender receives the acknowledgment, it

will discard other retransmission retries. The transmission count Ck equals the total number

of (re)transmissions scheduled for one packet of this flow along its route, i.e., Ck = |φk|κ,

where |φk| is the length of φk.

We follow the constrained deadline model where the deadline of each flow is within its period,

i.e., Dk ≤ Tk. Hence different packets of the same flow cannot co-exist in the network in

the same time slot. For flow Fk, a new packet is released at source node sk in the beginning

of each period. We use Pk,j to refer to the jth packet of the flow Fk, whose release time

is rk,j = αk + (j − 1) Tk. Packet Pk,j needs to be delivered to the destination ak through

a sequence of transmissions along φk. If Pk,j is delivered to the destination at slot fk,j

through its route, its end-to-end delay Rk,j is fk,j − rk,j + 1. A packet needs to complete

all its transmissions before its absolute deadline dk,j = rk,j + Dk. We use Rk to denote the

end-to-end delay of flow Fk, which is the maximum end-to-end delay of all its packets.

The network manager generates schedules for all field devices up to the hyper-period, i.e.,

the least common multiply of {Tk, k = 1, . . . , n}. When generating schedules, the network

manager follows the EDF scheduling policy. For all released packets, each packet is assigned

a priority based on its absolute deadline. The packet with an earlier absolute deadline is

11

assigned a higher priority. At any time slot, if there remains an available channel, among all

released but not delivered packets which do not conflict with packets already scheduled in

this time slot, the packet with highest priority is scheduled to this slot. This process repeats

until all channels are occupied or all remaining packets conflict with at least one scheduled

packet. Transmissions of the same packet can be scheduled on different channels at different

time slots.

3.4 Worst-Case End-to-End Delay Analysis

In this section, we present our worst-case end-to-end delay analysis for real-time flows under

the EDF policy. A set of real-time flows is schedulable if every flow has a worst-case end-to-

end delay that is no greater than its deadline. Given a set of real-time flows, our goal is to

derive an upper bound on the worst-case end-to-end delay of every flow. The delay analysis

can be used as a schedulability test of the flow set under EDF.

3.4.1 Terminology

Before analyzing the delays, we first introduce the terminology used in the analysis. We say

a packet is ready if it is released and not delivered yet. We say a packet executes in a time

slot if it has a transmission scheduled in this time slot. A packet can be delayed for two

reasons.

• Conflict delay: Due to the half-duplex radio, two transmissions conflict with each

other if they share a node (sender or receiver). Then only one of them can be scheduled

at current time slot. Therefore, if a packet conflicts with another packet that has

already been scheduled in the current time slot, it has to be postponed to a later time

slot, resulting in conflict delay.

• Contention delay: As a WSAN does not allow concurrent transmissions in a same

channel, each channel can only accommodate one transmission across the network in

each time slot. If all channels are assigned to transmissions of other packets, a packet

must be delayed to a later slot, resulting in contention delay.

12

To be more precise, we define the conflict delay of packet Pk,j as the number of time slots

when packet Pk,j is delayed because it conflicts with higher priority packets. We denote

conflict delay of packet Pk,j as Y f
k,j. We define the contention delay of packet Pk,j as the

number of time slots when Pk,j is delayed because all the channels are occupied by higher

priority packets and none of them conflict with Pk,j. We denote contention delay of packet

Pk,j as Y t
k,j. Then the end-to-end delay of packet Pk,j is

Rk,j = Y f
k,j + Y t

k,j + Ck, (3.1)

where Ck is the transmission count of Pk,j along its route.

We define the interference of a flow Fl on packet Pk,j as the number of slots when Pk,j waits

for transmissions of packets belonging to Fl. We denote flow Fl’s interference on packet

Pk,j as Ik,j(l). Note the terminology interference refers to the time a packet is delayed

by transmissions associated with another flow. It is not related to interference between

concurrent wireless transmissions, which cannot occur in a WSAN because it does not allow

concurrent transmissions in a same channel. We further categorize flow Fl’s interference on

packet Pk,j into two: conflict interference Ifk,j(l) and contention interference I tk,j(l). Flow

Fl’s conflict interference on packet Pk,j is the number of time slots when Pk,j is delayed due

to conflicting transmissions belonging to flow Fl. Fl’s contention interference on Pk,j is the

number of time slots when Pk,j waits while transmissions of flow Fl are executed and do not

conflict with Pk,j. By definition, we have

Ik,j(l) = Ifk,j(l) + I tk,j(l). (3.2)

In the rest of this section, we present the worst-case delay analysis in following 4 steps.

1. We analyze the end-to-end delay bound of a packet given the interference of the other

flows.

2. We derive an upper bound of a flow’s conflict and contention interferences on a packet.

3. Combining 1) and 2), we give the upper bound of the end-to-end delay of a flow.

13

4. We reduce the pessimism in admission control by iteratively tightening the delay

bounds of flows with short deadlines.

3.4.2 Conflict and Contention Delays

In this subsection we analyze the conflict delay and contention delay of a packet. Consider a

packet Pk,j of flow Fk released at time rk,j with absolute deadline dk,j. We want to analyze the

end-to-end delay of Pk,j assuming both the conflict interferences and contention interferences

of all the other flows on Pk,j are given.

Lemma 1. The conflict delay Y f
k,j of Pk,j is upper bounded as follow:

Y f
k,j ≤

∑
l 6=k

Ifk,j(l). (3.3)

Proof. For any time slot within Y f
k,j, Pk,j is delayed by conflict if and only if there is at least

one scheduled higher priority packet conflicting with it. Let one of these higher priority

packets belong to flow Fl. Recall the definition of Fl’s conflict interference on Pk,j is the

number of time slots when Pk,j is delayed due to conflicting transmissions belonging to flow

Fl. By definition, this time slot is a part of Fl’s conflict interference Ifk,j(l).

Since our statement is not limited to a specific time slot within Y f
k,j, we show any time

slot in which Pk,j suffers one conflict delay indeed belongs to at least one flow’s conflict

interference on Pk,j. Therefore, the total conflict delay of Pk,j is bounded by the sum of

conflict interferences of all other flows.

Lemma 2. The contention delay Y t
k,j of Pk,j is upper bounded as follow:

Y t
k,j ≤ b

∑
l 6=k I

t
k,j(l)

m
c. (3.4)

Proof. We follow the same reasoning of the proof of the Lemma 1. For any time slot, Pk,j

is delayed by contention if and only if all channels are occupied by higher priority packets

14

and none of them conflict with Pk,j. Then in this time slot, there must be m higher priority

packets scheduled and none of them conflict with Pk,j.

Let I t
′

k,j(l) denote the number of time slots when 1) Pk,j is ready but not executing, 2) Fl is

executing and 3) none of the executing packets conflict with Pk,j. Then the contention delay

of Pk,j is upper bounded by b
∑

l6=k I
t′
k,j(l)

m
c. Recall that I tk,j(l) is the number of time slots when

1) Pk,j is ready but not executing, 2) Fl is executing and 3) Fl does not conflict with Pk,j.

Comparing the set of time slots within I tk,j(l) and I t
′

k,j(l), we see the latter one is a subset

of the former one, so I t
′

k,j(l) is no greater than I tk,j(l). Therefore, Y t
k,j is upper bounded by

b
∑

l6=k I
t
k,j(l)

m
c.

To meet Pk,j’s deadline, the end-to-end delay of Pk,j should satisfy the following condition:

Rk,j = Y f
k,j + Y t

k,j + Ck ≤ Dk. To make flow Fk schedulable, this condition should hold for

all its packets.

3.4.3 Upper Bound of Interferences

The conflict and contention delay bounds in Lemma 1 and Lemma 2 depend on the conflict

and contention interferences. To give the worst-case end-to-end delay Rk of each flow Fk,

the most straightforward approach is to compute every other flow Fl’s conflict interference

and contention interference on every packet of Fk up to the hyper-period. However, this is

computationally expensive. We therefore derive upper bounds of the interferences that can

be computed efficiently.

Dk mod Tl

DlCl

 ⎣Dk / Tl⎦∙ Tl

Pk,j dk,j
rk,j

Tl

Figure 3.1: Worst-case workload of flow Fl

15

To start, we analyze the upper bound of the interference Ik,j(l) which is the sum of conflict

interference Ifk,j(l) and contention interference I tk,j(l). It is obvious that the interference of

flow Fl on any packet Pk,j cannot exceed its workload within Pk,j’s lifetime [rk,j, dk,j], where

flow Fl’s workload is the number of time slots when it executes. We denote the workload

of Fl within [rk,j, dk,j] as Wk,j(l). The worst-case workload would be a upper bound of the

interference. We show the worst-case workload in Figure 3.1 when the absolute deadline of

one packet of Fl aligns with the absolute deadline of Pk,j. In the figure, upper arrows and

down arrows represent release times and absolute deadlines of packets, respectively. Pk,j is

the jth packet of flow Fk. Cl, Dl and Tl are the transmission count, the relative deadline

and the period of Fl respectively. rk,j and dk,j are the release time and the absolute deadline

of packet Pk,j, respectively. Dashed areas are time slots when transmissions of packets are

scheduled. We give the following lemma to upper bound Fl’s workload.

Lemma 3. The workload of Fl within [rk,j, dk,j] is upper bounded as follow:

Wk,j(l) ≤ bDk/TlcCl + min(Cl, Dk mod Tl),

where Dk mod Tl is the remainder of Dk divided by Tl.

Proof. We discuss the workload of Fl in three cases:

• Dk < Tl

• Dk ≥ Tl and (Dk mod Tl) < Dl

• Dk > Tl and (Dk mod Tl) ≥ Dl

In the first case, deadline of flow Fk is less than period of flow Fl. Within [rk,j, dk,j], there

is at most one packet of Fl active. Then the maximum workload of Fl is min(Cl, Dk), which

follows this lemma.

In the second case, deadline of Fk is no less than period of Fl, and Dk mod Tl is less than

Dl. First, if Dk mod Tl equals 0, then the number of flow Fl’s packets within [rk,j, dk,j] is

Dk/Tl, and the total workload is (Dk/Tl)Cl, which follows this lemma. Then, we assume

Dk mod Tl > 0, this is the exact case we show in Figure 3.1. there is one carry-in packet of flow

16

Fl, which is released before Pk,j and delivered after Pk,j’s release. The number of Fl’s packets

within [rk,j, dk,j] is bDk/Tlc. And the carry-in packet’s workload is min(Cl, Dk mod Tl). Then

the total workload is bDk/TlcCl + min(Cl, Dk mod Tl), which also follows this lemma.

In the third case, the number of packets of Fl that are completely contained in [rk,j, dk,j] is

bDk/Tlc + 1, given that Dk mod Tl ≥ Dl. The workload of Fl is (bDk/Tlc + 1)Cl. Because

Dk mod Tl ≥ Dl ≥ Cl, the workload provided by this lemma is

bDk/TlcCl + min(Cl, Dk mod Tl) =bDk/TlcCl + Cl

=(bDk/Tlc+ 1)Cl.

Then this case follows the lemma as well.

We have an upper bound of Fl’s interference on packet Pk,j as:

Ik,j(l) ≤ Wk,j(l) ≤ bDk/TlcCl + min(Cl, Dk mod Tl). (3.5)

We use Îk,j(l) to denote this upper bound. Then we have

Îk,j(l) = bDk/TlcCl + min(Cl, Dk mod Tl). (3.6)

u

A

s

Route for Fl
Route for Fk

v

ba z

e f

y
x

Figure 3.2: An example to show conflict delay

Now we derive the upper bound of flow Fl’s conflict interference Ifk,j(l) on packet Pk,j. Let

Sk(l) denote the maximum conflict interference that one packet of flow Fl can incur on one

packet of flow Fk. Packets of flows Fk and Fl conflict with each other when their transmissions

17

share at least one node. So Sk(l) is the number of Fk’s transmissions that share nodes with

Fl’s transmissions. It depends on the number of links in Fl’s route that share nodes with

Fk’s route as well as the number of (re)transmissions scheduled on each link. We can count

it based on the routes of the two flows.

As shown in Figure 3.2, Fk and Fl are two flows that share a part of their routes. The

number of links in Fl’s route that share nodes with Fk’s route is 4, and they are {u→ v, v →
A,A → x, x → y}. For simplicity, assuming only one transmission is scheduled for each

link, Sk(l) in this example equals 4. After upper bounding the conflict interference that one

packet of Fl can introduce, we can upper bound the total conflict interference that flow Fl

can introduce on packet Pk,j.

Following the same reasoning of analyzing the maximum workload, we have the following

corollary.

Corollary 1. The conflict interference of flow Fl on packet Pk,j is upper bounded as follow:

Ifk,j(l) ≤ bDk/TlcSk(l) + min(Sk(l), Dk mod Tl). (3.7)

Here we use Îfk,j(l) to denote this upper bound of Ifk,j(l), and

Îfk,j(l) = bDk/TlcSk(l) + min(Sk(l), Dk mod Tl). (3.8)

After upper bounding the interferences of flow Fl on packet Pk,j, we have the upper bound

of end-to-end delay in the following theorem.

Theorem 1. The end-to-end delay of flow Fk is upper bounded as follow:

Rk ≤
∑
l 6=k

Îfk,j(l) + b
∑

l 6=k(Îk,j(l)− Î
f
k,j(l))

m
c+ Ck = R̂k.

Proof. As we showed in Equation (3.1), Rk,j = Y f
k,j + Y t

k,j + Ck. Combining it with Lemma

1 and Lemma 2, we have following inequation:

18

Rk,j ≤
∑
l 6=k

Ifk,j(l) + b 1

m

∑
l 6=k

I tk,j(l)c+ Ck. (3.9)

From Equations (3.6) and (3.8), we have upper bounds of Ik,j(l) and Ifk,j(l). However, we

don’t have an upper bound of I tk,j(l). Based on Inequation (3.2), Ik,j(l) = Ifk,j(l) + I tk,j(l).

In any case, Ifk,j(l) + I tk,j(l) ≤ Îk,j(l), and Ifk,j(l) ≤ Îfk,j(l). As shown in Equation (3.9),

I tk,j(l) is divided by m and floored, which shows Ifk,j(l) has higher weight than I tk,j(l) in the

equation. Given the fixed upper bound of Îk,j(l), any amount that we reduce from conflict

interference and add to contention interference will not increase the end-to-end delay. So we

use Îk,j(l)− Îfk,j(l) to replace I tk,j(l), use Îfk,j(l) to replace Ifk,j(l) and get the upper bound of

Rk as the theorem shows. The intuition is we would rather overestimate conflict interference

and underestimate contention interference, which will not violate the safety of our upper

bound.

3.4.4 Improved Delay Analysis

We give an upper bound of end-to-end delay in Theorem 1. Bertogna et al. [39] proposed a

technique to iteratively improve scheduability analysis for real-time tasks under EDF schedul-

ing. Inspired by their technique, we propose an Improved Delay Analysis (IDA). From now

on, we will call the end-to-end delay analysis in Theorem 1 as the Basic Delay Analysis

(BDA) and use it as a foundation of our IDA.

We illustrate the intuition of IDA through an example shown in Figure 3.3. R̂l is an upper

bound of the end-to-end delay of flow Fl we obtained through BDA (Theorem 1). We consider

the flow Fl’s interference on packet Pk,j. In this example the deadline of packet Pl,h is aligned

with deadline of packet Pk,j. The upper bound of the end-to-end delay of Fl is shown in the

figure with R̂l. From the figure, Pl,h is delivered to the destination before absolute deadline

of Pl,h as well as the release time of Pk,j. Then all transmissions of Pl,h are scheduled before

the release of Pk,j. Clearly, the interference of Fl on Pk,j is zero. However, based on BDA,

the conflict interference of Fl on Pk,j is Sk(l) (maximum conflict delay that Pl,h can incur on

Pk,j), and the contention interference of Fl is not zero either. BDA hence overestimates the

19

R^l

Dk

Dl

Cl

Pk,jPl,h

Figure 3.3: An example for Observation 1

interference in this example, because it ignores the fact that Pl,h is delivered well before its

deadline.

This observation leads to a way to reduce the pessimism of our analysis. In BDA, the

most difficult part is to assure the schedulability of flows with short deadlines, because an

overestimation of interference would easily push the end-to-end delay bound of the packet

over its short deadline. The intuition behind IDA is to tighten up the interference estimation

by considering early completion of packets.

Observation 1. Let R̂l denote an upper bound of end-to-end delay of flow Fl, no transmis-

sions of packet Pl,h can be scheduled later than rl,h + R̂l.

 ⎣Dk / Tl⎦∙ Tl

Dk mod Tl

R^
l

Dl

Cl

R^
l

Dl

Cl

R^
l
Dl

Cl

dk,j
rk,j

Figure 3.4: Worst-case scenario under Observation 1

20

By incorporating this observation, we propose our IDA. In IDA, we use superscript * to

denote the new results of variables we already introduced in BDA.

We start by analyzing the upper bounds of interferences. We show the worst-case interference

of Fl on packet Pk,j in Figure 3.4. Note that we also show the the upper bound of the end-

to-end delay R̂l of Fl in the figure.

Lemma 4. Flow Fl’s interference on packet Pk,j is upper bounded as follow:

Îk,j(l)
∗

= min(Cl,max(0, (Dk mod Tl)− (Dl − R̂l)))+

bDk/TlcCl. (3.10)

Proof. We discuss in four cases.

• Dk < Tl and Dk ≤ Dl − R̂l

• Dk < Tl and Dk > Dl − R̂l

• Dk ≥ Tl and (Dk mod Tl) ≤ Dl − R̂l

• Dk ≥ Tl and (Dk mod Tl) > Dl − R̂l

In the first case, deadline of flow Fk is less than period of flow Fl. Within [rk,j, dk,j], there

is at most one packet of Fl active. Since deadline of Fk is no greater than gap between

Fl’s upper bound of end-to-end delay R̂l and its deadline Dl. All transmissions of Fl are

scheduled before Pk,j’s release time. Then Fl’s interference equals zero in this case, which

follows this lemma. This case is exactly what we show in Figure 3.3.

In the second case, there is also at most one packet of Fl active. However, the release time

of Pk,j is before Fl’s upper bound of end-to-end delay. Packet Pk,j is released Dk− (Dl− R̂l)

time slots before one packet of Fl complete its transmissions. Then the maximum possible

interference is min{Cl, Dk − (Dl − R̂l)}, which also follows this lemma.

In the third case, deadline of Fk is no less than period of Fl, and Dk mod Tl is no greater

than Dl− R̂l. First, if Dk mod Tl equals 0, then the number packets of Fl within [rk,j, dk,j] is

21

Dk/Tl, and the total interference is (Dk/Tl)Cl, which follows this lemma. Then, we assume

0 < Dk mod Tl ≤ Dl − R̂l. There is one carry-in packet of flow Fl, which is delivered before

Pk,j’s release. So its interference on packet Pk,j is 0. Then the total interference is bDk/TlcCl,
which also follows this lemma.

In the last case, deadline of Fk is no less than period of Fl, and Dk mod Tl is larger than

Dl−R̂l. If Dk mod Tl ≥ Dl, there are Dk/Tl+1 packets of Fl contained within [rk,j, dk,j], the

total interference is (Dk/Tl + 1)Cl, which follows this lemma. If Dl − R̂l < Dk mod Tl < Dl,

the carry-in packet of flow Fl is partial within [rk,j, dk,j], which is exactly what we show in

Figure 3.4. The interference of this carry-in packet depends on Dk mod Tl − (Dl − R̂l), and

equals min(Cl, (Dk mod Tl)− (Dl − R̂l). This case follows the lemma as well.

Following the same reasoning of analyzing upper bound of interference, we have following

corollary.

Corollary 2. Flow Fl’s conflict interference on packet Pk,j is upper bounded as follow:

Îfk,j(l)
∗

= min(Sk(l),max(0, (Dk mod Tl)− (Dl − R̂l)))+

bDk/TlcSk(l). (3.11)

Similar to Theorem 1, we give an upper bound of end-to-end delay of Fk here.

Corollary 3. The worst-case end-to-end delay of flow Fk is upper bounded as follow:

Rk ≤
∑
l 6=k

Îfk,j(l)
∗

+ b
∑

l 6=k(Îk,j(l)
∗
− Îfk,j(l)

∗
)

m
c+ Ck = R̂k

∗
. (3.12)

The flow set {F1, F2, · · · , Fn} is schedulable if the following statement is true:

R̂k

∗
≤ Dk, k = 1, 2, · · · , n. (3.13)

We use an iterative algorithm to derive the upper bound of end-to-end delay R̂k

∗
. In the

beginning, the initial upper bound R̂k is set to Dk for all flows. In each iteration, R̂k

∗
is

22

calculated based on Equation (3.10)-(3.12). At the end of each iteration, for each flow Fk,

R̂k is set to R̂k
∗
. The algorithm enters a new iteration if the flow set is unschedulable and

at least one flow has R̂k

∗
updated, otherwise it terminates. We show the pseudo-code in

Algorithm 1.

Algorithm 1: Iterative algorithm

R̂k ← Dk,∀k ≤ N ;
repeat

for k ≤ N do

R̂k

0
← R̂k;

Calculate R̂k
∗

based on (3.10)-(3.12);

R̂k ← R̂k
∗
;

end

until R̂k ≤ Dk or R̂k = R̂k

0
,∀k ≤ N ;

R̂k

∗
← R̂k,∀k ≤ N ;

3.4.5 Complexity Analysis

BDA (Theorem 1) is polynomial. The calculation of upper bound of end-to-end delay of

flow Fk is O(n) since we have n flows. The complexity of BDA is O(n2) since we need to

calculate the upper bound of end-to-end delay for every flow. The total time complexity is

therefore O(n2).

IDA (Corollary 3) is pseudo-polynomial. The analysis in each iteration is O(n2) as discussed

above. Since there are n flows, and each one’s end-to-end delay can range from Ck to Dk,

the number of iterations is upper bounded as O(nmax(Dk −Ck, k ≤ N)). Thus, the overall

complexity is O(n3 max(Dk − Ck, k ≤ N)).

3.5 Evaluation

We evaluate our end-to-end delay analysis through both experiments on a physical WSAN

testbed and simulations.

23

3.5.1 Experiments on a WSAN Testbed

We evaluate our delay analysis on an indoor WSAN testbed consisting of 63 TelosB motes,

located on the fifth floors of Bryan Hall and Jolly Hall of Washington University in St.

Louis. We implement a network protocol stack on the testbed, which comprises a multi-

channel TDMA MAC protocol and a routing protocol. Time is divided into 10 ms slots and

clocks are synchronized across the entire network using the Flooding Time Synchronization

Protocol (FTSP) [143]. In the routing protocol, we want to find the maximum number of

link-disjoint paths for any pair of nodes. We transform this problem into a maximum flow

problem by assigning each link with unit capacity and use Edmonds−Karp algorithm [71]

to generate link-disjoint routes.

Figure 3.5 shows the topology of the WSAN testbed. We use motes 129 and 155 (red circles

in Figure 3.5) as access points, which are physically connected to a root server (Gateway).

The other motes are used as field devices (red circles in Figure 3.5). Black arrows are

wireless links. The Network Manager runs on this root server. The rest of motes work as

field devices. For each link in the testbed, we measured its packet reception ratio (PRR)

by counting the number of received packets among 250 packets transmitted on the link.

Following the practice of industrial deployment, we only add links with PRR higher than

90% to the topology of the testbed. To avoid channels occupied by the campus Wi-Fi, we

use IEEE 15.4 channel 11 to 15 in our experiments.

We generate 8 flows in our experiment. The period of each flow is picked up from the range of

20∼7 seconds, which are typical periods used in process industry as defined in WirelessHART

standard [26]. The length of the hyper-period is 128 seconds. The relative deadline of each

flow equals to its period. All flows are schedulable based on our delay analyses. Each flow

has two independent source routes. The maximum length of routes is 13 hops. Through this

double-route approach, we enhance the network reliability under link failures. We run our

experiments long enough such that each flow can deliver at least 100 packets.

Based on our experimental results, we evaluate our proposed approaches in terms of reliability

and delay. We use delivery ratio to measure reliability. The delivery ratio of a flow is defined

as percentage of packets that are successfully delivered to destination. Then, we compare the

24

Figure 3.5: Topology of the WSAN Testbed

0.0 0.2 0.4 0.6 0.8 1.0
PRR

0

20

40

60

80

100

P
e
rc

e
n

ta
g

e
 (

%
)

Figure 3.6: Cumulative Histogram of Link Qualities

Flow Index 1 2 3 4 5 6 7 8
1st Route 0.95 1.0 0.97 1.0 0.97 0.96 0.97 0.97
2nd Route 1.0 1.0 0.99 0.99 1.0 0.97 1.0 0.42

Two Routes 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99

Table 3.1: Delivery Ratios of Flows

25

1 2 3 4 5 6 7 8
Flow Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
e
la

y
 (

s
)

EXP_MIN
EXP_MAX
SIM
IDA
BDA

Figure 3.7: End-to-End Delays

end-to-end delay we collected in experiments with our delay analyses, as well as the delay

observed in simulations.

To study the reliability issue, we first measure the link qualities in our testbed . Figure

3.6 shows the cumulative histogram of link qualities (PRR) of 189 links we used in our

experiments. Although we only picked up links that have PRR higher than 90% when we

selected the links initially, we find some links have much lower PRR than the 90% threshold

at run time. For example, link 112 → 129 has the lowest PRR of 12%. The dynamics of

wireless links suggest it is necessary to have route redundancy.

Table 3.1 shows the delivery ratios of all 8 flows. We present the delivery ratio of each route

as well as the aggregate delivery ratio of the two routes combined. Our results demonstrate

the effectiveness of redundant routes in improving reliability. For example, the second route

of flow 8 has a delivery ratio of 0.42, which is much lower than our expectation. However,

by combing two routes together, flow 8 has a delivery ratio as 0.99.

In Figure 3.7, we compare end-to-end delay from experiment results with delay analyses as

well as simulation. We compare five delays for each flow: minimum delay in experiments

(EXP MIN), maximum delay in experiments (EXP MAX), maximum delay in simulation

(SIM), the improved delay analysis (IDA) in Corollary 3 and the basic delay analysis (BDA)

in Theorem 1. The results show for every flow, the five delays follow the following order:

EXP MIN ≤ EXP MAX ≤ SIM ≤ IDA ≤ BDA.

26

This shows that our delay analyses are safe upper bounds of the actual delays. In addition,

SIM is consistently higher than EXP MAX, which indicates our simulations can generate

test cases with worse delays than those observed on the testbed. In following evaluation,

we will provide a more comprehensive evaluation of the delay analyses based on simulations

over different network topologies.

3.5.2 Simulations on Random Topologies

Besides the Testbed experiments, we also test our analyses on larger random topologies with

simulations. The simulator shares the same routing and scheduling design with our testbed

and is written in C++. All simulations are performed on a MacBook Pro laptop with 2.4

GHz Intel Core 2 Duo processor. We generate random networks with 400 nodes and 800

links. Links are chosen randomly and assigned PRR randomly in the range of [0.90, 1.0]. We

test our delay analyses on different number of flows by increasing the number of source and

destination pairs. The period Tk of the each flow Fk is randomly generated in the range of

23∼9 seconds. The relative deadline Dk of every flow Fk is randomly generated in the range

of (Ck, β ∗ Tk) slots, here β is a randomly generated number in range of (0, 1). Ck is the

required time slots needed to deliver a packet from the source to the destination. For each

flow set, we generate 100 test cases and simulate them on random topologies.

We compare our improved delay analysis (IDA) in Corollary 3 with the basic delay analysis

(BDA) in Theorem 1 and the simulation (SIM). Our delay analyses are evaluated in terms

of pessimism ratio and acceptance ratio. The former one is used to assess the tightness of

the delay analyses, and the latter one is used to evaluate the effectiveness of our analyses

for online admission control. For each flow, the pessimism ratio is defined as the ratio of its

theoretical upper bound of end-to-end delay given by our analyses to its maximum end-to-

end delay observed in simulation. The acceptance ratio is defined as the ratio of the number

of test cases deemed schedulable by our analyses (or simulation) to the total number of

test cases. A test case is schedulable in simulation if all flow instances released within the

hyper-period meet their deadlines.

The acceptance ratios of IDA, BDA and simulation (SIM) are shown in Figure 3.8(a). The

acceptance ratio of IDA remains close to simulations. The gap between IDA and SIM

27

10 20 30 40 50 60 70 80 90 100
Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

BDA

IDA

SIM

(a) Acceptance Ratio

10 20 30 40 50 60 70 80 90 100
Number of flows

1

2

4

8

16

32

64

128

P
e
s
s
im

is
m

 R
a
ti

o

BDA
IDA

(b) Pessimism Ratio (in log scale)

10 20 30 40 50 60 70 80 90 100
Number of flows

0

200

400

600

800

1000

1200

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
) BDA

IDA

(c) Execution Time

Figure 3.8: Schedulability Analysis on Random Topology

28

widens as the number of flows increases, but remains within 30%. This result indicates the

effectiveness of IDA for admission control. The acceptance ratio of IDA is much higher than

BDA, which shows the IDA highly outperforms BDA in terms of acceptance ratio.

Figure 3.8(b) shows pessimism ratios of IDA and BDA in log scale. Since if a test case is

not schedulable under simulation, the simulator could not lay out the schedule of all flows,

then we could not get the actual maximum end-to-end delay. So all pessimism ratios here

are from test cases that are schedulable under simulation. This result confirms IDA greatly

improves the tightness of the delay bound compared to BDA. The pessimism ratio of BDA

increases as the number of flows increases. However, the pessimism ratio of IDA remain low

despite the increase of number of flows. The median value of pessimism ratio for IDA is

always around 2 in our simulations. This figure shows our IDA is scalable to large number

of flows.

The time complexity of our algorithms are shown in Figure 3.8(c). The execution time of

IDA grows faster than BDA as the number of flows grows while staying in an acceptable

region. With 100 flows, the execution time of IDA is under 1.2 seconds, which is acceptable

for admission control. Figures 3.8(a)-3.8(c) show the tradeoff between accuracy and time

complexity. While IDA runs slower than BDA, it gives a much more precise estimation of

end-to-end delay, which leads to a higher acceptance ratio.

3.5.3 Comparative Study of Scheduling Policies

In this subsection, we compare EDF and our Improved Delay Analysis (EDF-IDA) with

state-of-the-art dynamic and static priority scheduling algorithms and their delay analyses.

For dynamic priority scheduling, we consider Conflict-aware Least Laxity First (C-LLF)

[172], which incorporates transmission conflicts into a Least Laxity First scheduling policy.

However, there is no delay analysis for C-LLF in the literature. For fixed priority scheduling,

we choose Fixed Priority with near optimal priority assignment based on heuristic search

(FP) presented in [171], which was shown to significantly outperform traditional priority

assignment policies. Delay Analysis for Fixed Priority scheduling policies (FP-DA) has been

proposed in [170].

29

20 30 40 50 60 70 80
Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

C-LLF

FP

EDF

FP-DA

EDF-IDA

(a) Acceptance Ratio

20 30 40 50 60 70 80
Number of Flows

64

128

256

512

1024

2048

4092

8184

16368

32736

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
) FP-PA

FP-DA

EDF-IDA

(b) Execution Time (in log scale)

Figure 3.9: Comparison of Different Scheduling Policies

30

We compare scheduling policies through simulations on random topologies. To fully test

the schedulability of different scheduling algorithms, we reduce the periods of flows from the

range of 26∼11 to 25∼10. The rest of the simulation setups are same as the previous subsection.

Figure 3.9(a) shows the acceptance ratios of different scheduling policies and their delay

analyses. Since these is no delay analysis for C-LLF, we only include its acceptance ratio in

simulations. Results show in simulations, EDF can schedule more flow sets than FP, which

indicates that EDF is indeed an effective scheduling policy in practice. While C-LLF can

schedule more flow sets than EDF, there is no schedulability analysis for C-LLF that can

be used for fast online admission control. We also compare the acceptance ratios of delay

analyses EDF-IDA and FP-DA here. Given the complexity that EDF brings to schedulability

analysis, the acceptance ratio of EDF-IDA is slightly lower than FP-DA.

Figure 3.9(b) shows execution time (in log scale) of the delay analyses as well as the priority

assignment algorithm needed by FP (denoted as FP-PA). The execution time of FP-PA is

much higher than execution time of EDF-IDA and FP-DA. Note that priority assignment is

an integral part of fixed priority scheduling and the near optimal priority assignment needs

to be performed for admission control of flows. Given the high computational cost of priority

assignment algorithm, EDF-IDA provides a more efficient admission test for real-time flows,

which is particularly important for WSANs operating under dynamic wireless conditions in

industrial environments.

3.6 Summary

With the emergence of industrial standards such as WirelessHART, wireless sensor-actuator

networks (WSANs) are gaining rapid adoption in process industries. To meet the strin-

gent real-time performance requirements of process control systems, there is a critical need

for fast end-to-end delay analysis to support online admission control of periodic real-time

flows in WSANs. This chapter presents a new end-to-end delay analysis for WSANs un-

der Earliest Deadline First (EDF) transmission scheduling, a widely used dynamic priority

scheduling policy in real-time systems. Our analysis that can be used to derive end-to-end

delay bounds for real-time flows in WSANs at moderate run time overhead. Experiments

31

on a physical WSAN testbed and simulations demonstrate the effectiveness of our analysis

for online admission control of real-time flows.

32

Chapter 4

Real-Time Routing for Wireless

Sensor-Actuator Networks

As process industries start to adopt wireless sensor-actuator networks (WSANs) for con-

trol applications, it is crucial to achieve real-time communication in this emerging class of

networks. Routing has significant impacts on end-to-end communication delays in WSANs.

However, despite considerable research on real-time transmission scheduling and delay anal-

ysis for such networks, real-time routing remains an open question for WSANs. This chapter

presents a conflict-ware real-time routing approach for WSANs. This approach leverage a

key observation that conflicts among transmissions sharing a common field device contribute

significantly to communication delays in industrial WSANs such as WirelessHART networks.

By incorporating conflict delays in the routing decisions, conflict-aware real-time routing al-

gorithms allow a WSAN to accommodate more real-time flows while meeting their deadlines.

Evaluation based on simulations and experiments on a real WSANs testbed show conflict-

aware real-time routing can lead to up to three-fold improvement in real-time capacity of

WSANs.

4.1 Introduction

With the emergence of industrial standards such as WirelessHART [26] and ISA100.11a [16],

process industries are adopting Wireless Sensor-Actuator Networks (WSANs) that enable

sensors and actuators to communicate through low-power wireless mesh networks [184]. In

recent years, we have seen world-wide deployment of WSANs. Technical reports [13] from the

33

process industry show more than 1900 WirelessHART networks have been deployed around

the world, with more than 3 billion operating hours in the field.

Feedback control loops in industrial environments impose stringent end-to-end delay require-

ments on data communication. To support a feedback control loop, the network periodically

delivers data from sensors to a controller and then delivers control commands to the actu-

ators within an end-to-end deadline. The effects of deadline misses in data communication

may range from production inefficiency, equipment destruction to irreparable financial and

environmental damages.

Previous works [170,172,200] demonstrate that the end-to-end delays of flows highly depend

on routes. It is important to optimize routes to improve the real-time capacity of WSANs.

Existing routing algorithms usually select routes with the minimum hop count, which in-

troduces high transmission conflicts among different flows. Since high transmission conflicts

cause long end-to-end delays, shortest paths usually lead to a low real-time capacity. This

paper presents our real-time routing algorithms for WSANs. We incorporate conflict delays

into our routing design and propose conflict-aware routing algorithms that allow WSANs

to accommodate more real-time flows. Our conflict-aware routing algorithms reduce con-

flict delays of real-time flows so they can meet their deadline constraints. Our evaluation

shows that our real-time routing algorithms can greatly improve the real-time capacity of

the network.

The rest of the chapter is organized as follows. Section 4.2 reviews the related works.

Section 4.3 discusses the problem formulation. Section 4.4 provides a brief review of the

existing delay analyses, and Section 4.5 presents our real-time routing algorithms. Section 4.6

evaluates our routing algorithms through experiments and simulations, then Section 4.7

concludes the chapter.

4.2 Related Work

WSANs have attracted much attention in the research community [94,129,167,170,172,200]

recently. Previous works studied real-time transmission scheduling [61,130,172], communica-

tion delay analysis [170,200] and rate selection [167,168]. All these works assume the routes

34

of the flows are given, and do not provide any routing protocol. There has been increasing

interest in developing routing algorithms for WSANs. For example, Han et al. [94] propose

routing algorithms to build reliable routes based on hop count, but their algorithms do not

consider real-time performance.

Real-time routing has been studied in the wireless sensor network community. Xu et al. [207]

propose a Potential-based Real-Time Routing (PRTR) protocol that minimizes delay for

real-time traffic. However, their end-to-end delay bounds are probabilistic based on net-

work calculus theory, which is not applicable to WSANs that require strict delay bounds.

SPEED [98] bounds the end-to-end communication delays by enforcing a uniform delivery

velocity. MM-SPEED [74] extends SPEED to support different delivery velocities and levels

of reliability. RPAR [58] achieves application-specified communication delays at low energy

cost by dynamically adapting transmission power and routing decisions. However, SPEED,

MM-SPEED, and RPAR all assume each device knows its location via GPS or other lo-

calization services, which is not always feasible in WSANs. Moreover, the stateless routing

policies adopted by these algorithms can not provide end-to-end delay bounds. Despite ex-

isting results on the general problem of real-time routing, none of the aforementioned work

can be applied to WSANs. To meet this open challenge in industrial WSANs, we investigate

the problem of real-time routing in WSANs in this paper.

4.3 Problem Formulation

In this section, we discuss the problem formulation. We consider a WSAN with a set of

real-time flows F = {F1, F2, · · · , Fn}. Each flow Fk = (sk, dk, φk, Dk, Tk) is characterized by

a source sk, a destination dk, a source route φk
1, a relative deadline Dk, and a period Tk.

We assume that all flows are ordered by priorities. Flow Fi has a higher priority than flow

Fj, if and only if i < j. In practice, priorities are assigned based on deadlines, periods, or

1The WirelessHART standard supports two types of routing: source routing and graph routing. Source
routing provides a single route for each flow, whereas graph routing provides multiple redundant routes in a
routing graph and therefore enhances reliability through route diversity. Our routing algorithms currently
assume source routing and can be easily extended to a model where each flow has multiple source routes and
sends redundant packets through every route to enhance reliability. Supporting graph routing is part of our
future work.

35

the criticality of the real-time flows. In this work, we use the deadline-monotonic priority

assignment policy [?], where flows with shorter deadlines are assigned with higher priorities.

Under a fixed priority scheduling policy, the transmissions of the flows are scheduled in

the following way. Starting from the highest priority flow F1, the following procedure is

repeated for every flow Fi in decreasing order of priority. For the current priority flow Fi,

the network manager schedules its transmissions along its route (starting from the source)

in the earliest available time slots and on available channels. A time slot is available if no

conflicting transmission is already scheduled in that slot. In a WSAN, the complete schedule

is divided into superframes. A superframe consists of transmissions in a series of time slots

and represents the communication pattern of a group of devices. A superframe repeats itself

when it completes all its transmissions.

The goal of our routing algorithm is to find routes for the flows so that every flow can meet

its deadline. Shortest path algorithms based on hop count [94] are commonly adopted in

practice in WSANs. However, as shown in our simulation results presented in this paper,

the effectiveness of these algorithms is far from the optimal. Based on the insights from

end-to-end delay analyses, we propose two heuristics to assign routes to meet real-time

requirements.

4.4 Conflict Delay Analysis

In this section, we summarize the delay analysis for WSANs. Previous works have studied

end-to-end communication delays in WSANs [170, 200]. Based on their analyses, a packet

can be delayed for two reasons: conflict delay and contention delay. Due to the half-duplex

radio, two transmissions conflict with each other if they share a node (sender or receiver). In

this case, only one of them can be scheduled in the current time slot. Therefore, if a packet

conflicts with another packet that has already been scheduled in the current time slot, it

has to be postponed to a later time slot, resulting in conflict delay. As a WSAN does not

allow concurrent transmissions in the same channel, each channel can accommodate only one

transmission across the network in each time slot. If all channels are assigned to transmissions

of other packets, a packet must be delayed to a later slot, resulting in contention delay.

36

u

A

s

Route for Fi
Route for Fk

v

bc z

e f

y
x

Figure 4.1: An example showing conflict delay

From existing delay analyses [170, 200] as well as our simulations, conflict delay plays a

significant role in the end-to-end delays of flows. Furthermore routing directly impacts

conflict delays, whereas contention delays largely depend on the number of channels available.

Therefore, in our routing design, we focus only on conflict delay. Saifullah et al. proposed

the Efficient Delay Analysis algorithm (EDA) in [170]. Here we briefly discuss their EDA

algorithm and our approximation of EDA for our routing design.

We denote the maximum conflict delay that a package of flow Fk suffers from a package of

flow Fi as ∆i
k. ∆i

k is counted based on the routes of the two flows. ∆i
k equals the number

of links in Fi’s route that share nodes with Fk’s route, times the number of transmissions

scheduled on each link. We use κ to denote the number of transmissions scheduled for each

link. We use an example in Figure 4.1 to show how to count ∆i
k. Fk and Fi are two flows

that share a part of their routes. Four links in Fi’s route share nodes with Fk’s route, which

are {(u, v), (v, A), (A, x), (x, y)}. For simplicity, assuming only one transmission is scheduled

for each link, ∆i
k in this example equals 4.

Given a time interval of t slots, the number of packets of flow Fi that contribute to the delay

of a packet of flow Fk during this time interval is upper bounded by d t
Ti
e. As [170] shows, the

worst-case conflict delay of a packet of flow Fk from all packets of flow Fi in a time window

t can be bounded as

Θi
k(t) = d t

Ti
e∆i

k, (4.1)

37

where Ti is the period of flow Fi and ∆i
k is the maximum conflict delay imposed by one

packet of flow Fi.

By summarizing conflict delays from all flows with higher priorities than flow Fk, EDA

proposes a upper bound of the conflict delay of flow Fk as

Θk(t) =
∑
i<k

d t
Ti
e∆i

k. (4.2)

Based on Equation 4.2, EDA uses an iterative fixed-point algorithm to get the upper bound

of Fk’s conflict delay. However, the iterative fixed-point algorithm is too expensive for our

routing algorithms since we will use the delay analysis as a basic component and call it

extensively in our routing algorithm. Here, we propose an efficient approximation of EDA.

A packet of flow Fk can be delayed only within its lifetime Dk (the relative deadline of flow

Fk). Instead of using an iterative fixed-point algorithm, we use the deadline of flow Fk as the

length of time window. We further ignore the ceiling function and approximate the conflict

delay that Fk can suffer from flow Fi as

Θi
k =

Dk

Ti
∆i
k. (4.3)

By considering conflict delays from all flows, we approximate the conflict delay of flow Fk

as:

Θk =
∑
i<k

Dk

Ti
∆i
k. (4.4)

We present the pseudocode of our conflict delay analysis algorithm in Algorithm 2. The

for loop from line 7 to line 11 has a complexity of O(|φi|log|φk|) since one look up takes

log|φk| in average. The for loop from line 2 to line 11 has a complexity of |F||φi|log|φk|.
Because |φi| ≤ |V | and |φk| ≤ |V |, the complexity of our conflict delay analysis algorithm is

O(|F||V |log|V |).

38

Algorithm 2: Conflict Delay Analysis

Function CDA(G,F , κ)
Input : A graph G(V,E), a flow set F = {F1, F2, · · · , Fn} ordered by priority, where

Fk = (sk, dk, φk, Tk, Dk)
Output : Conflict delays {θ1, θ2, · · · , θn} for all flows
for each flow Fk from F2 to Fn do

S = ∅;
for each link (u, v) ∈ φk do

insert u into S;
insert v into S;

for each flow Fi from F1 to Fk−1 do
∆i
k = 0;

for each link (u, v) ∈ φi do
if u ∈ S or v ∈ S then

∆i
k = ∆i

k + κ;

for each flow Fk from F1 to Fn do
Θk = 0;
if k > 1 then

for each flow Fi from F1 to Fk−1 do
Θk = Θk + Dk

Ti
∆i
k;

39

4.5 Real-Time Routing

In WSANs, existing routing algorithms [94] usually take hop count as the metric when

selecting routes. As a result, each flow will select a route with the minimum hop count.

However, the shortest path does not necessarily lead to the smallest end-to-end delay. As

previous delay analyses [170,200] and our simulations presented in Section 4.6 show, conflict

delay plays an important role in the end-to-end delay. In this section, we take conflict delay

into account in the routing decision and propose our real-time routing algorithms.

As we summarized in Section 4.4, the conflict delay that a flow Fk experiences is approx-

imated as Θk =
∑

i<k
Dk

Ti
∆i
k, where Ti is the period of a high-priority flow Fi, and ∆i

k is

the maximum conflict delay imposed by one packet of flow Fi. To be more specific, ∆i
k is

the number of transmissions of flow Fi that share nodes with flow Fk, which depends on

the routes of flows Fi and Fk. In our real-time routing algorithms, we aim to reduce the

conflict delay caused by high-priority flows under a deadline-monotonic priority assignment

that assigns higher priorities to flows with shorter deadlines. This policy can improve the

number of flows meeting their deadlines, as shown in our simulation results in Section 4.6.

4.5.1 Conflict-Aware Routing

We discuss our Conflict-Aware Routing (CAR) algorithm, which pick routes with small

conflict delays caused by high-priority flows. Our CAR algorithm runs as follows. We assign

routes for flows following the priority order, from the highest to the lowest. For each flow

Fk, we update the link weights based on routes of higher priority flows. If a link (u, v) shares

at least one node with a higher priority flow Fi’s route, its weight will be increased by Dk

Ti

based on Equation (4.3). After updating the link weights, we run Dijkstra’s algorithm [65]

to find the path φk with the smallest path weight. The algorithm terminates when the flow

with lowest priority is assigned with a route φn. We present the pseudocode of our CAR

algorithm in Algorithm 3.

Figure 4.2 shows an example of our CAR algorithm. In this example, we have two flows, Fh

and Fl. Flow Fh has a higher priority than flow Fl. The flow Fh has a source p, a destination

a, a period 1s, and a deadline 1s. The flow Fl has a source q, a destination a, a period

40

Algorithm 3: Conflict-Aware Routing

Function CAR(G,F)
Input : A graph G(V,E), A flow set F = {F1, F2, · · · , Fn} ordered by priority with

Fk = (sk, dk, Tk, Dk)
Variable: link weight w, link delay coefficient c
Output : A route φk for each flow Fk
for each link (u, v) ∈ E do

w(u,v) = 1;
c(u,v) = 0;

for each flow Fk from F1 to Fn do
if k > 1 then

for each link (u, v) ∈ E do
w(u,v) = 1 +Dk · c(u,v);

Find the shortest path φk connecting sk to dk;
Assign φk as flow Fk’s route;
for each link (u, v) ∈ E do

if (u, v) shares at least one node with Fk’s route Rk then
c(u,v) = c(u,v) + 1

Tk
;

41

p

b

a

q
e

c

1

1
1

1

1

1 1

sh

sl

1

1

(a) Assign initial link weights

p

b

a

q
e

c

1

1
1

1

1

1 1

sh

sl

1

1

(b) Pick the route of Fh

p

b

a

q
e

c

5

5
5

1

1

5 5

sh

sl

5

5

(c) Update link weights

p

b

a

q
e

c

1

5
5

1

1

5 5

sh

sl

5

5

(d) Pick the route of Fl

Figure 4.2: An example of the CAR algorithm. Red lines represent the route of flow Fh.
Blue lines represent the route of flow Fl.

42

4s, and a deadline 4s. We use black lines to represent links in the network, red lines to

represent the route of flow Fh, and blue lines to represent the route of flow Fl. In the first

step (Figure 4.2(a)), we assign an initial link weight of 1 for each link in the topology. In

the second step (Figure 4.2(b)), we run the shortest path algorithm to get Fh’s route as

p → b → a. In the second step (Figure 4.2(c)), we update the link weights based on flow

Fh’s route. If a link (u, v) shares at least one node with any link on flow Fh’s route, we add

an estimated conflict delay Dl

Th
= 4 to the link weight, because each link in flow Fh’s route

will bring Dl

Th
= 4 conflict delay to flow Fl based on the delay analysis in Equation 4.3. In

this example, links that could encounter conflict delay from flow Fh will have a link weight

of 5. In the fourth step (Figure 4.2(d)), we find the shortest path from flow Fl’s source q

to its destination a, which is q → e → c → a in this example. Note the path we found is

different from the shortest path based on hop count q → b→ a.

Now we discuss the complexity of the CAR algorithm. We first check the complexity for

each flow (one iteration within the for loop at lines 5-13). The complexity to update the

link weights is O(|E|). The complexity of the Dijkstra’s algorithm is O(|E| + |V |log|V |),
and the complexity to update the delay coefficients is O(|E|). Then the complexity of each

flow is O(|E|+ |V |log|V |). Therefore, the complexity of our CAR algorithm is O(|F|(|E|+
|V |log|V |)).

4.5.2 Iterative Conflict-Aware Routing

By reducing the conflict delay of low priority flows, we can accommodate more flows while

meeting their deadlines. However, CAR is based on flow priorities, and high priority flows

are not aware of the routes of low priority flows. We further improve the real-time capacity

by introducing an approach where high priority flows also take into account the routes of

low priority flows. We introduce our Iterative Conflict-Aware Routing (ICAR) algorithm as

Algorithm 4.

The ICAR algorithm terminates when no flows update their routes in the last round or all

flows are schedulable under EDA. Within each round, flows pick their routes one by one.

For each flow Fk, the algorithm first updates link weights based on the routes of other flows.

One difference between ICAR and CAR is that lower priority flows can also contribute to

43

Algorithm 4: Iterative Conflict-Aware Routing

Function ICAR(G,F)
Input : A graph G(V,E), A flow set F = {F1, F2, · · · , Fn} ordered by priority with

Fk = (sk, dk, Tk, Dk)
Variable: link weight w, per link flow set S, link delay coefficient c
Output : A route φk for each flow Fk
changed = true; schedulable = false;
for each flow Fk ∈ F do

φk = ∅;
for each link (u, v) ∈ E do

S(u,v) = ∅; c(u,v) = 0;

while changed == true and schedulable == false do
changed = false; schedulable = true;
for each flow Fk from F1 to Fn do

if k > 1 then
for each link (u, v) ∈ E do

if Fk ∈ S(u,v) then
w(u,v) = 1 +Dk · (c(u,v) − 1

Tk
);

else
w(u,v) = 1 +Dk · c(u,v);

Find the shortest path φtemp connecting sk to dk;
schedulabletemp = EDA(φtemp);
if φk == ∅ or (φtemp 6= φk and schedulabletemp == true) then

routechanged = true; schedulable = schedulabletemp ;

if φtemp == φk or (φtemp 6= φk and schedulabletemp == false) then
routechanged = false; schedulable = EDA(φk);

if routechanged == true then
changed = true;
for each link (u, v) ∈ φk do

if (u, v) /∈ φtemp then
Remove Fk from S(u,v); c(u,v) = c(u,v) − 1

Tk
;

for each link (u, v) ∈ φtemp do
if (u, v) /∈ φk then

Insert Fk into S(u,v); c(u,v) = c(u,v) + 1
Tk

;

φk = φtemp;

44

Figure 4.3: Topology of the WSAN Testbed

link weights for Fk. ICAR lets higher priority flows be aware of the routes of lower priority

flows, and therefore reduces the overlapping of their routes. This leaves a bigger space for

low priority flows and gives them a higher chance to find routes which are schedulable. If

a new route Rtemp is found, the algorithm will first check whether flow Fk with this new

route is schedulable under EDA. If yes, this new route Rtemp is assigned to Fk and flow Fk is

indicated as schedulable. If not, flow Fk will use its old route Rk. If flow Fk is schedulable

under EDA, we indicate it as schedulable; otherwise, Fk is unschedulable. The algorithm

will enter into a new round if at least one flow is not schedulable and at least one flow has

an updated route.

4.6 Evaluation

We evaluate our real-time routing algorithms through both experiments on a physical WSAN

testbed and simulations based on the WSAN testbed topology. We compare our Conflict-

Aware Routing (CAR) algorithm and the Iterative Conflict-Aware Routing (ICAR) algo-

rithm with the Shortest Path Routing (SP) algorithm. In SP, each flow uses breath-first

search algorithm [65] to select a route with the minimum hop count.

45

1 2 3 4 5 6 7 8

Flow Priority
0

50

100

150

200

250

300

D
e
la

y
 (

m
s
)

(a) End-to-end delay

1 2 3 4 5 6 7 8

Flow Priority
0

50

100

150

200

250

300

C
o
n

fl
ic

t
D

e
la

y
 (

m
s
)

SP-EXP-MIN

SP-EXP-MAX

SP-SIM

SP-EDA

CAR-EXP-MIN

CAR-EXP-MAX

CAR-SIM

CAR-EDA

ICAR-EXP-MIN

ICAR-EXP-MAX

ICAR-SIM

ICAR-EDA

(b) Conflict delay

Figure 4.4: Delays

46

4.6.1 Experiments on a WSAN Testbed

We evaluate our routing designs on an indoor WSAN testbed consisting of 63 TelosB motes,

located on the fifth floors of two adjacent buildings. Figure 4.3 shows the topology of the

WSAN testbed. We use motes 129 and 155 (green circles) as access points, which are

physically connected to a root server (the gateway). The other motes are used as field

devices (red circles). The network manager as a software runs on this root server. For each

link in the testbed, we measure its packet reception ratio (PRR) by counting the number

of received packets among 250 packets transmitted on the link. Following the practice of

industrial deployment, we only add links with PRRs higher than 90% to the topology of the

testbed. We implement a multi-channel TDMA MAC protocol on top of the IEEE 802.15.4

physical layer. Clocks of network devices across the entire network are synchronized using

the Flooding Time Synchronization Protocol (FTSP) [143]. Time is divided into 10 ms slots.

We generate 8 flows in our experiment. We use 8 channels in this experiment. The period

of each flow is picked up from the range of 24∼7 × 10 milliseconds. The length of the hyper-

period is 128 milliseconds. The relative deadline of each flow equals to its period. All flows

are schedulable based on our delay analyses. We run our experiments long enough such that

each flow can deliver at least 100 packets.

In Figure 4.4, we compare delays from the experimental results with delay analyses as well

as simulation. We compare four delays for each flow: minimum delay in experiments (EXP-

MIN), maximum delay in experiments (EXP-MAX), maximum delay in simulation (SIM),

and the estimated delay in EDA [170]. We evaluate both the end-to-end delays and the

conflict delays. To save space, Figure 4.4(a) shares the same legend with Figure 4.4(b).

First of all, the results show for both the end-to-end delay and conflict delay, every flow has

the four delays follow the following order: EXP-MIN ≤ EXP-MAX ≤ SIM ≤ EDA.

This shows that simulation and delay analysis are safe upper bounds of the actual delays.

In addition, SIM is consistently higher than EXP-MAX, which indicates our simulations can

generate test cases with worse delays than those observed on the testbed.

Figure 4.4(a) compares end-to-end delays of flows based on different routing algorithms:

SP, CAR, and ICAR. The results show CAR and ICAR can reduce the end-to-end delays

47

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100
A

c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(a) 4 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(b) 8 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(c) 12 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(d) 16 Channels

Figure 4.5: Acceptance Ratio in Simulation

compared with SP. Furthermore, ICAR can further reduce the delays for flows with low

priorities. Given we have enough channels in this experiment, there is no contention delay.

We further compare conflict delays of flows in Figure 4.4(b). Clearly, CAR and ICAR can

reduce the conflict delays of flows. For example, flow 7 has conflict delays in SP routing.

However, its conflict delays in CAR and ICAR routings are zero. By reducing conflict delays,

CAR and ICAR can reduce the end-to-end delays of flows.

4.6.2 Simulations

Besides the testbed experiments, we also test our routing algorithms through simulations on

testbed topology. The simulator uses the same routing and scheduling design used on our

testbed experiments and is written in C++. All simulations are performed on a MacBook

48

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(a) 4 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(b) 8 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(c) 12 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of Flows

0

20

40

60

80

100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 (

%
)

SP

CAR

ICAR

(d) 16 Channels

Figure 4.6: Acceptance Ratio in Analysis

49

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200
D

e
la

y
 (

m
s
)

SP-CF
CAR-CF
ICAR-CF
SP-CT
CAR-CT
ICAR-CT
SP-TC
CAR-TC
ICAR-TC

(a) 4 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF
CAR-CF
ICAR-CF
SP-CT
CAR-CT
ICAR-CT
SP-TC
CAR-TC
ICAR-TC

(b) 8 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF
CAR-CF
ICAR-CF
SP-CT
CAR-CT
ICAR-CT
SP-TC
CAR-TC
ICAR-TC

(c) 12 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF
CAR-CF
ICAR-CF
SP-CT
CAR-CT
ICAR-CT
SP-TC
CAR-TC
ICAR-TC

(d) 16 Channels

Figure 4.7: Delays in Simulation

Pro laptop with 2.4 GHz Intel Core 2 Duo processor. To show the impact of the number

of channels, we test our algorithms under different number of channels (4, 8, 12, and 16) in

our simulation. We test our routing designs on different numbers of flows by increasing the

numbers of source and destination pairs from 2 to 22. The period Tk of the each flow Fk is

randomly generated in the range of 24∼7×10 milliseconds. The relative deadline Dk of every

flow Fk is equal to its period. For each flow set, we generate 100 test cases and simulate

them on testbed topologies.

We first compare the acceptance ratios of CAR, ICAR and SP in Figure 4.5. SP always

has the lowest acceptance ratio. Both CAR and ICAR have much higher acceptance ratios

than SP when the network has at least 8 channels. ICAR has a higher acceptance ratio

than CAR, which shows the benefit of letting flows with higher priorities be aware of the

routes of lower priority flows. The performance of our real-time routing algorithms improves

50

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF

CAR-CF

ICAR-CF

SP-CT

CAR-CT

ICAR-CT

SP-TC

CAR-TC

ICAR-TC

(a) 4 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF

CAR-CF

ICAR-CF

SP-CT

CAR-CT

ICAR-CT

SP-TC

CAR-TC

ICAR-TC

(b) 8 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF

CAR-CF

ICAR-CF

SP-CT

CAR-CT

ICAR-CT

SP-TC

CAR-TC

ICAR-TC

(c) 12 Channels

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

D
e
la

y
 (

m
s
)

SP-CF

CAR-CF

ICAR-CF

SP-CT

CAR-CT

ICAR-CT

SP-TC

CAR-TC

ICAR-TC

(d) 16 Channels

Figure 4.8: Delays in Analysis

51

when the number of channels increases. Because when the network has very few channels,

contention delay is the main part of end-to-end delay. However, when the network has more

channels, the conflict delay becomes the dominant part of the end-to-end delay. Compared

to SP, CAR and ICAR can improve the acceptance ratio by 239% and 350% in average with

16 channels, respectively. We further compare the acceptance ratios of CAR, ICAR and SP

on efficient delay analysis [170] in Figure 4.6. Our simulation results show CAR and ICAR

have higher acceptance ratio in delay analysis compared to SP. Because the delay analysis

is pessimistic compared to simulation, acceptance ratios in delay analyses (Figure 4.6) are

lower than simulation (Figure 4.5).

We further compare end-to-end delays of CAR, ICAR, and SP in Figure 4.7. Here we

draw the average delays of all 100 test cases. We use CF to stand for conflict delay, CT

for contention delay, and TC for transmission count (number of transmissions scheduled on

the route). When the number of channels is small (4 or 8), the contention delays can be

important part of the end-to-end delays. However, when the network has 12 channels, the

contention delays are zero, and conflict delays dominate since then. Although CAR and

ICAR may lead to routes with longer hop count, their end-to-end delays are smaller than

SP in average. Because CAR and ICAR have fewer conflict delays than SP in all cases. The

end-to-end delays in delay analysis [170] show the same trend in Figure 4.8.

We compare the execution time of SP, CAR, and ICAR when there are 10 channels in Fig-

ure 4.9. The execution time increases as the number of flows increases in all three algorithms.

The execution time of three routing algorithms follows this order: SP<CAR<ICAR. SP has

the lowest execution time since it uses the breadth-first search algorithm. ICAR has a higher

execution time than CAR because it is an iterative algorithm. The execution time of ICAR is

less than 200ms when the number of flows is 22, which is acceptable in real-world operations.

We also show the number of iterations in Figure 4.10. The number of iterations increases as

the number of flows increases. Even for 22 flows, the maximum number of iterations is 4 in

our simulations, which is relatively small when considering the size of the network.

52

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0

50

100

150

200

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
) SP

CAR
ICAR

Figure 4.9: Execution Time

2 4 6 8 10 12 14 16 18 20 22

Number of flows
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
u

m
b

e
r

o
f

it
e
ra

ti
o
n

s

Figure 4.10: Number of Iterations

53

4.7 Summary

As process industries start to adopt wireless sensor-actuator networks (WSANs) for con-

trol applications, it is crucial to achieve real-time communication in this emerging class of

networks. Routing has significant impacts on end-to-end communication delays in WSANs.

However, despite considerable research on real-time transmission scheduling and delay anal-

ysis for such networks, real-time routing remains an open question for WSANs. This paper

presents a conflict-ware real-time routing approach for WSANs. This approach leverage a

key observation that conflicts among transmissions sharing a common field device contribute

significantly to communication delays in industrial WSANs such as WirelessHART networks.

By incorporating conflict delays in the routing decisions, conflict-aware real-time routing al-

gorithms allow a WSAN to accommodate more real-time flows while meeting their deadlines.

Evaluation based on simulations and experiments on a real WSANs testbed show conflict-

aware real-time routing can lead to up to three-fold improvement in real-time capacity of

WSANs.

54

Chapter 5

Energy-Efficient Routing for Wireless

Sensor-Actuator Networks

Process industries are adopting wireless sensor-actuator networks (WSANs) as the commu-

nication infrastructure. The dynamics of industrial environments and stringent reliability

requirements necessitate high degrees of fault tolerance in routing. WirelessHART is an open

industrial standard for WSANs that have seen world-wide deployments. WirelessHART em-

ploys graph routing schemes to achieve network reliability through multiple paths. Since

many industrial devices operate on batteries in harsh environments where changing batter-

ies are prohibitively labor-intensive, WSANs need to achieve long network lifetime. To meet

industrial demand for long-term reliable communication, this chapter studies the problem

of maximizing network lifetime for WSANs under graph routing. We formulate the network

lifetime maximization problem for WirelessHART networks under graph routing. Then, we

propose the optimal algorithm and two more efficient algorithms to prolong the network

lifetime of WSANs. Experiments in a physical testbed and simulations show our linear pro-

gramming relaxation and greedy heuristics can improve the network lifetime by up to 50%

while preserving the reliability benefits of graph routing.

5.1 Introduction

With the emergence of industrial standards such as WirelessHART [26] and ISA100 [16],

process industries are adopting Wireless Sensor-Actuator Networks (WSANs) that enable

sensors and actuators to communicate through low-power multi-hop wireless mesh networks

55

[184]. The process industry has installed more than 1800 WirelessHART networks and 10

thousands WirelessHART devices around the world, with more than 3 billion operating hours

in the field [13].

The limited energy supply of the network devices necessitates the efficient utilization of

battery power. Energy consumption is closely coupled with route selection. Selecting a

routing path that optimizes energy efficiency can lead to a longer network lifetime. In

industrial environments, changing batteries can be dramatically expensive and difficult, e.g.,

oil fields spanning large areas under harsh environmental conditions. Thus, maximizing the

lifetime of the network is an important problem that needs to be tackled.

To support reliable communication over wireless mesh networks, the WirelessHART standard

adopts a graph routing approach. A graph route consists of a primary path and multiple

backup paths. For each link on the primary path, a backup path is used to handle the link

failure. Graph routing introduces unique challenges in energy-efficient routing that has not

been investigated in earlier research on energy-efficient routing for wireless sensor networks.

This chapter addresses the network lifetime maximization problem under graph routing. We

first formulate the lifetime maximization problem under graph routing based on the Wire-

lessHART standard. We then propose approximation solutions based on linear programming

relaxation and greedy heuristics. Specifically, our contributions are five-fold:

• Formulation of the network lifetime maximization problem under graph routing and

proof of its NP-completeness.

• An optimal network lifetime maximization algorithm based on integer programming.

• An approximation algorithm through linear relaxation of the integer programming

algorithm.

• An efficient greedy heuristics with lower computational complexity.

• Implementation and evaluation of the proposed algorithms on a wireless sensor-actuator

network testbed, as well as in large-scale simulations.

56

Our evaluation shows that the linear programming relaxation and greedy heuristics can

greatly improve the network lifetime by up to 50%, and that the greedy heuristic is more

efficient than the linear programming relaxation approach.

The rest of the chapter is organized as follows. Section 5.2 reviews the related works.

Section 5.3 describes the energy consumption model. Section 5.4 formulates the lifetime

maximization problem and proves it is NP-complete. Section 5.5 presents our lifetime maxi-

mization graph routing algorithms. Section 5.6 evaluates different graph routing algorithms

in experiments and simulations. Section 5.7 concludes the chapter.

5.2 Related Work

There has been increasing interest in developing new routing approaches for WSANs. For

example, Han et al. [94] proposed routing algorithms to build graph routes, but this work does

not address energy efficiency of graph routing. Energy-aware routing for wireless sensor and

ad hoc networks has received significant attention [178]. Stojmenovic and Lin [189] proposed

a protocol to minimize total power consumption and extend network lifetime. Chang and

Tassiulas proposed to maximize the network lifetime by balancing network traffic among

the nodes in proportion to their residual energy [50–52]. Li et al. [135] proposed a routing

protocol that combines the benefits of selecting the path with minimum power consumption

and the path that maximizes residual power in the nodes. Doshi et at. [68] implemented

a minimum energy routing version of the DSR protocol in a network simulator. Kalpakis

et al. [108] studied lifetime maximization problem for tree topology network. In addition,

energy-aware geographic routing was studied in [126,139–141,144,174,204,213].

Despite considerable results on the general problem of network lifetime optimization, none

of the aforementioned work addresses graph routing, which is an important technique that

WirelessHART standard used to achieve reliable communication in industrial settings [176].

Hence they are not applicable for WSANs. To meet this open challenge in industrial WSANs,

we investigate the problem of network lifetime maximization under graph routing in Wire-

lessHART networks in this chapter.

57

61158-300/A1/Ed. 1 © IEC/PAS 46 61158-400/A1/Ed. 1 © IEC/PAS
61784-1/A1/Ed.2 © IEC/PAS

10.1 Slot Timing
All transactions occur in slots following specific timing requirements. Figure 12 shows one
slot and provides an overview of transaction timing. The top of the timing diagram shows the
operation of the source neighbor and the bottom shows the destination neighbor. In the
figure, the destination's perception of the slot start time is slightly retarded when compared to
the source's. All of the timing symbols are depicted even though they may not be applicable
to every type of transaction. Table 7 defines the timing symbols.
Each slot begins by allowing a time interval to prepare the packet being conveyed for
transmission. This includes formatting of the packet and calculation of the MIC and CRC. Of
course these calculations are only performed if the source has a packet to propagate to the
destination. The source will perform the CCA (when required) and transmit the packet.
Depending on the type of transaction an ACK may be transmitted by the destination device.
When scheduled as the link's destination, the device must enter receive mode. The device
must be listening for communication, starting TsRxOffset from the start of its slot, before and
after the device's estimation of the ideal transmit start time. The receive window (specified by
TsRxWait) allows device timing to drift while still permitting devices to communicate and
resynchronize their slot timers. Sources of drift include temperature, aging, and other effects.

TsRxWait TsTxAckDelay

TsRxAckDelay
TsMaxPacket

TsAck

TsCCA

TsError

TsAckWait
TsTxOffset

TsRxOffset

TsCCAOffset

TsRxTx

Source

Destination

Figure 12. Slot Timing
If the destination device detects a message, it captures the time when the start of message
(i.e., the end of reception of the Physical Layer Delimiter) occurs and calculates TsError as
the difference between the device's ideal start time and the actual start time of the packet.
If a specific destination address is specified, the source packet will result in the destination
device generating and transmitting an ACK packet. If the destination address is the broadcast
address no ACK packet is generated. Finally, time is allocated at the end of the slot for
processing the propagated packet and preparing for the next slot, (e.g., assessing and
prioritizing the packets now queued up in each device). If one of the neighbors was the time
source for the other then the end of the slot time will be aligned after successful
communication.

10.1.1.1.1 Acknowledged Transactions
Most communications consists of the source device propagating a message by transmitting a
packet and the destination device acknowledging the reception of that packet. For
acknowledged communication the source and destination address in the DLPDU must contain
a specific device address (i.e. not a broadcast address).
The source device must begin its transmission such that the Start of Message (SOM) occurs
exactly TsTxOffset after its start of slot. SOM occurs upon completing the reception of the
Physical Layer Delimiter. When performed, the CCA is performed beginning at TsCCAOffset
after the start of the slot. The CCA is performed (TsCCA) and, if the channel is occupied, the
transaction attempt is rescheduled for a later slot. Otherwise the transceiver is switched from
receive to transmit (TsRxTx) and the packet is transmitted.
The destination device must enter receive mode and be listening for communication by
TsRxOffset from its start of the slot. The destination must listen for the SOM for a duration of
TsRxWait. If the destination device detects the SOM then it must receive and validate the
message. Any message that cannot be validated must not be acknowledged.

Figure 5.1: Transaction timing in one time slot [26]

5.3 Energy Consumption Model

We analyze the energy consumption under graph routing in this section. Specifically, for a

single packet, we analyze the energy consumption of each device on both the primary path

and backup paths. Since the scheduling policies for transmission on the primary path and

backup path are different, we analyze the energy consumption for them separately. For each

transmission on the primary path, two dedicated slots are assigned. If the first transmission

succeeds, the following retransmission will not occur and both sender and receiver will turn

off their radio at the second time slot. Otherwise, a second retry will happen in the second

assigned time slot. If both of the transmissions on the primary path fail, there will be a

third retry on the backup path.

Figure 5.1 shows the timing of a transmission in a time slot according to the WirelessHART

standard [26]. The top of the timing diagram shows the operation of the sender and the

bottom shows that of the receiver. When a shared slot is assigned, the sender will perform

the Clear Channel Assessment (CCA) before transmitting the packet. We use TsMaxPacket

to denote the amount of time it takes to transmit the longest possible message. When

scheduled as the transmission’s receiver, the receiver must enter receive mode. The receiver

must keeping radio on to listen potential packet transmission. We denote the minimum time

to wait for start of message as TsRxWait. If an intended communication is detected, the

receiver keeps listening until it has received the whole packet. Otherwise, the receiver will

turn off the radio after the receive window expires. We denote the power of transmitting

and receiving a packet as Pt and Pr respectively.

58

Assume vi is a network device on the primary path which is scheduled to send one packet

to a network device vj. We use α to denote the Packet Reception Ratio (PRR) for this link.

Then the probability that it can successfully transmit a packet to its receiver vj on the first

try is α. The probability that it fails in the first try and needs to transmit the packet to vj

in the second retry is 1− α. So the expected time length that the sender keeps its radio on

is

α× TsMaxPacket + 2(1− α)TsMaxPacket = (2− α)TsMaxPacket.

A receiver on the primary path has the same expected time length keeping its radio on for

the same reason. By incorporating the current, we get the expected energy consumption of

a network device as a sender or a receiver for delivering one packet on the primary path. We

denote Et as the expected energy consumption of device vi to transmit a packet to vj on a

primary path, thus

Et = (2− α)Pt × TsMaxPacket. (5.1)

The expected energy consumption of device j to receive a packet from i on a primary path

is:

Er = (2− α)Pr × TsMaxPacket. (5.2)

Since transmission on a backup path will happen only when the two consecutive dedicated

transmissions fail, the chance that there is an actual packet transmission on a backup path

is (1 − α)2 (e.g. less than 0.01 if we use a PRR threshold of 0.9). However, as long as a

transmission is scheduled on a link, the receiver needs to turn on the radio and listen for

TsRxWait time to check whether there is an incoming packet. Then the expected energy

consumption of device i on a backup path to transmit a packet is

Etb = (1− α)2Pt × TsMaxPacket. (5.3)

The expected energy consumption of device i to receive a packet on backup path is:

Erb = (1− α)2Pr × TsMaxPacket + (1− (1− α)2)Pr × TsRxWait. (5.4)

59

Table 5.1 summarizes the power to transmit or receive a packet on the CC2420 radio chip [11],

which is compatible to IEEE 802.15.4 standard (physical layer of WirelessHART standard).

Table 5.1 also shows the timing parameters in packet transmission defined in the Wire-

lessHART standard [26]. Based on Table 5.1, we obtain the expected energy consumptions

in Table 5.2, assuming a PRR of 90%, a typical threshold used for blacklisting links in

industrial WSANs.

Parameter Value Unit
Pt 52.2 mW
Pr 59.1 mW

TsMaxPacket 4256 µs
TsRxWait 2200 µs

Table 5.1: Representative Radio Parameters

Variable Value Unit
Et 277 µJ
Er 244 µJ
Etb 2.2 µJ
Erb 131 µJ

Table 5.2: Expected energy consumption of devices to transmit or receive a packet

Note the expected energy consumption to transmit a packet on a backup link is less than

1% of the expected energy for transmitting a packet on a primary link. We will ignore Etb

in the remaining part of this chapter.

5.4 Graph Route Lifetime Maximization Problem

In this section, we formulate the Graph Route Lifetime Maximization (GRLM) problem.

Our objective is to maximize the lifetime of the network.

Definition 2. The network lifetime is the time it takes the first field device to exhaust its

battery.

60

In terms of lifetime optimization, the most significant difference between WSANs and tradi-

tional wireless sensor networks is the route diversity. Instead of scheduling transmissions on

only one path, WSANs schedule transmissions on both the primary path and backup paths.

Definition 3. In a GRLM problem, we are given a graph G = (V,E) with battery Bvi for

each device vi, and a set of flows F = {f1, f2, · · · , fN}. Each flow fk has a source sk, a

destination dk, and a rate rk. The GRLM problem is to find graph routes for all flows to

maximize the network lifetime.

The GRLM problem is NP-complete because even the source routing version of the problem

is NP-complete as shown below.

Proof. To prove the SRLM problem is NP-complete, we prove its decision version is NP-

complete. The decision problem of SRLM is given a network lifetime T , whether this network

lifetime T can be satisfied.

We begin with the work of Fortune et al. [76], which proved the Maximum Edge-Disjoint

Paths problem (MEDP) is NP-complete. In MEDP, we are given an graph G = (V,E), and

a set of k device pairs Γ = {(si, ti) : i = 1, · · · , k}. The goal is to find the maximum subset

of pairs from Γ , along with a path for each chosen pair, so that no two paths share the same

link. The decision problem of MEDP is whether a given set of device pairs in Γ can satisfy

the requirements.

Reduction

1

c

b

a

G
e

d

c

b

a

e

d

G'

f

g

h

i

1

1

1

∞ ∞

∞ ∞

Figure 5.2: Reduction

Clearly, the decision problem of SRLM is in NP since we can verify in polynomial time if a

candidate solution provides source routes for all flows and achieves the targeted lifetime.

61

To show the problem is NP-complete, we reduce it from MEDP, which is known to be NP-

complete [76]. The reduction algorithm takes an instance of the MEDP problem as input.

Given a graph G, we construct an auxiliary graph G′ in the following manner. For each link

e in G (i.e., a → c in Figure 5.2), we break it into two links (a → f and f → c) and add a

new link-device (f) to connect these two links (Figure 2). All devices in the original graph

are assigned with battery capacity as +∞, and all newly added devices are assigned with

unit battery capacity 1. For each device pair (si, ti) in Γ, we create a flow Fi in G′ with

source si, destination ti, and unit rate 1. The targeted lifetime of the network is T = 1
Et+Er

.

Note that 1
Et+Er

is the lifetime of a link-device if only one flow goes through it. To complete

the proof, we show that all pairs in Γ have link-disjoint paths if and only if the network

lifetime of G′ is no less than T .

← If all device pairs have link-disjoint paths in G, then the reduced paths in G′ can have

a network lifetime no less than T . Since at most one reduced flow goes though each link-

device and the lifetime of each link-device is no smaller than the network lifetime target T ,

the network lifetime of G′ is no smaller than T .

→ If the network lifetime of G′ is no less than T , then there are link-disjoint paths for all

device pairs in Γ. Since the battery of each link-device can support exactly one flow, only one

path will go through each link-device, which indicates those paths are edge-disjoint paths.

Then we get link-disjoint paths in the original graph G.

Given the reduction is in polynomial time and a instance of MEDP is true if and only if

the reduced instance of SRML is true, we prove that SRML is NP-hard, as well as NP-

complete.

5.5 Lifetime Maximization Graph Routing Algorithms

In this section, we propose an optimal solution based on integer programming, followed by

more efficient solutions based on linear relaxation and a greedy heuristics.

62

5.5.1 Integer Programming

In this subsection, we formulate the GRLM problem into an integer programming based on

our energy consumption model.

All the field devices are powered by batteries, while access points and the Gateway are

tethered to wired power sources. The lifetime of a field device is modeled as the initial

battery divided by its average power consumption, also refereed as load in this chapter.

Here we denote the initial battery capacity of a device vi as Bi, and the load as Li. For

access points and the Gateway, batteries are set to be infinity. Our goal here is to maximize

the minimum lifetime among all devices, which is expressed as max mini
Bi

Li
. This objective

function can be transformed to minimize the maximum normalized load γi, defined as Li

Bi
for

device vi. Hence the GRLM problem can be formulated as min maxi γi.

We formulate the integer programming as follows. The primary path variable xki,j is a binary

variable. If link
−→
ij is used in the primary path for flow k, then xki,j equals 1, otherwise, it

equals 0. The same rule is applied to backup path variable yki,j. However, since multiple

backup paths may share a same link, the backup path variable yki,j is an integer variable,

which could be larger than 1.

First, there is only one link used in the primary path among all outgoing links of the source

sk (5.5a). Then the conservation constraint (5.5b) says the sum of outgoing primary path

variables equals the sum of incoming primary path variables at every device except the source

and the destination, where δi,j is the Kronecker delta function [17]. Here δi,j equals 1 if i

and j are the same, and 0 otherwise.

63

Objective: minimize Γ∑
−→
skj∈E

xksk,j = 1 (5.5a)

∑
−→
ji∈E

xkj,i + δi,sk =
∑
−→
ij∈E

xki,j + δi,tk ,∀i ∈ V (5.5b)

∑
−→
ji∈E

ykj,i +
∑
−→
ij∈E

xki,j =
∑
−→
ij∈E

yki,j, ∀i ∈ V \ {tk} (5.5c)

∑
−→
ip∈E:p!=j

yki,p >= xki,j, ∀−→ij ∈ E (5.5d)

γi =
∑
k

rk
Bi

(
∑
−→
ji∈E

xki,jEt +
∑
−→
ij∈E

xkj,iEr +
∑
−→
ji∈E

ykj,iErb) (5.5e)

γi ≤ Γ,∀i ∈ V (5.5f)

xki,j ∈ {0, 1}, yki,j ∈ Z,∀−→ij ∈ E (5.5g)

The conservation constraint for backup path variables is different from the constraint for

primary path variables, because backup paths do not start from the source of the flow,

instead, they start from devices on the primary path. For backup paths, there are two

cases. For a device on a backup path but not on the primary path (e.g. network device z

in Figure 2.2(b)), it follows the same conservation constraint as the primary path variables,

which means the sum of outgoing backup path variables equals to the sum of incoming

backup path variables. For a network device which is on both the backup path and primary

path (e.g. u in Figure 2.2(b)), it does not have any incoming backup path. However, it

still has an outgoing backup path, and the amount of backup path variables equals to the

amount of outgoing primary path variables. To incorporate both cases, we formulate this

requirement in constraint (5.5c). Basically, the sum of outgoing backup path variables from

a device equals to the sum of incoming backup path variables plus the sum of outgoing

primary path variables.

Also, since backup link should not coincide with the primary link for the same packet,

constraint (5.5d) is added to make sure that the backup path of a link on the primary path

does not use this link. Constraint (5.5e) calculates the normalized load γi of each device i.

64

And constraint (5.5f) guarantees that normalized loads of all network devices are no larger

than Γ. The objective is to minimize the maximum normalized load γ, which is same to

minimize Γ.

5.5.2 Linear Programming Relaxation

Given the problem is NP-complete, the integer programming approach is extremely slow.

We use a linear programming relaxation approach to propose a faster approach. We solve

the problem in two steps. In the first step we focus on the primary path variables. In the

beginning, we relax each primary path variables xki,j from binary to real number within [0, 1],

and relax each backup path variable yki,j from integer to non-negative real number. Then

we solve the problem and obtain the solution. We round the variables to 1 if it’s above a

threshold θ, otherwise round it to 0. We want to find the highest threshold θ for primary

path variables such that there exists a path from the source to the destination. We use a

binary search algorithm to find this threshold. The initial threshold is 0.5. If a path is found,

then we increase the threshold to 0.75. Otherwise, we decrease the threshold to 0.25. The

binary search algorithm terminates if at least one path is found under a threshold and the

step size is less than 0.05.

After the first step, we obtain primary paths for all flows. In the second step, we keep

primary path variables fixed and relax backup path variables to non-negative real numbers.

Following the same approach in the first step, we use a binary search algorithm to find the

highest threshold that we can find a path from the source to the destination. We use the

GNU Linear Programming Kit (GLPK) [14] to solve the integer programming and its linear

programming relaxation.

5.5.3 Greedy Heuristic

Although we use linear relaxation to speed up the integer programming approach, in practice

it is still not efficient enough for large networks. In this subsection, we introduce a greedy

heuristic which finds graph routes that lead to high network lifetime and remain compu-

tationally efficient. By incorporating the traffic load and battery capacity into the greedy

65

algorithm, the greedy heuristic picks up a graph route with small normalized load. Our

greedy heuristic runs iteratively. In each iteration, we pick up graph routes for flows from

the highest rate to the lowest rate. For each flow, we pick up a graph route with minimum

load. Our iterative algorithm stops if no improvement can be found in an iteration.

The function the greedy heuristic calls in each iteration is named as Minimum Load Graph

Route (MLGR) and is presented in Algorithm 5. We use an algorithm like Dijkstra’s shortest

path algorithm. We use λ to record temporary normalized loads for all devices in the network.

We maintain a queue Q which includes all network devices that have an updated normalized

load. We also maintain a set Φ, which includes all devices that can be added into the primary

path.

At each step, a device u with minimum normalized load λu is picked up from the queue. If

its normalized load λu equals∞, then the remaining devices cannot be added to the primary

path. Then MLGR function fails to find a graph route for current flow and returns∞. If u is

the source, then the MLGR function adds it to the primary path and returns its normalized

load λu. We can obtain the primary path by tracing back through H, and obtain the backup

paths with P .

If none of above case is true, we will check u’s neighbors one by one to see whether they can be

added into the primary path. For each neighbor v, we use the Minimum Load Source Route

(MLSR) function in Algorithm 6 to check whether there is a path from v to the destination

d in the graph G′ = (V,E \ {−→vu}) and return the one with the minimum normalized load.

We update the normalized load of device v based on its new normalized load γv + rEt+rEr

Bv
,

its parent u’s normalized load λu and the normalized load of the backup path.

Here the MLSR function is a single path version of MLGR. At each step, it picks up the

device u with minimum normalized load λu. If λu equals ∞, then the source s cannot be

connected to the destination d, and MLSR function returns ∞. If the source s is picked

up with a normalized load λs less than ∞, then s is connected with the destination d, and

MLSR function returns λs. The MLSR function can obtain the path from the last hop vector

H. If none of above case is true, the MLSR function will check device u’s neighbors and

update their normalized load according to u’s normalized load λu.

66

Algorithm 5: Minimum Load Graph Route

Function MLGR(G, s, d, r, γ, B)
Input : A graph G(V,E), source s, destination d, flow rate r, normalized load vector

γ, battery vector B
Variable: Last hop vector H, Backup Paths P , temporary normalized load λ
Output : Normalized load of the graph route picked up by the algorithm (∞ if no

graph route is found)
for each vertex v ∈ V do

λv =∞;
Hv = NULL;
Pv = ∅;
add v to Q;

λd = γd + rEr

Bd
;

while Q is not empty do
u = v ∈ Q with minimum λv;
remove u from Q;
if λu ==∞ then

return ∞;

if u == source then
return λu;

for each neighbor v of u within Q do
Graph G′ = (V,E \ {−→vu});
temp = MLSR(G′, v, d, Pv, r, γ, B);
if temp 6=∞ then

alt = max(λu, γv + rEt+rEr

Bv
, temp);

if alt < λv then
λv = alt;
Hv = u;

67

Algorithm 6: Minimum Load Source Route

Function MLSR(G, s, d, Ps, r, γ, B)
Input : A graph G(V,E), source s, destination d, flow rate r, normalized load vector

γ, battery vector B
Variable: Last hop vector H, temporary normalized load λ
Output : Normalized load of the source route picked up by the algorithm (∞ if no

graph route is found)
for each vertex v ∈ V do

λv =∞;
Hv = NULL;
add v to Q;

λd = γd + rErb

Bd
;

while Q is not empty do
u = v ∈ Q with minimum λv;
remove u from Q;
if λu ==∞ then

return ∞;

if u == source then
return λu;

for each neighbor v of u within Q do
alt = max(λu, γv + rErb

Bv
);

if alt < λv then
λv = alt;
Hv = u;

68

Figure 5.3: Topology of the WSAN Testbed

5.6 Evaluation

We evaluate our routing algorithms through both experiments on a physical WSAN testbed

and simulations. We compare our Integer Programming approach (IP), Linear Programming

approximation (LP), and Greedy Heuristic algorithm (GH) with the reliable and real-time

routing (RRC) approach that Han et al. proposed in [94] and Dijkstra’s shortest path

algorithm (SP) [65]. RRC builds uplink and downlink routing graphs for all flows based on

hop count. We build a graph route on top of RRC’s routing graph by picking up on path as

the primary path and use available alternative paths as backup paths. Because RRC does

not fully explore the network to find backup paths, some network devices on the primary

path don’t have backup paths. In SP, we first run Dijkstra’s algorithm to get the primary

path with shortest hop count, then run the same algorithm to pick up backup paths for each

network device on the primary path.

5.6.1 Experiments on a WSAN Testbed

We evaluate our routing designs on an indoor WSAN testbed consisting of 63 TelosB motes,

located on the fifth floors of two adjacent buildings. Figure 5.3 shows the topology of the

WSAN testbed. We use motes 129 and 155 (green circles) as access points, which are

physically connected to a root server (Gateway). The other motes are used as field devices

(red circles). The network manager as a software runs on this root server. The rest of motes

69

0.0 0.2 0.4 0.6 0.8 1.0
PRR

0

20

40

60

80

100

P
e
rc

e
n

ta
g

e
 (

%
)

Figure 5.4: Cumulative Histogram of Link Qualities

Routing Algorithm Flow Index
1 2 3 4 5 6 7 8

Source

SP 0.993 0.874 0.898 1.0 1.0 1.0 1.0 1.0
RRC 0.992 0.760 0.833 0.996 0.989 0.994 1.0 1.0
GH 0.996 0.886 0.897 0.997 0.998 1.0 1.0 1.0
LP 0.997 0.827 0.896 0.998 0.989 1.0 1.0 1.0

Graph

SP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
RRC 0.996 0.990 0.988 1.0 1.0 1.0 1.0 1.0
GH 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0
LP 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 5.3: Delivery Ratios of Flows

SP RRC GH LP

Routing Approach

90

100

110

120

130

140

L
if

e
ti

m
e
 R

a
ti

o
 (

%
)

Figure 5.5: Expected Network Lifetime relative to SP

70

work as network devices. For each link in the testbed, we measured its packet reception

ratio (PRR) by counting the number of received packets among 250 packets transmitted

on the link. Following the practice of industrial deployment, we only add links with PRR

higher than 90% to the topology of the testbed. To avoid channels occupied by the campus

Wi-Fi, we use IEEE 802.15.4 channel 11 to 15 in our experiments. We implement a multi-

channel TDMA MAC protocol on top of the IEEE 802.15.4 physical layer. Clocks of network

devices across the entire network are synchronized using the Flooding Time Synchronization

Protocol (FTSP) [143]. Time is divided into 10 ms slots.

We generate 8 flows in our experiment. The period of each flow is picked up from the range of

20∼7 seconds, which are typical periods used in process industry as defined in WirelessHART

standard [26]. The length of the hyper-period is 128 seconds. The relative deadline of each

flow equals to its period. We run the experiments for 100 rounds of hyper-period (around 3

hours) to collect at least 100 periods of data traces for each flow. Based on the data traces

we collected, we evaluate our proposed approaches in terms of delivery ratio and expected

network lifetime. The delivery ratio of a flow is defined as percentage of packets that are

successfully delivered to destination compared to total number of packets.

The expected network lifetime is calculated based on the collected traces. Because TelosB

motes in the testbed are wired powered, we assign virtual battery capacity for each mote

randomly from 8000J to 9000J , where 8640J is the typical capacity of two AA batteries. We

analyze the collected data traces from the experiments to obtain the energy consumption of

each network device in 100 rounds of hyper-period. Based on that, we project the expected

network lifetime.

To study the reliability, we first measure the link qualities in our test. Figure 5.4 shows the

cumulative histogram of link qualities (PRR) of 327 links we used in our experiments. Here

we collect link qualities of each link on all 4 channels, so there are 1380 data points in total.

Although our link selection process only picks up links with PRR higher than 90%, we find

some links have much lower PRR than the 90% threshold at run time. For example, link
−−−−→
158 156 under channel 12 has the lowest PRR of 7%. The dynamics of wireless links suggest

it is necessary to have route redundancy.

Table 5.3 shows the delivery ratios of all 8 flows. Here we compare the delivery ratio of both

graph routes as well as the source routes. We use the primary path of the graph route as

71

SP RRC GH LP

Routing Approach

0

10

20

30

40

50

60

70

80

90

100

L
if

e
ti

m
e
 R

a
ti

o
 (

%
)

Figure 5.6: Expected Lifetime Relative to Optimal Solution

the source route of each flow. We first compare graph routing with source routing. Our

results show that graph route provides better delivery ratio than source route. For example,

the delivery ratios of all four routing algorithms for flow 2 under source routing are below

0.9. In comparison, their delivery ratios under graph routing are at lest 0.99. Our results

demonstrate the effectiveness of redundant routes in improving reliability. We also compare

the delivery ratios of different routing algorithms under graph routing. RRC has the lowest

delivery ratios for flows 1, 2, and 3. That’s because in RRC’s graph routes for flow 1, 2, and

3, 50% of the links on the primary paths don’t have backup paths. The lack of backup paths

make RRC vulnerable to link dynamics.

Figure 5.5 represents the expected lifetimes of four routing approaches in one experiment.

The figure presents the expected lifetime ratios of different routing approaches compared to

SP. The results show SP has the shortest expected lifetime and GH has the longest expected

lifetime. GH’s expected lifetime is 37% longer than SP, and LP’s expected lifetime is 33%

longer than SP. RRC has a lifetime longer than SP and shorter than LP. Our results show

GH and LP are better than SP and RRC in terms of expected network lifetime.

5.6.2 Simulations

Because our Integer Programming approach (IP) is computational complex, it doesn’t halt

in 24 hours given the testbed topology. We evaluate all five routing algorithms in a small

72

4 6 8 10 12 14 16 18 20

Number of flows
0

200

400

600

800

1000

1200

N
e
tw

o
rk

 L
if

e
ti

m
e
 (

d
a
y
s
)

RRC
SP
GH
LP

(a) Network Lifetime

4 6 8 10 12 14 16 18 20

Number of flows
1

4

16

64

256

1024

4092

16368

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
) RRC

SP
GH
LP

(b) Execution Time

Figure 5.7: Simulation Results on Testbed Topology

73

scale simulation. We use a subset of our testbed with 10 motes and 20 links in this small

scale simulation. The simulator shares the same setup with our testbed and is written in

C++. All simulations are performed on a MacBook Pro laptop with 2.4 GHz Intel Core 2

Duo processor. We use a trace driven simulation. On each link, we collect results of 250

packet transmissions. We use the first 100 packets to obtain the link quality (PRR) of the

link, then use the remaining 150 packets as the evaluation trace. We use links with at least

90% PRR in the simulation. In the simulation, when a packet is transmitted on a link, the

simulator will pickup a data point from the evaluation trace. We generate different results

by randomly generating network device battery capacities from 8000J to 9000J .

Figure 5.6 shows the lifetime ratios of SP, RRC, GH, and LP compared to IP. Our results

show GH and LP always have expected network lifetime higher than 50%. The median of

GH and LP are 83% and 79%. Compared with IP, SP and RRC have median lifetime ratios

as 44% and 47%. The figure shows GH and LP have good expected lifetime compared the

IP approach and greatly outperform SP and RRC.

Besides small scale simulations, we also test our algorithms with large number of flows in

simulation on whole testbed topology. We evaluate our routing designs on different numbers

of flows by increasing the number of sensor and actuator pairs. We compare four routing

designs in terms of network lifetime and execution time.

We showed the network lifetime of different routing designs in Figure 5.7(a). In general,

network lifetime decreases as the number of flows increases. Because more flows bring more

energy consumption to network devices. Furthermore, results show SP always gives the

shortest network lifetime, RRC is longer than SP but shorter than GH and LP. GH and

LP provide longer network lifetime than the other two. The figure shows GH and LP can

improve the network lifetime from SP by up to 43% and 51%.

The computational complexity of four routing algorithms are presented in Figure 5.7(b). The

results show LP is much slower than other three algorithms. Because linear programming

solver in general is slower than straightforward routing algorithms such as SP and GH.

Besides LP, GH has the highest time complexity. However, the maximum execution time in

our simulation is around 0.35 seconds, which is acceptable in network design.

74

5.7 Summary

Industrial WSANs face significant challenges in achieving long-term reliable communication

in harsh environments. While the WirelessHART standard adopts graph routing to enhance

network reliability, the problem of maximizing network lifetime for graph routing becomes

a critical open problem. This chapter introduces and formulates the network lifetime maxi-

mization problem for graph routing. We present an optimal graph routing algorithm based

on Integer Programming, and two efficient algorithms based on linear programming relax-

ation and greedy heuristics, respectively. We have implemented our graph routing algorithms

on a physical WirelessHART network testbed. Experimental results on the testbed and in

simulations show the linear relaxation and greedy heuristics can improve the network lifetime

by up to 50% when compared to an existing graph routing algorithm. Moreover, the greedy

heuristics requires significantly lower computation time, making it particularly suitable for

WirelessHART networks that may compute graph routes frequently when facing network

changes in open environments.

75

Chapter 6

Distributed Application Allocation in

Shared Sensor Networks

Wireless sensor networks are evolving from single-application platforms towards an inte-

grated infrastructure shared by multiple applications. Given the resource constraints of

sensor nodes, it is important to optimize the allocation of applications to maximize the over-

all Quality of Monitoring (QoM). Recent solutions to this challenging application allocation

problem are centralized in nature, limiting their scalability and robustness against network

failures and dynamics. This chapter presents a distributed game-theoretic approach to ap-

plication allocation in shared sensor networks. We first transform the optimal application

allocation problem to a submodular game and then develop a decentralized algorithm that

only employs localized interactions among neighboring nodes. We prove that the network

can converge to a pure strategy Nash equilibrium with an approximation bound of 1/2. Sim-

ulations based on three real-world datasets demonstrate that our algorithm is competitive

against a state-of-the-art centralized algorithm in terms of QoM.

6.1 Introduction

Traditionally, wireless sensor networks (WSNs) are used as specialized platforms where only

a single application is deployed on each sensor. Recently, large-scale, integrated WSNs that

support multiple applications start to emerge. Many application domains such as urban

sensing [63], building automation and environmental monitoring [1] have already adopted

the integrated WSN paradigm to support multiple applications. Compared to separate

76

application-specific sensor networks, a shared WSN can be more cost effective and more

flexible as it enables resource sharing among applications and dynamic resource allocation

in response to changes in the environment and user needs.

Severe resource constraints limit the allocation of all possible applications to sensors in a

shared WSN. For example, the TelosB mote [2], a representative sensor platform, only has

10 KB of RAM, a 250 Kbps radio, and a 16-bit CPU running at 8 MHz. On the other

hand, the Quality of Monitoring (QoM) of applications depends on application allocations.

Therefore, it is important to optimize the allocation of multiple applications among sensor

nodes in order to maximize the overall QoM, subject to resource constraints. This problem

is challenging because it is essentially a discrete optimization with an exponentially large

solution space.

Some recent works utilize the submodularity of the QoM function to tackle this discrete

optimization problem. Submodularity is an important property of the QoM functions for

networked sensing applications. Intuitively, a function f that maps a subset of a set S to a

real value is submodular if it has a diminishing return property, i.e., adding an element to a

smaller subset of S makes a bigger difference to the function values than adding it to a larger

subset of S. The submodularity of QoM is due to the inherent property that sensor readings

from different nodes are often correlated. For instance, since the temperature readings from

different nodes in the same room are correlated with each other, allocating a new node to

a temperature monitoring application results in diminishing improvement to the QoM as

the set of nodes allocated to the application grows. Submodularity of sensor allocation for

monitoring temperature [41] and water quality [90, 119, 120] has been observed in previous

studies of real-world datasets.

Many existing works centered around submodular optimization have been proposed for op-

timization problems in sensor networks. Recent theoretical works also show approximation

algorithms that can achieve a (1−1/e)-approximation bound [122]. Xu et al. [208] proposed

a greedy algorithm and achieved a 1/3 approximation bound. Submodular optimization

approaches are also used in sensor selection and placement applications [119,120]. However,

all these existing submodular optimization approaches are essentially centralized solutions.

For WSNs, a centralized algorithm implies there is either a node or gateway that maintains

the global information of the network.

77

A centralized approach is not desirable for WSNs due to its limitations in scalability and fault

tolerance. First, a shared WSN is usually of large scale in terms of the number of nodes

and hop counts. Hence, it is inefficient or even impossible to achieve global information

sharing that is required by centralized optimization algorithms. Second, in a centralized

approach, much of the computation and communication happens on a single point resulting

in a single point of failure. To address the limitations of centralized approaches, we study

distributed optimization approaches for application allocations. Meanwhile, we still exploit

the submodularity property of QoM functions to achieve desirable approximation bounds.

In this chapter, we provide several major theoretical results: 1) We propose the covariance

cover function as a new QoM metric that is amenable to distributed optimization; 2) We

show that the optimal multi-application allocation problem with covariance cover as ob-

jective function is a submodular optimization problem with multiple knapsack constraints;

3) We propose a game theory based distributed algorithm for solving this submodular op-

timization problem and prove that our algorithm can achieve a 1/2-approximation bound

when each sensor achieves optimal allocation of applications. We also prove our algorithm

can achieve a 1/(1 + β)-approximation bound when each sensor achieves a 1/β-approximate

allocation of applications. Simulations based on three real-world datesets demonstrate that

our distributed algorithm can achieve comparable QoM as a state-of-the-art centralized al-

gorithm [208], while scaling effectively in terms of both execution time per node and the

communication overheads.

The rest of the chapter is organized as follows. Section 6.2 reviews the related works. Sec-

tion 6.3 formulates the application allocation problem. Section 6.4 presents our distributed

algorithm design. Section 6.5 presents approximation bounds of our algorithms. Section 6.6

evaluates our algorithm design in simulations. Section 6.7 concludes this chapter.

6.2 Related Works

Originated from centralized optimization, subgradient methods have been used to optimize

problems where the gradients of the objectives are hard to obtain, while the subgradients of

objective functions with respect to a subset of variables are easy to obtain [149, 158]. The

subgradient optimization method can be used as a distributed optimization algorithm for

78

problems in WSNs, in which each sensor node optimizes the objective function distributively

using its own subgradient value. However, the subgradient method is not suitable for the

multi-application allocation problem in a large-scale, multi-hop WSN, due to the fact that in

each iteration of the algorithm, it is still required to propagate the solution for the subsequent

subgradient calculation. That is to say, although the optimization is localized to each sensor,

global communication is still required.

Game-theoretic approaches have been proposed to address the above issue. In these ap-

proaches, communications are made only between certain sensors in a user-defined neigh-

borhood. Another unique property of game-theoretic approaches is that they do not assume

that agents (in this case, sensor nodes) work cooperatively. Instead, selfish sensor nodes op-

timize a local version of the objective functions, often called “utilities” or “private utilities”,

independently, until none of them can further improve their private utilities by making a

different decision.2 When these utilities are carefully designed to reflect the objective func-

tion, the overall objective function, also called “social utility”, is subsequently optimized by

these noncooperative agents [195].

When the social and private utilities are carefully designed, game-theoretic approaches guar-

antee a constant optimization bound [36,106,195]. Since the utility system decides the nature

of the game, needless to say, for game-theoretic approaches to work for multi-application

allocation problems, designing the utility system is critical. Specifically, in a distributed

solution, a utility system that is easy to calculate and has no global information propagation

requirements is desirable. In other words, in the application allocation problem, a utility

system should reflect the QoM value based on the decisions of each sensor, while it does not

require global communication in the network.

Previous works proposed different QoM formulations [40, 90, 208], including variance reduc-

tion and mutual information gain. However, neither is suitable as the objective function in

a distributed game-theoretic approach, which requires that a sensor’s utility is independent

of other sensors that are not in its neighborhood. This condition is violated when using

variance reduction or mutual information as QoM, because one sensor’s utility of allocating

an application is related to all sensors that carry the application. We address this issue by

2In Game Theory, a state where no player can improve its utility is called an equilibrium state.

79

proposing a new QoM metric that is submodular and suitable for game-theoretic distributed

optimization while serving as an effective proxy for variance reduction in QoM optimization.

6.3 Problem Formulation

In this section, we first review the variance reduction QoM formulation. After discussing

the disadvantages of using variance reduction in distributed algorithms, we propose a new

QoM metric called covariance cover that is amenable to distributed solutions. In the end,

we formulate the application allocation problem in shared WSNs using covariance cover as

QoM metric.

6.3.1 QoM Formulation

Variance reduction is commonly used to measure QoM in WSN applications [90, 208]. As-

suming sensor readings follow a Gaussian Process, the variance reduction measures how

much the variance of the readings from the unallocated sensors.

Variance reduction is calculated based on covariance. Assuming K is the covariance matrix

for sensor nodes, and for two subsets of sensor nodes G,H ⊆ V , the covariance matrix of G

and H is denoted by KGH , where its rows corresponding to G and columns corresponding

to H extracted from K. For a given set G with application allocated, the variance of the

unassigned set Ḡ = V \G is

σ2
Ḡ|G = tr(KḠḠ)− tr(KḠGK

−1
GGKGḠ),

where tr() is the trace of a matrix.

In this application allocation problem, the goal is to minimize the variance of Ḡ given G

such that the quality of sensing is maximized. Namely, we want to maximize the negation

of the variance. Given tr(K) = tr(KGG) + tr(KḠḠ), variance reduction for one application

80

is:

QV R = tr(KGG) + tr(KḠGK
−1
GGKGḠ) (6.1)

Variance reduction is just one of the many possible ways to formulate QoM. There is an

inherent disadvantage of using variance reduction for our problem. It is not feasible for

a sensor node with limited memory resource to store a kernel matrix that is quadratic to

the size of the network, and it is expensive to compute variance reduction since it involves

matrix multiplication and inversion. To overcome this inherent disadvantage, we decompose

the variance reduction and propose a new formulation which is more amenable to distributed

approaches.

We begin with introducing the network model. A network consists of a group of sensors

{1, 2, · · ·n}. Each sensor node can be presented as a vertex. For a pair of sensors i and

j, if each of them is in the other’s communication range, i and j are defined as a pair of

neighbors. The network can be presented as a graph G = (V,E), where V = {1, 2, · · · , n}
and (i, j) ∈ E if and only if i and j are a pair of neighbors. Now we will decompose the

variance reduction based on two assumptions.

Theorem 2. Variance reduction formulation (6.1) is equivalent to∑
i∈G

Kii +
∑

(i,j)∈E,i∈G or j∈G

K2
ij,

if (I) the covariance of any two nodes is nonzero if and only if they are a pair of neighbors,

and (II) any two allocated nodes are not a pair of neighbors.

Proof: Let us first simplify the variance reduction formulation. Since any two allocated

nodes are not neighbors of each other, and only neighbors have nonzero variance, we can

prove KGG is an identity matrix. It immediately follows that

QV R = tr(KGG) + tr(KḠGK
−1
GGKGḠ)

=
∑
i∈G

Kii +
∑

i∈G,j∈Ḡ

K2
ij.

81

Since only a pair of neighbors have nonzero covariance,

QV R =
∑
i∈G

Kii +
∑

i∈G,j∈Ḡ,(i,j)∈E

K2
ij.

We assume two allocated nodes are not neighbors, which means if (i, j) ∈ E, i ∈ G, then

j ∈ Ḡ. It follows

QV R =
∑
i∈G

Kii +
∑

(i,j)∈E,i∈G or j∈G

K2
ij.

One question raises naturally: how realistic are the assumptions? We argue that the pro-

posed two assumptions, although sometimes violated, provide good approximations of the

real-world scenarios. First, it is reasonable to assume a pair of nearby sensors have larger

covariance. For example, the temperature measurements of two different sensors in the same

office room are more correlated than two sensors in different rooms. Second, since our ap-

plications have the inherent property of submodularity, allocating two neighboring nodes

simultaneously typically does not give much gain in terms of QoM. To maximize QoM, a

good solution should naturally allocate nodes that have unallocated nodes as neighbors.

Actually, our submodular game algorithm is not limited by these two assumptions, it can

handle situations when assumptions do not hold.

We name the new QoM formulation covariance cover. Denoting τij = K2
ij as the weight of

edge (i, j), and τii = Kii as the weight of node i, we define the covariance cover formulation

as

QCC =
∑
i∈G

τii +
∑

(i,j)∈E,i∈G or j∈G

τij. (6.2)

6.3.2 Application Allocation Problem Formulation

Given QoM metric as covariance cover, we want to further formulate the application alloca-

tion problem in shared sensor networks.

82

When there are multiple applications P = {1, 2, · · · , p} with weights {w1, w2, · · · , wp}, we

want to maximize the summation QoM of all applications
∑p

t=1 w
tQt, where Qt is the co-

variance cover for application t.

Qt =
∑
i∈Gt

τ tii +
∑

(i,j)∈E,i∈Gt or j∈Gt

τ tij

This problem is challenging because of critical resource constraints, e.g., CPU and memory

constraints. For each sensor, the total memory and CPU consumed by all applications

can not exceed its limits. Therefore, suppose each node has m resource constraints R =

{1, 2, · · · ,m}, the capacity of node i on resource k is Ci,k, and application t consumes cti,k
units of resource k on node i, the constrained optimization problem can be formulated as:

max QoM =
∑
t∈P

wtQt

Qt =
∑
i∈Gt

τ tii +
∑

(i,j)∈E,i∈Gt or j∈Gt

τ tij

s.t.
∑
t|i∈Gt

cti,k ≤ Ci,k, ∀i ∈ V, ∀k ∈ R

here Gt is the set of nodes which are assigned application t.

It is easy to see that all resource constraints here are knapsack constraints. This type

of constraint formulation also can be used to characterize various communication patterns

among nodes, such as the pattern in a data collection application that collects data from

every node on the routing tree.

6.4 Submodular Game

In this section, we will formulate a non-cooperative game based on the covariance cover for-

mulation discussed in the previous section, which leads to a completely distributed algorithm.

We introduce typical terminologies in game theory at first.

83

6.4.1 Submodular Game Formulation

Suppose we have n sensor nodes, and each sensor node i in the network is an agent i in the

game. For each sensor, its strategy ai is the subset of applications that can run on it.

ai = {t| application t runs on sensor i}

= {t|i ∈ Gt,∀t ∈ P}.

Under the resource constraint we discussed earlier, the strategy set Ai of player i is

Ai = {ai|
∑
t∈ai

cti,k ≤ Ci,k,∀k ∈ R},

A pure strategy is one in which each agent decides to carry out a specific strategy. In game

theory, mixed strategy is also widely discussed. However, we only discuss pure strategy in

this chapter, because in reality of sensor networks, it is hard to implement strategies with

probability distribution. Also, we prove that our game has at least one Nash equilibrium

with pure strategies. We denote the strategy space of the game as A = A1 ×A2 × · · · ×An.

A game is always defined on a utility system. To build the utility system, we need to define

the utility function at first. Given a strategy profile A = (a1, a2, · · · , an) ∈ A, let A ⊕ a′i

denote the strategy profile obtained if agent i changes its strategy from ai to a′i. Formally,

A⊕ a′i = (a1, · · · , ai−1, a
′
i, · · · , an).

The goal of our game is to maximize the social utility γ : 2V → R defined on pure strategy

profile A = {a1, · · · , an} as

γ(A) =

p∑
t=1

γt(A)

=

p∑
t=1

wt(
∑

t∈ai or t∈aj ,(i,j)∈E

τ tij +
∑

t∈ai,i∈V

τ tii)

=

p∑
t=1

wt(
∑

(i,j)∈E,i∈Gt or j∈Gt

τ tij +
∑
i∈Gt

τ tii).

(6.3)

Remind Gt is the set of nodes who are assigned application t.

84

For each agent i, we define a private utility φi : 2V → R as:

φi(A) =
∑
t∈ai

φti(A)

=
∑
t∈ai

wt(τ tii +
∑
j∈Ni

τ tij
1 + δj∈Gt

)
(6.4)

where Ni = {j|(i, j) ∈ E} is sensor i’s neighborhood. For edge (i, j), if not only i, but

also j runs application t, (i, j)’s edge weight τ tij need to be equally shared by both i and j.

Otherwise, sensor i will account all (i, j)’s edge weight into its private utility.

The goal of each sensor is, therefore, to select a strategy in order to maximize its private

utility under resource constraints. Clearly, such strategies may not produce a good solution

with respect to the social utility γ. However, we will show that the strategies sensors finally

select will result in a reasonable good social utility γ in next section.

To localize the optimization problem to each sensor, given strategies of its neighbors fixed,

we redefine sensor i’s private utility φi(A) as its utility function ui(xi), which is a function

of its own decisions xi. Its decision xi = {x1
i , · · · , x

p
i } is redefined from its strategy ai, where

xti = 1 means t ∈ ai.

ui(xi) =

p∑
t=1

wt[τ tii +
∑
j∈Ni

τ tij
1 + δj∈Gt

]xti

We denote Ωt
i = [τ tii +

∑
j∈Ni

τ tij
1+δj∈Gt

] as a constant, assuming strategies of i’s neighbors are

given. To maximize its utility function, sensor node i needs to solve a integer programming

problem:

Max ui(xi) =

p∑
t=1

wtΩt
ix
t
i

where xti ∈ {0, 1}, ∀t ∈ P

s. t.

p∑
t=1

cti,k x
t
i ≤ Ci,k ∀k ∈ R

(6.5)

85

Actually, this is a typical multidimensional knapsack problem. There is a rich package of

literature to solve this problem. We propose two algorithms based on p, which is the num-

ber of applications. If p is not larger than Tp, our solution will adopt a naive enumeration

algorithm. Basically, it enumerates all possible application assignments and returns an opti-

mal solution. Otherwise, our solution will adopt a polynomial time approximate algorithm,

which is proven to have a 1
1+m

approximation bound (section 9.4.2 of [113]), where m = |R|
is the number of resource constraints. Here Tp is the threshold for p, we set it to 5 in our

implementation. We show the sketch of our solution for problem (6.5) in Algorithm 7.

Algorithm 7: Algorithm for knapsack problem (6.5)

Set x̂ = {0, · · · , 0};
if p ≤ Tp then

Adopt the Enumeration Algorithm;
Enumerate x ∈ {0, 1}p, return optimal solution x̂.

else
Adopt the Approximation Algorithm;
Relax problem (6.5) to a linear programming problem and compute an optimal solution
xLP of the LP-relaxation.
Set I = {t|xtLP = 1}
Set F = {t|0 < xtLP < 1}
Return x̂ = max{

∑
t∈I w

t,max{wt|t ∈ F}}
end

Now we analyze computational cost of our algorithm. If p ≤ Tp, the time complexity is

O(
(
p
d

)
) where d is the maximum number of applications that can be allocated on one node.

And if p is larger than Tp, the relaxed linear programming (LP) problem is significantly

simplified due to the small numbers of resource constraints as well as applications. The

number of resource constraints is usually no more than 3 (e.g., memory, CPU, and band-

width). The number of applications is also small due to the limited resources available per

node. Our algorithm employs an efficient and practical solution as follows. We solve the

dual problem of the aforementioned LP problem which only has three variables (the shadow

prices of memory, CPU and bandwidth constraints) and p constraints (p is the number of

applications). Even a naive LP solver that enumerates all possible extreme points (each

of the three constraints determines one extreme point) and finds the best feasible one has

the computational complexity O(p
(
p
3

)
) = O(p4), and the memory requirement of the naive

86

enumeration algorithm is O(1). Either way, the cost of each individual multidimentional

knapsack problem is O(pd), where d is a small integer.

6.4.2 Submodular Game Algorithm

Now we discuss our distributed submodular game algorithm. In the beginning stage, sensor

nodes in the network need to get two key parameters about applications set P : 1) types of

required sensor readings; 2) the frequency of each sensor reading. These two key parameters

are distributed to the network from a central facility like base station. After this stage, no

central facility is needed in the algorithm, so our algorithm is fully distributed.

Algorithm 8: Game algorithm for sensor node i

initialization;

• i measures sensor readings for each application t;

• i broadcasts all sensor readings in its neighborhood;

• i calculates τ tii and τ tij for every neighbor j;

if Timer Λi fires then
if receiving strategy changes from neighbors then

i runs algorithm 7, output x̂→ strategy;
if strategy changes then

i broadcasts its strategy in neighborhood;
end

end

end

In the initialization stage, each node measures sensor readings for a certain interval and

broadcasts sensor readings in its neighborhood. Based on neighbor j’s readings, node i can

calculate the covariance between i and j as well as τ tij.

Algorithm 8 shows the detailed decision-making procedure for each sensor. In each round

of the game, nodes share the same time interval T . Each node generates a random number

Λi (Λi < T) as a timer using a unique seed, such that two timers will not fire at the same

time. Each timer Λi will fire once and only once during each time interval T for sensor

87

node i to solve the allocation problem (6.5) locally. If a new strategy is generated, node

i will broadcast it in the neighborhood. Otherwise i will keep quiet. Each sensor node i

also receives messages from its neighbors about their updated strategies. The algorithm

terminates when no strategy changes are made in a round.

Here we analyze the efficiency of our game algorithm. From the computational cost per-

spective, we already give the computational cost of each node in each round as O(pd). Since

both p and d are small integers, it is reasonable to say the computational cost is acceptable

on a sensor node with limited resources. From a network perspective, we want to analyze

the communication cost. In each round, sensor node i needs to receive messages from all its

neighbors and broadcast its own strategy in its neighborhood if necessary. We denote the

Expected Transmission Count (ETX) of link e is νe. Since sensor node i broadcasts in the

neighborhood, in the worst case, the number of messages it needs to send is the maximum

of all the ETXs in its neighborhood ζi = maxj∈Ni
ν(i,j). So the overall number of packets

sensor i sends in the game is lower than κζi, given κ is the number of overall number of

rounds. Because κ is always a small number (less than 12) based on our evaluation, the

communication cost is relatively small.

6.5 Convergence and Approximation Bound

In this section, we first show the social utility (6.3) is submodular. Then we prove our

submodular game (γ,∪i∈V φi) defined in (6.3) and (6.4) can converge to a pure strategy Nash

equilibrium with an approximation bound of 1
2
, if sensors use the enumeration algorithm to

solve the multidimensional knapsack problem (6.5). If sensors use the 1
1+m

-approximate

solution for the knapsack problem, the game can converge to a (1 + m)-approximate pure

strategy Nash equilibrium and the approximation bound is 1
2+m

, where m is number of

resource constraints.

88

6.5.1 Submodularity

Definition 4. (Submodularity) Let V be a finite set, a function f : 2V → R is submodular

if for any A ⊆ B ⊆ V and x ∈ V −B, f(B ∪ {x}) ≤ f(A ∪ {x}).

Recall that we defined the social utility (6.3) as a function of pure strategy profiles in the

last section. We redefine the social utility here as a function of the set of sensors that we

allocate applications on: γ =
∑p

t=1w
tQt(Gt), where

Qt(Gt) =
∑

{(i,j)|i∈Gt or j∈Gt}

τ tij +
∑
i∈Gt

τ tii.

This definition is equivalent to the one we defined in (6.3), but it is now defined on the set of

sensors. Based on this set based definition, we can prove the social utility γ is submodular.

Theorem 3. The social utility γ is submodular.

Proof: Since γ =
∑p

t=1w
tQt(Gt), we only need to show Qt(Gt),∀t ∈ P is a submodular

function. By definition, we need to prove: if A ⊆ B ⊆ V and x ∈ V − B, f(B ∪ {x}) ≤
f(A ∪ {x}).

If x ∈ B, it is obvious that Qt(B ∪ {x})−Qt(B) = 0 ≤ Qt(A ∪ {x})−Qt(A).

If x /∈ B, it follows:

A ⊆ B

⇒ {(i, k)|i = x& k /∈ B} ⊆ {(i, k)|i = x& k /∈ A}

⇒
∑

i=x& k/∈B

τ tik ≤
∑

i=x& k/∈A

τ tik

⇒ Qt(B ∪ {x})−Qt(B) ≤ Qt(A ∪ {x})−Qt(A)

89

6.5.2 Convergence and Pure Nash Equilibrium

Now we will discuss the convergence of our game. By defining a potential function, we show

the increase of each agent’s private utility will lead to the increase of the potential function.

Then we can prove our game will converge at a pure strategy Nash equilibrium. Here we

assume our Submodular Game Algorithm (Algorithm 8) is using the enumeration algorithm.

Definition 5. (Pure Strategy Nash Equilibrium) A pure strategy profile A ∈ A is a

pure strategy Nash equilibrium if no agent has an incentive to change its strategy. For any

agent i,

∀a′i ∈ Ai, φi(A⊕ a′i) ≤ φi(A).

Equivalently, given the other agents’ strategies, ai is the best response of agent i.

Theorem 4. A pure strategy Nash equilibrium always exists for the utility system (γ,∪iφi)
we defined in (6.3) and (6.4). And Submodular Game Algorithm (Algorithm 8) converges to

a pure strategy Nash equilibrium.

Proof: The proof starts from defining the potential function of the game. We define the

potential function ψ for a strategy profile A as

ψ(A) =

p∑
t=1

wt(
∑

i∈V,t∈ai

τ tii +
∑

(i,j)∈E,t∈ai or t∈aj

nt
(i,j)∑
l=1

τ tij
l

)

where nt(i,j) is the number of agents which are assigned application t as well as the end points

of edge (i, j). nt(i,j) is 2 if both i and j are assigned application t, and it is 1 if only one of i

and j is assigned the application t.

Assume sensor i changes its strategy from ai to a′i, as a result the strategy profile of the

game changes from A to A′. Here ai is the set of applications which are assigned to sensor i

in original strategy profile A, and a′i is that in new strategy profile A′. Let G = ai − a′i and

H = a′i − ai. We use Ei to denote the set of edges which coincide with sensor i. Since the

change only happens on node i and edges sit on i, we will ignore other nodes and edges in

following proof.

90

ψ(A′)− ψ(A)

=
∑
t∈a′i

wtτ tii −
∑
t∈ai

wtτ tii +

∑
j∈Ni

∑
t∈H

wt
τ tij

nt(i,j) + 1
−
∑
j∈Ni

∑
t∈G

wt
τ tij
nt(i,j)

;

φi(A
′)− φi(A)

=
∑
t∈a′i

wtτ tii −
∑
t∈ai

wtτ tii +

∑
t∈H

wt
∑
j∈Ni

τ tij
nt(i,j) + 1

−
∑
t∈G

wt
∑
j∈Ni

τ tij
nt(i,j)

Obviously, ψ(A′) − ψ(A) = φi(A
′) − φ(A), we prove that the increase of the private utility

of i is exactly the same as increase of the potential function of the game.

Once each individual sensor improves its private utility, the potential function ψ of the

game also gets increased. Since the maximum value of this potential function is finite, the

algorithm will converge in finite rounds.

6.5.3 Valid Utility Game and Approximate Nash Equilibrium

Now we want to prove our submodular game (γ,∪i∈V φi) is a valid utility system.

Definition 6. (Utility System) [195] A game is called a utility system if and only if the

private utility of an agent is at least as great as the loss in social utility resulting from the

agent dropping out of the game. That is, the game (γ,∪iφi) is a utility system if and only

if it has the property φi(A) ≥ γ′ai(A⊕ ∅i).

Definition 7. (Valid Utility System) [195] A utility system is said to be valid if and only

if the sum of private utilities of the agents is at most the social utility. That is, the utility

system (γ,∪iφi) is a valid utility system if and only if it has the property
∑n

i φi(A) ≤ γ(A).

We want to prove that the game we defined in (6.3) and (6.4) is a valid utility system. At

first, we prove it is a utility system.

Theorem 5. The game (γ,∪iφi) defined in (6.3) and (6.4) is a utility system.

91

Proof:

γ′ai(A⊕ ∅i)

= γ(A)− γ(A−i ⊕ ∅i)

=
∑
t∈ai

wt(
∑

j∈Ni|t/∈aj

τ tij + τ tii)

≤
∑
t∈ai

wt(
∑

j∈Ni|t/∈aj

τ tij +
∑

j∈Ni|t∈aj

τ tij
2

+ τ tii)

= φi(ai).

Theorem 6. The utility system (γ,∪iφi) defined in (6.3) and (6.4) is valid.

Proof: We need to prove the utility system (γ,∪iφi) has the property
∑

i∈V φi(A) ≤ γ(A).

First, we define the set of covered edges for application t as Et = {(i, j)|i ∈ Gt or j ∈ Gt}.
Equation (6.3) shows that each e = (i, j) ∈ Et contributes τ tij to γ(A). We use a vector

(ξi, ξj) to denote e’s contribution to φi(A) and φj(A). There are three cases here:

(ξi, ξj) =


(τ tij, 0), if i ∈ Gt, j /∈ Gt

(0, τ tij), if i /∈ Gt, j ∈ Gt

(1
2
τ tij,

1
2
τ tij), if i ∈ Gt, j ∈ Gt

Since e’s contribution to γ(A) equals to the sum of its contribution to φi(A) and φj(A), after

we sum up all e ∈ E,

∑
t∈P

wt
∑

(i,j)∈E,i∈Gt or j∈Gt

τ tij =
∑
i∈V

(
∑
t∈ai

wt
∑
j∈Ni

τ tij
nte

).

Now we consider contribution of nodes, it is obviously that

∑
t∈P

wt
∑
i∈Gt

τ tii =
∑
i∈V

∑
t∈ai

wtτ tii.

92

Combining both contribution of edges and nodes,

γ(A) =
∑
i∈V

φi(A).

We cite below an important result on valid game [195].

Lemma 5. Let γ be a non-decreasing, submodular set function. If (γ,∪iφi) is a valid utility

system then for any pure strategy Nash equilibrium A∗ ∈ A, we have γ(A∗) ≥ 1
2
OPT , where

OPT is the optimal social utility.

Combining Theorem 3, Theorem 4, Theorem 6 and Lemma 5, we get following theorem.

Theorem 7. For the submodular game (γ,∪iφi) we defined in (6.3) and (6.4), there exists

at least one pure strategy Nash equilibrium. And for its any pure strategy Nash equilibrium

A∗ ∈ A, we have γ(A∗) ≥ 1
2
OPT .

Now we consider the case in which each sensor runs the approximation algorithm and can

only get a 1
β

approximate solution instead of optimal solution for the multidiminutional

knapsack problem. 1
β

approximate solution (β > 1) means the solution is not less than 1
β

of

the optimal solution. We can prove that our algorithm can achieve a β-approximate Nash

Equilibrium.

Definition 8. (β-approximate Nash Equilibrium) A pure strategy profile A ∈ A is

a β-approximate Nash equilibrium if no agent can find a better alternative pure strategy in

which its private utility is more that β times better than its current private utility. That is

for any agent i,

∀a′i ∈ Ai, φi(A⊕ a′i) ≤ (1 + β)φi(A)

Theorem 8. For the submodular game defined in (6.3) and (6.4), Submodular Game Algo-

rithm (Algorithm 8) with the 1
β

-approximation algorithm converges to a β-approximate Nash

equilibrium A ∈ A.

93

Proof: The proof follows the same way of theorem 4. By bounding the value of the potential

function, we can prove out Submodular Game Algorithm can reach a β-approximate Nash

equilibrium.

We cite the following important result on approximate Nash equilibria [195].

Lemma 6. Let γ be a non-decreasing, submodular set function, and (γ,∪iφi) be a valid

utility system. In any β-approximate Nash equilibrium A ∈ A we have γ(A) ≥ 1
1+β

OPT ,

where OPT is the optimal social utility.

Theorem 9. For the submodular game defined in (6.3) and (6.4), Submodular Game Al-

gorithm (Algorithm 8) with a β-approximate solution converges to a β-approximate Nash

equilibrium A ∈ A, and we have γ(A) ≥ 1
1+β

OPT , where OPT is the optimal social utility.

Theorem 9 follows Theorem 6, Theorem 8 and Lemma 6.

In our implementation, we use a 1
1+m

-approximation algorithm, so our Submodular Game Al-

gorithm can converge to a (1+m)-approximate Nash equilibrium with an 1
2+m

approximation

bound.

6.6 Evaluation

In this section, we evaluate our Submodular Game Algorithm (SG) by comparing it

against a state-of-the-art centralized optimization algorithm Fractional Relaxation Greedy

(FRG) [208]. We conduct simulations on three real world datasets:

Intel dataset is collected in Intel Berkley lab [3]. 54 Mica2Dot sensor nodes with weather

boards were used to collect topology information along with humidity, temperature and light

values. The data collection last for more than one month at a sampling period of 31 seconds.

In our evaluation, we generate the covariance matrices using data collected from 20 nodes

in one day.

DARPA dataset is collected in the DARPA SensIT vehicle detection experiments [69].

75 WINS NG 2.0 nodes are deployed to detect vehicles driving through several intersecting

94

0.35 0.30 0.25 0.20 0.15 0.1
0

0.25

0.5

0.75

1

 C
o

v
a

r
ia

n
c

e
 C

o
v

e
r
 R

a
ti

o

 PRR Bound

 Intel

 DARPA

 BWSN

Figure 6.1: Covariance Cover Ratio

0.35 0.30 0.25 0.20 0.15 0.1
0

1

2

3

4

5

6

 N
u

m
b

e
r
 o

f
R

o
u

n
d

s

 PRR Bound

 Intel

 DARPA

 BWSN

Figure 6.2: Number of Rounds

95

0.35 0.30 0.25 0.20 0.15 0.1
0

2

4

6

8

10

12

 N
u

m
b

e
r

o
f

M
e

s
s

a
g

e
s

 PRR Bound

 Intel

 DARPA

 BWSN

Figure 6.3: Number of messages per node

roads in 29 Palms, CA. Each WINS NG 2.0 node is equipped with three sensing modalities:

acoustic (microphone), seismic (geophone) and infrared (polarized IR sensor). All nodes are

deployed in an area of approximately 900 × 300m2. In our evaluation, we use acoustic and

seismic readings from 23 nodes in the dataset to generate covariance matrices.

BWSN dataset is acquired by running simulations on a 129-node sensor network used in

Battle of the Water Sensor Networks (BWSN) [152]. We use the ”bwsn-utilities” [4] program

to simulate 10000 random injection events to this network for a duration of 96 hours and use

the generated event detection data to calculate the covariance matrices. We use two event

injection strategies to build two sets of data as two applications.

For each dataset, we can calculate the covariance matrices based on the sensor readings. The

Packet Reception Ratio (PRR) of each link is included in the Intel dataset. We generate PRR

for DARPAR and BWSN datasets based on location information of sensors following the way

proposed in [222]. We then generate different network topologies by assigning different PRR

bounds. Only links with PRR higher than the PRR bound is used for communication. In

our simulations, we repeat Algorithm 8 in Section 6.4 10 times for each network topology.

Because the number of applications is at most 3 in our simulations, we employ naive enu-

meration to solve the multidimensional knapsack problem (6.5) on each sensor node. As

we proved in Theorem 7, SG will terminate at a pure strategy Nash equilibrium and the

approximation bound is no less than 1
2
. We implement our SG algorithm in Matlab. All

96

0.35 0.30 0.25 0.20 0.15 0.1
0

20

40

60

80

100

120

 Q
o

M

 PRR Bound

 SG VR

 FRG VR

 SG CC

 FRG CC

(a) Intel dataset

0.35 0.30 0.25 0.20 0.15 0.1
0

10

20

30

40

50

60

 Q
o

M

 PRR Bound

 SG VR

 FRG VR

 SG CC

 FRG CC

(b) DARPA dataset

0.35 0.30 0.25 0.20 0.15 0.1
0

50

100

150

 Q
o

M

 PRR Bound

 SG VR

 FRG VR

 SG CC

 FRG CC

(c) BWSN dataset

Figure 6.4: QoM Performance Analysis

results are gathered on a Macbook Pro machine with CPU frequency at 2.4GHz and 4GB

memory.

We define covariance cover ratio as the ratio between covariance cover achieved by the

algorithm and the maximum covariance cover in the network. Since searching an optimal

solution is too computational expensive, to assess the tightness of our bound, we compare

our solution with the maximum covariance cover, i.e., the sum of all edge weights and

node weights in the network. Figure 6.1 shows that the covariance cover of our solution is

consistently no less than half of the maximum covariance cover, which means our solution

97

0 5 10 15 20 25
0

5

10

15

20

25

30

 Q
o

M

 Number of allocated nodes

 Variance Reduction

 Covariance Cover

(a) Intel dataset

0 5 10 15 20 25
0

10

20

30

40

 Q
o

M

 Number of allocated nodes

 Variance Reduction

 Covariance Cover

(b) DARPA dataset

0 50 100 150
0

50

100

150

 Q
o

M

 Number of allocated nodes

 Variance Reduction

 Covariance Cover

(c) BWSN dataset

Figure 6.5: Comparison between VR and CC

is no less than half of the optimal solution. Results in Figure 6.1 indicates the tightness of

our 1
2

bound.

Figure 6.2 shows the maximum number of rounds for SG to converge is below 6 across all

cases in all three real-world data sets. The communication cost of our algorithm is evaluated

in Figure 6.3. It shows the average number of messages sent per node. As each sensor node

has more neighbors with a lower PRR threshold, the average number of messages sent by

each node increases from 2 to 10. Our results show that the communication cost required

by SG in terms of number of packets is moderate.

98

15 30 60 120
0

20

40

60

80

100

120

 V
a

ri
a

n
c

e
 R

e
d

u
c

ti
o

n

 Network Size

 SG

 FRG

Figure 6.6: Variance Reduction

15 30 60 120
0

0.5

1

1.5

2

 E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

 Network Size

 SG

 FRG

Figure 6.7: Execution Time

99

15 30 60 120
0

2

4

6

8

10

 Network Size

 No. of Rounds

 No. of Messages

Figure 6.8: Cost Analysis

Figure 6.4 compares the performance of SG with FRG [208] in terms of variance reduction

(VR) and covariance cover (CC). The variance reduction delivered by SG is always above

98% of that achieved by FRG in all three datasets. The covariance cover of SG is consistently

higher than FRG. For BWSN dataset, the difference between different methods is within 2,

which makes four curves difficult to tell. This result indicates the decentralized approach

employed by SG is competitive with the centralized solution in terms of QoM.

Figure 6.5 investigates the correlation between covariance cover and variance reduction.

We increase the number of allocated sensor nodes % under same PRR threshold 0.5. It is

difficult to distinguish VR and CC in BWSN dataset, because the difference of them is within

1. Results in the other two datasets show variance reduction and covariance cover are very

close when % is less than n/2, where n is total number of sensors. This is because when % is

small, allocated nodes are not neighbors of each other, which coincides with our assumption

in Theorem 2. The difference increases when % exceeds n/2, but a higher covariance cover is

always associated with a higher variance reduction. This result shows that covariance cover

can be used as an effective proxy to optimize the variance reduction of a node allocation.

We evaluate the scalability of our algorithm by selecting different subsets of sensor nodes

from the BWSN dataset. Figure 6.6 shows SG is highly competitive against FRG in terms

of variance reduction. Note the difference between SG and FRG is consistently within 2,

100

hence the SG and FRG curves are almost indistinguishable here. The execution times of

SG and FRG for varying size of networks are compared in Figure 6.7. Since the SG is a

distributed algorithm, we show the average execution time per node. For FRG, we show

its overall execution time because it is a centralized algorithm. Our results show that SG

remains fast as the number of nodes increases, with the run time remaining below 0.1 second.

While the Macbook machine used in our simulation is more powerful than typical sensor

nodes, the short execution times nevertheless indicates that SG is practical on sensors. More

importantly, the solution scales effectively with network size. In comparison, the run time

of FRG increases significantly as the number of nodes increases.

It is important to note that SG brings significant advantages than a centralized algorithm

in several important ways. It does not incur the communication overhead for collecting

the topology information of the entire network. Furthermore, it is robust against network

disconnection as it does not depend on a single base station.

In Figure 6.8, we analyze the number of rounds and communication cost of SG. Both the

number of rounds and messages per node increase moderately as the network size increases.

The number of rounds remains within 10, indicating the scalability of our decentralized

algorithm.

6.7 Summary

This chapter presents a distributed game-theoretic approach to application allocation in

shared sensor networks. We first transform the optimal application allocation problem to

a submodular game and then develop a decentralized algorithm that only employs local-

ized interactions among neighboring nodes. We prove that the network can converge to

pure strategy Nash equilibrium with a approximation bound. Simulations based on three

real-world datasets demonstrate that our algorithm is competitive against a state-of-the-art

centralized algorithm while scaling effectively with network size.

101

Chapter 7

Conclusion

With the emergence of industrial standards such as WirelessHART [26] and ISA100 [16],

process industries are adopting Wireless Sensor-Actuator Networks (WSANs) that enable

sensors and actuators to communicate through low-power wireless mesh networks [184].

Industrial process control applications impose stringent end-to-end latency requirements on

data communication. To support a feedback control loop, the network periodically delivers

data from sensors to a controller and then delivers its control input data to the actuators

within an end-to-end deadline. Consequences of deadline misses in data communication

may range from production inefficiency, equipment destruction to irreparable financial and

environmental impacts.

To meet the stringent real-time performance requirements of control systems, there is a

critical need for fast end-to-end delay analysis for real-time flows that can be used for online

admission control. We present a new end-to-end delay analysis for periodic flows whose

transmissions are scheduled based on the Earliest Deadline First (EDF) policy. Our analysis

comprises novel techniques to bound the communication delays caused by channel contention

and transmission conflicts in a WSAN. Furthermore, we propose a technique to reduce the

pessimism in admission control by iteratively tightening the delay bounds for flows with short

deadlines. Experiments on a WSAN testbed and simulations demonstrate the effectiveness

of our analysis for online admission control of real-time flows.

Routing has significant impacts on reliability, real-time capacity and network lifetime. The

core contributions of this dissertation tackles the real-time communication and network life-

time problems in WSAN routing. We first design real-time routing algorithms that leverage

the insights from the delay analysis. By incorporating conflict delays in the routing decisions,

102

our real-time routing algorithms allow WSANs to accommodate more feedback control loops

while meeting their deadline constraints.

Our second contribution to routing addresses the energy constraints of field devices in

WSANs. Since many industrial devices operate on batteries in harsh environments where

changing batteries are labor-intensive, WSANs need to achieve long network lifetime. To

meet industrial demand for long-term reliable communication, we propose efficient graph

routing designs to maximize network lifetime of WSANs. We first formally formulate the

network lifetime maximization problem for WSANs under graph routing and prove it is

NP-complete. We then propose the optimal algorithm and two more efficient algorithms

to prolong the network lifetime of WSANs. Experiments in a physical testbed and simula-

tions show our linear programming relaxation and greedy heuristics can improve the network

lifetime by up to 50% while preserving the reliability benefits of graph routing.

Besides industrial WSANs, we have seen wireless sensor networks built as an integrated in-

frastructure shared by multiple environmental monitoring applications. Given the resource

constraints of sensor devices, it is important to optimize the allocation of applications to

maximize the overall quality of sensing. Recent solutions to this challenging application al-

location problem are centralized in nature, limiting their scalability and robustness against

network failures and dynamics. We present a distributed game-theoretic approach to allo-

cate monitoring applications. We first transform the application allocation problem to a

submodular game and then develop a decentralized algorithm that only employs localized

interactions among neighboring devices. We prove that the network can converge to a pure

strategy Nash equilibrium with an approximation bound of 1/2. Simulations based on three

real-world datasets demonstrate that our algorithm is competitive against a state-of-the-art

centralized algorithm in terms of quality of sensing.

103

References

[1] http://research.cens.ucla.edu/areas/2005/NIMS/.

[2] http://www.memsic.com/products/wireless-sensor-networks/

wireless-modules.html.

[3] http://db.csail.mit.edu/labdata/labdata.html.

[4] http://www.water-simulation.com/wsp/about/bwsn/.

[5] http://www2.emersonprocess.com/siteadmincenter/PM

[6] http://www.reuters.com/article/idUSN1124632920100512.

[7] http://www.hse.gov.uk/pubns/regindex.htm.

[8] http://wsn.cse.wustl.edu/index.php/Testbed.

[9] http://www.tinyos.net/.

[10] Bluetooth. http://www.bluetooth.com.

[11] CC2420 documentation. http://www.ti.com/lit/ds/symlink/cc2420.pdf.

[12] Control with WirelessHART. http://www.hartcomm.org/protocol/training/

resources/wiHART_resources/Control_with_WirelessHART.pdf.

[13] Emerson’s WirelessHART report. http://www2.emersonprocess.com/en-
us/plantweb/wireless/pages/wirelesshomepage-flash.aspx.

[14] GNU Linear Programming Kit. http://www.gnu.org/software/glpk/.

[15] HART Communication. http://www.hartcomm2.org/index.html.

[16] ISA100: Wireless Systems for Automation. https://www.isa.org/isa100/.

[17] Kronecker delta function. http://en.wikipedia.org/wiki/Kronecker_delta.

[18] The MOSEK optimization tools manual. http://docs.mosek.com/6.0/tools/node007.html.

[19] Neos server. http://www.neos-server.org/neos/.

104

http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://db.csail.mit.edu/labdata/labdata.html
http://www.water-simulation.com/wsp/about/bwsn/
http://www.reuters.com/article/idUSN1124632920100512
http://www.hse.gov.uk/pubns/regindex.htm
http://wsn.cse.wustl.edu/index.php/Testbed
http://www.tinyos.net/
http://www.bluetooth.com
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.hartcomm.org/protocol/training/resources/wiHART_resources/Control_with_WirelessHART.pdf
http://www.hartcomm.org/protocol/training/resources/wiHART_resources/Control_with_WirelessHART.pdf
http://www.gnu.org/software/glpk/
http://www.hartcomm2.org/index.html
https://www.isa.org/isa100/
http://en.wikipedia.org/wiki/Kronecker_delta

[20] Technical overview of time synchronized mesh protocol (TSMP). Technical re-
port, DUST Networks. http://www.dustnetworks.com/cms/sites/default/files/
TSMP_Whitepaper.pdf.

[21] WINA. http://www.wina.org.

[22] Wirelesshart adapter technical specification. http://www.linear.com/product/LTP5901-
WHM.

[23] Wirelesshart network topology. http://en.hartcomm.org/hcp/tech/wihart/

wireless_how_it_works.html.

[24] WiSA: Wireless sensor and actuator networks for measurement and control. http:

//www.control.hut.fi/Research/wisa.

[25] ZigBee alliance. http://www.zigbee.org.

[26] WirelessHART specification, 2007. http://www.hartcomm2.org.

[27] Tarek F. Abdelzaher, Shashi Prabh, and Raghu Kiran. On real-time capacity limits of
multihop wireless sensor networks. In RTSS ’04.

[28] Micah Adler, Arnold L. Rosenberg, Ramesh K. Siraraman, Walter Unger, and
Lehrstuhl Fur Informatik I. Scheduling time-constrained communication in linear net-
works. In In Proc. 10th Ann. ACM Symp. on Parallel Algorithms and Architectures,
pages 269–278, 1998.

[29] Gahng-Seop Ahn, A.T. Campbell, A. Veres, and Li-Hsiang Sun. Swan: service differen-
tiation in stateless wireless ad hoc networks. In INFOCOM ’02: Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies, volume 2,
pages 457–466, 2002.

[30] Matthew Andrews and Lisa Zhang. Routing and scheduling in multihop wireless net-
works with time-varying channels. In SODA ’04: Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 1031–1040, 2004.

[31] V. Annamalai, S. K. S. Gupta, and L. Schwiebert. On tree-based convergecasting in
wireless sensor networks. 2003.

[32] T.P. Baker. Multiprocessor edf and deadline monotonic schedulability analysis. In
RTSS’03.

[33] T.P. Baker. An analysis of edf schedulability on a multiprocessor. IEEE Transactions
on Parallel and Distributed Systems, 16(8):760 – 768, aug. 2005.

105

http://www.dustnetworks.com/cms/sites/default/files/TSMP_Whitepaper.pdf
http://www.dustnetworks.com/cms/sites/default/files/TSMP_Whitepaper.pdf
http://www.wina.org
http://en.hartcomm.org/hcp/tech/wihart/wireless_how_it_works.html
http://en.hartcomm.org/hcp/tech/wihart/wireless_how_it_works.html
http://www.control.hut.fi/Research/wisa
http://www.control.hut.fi/Research/wisa
http://www.zigbee.org
http://www.hartcomm2.org

[34] Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In
RTSS’07.

[35] Y. Bejerano, Dongwook Lee, P. Sinha, and L. Zhang. Approximation algorithms for
scheduling real-time multicast flows in wireless lans. In INFOCOM ’08: The 27th
IEEE Conference on Computer Communications, pages 2092–2100, April 2008.

[36] Oren Ben-zwi and Amir Ronen. The local and global price of anarchy of graphical
games. In SAGT, 2008.

[37] M Bertogna and M Cirinei. Response-time analysis for globally scheduled symmetric
multiprocessor platforms. In RTSS ’07.

[38] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedulability anal-
ysis of edf on multiprocessor platforms. In ECRTS‘05.

[39] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analysis of
global scheduling algorithms on multiprocessor platforms. IEEE TPDS, 20(4):553 –
566, April 2009.

[40] Sangeeta Bhattacharya, Abusayeed Saifullah, Chenyang Lu, and Grui Catalin Roman.
Multi-application deployment in shared sensor networks based on quality of monitor-
ing. In RATS, 2010.

[41] Fang Bian, David Kempe, and Ramesh Govindan. Utility-based sensor selection. In
IPSN, 2006.

[42] T. Blevins, G. McMillan, W. Wojsznis, and M. Brown. Advanced control unleashed:
Plant performance management for optimum benefit. ISA Press, 2002.

[43] Gurashish Brar, Douglas M. Blough, and Paolo Santi. Computationally efficient
scheduling with the physical interference model for throughput improvement in wire-
less mesh networks. In MobiCom ’06: Proceedings of the 12th annual international
conference on Mobile computing and networking, pages 2–13. ACM, 2006.

[44] B.D. Bui, R. Pellizzoni, M. Caccamo, C.F. Cheah, and A. Tzakis. Soft real-time chains
for multi-hop wireless ad-hoc networks. In RTAS ’07.

[45] Marco Caccamo and Lynn Y. Zhang. The Capacity of Implicit EDF in Wireless Sensor
Networks. In ECRTS’03.

[46] Marco Caccamo, Lynn Y. Zhang, Lui Sha, and Giorgio Buttazzo. An Implicit Priori-
tized Access Protocol for Wireless Sensor Networks. In RTSS’02.

[47] T. W. Carley, M. A. Ba, R. Barua, and D. B. Stewart. Contention-free periodic message
scheduler medium access control in wireless sensor/actuator networks. In RTSS ’03.

106

[48] Dick Caro. Wireless Networks for Industrial Automation. ISA Press, 2004.

[49] Amit Chakrabarti, Chandra Chekuri, Anuptam Gupta, and Amit Kumar. Approxima-
tion Algorithms for the Unsplittable Flow Problem. In Approximation Algorithms for
Combinatorial Optimization, volume 2462, pages 51–66. Springer Berlin Heidelberg,
2002.

[50] Jae-Hwan Chang and Leandros Tassiulas. Routing for maximum system lifetime in
wireless ad-hoc networks. In 37th Ann. Allerton Conf. Comm., Control, and Comput-
ing, September 1999.

[51] Jae-Hwan Chang and Leandros Tassiulas. Energy conserving routing in wireless ad-hoc
networks. In INFOCOM, pages 22–31 vol.1, 2000.

[52] Jae-Hwan Chang and Leandros Tassiulas. Maximum lifetime routing in wireless sensor
networks. IEEE/ACM Trans. Netw., 12(4):609–619, 2004.

[53] D Chen, M Nixon, and A Mok. WirelessHARTTM Real-Time Mesh Network for
Industrial Automation. Springer, 2010.

[54] Feng Chen, T Talanis, R German, and F Dressler. Real-time enabled ieee 802.15.4
sensor networks in industrial automation. In SIES ’09: IEEE International Symposium
on Industrial Embedded Systems, pages 136–139, Jul 2009.

[55] Lijun Chen, Steven H. Low, and John C. Doyle. Joint congestion control and media
access control design for ad hoc wireless networks. In INFOCOM ’05: Proceedings of
the 24th IEEE Conference on Computer Communications, pages 2212–2222, 2005.

[56] Wei Cheng, Xiuzhen Cheng, Taieb Znati, Xicheng Lu, and Zexin Lu. The complexity
of channel scheduling in multi-radio multi-channel wireless networks. In INFOCOM
’09: The 28th IEEE Conference on Computer Communications, pages 1512–1520, Apr
2009.

[57] Krishna Kant Chintalapudi. i-MAC - a MAC that learns. In IPSN ’10.

[58] O. Chipara, Z. He, Guoliang Xing, Qin Chen, Xiaorui Wang, Chenyang Lu,
J. Stankovic, and T. Abdelzaher. Real-time Power-Aware Routing in Sensor Networks.
In 14th IEEE International Workshop on Quality of Service (IWQoS’06), pages 83–92,
June 2006.

[59] Octav Chipara, Chenyang Lu, and Gruia-Catalin Roman. Real-time query scheduling
for wireless sensor networks. In RTSS ’07.

[60] Octav Chipara, Chenyang Lu, and John Stankovic. Dynamic conflict-free query
scheduling for wireless sensor networks. In IEEE International Conference on Net-
work Protocols(ICNP’06), pages 321–331, 2006.

107

[61] Octav Chipara, Chengjie Wu, Chenyang Lu, and William Griswold. Interference-Aware
Real-Time Flow Scheduling for Wireless Sensor Networks. In ECRTS’11.

[62] H. Choi, J. Wang, and E.A. Hughes. Scheduling on sensor hybrid network. In ICCCN
’05: Proceedings of the 14th International Conference on Computer Communications
and Networks, pages 503–508, Oct. 2005.

[63] Citysense. http://www.citysense.net/.

[64] R. Cogill and H. Hindi. Optimal routing and scheduling in flexible manufacturing
systems using integer programming. In 46th IEEE Conference on Decision and Control,
pages 4095–4102, Dec. 2007.

[65] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. In-
troduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[66] Crossbow Technology. TelosB mote platform. http://www.xbow.com/Products/

Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf.

[67] C.M. De Dominicis, P. Ferrari, A. Flammini, E. Sisinni, M. Bertocco, G. Giorgi, C. Nar-
duzzi, and F. Tramarin. Investigating WirelessHART coexistence issues through a
specifically designed simulator. In I2MTC ’09: International Instrumentation and
Measurement Technology Conference, Singapore, May 2009.

[68] Sheetalkumar Doshi, Shweta Bhandare, and Timothy X Brown. An on-demand mini-
mum energy routing protocol for a wireless ad hoc network. SIGMOBILE Mob. Com-
put. Commun. Rev., 6(3):50–66, 2002.

[69] Marco F. Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks.
Journal of Parallel and Distributed Computing, 64(7):826–838, Jul. 2004.

[70] Enrique J. Duarte-melo and Mingyan Liu. Data-gathering wireless sensor networks:
Organization and capacity. Computer Networks, 43:519–537, 2003.

[71] Jack Edmonds and Richard M. Karp. Theoretical Improvements in Algorithmic Effi-
ciency for Network Flow Problems. Journal of the ACM, 1972.

[72] Sinem Coleri Ergen and Pravin Varaiya. TDMA scheduling algorithms for wireless
sensor networks. Wireless Networks, May 2009.

[73] Tullio Facchinetti, Luis Almeida, Giorgio C. Buttazzo, and Carlo Marchini. Real-time
resource reservation protocol for wireless mobile ad hoc networks. In RTSS ’04.

[74] Emad Felemban, Chang-Gun Lee, and Eylem Ekici. MMSPEED: Multipath Multi-
SPEED Protocol for QoS Guarantee of Reliability and Timeliness in Wireless Sensor
Networks. IEEE Transactions on Mobile Computing, 5(6):738–754, 2006.

108

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf

[75] P. Ferrari, A. Flammini, D. Marioli, S. Rinaldi, E. Sisinni, and A. Taroni. An innova-
tive distributed instrument for WirelessHART testing. In I2MTC ’09: International
Instrumentation and Measurement Technology Conference, Singapore, May 2009.

[76] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomor-
phism problem. Theoretical Computer Science, 10(2):111 – 121, 1980.

[77] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL A Modeling Language
for Mathematical Programming. Duxbury Press/Brooks/Cole Publishing Company,
2003.

[78] G. Franchino and G. Buttazzo. WBuST: A real-time energy-aware MAC layer protocol
for wireless embedded systems. In ETFA’12.

[79] Alvin Fu, Eytan Modiano, and John N. Tsitsiklis. Optimal energy allocation for delay-
constrained data transmission over a time-varying channel. In INFOCOM, 2003.

[80] Yong Fu, Mo Sha, Chengjie Wu, Andrew Kutta, Chenyang Lu, Humberto Gonzalez,
Anna Leavey, Weining Wang, Bill Drake, Yixin Chen, and Pratim Biswas. Thermal
Modeling for a HVAC Controlled Real-life Auditorium. In International Conference
on Distributed Computing Systems (ICDCS14), July 2014.

[81] Shashidhar Gandham, Milind Dawande, and Ravi Prakash. Link scheduling in sensor
networks: distributed edge coloring revisited. In INFOCOM, 2005.

[82] Shashidhar Gandham, Ying Zhang, and Qingfeng Huang. Distributed minimal time
convergecast scheduling in wireless sensor networks. In ICDCS ’06: Proceedings of the
26th IEEE International Conference on Distributed Computing Systems, pages 50–50,
2006.

[83] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[84] D. Gay, P. Levis, R. V. Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
Language: A Holistic Approach to Network Embedded Systems. In ACM PLDI, 2003.

[85] Amitabha Ghosh, Ozlem Durmaz Incel, Anil Kumar, and Bhaskar Krishnamachari.
Multi-channel scheduling algorithms for fast aggregated convergecast in sensor net-
works. In MASS ’09: Proceedings of the 6th IEEE International Conference on Mobile
Ad hoc Sensor Systems, 2009.

[86] Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek, Marcos Vieira, Ramesh Govin-
dan, Ben Greenstein, August Joki, Deborah Estrin, and Eddie Kohler. The tenet
architecture for tiered sensor networks. In SenSys ’06: Proceedings of the 4th interna-
tional conference on Embedded networked sensor systems, pages 153–166, New York,
NY, USA, 2006. ACM.

109

[87] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of periodic
task systems on multiprocessors. Real Time Systems, 25(2-3):187 – 205, 2003.

[88] Yu Gu, Tian He, Mingen Lin, and Jinhui Xu. Spatiotemporal delay control for low-
duty-cycle sensor networks. In RTSS ’09.

[89] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds for fixed
priority multiprocessor scheduling. In RTSS ’09.

[90] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor placements
in gaussian processes. In ICML, 2005.

[91] B. Hajek and G. Sasaki. Link scheduling in polynomial time. IEEE Transactions on
Information Theory, 34(5):910–917, Sep 1988.

[92] Sohail Hameed and Nitin H. Vaidya. Log-time algorithms for scheduling single and
multiple channel data broadcast. In MobiCom ’97: Proceedings of the 3rd annual
ACM/IEEE international conference on Mobile computing and networking, pages 90–
99, 1997.

[93] Song Han, Jianping Song, Xiuming Zhu, Aloysius K. Mok, Deji Chen, Mark Nixon,
Wally Pratt, and Veena Gondhalekar. Wi-HTest: Compliance test suite for diagnosing
devices in real-time WirelessHART network. In RTAS ’09: Proceedings of the 15th
IEEE Real-Time and Embedded Technology and Applications Symposium, pages 327–
336, 2009.

[94] Song Han, Xiuming Zhu, Aloysius K. Mok, Deji Chen, and Mark Nixon. Reliable and
Real-time Communication in Industrial Wireless Mesh Networks. In RTAS’11.

[95] M G Harbour and J.C. Palencia. Response time analysis for tasks scheduled under edf
within fixed priorities. In RTSS ’03.

[96] David A. Hayes, Michael Rumsewicz, and Lachlan L. H. Andrew. Quality of ser-
vice driven packet scheduling disciplines for real-time applications: Looking beyond
fairness. pages 405–412, 1999.

[97] Tian He, Brian M. Blum, Qing Cao, John A. Stankovic, Sang H. Son, and Tarek F.
Abdelzaher. Robust and timely communication over highly dynamic sensor networks.
Real-Time Systems, 37(3), 2007.

[98] Tian He, John A. Stankovic, Chenyang Lu, and Tarek Abdelzaher. SPEED: A Stateless
Protocol for Real-Time Communication in Sensor Networks. In ICDCS ’03.

[99] F. Hu, X. Cao, and C. May. Optimized scheduling for data aggregation in wireless
sensor networks. In ITCC ’05: International Conference on Information Technology:
Coding and Computing, volume 2, pages 557–561, April 2005.

110

[100] S.C.-H. Huang, Peng-Jun Wan, Xiaohua Jia, Hongwei Du, and Weiping Shang.
Minimum-latency broadcast scheduling in wireless ad hoc networks. In INFOCOM
’07: 26th IEEE International Conference on Computer Communications, pages 733–
739, 2007.

[101] O. Durmaz Incel, P.G. Jansen, and S.J. Mullender. MC-LMAC: A multi-channel MAC
protocol for wireless sensor networks. Technical Report TR-CTIT-08-61, Centre for
Telematics and Information Technology, University of Twente, 2008. http://doc.

utwente.nl/65085.

[102] O.D. Incel and B. Krishnamachari. Enhancing the data collection rate of tree-based
aggregation in wireless sensor networks. In SECON ’08: 5th IEEE Conference on
Sensor, Mesh and Ad Hoc Communications and Networks, pages 569–577, Jun 2008.

[103] Ozlem Durmaz Incel, Amitabha Ghosh, Bhaskar Krishnamachari, and Krishna Kant
Chintalapudi. Multi-channel scheduling for fast convergecast in wireless sensor net-
works. Technical Report CENG-2008-9, University of Southern California, 2009.
http://anrg.usc.edu/www/publications/papers/CENG-2008-9_TechReport.pdf.

[104] Praveen Jayachandran and Matthew Andrews. Minimizing End-to-End Delay in Wire-
less Networks Using a Coordinated EDF Schedule. In INFOCOM’10.

[105] Z Jindong, L Zhenjun, and Z Yaopei. ELHFR: a graph routing in industrial wireless
mesh network. In Proceedings of the 2009 IEEE International Conference on Informa-
tion and Automation, Zhuhai/Macau, China, Jun 2009.

[106] Ramesh Johari and John N. Tsitsiklis. Efficiency loss in a network resource allocation
game. Journal Mathematics of Operations Research, 29(3):407–435, 2004.

[107] Petr Jurćık, Ricardo Severino, Anis Koubâa, Mário Alves, and Eduardo Tovar. Real-
time communications over cluster-tree sensor networks with mobile sink behaviour. In
RTCSA ’08.

[108] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Efficient algorithms for maximum lifetime
data gathering and aggregation in wireless sensor networks. Computer Networks, 42:697
–716, 2003.

[109] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly. Distributed multi-hop
scheduling and medium access with delay and throughput constraints. In MobiCom
’01.

[110] Kyriakos Karenos and Vana Kalogeraki. Real-time traffic management in sensor net-
works. In RTSS ’06.

111

http://doc.utwente.nl/65085
http://doc.utwente.nl/65085
http://anrg.usc.edu/www/publications/papers/CENG-2008-9_TechReport.pdf

[111] Kyriakos Karenos, Vana Kalogeraki, and Srikanth V. Krishnamurthy. A rate control
framework for supporting multiple classes of traffic in sensor networks. In RTSS ’05.

[112] N. Karmarkar. A new polynomial-time algorithm for linear programming. In STOC’84.

[113] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer,
2004.

[114] A.N. Kim, F. Hekland, S. Petersen, and P. Doyle. When HART goes wireless: Un-
derstanding and implementing the WirelessHART standard. In ETFA ’08: IEEE
International Conference on Emerging Technologies and Factory Automation, pages
899–907, Sep 2008.

[115] Youngmin Kim, Hyojeong Shin, and Hojung Cha. Y-MAC: An energy-efficient multi-
channel MAC protocol for dense wireless sensor networks. In IPSN ’08: Proceedings of
the 7th international conference on Information processing in sensor networks, pages
53–63, 2008.

[116] K. Klues, G. Hackmann, O. Chipara, and C. Lu. A component-based architecture for
power-efficient media access control in wireless sensor networks. In IPSN, 2007.

[117] H.-J. Korber, H. Wattar, and G. Scholl. Modular wireless real-time sensor/actuator
network for factory automation applications. IEEE Transactions on Industrial Infor-
matics, 3(2):111–119, May 2007.

[118] Anis Koubaa, M Alves, and Eduardo Tovar. i-GAME: An implicit GTS allocation
mechanism in ieee 802.15.4 for time-sensitive wireless sensor networks. In ECRTS ’06.

[119] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos. Efficient sensor
placement optimization for securing large water distribution networks. Journal of
Water Resources Planning and Management, 134(6):516–526, 2008.

[120] A. Krause, B. McMahan, C. Guestrin, and A. Gupta. Robust submodular observation
selection. JMLR, 9:2761–2801, Dec 2008.

[121] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet Chhabra, Mick
Flanigan, Nandakishore Kushalnagar, Lama Nachman, and Mark Yarvis. Design and
deployment of industrial sensor networks: experiences from a semiconductor plant
and the north sea. In SenSys ’05: Proceedings of the 3rd international conference on
Embedded networked sensor systems, pages 64–75. ACM, 2005.

[122] Ariel Kulik, H. Shachnai, and Tami Tamir. Maximizing submodular set functions
subject to multiple linear constraints. In SODA, 2009.

112

[123] Nai-Luen Lai, Chung-Ta King, and Chun-Han Lin. On maximizing the through-
put of convergecast in wireless sensor networks. Lecture Notes in Computer Science,
5036:396–408, 2008.

[124] H. Lee, A. Cerpa, and P. Levis. Improving wireless simulation through noise modeling.
In IPSN, 2007.

[125] Huang Lee and A. Keshavarzian. Towards energy-optimal and reliable data collection
via collision-free scheduling in wireless sensor networks. In INFOCOM ’08: 27th IEEE
Conference on Computer Communications, pages 2029–2037, Apr 2008.

[126] S. Lee, B. Bhattacharjee, and S. Banerjee. Effcient geographic routing in multihop
wireless networks. In MobiHoc, 2005.

[127] Tomas Lennvall, Stefan Svensson, and Fredrik Hekland. A comparison of Wire-
lessHART and ZigBee for industrial applications. In WFCS ’08: Proc. of the 7th
IEEE International Workshop on Factory Communication Systems, 2008.

[128] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and scalable simulation
of entire tinyos applications. In Sensys, 2003.

[129] B. Li, Z. Sun, K. Mechitov, C. Lu, S. Dyke, G. Agha, and B. Spencer. Realistic
case studies of wireless structural control. In ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS’13), April 2013.

[130] Bo Li, Lanshun Nie, Chengjie Wu, and Humberto Gonzalez Chenyang Lu. Incor-
porating Emergency Alarms in Reliable Wireless Process Control. In ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS’15), April 2015.

[131] Fei Li. Competitive scheduling of packets with hard deadlines in a finite capacity
queue. In INFOCOM, 2009.

[132] Huan Li, P. Shenoy, and K. Ramamritham. Scheduling communication in real-time
sensor applications. In RTAS’04.

[133] Huan Li, P. Shenoy, and K. Ramamritham. Scheduling Messages with Deadlines in
Multi-Hop Real-Time Sensor Networks. In RTAS’05.

[134] Q. Li and R. Negi. Scheduling in multi-hop wireless networks with priorities. CoRR,
abs/0901.2922, 2009.

[135] Qun Li, Javed Aslam, and Daniela Rus. Online power-aware routing in wireless ad-hoc
networks. In MobiCom, 2001.

113

[136] Xiaojun Lin and S. Rasool. A distributed joint channel-assignment, scheduling and
routing algorithm for multi-channel ad-hoc wireless networks. In INFOCOM 2007.
26th IEEE International Conference on Computer Communications, pages 1118–1126,
May 2007.

[137] Ke Liu, Nael Abu-Ghazaleh, and Kyoung-Don Kang. JiTS: Just-in-time scheduling
for real-time sensor data dissemination. In PERCOM ’06.

[138] Chenyang Lu, Brian M. Blum, Tarek F. Abdelzaher, John A. Stankovic, and Tian He.
RAP: A real-time communication architecture for large-scale wireless sensor networks.
In RTAS ’02.

[139] Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. A memory access model
for highly-threaded many-core architectures. Future Generation Computer Systems,
30:202–215, January 2014.

[140] Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. Analysis of classic algorithms on
GPUs. In Proc. of the 12th ACM/IEEE Int’l Conf. on High Performance Computing
and Simulation (HPCS), 2014.

[141] Lin Ma and Roger D. Chamberlain. A performance model for memory bandwidth
constrained applications on graphics engines. In Proc. of Int’l Conf. on Application-
specific Systems, Architectures and Processors, 2012.

[142] Rahul Mangharam, Anthony Rowe, Raj Rajkumar, and Ryohei Suzuki. Voice over
sensor networks. In RTSS ’06.

[143] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The Flooding Time
Synchronization Protocol. In SenSys’04.

[144] T. Melodia, D. Pompili, and I.F. Akyildiz. Optimal local topology knowledge for energy
efficient geographical routing in sensor networks. In Proc. IEEE INFOCOM’04, 2004.

[145] K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96 – 115, 1927.

[146] L. Montestruque and M. Lemmon. CSOnet: A metropolitan scale wireless sensor-
actuator network. In MODUS ’08: International Workshop on Mobile Device and
Urban Sensing, 2008.

[147] Thomas Moscibroda. The worst-case capacity of wireless sensor networks. In IPSN ’07:
Proceedings of the 6th international conference on Information processing in sensor
networks, pages 1–10. ACM, 2007.

[148] Joseph Naor, Adi Rosén, and Gabriel Scalosub. Online time-constrained scheduling in
linear networks. In INFOCOM, pages 855–865, 2005.

114

[149] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54(1):48 –61, Jan. 2009.

[150] S. M. Shahriar Nirjon, John A Stankovic, and Kamin Whitehouse. Iaa: Interference
aware anticipatory algorithm for scheduling and routing periodic real-time streams in
wireless sensor networks. In Seventh International Conference on Networked Sensing
Systems (INSS), 2010.

[151] R.S. Oliver and G. Fohler. Probabilistic Estimation of End-to-End Path Latency in
Wireless Sensor Networks. In MASS’09.

[152] Avi Ostfeld and et al. The Battle of the Water Sensor Networks (BWSN): A Design
Challenge for Engineers and Algorithms. Journal of Water Resources Planning and
Management, 134(6):556–568, 2008.

[153] Meng-Shiuan Pan and Yu-Chee Tseng. Quick convergecast in ZigBee beacon-enabled
tree-based wireless sensor networks. Comput. Commun., 31(5):999–1011, 2008.

[154] W. Pattara-Atikom, P. Krishnamurthy, and S. Banerjee. Distributed mechanisms for
quality of service in wireless lans. IEEE Wireless Communications, 2003.

[155] N. Pereira, B. Andersson, E. Tovar, and A. Rowe. Static-priority scheduling over
wireless networks with multiple broadcast domains. In RTSS ’07.

[156] Joonas Pesonen, Haibo Zhang, Pablo Soldati, and Mikael Johansson. Methodology
and tools for controller-networking co-design in WirelessHART. In 14th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation (EFTA),
Mallorca, Spain, Sep 2009.

[157] C.G. Prohazka. Decoupling link scheduling constraints in multi-hop packet radio net-
works. IEEE Transactions on Computers, 38(3):455–458, Mar 1989.

[158] Michael Rabbat and Robert Nowak. Distributed optimization in sensor networks. In
IPSN, 2004.

[159] S. Ramanathan. A unified framework and algorithm for (T/F/C)DMA channel assign-
ment in wireless networks. In INFOCOM ’97: 16th Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 2, pages 900–907, Apr 1997.

[160] S. Ramanathan and E. L. Lloyd. On the complexity of link scheduling in multi-hop
radio networks. In Proceedings of the 26th Conference on Information Science and
Systems, Mar 1992.

[161] Subramanian Ramanathan and Errol L. Lloyd. Scheduling algorithms for multihop
radio networks. IEEE/ACM Trans. Netw., 1(2):166–177, 1993.

115

[162] R. Ramaswami and K.K. Parhi. Distributed scheduling of broadcasts in a radio net-
work. In INFOCOM ’89: Proceedings of the Eighth Annual Joint Conference of the
IEEE Computer and Communications Societies. Technology: Emerging or Converging,
pages 497–504, Apr 1989.

[163] Lei Rao, Xue Liu, Jian-Jia Chen, and Wenyu Liu. Joint Optimization of System Life-
time and Network Performance for Real-Time Wireless Sensor Networks. In QSHINE,
pages 317–333, 2009.

[164] Injong Rhee, Ajit Warrier, Jeongki Min, and Lisong Xu. DRAND: distributed ran-
domized TDMA scheduling for wireless ad-hoc networks. In MobiHoc ’06: Proceedings
of the 7th ACM international symposium on Mobile ad hoc networking and computing,
pages 190–201. ACM, 2006.

[165] A. Rowe, R. Mangharam, and R. Rajkumar. RT-Link: A time-synchronized link
protocol for energy- constrained multi-hop wireless networks. In SECON ’06.

[166] Abusayeed Saifullah, Paras Tiwari, Mo Sha, Dolvara Gunatilaka, Bo Li, Chengjie Wu,
Chenyang Lu, and Yixin Chen. Delay Analysis for Reliable and Real-Time Wireless
Sensor-Actuator Networks. Technical Report WUCSE-2014-55, Washington University
in St. Louis, 2014.

[167] Abusayeed Saifullah, Chengjie Wu, Paras Tiwari, You Xu, Yong Fu, Chenyang Lu, and
Yixin Chen. Near Optimal Rate Selection for Wireless Control Systems. In RTAS’12.

[168] Abusayeed Saifullah, Chengjie Wu, Paras Babu Tiwari, You Xu, Yong Fu, Chenyang
Lu, and Yixin Chen. Near optimal rate selection for wireless control systems. ACM
Transactions on Embedded Computing Systems (TECS’14), April 2014.

[169] Abusayeed Saifullah, You Xu, Yixin Chen, and Chenyang Lu. End-to-End Com-
munication Delay Analysis in Industrial Wireless Networks. IEEE Transactions on
Computers, 99, May 2014.

[170] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. End-to-end delay anal-
ysis for fixed priority scheduling in WirelessHART networks. In RTAS’11.

[171] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Priority Assignment for
Real-time Flows in WirelessHART networks. In ECRTS’11.

[172] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Real-Time Scheduling
for WirelessHART Networks. In RTSS’10.

[173] Jens B. Schmitt and Utz Roedig. Sensor network calculus - A framework for worst
case analysis. In DCOSS ’05.

116

[174] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-efficient forwarding
strategies for geographic routing in lossy wireless sensor networks. In SenSys, 2004.

[175] M.M. Sekhar and K.N. Sivarajan. Routing and scheduling in packet radio networks. In
IEEE International Conference on Personal Wireless Communications, pages 335–339,
2000.

[176] Mo Sha, Dolvara Gunatilaka, Chengjie Wu, and Chenyang Lu. Implementation and
Experimentation of Industrial Wireless Sensor-Actuator Network Protocols. In The
12th European Conference on Wireless Sensor Networks (EWSN’15), February 2015.

[177] Weiping Shang, Pengjun Wan, and Xiaodong Hu. Approximation algorithm for min-
imal convergecast time problem in wireless sensor networks. Wireless Networks, Sep
2009.

[178] Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing in mobile ad
hoc networks. In MobiCom, 1998.

[179] Pablo Soldati and Mikael Johansson. A mathematical programming approach to
deadline-constrained transmission scheduling in WirelessHART networks. In Swedish
National Control Conference ’08.

[180] Pablo Soldati, Haibo Zhang, and Mikael Johansson. Deadline-constrained transmission
scheduling and data evacuation in WirelessHART networks. In ECC ’09.

[181] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, and M. Nixon. A study of process
data transmission scheduling in wireless mesh networks. In ISA EXPO Technical
Conference, October 2007.

[182] J. Song, A. K. Mok, D. Chen, and M. Nixon. Challenges of wireless control in process
industry. In Workshop on Research Directions for Security and Networking in Critical
Real-Time and Embedded Systems,, 2006.

[183] J. Song, A. K. Mok, D. Chen, M. Nixon, T. Blevins, and W.Wojsznis. Improving pid
control with unreliable communications. ISA EXPO Technical Conference, 2006.

[184] Jianping Song, Song Han, Aloysius K. Mok, Deji Chen, Mike Lucas, and Mark Nixon.
WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Con-
trol. In RTAS ’08.

[185] Marco Spuri. Holistic Analysis for Deadline Scheduled Real-Time Distributed Systems.
Technical report, 1996.

[186] J.A. Stankovic, T.E. Abdelzaher, Chenyang Lu, Lui Sha, and J.C. Hou. Real-time
communication and coordination in embedded sensor networks. Proceedings of the
IEEE, 91(7):1002–1022, July 2003.

117

[187] John A. Stankovic, Krithi Ramamritham, and Marco Spuri. Deadline Scheduling for
Real-Time Systems: EDF and Related Algorithms. Kluwer Academic Publishers, 1998.

[188] I. Stojmenovic. Localized network layer protocols in wireless sensor networks based on
optimizing cost over progress ratio. IEEE Network, 20(1):21–27, 2006.

[189] Ivan Stojmenovic and Xu Lin. Power-aware localized routing in wireless networks.
IEEE Trans. Parallel Distrib. Syst., 12(11):1122–1133, 2001.

[190] Sundar Subramanian, Sanjay Shakkottai, and Ari Arapostathis. Broadcasting in sensor
networks: The role of local information. In INFOCOM, 2006.

[191] L. Tassiulas and A. Ephremides. Jointly optimal routing and scheduling in packet ratio
networks. IEEE Transactions on Information Theory, 38(1):165–168, Jan 1992.

[192] E. Toscano and L. Lo Bello. Multichannel Superframe Scheduling for IEEE 802.15.4
Industrial Wireless Sensor Networks. IEEE Transactions on Industrial Informatics,
2012.

[193] Hua-Wen Tsai and Tzung-Shi Chen. Minimal time and conflict-free schedule for con-
vergecast in wireless sensor networks. In ICC ’08: IEEE International Conference on
Communications, pages 2808–2812, May 2008.

[194] Yu-Chee Tseng and Meng-Shiuan Pan. Quick convergecast in Zigbee/IEEE 802.15.4
tree-based wireless sensor networks. In MobiWac ’06: Proceedings of the 4th ACM in-
ternational workshop on Mobility management and wireless access, pages 60–66, 2006.

[195] Adrian Vetta. Nash equilibria in competitive societies, with applications to facility
location, traffic routing and auctions. In FOCS, 2002.

[196] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1):25 – 57, 2006.

[197] Xiaodong Wang, Xiaorui Wang, Xing Fu, Guoliang Xing, and Nitish Jha. Flow-based
real-time communication in multi-channel wireless sensor networks. In EWSN ’09.

[198] Andreas Willig. Recent and emerging topics in wireless industrial communications: A
selection. IEEE Trans. on Industrial Informatics, 2007.

[199] Wirelesshart. http://www.hartcomm.org/.

[200] Chengjie Wu, Mo Sha, Dolvara Gunatilaka, Abusayeed Saifullah, C. Lu, and Y. Chen.
Analysis of EDF Scheduling for Wireless Sensor-Actuator Networks. In IWQoS’14.

118

[201] Chengjie Wu, You Xu, Yixin Chen, and Chenyang Lu. Submodular Game for Dis-
tributed Application Allocation in Shared Sensor Networks. In INFOCOM, 2012.

[202] Chengjie Wu, Ruixi Yuan, and Hongchao Zhou. A novel load balanced and lifetime
maximization routing protocol in wireless sensor networks. In VTC2008-spring, 2008.

[203] Jie Wu, Shuhui Yang, and M. Cardei. On maintaining sensor-actor connectivity in
wireless sensor and actor networks. In INFOCOM ’08: The 27th IEEE Conference on
Computer Communications, pages 286–290, April 2008.

[204] S. Wu and K.S. Candan. Gper: Geographic power efficient routing in sensor networks.
In ICNP, 2004.

[205] Yafeng Wu, J.A. Stankovic, Tian He, and Shan Lin. Realistic and efficient multi-
channel communications in wireless sensor networks. In INFOCOM ’08: the 27th
Conference on Computer Communications. IEEE, pages 1193–1201, Apr 2008.

[206] Lijie Xu, Jiannong Cao, Shan Lin, Haipeng Dai, Xiaobing Wu, and Guihai Chen.
Energy-efficient Broadcast Scheduling with Minimum Latency for Low-Duty-Cycle
Wireless Sensor Networks. In MASS’13.

[207] Yinsheng Xu, Fengyuan Ren, Tao He, Chuang Lin, Canfeng Chen, and Sajal K. Das.
Real-time routing in wireless sensor networks: A potential field approach. ACM Trans-
actions on Sensor Networks, 9(3):35:1–35:24, June 2013.

[208] You Xu, Abusayeed Saifullah, Yixin Chen, Chenyang Lu, and S. Bhattacharya. Near
optimal multi-application allocation in shared sensor networks. In MobiHoc, 2010.

[209] Bo Yu, Jianzhong Li, and Yingshu Li. Distributed data aggregation scheduling in
wireless sensor networks. In INFOCOM, 2009.

[210] Hua Yu, Prasant Mohapatra, and Xin Liu. Channel assignment and link scheduling in
multi-radio multi-channel wireless mesh networks. Mob. Netw. Appl., 13(1-2):169–185,
2008.

[211] Haibo Zhang, Fredrik Osterlind, Pablo Soldati, Thiemo Voigt, and Mikael Johansson.
Rapid convergecast on commodity hardware: Performance limits and optimal policies.
In SECON ’10.

[212] Haibo Zhang, Fredrik Osterlind, Pablo Soldati, Thiemo Voigt, and Mikael Johansson.
Time-optimal convergecast with separated packet copying: Scheduling policies and
performance. Technical Report TRITA-EE 2009:050, Automatic Control Lab, Royal
Institute of Technology (KTH), Stockholm, Sweden, May 2009.

119

[213] Haibo Zhang and Hong Shen. Energy-efficient beaconless geographic routing in wireless
sensor networks. Parallel and Distributed Systems, IEEE Transactions on, 21(6):881
–896, June 2010.

[214] Haibo Zhang, Pablo Soldati, and Mikael Johansson. Optimal link scheduling and
channel assignment for convergecast in linear WirelessHART networks. In WiOpt’09.

[215] Haibo Zhang, Pablo Soldati, and Mikael Johanssonn. Efficient link scheduling and
channel hopping for convergecast in WirelessHART networks. Technical Report
TRITA-EE 2009:018, Automatic Control Lab, Royal Institute of Technology (KTH),
Stockholm, Sweden, Jan 2009.

[216] Hongwei Zhang, Anish Arora, Young-ri Choi, and Mohamed G. Gouda. Reliable bursty
convergecast in wireless sensor networks. In MobiHoc ’05: Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking and computing, pages 266–276,
2005.

[217] Ying Zhang, Shashidhar Gandham, and Qingfeng Huang. Distributed minimal time
convergecast scheduling for small or sparse data sources. pages 301–310, 2007.

[218] G. Zhou, C. Huang, T. Yan, T. He, J. A. Stankovic, and T. F. Abdelzaher. MMSN:
Multi-frequency media access control for wireless sensor networks. In INFOCOM ’06:
25th IEEE International Conference on Computer Communications, pages 1–13, Apr
2006.

[219] H. Zhu, M. Li, I. Chlamtac, and B. Prabhakaran. A survey of quality of service in ieee
802.11 networks. IEEE Wireless Communications, 2004.

[220] Qi Zhu, Yang Yang, Eelco Scholte, Marco Di Natale, and Alberto Sangiovanni-
Vincentelli. Optimizing extensibility in hard real-time distributed systems. In RTAS
’09: Proceedings of the 2009 15th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 275–284, 2009.

[221] X Zhu, W Dong, A K. Mok, S Han, J Song, D Chen, and M Nixon. A location-
determination application in WirelessHART. In International Workshop on Real-Time
Computing Systems and Applications, pages 263–270. IEEE Computer Society, 2009.

[222] Marco Zuniga and Bhaskar Krishnamachari. Analyzing the transitional region in low
power wireless links. In SECON, 2004.

120

Vita

Chengjie Wu

Degrees Ph.D Computer Science, December 2014

M.S. Computer Science, August 2013

M.S. Control Science and Engineering, May 2008

B.S. Math and Physics, May 2006

Publications Bo Li, Lanshun Nie, Chengjie Wu, Humberto Gonzalez and Chenyang

Lu (2015). Incorporating Emergency Alarms in Reliable Wireless

Process Control. ACM/IEEE International Conference on Cyber-

Physical Systems (ICCPS’15), April 2015.

Mo Sha, Dolvara Gunatilaka, Chengjie Wu and Chenyang Lu (2015).

Implementation and Experimentation of Industrial Wireless Sensor-

Actuator Network Protocols. European Conference on Wireless Sen-

sor Networks (EWSN’15), February 2015.

Yong Fu, Mo Sha, Chengjie Wu, Andrew Kutta, Chenyang Lu, Hum-

berto Gonzalez, Anna Leavey, Weining Wang, Bill Drake, Yixin

Chen, and Pratim Biswas (2014). Thermal Modeling for a HVAC

Controlled Real-life Auditorium. IEEE International Conference on

Distributed Computing Systems (ICDCS’14), July 2014.

Chengjie Wu, Mo Sha, Dolvara Gunatilaka, Abusayeed Saifullah,

Chenyang Lu, and Yixin Chen (2014). Analysis of EDF Scheduling

for Wireless Sensor-Actuator Networks. ACM/IEEE International

Symposium on Quality of Service (IWQoS’14), May 2014.

Abusayeed Saifullah, Chengjie Wu, Paras Tiwari, You Xu, Yong Fu,

Chenyang Lu and Yixin Chen (2014). Near Optimal Rate Selec-

tion for Wireless Control Systems, ACM Transactions on Embed-

ded Computing Systems, Special Issue on Real-Time and Embedded

Technology and Applications (TECS’14), Volume 13, Issue 4s, pp.

128:1-128:25, April 2014.

121

Abusayeed Saifullah, Chengjie Wu, Paras Tiwari, You Xu, Yong Fu,

Chenyang Lu and Yixin Chen (2012). Near Optimal Rate Selection

for Wireless Control Systems, IEEE Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS’12), April 2012.

Chengjie Wu, You Xu, Yixin Chen and Chenyang Lu (2012). Sub-

modular Game for Distributed Application Allocation in Shared Sen-

sor Networks, IEEE International Conference on Computer Commu-

nications (INFOCOM’12), March 2012.

Octav Chipara, Chengjie Wu, Chenyang Lu and William Griswold

(2011). Interference-Aware Real-Time Flow Scheduling for Wireless

Sensor Networks, Euromicro Conference on Real-Time Systems (ECRTS’11),

July 2011.

December 2014

122

Routing for Wireless Networks, Wu, Ph.D. 2014

	Washington University in St. Louis
	Washington University Open Scholarship
	Winter 12-15-2014

	Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks
	Chengjie Wu
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter Introduction
	Chapter Network Model of Wireless Sensor-Actuator Networks
	Routing Model
	Transmission Scheduling Model

	Chapter Delay Analysis of EDF Scheduling for Wireless Sensor-Actuator Networks
	Introduction
	Related Works
	EDF Scheduling
	Worst-Case End-to-End Delay Analysis
	Terminology
	Conflict and Contention Delays
	Upper Bound of Interferences
	Improved Delay Analysis
	Complexity Analysis

	Evaluation
	Experiments on a WSAN Testbed
	Simulations on Random Topologies
	Comparative Study of Scheduling Policies

	Summary

	Chapter Real-Time Routing for Wireless Sensor-Actuator Networks
	Introduction
	Related Work
	Problem Formulation
	Conflict Delay Analysis
	Real-Time Routing
	Conflict-Aware Routing
	Iterative Conflict-Aware Routing

	Evaluation
	Experiments on a WSAN Testbed
	Simulations

	Summary

	Chapter Energy-Efficient Routing for Wireless Sensor-Actuator Networks
	Introduction
	Related Work
	Energy Consumption Model
	Graph Route Lifetime Maximization Problem
	Lifetime Maximization Graph Routing Algorithms
	Integer Programming
	Linear Programming Relaxation
	Greedy Heuristic

	Evaluation
	Experiments on a WSAN Testbed
	Simulations

	Summary

	Chapter Distributed Application Allocation in Shared Sensor Networks
	Introduction
	Related Works
	Problem Formulation
	QoM Formulation
	Application Allocation Problem Formulation

	Submodular Game
	Submodular Game Formulation
	Submodular Game Algorithm

	Convergence and Approximation Bound
	Submodularity
	Convergence and Pure Nash Equilibrium
	Valid Utility Game and Approximate Nash Equilibrium

	Evaluation
	Summary

	Chapter Conclusion
	References
	Vita

