2,000 research outputs found

    Using K-means Clustering and Similarity Measure to Deal with Missing Rating in Collaborative Filtering Recommendation Systems

    Get PDF
    The Collaborative Filtering recommendation systems have been developed to address the information overload problem and personalize the content to the users for business and organizations. However, the Collaborative Filtering approach has its limitation of data sparsity and online scalability problems which result in low recommendation quality. In this thesis, a novel Collaborative Filtering approach is introduced using clustering and similarity technologies. The proposed method using K-means clustering to partition the entire dataset reduces the time complexity and improves the online scalability as well as the data density. Moreover, the similarity comparison method predicts and fills up the missing value in sparsity dataset to enhance the data density which boosts the recommendation quality. This thesis uses MovieLens dataset to investigate the proposed method, which yields amazing experimental outcome on a large sparsity data set that has a higher quality with lower time complexity than the traditional Collaborative Filtering approaches

    A Recommender System based on Idiotypic Artificial Immune Networks

    Get PDF
    The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen-antibody interaction for matching and idiotypic antibody-antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques

    Neighbor Selection and Weighting in User-Based Collaborative Filtering: A Performance Prediction Approach

    Get PDF
    This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on the Web, http://dx.doi.org/10.1145/2579993User-based collaborative filtering systems suggest interesting items to a user relying on similar-minded people called neighbors. The selection and weighting of these neighbors characterize the different recommendation approaches. While standard strategies perform a neighbor selection based on user similarities, trust-aware recommendation algorithms rely on other aspects indicative of user trust and reliability. In this article we restate the trust-aware recommendation problem, generalizing it in terms of performance prediction techniques, whose goal is to predict the performance of an information retrieval system in response to a particular query. We investigate how to adopt the preceding generalization to define a unified framework where we conduct an objective analysis of the effectiveness (predictive power) of neighbor scoring functions. The proposed framework enables discriminating whether recommendation performance improvements are caused by the used neighbor scoring functions or by the ways these functions are used in the recommendation computation. We evaluated our approach with several state-of-the-art and novel neighbor scoring functions on three publicly available datasets. By empirically comparing four neighbor quality metrics and thirteen performance predictors, we found strong predictive power for some of the predictors with respect to certain metrics. This result was then validated by checking the final performance of recommendation strategies where predictors are used for selecting and/or weighting user neighbors. As a result, we have found that, by measuring the predictive power of neighbor performance predictors, we are able to anticipate which predictors are going to perform better in neighbor-scoring-powered versions of a user-based collaborative filtering algorithm.This research was supported by the Spanish Ministry of Science and Research (TIN2011-28538-C02-01). Part of this work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme, funded by European Comission FP7 grant agreement no. 246016

    A Cluster-indexing CBR Model for Collaborative Filtering Recommendation

    Get PDF

    Music recommender systems. Proof of concept

    Get PDF
    Data overload is a well-known problem due to the availability of big on-line distributed databases. While providing a wealth of information the difficulties to find the sought data and the necessary time spent in the search call for technological solutions. Classical search engines alleviate this problem and at the same time have transformed the way people access to the information they are interested in. On the other hand, Internet also has changed the music consuming habits around the world. It is possible to find almost every recorded song or music piece. Over the last years music streaming platforms like Spotify, Apple Music or Amazon Music have contributed to a substantial change of users’ listening habits and the way music is commercialized and distributed. On-demand music platforms offer their users a huge catalogue so they can do a quick search and listen what they want or build up their personal library. In this context Music Recommender Systems may help users to discover music that match their tastes. Therefore music recommender systems are a powerful tool to make the most of an immense catalogue, impossible to be fully known by a human. This project aims at testing different music recommendation approaches applied to the particular case of users playlists. Several recommender alternatives were designed and evaluated: collaborative filtering systems, content-based systems and hybrid recommender systems that combine both techniques. Two systems are proposed. One system is content-based and uses correlation between tracks characterized by high-level descriptors and the other is an hybrid recommender that first apply a collaborative method to filter the database and then computes the final recommendation using Gaussian Mixture Models. Recommendations were evaluated using objective metrics and human evaluations, obtaining positive results.Ingeniería de Sistemas Audiovisuale

    Hybrid approach to content recommendation

    Get PDF
    Tese de Mestrado Integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201
    • …
    corecore