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Abstract

Memory-based collaborative filtering use past activities of a group of similar users to
recommend future preferences for a target user in the group. Recommender systems based
on this type of technique are prone to errors when there are too few historic interactions (e.g.
rating, likes, transaction-history, visit-frequencies) between users of the system. The sparsity
in users’ historic data render the memory-based algorithm less effective at finding similar
users for the personalisation process.

In contrast, model-based collaborative filtering techniques such as matrix factorisation (MF)
use predictive models. In single-domain recommender systems, one problem prevalent to all
techniques is the cold start problem. A cold start situation happens when there is no historical
information about new users or items that have just been introduced to the system.

Several recommender techniques have used semantic knowledge extracted from additional
user and item information to build profiles that reflect otherwise implicit user preferences.
This semantic representation of the user is then used to find other similar users and address
sparsity and cold-start problems in single domain recommender systems. Recent attempts
to resolve cold-start and sparsity problems are considering cross-domain collaborative
filtering techniques. Cross-domain recommender systems exploit additional user and item
information from domains that are unique but related to the target recommendation domain.
Extending predictive models to include parameters that model the semantic similarity in
user and item information across the domains constitute a genuine approach in cross-domain
recommendation.

The contents of this thesis centre around the use of semantically enhanced cross-domain
recommender systems as a solution to cold start and sparsity problems. The contributions
to cross-domain recommender systems are in three folds. First, we investigate and analyse
the performance of a cross-domain recommender model as we vary the size of intersecting
user/item information from the target and auxiliary domains. Secondly, we proposed a
predictive model that adds semantically related tags as additional parameters to a matrix
factorisation model. Thirdly, we present a model that incorporates category similarity
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into a POI ranking function as contextual information for improving the performance of
multi-category POI recommenders.

In our investigation, we empirically evaluate the proposed models on datasets that are
sourced from different domains, specifically movies, books and several POI categories. On
the one hand, the results show that semantically enriching tags in cross-domain recommender
models are possible without negatively impacting recommendation accuracy. On the other
hand, cross-domain recommender models that are semantically enhanced with additional
latent parameters are effective in cold start scenarios and reduce the effect of sparsity on
recommendation accuracy.
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Chapter 1

Introduction

1.1 Background and Motivation

A fast-paced digital era and constant exposure to numerous information about different items
have made the process of choosing a few preferred ones more challenging for individuals.
Uchyigit et al. (2007) defined Recommender systems as a system that guides the user in
a personalised way through a set of items. Recommender systems perform the vital task
of information filtering and attempt to suggest only items (movie, music, books, news,
location) that the users may find interesting. In describing a generic information filtering
model for recommender approaches, Oard (1997) highlighted three broad subtasks for its
implementation. The first task is collecting different sources of information. The second task
is filtering useful information from the sources and finally displaying the filtered information
to users.

An extensive taxonomy of sources (Figure 1.1) was put together by Felfernig and Burke
(2008) to show the spectrum of knowledge sources available for different recommender
approaches. The taxonomy shows that there are three broad sources where the knowledge
needed to generate recommendations can be derived. One source is from knowledge about
the users of the system (i.e. Social knowledge). A second source is from knowledge about the
specific user who is to receive recommendations. A third source broadly grouped as Content
is from data about the items. Information from these knowledge sources has to be sufficient
in quantity and quality for a recommendation technique to be successful at mimicking the
natural choices of users. Recommendations generated for users by the system tend to be less
accurate when information from these sources are scarce or unavailable.
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Fig. 1.1 Taxonomy of knowledge sources in recommendation (Felfernig and Burke (2008)).

The following are some of the problems and critical issues that arise as a result of insufficient
knowledge sources. The effect of such shortfall in knowledge sources on the performance of
the recommender system is highlighted in the corresponding recommender systems literature:

• The cold-start problem occurs when it is not possible to make recommendations due to
an initial absence of individual or content knowledge sources. This problem occurs
when a new user or item have just been introduced to the system. As reported in
Adomavicius and Tuzhilin (2005) it becomes a challenge to find similar users/items
because there is not enough information for comparison.

• The Sparsity problem occurs when the number of user feedback is small relative to the
number of items. The general lack of user desire to give feedback creates a situation
where there are far more items than user feedback. The resulting sparseness according
to Ricci et al. (2011) makes finding users with similar interests in a conventional
recommendation system challenging and collaboration difficult.

• Gray sheep are users whose opinions and interest are neither similar nor dissimilar
with any group of users in the system. Claypool et al. (1999) pointed out that they
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rarely, if ever, receive accurate collaborative predictions, even after resolving the initial
cold-start problem.

These problems have prompted researchers to raise questions on how knowledge sources
within the domain of a recommender system can be extensively exploited to improve
recommendation. More recently, techniques that use cross-domain recommender approaches
have been emerging with similar research issues that merit investigation. Cross-domain
recommendation approaches such as those proposed by Shi et al. (2011), Enrich et al. (2013)
and Fernández-Tobías and Cantador (2014) can reuse data extracted from knowledge sources
in an auxiliary domain for recommendation in a different one.

The rise in the growth and popularity of electronic commerce stores (e.g. Amazon, eBay and
Alibaba) that offer the sale of items with diversity across numerous domains underscores the
importance of inter/cross-domain recommendation systems. Recommendation technologies
are progressively attracting the interest of new application domains as a valuable solution to
increase system autonomy and efficiency (Felfernig et al. (2017)). The emerging Internet
of Things (IoT) and IoT gateways cover such diverse domains. Gartner Inc., a leading
information technology research and advisory company revealed in Heather (2017) that six
billion connected things would be requesting support by 2018. According to Yao et al. (2016)
the rich interactions and relations between users and things call for effective and efficient
recommendation approaches to better meet users’ interests and needs. The recommendation
technique for things of interest can benefit from a cross-domain recommender approach that
considers heterogeneous information sources.

Also, the recent surge in use of artificial intelligence in autonomous systems (e.g. driverless
cars and unmanned aerial vehicles) has led to national responses from governments. A
case in point is the United Kingdom’s 2017 Robotics and Autonomous Systems Strategy
in which the Government committed to investing an extra £2 billion a year in research and
development (Robotics and Autonomous Systems 2017). At the centre of the autonomous
systems are machine learning and natural language processing techniques that can learn
parameters in an auxiliary domain and reuse the parameters in a target domain. Cross-domain
recommendation approaches are a type of such transfer learning technique where models are
learned in set-ups with different knowledge sources. According to Enrich et al. (2013) and
Fernández-Tobías and Cantador (2014), they can address the cold-start and sparsity problems
by utilising hidden features from the auxiliary domains.
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1.2 Cross-domain Recommendation

The overwhelming number of choices that users have in selecting different brands of items
have led to more competition among businesses. According to Fernández-Tobías et al.
(2012), cross-selling approaches have been mainly proposed to provide recommendations
in e-commerce sites, where they can increase customer satisfaction/loyalty and businesses
profitability. A relationship between the domains involved in the process is generally required
in order for the cross-selling system to perform the recommendations effectively. For example,
a user who just purchased a movie DVD in a video and music sale/streaming site may be
offered the music DVD with the soundtrack of the movie, even if the user did not show any
preference for the music item. Cross-selling recommendation can be viewed as a category of
cross-domain recommendation, where the type of item suggested to users is different from
the type where they originally expressed their preference. According to Fernández-Tobías
et al. (2012), cross-selling is one of the tasks performed by systems that provide cross-domain
recommendations.

Cross-domain recommendation is a new field in recommender systems, and researchers
are exploiting its techniques to improve on the challenges that prevail in conventional
Collaborative Filtering systems. Enrich et al. (2013) generalised the primary objective of a
cross-domain recommendation system as the search and discovery of useful relationships
among items or users in different domains. For example, a popular movie rating website can
take the role of a dense auxiliary domain; while a newly launched book reviewing/rating
website can be viewed as having user/item data sparsity problem. In this particular case,
the knowledge sources in the auxiliary domain (Movie) are likely to be adaptable for
recommendation in the target domain (book). This is because movie genres and book
categories can share similar item attributes, e.g. horror films and horror novel. An important
question in cross-domain recommendation is how to ensure that target and auxiliary domains
are adaptable for knowledge transfer. According to Fernández-Tobías and Cantador (2014),
a major issue in cross-domain recommender systems is how to establish a "bridge" between
domains in order to support the aggregation or transfer of knowledge from an auxiliary
domain to the target recommendation domain.

The last decade has seen a rise in social tagging systems, where users can label contents
that they and other users have utilised (e.g. watching a movie, reading a book or consuming
an item) with freely chosen words known as tags. The collection of tags in the tagging
systems creates a base of unstructured information that encodes the preferences of the users.
As additional user information and metadata, social tags can be exploited for collaborative



1.3 Problem Identification 5

filtering. Although social tags are unstructured free-form text, they can expose latent features
which may be common across different domains. As a result, social tags have been considered
by Shi et al. (2011), Enrich et al. (2013) and Fernández-Tobías and Cantador (2014) as
additional latent factors in cross-domain recommender approaches based on MF. In this
thesis, we build on these approaches by introducing latent features for an MF-model based
on social tags that have been grouped together according to their semantic relatedness.

1.3 Problem Identification

Predicting user ratings is generally achieved in collaborative filtering methods by first finding
similarity between a target user’s profile and profiles of other users in the system. The user
profiles typically contain the rating history of the corresponding user. A common approach is
to consider the profiles as vectors of an n-dimensional space and compute their similarity as
the cosine of the angle that they form using the cosine similarity measure. The set of profiles
with the closest distance can then be selected and grouped as a set in the same neighbourhood.
The predictions made for users in conventional neighbourhood-based recommender system is
susceptible to errors when there is little information about users’ rating history. There is often
a small number of items rated by users compared to the large proportion of items/products
or services available. This sparsity problem is recognised as particularly challenging in
memory-based collaborative filtering systems because of the difficulty in finding users with
similar preferences, i.e. user neighbourhoods too small or non-existent. Latent factor models
which use dimension reduction techniques such as matrix factorization (MF) (Koren et al.
(2009), Shi et al. (2011), Enrich et al. (2013)) have been effectively utilized in place of
neighbourhood-based models. These types of model-based collaborative filtering technique
uncover latent features using a model learned from the underlying item/user data.

Researchers exploring cross-domain recommender approaches are leveraging the ability
of MF models to integrate other sources of user feedback for better rating prediction.
Specifically, Shi et al. (2011), Enrich et al. (2013) and Fernández-Tobías and Cantador
(2014) have shown social tags can be integrated into MF techniques for cross domain
recommendation. They identified the occurrence of repeated tagging patterns as the underlying
criteria for cross-domain recommendation. In their proposals and implementation, they
considered only tags whose character strings exactly match each other in two domains.
Taking an instance of the movie and book domains cited earlier, a user who just watched
a movie with a mystery plot may feel happy to tag the movie as "intriguing" and give a 4
out of 5 rating. On the other hand, a user who just enjoyed a book with a detective and
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adventurous story may give it a 4.5 rating and also assign the tag "intriguing" to express
the feeling about the book. If the average of rating values given to items that have been
tagged as "intriguing" is high on the rating scale, the authors generalised that items with tag
"intriguing" are accompanied with a high rating.

The appeal of this kind of cross-domain process to recommenders systems is seen in cold
start situations where users may not have rated or tagged items which have been tagged and
rated highly by others. The concept of transferable rating information based on commonality
of tags across different domains has motivated the exploitation of tag factors in cross-domain
recommender models. Experimental results from the works of Shi et al. (2011), Enrich et al.
(2013) and Fernández-Tobías and Cantador (2014) are evidence of the potential of tag-based
cross-domain recommender systems.

1.3.1 Tag Semantics and Cross-domain MF Models

Current research efforts in cross-domain recommender systems do not consider the semantic
relationship that may exist between social tags that are not common in the two domains
e.g. "intriguing" and "fascination" may be similar concepts. To the best of our knowledge,
there has not been any investigation in the literature on how the semantic relationship of
user-generated tags affect the rating prediction accuracy of a cross-domain recommender
system. The closest efforts in literature are Fernández-Tobías et al. (2011) and Rowe (2014)
who focused on linking items in different domains using the Semantic Web technologies.
Rather than reasoning in ontologies based on the semantic web for the similarity of items,
our approach focuses on using subsumption hierarchies in a structured computational lexicon
(WordNet) to find semantic similarities between social tags.

We show the potential of our approach by using the toy example in figure 1.2. Suppose we
have four different users (Luke, Mary, John and Edna) in a movie domain and another four
(Rita, Dave, Jack and Adel) in a book domain. In figure 1.2, the square brackets represent
the tag and rating value (scale of 1−5, with 5 being the highest) assigned by users to items.
The broken curve lines denote the types of transfer that can happen between the domains.
Our desire is to estimate rating values for users in the target domain (movie domain) from
users in a denser auxiliary domain (the book domain). The missing ratings (indicated by ?)
in the target domain can be inferred from the auxiliary domain tags ("magician", "award",
"serenity") and the rating values that are associated with these tags. While some research
work has been done in case one and three, our focus is on cases two and four where string
patterns of the tags are different even though they are semantically related. This example is a
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Fig. 1.2 A toy example of possible cases of rating information transfer based on tag
commonality/similarity.

very high-level description but captures the idea of rating information transfer in a tag-based
cross-domain recommendation. It also shows the potential of integrating semantic similarity
to tag-based cross-domain recommender models.

1.3.2 Multi-category POI Recommenders

The fast-paced development of mobile devices, global position system (GPS) and Web 2.0
technologies has led to the rise of Location-Based Social Network (LBSN). LBSN are large
social connection hubs where millions of users share rich information, such as experiences,
reviews and tips. In addition to being a platform for social interaction, LBSNs have evolved
into a system where the rich information can be exploited to infer users’ preferences for
yet to be visited locations that users may find interesting. The task of recommending new
interesting places is referred to as point-of-interest (POI) recommendation.

POI recommender systems are a new field compared to traditional recommender systems.
They belong to a group of recommender systems known as Context-aware Recommender
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Systems. Several POI recommender models
[
Ye et al. (2010), Ye et al. (2011), Liu et al.

(2013b), Li et al. (2015) and Liu et al. (2017)
]

that use contextual information such as
geographic, temporal and social information have been studied and successfully implemented.
However, there remain research issues and opportunities with modelling and combining
different contextual information for improving the performance of POI recommenders.

In addition, conventional POI recommender models have used contextual information from
POIs that are structured into multiple categories(domains) without considering approaches
that enhance knowledge transfer between the different POI categories. There is no study on
how POI recommendation accuracy can be improved by using cross-domain recommender
approaches. Current researches have treated all POIs as belonging to one domain and utilise
single domain collaborative approaches to recommend POIs to users. We identify this as a
knowledge gap and pose a question in the next section to investigate the use of cross-domain
recommender techniques for POI recommendation.

1.4 Research Questions

As our contribution to the emerging field of cross-domain recommender systems, the
following questions are posed to validate and investigate the knowledge gap that we have
identified:

• Research Question 1: Can a cross-domain recommender model perform better when
the size of intersect between the set of tags in a target and auxiliary domain increases?

• Research Question 2: Can semantically related tags improve performance of cross-
domain recommender model when they are included as additional parameters to the
model?

• Research Question 3: Can performance of a multi-category POI recommender be
improved by incorporating category similarity as context into the model?

The problem of cross-domain recommendation can be expounded by considering two sets
of data from two different application domains. The task will be to enrich the sparse target
domain by finding a potential collaborator represented by a user or group of users/items
from an auxiliary domain. An understanding of how related the two domains under
consideration are can help determine which domains will benefit the most from a cross-
domain collaboration. In determining how domains can be directly related, Enrich et al.
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(2013) identified four situations in which a cross-domain recommendation goal can be
realized: a) no-overlap, b) user overlap, c) item overlap and d) full overlap.

In all these scenarios but the first (no-overlap) we could obtain effective recommendations
with a classic memory-based collaborative filtering approach by treating all the users and
items as belonging to a single domain. However, traditional memory-based models tend
to be less accurate when the overlap is small or when the overlapping users or items are
very dissimilar. Consequently, there is a need for the extension of conventional approaches
such as matrix factorisation into techniques that can support cross-domain recommendations.
Cross-domain recommender models have been shown to perform better than memory-based
collaborative models in scenarios with little or no users and item overlaps.

1.5 Thesis Contributions

The research activities in this thesis have led to several contributions to the state of the art on
cross-domain recommender systems and advanced the subject area in the following ways.

In Chapter 4, a new technique for selecting optimal semantic metrics for measuring
relatedness of tags was introduced. The metrics were evaluated on how well they predicted
if a concept pair was drawn from a single domain (i.e. intra-domain) or different domains (i.e.
inter-domain). In later sections of Chapter 4, we adopted a cross-domain recommender
model to evaluate the effect of varying size of intersecting tags on the recommender’s
performance. This enabled us to measure the response on prediction accuracy when the size of
the intersect is increased by lowering the semantic threshold score for inter-domain tag pairs.
In addition, we showed that Term Frequency-Inverse Document Frequency (TF-IDF) does
not contribute to the performance of semantically enhanced cross-domain recommendation
models when TF-IDF is used to extract relevant domain tags.

In Chapter 5, we present an extension to a matrix factorisation model that introduces
new parameters for adding the influence of semantically related tags to a cross-domain
recommender model. Corpus-based metrics were used to obtain a new set of semantically
related tags which was combined with the base MF model. We used current approaches to
measuring semantic relatedness by knowledge transfer from a pre-trained dataset to a test
dataset enabled by Neural Networks (NN) to measure the relatedness of tags.

In Chapter 6, we present a personalised ranking based matrix factorisation model that
exploit attributes of POI categories which users have checked into in the past to find
recommendations for users in multi-category recommender system. In contrast to
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numerical ratings, the model utilizes the frequency of user check-ins at different POIs as
positive-only feedback. Furthermore, we evaluate two methods for modelling domain/category
similarity into the ranking based matrix factorisation model.

The simple framework in figure 1.3 shows the flow and connection of research activities in
the thesis. The stage where each research questions (denoted with RQ) was addressed are
clearly highlighted.

Fig. 1.3 Semantic Enhancement of Cross-domain Recommender System.

1.6 Thesis Outline

The chapters of this work have a similar structure, with sections to introduce and motivate
the activities carried out, review known approaches, present the proposed approaches or
models, and report and discuss the results achieved during experiments. The rest of the thesis
is organized as follows:

In Chapter 2, we survey the state of the art with regards to recommender systems in general
and cross-domain recommender systems in particular. The focus of our background review
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was set on using semantics knowledge from lexical taxonomies and distributional hypothesis
in recommender systems for the purpose of enhancing domain knowledge transfer. We
also review the current state of research in Point of Interest (POI) recommender systems.
Location-Based Social Networks (LBSN) often span across different domains also known as
categories. As a result, we reviewed several ranking algorithms and models that can benefit
from cross-domain approaches.

In Chapter 3, we first present key terms and concepts that are important for the formal
definition of our cross-domain recommender models. We present a general framework and
test-bed upon which our experiments were based. We provide a general methodology to our
experiments and the evaluation metrics for our models.

In Chapter 4, we investigated the assumption that accuracy of predicted rating depends on the
number of common tags between two domains. First, we selected a standard semantic
relatedness metric based on how effective the metric was at classifying domains tags.
Subsequently, we adopted a cross-domain recommender model that allows us to vary the
number of social tags considered as common across a target and auxiliary domain. We
used the selected semantic metric to find semantically related tags across the two domains.
We evaluated the performance of the cross-domain recommender model as the size of
semantically related tags were increased.

In Chapter 5, we went beyond lexical taxonomies to consider more recent similarity methods
that are based on word vector representations. We proposed a new cross-domain recommender
model that adds an extra parameter to incorporate the influence of semantically related tag
pair. We evaluated the performance of known cross-domain collaborative filtering models
against our proposed model.

In Chapter 6, we turned to a different field of recommender systems known as POI recommen-
dation. We adapted a novel personalised ranking based POI MF model to include parameters
that consider the categories of POIs as extra context information. In later sections, we extend
our model to cross-domain POI recommendation and observed the performance of the model
in cold start situation and at different varying degrees of data sparsity.

In Chapter 7, we summarise the main contributions of this thesis and give an outlook on
future work.



Chapter 2

Review of Recommender Systems

2.1 Recommender Systems

Theoretical concepts about recommendation systems and testing of prototype models were
reported by Goldberg et al. (1992) to have begun in the early 1990s; while its mass
commercialisation in the form of value-added services was asserted by Resnick and Varian
(1997) to have happened in the mid-1990s. Details from a repository on recommendation
systems by Ricci et al. (2011) suggest that they are evolving to become software tools which
can offer suggestions that support users in decision making. The advances achieved by
researchers in the field of information retrieval and filtering have helped in reducing the effort
and time spent on locating specific information from the often large collection of structured or
unstructured data. Research investigations have been driving innovations and stimulating the
development of applications that use retrieval techniques in finding and ranking information
based on how relevant they are to a user’s query.

On the other hand, progress made in information filtering algorithms have resulted in
broadening of search from being merely query based to those that disseminate information
selectively by recommending the options that are relevant to users without explicit inputs
from the user. A good example can be seen in the case of Google—one of the leading
company in information retrieval—now offering a virtual personal assistant (Google Now),
which can learn users’ behavioural patterns in order to recommend actions to be taken based
on the user’s location and time. Another point in case as described by Belfiore (2015) is the
recent announcement by Microsoft which have been providing information retrieval through
its online search offering (Bing) now intending to directly integrate a personal assistant into
its latest version of web browser and operating system. These cases further support the
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empirical findings initially reiterated by Kobsa et al. (2001) that computer systems bring
benefits to users in many domains when they take individual characteristics of the users into
account and adapt their behaviour accordingly.

Recommender systems generally use machine learning techniques to process stored data
about user’s interests, represented as user profiles. A ranked list of all resources available for
recommendation is subsequently computed based on an algorithm that has been trained using
the user profiles. Recommender systems have become a sought-after resource for tackling
the challenges brought about by the information overload problem. According to Uchygit
(2010), they are popular in application domains such as e-commerce, entertainment/news and
fall into three main categories; collaborative-based, content-based and hybrid systems. The
following section provides an overview of key concepts behind the evolution of Recommender
Systems and the principles governing their operation. While the points presented cover novel
techniques at the forefront of information filtering research, the contents do not exhaustively
discuss recommendation algorithm performance nor its evaluation methods. The compilation
assembled in Ricci et al. (2011) can be consulted by readers that are interested in such
in-depth analysis.

2.2 Sparsity and Cold Start Problems

In building recommender systems, historic data about users are generally stored in a user-item
matrix also known as the rating matrix. The historic data are past actions of users such
as assigning rating values—for example in a range between 1 and 5—to an item. Let U
represent the set of users registered to a system, and let I represent the set items in the
recommender system. Let the rating matrix of a recommender system be denoted by R with
size |U |× |I|. Consider a user u and an item i in the recommender system, let k with a range
from 1 to 5 represent the rating value that u gives to i. The element rui of matrix R can be
obtained by the expression below:

rui =

k, if user u rated i with value k

unknown, otherwise.

Users of recommender systems generally provide explicit feedbacks (e.g. ratings) on a small
number of items, and they often require the right kind of motivation to do so. In many
large-scale applications, the size of both the items and users set are large. As such, the rating
matrix will still contain lots of unknown entries even if many users gave feedbacks on items.
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This problem is known as the sparsity problem, and it negatively affects the performance of
collaborative filtering systems. Sparsity makes the vital task of finding similarity between
two users difficulty and renders collaborative filtering approach ineffective. According to
Papagelis et al. (2005), even when the evaluation of similarity is possible, it may not be
very reliable, because of insufficient information processed. The process of addressing the
sparsity problem in a recommender system proceeds from an initial step of estimating the
level of sparsity in the system. Let the set of users that have rated at least one item be Ux

and the set of items that have been rated at least once by a user be Ix, the sparsity ratio in a
recommender system can be calculated as follows:

sparsity(%) =
(

1− |U | · |I|
|Ux| · |Ix|

)
×100.

Several methods have been explored in dealing with the sparsity problem in recommender
systems. The approaches that are most broadly used include; dimensionality reduction of
the user-item matrix (Koren (2008), Fernández-Tobías and Cantador (2014), item-based
similarity instead of user-based similarity (Sarwar et al. (2001), Wang et al. (2006)), and
content-boosted collaborative filtering (Forbes and Zhu (2011), Lian et al. (2017)).

Cold-start is the state in a system developed for predicting user preferences for items when
a model cannot make predictions for newly added users, or predict newly added items to
already registered users of the system. Cold-start situations occur due to an initial absence of
information about the users and items that have just newly added to the system. Cold-start
leads to the case where items cannot be recommended until users have substantially rated
them. Similarly, a new user has to give feedback on a sufficient number of items before
the recommender system can provide reliable and accurate recommendations to the user.
Two approaches are popular in addressing cold start problem. The first approach uses active
learning techniques that interactively query the new user to obtain feedback before generating
recommendations. For example, some recommender applications actively select individual
items or groups of items and present to the user to rate during a signup phase. According to
Elahi et al. (2016), the recommender application evaluates the entire set of items and selects
the items that are estimated to be the most useful ones (e.g. popular ones that user is most
likely to know). The second approach considers additional information about the user during
the process of recommending items. User metadata such as gender, age, area code, education
and employment information were used by Pazzani (1999) and Vozalis and Margaritis (2006)
to compute user-user similarities. In addition, Braunhofer et al. (2015) and Fernández-Tobías
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et al. (2016) showed that information about the user’s personality can be more effective in
some applications.

Recent evidence suggests using Cross-domain recommendation approaches that exploit user
preferences in different auxiliary domains can alleviate sparsity in a target domain [Cantador
and Cremonesi (2014), Shi et al. (2013) Fernández-Tobías (2016)]. Building on current
efforts in Tag-based Cross-domain recommendation approaches, we investigate the use of
matrix factorization models in addressing the sparsity and cold start problem by enhancing
the knowledge transfer process with semantically related tags.

2.3 Content Based Recommender Systems

According to Kobsa et al. (2001), content-based recommender systems have their roots
in information filtering and text mining and are typically employed in domains with large
amounts of textual content. The general objective of a recommender system as posited
by Oard (1997) is to automate the information filtering process such that the results of the
suggestions generated by the system resemble those the user would judge as relevant and
rate positively to indicate their long-term interest. The process of learning the preferences of
users is integral to achieving a recommendation task. The user models that are created to
represent the users’ needs in the system need to correspond to the natural preferences of the
users as much as possible.

Content-based recommendation is a type of supervised learning technique. According to
Burke et al. (2011), one can view the problem as one of learning a set of user-specific
classifiers where the classes are "useful to user X" and "not useful to user X". In a more
specific account, Lops et al. (2011) identified the three components required for a content-
based recommendation process. The first and second components, called Content Analyzer
and Profile Learner by Lops et al. (2011) serve as the entry point into the system where key
features are extracted from both unrated and rated item content. The features extracted from
both sources are represented in a structured and machine-processable format. A Content
Filter component then compares the two representations using a similarity measure and
displays the result according to a score that indicates the most suitable match.

The quality of features extracted remains a key issue in content-based recommender systems.
A baseline requirement is that objects to be recommended need to be described so that profile
learning that is representative of users can take place. Theoretically, every object would
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be described at the same level of detail and the feature set would contain descriptors that
correlate with the discriminations made by users (Lops et al. (2011)).

2.4 Collaborative Recommender Systems

In order to establish recommendations, CF systems need to compare fundamentally different
objects: items against users. According to Koren et al. (2009), there are two primary
approaches to facilitate such a comparison, and they constitute the two main disciplines of
CF: the neighbourhood approach and latent factor models. Recommendation systems can
be designed to use techniques that rely on relationships between users of the system when
the item features within the information source is lacking or not sufficient enough to be
utilised for discriminating the items. For instance, Lops et al. (2011) identified the limited
information associated with the word frequency when trying to model user interests in jokes
or poems. The strength of the user/item relationships are estimated by a comparing of all
the models that encode the users’ interest (i.e. the user profiles) and then grouping those
whose pattern of rating items are similar. The users in each of the groups are said to be
in the same neighbourhood. These users act as recommendation partners for a target user
within the group, and items that occur in their profiles can be recommended to the target user.
Recommendation systems based on the collaboration of users in the same neighbourhood is
known as Memory-based Collaborative filtering.

Model-based approaches as reported by Breese et al. (1998) have been proposed and explored
in the attempt to reduce the execution time involved in calculating the similarity between a
given user and all its neighbours. According to Candillier et al. (2007), the general idea is to
derive off-line a model of the data in order to predict on-line ratings as fast as possible. This
is achieved typically by training some statistical or machine learning algorithm to learn a
predictive model using the collection of items ratings (offline), which is then used to make
rating predictions for the rest of the data stream (online). A list of the most widely used
models include: Bayesian classifiers (Park et al. (2007)), neural networks (Roh et al. (2003)),
fuzzy systems (Yager (2003)), latent features (Zhong and Li (2010)) and matrix factorisation
(Koren et al. (2009)) among others.
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2.5 Hybrid Recommender Systems

Advances in recommender systems have seen the advantages of combining different techniques,
such as content-based and CF-based, in a hybrid manner to achieve more accurate performance.
Generally, hybrid recommender systems utilise various ways of combining the different
techniques in order to leverage on advantages from them all with fewer drawbacks of any
individual technique (Burke (2002)). A detailed survey focused on the hybrid systems is
compiled by Burke (2002). According to Burke (2002), the hybridisation strategy must be a
function of the characteristics of the recommenders being combined. The case of combining
content and collaborative recommenders is mostly a function of the quality and quantity of
data available for learning. If the recommenders are uniformly unequal, it may make sense
to employ a hybrid in which the inaccuracies of the weaker recommender can be contained:
for example, a cascade scheme with the stronger recommender given higher priority, an
augmentation hybrid in which the weaker recommender acts as a “bot” contributing a small
amount of information (Burke (2002)). Hybrid recommender systems are different from
cross-domain recommendation systems because they are implemented in single-domain
applications.

2.6 Tag-Based Recommender Systems

Social tagging is the act of adding metadata in the form keywords to annotate and categorise
items. Several works have explored recommender techniques that leverage tagging data to
recommend items. For example, Tso-Sutter et al. (2008) adapted traditional collaborative
filtering algorithms by incorporating tagging data into the user-item matrix. Guan et al.
(2010) proposed a graph-based learning algorithm that is based on tagging data. A Bayesian
model that estimates the preference of users for items based on their inferred preferences for
tags was introduced by Sen et al. (2009).

A more related line of work to ours are those of Manzato (2013), Enrich et al. (2013)
and Fernández-Tobías and Cantador (2014) where user and item tags are integrated into
a matrix factorisation model to predict missing ratings for users. Enrich et al. (2013) and
Fernández-Tobías and Cantador (2014) extended the basic framework from recommending
in a single domain to cases which utilise cross-domain recommendation techniques. While
these techniques showed considerable improvements in rating prediction performance, both
authors acknowledged in their work that more accurate results might be achievable if the
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metadata (e.g. tags annotations) shared between the two domains is increased by considering
those with similar semantics but that have been expressed differently in domains.

2.7 Cross-domain Recommender Systems

Traditional collaborative filtering systems are limited in making accurate recommendations
when substantial ratings of items by users are not available (sparsity). This drawback
according to Ricci et al. (2011) is further aggravated by the fact that users or items newly
added to the system may have no ratings at all, a problem known as cold-start. Also, users
may have similar preferences but may not yet have rated any item in common; therefore
limiting the number of users that can collaborate and benefit from the system. While there
have been several proposed approaches to resolve the cold-start and sparsity problem, the
majority of the implementations are considered within a single application domain. There
are however particular scenarios where providing users with cross-domain recommendations
may help reduce the effects of sparsity and cold-start problems.

For example, electronic commerce sites (e.g. eBay, Amazon, Alibaba) with a vast range of
items usually allow users to give feedback on items of different types—i.e. items in different
domains. The preference of a user desiring to purchase items in a new domain within the
commercial site can be inferred from the user’s purchase history in other domains within
the site. In this case, a cross-domain recommender system could utilise a multi-domain user
profile model that can generate recommendations of items over several domains. Another
case that justifies the importance of cross-domain recommender systems is the generation of
personalised cross-selling or bundle recommendations for items from multiple domains. For
instance, a movie item sold with an additional recommendation of a music album similar to
the soundtrack of the movie item. In this case, the recommendation of the music album by
the recommender system is guided by the user’s preferences in the movie domain.

A general assumption of these cross-domain recommender use cases is that there exit inter-
domain dependencies between profiles of users and items in the auxiliary and target domains.
Winoto and Tang (2008) and Li et al. (2009) have demonstrated that the assumption of strong
dependencies between domains is valid in marketing, behavioural, and data mining studies.
According to Fernández-Tobías (2016), cross-domain recommender systems leverage these
dependencies through considering, for example, overlaps between the user or item sets,
correlations between user preferences, and similarities of item attributes.
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2.7.1 Cross-domain Recommendation Problem and Tasks

As a relatively new field of recommender systems, there have been several formulations
of the cross-domain recommendation problem without any consensus in the recommender
research community. Over the years, two main approaches to describing the cross-domain
recommendation problem have emerged within literature. On the one hand, researchers
proposed models that provide recommendations of diverse items from a combination of
several domains. On the other hand, models are developed to reduce the effects of cold-start
and sparsity situations in a target domain by using information from an auxiliary domain.

However, there are general agreements on the type of recommendation tasks that cross-
domain recommender systems should be able to accomplish. If we consider two domains Dx

and Dy to explain cross-domain recommender tasks. Let Ix and Iy be their respective set of
items. According to Fernández-Tobías et al. (2012), the following itemizes recommendation
tasks that cross-domain recommender systems can perform in Dx and/or Dy:

• Cross-selling: recommend items in a new domain, different to the domain where the
users had shown a preference, i.e., recommend items in Ix to users with preferences
for items in Iy.

• Multi-domain recommendation: combining items from several domains and recommending
them together as a single package to users, i.e., recommend items resulting from the
combination in Ix

⋃Iy.

• Linked domains: improve recommendations of items in a target domain to users in
the target domain by utilising patterns of preferences in an auxiliary domain; i.e.,
recommend items in Ix by exploiting knowledge relating Dx and Dy.

According to Fernández-Tobías et al. (2012), the three recommendation tasks should be
considered altogether when formulating the problem of cross-domain recommendation.

2.7.2 Criteria for Cross-domain Recommendation

In order for cross-domain recommender systems to accomplish any of the three recommendation
tasks, the active domains must directly or indirectly share some relationship with each other.
To clearly describe the criteria for cross-domain recommendation, let XU = {XU

1 , ...,XU
m }

and X I = {X I
1 , ...,X I

n} be the sets of characteristics used to represent profiles of users
and items, with m and n as the size of the profiles respectively. Let DA and DT denote
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two domains. As a minimum criterion for reliable cross-domain recommendation, the two
Domains DA and DT must have some relations to each other, i.e.,X I

A
⋂X I

T ̸= /0.

According to Fernández-Tobías et al. (2012), the relationship can be by means of content-
based or collaborative filtering characteristics about users and/or items, such as ratings, social
tags, semantic relations, and latent factors.

• Content-based criteria - Contents and metadata such as keywords, demographics and
categories that describe both users and items in a system can form a set of explicit
features F = {F1, ...,Fm} with XU ⊆ F and X I ⊆ F . User and item profiles in the
system are generally represented as vectors whose components are indications of how
much interest a user has in a feature, or the relevance of a feature to an item. In this
case, domains DA and DT are related when same features are distributed across both
domain i.e., XU

A
⋂XU

T ̸= /0 and FA
⋂FT ̸= /0.

• Collaborative filtering-based criteria - Users’ feedback about items in Collaborative
filtering systems are generally represented as matrix R ∈ R|U |×|I | with the element
Rui containing the value given by user u to item i. Following the notation introduced
earlier, XU = I , where I is the set of rated items. Domains DA and DT are related on
the basis of having same rated items with XU

A
⋂XU

T ̸= /0, i.e., IA
⋂IT ̸= /0. The same

reasoning holds vice versa, where X I = U , and U are users with ratings. Domains DA

and DT are related when X I
A
⋂X I

T ̸= /0, i.e., UA
⋂UT ̸= /0.

In addition to content-based and collaborative filtering based criteria for cross-domain
recommendations, the profile of users and/or items in a recommender system can be projected
to lower dimension spaces as latent factors. In such cases, XU and X I will be the set of user
latent factors and item latent factors respectively.

2.7.3 Domain Combinations for Cross-domain Recommendation

A growing body of literature on cross-domain recommender systems have different notions
of what a domain represents. On the one hand, some have considered items like movies
and books as belonging to different domains. Other authors have considered the different
subgroups within a particular item type as domains. For example, the genres of movies (e.g.
action movies and comedy movies) or different categories of books (e.g. romance and fiction)
as different domains. Generally, domains have been classified according to the attributes and
type of items recommended in the domain. Fernández-Tobías et al. (2012) conjectured that
domains could be defined at the four different levels expounded below:
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• Attribute level - at this level, items that are recommended are of the same type and
the same attributes. Items are considered to be in different domains if they differ
in the value of a specific attribute. For example, two movies will be considered as
belonging to two distinct domains if their genre attribute is different, e.g. action movie
and comedy movies.

• Type level - items recommended at this level belong to the same type and have some
attributes in common, but differ in some other type of attributes. Items are considered
as belonging to distinct domains if they have different attribute subsets. For example,
console games and streamed games belong to distinct domains, since they have several
attributes in common (title, genre) while they differ in regards to other attributes (e.g.,
the live attribute for steaming games).

• Item level - the distinction at this level is more recognisable because the items
recommended are of the same type. The items in different domains differ in most,
if not all, of their attributes. For example, at this level, movies and books belong to
different domains.

• System level - at this level, items recommended belong to distinct systems/platforms,
which are considered as different domains. For example, movies rated and reviewed
in the Rotten Tomatoes (critiquing website), and movies watched and rated in the
Amazon Prime (video streaming service).

There are recent research efforts on newer datasets that have been released to the research
community to allow investigating different open questions on cross-domain recommender
system. A detailed and up-to-date literature review was carried out in order to investigate how
the different domains are combined for achieving the objective of cross-domain recommendation.
Similarly to the in-depth survey in Fernández-Tobías et al. (2016), it was observed that
the most frequently used domains to the least used are in the following order: movies
(77%), books(56%), music(36%) and TV(15%). In addition, domains were most frequently
combined together as movies-books(37%), movies-music(20%), movies-tv(8%), book-
music(15%), book-tv(10%).

In table 2.1, details of the various combinations of domains in the works reviewed on cross-
domain recommendation show other types of multi-domain combination. For example, a
combination of books, movies, music, games and TV shows in Winoto and Tang (2008).
Table 2.1 also shows the type of feedback information that is collected from users as an
indicator of their preference or opinion. The feedback information is then used to establish a
relation between the domains for cross-domain recommendation.
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Table 2.1 Summary of domain combinations for Cross-domain Recommendation.

Domains User preferences - datasets References

books, movies

ratings - BookCrossing, MovieLens/EachMovie Gao et al. (2013b); Li et al. (2009)

ratings, tags - LibraryThing, MovieLens
Enrich et al. (2013); Shi et al. (2011);
Zhang et al. (2012)

ratings, transactions Azak (2009)

ratings - Imhonet Sahebi and Brusilovsky (2013)

ratings - Douban Zhao et al. (2013)

ratings - Douban Zhang et al. (2016)

movies, music

thumbs up - Facebook Shapira et al. (2013)

thumbs up - Facebook Fernández-Tobías et al. (2016)

ratings - Amazon Pagano et al. (2017)

movie genres
ratings - EachMovie Berkovsky et al. (2007)

ratings - MovieLens
Cao et al. (2010);
Lee and Seung (2001)

books, movies, music
ratings - Amazon Hu et al. (2013); Loni et al. (2014)

tags - MovieLens, Last.fm, LibraryThing Fernández-Tobías et al. (2013)

books, movies, music, TV shows thumbs up - Facebook
Cantador et al. (2013);
Tiroshi and Kuflik (2012);
Tiroshi et al. (2013)

book categories ratings - BookCrossing Cao et al. (2010)

music, tourism semantic concepts
Fernández-Tobías et al. (2011);
Kaminskas et al. (2013)

restaurants, tourism ratings, transactions Chung et al. (2007)

books, games, music, movies & TV shows ratings Winoto and Tang (2008)

books, games, music, movies & Perfumes ratings - Imhonet Sahebi et al. (2017)

movies
ratings - Netflix Cremonesi et al. (2011)

ratings - Douban, Netflix Zhao et al. (2013)

ratings - MovieLens, Moviepilot, Netflix Pan et al. (2012)

music
tags - Delicious, Last.fm Loizou (2009)

tags - Blogger, Last.fm Stewart et al. (2009)
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For example, tags assigned to movies in a movie domain may be used as brigde to a book
domain if the same tag is assigned to books in a book domain. In the number of literature
reviewed the most frequently collected type of feedback to the least collected were in
the following order: -ratings, -tags, -thumbs up. In some cross-domain recommendation
approaches, semantic concepts were used as user preferences. Firstly, a textual description of
items in the domains are mapped to concepts in WordNet or Wikipedia and then used to the
linking the domains.

2.8 Semantics Recommender Systems

Semantic analysis enhances representation of users and items in recommender systems by
mapping the user/item data contents to concepts that are have been defined and structured in
external knowledge bases such as concept diagrams (taxonomy or thesaurus) or ontologies.
According to Ricci et al. (2011) the main motivation for this approach is the challenge of
providing a recommender system with the cultural and linguistic background knowledge
which characterises the ability to interpret natural language documents and reasoning on
their content. Systems that perform recommendations based on the representations described
above and supported by a combination of technologies (e.g. resource descriptions/tagging
and knowledge organisation) from the semantic web are generally referred to as semantic (or
semantically-enhanced) recommender systems (Peis et al. (2008)).

The benefits of adopting semantic data in the recommendation process have been investigated
in the last decade with results that show the potential of overcoming the limitations of
traditional recommendation techniques. Previous work such as Middleton et al. (2004),
Maidel et al. (2008), Sieg et al. (2010) and Cantador et al. (2011) demonstrated that the
exploitation of semantic relations can help to improve performance of traditional models.
Pazzani (1999) tackled the cold start problem by using a product taxonomy from which the
user profiles are defined (without users needing to provide explicit valuations). The active
user profile is used to discover users with similar interests, whose valuations help the system
generate recommendations. Cantador and Castells (2006) presented an approach that finds
similarities among users by comparing profiles of their interests for semantic topics and
specific concepts. By taking advantage of the relations between concepts, and the (weighted)
preferences of users for the concepts, the system clusters the semantic space based on the
correlation of concepts appearing in the preferences of individual users. This method uncovers
implicit social networks that may help to define both content-based and collaborative-based
recommender systems. Codina and Ceccaroni (2010) considered recommendations for a
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movie domain by incorporating semantics to enhance user modelling through the application
of a domain-based inference method and providing a more accurate recommendation by
applying a semantic-similarity method. As an added contribution to their work, Codina and
Ceccaroni (2012) presented new methods for measuring the semantic relatedness between
attribute values of items based on their co-occurrence in similar contexts. Our work stands
out from all the approaches mentioned above by exploring beyond processes that generate
recommendations in a single domain to implementing recommendation techniques that focus
on knowledge transfer from an external/axillary domains.

2.9 WordNet Sense Disambiguation

In Natural Language Processing and its application in information retrieval/filtering, the
ambiguity of words often arises due to polysemy and synonymy of the natural language
unit. While humans have little difficulty in differentiating between various meanings of
words, more effort is typically required to replicate such results computationally. According
to Jiang and Conrath (1997), when a word level semantic relation requires exploration,
many potential types of relations can be considered: hierarchical (e.g. IS-A or hypernym-
hyponym, part-whole), associative (e.g. cause-effect) and equivalence (synonymy). To
measure the semantic similarity/distance between words and concepts, authors have come up
with consistent computational models and measures that combine lexical taxonomies (e.g.
WordNet) and statistical contents of corpora (e.g. Brown Corpus) to assess these types of
relations.

WordNet is a broad lexical network of English words. Nouns, verbs, adjectives, and adverbs
which are each organised into networks of synonym sets (synsets) that each represents one
underlying lexical concept and are interlinked with a variety of relations (Budanistsky and
Hirst (2005)). A polysemous word will appear in one synset for each of its senses. An
illustration of how synonyms and polysemy are represented in WordNet can be seen in the
matrix of table 2.2. The Wordnet lexical matrix as described by Degemmis et al. (2007)
shows the mapping between word forms and their meanings. Word forms are imagined to be
listed as headings for the columns, word meanings as heading for the rows. An entry in a cell
of the matrix implies that the form in that column can be used (in an appropriate context)
to express the meaning in that row. Thus, entry E1,1 implies that word form F1 can be used
to express word meaning M1. If there are two entries in the same column, the word form
is polysemous; if there are two entries in the same row, the two word forms are synonyms
(relative to a context).
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Table 2.2 WordNet lexical matrix showing synonyms (E1,1,E1,2) and polysemy (E1,2,E2,2)

Word Meaning Word forms

F1 F2 ... Fn

M1 E1,1 E1,2

M2 E2,2

...

Mm En,m

2.10 Semantic Terminologies and Definitions

An account of semantic terminologies used in the rest of the chapter is provided as follows,
with the formal definitions of all key terms that were utilized in the measure of semantic
similarity/relatedness of tags.

2.10.1 Definition 1: Concepts

A concept can broadly mean a collection of things with a common interest. In many
lexicons, it is generally accepted that synonyms are words that have similar meanings. In
lexical databases (e.g. WordNet), a set of synonyms, or synset, is a group of synonyms.
Correspondingly, a synset refers to an abstract concept.

2.10.2 Definition 2: Relations

Taxonomic relationships are the most frequent in the network of concepts that are in WordNet.
As a subsumption hierarchy, they are the backbone of the network and account for close to
80% of the relations (Budanistsky and Hirst (2005)). According to Fellbaum (2005), they
form a super-subordinate and transitive relation (also called hyponymy or IS-A relation)
that link general concepts to increasingly specific ones. Subsumption is the containment
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of one concept by another. Generally, concepts on a lower lever are proper subsets of the
concepts on a higher level. An is-a hierarchy describes the relationship between each level.
The addition of is-a hierarchies creates a taxonomy.

There are other non-taxonomic relations in Wordnet which link synsets that denote parts,
components, or members to synsets denoting the whole. This type of relation is known
as Meronymy (Fellbaum (2005)), and the synsets are not transitive, i.e. the parts are not
inherited “upward” as they are characteristic only of specific kinds of things rather than the
class as a whole.

2.10.3 Definition 3: Lowest Common Subsumer

In the hierarchies of Wordnet taxonomy, each node represents a concepts while the edges that
link the concepts refer to the relationships between the concept. Least common subsumer
(LCS) of two concepts is the most specific concept they share as an ancestor (Budanistsky
and Hirst (2005)). Formally, if we consider the WordNet network as a directed acyclic
graph (DAG) G having two nodes (concepts) c1 and c2 among others, the LSC of the two
concept is the lowest (i.e farthest from the root) node that is a superordinate to both concept
c1 and c2 as illustrated in figure 2.1 The LSC can be located in the graph by tracing of
paths from each concept upward towards the root node. For later computation of semantic
similarity/relatedness, we denote the LCS of two concepts c1 and c2 as lcs(c1,c2).

2.10.4 Definition 4: Information Content

The degree of abstractness1 of a superordinate concept in an IS-A taxonomy reflects the
extent to which the subordinate concepts it subsumes share information with each other
in the hierarchy. According to Resnik et al. (1999), it is an indication of the degree of
similarity between the concepts being subsumed. When tracing two different concepts to
their superordinates in a hierarchy with IS-A/hyponymy relation, paths with long lengths
generally tend to link to more abstract concepts high in the taxonomy. Simply counting
the paths to superordinate concepts for evaluating semantic similarity has been known have
flaws. The most notable as reported by Resnik (1995) are the inconsistencies that result
when accounting for differences in the distance of the edges from both concepts to their
superordinate. According to Resnik et al. (1999), there are wide variabilities in the distance
covered by a single taxonomic link, particularly when certain sub-taxonomies are denser

1or specificity as it is termed by authors such as Resnik et al. (1999) and Harispe et al. (2013).
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Fig. 2.1 Fragment of WordNet taxonomy

than others. The importance of considering the quality of the information shared by the
subordinate concepts—level of "abstractness/specificity"—of the superordinate concept,
therefore, becomes apparent. Consequently, information content was introduced by Resnik
et al. (1999) to the measure of semantic similarity as opposed to merely finding the length of
shortest paths.

The extent to which a superordinate concept appears as an abstract entity is computed based
on frequency counts of the concepts as found in a corpus of text (Pedersen (2010)). The
information content of the node representing a concept c in the taxonomy is determined by
the probability p(c) of encountering an instance of concept c from a corpus . Following the
formal definition by Resnik (1995), information content of concept c denoted hereafter as
IC(c), is the negative log of the probability of that concept (based on its observed frequency
counts in a corpus); and calculated as:

IC(c) =−logp(c) (2.1)

In order to quantify the information contained in the outcome of an observation, suppose
there is a discrete set of possible outcomes x1,x2,x3, ... of some variable X . The basic idea
is that the information contained in X taking on a particular value xi, that is X = xi, is the
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degree of "surprise" in X taking on this value. For example, if it is almost certain that X takes
on the value xi then this outcome provides very little information; by contrast, if X = xi is
a rare occurrence then this provides more information. For example, if we are considering
information regarding the weather on a Caribbean island, then the statement ‘it is warm
today’ contains very little information.

Let I(xi) denote the information content of X taking on the value xi. If pi denotes the
probability that X = xi, then the information content function I satisfies the following
conditions. Firstly, I depends on the probability pi rather than the actual value xi itself.
Secondly, I should be a continuous function of probability so that a small change in the
probability of xi results in a small change in its information content I(xi). Thirdly, as indicated
above, I is a decreasing function of the probability pi so that events that have small probability
carry more information than those with larger probability. The final condition is that the
information content in two independent events is the sum of the information content of each
individual event. This is simply reflecting that, for independent events, the outcome of one
event does not influence the outcome of the other so the information contained in both events
occurring is the sum of the information associated with each event. Since the probability
of two independent events xi and x j occurring together is the product of their probabilities,
pi ∗ p j, this last condition becomes I(pi ∗ p j) = I(pi)+ I(p j).

The logarithm of the reciprocal of the probability satisfies these four conditions; furthermore,
it can be shown these are the only functions that satisfy these conditions. Hence the
information content in X taking on the value xi is:

I(xi) = log
(

1
pi

)
=−log(pi).

Expressing information content by associating probabilities with concepts in a taxonomy,
convey the same idea as using edge distance in the taxonomy but avoids the earlier stated
problems of edge distances. It is observable from equation 2.1 that as probability increases,
informativeness decreases, so the more abstract a concept, the lower its information content.
Furthermore, if there is a concept at the root/top of the taxonomy, its information content
will be zero following equation 2.1.

2.10.5 Definition 5: Semantic Similarity

Semantic similarity can be generalized as an instance of semantic relatedness (defined in
the following subsection) because in measuring semantic likeness it only takes into account
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the "classic" IS-A relation (hyponymy). It specialises the notion of semantic relatedness, by
utilizing only taxonomical relationships in the evaluation of the semantic strength between
two elements (Harispe et al. (2013)). Consider the example by Resnik (1995), “Car” and
“bicycle” are semantically similar, not because they both have wheels and means of steering
and propulsion, but because they are both instances of “vehicle”.

2.10.6 Definition 6: Semantic Relatedness

Semantic Relatedness is used in this work to refer to a measure of the association between
concepts based on all the possible kind of relationships that can link concepts together.
Harispe et al. (2013) defines it as the semantic interactions between two elements without
restriction regarding the types of semantic links considered. Following the example by
Resnik (1995) as above, “Car” and “gasoline” may be closely related to each other because
gasoline is the fuel most often used by cars, typifying a recognisable "functional-association"
between the two. Besides the "classic" IS-A relations, the other relationships that the notion
of relatedness encompasses are meronymy (part-off), antonymy (opposite-of), and other
“non-classical relations” (Morris and Hirst 2004).

2.10.7 Definition 7: Semantic Distance

Generally considered as the inverse of the semantic relatedness, all semantic interactions
between the compared elements are considered. According to Budanistsky and Hirst (2005),
two concepts are “close” to one another if their similarity or their relatedness is high, and if
otherwise, they are “distant”.

2.11 Metrics for Semantic Measure

There have been an extensive volume of work [Resnik (1995), Jian and Conrath (1997),
Leacock and Chodorow (1998), Lin (1998), Budanistsky and Hirst (2005)] that have
investigated semantic measures between pairs of words/concepts from theories to empirical
validations. Two broad categories have emerged based on grouping measures according to
the elements of the graph/network that underpins their measuring technique:

• Edge-Based Approach - Measures that use this type of approach focus on the analysis
of the relationship between pairs of concepts. The distance between concepts in a
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multi-dimensional concept space can be measured by the geometric distance between
the nodes representing the concepts. The shorter the path from one node to the other,
the more similar the concept they represent are. Differences in the distance of edges
between adjacent nodes and their superordinate often necessitate assigning weights to
the edges. Weights are assigned based on features typical to structural characteristics of
the hierarchical network. Some conceivable features are local network density, depth
of a node, type of link, and strength of an edge link (Jian and Conrath (1997)).

• Node-Based Approach - This approach evaluates similarity based on the analysis of
nodes in the taxonomy. The measures that use this approach utilise information concept
IC as defined above in computing the similarity score between concepts. Specifically,
the overall semantic similarity score is dependent on the information content value
of the most specific super-ordinate node/concept that subsumes the pair of concepts
whose similarity is being measured. The value of the information content of a concept
is obtained by estimating the probability of occurrence of the concept in a large text
corpus (Resnik (1995)).

We expound2 on the standard semantic metrics that are grouped under these two categories
in the following subsections without entirely reintroducing them or elucidating on them
in full details. We also restrict the discussion to semantic metrics that were selected for
evaluating the similarity of tags in our dataset. Table 2.3 shows the different types of metrics,
the category they belong to, the respective type of semantic relationship they measure and
the range of score returned when computed using Wordnet taxonomy.

2.11.1 Knowledge-Based Semantic Measures

Knowledge-based measures are generally used to compare terms structured through unambiguous
semantic relationships or concepts defined in taxonomies and knowledge organisation systems
Harispe et al. (2015). It also encompasses measures commonly used to compare terms or
senses defined into lexical databases such as WordNet (Miller, 1998; Fellbaum, 2010). This
section focuses on knowledge-based measures and in particular concentrates on measures
which rely on ontologies processed as semantic graphs or semantic networks.

2The reader interested in more comprehensive details may consult the corresponding references in the
subsection.
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Table 2.3 Comparison of Different Semantic Similarity Metrics

Metric Category semantic measure Score Range

Leacock-Chodorow Edge-Based Similarity 0 - infinity

Resnick Node-based Similarity 0 - infinity

Lin Node-based Similarity 0 - 1

Jiang-conrath Node-based Distance 0 - infinity

Hirst-St-Onge Edge-based Relatedness 0 - 16

Leacock-Chodorow Measure

Leacock-Chodorow Measure (LCH) as proposed by Leacock and Chodorow (1998) is based
on the edge-counting approach. According to Pedersen (2010), LCH measure finds the
shortest path between two concepts, and scales that value by the maximum path length in the
is–a hierarchy in which they occur. The similarity between two concepts c1 and c2 equals
the number of nodes along the shortest path between them, divided by double the maximum
depth (from the lowest node to the top) in the taxonomy in which c1 and c2. For example,
the number of nodes between two siblings, i.e. two nodes with the same parent node is three.
Tne equation 2.3 below shows how LCH is computed for two concepts c1 and c2:

SimLCH(c1,c2) =−log
[

len(c1,c2)

2 x Max(D)

]
, (2.2)

len(c1,c2) is the length between concept c1 and c2.
Max(D) is the maximum depth when tracing from the root node to the lowest node on the
path containing concept c1 and c2.

Resnick Measure

Resnik (1995) initiated the node-based approach to semantic similarity evaluation. The
main contribution was the introduction of Information Content (defined in the preceding
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subsection) to the measure of semantic similarity measure. Resnik (1995) stated that the
similarity score of two concepts in an IS-A taxonomy equals the information content value
of their lowest common subsumer dominating them both). By considering the hierarchy
of concepts in a multidimensional space, Resnik (1995) identified the LCS as the specific
concept node that subsumes the pair of concept nodes whose similarity is being evaluated.
More precisely, this superordinate concept should be the first upward in this hierarchy that
subsumes both concepts (Jian and Conrath (1997)). The value of the information content
of a superordinate concept is then obtained by estimating the probability of occurrence of
this concept in a large text corpus. Following the definition of information content as given
priorly in equation 2.1, the similarity of two concepts according to Resnik (1995) can be
formally defined in equation 2.3 below:

SimR(c1,c2) =−logp(lcs(c1,c2)) (2.3)

Jiang-Conrath Measure

Jian and Conrath (1997) proposed a method that combines both edge-counting and node-
based approach. The result of experiments by Jian and Conrath (1997) confirmed that
information content approach proposed by Resnik (1995) provides a significant improvement
over the traditional edge counting method. Jian and Conrath (1997) also that the proposed
combined approach outperforms the approaches using information content only when both
the experiment output are correlated with similarity results based on human-judgement. The
Jiang-Conrath measure gives semantic scores in terms of distance between two concept
nodes. Jian and Conrath (1997) defined such distance metric by considering a particular
multidimensional semantic space where every node (concept) in the space lies on a specific
axis and has a mass (based on its information content or informativeness). The semantic
distance between any such two nodes is the difference of their semantic mass if they are on
the same axis or the addition of the two distances calculated from each node to a common
node where two axes meet if the two original nodes are on different axes (Jian and Conrath
(1997)). Formally as shown in equation 2.4, the similarity by iang-Conrath measure is defined
by the weight of the shortest path which links the concepts being compared and contains
their LSC.

DistJC(c1,c2) = IC(c1)+ IC(c2)−2 x IC(lcs(c1,c2)) (2.4)
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Lin Measure

The Lin semantic similarity measure also augment the information content of the LCS of
two concepts with the sum of the information content of the individual concepts. Lin (1998)
attempted to define a measure of similarity that would be both universal (applicable to
arbitrary objects) and theoretically justified (derived from a set of assumptions); rather than
being dependent on a particular application, domain, or resource, as was the case priorly.
Based on a set of assumptions that were directed towards the concerns above, Lin (1998)
proposed a metric for estimating similarity of two concepts A and B:
The similarity between A and B is measured by the ratio between the amount of information
needed to state their commonality and the information needed to fully describe what they
are (Budanistsky and Hirst (2005)). Lin’s measure of similarity between two concepts in a
taxonomy is an outcome of this theorem and is given in equation 2.5 below:

SimL(c1,c2) =

[
2 X logp(lsc(c1,c2))

logp(c1)X logp(c1)

]
(2.5)

The probabilities p(c) are determined in a manner similar to Resnik’s p(c) in equation 2.4.

Hirst-St-Onge Measure

The Hirst-St-Onge measure is a path based measure that computes semantic relatedness
as opposing to semantic similarity i.e. it considers not only the IS-A relation but all other
types of relationships between concepts in the taxonomy. Hirst and St-Onge (1998) classifies
relations in a taxonomy as having direction. The edges corresponding to an IS-A relation
are upwards, while those with HAS-PART relations are considered to be horizontal. The
semantic relatedness between two concepts is obtained by tracing a path between them,
that satisfies the criteria of neither being too long nor changes direction too often. For two
concepts c1 and c2 in a taxonomy, Hirst and St-Onge (1998) proposed a measure whose
approach may be summarised by the equation 2.6:

RelHS(c1,c2) =C − len(c1,c2) −K x turns(c1,c2). (2.6)

Where C and k according to Budanistsky and Hirst (2005) are constants (in practice, they
used C = 8 and K = 1), turns(c1,c2) is the number of times the path between c1 and c2

changes direction and len(c1,c2) is the length of the shortest path from concept c1 to c2.
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2.11.2 Corpus-Based Semantic Metrics

Corpus-based semantic measures use statistics on the natural distribution of words in large
volume of texts that maybe unstructured or semi-structured. According to Harispe et al.
(2013), they are based on NLP techniques which often rely on statistical analysis of word
usage in test, e.g. based on the analysis of word (co-)occurrences and the linguistic contexts
in which they occur. They are often referred to as distributional measures in literature
to highlight the dependence of the measures on distribution hypothesis. Distributional
hypothesis as proposed by states that words occurring in similar contexts convey similar
meaning. According to Harispe et al. (2013), studies of distributional measures are tightly
related to spatial representations of the semantic space which characterises a corpus and the
words to compare.

2.12 Evaluating Semantic Measures

Several works [Rubenstein and Goodenough (1965), Miller and Charles (1991), Pakhomov
et al. (2010)] have shown that there is high consistency and collective agreement on the
semantic similarity of pairs concept/words when the method for measurement is dependent
on human judgement. While studying the relationship between similarity of context and
similarity of meaning (synonymy), Rubenstein and Goodenough (1965) collected "synonymy
judgements" from 51 human subjects on 65 pairs of words. The pairs ranged from "highly
synonymous" to "semantically unrelated", and the subjects were asked to rate them, on the
scale of 0.0 to 4.0, according to their "similarity of meaning". A study by Miller and Charles
(1991) chose 30 pairs from the original 65, taking 10 from the "high level (between 3 and
4), 10 from the intermediate level (between 1 and 3), and 10 from the low level (0 to 1) of
semantic similarity", and then obtained similarity judgments from 38 subjects, given the
same instructions as Rubenstein and Goodenough (1965) on the 30 chosen pairs.

The following are more recent sets of word pairs that are correlated with human judgement
for measuring semantic similarity.

• WS353-Rel by Finkelstein et al. (2001) is made up of 353 pairs of words and 13 to 16
human subjects were asked to assign a numerical similarity score between 0.0 to 10.0
(0=totally unrelated and 10=very closely related). This dataset was collated to measure
general relatedness rather than similarity because as it takes into consideration kind of
semantic relations (e.g., antonyms are considered as similar).
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• WS353-Sim was created by Agirre et al. (2009), the dataset consists of 203 pairs
of words and is a subset of WS353. It is most notably used for evaluating semantic
similarity in literature.

• SimLex was created by Hill et al. (2015) and is the most recent of the set, consisting of
999 word pairs for evaluating semantic similarity. The dataset contains 111 adjective
pairs (A), 666 noun pairs (N), and 222 verb pairs (V). Each pair of words was rated by
at least 36 subjects (native English speakers) with similarity scores on a scale from
0.0 (no similarity) to 10.0 (exactly mean the same thing) and the average score was
assigned as final human judgement score.

The datasets are a list of triples with each comprising of two words and a similarity score
assigned by the human subjects. The human ratings on those word pairs have been proven to
be highly replicable. According to Resnik (1995), the correlation obtained from M&C with
respect to R&Gs experiment was 0.97. They replicated the M&C’s experiment again in 1995
using 10 computer science graduate students and post-doc researchers to assess similarity.
The correlation with respect to the M&C’s results was 0.96. This shows high consistency
with human assessment of semantic similarity between words. More recently, Schwartz and
Gomez (2011) used three different datasets based on human judgement to experimentally
show that there is between 73% to 89% inter-human agreement between scores of semantic
similarity associated to pairs of words.

2.13 Point of Interest Recommenders

The convergence of global position system (GPS) and Web 2.0 technologies has increased
the popularity of Location-Based Social Network LBSN. In LBSNs, users can start social
connections with other users, upload contents, and share their locations by check-in to
different points of interest (e.g. hotels, airports, restaurants, bars). Point-of-Interest (POI)
recommender systems have become essential to both users and providers of LBSN. Users
benefit from POI recommendations that help them explore attractive locations and providers
of LBSN services benefit from increased revenue by providing targeted services such as
location-aware advertisements.

POI recommender systems are a new type of recommender systems and several factors such
as shown in figure 2.2 influence the recommended POIs. POI recommender approaches differ
from traditional recommender systems techniques based on the three influencing factors
described below.
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Fig. 2.2 Factors Influencing POI Recommender System (Source: Zhao et al. (2016)).

2.13.1 Geographical Influence

According to Tobler (1970), everything is related to everything else, but near things are more
related than distant things. This statement is widely known as Tobler’s first law and in LBSN
it implies that most users will prefer to visit nearby locations rather than distant ones. This
kind of proximity influence is vital in POI recommender systems, and it distinguishes it
from traditional POI. Also, users are more interested in the POIs that are around the location
of the POI they have shown a preference towards. Several types of model to represent the
effects of proximity as it affects users’ visiting behaviours in POI recommenders are shown
in Zhang et al. (2012). One model by Ye et al. (2011) utilised power law distribution to
model geographical influence. Power law distribution pattern has been observed in human
mobility such as withdrawal activities in Automatic Teller Machines and travels in different
cities [Brockmann et al. (2006), Gonzalez et al. (2008)]. Ye et al. (2011) leveraged the
power law distribution to model the geographical influence and combine it with conventional
collaborative filtering techniques to recommend POIs. Other models considered in order
to incorporate geographical influence to improve POI recommendation are the Gaussian
distribution model, and kernel density estimation model and detailed in the survey by Zhao
et al. (2016).
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2.13.2 Social Influence

In traditional recommender systems, the assumptions that friends tend to have similar interests
have led to models that combine social relations with rating information to improve the
quality of item recommendation. The work of O’Donovan and Smyth (2005) and Jamali and
Ester (2010) are examples of memory-based models that reported benefits of including social
relationships to recommender systems. On the other hand, works by Ma et al. (2008) and
Guo et al. (2015) are model-based examples that have shown how beneficial social relations
are when utilised in recommender systems.

The success of the aforementioned efforts and others alike have prompted several researchers
to attempt to adopt the concepts of combining social relations with location check-ins in POI
recommender systems. However, results of work by Ye et al. (2010), Cheng et al. (2012) and
Gao et al. (2012) who proposed POI recommender models with social influence only showed
limited improvements. According to Zhao et al. (2016), this can be explained by the ease at
which users in LBSNs make friends online without any limitation. Studies by Ye et al. (2010)
have shown that a large number of friends in LBSN do not have any POI that they have
visited in common. Specifically, around 96% of users share less than 10% common visited
interest. Ye et al. (2010) and Zhao et al. (2016) concluded that social influence contributes
limited effects on users’ check-in behaviours.

2.13.3 Temporal Influence

Previous researches have demonstrated that temporal influence in traditional recommender
system can effectively model preferences users per time and improve recommendations
accordingly. Matrix factorisation approaches such as Koren et al. (2009) and random walk
based approach such and Xiang et al. (2010) is an example of successful implementation
of "time-aware" recommender models. In real life situations, there are physical constraints
on check-in activities of users at different POIs (e.g. opening or closing times). These time
constraints result into specific patterns of user behaviour and underscore the importance of
modelling temporal influence into POI recommender systems.

Temporal influence in LBSNs recommendation system are of three different types: periodicity,
consecutiveness, and non-uniformness(Zhao et al. (2016)). Periodic patterns are observable
at specific time periods. For example, customers often visit Restaurants at noon while
Nightclubs have higher visitations at night time. There are also weekly time trends such
as workplaces with high check-in during weekdays and shopping malls during weekends.
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Seasonal variation in the number of visits to certain POI are also recorded during national
holidays e.g. airports during bank holidays. This type of check-in activity where users visit
the same POI at certain time period has motivated researchers [Cho et al. (2011), Gao et al.
(2013a), Yuan et al. (2014), Yuan et al. (2013), Li et al. (2015)] to try to model such behaviour
for POI recommendation.

Consecutiveness is the type of check-in pattern that follows specific sequences in time and
succession in location. For example, a user may decide to do some exercise in the local gym
after long work hours. This check-in pattern according to Zhao et al. (2016) implies that
local gym and workplace are geographically adjacent in terms of venue function. Two POIs
with short check-in intervals are considered to be highly correlated and in work of Cheng
et al. (2013), Feng et al. (2015) they used the factorised personalized Markov Chain (FPMC)
model to recommend successive POIs.

Non-uniform temporal influences are check-in activities that show the variance in users
preference at different hours of the day, at different days of the week and at different months
of the year. A study by Gao et al. (2013a) using an example of a random user’s aggregated
check-in activities on the user’s top five most visited POIs showed that user’s check-in
preference changes at different hours of a day. Similar temporal characteristics also appear at
different months of a year and different days of a week. According to Zhao et al. (2016), a
user’s life custom may explain the non-uniform nature of his check-in: (1) At morning hours,
check-in at POIs close to the user’s home. Visit locations around the office during the day,
and have fun in the club at night time. (2) In a week, the users may check-in more around
home and office at weekdays and more at touristy POI and shopping malls at weekends. (3)
Users may prefer different food and entertainment during different months. A user may visit
ice cream shops and swimming pools and local beaches during summer and visit indoor
attracts during winter periods.

This type of temporal influence has been modelled to improve POI recommendations in the
work of Cheng et al. (2013), Gao et al. (2013a), Yuan et al. (2013) and Zhao et al. (2016)

2.13.4 Frequency Data and Sparsity

Conventional recommender systems depend on historic user-generated contents as a source
of user preferences that should be closely matched by items suggested by the system. In
contrast to conventional recommender systems where user preferences are indicated as a
rating on a scale, POI recommenders infer user preferences from the frequency of check-in
at different POIs. The frequency of a user’s visit to a POI cover a larger range compared
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to ratings (e.g. 1-5 or like/dislike). For example, a user may check-in to his/her a favourite
restaurant 100 times in a month, while checking into a less preferred location only a 10
times in the same month. Furthermore, the sparsity in utility (Users× Items) matrix of a
conventional recommender system is significantly smaller than the sparsity in the utility
(Users×POI) matrix in a POI recommender system.

In addition to the frequency of visit, other user-generated contents such as comments can
be used to enhance the POI recommendation. POI system users can provide additional
textual information beyond the check-in behaviour. Compared with the check-in activity, the
comments usually provide explicit preference information, which is a kind of complementary
explanations for the check-in behaviour (Zhao et al. (2016)). Contents in the form of user
comments have been harnessed for better recommendation by authors such as Yang et al.
(2013) and Gao et al. (2015).

2.14 Explaining Recommendations

The process of selecting a set of items to be recommended to users is an important step
in building an effective recommender system. In order for a recommender system to be
of value to users, the items recommended must be presented through an interface where
explanations about the recommendations can also be displayed to the users. According to Vig
et al. (2009), recommender systems tell users what items they might like while explanations
of recommendations reveal why they might like them. Explanations add several values to
the recommender system. Studies and surveys such as McSherry (2005) and Tintarev and
Masthoff (2007) have shown that trust, user satisfaction, and transparency are a broader set
of goals that contribute to the value that users get when they interact with a recommender
system. The work of Bilgic and Mooney (2005) showed that explanation assisted users in
making more accurate decisions. Herlocker et al. (2000) found that explanations improved
user satisfaction and acceptance of recommendations. Trust and loyalty were also found to
increase in Sinha and Swearingen (2002) when explanations accompany the set of items
recommended to users.

In the last two decades, recommender systems have evolved into useful tools that perform
well at guiding the user on how to manage the overwhelming information that they see
daily. In recommender systems literature, more research efforts have been directed towards
recommender models’ accuracy than advancing the way the recommendations are brought
to users. Studies, however, suggests that users want explanations of their recommendations.
According to Vig et al. (2009), a survey of users of a movie recommender site showed
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that 86% of those surveyed wanted an explanation feature added to the site. Generally,
users want explanations to reveal how items recommended to them are related to their
personal preferences. A conventional way of presenting the relationship between users and
the recommended item is to use an "intermediary entity". As illustrated in figure 2.3, an
intermediary entity is used to infer the relationship between a user and a recommended item
based on the relationship the user has with other users or items in the system. Explanations of
recommendations fall into one of three categories: item-based, user-based, and feature-based,
depending on the type of intermediary entity used to relate the user to the recommended item
(Vig et al. (2009)).

Fig. 2.3 Intermediary entities relating users to recommended items (Source: Vig et al. (2009)).

In explanations that are item-based, a set of items that a user has liked or ranked are used as
the intermediary entity. User-based explanations compare historic feedback of a target user
with other to establish similarity in taste and then utilise the users as intermediary entities.
Feature-based explanations use attributes of the recommended item as intermediary entities.
For example, book recommender systems use book attributes like author, genre, and publisher
to justify relationships between users and items recommended.

2.14.1 Tag-based Explanations

Tags quickly become abundant in systems that allow organisation of user-generated contents
into categories because they enhance navigation of content. Tags may describe what an item
is, what it is about or they may suggest the item have certain features

(
Golder and Huberman

(2006)
)
. Tags have been demonstrated to provide both factual and subjective descriptions(

Sen et al. (2006)
)
. The information tags can reveal about items make them useful as a

feature-based intermediary entity for explaining a recommendation. However, tag quality
varies in different social tagging systems and usefulness of each tag need to be assessed
before they are exploited for an explanation.
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Vig et al. (2009) defined two ways—tag relevance and tag preference—for assessing tag
quality. Tag relevance represents the degree to which a tag describes a given item while tag
preference measures the user’s sentiment to the given tag, for example, the number of likes
or dislikes a user assigns to a particular genre, e.g. comedy-action. Tag-based explanations
such as presented in Guy et al. (2010) show how a tag relates to an item and how the user
relates to the tag. An example of a text description for a tag-based explanation given to a
movie (Predator) is shown below:

"You have been recommended the movie Predator because it is tagged with explosion and
you have enjoyed other movies tagged with explosion".

Tag-based cross-domain recommender systems that utilise memory-based models can use
tags as intermediary entities in a similar approach to conventional collaborative recommender
systems. The textual description can be extended in cases where the semantic relatedness
of tags has been used to recommend more items. An example of the explanation text for a
tag-based cross-domain model is stated below:

"You have been recommended the movie Predator because it is tagged with explosion and
you have enjoyed other movies tagged with war which has a 74% similarity to explosion".

2.14.2 Explainable Recommendation for Latent Factors Models

Latent factor models such as matrix factorisation are more challenging to explain because the
representations for users and items are projected to a latent space. The user and item feature
vectors are defined in a low dimensional latent space where each dimension represents a
particular factor that influences user decisions. While the factors are represented in the latent
space with reduced dimensions, the meanings of these factors are not explicitly known, and
therefore the recommendations provided by latent factor models are difficult to explain.

Research efforts by Zhang et al. (2014) and Chen et al. (2016) show more recent approaches
that extract explicit product features from textual user reviews and align each latent dimension
in matrix factorisation with a particular explicit feature. The proposed approach utilises
the explicit features to give personalised explanations to users for items recommended. A
generic example of such explanation is as follows:

"The product is recommended because you are interested in a particular feature, and this
product performs well on the feature".

Tags like reviews are user-generated texts and can, therefore, be processed to extract explicit
features from items in a similar manner described by Zhang et al. (2014). In tag-based
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cross-domain recommender systems that are matrix factorisation models, the labels of the
processed tags can be used directly to name/identify the latent features. As a result, the
explanation for a recommended movie item (e.g. Predator) with the identified latent feature
"explosion" can follow the textual sample below:

"The movie Predator is recommended because you are interested in the movie feature
explosion which is highly relevant to Predator".



Chapter 3

Methodology for semantically enhancing
Cross-domain Recommender Systems

There are several reasons, both in the information technology industry and in academia for
mining latent features from different domains. A relevant use case to our work involves
mining features from a dense domain (i.e. one with low sparsity) in order to transfer
the patterns learned to a different but similar domain whose sparsity is high. In the
case of classification, Pan and Yang (2010) states that it is desirable to use available
structure/knowledge of an auxiliary application domain to help build better classifiers/clusters
for a target domain. Specifically, recent approaches considered for cross-domain collaborative
filtering have been implemented in Shi et al. (2011), Enrich et al. (2013) and Fernández-Tobías
and Cantador (2014) to extend conventional single-domain recommendation techniques by
integrating additional resources/metadata (e.g. tags) from auxiliary domains. These extra
resources enrich those traditionally required (e.g. rating values) for the recommendation
process. Cantador and Cremonesi (2014) Recognised that utilising cross-domain techniques
in recommender systems can be an opportunity or a problem. The auxiliary domain can
be a potential source of bias if it is substantially richer in resources than the target domain.
Recommender algorithms in such cases learn how to recommend items to users in the
auxiliary domain while falling short for users in the target domain. The auxiliary domain can
also be a potential source of noise if the user models in the two domains differ significantly.
This can lead the recommender system to treat features from the auxiliary domain as
noise during the learning process due to the dissimilarity in user profile representation.
Consequently, choosing a methodology that can enhance the use of latent features from
auxiliary domains in cross-domain recommender model is of high importance.
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In this chapter, we first provide formal definition of the terms that are key to constructing
our semantically enhanced cross-domain recommender model. In section 3.2, we review
previous works that are closely related to our approach. A general experimental set-up
based on collective matrix factorization is presented in section 3.3 as our methodology. A
framework and the test-bed for our experiments is also presented in section 3.3. We describe
the metrics we used to evaluate the performance of our model in section 3.4.

3.1 Introduction

In this chapter, we first provide a formal definition of the terms that are key to constructing
our semantically enhanced cross-domain recommender model. In section 3.2, we review
previous works that are closely related to our approach. A general experimental set-up
based on collective matrix factorisation is presented in section 3.3 as our methodology. A
framework and the test-bed for our experiments is also presented in section 3.3. We describe
the metrics we used to evaluate the performance of our model in section 3.4.

Definition 1: Items and Item Factors

Items are objects which have relative utility/value to the different users evaluating them.
In order to formally define item-factors, we shall consider a type of collaborative filtering
technique known as Model-based1 technique. According to Koren (2008), the latent factor
in model-based collaborative filtering tries to explain the rating value users give to items
by users in a way that characterises both items and users on 20 to 100 factors (Koren et al.
(2009). These factors are inferred from the history of rating values already recorded in the
system.

In a latent factor space of dimensionality k, let I be the set of all items. The item factors
are components of the vector function q(i) representing the profile of an item i ∈ I. The
components quantify the extent to which the item possesses those factors, i.e. in small or
large amounts. The function q below maps an item i to the specific set of n factors/features
that differentiates it from other items within the latent space.

q : I→ IRk

i 7→ q(i) = { f1, f2, f3, . . . , fn}
where1≤ n≤ k.

1Model-based techniques are described in detail with references to literature in section 2.3 of chapter two
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The parameter n is the total number of specific factors that characterise an item, and k is
the dimension of the space and the maximum number of factors that can define items in
the space. For items such as movies, Koren et al. (2009) states that the discovered factors
might measure obvious dimensions such as comedy versus drama, amount of action, or
orientation to children; less well-defined dimensions such as depth of character development
or quirkiness; or completely uninterpretable dimensions.
Example 1. In the case of a movie recommender system, let us consider a latent space with
a dimensionality k = 2. These dimensions are indicated by the 2 perpendicular axes of the
graph in figure 3.1. Let us take orientation towards children (i.e. PG rating) and comedy
as two hypothetical factors. Assuming the intervals (as shown by grids of figure 3.1) for
the factors are in increasing order2 of strength; G, PG, PG-13, R, NC-17 for PG-rating and
comedy-adventure, comedy-fantasy, comedy-drama, comedy-romance, comedy-horror for
comedy factor. A movie such as Toy Story will have a location in the space on the higher

Fig. 3.1 A simplified illustration of item and users factors using two components: comedy vs
orientation towards children.

2We note that the order of hypothetical factors for the latent space is subjective and open to personal
interpretations. The order used for the explanation in this section are those of the researcher.
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side of comedy and lower side of PG rating while the location of the rest will follow the
order of the list of the factors as in table 3.1.

Table 3.1 Hypothetical Scale of item (movie) factors in a latent space of dimension k = 2

PG-Rating Factor Comedy-Level Factor

Toy Story G Comedy adventure

Gremlins PG Comedy fantasy

Devil Wears Prada PG-13 Comedy drama

Prettty Woman R Comedy romance

Zombieland R Comedy horror

Definition 2: Users and User Factors

Users of a recommender system are the human agents that have the choice to register the
level of satisfaction received from consuming an item and its resources. A user is modelled
in the system by a user profile. The user profile is a way of representing the set of item
resources that the user has indicated a preference for by giving explicit or implicit feedback.
In terms of representations that are key to dimensionality reduction, users can be described
by factors that model the users according to the degree of influence the factors have on the
user. Formally, let U be set of all users, if we consider a latent factor space of dimensionality
k, the user factors are components of the vector function p(u) that represent the taste of
user u. The function p below projects the profile of a user u in the latent space as a set of n
factors/features that distinguishes him/her from other users in overall set of users U within
the space.

p : U → IRk

u 7→ p(u) = { f1, f2, f3, . . . , fn}
where1≤ n≤ k.

The parameter n is the total number of specific factors that inform a user’s preferential
tendencies, and k is the dimension of the space and the maximum number of factors that can
influence users’ choices in the space.

Example 2. If users and item factors are assumed to be in the joint latent space of figure
3.1, then the following scenarios can be observed. A teenage user "Bob" who is strongly
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influenced by comedy movies that contain horror scenes will be in the position similar to
where the movie "Gremlin" is in the space. A user "Rita", who is captivated by comedies
with a lot of romance in it will be around the location of the movie "Pretty Woman". A more
neutral user "John" who is an energetic young adult and driven towards comedies that are
intertwined with dramatic plot will be found around the area of the movie "Devil Wears Prada".

Definition 3: Ratings and Tag Assignments

For a collaborative recommendation system to achieve the purpose of its design, the history
of the responses of users to items they have previously been interested in would have been
collected and stored in the system. These user responses help to establish the level of approval
an item receives from the users who assign a value within a scale to indicate how much the
item appeals to them. These values are known as ratings and can typically be on multiple
numeric ranges (e.g. 1-5 stars) or binary (e.g. like/dislike). Additionally, users may have
the choice to annotate items by assigning tags to reveal their opinion after utilising the item.
These tags are typically natural language terms and can, therefore, be processed for semantic
information using Natural Language Processing (NLP) techniques.

If the sets of all users, items, ratings and tags are respectively denoted by U , I, R and T ; then
function ρ can be applied to any user-item pair (u, i) to obtain a rating value and a set of tags
that user u assigned to item i to register his opinion about the item. Let rui denote the rating a
user u gives to item i and let tui denote the set of tags that user u gives to item i.

ρ : U× I→ R× IP(T )

(u, i) 7→ ρ(u, i) =
(
rui, tui

)
The value of rui can be any value within the allowable range in a system’s preference
measuring scale e.g. 5 stars, dislike or like. An instance of tag vector tui gives the set of
free-form text i.e. tags that user u assigns to item i.
Example 3. Let the profile of all users, items with their respective rating and tagging
information be in the same latent space with two factors. A possible scenario in the space
may be represented as the user-item pairs in figure 3.2. Collaborative filtering models can
use the rating and tagging information by implementing neighbourhood techniques or model-
based techniques. According to Barbieri et al. (2014), neighbourhood models are effective at
detecting strong but local relationships, as they explicitly model local similarities.

Model-based approaches typically utilise dimensionality reduction techniques and hence
focus on the estimation of weak but global relationships. To predict missing ratings for "Bob"
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or "Moses" in the example of figure 3.2, neighbourhood techniques will compute rating and
tagging similarity of other users in their respective vicinity (e.g arc around "Bob" and arc
around "Moses") and make a prediction based on the rating values in the neighbourhood
vicinity. Whereas, model-based techniques will compute similarity based on the association
all users (including "Adam", "John" and "Rita") and items (including "Devil wears prada",
"Zombieland" and "Pretty woman") have with a set of underlying factors such as comedy or
pg rating.

Fig. 3.2 A simplified illustration of the item, users, rating and tag factors, which characterises both
users and movies using two axes: comedy vs orientation towards children.

Definition 4: Domains

Different notions of a domain have been considered in literature of recommender systems. In
the context of cross-domain recommender systems, Fernández-Tobías (2016) distinguished
domain types according to the attributes and types of recommended items. We adopt the item
level notion where recommended items are not of the same type and differ in most of their
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attributes. For instance, movies and books belong to different domains, even though they
have some attributes in common (title, release/publication year).

Following the definition of items and users in the preceding subsections, we consider a
domain as a collection of items and users that have given some ratings and/or tags to items in
the collection. The concept of a domain is therefore formalised as follows:

If D is the set of all domains, then the function α maps a domain d to a subset of items
belonging to the domain d; while the function β returns the set of users that rate or tag items
in the domain d.

α : D→ IP(I)

d 7→ α(d) = {i1, i2, i3, . . . , ix}

β : D→ IP(U)

d 7→ β (d) = {u1,u2,u3, . . . ,uy}

The total number of items in the domain is denoted by x, while y is the number of users that
tag/rate items in the domain with 1≤ x≤| IP(I) | and 1≤ y≤| IP(U) | respectively.

In a description that utilises matrix notation, a domain can be represented as a rating matrix
that has its users and items arranged in an array of multiple rows and columns. Elements
of the matrix are the rating values that users assign to items, and those with missing values
imply that users have either not consumed the item yet or did not supply a value to indicate
their preference for the item.

Example 4. In order for conventional collaboration and recommendation to be possible in a
cross-domain setting, an overlap/intersection of the users and/or items should exist between
the two domains i.e.; α(d1)∩α(d2) ̸= /0 and/or β (d1)∩β (d2) ̸= /0. Figures 3.3a, 3.3b and
3.3c illustrate cases where recommendation can be achieved from collaboration of common
users and/or items. Examples of the case in figure 3.3a is a book domain and a movie domain
with common users subscribed to both. While an example for the case in figure 3.3b can
be two different video streaming websites that offer a few common movie items to entirely
different users. Figure 3.3c illustrates the case contrary to figure 3.3b where some users are
common to both movie streaming sites that stream completely different movie items.

Figure 3.3d exemplifies a case where there are neither users nor items that are common
between the domains. Conventional collaborative techniques like the neighbourhood models
become less accurate at recommending as there are no direct means of establishing similarity



3.1 Introduction 50

of users. Such a case, therefore, makes it essential to explore techniques that can consider
other features (such as implicit or metadata information) for similarity.

Fig. 3.3 Different scenarios of domain interactions: (a) User and item overlap, (b) Item overlap, (c)
User overlap, (d) No overlap.
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Definition 5: Matrix Factorization

MF techniques involve decomposing a rating matrix into two smaller matrices that are
the best low-rank linear approximation of the original matrix. According to (Koren et al.
(2009)), MF is one of the most successful realisations of the latent factor model3. A low-rank
approximation provides a low-dimensional representation of the original high dimensional
rating matrix (Barbieri et al. (2014)). A variation of MF relevant to recommender systems
is known as Singular Value Decomposition (SVD). SVD is derived from a linear algebra
theorem which states that a rectangular matrix R can be reduced into the product of three
matrices - an orthogonal matrix P, a diagonal matrix D, and the transpose of an orthogonal
matrix Q (Golub and Van Loan (1989)).

R = P×D×QT (3.1)

In equation 3.1, the columns of P are orthonormal singular vectors of RRT , the columns of Q
are orthonormal singular vectors of RT R, and D is a diagonal matrix containing the square
roots of singular values from P or Q in descending order.

Example 5. Given a n×m rating matrix R, where n is the number of users and m is the
number of items, the SVD model finds the singular values4 of R by breaking it down into a
product of 3 matrices. Going by the movie example in the definitions above, singular value
decomposition of R denoted as SV D(R), given that k = 2, is the matrix Rk shown in equation
3.2 reduced to the corresponding user singular vectors of matrix P, the diagonal matrix D
with square root of singular values of P and item singular vectors of matrix Q. The derived
matrix Rk is not an exact match of R and the process of finding the k largest single values
reveals the underlying structure of R and the association its users and items have with the
latent factors k.

SV D(R) = Rk = P×D×QT (3.2)

If we recall the definition of item factors and user factors in the definitions 1 and 2. Let qi

and pu be the be the item and user factors of a space with dimension k. The value of each
element of Rk can be computed by equation 3.3 below:

r̂ui = pu ·qT
i (3.3)

3Latent factor models are described in details in section 2.4 of chapter two.
4The square roots of the k eigenvalues of RT R are the singular values of R.
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3.2 Related Methods

Recent research works are exploiting the techniques of Cross-domain recommendation with
the goal of improving on the limitations of conventional single-domain CF systems. One of
the earliest investigations on cross-domain recommendation was that conducted by Winoto
and Tang (2008). They speculated that, although cross-domain recommendations may result
in lesser precision than traditional recommenders, the former will be more diverse, which
may lead to higher user satisfaction and engagement. As further research into the field
leads to improved outcomes, more authors have highlighted the advantages of cross-domain
recommendation technique in their work. One example is the work of Abel et al. (2011)
which gathered additional data from users social web to tackle the cold-start problem. Enrich
et al. (2013) worked on minimising the sparsity problem using the commonality of domain
tags. According to Moreno et al. (2012), cross-domain techniques typically originate in the
machine learning literature and most specifically from Transfer Learning (TL). Details of the
work of Zhang et al. (2012) included the use of transfer learning techniques for recommender
systems applications in order to improve predictions in sparse target domains by reusing
data from a related domain. A more detailed classification of the cross-domain techniques
available in literature is presented by Cantador and Cremonesi (2014), where they grouped
each technique under two broader categories based on how the knowledge from the source
domain is exploited.

3.2.1 Transferring Domain Knowledge

Techniques that use the approach of transferring/linking of knowledge generally relate a
source and target domain by means of their shared features or by transferring rating patterns
between domains. A prominent work in this category is that of Li et al. (2009) which proposed
transferring user-item rating patterns from a dense source rating matrix in a single domain to a
sparse rating matrix in a related target domain. However, the method generalises for all cases
by assuming that multiple domains share a common rating pattern based on the user-item
co-clustering. Other methods in this group have extended the Collective Matrix Factorisation
algorithm to learn the latent user and item features and transfer the knowledge from one
domain to another. These approaches typically use the latent features from knowledge sources
(e.g. item attributes, semantic networks) that are common in both domains as a "bridge"
between the domains. These methods, however, tend to be computationally expensive when
compared with other approaches and can be limited by its generalisation that contents from
knowledge sources in the different domains have the same meaning.



3.3 Methodology 53

3.2.2 Aggregating Domain Knowledge

The aggregating knowledge category mostly includes techniques that involve merging user
preferences into a unified model. A study by Li et al. (2009) on form-based profiles
investigated explicit data that users created on the social web and developed cross-system
modelling strategies for recommendation systems. The heterogeneity of domains, however,
restricts the implementation to profiles that are explicitly provided by users on the social
web. The second technique in this group combines user models from the source and target
domain into an aggregate two-dimensional matrix representation over which a traditional
single domain recommendation technique is then applied. As proposed by Berkovsky et al.
(2008), individual recommendations from different single domain recommender systems can
be aggregated across the different domains and averaged to obtain the preference of a user in
the target domain. For such cross-domain recommendations to be fairly accurate, users or
item features have significant overlaps in the source and target domains.

Fernández-Tobías et al. (2011) presents the method of linking domains by using common
knowledge and semantics. They introduced a generic framework that uses DBpedia as the
basis of integrating knowledge from several domains to provide cross-domain recommendations.
The framework demonstrated the benefits of using the semantic information of items to link
concepts from two domains. However, this work does not consider historic behaviour of
users in the domain when determining item’s relevance. Another drawback is that an expert
has to identify manually the semantic entities and relations of DBpedia, which can then be
used to describe and link the domains of interest. Another approach that used semantic web
technologies was proposed by Loizou (2009), which also uses a graph structure to represent
relations between domains. A Markov chain model was used to produce recommendations
by finding the probability of traversing the graph towards a particular item, using the nodes in
the user’s profile as starting points. Articles on Wikipedia are used as a universal vocabulary
to provide the semantic information on items from various domains. In cases where there are
no Wikipedia articles for items being linked, the approach resorts to using free-form tags and
discards the conceptual hierarchy of the item.

3.3 Methodology

The general description of our experimental set-up is presented in the following section. This
set-up served as the test-bed for the experiments in chapters 4 and 5. We note here that our
methodology is in agreement with those in previous MF-models such as proposed by Shi et al.
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(2011), Enrich et al. (2013) and Fernández-Tobías and Cantador (2014). In a similar manner
to these authors, we use a collective matrix factorisation approach as originally proposed in
Singh and Gordon (2008). Specifically, a single collection of matrices is constructed from the
concatenation of matrices from an auxiliary and a target domain before matrix factorisation.
As it is in the previous work, our model does not differentiate between the source and target
domains. According to Fernández-Tobías and Cantador (2014), this type of joint factorisation
of the auxiliary and target matrices corresponds to the factorisation of the single matrix that
results from concatenating the rating matrices of both domains.

In extending MF models for rating prediction task, our methodology differs from previous
approaches in the type of tag sets considered for inclusion into the MF model. In addition
to tags that are common in the target and auxiliary domain, we considered tags that are
also similar between the domains. Primarily, we set-up our experiment to investigate the
assumption that rating prediction accuracy is improved when there are more tags common
between a target and an auxiliary domain.

We hypothesise that the prediction accuracy of MF-based cross domain recommender model
increases when the number of common tags in the target and the auxiliary domain is increased
by including tags that are semantically related. We test if the addition of tags that are
semantically related to the number of common tags between a target and auxiliary domains
have any outcome on the accuracy of predictions. A high-level representation of the phases
involved in our first experiment is presented in figure 3.4. The key processes in the phases
are described in the following subsections.

3.3.1 Cross-domain Datasets

According to the survey by Fernández-Tobías et al. (2012), the most used datasets have been
Movielens, Netflix and EachMovie for the movie domain; BookCrossing and LibraryThing
for the book domain; and Last.fm for the music domain. A newly released dataset with
multiple domains was made public by He and McAuley (2016)5. The dataset contains
product reviews and ratings and product metadata such as category information, price and
brand from Amazon. The Amazon datasets, however, does not include tagging information
since Amazon does not provide a social tagging component on their website.

In order to model a cross-domain collaborative filtering scenario for our experiment, we
downloaded two well known, publicly available datasets for the movies and books recommen-

5The amazon dataset can be downloaded from http://jmcauley.ucsd.edu/data/amazon/
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Fig. 3.4 Experimental set up for evaluating our model.

dation domains, namely the MovieLens6 and the LibraryThing datasets7. Furthermore, a
dataset from Yelp8 was downloaded to evaluate the proposed cross-domain recommender
model for POI recommendation in Chapter 6.

The general criterion for selecting datasets used in the experiment stage is that the data
must have attributes that support evaluation of the cross-domain recommender systems. The
performance of the proposed cross-domain models is evaluated against the recommendation
goals for which the models were developed—addressing the posed research questions.
Specific criteria for selecting the datasets used in our experiments are summarised below:

• Tags for Inter-Domain Relations - Cross-domain recommendations require establishing
explicit relations between domains. The relations may be as a result of common content-
based attributes between items or on rating-based relations between users/items. Inter-
domain relations can also be formed from the aggregation of user profiles composed
of social tags and semantic concepts. In the last case, there is no need for user or item
overlap between domains, since tags and concepts are used as a common representation
to establish relationships over multiple domains.

6The MovieLens dataset was downloaded from https://grouplens.org/datasets/movielens/
7The LibraryThing dataset was downloaded from http://www.macle.nl/tud/LT
8The Yelp dataset was downloaded from https://www.yelp.co.uk/dataset/challenge
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• Item Level Domains - One important issue in the evaluation of cross-domain recommendation
approaches is the non-availability of repositories with data to simulate different cross-
domain scenarios. In order to address this limitation, a usual approach has been the
splitting of datasets into subsets that are then considered as different domains, e.g.
books with distinct category. We impose the stricter criterion of using datasets from
domains that are different at the item level .i.e, the recommended items are not of the
same type. For example, movies and books as opposing to genres of movies.

• Baseline Models for Comparison - Cross-domain recommendation is a challenging
and still largely underexplored topic (Fernández-Tobías (2016)). There has not yet
been a consensus among researchers on what overall evaluation of cross-domain
recommendation should entail. As a result, we compared the performance of the
proposed models against state of the art cross-domain recommender models using the
same datasets in author’s work.

3.3.2 Feature Extraction

In order to extract tag features from the datasets, we first carried out text preprocessing by
tokenizing the tags, removing punctuations and stop words, and lemmatizing the tags to their
dictionary form. After preprocessing the dataset, we further removed tags that were used by
less than 1% of users in the domain or tags assigned to less than 1% of items in the domain.
Generally, the relevance (importance) of a tag to a domain is estimated by the frequency
of use of the tags by users and on items of the domains. We extracted features from the
preprocessed tags by using the popular Term Frequency-Item Document Frequency (tf-idf)
weighting scheme such as in Roelleke and Wang (2008) and Wu et al. (2008). Tfidf weight
of a term in a document is defined by equation (3.4), where t ft,d is the frequency of the term
in the document, d ft is the number of documents the term appear in, and N is total number
of documents in the corpus.

t f id ft,d = t ft,d× log(
N

d ft
) (3.4)

Formally, users are represented by user profiles and items by item profiles. If the set of users
and items are represented by user profiles U and I respectively, then the set of tags in each
user or item profile can be denoted by T (u) and T (i), where u ∈U and i ∈ I.
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Let t ftu,u denote the term frequency of tag tu obtained from the number of the times tu is
assigned by user u. Let t fti,i denote the term frequency of ti calculated by the number of the
tag assignments made to the items i. The document frequencies d ftu,u and d fti,i are calculated
by respectively counting the number of users that assigned tag tu and the number of items the
tag ti is assigned to in the domain.

The tfidf weights of tag tu where tu ∈ T (u) is computed according to equation (3.5); while
weights of tag ti, with ti ∈ T (i) is computed using equation (3.6).

t f id ftu,u = t ftu,u× log
(
|U |

d ftu,u

)
(3.4)

t f id fti,i = t fti,i× log
(
|I|

d fti,i

)
(3.5)

Finally, the average tfidf is computed over all user and item profile to select the most relevant
tags in the domains.

3.3.3 Semantic Metric Selection

The five measures [Lin measure (Lin 1998), Resnik measure (Resnik 1995), Leacock-
Chodorow measure (Leacock and Chodorow 1998), Wu-Palmer (Wu and Palmer (1994)) and
Jiang-Conrath measure (Jiang and Conrath 1997)] that we considered for evaluating semantic
similarity/relatedness of tag-concepts have been compared by Budanistsky and Hirst (2005)
using the survey of the human subjects above to determine how well the measures reflect
human judgements of semantic relatedness. While correlating the measures with human
judgements is the ideal way to evaluate a measure of similarity or semantic relatedness,
in practice the small amount of data available (and only for similarity, not relatedness) is
inadequate (Budanistsky and Hirst (2005)). Creating an all-encompassing set of concept
pairs that cover the range of tags in our dataset and conducting surveys for responses from
human subjects on the degree of similarity would be an enormous and resource intensive
task.

Recent approaches such as in Bill et al. (2012) evaluate the various semantic similarity
and relatedness measures on how well they predict if concept pairs are drawn from a
single category (intra-category) or across different categories (inter-category). According
to Bill et al. (2012), a basic aggregate test of automated similarity scores is that the average
relatedness of terms within a category is higher than the average relatedness of that category’s
terms to the terms in a different category. We followed the suggestion of Budanistsky and
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Hirst (2005) that one can not tell only by looking at the scores of a measure how good it is
but it is when using the measures to perform a task that one can evaluate how well they work.
As a result, we treat the metric selection process as a classification task in our experiments
were the best at predicting whether tag pairs are drawn from a single domain or otherwise.

Furthermore, we conjecture that the ability to return the largest number of meaningful scores
from a set of concept pairs is indicative of a semantic measure that can adequately cover the
diverse range of word senses and concepts in the domains. When such measure is used to
score similarity there can be higher confidence that the free-form nature of how users initially
tagged items are preserved, and the semantic relationships of the concepts measured have
not been limited. Our intuition aligns with the ideas considered in Bill et al. (2012) where
"Concept Coverage" was utilised in evaluating semantic relatedness/similarity for performing
queries in the Medical Dictionary for Regulatory Activities (MedDRA).

3.3.4 Semantic Enhancement

After selecting our semantic metric, we first set aside tags that are members of the intersection
(i.e. common tags) between the auxiliary and target domains. The remaining tags were then
processed for semantic relatedness by using the Lin1 similarity metrics. We regarded two
tags from the two different domains as being semantically related if their relatedness score is
above a set threshold. The performance of the MF model on rating prediction accuracy after
enriching tags in the intersect was tested at relatedness score thresholds from 10% - 90%.

WordNet comprises of words that encapsulate concepts which have distinct meanings and are
linked together by different types of semantic relationships. The network of words/concepts
that make up the WordNet lexical database can be analysed using standard metrics (e.g.
Lin similarity metric) that can measure semantic similarity between words. Pairs of tags
(each with a tag from the two domains) are mapped to corresponding concepts in the lexical
database of WordNet. This is achieved by directly matching word form of the tags with word
form of the WordNet concepts that gives the highest semantic similarity value.

3.4 Model Evaluation

The training phase of our model uses stochastic gradient decent typically utilized in learning
the parameters required for predicting missing rating values in a high dimensional rating

1Lin metric was selected among others based on empirical experiments detailed in Chapter 4



3.5 Evaluation Metrics 59

matrix [Koren et al. (2009), Enrich et al. (2013), Manzato (2013), Shi et al. (2011), Fernández-
Tobías and Cantador (2014)]. General inputs essential to SGD algorithm for learning the
parameters used by the prediction models are unique users/items identifiers, rating values,
the learning rate, regularisation parameter and latent factors. In cases where the prediction
model takes additional inputs to make more accurate predictions, the SGD algorithm will
consequently require unique identifies for the attributes.

According to Gantner et al. (2010), additional information about users (user attributes, e.g.
gender, age, geographical location, occupation) and items (item attributes, e.g. genres,
product categories, keywords) can be added to the latent features of the matrix before
the dimensionality reduction process using SVD. Using SGD, the values of the prediction
parameters are updated by moving in the opposite direction of the gradient. Let an actual
rating value rui and a predicted rating value ˆrui. Let the error eui be the difference between
actual and predicted rating value (rui - ˆrui). Let β be a model’s parameter and α be the rate
of the gradient’s descent. In matrix factorisation, SGD finds a local minimum of an error
function by updating the model’s parameters after iterating over all known values of matrix
elements at the rate α . Stochastic gradient descent shifts β in the direction of maximum
descent of the local loss, given by its gradient:

β ← β −α

(
δeui

δβ

)
.

The performance of the model we proposed to accomplish the objective above is measured
based on its accuracy of predicting missing ratings (on test sets) in a set-up that simulates a
cross-domain scenario.

3.5 Evaluation Metrics

An evaluation metric should measure how well a recommender system achieves the purpose
for which it was developed. According to Kohavi et al. (2009) and Crook et al. (2009), there
is higher confidence that the result of a recommender system will be useful when the metrics
selected accurately reflect the specific goals of the recommender system being evaluated. In
practice, improved customer satisfaction and higher profitability are general examples of
objectives for implementing the system. On the other hand, specific objectives for using a
particular recommendation approach may be to address the cold-start and sparsity problems.
According to Quadrana et al. (2018), recommender systems are one of the most successful
applications of data mining and machine learning technology in practice. Recommender
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systems can be considered as machine learning systems specialised to suggest products in
commerce applications (Schafer et al. (2001)).

According to Hastie et al. (2009), the performance of a system that uses machine learning
methods is measured with a loss function that penalises prediction errors. Machine learning
methods applied to tasks like recommendation learn the parameters of a model in order to
predict/estimate outcome(dependent) variables from predictor(independent) variables. There
are two type of recommendation tasks that are distinguishable based on the types of the
outcome variable and their measurement scale:

• Rating Prediction Task - requires that a numeric outcome variable, e.g. numerical
ratings for an item on a scale 1-5. Rating prediction recommenders aim to accurately
estimate ratings that users will give to items (e.g. movies, books, music) they are yet
to utilise; and recommend items with the highest rating estimations.

• Item Recommendation or Ranking Task - requires that a nominal outcome variable,
e.g. a list of items users may like to utilise or POIs they may be interested in visiting.
Recommenders that address the item prediction task try to determine an ordered list of
the items that are most likely to correspond with the preference of to the user.

Prior to selecting an evaluation metric, the purpose of a recommender system must be defined
and mapped to one of the two tasks above. An evaluation metric is subsequently used to give
an order to the performances of different recommendation models used to test how well the
system has met the purpose. According to Gunawardana and Shani (2009), it is important
that the metric match the task, to avoid an inappropriate ranking of the candidates.

3.5.1 Rating Prediction Accuracy

In order to address the question of how accurate the ratings estimated by a recommender are
compared to the actual user ratings, two variant of rating prediction metrics can be considered.
They are the mean absolute error (MAE) and root mean squared error (RMSE) and defined
as follows:

MAE =
1

| Rtest | ∑
rui∈Rtest

| rui− ˆrui |

RMSE =

√
1

| Rtest | ∑
rui∈Rtest

(rui− ˆrui)2
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Where Rtest contains the ratings in the test set reserved—i.e. as ground truth—for comparing
with the estimated rating values during evaluation.

These two types of metrics are popular in the evaluation of recommender systems that use
non-binary ratings. This is attributed to the ease of setting up experiments that use the metrics.
However, the errors for RMSE are first squared before they the average is computed. As a
result, RMSE gives a relatively high weight to large errors in comparison to the MAE metric.
The MAE is a linear measurement which means that all the individual deviations in rating
prediction are weighted equally in the average.

The models proposed in chapter four and five of this work where the predicted outcome
variable (ratings) is of the numeric type were evaluated using a rating prediction metric.
Specifically, the rating prediction accuracy of the proposed models was calculated based
on the MAE and compared to accuracies of other state-of-the-art models in a cross-domain
‘experimental set-up.

3.5.2 Item Recommendation Accuracy

The accuracy of recommender systems that generate item recommendations relies on
information on whether an item was selected or not selected by the user. In contrast to
rating prediction task where the dataset is very sparse because users typically rate very small
number of items, the feedback in item recommendation techniques are binary and dense since
each item is either selected or not by the user. In addition, item recommendation techniques
impose an order of preference on the set of items recommended to the user.

When measuring the accuracy of item recommendation methods, we are interested in finding
out how many items from a previously held-out set (i.e. set aside as ground truth) gets returned
as part of the recommendations. Let U be the set of all users in the recommender system.
Let N be the total number of recommended items to user u ∈U . The item recommendation
accuracy is generally evaluated using two metrics based on:

• the ratio of returned items to the total number of recommended item N.

• the ratio of returned items in N to the number of items previously set aside as ground
truth.

The former is known as Precision@N while the latter is Recall@N, and collectively referred
to as Performance@N. In the experiment of chapter six where multi-category POIs processed
as cross-domain items and POI check-ins as binary feedback, we test the performance of our
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proposed models when N = 5, 10, 20. The overall scores for these metrics are calculated by
averaging the values for all the users set aside as ground truth.

Precision@N =
1
|U | ∑u∈U

| Retu@N |
N

Recall@N =
1
|U | ∑u∈U

| Retu@N |
| Retu |

In the formulae above, Retu is the set of items returned for user u, and Retu@N is the set of
items returned for user u that are in the top N positions of the ranked recommendations.

3.5.3 Precision and Recall for Rating Prediction

In the past decade, the rating prediction task has been the most popular approach taken
to address the lack of personalisation in commercial platforms. This is likely due to the
availability of datasets containing user preferences in the form of ratings, and academic
competitions such as the Netflix Prize. In more recent years, however, this trend has taken
a turn toward item recommendation task, as experimental evidence such as in McNee et al.
(2006) and Cremonesi et al. (2011) have shown that more accurate rating predictions do
not necessarily lead to higher user satisfaction. In rating-based recommender systems, it
is common practice to recommend items that have the best rating predictions to users.
As a result, metrics for item recommendation task such as precision or recall can be
used to evaluate the accuracy of the items recommended. However, studies by Marlin
and Zemel (2009) and Cremonesi et al. (2010) show that this approach does not result in
recommendations that are clearly optimal. Furthermore, Steck (2010) argued that ratings are
missing not at random and that this causes most rating prediction models to generate biased
estimations.

In order to make the explicit rating values given to items to align more with the binary
type used in item recommendation task and to avoid the missing not at random scenario,
ratings can be treated as positive only. On the one hand, the ratings may be considered as
binary based on whether the item has been rated or not rated. On the other hand, items
with high estimated ratings, e.g. 4 and 5 on a scale of 1-5 can be considered as rated while
the remainder are treated as not rated since they are not likely to be recommended to the
user. Precision and recall can then be used to evaluate the performance of the cross-domain
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recommender systems. We leave this as a future direction for researchers who may be
interested in evaluating rating-based cross-domain recommenders using precision and recall.

3.5.4 Item Diversity in Cross-domain Recommenders

There are different properties of a recommender system that can be measured as indicators
of performance. On the one hand, the whole recommender system can be evaluated by
measuring how changes in all system properties affect the overall user experience. On the
other hand, the focus of evaluation may be on certain properties of the system. According
to Shani and Gunawardana (2011), some of the properties can be traded-off, the most
obvious example perhaps is the decline in accuracy when other properties (e.g. diversity)
are improved. It is important to understand and evaluate these trade-offs and their effect
on the overall performance. According to Adomavicius and Tuzhilin (2008), there is a
trade-off between accuracy and diversity, because high accuracy may often be obtained by
safely recommending to users the most popular ("bestselling") items, which can lead to the
reduction in recommendation diversity, i.e., less personalized recommendations.

As diversity may come at the expense of other properties, such as accuracy, there is a need to
compute curves to evaluate the decrease in accuracy against the increase in diversity Zhang
and Hurley (2008). Diversity metrics evaluate how different items recommended to a user are
with respect to each other. According to Shani and Gunawardana (2011), the most explored
method for measuring diversity uses item-item similarity, typically based on item content.
The diversity of a recommended list could be measured based on the sum, average, minimum,
or maximum distance between item pairs, or measure the value of adding each item to the
recommendation (Shani and Gunawardana (2011)).

Diversity is generally considered as the opposite of similarity (Shani and Gunawardana
(2011)). There are certain scenarios when recommending a set of similar items may not be as
useful for the user, because the user may require more time to go through the range of items
in the list. As a result, the set of similar, redundant items in a recommendation list may not
add much to the user’s satisfaction. In these cases, the diversity of recommendations can be
improved by exploiting the choices available in multiple domains. Multiple and cross-domain
recommenders may provide better coverage of the range of preferences available for users.
Winoto and Tang (2008) conjectured that, although cross-domain recommendations may tend
to be less precise than single-domain recommendations, cross-domain recommenders will be
more diverse, which may lead to higher user satisfaction and engagement. Subsequently, Li
et al. (2009) proposed methods to effectively learn and transfer knowledge from the source
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domain to the target, and in alignment with the work of Fernández-Tobías et al. (2016)
found that the quality of the recommendations improves when the involved domains are
semantically more related.



Chapter 4

Cross-domain Recommender System
with Semantically Related Tags

Advances in mobile and personal computing technology have led to the success and pervasiveness
of social tagging systems. Nowadays, users can collect contents through several devices and
label their collection with words (known as tags) of their choice for better organisation and
future retrieval. Users can also choose to publish or share their collections with the assigned
labels. Several online platforms have emerged to allow users to store their tagged collections
such as photos in Flickr, songs in Lastfm, videos on YouTube, and news on Digg.

The platforms providing the tag sharing services can harness the vast collection of tags to
provide item recommendation and further encourage collaboration among the community of
users. The collaborative process of sharing and using the set of tags generates a tag structure
(also known as folksonomy) in a social tagging system. This organisation of the tags is
"user-driven", and as a result, it can be a source of implicit user preferences. Features have
been extracted from the collection of tags for use in models that are designed to improve user
rating prediction and item recommendation accuracy.

In this chapter we used a recent matrix factorisation model for cross-domain collaborative
filtering to investigate how rating prediction accuracy is affected as the number of related tags
between two domains is increased. In Section 4.1, we highlight the benefits of positive-only
data to prediction accuracy; and present our motivation for utilising social tags as additional
positive-only data for cross-domain models. In section 4.2 we briefly review the most recent
approaches that use tags for recommendation, focusing on those based on matrix factorisation
to support cross-domain recommendations. In Section 4.3 we present our proposed approach
to improving the performance of the cross-domain recommender model. Next, in Section
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4.4 we describe the experiments conducted to evaluate the performance of the model at
different thresholds of semantic relatedness, and in Section 4.5 we discuss the results of our
experiments. In concluding our work in this chapter, we summarise findings and put forward
our contribution to knowledge.

4.1 Introduction

User feedback is referred to as positive-only when the behaviour that creates the feedback is
an implicit and binary action. Example of implicit feedbacks that are considered as positive-
only include; web browsing history, videos watched, songs listened to, books checked out
from a library, adds clicked on. Positive-only data can also be extracted from explicit data.
As an example, explicit data such as ratings can give binary implicit data (rated or not rated)
or explicit data such as tagging can yield implicit data (i.e tagged or not tagged). Koren
(2008) has shown that it is possible to make rating prediction accuracy better by combining
both implicit and explicit data.

In proposing the popular SVD++ algorithm, Koren et al. (2009) utilized the pseudo–implicit
user feedback and reported that incorporating such simple implicit user feedback increases the
prediction accuracy regardless of its binary nature. Social tags have also been used as positive-
only feedback data for improving the performance of collaborative filtering algorithms.
Prediction accuracy results of models in the work of Enrich et al. (2013) and Fernández-
Tobías and Cantador (2014) show that social tags can be used as additional feedback for
Matrix Factorization models in cross-domain collaborative recommender systems.

Cross-domain recommender systems are a new and evolving type of recommender systems.
According to Fernández-Tobías and Cantador (2014), they exploit more exhaustive multi-
domain user models that allow generating item recommendation spanning several domains.
In this chapter, we review recent approaches to cross-domain recommendation, with a focus
on those that utilise social tags to transfer knowledge from an auxiliary domain for enhancing
rating predictions in a target domain. We particularly concentrated on extensions of the matrix
factorisation approaches as originally proposed by Enrich et al. (2013) and Fernández-Tobías
and Cantador (2014). The authors introduced new latent factors to add the contributions of
users’ and items’ tags attributes to the predicted rating value.
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4.2 Related Work

As detailed in definition 5 of chapter 3, SVD reduces a high dimensional matrix to its low
dimensional equivalent. The process imposes an order on the low dimensional estimate in a
manner that arranges the underlying features of the original dataset according to the effect
they have on its variance (i.e. decreasing order from the feature that results to most variation
to the one with the least). What makes SVD practical for NLP applications is that one can
overlook variations that are below a particular threshold in order to massively reduce the data
while still having the assurance that the primary relationships of interest have been preserved
(Baker (2005)).

Another important advantage that SVD brings to collaborative filtering is its ability to use
various types of data and adopt other requirements that may be specific to a recommender
system (Koren et al. (2009)). This allows for the inclusion of other types of user feedbacks
such as tags alongside the ratings that were explicitly provided. As a result, many authors have
adapted its core principles to incorporate more information that enables a better understanding
of item and users in recommender systems. In the following subsections, we discuss the
approaches that have extended SVD to include implicit information and/or item and user
metadata; and later show how our model builds on them.

4.2.1 SVD++

The accuracy of predicting missing values in a rating matrix can be improved by considering
implicit user feedbacks which provide an additional indication of the users’ preferences. In
this type of MF model, user preferences are recorded as a combination of both the explicit
and implicit feedback obtained respectively from the deliberate and indeliberate actions of
users as they observe the items. The SVD++ model estimates the values in a rating matrix
by supplementing the user factors which models how users rate with implicit feedbacks (i.e.
what users rate) as shown in equation 4.1 below. Specifically, the implicit feedback used
in this model is obtained from the rating users give to items. Koren et al. (2009) state that
even when independent implicit feedback is absent, one can capture a significant signal by
considering which items users rate, regardless of their rating value.

r̂ui = q⃗i
T .

(
p⃗u+ | N(u) |−

1
2 ∑

j∈N(u)
y⃗ j

)
(4.1)
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The SVD++ model was proposed by Koren (2008) and as it is with the regular SVD model,
the parameters qi ∈ IRk and pu ∈ IRk represents item and user factors in a joint latent space.
While y j ∈ IRk represents the implicit feedback factor (i.e. rating factor). The parameter
N(u) is the set of items for which the user u provided implicit feedbacks, and k is the number
of latent factors and the dimensionality of the space. According to Koren et al. (2009), the
implicit feedback factor is added to equation 4.1 with a square root in order to stabilise the
variance of the factors across the range of observed rating values in | N(u) |.

An objective function denoted hereafter as the error function is derived from the difference
between the predicted ratings and the actual values of the known ratings in the original
matrix.

eui = rui− ˆrui (4.2)

The best value for the parameters of equation 4.1 is achieved when the error is at its minimum
value. The predicted value can be lower or higher than the real value, and as a result, the
square of the difference as in equation 4.3 is considered during optimisation.

ε = ∑
u,i∈R

(rui− r̂ui)
2 (4.3)

When equation 4.1 is substituted into 4.3 above and differentiated we can obtain estimates for
weights of all the model’s parameters needed to make rating predictions. An iterative/incremental
learning process known as stochastic gradient decent popularised by Funk (2006) during the
Netflix competition has proven to be successful at estimating the parameters.

ε(p,q,y) = ∑
u,i∈R

rui−qT
i

pu+ | N(u) |−
1
2 ∑

j∈N(u)
y j

2

(4.4)

4.2.2 SVD++ with Metadata Inclusion

One limitation of implementing SVD++ technique in recommender systems is its inability to
benefit from cross-domain based collaborative filtering. This is due to the domain-specific
nature of the type of feature factor (i.e. implicit rating factor) being introduced to supplement
the user factor in the model equation. Since the rating value that users give to items are
specific to the user-item pair, they are therefore disjoint across domains. However, the
context around the moment a rating is given can be captured by the metadata (e.g. tags) the
user provides during the rating process. Such metadata can occur across domains since the
circumstance at the moment a user rates an item can reoccur in multiple domains. The main
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assumption to be considered according to Enrich et al. (2013) is that as a set of common tags
that are associated with high ratings exist between the domains. Experimental results from
the works of Enrich et al. (2013) and Fernández-Tobías and Cantador (2014) are evidence of
the potential of tag-based cross-domain recommender system.

In the model proposed by Enrich et al. (2013), tag factors replace the implicit rating feedback
factor in the SVD++ model. The tag factors are added to modify the item factors portion of
the SVD++ model as shown in equation 4.5 and then combined with user factors to compute
rating estimations.

r̂ui = pu.

(
qi +

1
| TR(i) | ∑

t∈TR(i)
yt

)
(4.5)

The latent variable yt ∈ IRk represents the feature factor from the metadata (tags). TR(i) is
the set of all the relevant tags assigned by the user community to item i. The dimensionality
k of the space is the number of latent factors considered for the items and users vectors.

In order to fully exploit the preferences of users as indicated by the tags they assign,
Fernández-Tobías and Cantador (2014) proposed to extend the model by adding a set of
latent variables xu ∈ IRk. The intentions of Fernández-Tobías and Cantador (2014) were to
enrich the user’s factors portion and account for the contributions of the tags given by users
in the estimation of overall rating value. Specifically, two different set of tag factors (for
users and items) were introduced to the original SVD++ model as shown in equation 4.6.

r̂ui =

(
pu +

1
| TR(u) | ∑

v∈TR(u)
xu

)
.

(
qi +

1
| TR(i) | ∑

t∈TR(i)
yt

)
(4.6)

The variable xu ∈ IRk is the latent factor for tags that users have given to items, and the
variable yt ∈ IRk is the latent factor for tags that have been assigned to items. The parameter
TR(u) is the set of all the tags assigned by the user "u" to any item, and TR(i) is the set of tags
assigned to item "i" by any user.

4.3 Cross-Domain Recommender Model

The goal of our experiments in this chapter is to investigate the changes to rating prediction
accuracy when the number of tags considered as common across two domains is increased.
We used the model named "TagGSVD++" and proposed by Fernández-Tobías and Cantador
(2014) as the MF model for our approach to cross-domain recommender system. Our
justification for using TagGSVD++ as a framework for our cross-domain recommender
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model is based on its improved accuracy over other MF-based models as tested and reported
by Fernández-Tobías and Cantador (2014). The authors concluded that exploiting additional
tag factors and decoupling user and item components in a matrix factorisation process
improves the accuracy of rating predictions. What is not yet clear is how the number of
semantically related tags in the target and auxiliary domains contribute to the performance of
the model on rating prediction task.

4.3.1 Model Formulation

We grouped the tags in both target and auxiliary domain into five sets. These set of tags are
formally defined below, and the relationships they share are as illustrated in figure 4.1:

• Unique Tag Sets: this set contain tags whose character string are different in a target
domain Dt and an auxiliary domain Da. If tag tt ∈ Dt and ta ∈ Da and characters of
tt are not the same as the characters of ta, then we regard the pair of tags tt and ta as
being unique. We denote these sets of tags as T u

Dt
(t) and T u

Da
(t) for domains Dt and Da

respectively.

• Common Tag Set: the elements of this set are tags in both the auxiliary and target
domain that have same string of characters (i.e. they occur word for word). If tags tt
and ta in their respective domains are such that characters of tt = ta, then we regard the
two tags as common across domains Dt and Da. We denote the common tag set with
Tc(t) and tt = ta ∈ Tc(t).

• Semantically Related Tag Set: this set contain tags related but have been assigned
with different string characters in the target and auxiliary domains. Relatedness of
a tag pair (tt , ta) is determined by Lin metric proposed by Lin (1998) and described
in chapter two. The semantically related tag set is denoted as Tr(t). If the tags "tt"
and "ta" are from "Dt" and "Da" respectively, and characters of tt ̸= ta but relatedness
score of tag pair (tt , ta) is greater than threshold1 "s" then we consider the tags as
semantically related and tt ≃ ta. The tag pair (tt , ta) ∈ Tr(t).

• Adjusted Unique Tag Sets: these sets are the subsets of unique tag sets TDt (t) and
TDa(t). Adjusted unique tag sets are the sets that remain after TDt (t) and TDa(t)
have been modified to reflect the transfer of tags considered to be related (after the
relatedness measure by Lin metric) to the semantically related tag set Tr(t). We denote

1The thresholds where set at 10 intervals on a scale between 0.1-1.0 for the Lin metric scores of tag pairs
from tag and auxiliary domains.
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adjusted unique tag set for domain Dt and Da as T a
Dt
(t) and T a

Da
(t) respectively. We

calculate the size of the adjusted unique tag sets as :
|T a

Dt
(t)| = |T u

Dt
(t)| - |Tr(t)|

|T a
Da
(t)| = |T u

Da
(t)| - |Tr(t)|

• Adjusted Domain Tag Sets: these sets are superset in domains "Dt" and "Da" that
are the union of common tag set, semantically related tag set and the adjusted unique
tag set. We denote adjusted domain tag set by TD(t) and calculate their size in Dt and
Da by:
|TDt (t)| = |Tc(t)| + |Tr(t)| + |T a

Dt
(t)|

|TDa(t)| = |Tc(t)| + |Tr(t)| + |T a
Da
(t)|

Fig. 4.1 Relationship between tag sets of a cross-domain recommender system.

We recall the model proposed by Fernández-Tobías and Cantador (2014) and discussed
in section 4.2 as equation 4.7; and note here that our approach uses this same model.
However, the set of tags we use as input to the model have been modified according to the
relatedness of tags across the domains. These alternative sets of tags described in 4.3.1
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allow us to investigate the contribution of semantically related tags to rating prediction
accuracy at different relatedness threshold. We re-write the cross-domain recommender
model proposed by Fernández-Tobías and Cantador (2014) and redefine the parameters to
reflect the adjustment—after computing semantic relatedness—to tag sets of a target domain
where rating prediction is to be estimated.

r̂ui =

p⃗u + |TDt (u)|
−1

∑
a∈TDt (u)

x⃗a

 .

q⃗i + |TDt (i)|
−1

∑
b∈TDt (i)

y⃗b

 (4.7)

The predicted rating of an item i for a user u in a target domain Dt is denoted by rui in
equation 4.7. The user and item factors are represented by vectors p⃗u and q⃗i. The user and
item tag-factors are represented by x⃗a and y⃗b respectively. The set of tags that user u in Dt

has assigned to any item is represented by TDt (u). Similarly, the set of tags assigned by any
user to item i in Dt is represented by TDt (i) in equation 4.7.

We note here that sets TDt (u) and TDt (i) are the adjusted domain tag sets for user u and item
i in the target domain Dt . If the tags assigned by user u to any item in the target domain
does not belong to the set of semantically related tags, then our model behaves exactly like
TagGSVD++ proposed by Fernández-Tobías and Cantador (2014). For such a case, the
tag set TDt (u) will be a union of common tag set and the unique tag set assigned by user u.
Similarly, the tag set TDt (i) will be the union of common tag set and unique tag set assigned
to item i. The predicted rating value rui of item i to user u will not have any contribution
from semantically grouped tags.

4.3.2 Estimation of Semantic Relatedness

In order to find tags in the semantically related set, we first paired tags in the unique tag
set of a target domain Dt with tags in the unique tag set of an auxiliary domain Da. For
example, let T u

Dt
(t) and T u

Da
(t) be unique tag set of Dt and Da, if tt ∈ T u

Dt
(t) and ta ∈ T u

Da
(t)

then we estimated the semantic relatedness of tag pair (tt ,ta) using the Lin semantic metric.
As proposed by Lin (1998) and presented in equation 2.4 of chapter two, the Lin metric uses
the taxonomic hierarchy of WordNet to compute the similarity between two words.

We regard the two tags in the pair (tt ,ta) as being semantically related if their Lin metric
score is higher than a set threshold. We substitute both tags tt and ta with the word that
corresponds to their least common ancestor in WordNet taxonomy when their relatedness
score is greater than the set threshold. The steps of algorithm 4.1 describe our approach
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of estimating semantic relatedness using Lin semantic metric. Tags that are selected as
semantically related are finally added to the sets of common tags and adjusted unique tags to
estimate the weights for the user and item tag-factor vectors x⃗a and y⃗b.

Algorithm 4.1. Lin Semantic Metric for increasing size of semantically related tags between
target and auxiliary domain

1: Input: Unique tag sets T u
Dt
(t),T u

Da
(t) in Target and Auxiliary Domain, Threshold r

2: Output: Adjusted Domain tag sets TDa(t),TDa(t) in Target and Auxiliary Domain
3: procedure Relatedness
4: for all tt ∈ T u

Dt
(t) do

5: for all ta ∈ T u
Da
(t) do

6: scorett ta ← LINsim(tt , ta)
7: if scorett ta ≥ r then
8: tt = lcs(st ,sa)

9: ta = lcs(st ,sa)

10: end if
11: end for
12: end for
13: end procedure
14: function LINsim(tt , ta)
15: st ← synset of tt from WordNet
16: sa← synset of ta from WordNet
17: lcs(st ,sa)← lowest common subsumer of stand sa in WordNet taxonomy
18: IC(lcs(st ,sa))← Information content of the lowest common subsumer
19: IC(st)← Information content of synset st

20: IC(sa)← Information content of synset sa

21: sim← 2∗ IC(lcs(st ,sa))/(IC(st)+ IC(sa)) # Computed according to Lin (1998)
22: return max(sim)

4.3.3 Estimation of Model’s Parameter Weights

As described in the methodology section of chapter three, we used stochastic gradient descent
algorithm to estimate the weights of parameters p⃗u, q⃗i, x⃗a and y⃗b. The regularized squared
error function of our model is presented in equation 4.8 and minimised using SGD to find
parameter weights that best fits the model.

ε(p,q,x,y) =

[
rui−

((
p⃗u + |TDt (u)|

−1
∑

a∈TDt (u)
x⃗a

)
.
(

q⃗i + |TDt (i)|
−1

∑
b∈TDt (i)

y⃗b

))]2
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+λ

[
| p⃗u |2 + | q⃗i |2 + ∑

a∈TDt (u)
| x⃗a |2 + ∑

b∈TDt (i)
| y⃗b |2

]
(4.8)

A regularisation parameter "λ" is introduced into the squared error function as in equation
(4.8) to control the estimated parameter values and to avoid "overfitting" the model. The value
of λ is determined during experiments by cross-validation. In order apply SGD algorithm
to the proposed model, the squared error function of equation 4.8 is first differentiated with
respect to each of the factors pu, qi, xa and yb.

δeui
δ p⃗u

=−2eui

(
q⃗i +

1
|TDt (i)|

∑
b∈TDt (i)

y⃗b

)
+2λ p⃗u

δeui
δ q⃗i

=−2eui

(
p⃗u +

1
|TDt (u)|

∑
a∈T (u)

x⃗a

)
+2λ q⃗i

δeui
δ x⃗a

=−2eui

(
q⃗i +

1
|TDt (i)|

∑
b∈TDt (i)

y⃗b

)
+2λ x⃗a

δeui
δ y⃗b

=−2eui

(
p⃗u +

1
|TDt (u)|

∑
a∈TDt (u)

x⃗a

)
+2λ y⃗b

These derivatives are used during the training phase to simultaneously update the parameters
(priorly initialised with random Gaussian values) by looping over the known rating values
until its converges. The parameter "α" in the following update rules is known as the learning
rate and used to determine how fast the error function converges to obtain the best values for
the parameters.

p⃗u← p⃗u−α

(
δeui
δ p⃗u

)
,

q⃗i← q⃗i−α

(
δeui
δ q⃗i

)
,

x⃗a← x⃗a−α

(
δeui
δ x⃗a

)
,

y⃗b← y⃗b−α

(
δeui
δ y⃗b

)
.

The most optimal value for the learning rate "α" is determined by cross-validation during
experimentation. The steps in algorithm 4.2 show how SGD is used for estimating the
values of the parameters of our model. Specifically, steps 8 to 11 of algorithm 4.2 show how
derivatives are used to update the model’s parameters at each iteration until convergence is
reached.



4.4 Experiment I 75

Algorithm 4.2. SGD algorithm for SemTagGSVD++

1: Input: Set of ratings rui, Adjusted Target Domain Tag Sets TDt (u),TDt (i),
Regularization parameter λ , Learning rate α, Number of latent factors k

2: Output: Weights of parameters q⃗i, p⃗u, x⃗a, y⃗b

3: Initialize q⃗i, p⃗u, x⃗a, y⃗b with random values;

4: For count = 1,....,#Iterations

5: Foreach rui do

6: r̂ui← r̂ui =

(
p⃗u + |TDt (u)|

−1
∑

a∈TDt (u)
x⃗a

)
.

(
q⃗i + |TDt (i)|

−1
∑

b∈TDt (i)
y⃗b

)

7: eui = rui− ˆrui

8: p⃗u← p⃗u−α

(
δeui
δ p⃗u

)
9: q⃗i← q⃗i−α

(
δeui
δ q⃗i

)
10: x⃗a← x⃗a−α

(
δeui
δ x⃗a

)
11: y⃗b← y⃗b−α

(
δeui
δ y⃗b

)
12: end

13: end

4.4 Experiment I

The first experiment was carried out to determine which of the standard semantic metric
will be best for measuring semantic relatedness/similarity of tags between a target and
auxiliary domain. After preliminary observations we were left with four out of the five
semantic metrics, namely; Lin measure (Lin 1998), Resnik measure (Resnik 1995), Leacock-
Chodorow measure (Leacock and Chodorow 1998) and Jiang-Conrath measure (Jiang and
Conrath 1997). The fifth metric known as Hirst-St-Onge measure was described in section
2.9.1. The number of meaningful scores it returned was significantly smaller in comparison
with other metrics. It also required a significant amount of system resource in to generate the
similarity scores for the tag pairs as indicated by the low number of similarity score returned
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in the same computation time1. Consequently, the concept coverage for the Hirst-St-Onge
measure was already too insufficient to compare with the rest of the metrics.

4.4.1 Datasets

Datasets from two different online rating systems and applications (Movie and Book) were
used to represent a target and an auxiliary domain. In both datasets, the ratings are on a
zero to five scale, with interval increments of 0.5. These datasets are commonly used in
recommender system literature [Manzato (2013), Enrich et al. (2013), Fernández-Tobías and
Cantador (2014) e.t.c]. The datasets are publicly available and have been made open-source
for the research community.

• MovieLens 10 Million Ratings: This dataset has 10 million ratings and 100,000 tag
assignments applied by 72,000 users on 10,000 movies. We note from the rating and
tagging systems of MovieLens that the action of assigning tags to items was optional
for users in the compilation of the datasets. Therefore, some items were rated but did
not have tags assigned to them. Such ratings were excluded from the dataset since
the aim of this work was to investigate the effects on rating prediction accuracy when
the number of tags considered to be common with another domain is increased. This
resulted in a selection of 44,804 rating data for movie items which had been given a
single rating value and assigned one or more tags by users of the system.

• LibraryThing 700K ratings: The LibraryThing dataset had over 700 thousand ratings
and 2 million tag assignments applied by over 7,000 users on 37,000 books. We
preprocessed the dataset by removing ratings of book items which had no tag assigned
for the same reason described for the MovieLens dataset. This resulted in 74,191 rating
data on the book items which had at least one tag assigned.

The statistics above and other important details about the datasets from the two types of
rating systems are as given in table 4.1. It is clear from table 4.1 that several tags are not a
member of the intersect (i.e. not common) between both domains. Specifically, there are
7,737 tags of the MovieLens and 3,386 of the LibraryThing that are distinct across both
datasets.

We preprocessed these tags by removing most of the tags that were assigned as sentences and
compound words that do not occur in the database of Wordnet. This resulted in 2,126 tags

1Computational performance of the different Semantic Similarity Metric is shown in table B.1 of Appendix
B.
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Table 4.1 Tags from 24,564 MovieLens and LibraryThing ratings selected for semantic
metrics evaluation

MovieLens LibraryThing

Users 2026 244

Items 5,086 12,554

Tags 9,059 4,708

Common tags 1,322 1,322

Tag assignments 44,804 74,191

Average ratings per user 12.12 100.67

Average tag assignment per users 22.11 304.06

Average tag assignment per items 8.81 5.91

% of tags overlapping with LibraryThing / MovieLens 13.81% 28.68%

for Movielens and 1,944 tags for LibraryThing. These tag pairs were used to decide which
of the five semantic metrics will be given the most optimal result in increasing the number of
commonly shared tags across the two domains.

4.4.2 Methodology

We measured the similarity between the distinct tags from the two datasets by using the
Natural Language Tool Kit (NLTK)2 to obtain numeric values that estimates the similarity
according to the algorithms for each metric. The higher the value, the higher the similarity
between the tags. In the absence of an extensive inter-human agreement on tag-pairs, we
cast the problem of finding the best semantic metric as a classification problem. We took
into consideration the knowledge that concepts pairs from the same dataset or domain are
generally more related than otherwise. We evaluated the various semantic similarity and
relatedness measures on how well they predict if concept pairs are drawn from the same
dataset/domain (intra-domain) or different ones (inter-domain). The result of comparing
the performance of each of the five different metrics is presented as the area under the
curve using receiver operator characteristic (ROC) curves. As earlier indicated, the set of

2NLTK is a platform for building Python programs to work with human language data and it implements
a variety of semantic similarity and relatedness measures based on information found in the lexical database
WordNet.



4.4 Experiment I 78

concept pairs used in generating the curve varied from metric to metric. In each of the cases,
the meaningful scores that were returned by the metrics were included as part of the total
tag/concept coverage while the undefined results were excluded.

We used pROC153 library as methods for constructing ROC curves for each metric. A new
variable called outcome was introduced and set to a value of 1 or 0 to respectively indicate if
the concept/tag pair belongs to the same dataset/domain or not, as shown in table 4.2 This
variable and the similarity scores between the tag pairs were used as input to pROC15 to
create the curves.

Sensitivity measured the proportion of correctly classified positive scores (scores greater
than the set threshold); while specificity was used to evaluate the proportion of correctly
classified negative scores as the threshold is set to all the possible range of tag-pair similarity
values. We obtained values for specificity and sensitivity at any threshold t with respect to
the outcome variable 4 by following the equations below.

Sensitivity(t) is computed as;

(No. of scores≥ t with outcome 1)
(No. of scores≥ t with outcome 1) + (No. of scores < t with outcome 1)

while the value of Specitivity(t) is obtained by;

(No. of scores≥ t with outcome 0)
(No. of scores≥ t with outcome 0) + (No. of scores < t with outcome 0)

4.4.3 Results I

Sensitivity and specificity value for the each of the scores (i.e. set as thresholds) within
this group were used to generate the ROC curve. The area under that curve (AUC) was
interpreted as the overall effectiveness of the particular similarity metric. We carried out
the process for the five different similarity metrics and observed the differences in each
area under the curve. Figure 4.2 and table 4.2 respectively shows the resulting ROC and
AUC for the Leacock-Chodorow measure, Wu Palmer, Resnik measure, Lin measure and
Jiang-Conrath measures. The Lin measure was the best with an overall area of 0.639 under
the corresponding ROC curve.

3An R package to display and analyse ROC curves
4Outcome has a binary value set to 1 for intra-domain and 0 for as inter domain
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Fig. 4.2 ROC curve for Lin measure (LIN), Resnik (RES) measure, Leacock-Chodorow (LC) measure
and Jiang-Conrath (JC) measures and Wu Palmer (WUP)

Table 4.2 Area under the curve for semantic metrics

Metric Category Outcome Thresholds Area Under Curve

intra 1 682
Leacock-Chodorow inter 0 441 0.514

intra 1 512
Wu-Palmer inter 0 401 0.527

intra 1 265
Resnik inter 0 154 0.576

intra 1 301
Lin inter 0 156 0.639

intra 1 349
Jiang-Conrath inter 0 224 0.592
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4.5 Experiment II

The goal of the second experiment in this chapter was to investigate the assumption that an
increase in the size of tag intersect between two domains corresponds to an increase in rating
prediction accuracy.

4.5.1 Methodology

Our methodology is based on the collective matrix factorisation approached proposed by
Singh and Gordon (2008). One advantage of collective matrix factorisation models is that
they simultaneously factorise several sparse matrices which share latent factors in the same
vector space into a denser equivalent matrix. The benefit of this approach to our rating
prediction task is that it allows us to exploit the semantic relationship that tags features in
the target domain shares with tag features in an auxiliary domain for improved prediction
accuracy. In a similar procedure to related works such as Shi et al. (2011), Enrich et al. (2013),
Manzato (2013) and Fernández-Tobías and Cantador (2014), we prepared the target and
auxiliary domains for collective matrix factorization by concatenating their rating matrices.

The data on users, items, ratings and tags were structured in a two-dimensional array (i.e.
table), with the first-row index as the unique identifiers. We created a single matrix from
the concatenation of the target and auxiliary rating matrices. The resulting matrix was then
partitioned into different sets for evaluation as illustrated in figure 4.3. Our data partitioning
process is similar to the methodologies of Sarwar et al. (2001), Enrich et al. (2013), Manzato
(2013) and Fernández-Tobías and Cantador (2014). The authors minimised bias by setting
aside a portion of the dataset for validation before training and testing their models.

The total number of ratings for our combined matrix is obtained from the sum of ratings
from MovieLens and LibraryThing datasets (i.e. 17,465 + 17,465 = 34,930 ratings). We first
shuffled the 17,465 rating data for the domain selected as the target domain and then divided
it into ten parts for ten-fold cross-validation. For each round of validation, we used one of the
divisions (i.e. 10% x 17,465 = 1,7465 ratings) as the test and the remaining data as training
and validation set. Out of the 90% (15,718 ratings) left, we set aside 20% (20% x 15,718 =
3,143 ratings) as a validation set to determine the optimal value for the model’s secondary
parameters (i.e the number of factors, learning rate and regularization parameter).

5The last division had five ratings more than the rest to cover for the remainder in the other divisions
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Fig. 4.3 Concatenating Target and Auxiliary Domain Matrices for collective matrix factorization.

The remaining ratings (i.e 12,576 ratings) in the target domain is added to the entire (17,465
ratings) from the auxiliary domain to make up the training set (12,576 + 17,465 = 30,040
ratings). In order to cross-validate rating values predicted by our models, the selection
process was repeated according to the partitions after reshuffling the target domain dataset.
We conducted ten rounds of validations and measured our model’s performance by averaging
the mean absolute error of the predicted ratings across all the ten validation folds.

4.5.2 Evaluated Thresholds

To determine how the accuracy of predicted rating values changes with increasing number of
semantically related tag features, we considered ten different levels of semantic relatedness
between unique tag features from the movie and book domains. As discussed in the
methodology section of chapter 3, we used the Lin semantic metric to estimate the semantic
relatedness of inter-domain tag features. According to Lin (1998), the Lin semantic metric
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gives scores for relatedness of word pairs in a range from 0.0 to 1.0. The least related word
pairs have similarity scores closer to 0.0, while the most similar words score closer to 1.0.
Words that are considered as fairly similar have their Lin semantic metric score around the
centre (0.5) of the range. As a result, we used an interval scale of measurement to set the level
of semantic relatedness of tag features from the movie and book domain. As a baseline, we
used the cross-domain recommender model as proposed by Fernández-Tobías and Cantador
(2014) where semantic relatedness of inter-domain tag features is not considered at all. The
subsequent thresholds were set to nine different levels from 0.1 (10% semantic relatedness)
to 0.9 (90% semantic relatedness) at intervals of 0.1.

As indicated in the preceding subsection, we set aside 20% of the target domain data in each
of the ten divisions (i.e. folds) of the target domain dataset for validating the model and
finding the optimal values for the model parameters. After several random approximation of
the parameter values, we tuned the parameters by using grid search to find values for which
the predicted ratings had the least mean absolute error. At every set threshold of semantic
relatedness, the model’s parameter values (i.e. number of features " f ", learning rate "α" and
regularization "λ ") which gave the best prediction results were determined using grid search.

4.5.3 Results II

As detailed in the methodology section of chapter 3, Tf-IDF weighting scheme was used to
extract tag features from each domain. The ranges of the Tf-IDF scores and the number of
tag features obtained from the movie and book domain are shown in table 4.3.

Table 4.3 Number of Tag features from MovieLens and LibraryThing tag sets

No. of Doc. TF-IDF Range No. of features

LT User tag profile as Doc. 243 0.0901 - 0.0007 1,197

LT Item tag profile as Doc. 11,285 0.1208 - 0.0048 108

ML User tag profile as Doc. 1,558 0.0364 - 0.0016 298

ML Item tag profile as Doc. 3,775 0.0489 - 0.0020 161

The total number of relevant tags in the target and auxiliary domains were calculated by
combining tag features extracted by Tf-IDF. The number of relevant (key) tag features for
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both target and auxiliary domains as determined by Tf-IDF are shown in table 4.4 with their
total ratings.

Table 4.4 Number of relevant (key) Tag features from MovieLens and LibraryThing tag sets

No. of Key tag features Total Rating

LibraryThing 1198 23,079

MovieLens 316 17,465

Details of MovieLens and LibraryThing dataset after selecting the most relevant tag features
and matching the number of ratings in both domains is shown in table 4.5. There is a
percentage difference of 21.97% in the ratio of common tags to relevant tags between
MovieLens and LibraryThing dataset.

Table 4.5 Statistics of the MovieLens and LibraryThing datasets after selection of most
relevant tags.

MovieLens LibraryThing

Ratings 17,465 17,465

Users 1,578 206

Items 4,163 9,848

Average ratings per user 11.06 84.78

Average ratings per item 4.20 1.77

Relevant Tag features 316 750

Common tags features 120 120

Ratio of common to relevant 16% 37.97%

Related tags pairs obtained from the Lin similarity metric are presented in table 4.6 for the
nine different relatedness threshold. The threshold with Lin similarity metric score greater
had the highest number with 47 related tag-pairs.

The percentages of related tags to overall relevant tags at the set relatedness thresholds are
shown in table 4.7 for both domains.
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Table 4.6 Number of tags pairs with scores greater than relatedness threshold and the number
of most related tag pairs

Threshold (%) Tag Pairs > Threshold Related Tag Pairs

10 8,690 56

20 3,478 56

30 1,525 55

40 546 53

50 243 51

60 107 37

70 52 26

80 26 16

90 12 8

Table 4.7 Percentage tag overlap in MovieLens and LibraryThing with increasing tag
relatedness

Threshold (%) Adjusted Common Tags ML Overlap (%) LT Overlap (%)

10 176 23.47 55.70

20 176 23.47 55.70

30 175 23.33 55.38

40 173 23.07 54.75

50 171 22.80 54.11

60 157 20.93 49.68

70 146 19.47 46.20

80 136 18.13 43.04

90 128 17.07 40.51

The chat in figure 4.4 and 4.5 show difference between the ratio of common tags to relevant
tags for MovieLens and LibraryThing at the nine different semantic relatedness thresholds.
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Fig. 4.4 Proportions of overall tag pairs to most related pairs at lower relatedness thresholds.

Fig. 4.5 Proportions of overall tag pairs to most related pairs at higher relatedness thresholds.
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As described in subsection 4.3.3, we optimised the model’s parameter at each set threshold of
semantically relatedness using a grid search algorithm on the validation set. Average values
of the learning rate α , the amount of regularisation γ , and the number of latent features
k that resulted into the least mean absolute error is presented in Table 4.8. We evaluated

Table 4.8 Best parameter values for the model when LibraryThing(LT) is set as auxiliary
domain and MovieLens(ML) is set as auxiliary domain and vice versa.

LT→ML ML→ LT
k α γ k α γ

10% Tag Relatedness 41 0.018 0.017 40 0.018 0.017

20% Tag Relatedness 40 0.018 0.015 42 0.017 0.017

30% Tag Relatedness 41 0.020 0.016 41 0.018 0.015

40% Tag Relatedness 41 0.018 0.016 40 0.016 0.016

50% Tag Relatedness 40 0.020 0.015 40 0.016 0.015

60% Tag Relatedness 40 0.018 0.015 41 0.017 0.015

70% Tag Relatedness 40 0.019 0.015 40 0.016 0.016

80% Tag Relatedness 40 0.019 0.015 40 0.017 0.015

90% Tag Relatedness 40 0.018 0.015 40 0.017 0.015

our cross-domain recommendation approach in two settings; using MovieLens as auxiliary
domain and LibraryThing as the target domain, and then alternatively using LibraryThing
as auxiliary and MovieLens as target domain. An observation of the prediction is recorded
for all the ten thresholds of semantic relatedness. Results of the rating prediction accuracy
measured in Mean Absolute Error with increasing number of SGD iterations on the training
set is shown in figure 4.6 and 4.7.
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Fig. 4.6 Average prediction error for 10 different semantic relatedness thresholds for TagSVD++
model with MovieLens as target domain and LibraryThing as auxiliary domain.

Fig. 4.7 Average prediction error for 10 different semantic relatedness thresholds for TagSVD++
model with LibraryThing as target domain and MovieLens as auxiliary domain.
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4.6 Discussion

The first question in this research was asked to investigate if increasing the number of
related social tags between a target and auxiliary domain improves the accuracy of rating
prediction in the target domain. Our first objective was to use a Tf-IDF weighting technique
to independently select the most relevant tag features from both domains. As expected,
the weight of tag features are higher when item profiles are used as documents than when
user profiles are used as documents for the Tf-IDF weighting technique. This result can be
explained by the fact that there are more items than users in both domains (i.e. more item
profiles used as document corpus for calculating Tf-IDF weights). Also, there are more tags
assigned by each user than there are tags assigned to each item as seen in the corresponding
number of tag assignments in table 4.4.

The total number of relevant tags in each domain was the result of combining tag features
selected when the user tag profiles were used as documents and tag features selected when
item tag profiles were used as documents. The total number of features recorded in table 4.3
shows a general increase by one tag feature for LibraryThing and eighteen tag features for
MovieLens after the combination. This result corroborates the fact that there are less distinct
tags in LibraryThing and they are also used more repeatedly than in MovieLens.

In order to avoid bias due to the difference in the number of rating data used in the training
and testing process, we constrained the number of ratings of LibraryThing dataset to exactly
match that of MovieLens. This decision aligns with related works such as Enrich et al.
(2013) and Fernández-Tobías and Cantador (2014) where bias was also avoided in the same
manner. As a result, only the first 17,465 ratings of LibraryThing was selected from the
23.079 recorded in table 4.3 for evaluating the model’s prediction performance at the different
thresholds. Details of the key statistics of the dataset after tag feature selection are shown in
table 4.4.

The number of unique MovieLens and unique LibraryThing tag features is calculated from
the difference between their relevant tag features and common tag features as presented in
table 4.4 (i.e. 316-120 = 196 for MovieLens and 750-120 = 630 for LibraryThing). Related
cross-domain tag features are then obtained from the pair of unique MovieLens tag features
and LibraryThing tag features that have a similarity score above the set relatedness thresholds.

As expected, the number of cross-domain tag pairs obtained from the Lin semantic metric
for each threshold was inversely proportional to the cut-off value at the threshold as in
table 4.3. One interesting observation made about lower thresholds was that the number of
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cross-domain tag pairs with the highest Lin semantic metric score (i.e. the most related pairs)
was significantly lower than the overall number of tag pairs that were above the thresholds.
This behaviour as seen in table 4.5 may be explained by the dependence of Lin semantic
metric on the taxonomic structure of WordNet. The formula for Lin semantic metric was
introduced in equation 2.4 and applied in algorithm 4.1.

The dividend in the Lin metric formula is a function of the information content of the lowest
common ancestor (LCA) concept that subsumes the cross-domain tag pairs. Previous studies
such as Miller (1995), Resnik et al. (1999), Lin (1998), Fellbaum (2005) and Harispe et al.
(2013) have shown that the information content of a concept has direct proportionality to
it’s depth in WordNet’s taxonomic structure. LCA concepts are less informative when they
are higher and closer to the root concept in the hierarchy of WordNet. As a result, the Lin
semantic metric score is generally low for cross-domain tag pairs subsumed by LCA that is
higher in WordNet’s hierarchy. The set of cross-domain tag pairs with Lin semantic scores
that are above lower thresholds (e.g. 10%, 20%, 30%, 40% and 50%) have a higher number
of generic LCA than those above higher thresholds (e.g. 60%, 70%, 80%, and 90%). This
may account for the large difference between the total number of cross-domain tag pairs and
the highest scoring ones at lower thresholds in figure 4.3 compared to figure 4.4 at higher
thresholds.

As shown in graphs of figures 4.5 and 4.6, the curves for TagSVD++ model at different
thresholds of tag relatedness closely follow a similar path in a plane where MAE and
SGD iterations represent the y and x coordinates. The "None" curve in figure 4.5 and
4.6 represented the baseline approach which was the TagGsvd++ model as proposed by
Fernández-Tobías and Cantador (2014), i.e. without the addition of related tag features.
There are no clear differences in the MAE of the baseline and others approach which
had an increased number of related tag features. A Wilcoxon signed rank test at the
95% confidence level showed that the small differences observed in the MAE at different
relatedness thresholds are not statistically significant.

Another important finding from the experiment was that the values of MAE are generally
small for all iterations when LibraryThing is used as a target domain and MovieLens as the
auxiliary domain. It is interesting to compare this observation with results reported in Enrich
et al. (2013) and Fernández-Tobías and Cantador (2014) where the opposite was the case. In
contrast to our result the authors found that the MAE was lower when MovieLens is used as a
target domain and LibraryThing as the auxiliary domain. The contradiction can be explained
by the Tf-IDF feature extraction process which switched the dataset with the higher number
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of tags from MovieLens in table 4.1 to LibraryThing in table 4.4. The authors’ result aligns
with ours when the dataset with the higher number of tags is used as the target domain.

4.7 Conclusion

In this chapter, our first experiment was to evaluate a set of semantic similarity metrics in
order to choose the most appropriate for determining the semantic similarity of tag pairs
across two different domains. These metrics, namely; Leacock-Chodorow, Wu Palmer,
Resnik, Lin and Jiang-Conrath where applied on a list of distinct words/concept from music
and a book domain and their performance was assessed based on how well they classified the
concepts according to their source. The result from two different experiments confirmed that
the Lin measure was the best. Sensitivity and Specificity of the similarity scores returned by
the algorithms were used to generate ROC curves, and the size of the areas under the curve
was taken as an indication of how efficient the algorithms are at classifying the concepts.
Specifically, we showed that the Lin semantic measure is the most semantically effective in
establishing concept similarity between a movie and book domain.

The second experiment in this chapter was undertaken to investigate the effect of increasing
the number of common social tags between a target domain and an auxiliary domain. The
cross-domain model proposed by Fernández-Tobías and Cantador (2014) was selected for
testing different percentages of related tag overlap because of its improved rating prediction
accuracy over other similar models. Common tags between a target and auxiliary domain are
adjusted to include tags that show some level of relatedness as measured by the Lin semantic
metric. On the basis of the insignificant differences in MAE when the number of related tags
in a cross-domain setting is varied, we summarise the result of our observation as follows:

• The prediction accuracy of TagGSVD++ model is generally lower for a cross-domain
set up where the domain with more number of tag features is used as the target domain.

• The prediction accuracy of TagGSVD++ model dependent depends on the number
of tag features in target domain rather than on the related tag features shared with an
auxiliary domain.

According to Fernández-Tobías (2016), the performance of a cross-domain recommender
system is mainly affected by three parameters: the overlap between the source and target
domains, the size of the target user’s profile, and the density of the target domain data. As a
result, the evaluation of a cross-domain recommendation approach mostly considered the
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sensitivity of the underlying recommendation algorithm with respect to these three parameters
(Fernández-Tobías (2016)). In this chapter, we have evaluated the performance of cross-
domain recommender systems on rating prediction task based on the size of overlapping
tags—inter-domain tags. The experiment did not detect any evidence that increases in the
number of related tags between a target domain and auxiliary domain result in better rating
prediction. However, we have shown that even though increasing the size of inter-domain
tags may not be helpful, the semantic enhancement of the tags did not impact negatively on
the performance of the cross-domain recommender model.



Chapter 5

Semantically Enhanced Cross-Domain
Recommender Models

The application of artificial intelligence in different systems is becoming more prevalent in
everyday life. As a result, ensuring the A.I. can complement human cognition and reproduce
useful results for Natural Language processing has become a necessary task for the A.I
system expert. Estimation of semantic relatedness and similarity are some of the well-known
challenges in Natural language processing. Similarity and relatedness are widely used today
to determine the strength of the semantic relationship between entities of various types, e.g.
words, sentences and concepts. The importance of semantic relatedness and similarity is also
evident in the design of cross-domain recommenders where there may be requirements to
compare users and/or items attributes in different domains.

In measuring semantic similarity, two approaches have been widely applied in Natural
Language Processing. Word vector representations also known as word embeddings are
corpus-based models and they rely on co-occurrence of words in very large corpus for
estimating the semantic relationship between words. They differ from their count-part which
are knowledge-based models that depend on the structural knowledge in a taxonomy (e.g.
depth, path length, common ancestor) and statistical information content (corpus-IC).

In this chapter, we introduce a cross-domain recommender approach that uses the union of
unique and semantically related tags for predicting ratings for active users in a system with
cold start and sparsity conditions. We investigate the use of knowledge-based (WordNet)
and corpus-based approaches in determining the semantic relatedness between social tags in
cross-domain recommender systems.
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5.1 Introduction

Several research work such as Agirre et al. (2009) and Bill et al. (2012) which involve
measuring semantic relatedness have been traditionally based on the hierarchical network of
lexical databases such as WordNet and encyclopaedic knowledge bases such as DBpedia.
Current approaches to measuring semantic relatedness now take advantage of effective
semantic knowledge transfer from pre-trained data to test data. These transfer approaches
are enhanced by recent advances in deep learning techniques such as Neural Networks (NN).
Specifically, word vector representations (also known as word embeddings) that are based on
NN approaches have become popular in NLP tasks. Many studies have demonstrated the
effectiveness of word embeddings in capturing both syntactic and semantic information. The
most popular model used for word embeddings is known as "Word2Vec" and was proposed
by Mikolov et al. (2013). The popularity of Word2Vec and similar word embeddings has
been linked by Kiela et al. (2015) to their applicability to a variety of tasks without much
adaptation.

Several lines of evidence such as in Faruqui et al. (2014), Liu et al. (2015) and Trask et al.
(2015) have however shown that words are not disambiguated during the training phase
of Word2Vec. Together, these studies indicate that the semantic relatedness and results
of other NLP tasks from Word2Vec may be improved upon. On the contrary, WordNet
and encyclopaedic knowledge bases have structures that clearly identify the meaning of
words. However, WordNet and similar ontologies are known to be limited in the coverage
of words in their taxonomy. Researchers such as Faruqui et al. (2014) and Kiela et al.
(2015) have attempted to address the lack of disambiguation and coverage in the respective
models by refining vector space representations using relational information from semantic
lexicons. The model proposed by the authors encourage related words to have similar vector
representations.

Several "blends" (during or post-training) of the two models referred to as retrofitting or
specialization have been proposed to address the limitations of both models in NLP tasks.
The general assumptions of approaches that refine word embeddings is that word vectors
can be "prompted" to align into a particular direction by integrating additional semantic
data source. Semantic data sources that have been considered in related researches include
semantic lexicons, which provide information about the semantics of words, typically by
identifying synonymy, hypernymy, hyponymy. Paraphrase relations have also been used to
refine word vectors that are trained solely on unstructured data from large corpora.
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5.2 Related Work

As extensions to the popular SVD++ models, several recommender models have been
proposed to utilise different types of metadata in order to improve rating prediction accuracy.
For example, the evolving taste of users for items has been modelled into SVD++ by
incorporating parameters account for the contribution of different time periods. In the work
of Koren (2009), a model that accounted for such temporal dynamics was proposed and
referred to it as timeSVD++. In addition, relational attributes obtained from the social
affiliation of users have also been added to SVD++ to model the influence of trusted users.
Social trust information has be incorporated by Guo et al. (2015) in their trustSVD++ model
to supplement explicit and implicit influence of item ratings in SVD++ model. All the
aforementioned approaches to extending the popular SVD++ are proposed for use in single-
domain collaborative recommender systems. In the following section, we briefly review
works that use social tags as metadata to extend SVD++ for cross-domain recommender
systems.

5.2.1 ItemRelTags Model

This model as proposed by Enrich et al. (2013) focuses on predicting ratings for users in cold
start situations where very little information is known about users. The model extends the
traditional SVD model by considering metadata about the items in a system. Specifically,
the influence of latent factors that are associated with the item metadata replaces those that
are obtained from implicit feedbacks as in the standard SVD++ model. As can be seen in
the following equation for the model, the contribution of the latent factors associated with
the item metadata does not depend on the user portion of the model. Consequently, the
ItemRelTags model can be exploited in the rating predictions for new users for whom tagging
information is not yet available. The model therefore potentially delivers better predictions
results over the standard SVD++ model with the advantage of been implementable in a
cross-domain setting where tags get associated with ratings.

r̂ui = pu.

(
qi +

1
| TR(i) | ∑

t∈TR(i)
yt

)

The latent variable y j ∈ IRk represents the feature factor from the item metadata. TR(i) is the
set of all the relevant tags assigned by the user community to item i. The dimensionality k is
the number of latent factors of the space.



5.2 Related Work 95

5.2.2 gSVD++ Model

The gSVD++ algorithm further extends SVD++ by considering information about the items’
attributes in addition to the users’ implicit feedback. The main strategy according to Manzato
(2013), is based on exploiting implicit feedbacks from users by considering not only the
latent space of factors associated with the user and item but also on the available metadata
associated with their respective contents. The model shows the effectiveness of incorporating
metadata into a latent factor model such as SVD++. As shown in the equation below, the
item factor portion is enhanced with latent factors associated with the metadata, while the
influence of latent factors associated with the implicit feedback about items that users rated
is added to the user factor portion.

r̂ui =

(
qi + | G(i) |−β

∑
g∈G(i)

xg

)
.

pu+ | N(u) |−
1
2 ∑

j∈N(u)
y j


The gSVD++ model adds a new set of latent variables xg ∈ IRk for item metadata to augment
the item factors. The set G(i) has elements that represent the attributes related to the content
of the items, e.g. comedy and drama in the case of movie genres. In our experiment, the
elements of the set G(i) has been used to represent all tags assigned to items. The parameter
β is set to 1 when the G(i) ̸= /0, and 0 if otherwise (Manzato (2013)).

5.2.3 TagGSVD++ Model

The recommendation strategy behind this model is based on the assumption that ItemRelTags
model does not fully exploit the user’s preferences expressed in the tags assigned to other
items. According to Fernández-Tobías and Cantador (2014), the gSVD++ algorithm above
was adapted by introducing an additional set of latent variables that enrich the user’s factors
and better represent the effect of her tags in the rating estimation. The model identifies two
different sets of tags for users and items and adds the latent factors associated with both to
the corresponding item and user portions of the SVD model as shown below. Similarly to the
case for the two models whose description precedes this, TagGSVD can also be implemented
in a cross-domain setting because of the dependency they have with tags whose occurrence
can be in different domains.

r̂ui =

(
pu +

1
| TR(v) | ∑

v∈TR(v)
xv

)
.

(
qi +

1
| TR(i) | ∑

t∈TR(i)
yt

)
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The parameter xv ∈ IRk is the latent factor for all tags that a user have given to items.
The variable yt ∈ IRk is the latent factor for tags that have been given to an item by all users.
The parameter TR(v) is the set of all the tags assigned by the user to any item i. TR(i) is the
set of all the relevant tags assigned by the user community to item i. The dimensionality k is
the number of latent factors of the space.

5.3 Proposed Model

In this chapter, we group the tags in the target and the auxiliary domains into a unique set and
a related set as described below. We add a new latent factor x⃗c to incorporate the influence of
related tags to the rating prediction.

• Unique Tags: For an active user u, let T (u) be the set of tags that u assigned to any
item and let T (u) and T (i) be the set of tags assign by any user to item i.

• Related Tags: these sets are selected after computing the semantic relatedness between
all tags in the unique tag set. The sets are denoted by T c(u) and T c(i) for users and
items factors in the proposed model. These sets contain the top N tags that are most
related to the tags in the unique set.

The rating prediction equation for the proposed model is presented in equation 5.1 with each
parameter described in the following section to formalise the model.

r̂ui =

(
p⃗u + |T (u)|−1

∑
s∈T (u)

x⃗s + |T c(u)|−1
∑

c∈T c(u)
x⃗c

)

·

(
q⃗i + |T (i)|−1

∑
t∈T (i)

y⃗t + |T c(i)|−1
∑

c∈T c(i)
y⃗c

)
(5.1)

The vector p⃗u is the user factor vector; while x⃗s is the user-tag factor vector. The tags in
set T (u) are those that user u assigned to any item. The new latent vector x⃗c is introduced
here as the "user-related-tag" factor vector, while the corresponding set T c(u) contain tags
selected as semantically related to those assigned by user u to any item.

Similarly, the vector q⃗i consist of the item factor vectors; while y⃗t consist of the item-tag
factor vector and T (i) is the set of unique tags that are assigned to item i. The new vector y⃗c

is introduced as the "item-related-tag" factor vector and tag set T c(i) contain tags that are
semantically related to those assigned to i.
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Tags in the semantically related set T c(u) and T c(i) are obtained using both knowledge-based
and corpus-based semantic similarity metrics. Specifically, Lin similarity metric was used for
the knowledge-base approach, and word2vec was used for the corpus-based metrics. Details
of steps for using Lin similarity metric and word2vec to obtain semantically related tags are
presented in algorithm 5.1-5.2 respectively.

The regularized squared error function of our model hereafter referred to a SemGTagSVD++
is presented in equation 5.2. The general SGD algorithm described in the methodology
section of chapter three was adopted to optimize the model and estimate the weights of
parameters p⃗u, q⃗i, x⃗s, x⃗c, y⃗t and y⃗c.

ε(p,q,x,y) =

[
rui−

(
p⃗u + |T (u)|−1

∑
s∈T (u)

x⃗s + |T c(u)|−1
∑

c∈T c(u)
x⃗c

)

·

(
q⃗i + |T (i)|−1

∑
t∈T (i)

y⃗t + |T c(i)|−1
∑

c∈T c(i)
y⃗c

)]2

+λ

[
| p⃗u |2 + ∑

s∈T (u)
| x⃗s |2 + ∑

c∈T c(u)
| x⃗c |2

+ | q⃗i |2 + ∑
t∈T (i)

| y⃗t |2 + ∑
c∈T c(i)

| y⃗c |2
]

(5.2)

We denote the model as SemTagSV D++
wordNet when the semantically related tags in sets T c(u)

and T c(i) are obtained from knowledge-base metric such as Lin metric. On the other hand,
we denote the model as SemTagSV D++

word2vec when corpus-based word vector representations
are used to derive the tags in the sets T c(u) and T c(i).



5.3 Proposed Model 98

Algorithm 5.1. Knowledge-based algorithm for most related tags

1: Input: Unique tags set T (U), set of user assigned tags T (u), set of all related tags T c
a (u),

number of top similar tags N
2: Output: Set of related user tags T c(u)
3: procedure Relatedness
4: for all ti ∈ T (u) do
5: for all t j ∈ T (U) do
6: T c

a (u)← LINsim(ti, t j)

7: end for
8: end for
9: sort T c

a (u) in descending order
10: select N highest values of T c

a (u) as T c(u)
11: end procedure
12: function LINsim(ti, t j)

13: si← synset of ti from WordNet
14: s j← synset of t j from WordNet
15: lcs(si,s j)← lowest common subsumer of siand s j in WordNet taxonomy
16: IC(lcs(si,s j))← Information content of the lowest common subsumer
17: IC(si)← Information content of synset si

18: IC(s j)← Information content of synset s j

19: sim← 2∗ IC(lcs(si,s j))/(IC(si)+ IC(s j)) # Computed according to Lin (1998)
20: return max(sim)

Algorithm 5.2. Corpus-based algorithm for selecting most related tag from a corpus

1: Input: Set of unique user tags T (u), number of top similar tags N
2: Output: Set of related user tags T c(u)
3: procedure SemanticRel
4: for all t1 ∈ T (u) do
5: T c(u)←Word2Vec(t1,N)

6: end for
7: end procedure
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5.4 Experiment

5.4.1 Dataset

The MovieLens and LibraryThing dataset presented in section 4.4.1 of chapter 4 were once
again used to represent a target and an auxiliary domain and vice versa. The dataset was also
processed in the same manner described in chapter 4 by keeping only ratings on movie items
for which at least one tag was assigned. The resulting ratings from this selection totalled
24,564 for movie domain. The set up of Enrich et al. (2013) and Fernández-Tobías and
Cantador (2014) was adopted in order to compare their cross-domain recommender models
with the one proposed in this chapter. As a result, the first 24,546 ratings in the LibraryThing
dataset was selected for book domain ratings.

In addition to movie and book rating data downloaded above, we obtained plot summaries
as movie and book corpora to train the corpus-based semantic metric used in computing
semantic similarity of social tags. The movie corpus contained summaries extracted from
Wikipedia for 42,306 movies. The extracted summaries were also enriched with other
metadata such as genre, character names and information about the actors who portray them,
including gender and estimated age. On the other hand, the book corpus contained plot
summaries for 16,559 books extracted from Wikipedia, enriched with other metadata such as
book author, title, and genre.

The plot summaries1 for the book and movie domains were prepared by Bamman et al.
(2013) and Bamman and Smith (2013) who have made them open source for the research
community. The details of table 5.1 show the statistics for the movie and book summary
corpora.

Table 5.1 Tags from 24,564 Movielens and Librarything ratings selected for semantic metrics
evaluation

Movie Summaries Book Summaries

Sentences 42,306 16,559

Raw words 9,683,176 5,395,853

Vocabulary 89,818 80 697

1Plot summaries for book are available at http://www.cs.cmu.edu/ dbamman/booksummaries.html and for
movies at http://www.cs.cmu.edu/ ark/personas/
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5.4.2 Evaluated Approaches

The performances of the models proposed in this chapter were compared against conventional
single-domain baselines and the state of the art tag based models described in Section 5.2.
The recommendation approaches of the all the models are summarised as follows:

• SV D++: An adaptation of MF by Koren (2008) that uses what users have rated as
implicit data. In the experiments carried out in this chapter, the set N(u) contained all
the items rated by user u.

• gSV D++: This extension of SVD++ models item metadata in addition to implicit
feedbacks from rated items into the factorisation process. The tags assigned to items
by any user where considered as the set of item attributes G(i).

• TagGSV D++: This model extends gSVD++ by considering tags as user metadata
instead of implicit feedbacks inferred from items the users have rated.

• SemGTagSV D++
wordNet : This is our proposed model when the semantically related tags

in sets T c(u) and T c(i) are obtained from knowledge-base metric such as Lin metric.

• SemGTagSV D++
word2vec: This is our proposed model when corpus-based word vector

representations are used to derive the tags in the sets T c(u) and T c(i).

5.4.3 Methodology

We evaluated the performance of our semantically enhanced rating prediction model in a
setting that simulates a partial cold start condition and different levels of data sparsity in a
target domain. In each of the experimental case mentioned above and for each evaluated
model tested, we observed the results in two scenarios; one using MovieLens as target and
LibraryThing as auxiliary domain, and another using LibraryThing as target and MovieLens
as the auxiliary domain. In order to ensure a high level of confidence in our observations, we
performed ten-fold cross-validation for both experiments.

In a similar process to the experimental set up in chapter 4, rating data from the two domains
were concatenated and partitioned into training, testing and validation sets. The domain
selected as the target is first split into ten non-overlapping sets, and one portion (i.e. 10% of
24,564) is set aside as the test set. The remaining nine portions (i.e 90% of 24,564) were
then partitioned into 80% training set (initially empty) and 20% validation set. The training
portion was further subdivided into ten portions to create candidate sets with each portions
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representing 10% of the total training data. The first 10% of the whole training set (i.e. 0.1
* 0.8 * 0.9 * 24,564 = 1,768 ratings) was selected to simulate a partial cold-start situation
where only small information about users in the target domain is available. Subsequent
additions in 10% batches were used to represent different sparsity levels by removing from
the candidate set and adding to the train set; until the whole set of training data is at 100%.
To enable cross-domain knowledge transfer, each of the 10% batches of training set in the
target domain was added to the whole set of 24,564 ratings from the auxiliary domain to
make up the complete training set for the experiment. The dataset divisions and subdivisions
as described above for training, testing and validating are illustrated for the cross-validation
iterations and the cold start/sparsity simulations in figure 5.1. The procedure was repeated
ten times to cross-validate our models for each of the original ten divisions (test set) of the
target domain dataset.

Fig. 5.1 Data partitioning for 10 fold cross-validation with different sparsity levels.
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5.5 Results

In partitioning the data for testing the models’ performance, 20% of the training data from the
target domain was set aside for validating the models and for determining the best parameters
for each model. This allows for a fair comparison of the models without underestimating or
overestimating the results. The best hyperparameter values for each of the evaluated model
is presented in table 5.2. The values obtained for number of latent features k, learning rate α

and regularization γ in table 5.2 were obtained using a grid search on the validation set.

Table 5.2 Best hyperparameter values for the evaluated models while setting MovieLens
(ML) as target domain and LibraryThing(LT) as auxiliary and vice versa.

ML→ LT LT →ML

k α γ k α γ

SV D++ 27 0.020 0.006 27 0.020 0.006

GSV D++ 28 0.018 0.005 27 0.021 0.005

TagGSV D++ 29 0.018 0.034 30 0.020 0.032

SemTagGSV D++
WordNet 28 0.020 0.055 29 0.021 0.055

SemTagGSV D++
word2vec 29 0.017 0.057 31 0.021 0.059

In table 5.2, the difference in the optimal number of factors and learning rates between the
evaluated approaches is minimal. As can be seen in table 5.2, the amount of regularization
required for the TagGSV D ++ and two of the proposed models SemTagGSV D++

WordNet
and SemTagGSV D++

word2vec model is comparatively large. Specifically, regularisation of
TagGSV D++ is approximately five times that of SVD++, while SemTagGSV D++

word2vec
requires approximately nine times regularization of SV D++. This may as a result of the
additional set of latent variables for unique tags and semantically related tags that is modelled
into the approach. This phenomenon was also observed by Fernández-Tobías and Cantador
(2014) who argued that more complex models are able to account for greater variance in the
data and tend to overfit more easily, therefore requiring more regularisation.

The performance of the models in terms of Mean Average Error (MAE) is presented in
figure 5.2 when LibraryThing is used as Auxiliary and MovieLens as the target domain. It
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is clear in figure 5.2 that both semantically enhanced models
(
SemTagGSV D++

word2vec and
SemTagGSV D++

word2vec

)
consistently outperform the other approaches for all sparsity levels

in the target domain. In addition, the proposed models also outperform the rest at moderate
cold start conditions when about 10%–20% of the ratings are available.

Fig. 5.2 Average MAE over the 10 folds with LibraryThing as auxiliary domain and MovieLens as
target domain.

The performance of the models when MovieLens is set as the auxiliary domain and Library-
Thing as the target domain is presented in figure 5.3. Once again, SemTagGSV D++

WordNet
and SemTagGSV D++

WordNet achieved the best performance at each of the rating sparsity level
considered. When graphs of models from table 5.3 are compared with the ones in figure 5.2,
it can be observed the values of MAE are relatively larger when the movie domain is used as
the auxiliary domain. This may be an indication that transfer of knowledge is not as effective
when LibraryThing is the auxiliary domain and MovieLens is the target domain. Enrich et al.
(2013) and Fernández-Tobías and Cantador (2014) also reported similar observation and
Enrich et al. (2013) argued that this may be caused by differences in the ratio of intercepting
tags between the domains. There are only 13.81% of the tags in MovieLens that are shared
in LibraryThing (see Table 4.1), and as a result, less latent tag factors learned in the auxiliary
domain can be used in the target to compute rating predictions.
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Fig. 5.3 Average MAE over the 10 folds with MovieLens as auxiliary domain and LibraryThing as
target domain.

5.6 Conclusion

A major challenge in cross-domain recommender systems is the adaptation or linking of
different domains to support knowledge transfer. Recent research efforts by Shi et al. (2011)
and Enrich et al. (2013) and Fernández-Tobías and Cantador (2014) have however exploited
social tags to adapt domains for cross-domain recommendation.

In this chapter, an extension of the popular SVD++ model Koren (2008) was proposed to
incorporate semantically related tags into an MF based rating prediction model. A new set of
latent variables was introducing to represent semantically related tags in the user and item
profiles. The new parameters enabled modelling of the influence of semantically related
tags for the effective transfer of knowledge between the domains. On the basis of the results
of our experiments on the movies and books recommendation domains, we conclude that
exploiting additional tag factors to represent semantically related tags in the factorisation
process improve the transfer of knowledge, and the accuracy of recommendations.

Finally, we note that one of two semantically− aware model we proposed outperformed
the other consistently throughout our experiments. Specifically, the model that utilises
corpus-based metric (word2vec) which depends on the co-occurrence of words in a corpus
gave an overall better performance. Therefore, we conclude that the structure of words
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sequence is important when incorporating semantically related tags into cross-domain matrix
factorisation model.



Chapter 6

Exploiting Category Similarity
Attributes In Multi-Category POI
Recommendation

Several studies on the business value of recommender systems such as Gomez-Uribe and
Hunt (2015) report for Netflix show how recommender systems can be effectively used as
a tool to tackle the "information overload" problem. Recommendation systems have been
broadly used to provide items of interest to the users (e.g., movies, music, books, jokes
and news). On the other hand, many of the existing recommendation techniques still rely
primarily on the rating value that users give to items. RS based on explicit ratings only do
not take context such as location, time or environment into account and may not be best
suited in making recommendations about items that depend on these contexts. According to
Adomavicius and Tuzhilin (2008), the importance of context to recommendation has been
found to be consistent with behavioural research on consumer decision making in marketing.
Consumers generally make their purchasing decisions based on context. Therefore, accurate
personalisation of products for consumers depend on the extent to which the recommender
system has included relevant contextual information into a recommendation technique. As an
example, if we consider location as a source of contextual information, users have generally
been known to show more interest for items that are nearby (e.g., restaurants, museums,
cinemas). Also, there has been an increase in the amount of data that can be labelled with
location and tagging information. The popularity of social networking platforms and mobile
computing technologies has contributed to a surplus of location data and driven the need for
recommender techniques that can process location information for benefit of users.
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In order to address the cold start and sparsity problems common to recommender systems,
research efforts have been invested in a different type of recommender systems known as
Context-Aware Recommendation Systems (CARS) (Levandoski et al. (2012)). The ingenuity
of these systems is the inclusion of the context of the user and/or the context of items in the
computing rating predictions or item recommendations. Among several types of data that can
be considered to represent the context in a recommendation process, Horozov et al. (2006)
reported that the location of users and items has more significance in the personalisation
process.

6.1 Introduction

Location Aware Recommendation (LAR) has emerged as a subcategory of CARS and led to
alternative approaches of achieving more accurate personalisation. According to Sarwat et al.
(2014), LAR systems exploit the spatial aspect of ratings when producing recommendations.
In general, they can be considered as an adaptation to traditional recommendation systems
with the inclusion of location.

The MF based cross-domain recommendation model that we presented in Chapter 4 and 5
belong to a category of MF-based collaborative filtering model referred to as attribute-aware
matrix factorization models [Koren et al. (2009), Gantner et al. (2010), Gantner et al. (2011),
Manzato (2013)]. Such models typically represent additional information about users (user
attributes, e.g. gender, age, geographical location, occupation) and items (item attributes, e.g.
genres, product categories, keywords) as features in a latent space.

Location can be considered as a part of a context. According to Gartner et al. (2007), it
determines what information and services the user may expect. Location in Geographic
Information Systems (GIS) is considered to have two components: spatial information
(coordinate and projection information for spatial features) and attribute data. Attribute data
is information appended in tabular format to spatial features. The spatial data is the where
and attribute data can contain information about the what, why and how. Attribute data
provides the qualitative and/or quantitative characteristics about spatial data. Whereas the
spatial information of a location is generally fixed, some attributes are unique to a location
while others may be shared with other locations. As an example, two shopping centres at
different locations on a high street may both be perceived by users to have a classy indoor
attribute, but one may have an extra attribute by the outdoor seating they offer.
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6.2 Related Work

Item recommendation is the task of predicting a personalised ranking on a set of items (e.g.
websites, movies, products), Rendle et al. (2009). Several research efforts have improved
the precision of the items recommended by including implicit and explicit feedback from
users into the ranking model. One of the most popular models for recommender systems is
k-nearest neighbour (kNN) collaborative filtering (Deshpande and Karypis (2004)). In order
to find the nearest neighbours to a user, a similarity matrix of users is computed from the
users’ preference history using standard similarity metrics e.g. the Pearson correlation. A few
other works such as Koren (2008) have treated the similarity matrix as MF model parameters
learned specifically for the item recommendation task. Singular value decomposition methods
proposed by Koren et al. (2009) have also been used to learn the feature matrices of the MF
model’s parameters. Matrix factorization models learnt by SVD have been shown to suffer
from the problem of "overfitting" [Rendle et al. (2009); Koren et al. (2009)] when applied to
the item recommendation task.

In other research efforts such as Schmidt-Thieme (2005), the item recommendation problem
has been treated as a classification problem, and solutions using a set of binary classifiers
were proposed. A more recent and popular optimised ranking model referred to as Bayesian
Personalized Ranking (BPR) was proposed by Rendle et al. (2009). BPR uses an optimisation
criterion based on pairs of items to compute ranking scores for items recommended to users.
Before the work of Rendle et al. (2009), several attempts at solving the item recommendation
task generally optimised their model to predict if a user selects an item or not rather than
directly optimising the parameters for ranking. According to Li et al. (2015), BPR learns the
ranking models parameter based on pairwise comparison of items by optimising Area Under
the ROC Curves (AUC).

In POI recommender systems, a POI is considered as an item and a POI recommender model
suggests a ranked number of POIs (i.e. the top-N POIs) to users. Several researchers [Ye
et al. (2011); Gao et al. (2013a); Liu et al. (2013a) and Li et al. (2015)] have proposed many
models that use different contextual factors such as geographical and temporal influence,
to improve on performance of POI recommenders. In order to adopt optimised ranking
methods to POI recommendation tasks, Li et al. (2015) used an optimisation criterion based
on Ordered Weighted Pairwise Classification (OWPC). OWPC was proposed by Usunier et al.
(2009) and has been successfully applied in text retrieval and image annotation. According
to Li et al. (2015), OWPC though designed to use binary values can be extended to use
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multi-class values. As a result, OWPC can be adapted to address the POI recommendation
task where implicit feedbacks are inferred from the different visiting frequencies of users.

In Li et al. (2015), the authors proposed a geographical factorisation method (RankGeoFM),
which uses OWPC as a criterion to derive an objective loss which is subsequently optimised
for POI recommendation. First, a user’s preference rankings for POIs is inferred from his/her
frequency of visits to each POI. The assumption is that the higher a user’s visit frequency
is to a POI (i.e. the number of check-in), the more preference that user has for the POI.
All unvisited POIs by the user are assumed to be less preferred. The authors followed
the assumption that a POI’s visit frequencies is affected by its geographical neighbours as
generalised by Tobler’s First Law of Geography -"Everything is related to everything else,
but near things are more related than distant things”- Tobler (1970).

Furthermore, the authors of RankGeoFM applied a weighting parameter to their method in
order to model the contributions of different neighbours to the geographical influence. For
clarity, if we consider a user u and POI ℓ, the recommendation score yuℓ as predicted by
RankGeoFM is as given below:

yuℓ =U (1)
u ·L(1)

ℓ +U (2)
u · ∑

ℓ∗∈Nk(ℓ)

wℓℓ∗L
(1)
ℓ∗ (6.1)

On the right side of the equation, the first term
(
U (1)

u ·L(1)
ℓ

)
models the preferences of user u

as typical in traditional matrix factorization. The second term
(
U (2)

u · ∑
ℓ∗∈Nk(ℓ)

wℓℓ∗L
(1)
ℓ∗
)

models

geographical influence. The set of parameters θ = {U (1),L(1),U (2)} for the geographical
factorization model are learned from training data. The authors projected members of set
θ as latent factors in a K-dimensional space with matrices U (1) ∈ R|U |×K , U (2) ∈ R|U |×K

and L(1) ∈ R|L|×K . A weighted parameter "wℓℓ∗" is applied to the second term to model
geographic influence into the equation. The term Nk(ℓ) denotes the k-nearest neighbors of
POI ℓ.

6.3 Categorical Correlation

In LBSNs, each POI is grouped under one or more categories. POI categories can be
considered as thematic groups that indicate what activities take place in a POI or what
kind of service to be expected at the POI in the category. For instance, a person visiting
a Sport/Leisure (SL) Centre may participate in a leisure activity. An SL Centre focused
on fitness indicate that activities at the POI will be about fitness. Users of LBSN show
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preferences for different categories of POI. According to Zhang and Chow (2015), people
show distinct biases for different categories of POIs, e.g., a food enthusiast likes visiting
restaurants to taste the various food and a touristy person will prefer travelling all over the
world to view tourism attractions.

In reality, categories may have the same type of locational attributes. For example, Art/Entertainment
and Sport/Leisure categories typically provide parking spaces for their customers. Restaurant
and Shopping categories may provide wheelchair access for vulnerable users. As a result, the
relevance score of an unvisited POI to a user can be computed by exploiting the correlations
of location attributes between the categories of the user’s visited POIs and the unvisited
POI. In order to address the sparsity problem in POI recommenders, we propose a multi-
category recommender model which considers the similarity of POI categories in computing
a relevance score for unvisited POIs.

We adopted Jensen Shannon Divergence (JSD) as proposed by Remus (2012) to compute
POI category similarities. In Remus (2012), the authors used JSD to measure the similarity
between an auxiliary domain and a target domain. The similarity value indicated how
adaptable a model trained in the auxiliary domain is for testing in the target domain. The
domain adaptation approach aligns with our multi-category approach to POI recommendation
because they both attempt to overcome domain dependency. JSD similarity metric is based
on Kullback-Leibler Divergence and is derived below by following Remus (2012) and
Ponomareva and Thelwall (2012) approach to computing cross-domain similarity.
Let DKL(C1∥C2), DJD(C1∥C2) be the Kullback-Leibler and Jensen Shannon Divergence
respectively; and C1, C2 be the probability distribution over a finite set W of unigrams from
category 1 and category 2. The unigrams are obtained from plain text corpora extracted from
user reviews on POIs in category 1 and category 2. Let M be the average distribution of C1

and C2 i.e M = 1
2(C1 +C2).

DKL(C1,C2) = ∑
w∈W

C1(w) log
C1(w)
C2(w)

DJD(C1,C2) =
1
2

DKL(C1,M)+
1
2

DKL(C2,M) (6.2)

JSD values are bounded between 0 and 1 i.e. 0≥DJD(C1,C2)≤ 1. Jesen Shannon Divergence
becomes a standard distant metric when its square root is computed [Melville et al. (2005),
Aslam and Pavlu (2007) and Briët and Harremoës (2009)].
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6.4 Proposed Model

The motivation for our "category-aware" geographical MF model hinges on the assumption
that, location attributes can be exploited to bridge user preferences across the POI categories/domains
in a similar fashion as the social tag-based models presented in Chapter 4. The recommendation
approach we adopted in this chapter is based on a recent POI recommender model known
as "RankGeoFM" and proposed by Li et al. (2015). RankGeoFM is a personalised ranking
based matrix factorisation Model. We selected this model because it can be generalised
and extended to include other types of contextual information. Also, it has been reported
to perform significantly better than other models for POI recommendation. Li et al. (2015)
reported a 30% improvement in POI recommendation precision using real-life location-based
datasets. A more comprehensive evaluation of 12 different POI recommenders by Liu et al.
(2017) also found RankGeoFM gave the best performance at low data sparsity. They reported
that Rank-GeoFM outperformed the second best POI recommender model by 5%-10%.

There has been extensive research carried out on POI recommendation; however, no single
study exists to the best of our knowledge which considered cross-domain approaches for POI
recommendation. In this section, we present a model which considers the domain/category
of POIs as contextual information for ranking places of interest to users. The following
notations and definitions cover all the key parameters used in formalising our model.

• User Set U : this set represent all the users in the LBSN who go to places they are
interested in visiting. U = {u1,u2,u3, ...,u|U |}.

• POI Set L: this is the set of places in the LBSN that users can visit as often as they
prefer. L = {ℓ1, ℓ2, ℓ3, ..., ℓ|L|}.

• Visited POI Set Lu: this is the set of places that user u has visited i.e., the histor y of
his/her past visits are contained in the set Lu.

• Category Set C: this set holds the different categories that can be assigned to places
in the LBNS. C = {c1,c2,c3, ...,c|C|}.

• Check-in Tensor Xuℓc: a |U | × |L| × |C | tensor whose entries are the frequency of
visits of users to POIs belonging to a category.

• User-POI-Category Triple D: a tuple of users, POIs and categories where (u, ℓ,c) |
xuℓc > 0.
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• Nearest Neighbour Set Nk(ℓ): this is the set of POIs that are nearest to POI "ℓ" by
distance.

• Recommendation Score yul: the predicted score of POI "l" for user "u".

• Recommendation Score yuℓc: the predicted score of POI "ℓ" in category "c" for user
"u".

The recommendation problem for our proposed ranking based model for multi-category POI
recommendation is defined as follows:

Given a user "u" and a set of POIs "Lu" already visted by "u". Let "c" be a category from
the set of all POI categories "C" such that c ∈C. Recommend a set of POI "L" to user "u"
that are not in "Lu" .

In order to clearly identify equations that are part of the model proposed in this chapter, we
have enclosed them with rectangular borders. The rest of the equations that are adopted or
applied from literature are without borders and referenced in corresponding sections.

6.4.1 Model Formulation

In the following section, we present details of our personalised ranking model which uses
similarities of POI categories as context for recommending POI to users. We hereafter refer
to our model as RankGeoCatFM and show how we derived and optimised the loss function
in the following subsections.

First, we introduce three latent factor matrices in addition to matrices in RankGeo-FM to
complete its adaptation to RankGeo-CatFM. Let the first newly introduced matrix U (3) ∈
R|U |×|K| model users’ bias for categories. Let the second matrix C(1) ∈R|C|×|K| represent the
latent factors for POI categories. Let a third matrix U (4) ∈R|U |×|K| for users model their bias
for similar categories. Let matrix W ∈R|C|×|C| be a similarity matrix to model the correlation
of categories based on their similarity. Let xuℓc denote the frequency that a user u checked in
at POI ℓ in category c, then wcc∗ is derived from equation 6.3.

wcc∗ =
∑u∈U ∑l∈L xulcxulc∗√

∑u∈U ∑l∈L x2
ulc

√
∑u∈U ∑l∈L x2

ulc∗

(6.3)
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However, we propose that each element wcc∗ of matrix W can be the metric scores derived
from Jensen Shannon Divergence between the categories. Let DJD(C,C∗) be the Jensen
Shannon Divergence between visited category C and yet to be visited category C∗, then wcc∗

can be computed in equation 6.4 below.

wcc∗ =
√

DJD(C,C∗) (6.4)

A function for predicting the recommendations score of a POI "ℓ" for user "u" is presented
in equation 6.5. The function is rewritten in equation 6.6 to clearly show how it extends
Rank-GeoFM with the inclusion of parameters for POI categories.

yulc =U (1)
u ·L(1)

ℓ +U (2)
u · ∑

ℓ∗∈Nk(ℓ)

wℓℓ∗L
(1)
ℓ∗ +U (3)

u ·C(1)
c +U (4)

u · ∑
c∗∈C

wcc∗C
(1)
c∗ (6.5)

yulc = yul +U (3)
u ·C(1)

c +U (4)
u · ∑

c∗∈C
wcc∗C

(1)
c∗ (6.6)

In order to learn the parameters in recommendation score function of equation 6.5, we
followed Li et al. (2015) who used OWPC criterion to learn the parameters of their geographic
MF model.

First, let the visit frequency of user u to POI ℓ in category c be denoted as vuℓc. Given the
assumption that preference of a user u is inferable from his/her visit frequency to POI ℓ, it
follows that the rank of POI ℓ in a category c for user u should be higher than ℓ′ if vuℓc > vuℓ′c.
According to Li et al. (2015), the order for ranking a set of POIs to a user can be computed by
minimising a ranking incompatibility function. The incompatibility for our proposed model
-RankGeo-CatFM- is as given below:

Incomp(yuℓc,ε) = ∑
ℓ∈L,u∈U,c∈C

I(vuℓc > vuℓ′c)I(yuℓc > yuℓ′c + ε) (6.7)

In equation 6.7, "I(.)" is the indicator function, such that I(A) = 1 when A is true and
0 otherwise, ε is the error tolerance hyperparameter. The recommendation score yuℓc is
calculated by our proposed factorization model -RankGeo-CatFM.

After computing the incompatibility for all the visit frequency in the triple D, we obtain the
following loss function.

O = ∑
(u,ℓ,c)∈D

E(Incomp(yuℓc,ε)) (6.8)
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The function E(.) in equation 6.8 transforms the ranking incompatibility into a loss using the
OWPC as proposed by Usunier et al. (2009) and presented below:

E(r) =
r

∑
i=1

1
i

(6.9)

In equation 6.9, E(r) calculates the sum over losses at each rank position from 1 to rank r.
Each of the ranking position is assigned with a loss 1

i . As a simple illustration, consider case
where four POIs have been incorrectly ranked higher than POI ℓ i.e. Incomp(yuℓc,ε) = 4.
The loss for this tuple (u, ℓ,c) will be E(4) = 1+ 1

2 +
1
3 +

1
4 .

6.4.2 Loss Optimization

In this subsection, we present the method for learning parameters of RankGeo-CatFM by
minimising loss function O of equation 6.8. We followed Li et al. (2015) who adopted
Stochastic Gradient Descent (SGD) for optimising their geographic factorisation model
(RankGeo-FM). SGD was selected for optimizing our model because it has been shown
[Koren (2009), Enrich et al. (2013), Manzato (2013), Fernández-Tobías and Cantador (2014)]
to be fast and can produce parameter values with good fit from a training data. In addition, we
considered SGD as applicable for minimising RankGeo-CatFM since it is a direct extension
RankGeo-FM.

In order to use SGD for learning the parameters of our model, the indicator function I(vuℓc >

vuℓ′c)I(yuℓc > yuℓ′c + ε) has to be continuous and differentiable. We follow Li et al. (2015)
who used a sigmoid function to approximate their indicator function.

First, we rewrite the loss E(Incomp(yuℓc,ε) in the same way as Li et al. (2015):

E(Incomp(yuℓc,ε)) ·1 = E(Incomp(yuℓc,ε))

∑
ℓ′∈L

I(vuℓc > vuℓ′c)I(yuℓc > yuℓ′c + ε)

Incomp(yuℓc,ε)
(6.10)

≈ E(Incomp(yuℓc,ε))

∑
ℓ′∈L(u,ℓ′,c)

s(yuℓ′c + ε− yuℓc)

Incomp(yuℓc,ε)
(6.11)

The function L(u, ℓ,c) := {ℓ′ | I(vuℓc > vuℓ′c)I(yuℓc > yuℓ′c + ε) = 1}, and the sigmoid
function s(A) := 1

1+exp(−A) is used to approximate the indicator function. We can compute
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SGD for our model’s parameter set θ from the derivative below:

∂E(Incomp(yuℓc,ε))

∂θ
≈ E(Incomp(yuℓc,ε))

∑
ℓ′∈L(u,ℓ′,c)

∂ s(yuℓ′c+ε−yuℓc)
∂θ

Incomp(yuℓc,ε)
(6.12)

=
E(Incomp(yuℓc,ε))

Incomp(yuℓc,ε)
∑

ℓ′∈L(u,ℓ′,c)
δs×

∂ (yuℓ′c + ε− yuℓc)

∂θ
(6.13)

The term δs = s(yuℓ′c + ε− yuℓc)(1− s(yuℓ′c + ε− yuℓc)) in equation 6.10.

6.4.3 Enhanced Parameter Learning

Although stochastic gradient can be calculated by equation 6.13, it is however resource
intensive and time consuming. This is because terms in the summation and the Incomp(yuℓc,ε)

require the computation of recommendation score yuℓc for all POIs. We adopt the faster
technique proposed by Li et al. (2015) which removes the summation and estimate Incomp(yuℓc,ε)

by sampling.

If we turn our attention back to equation 6.10, we see that the loss function is the sum of all
the losses computed for a set of incorrectly-ranked POIs. Each POI that is incorrectly-ranked
such as ℓ′ has a loss given by equation 6.14. The stochastic gradient can be approximately
computed by sampling POI ℓ′.

Ē = E(Incomp(yuℓc,ε))s(yuℓ′c + ε− yuℓc) (6.14)

In addition, each POI has the constant probability 1
Incomp(yuℓc,ε)

of been selected for sampling.
As a result, equation 6.12 is reduced to the gradient of equation 6.15:

∂ Ē
∂θ

= E(Incomp(yuℓc,ε))δs×
∂ (yuℓ′c + ε− yuℓc)

∂θ
(6.15)

The SGD algorithm finds a local minimum of the loss function by iteratively updating the
parameters after each observed tuple (u, ℓ,c) in visit-frequency data D. In general, SGD
works by shifting θ in the direction of maximum descent of the loss given by its gradient:

θ ← θ − γ
∂ Ē
∂θ

(6.16)
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6.5 Experiment

The multi-category POI recommender proposed in this chapter are modelled to provide
recommendations even when there are neither users nor POIs common among the categories
(i.e. disjointed). We conjecture that category correlation can be exploited to find user
preferences across categories in a similar manner as the social tags in models presented in
Chapter 4 and 5. Therefore, we distinguish between two different types of multi-category
scenarios for POI recommendation:

1. Scenario I: Multi-category without intersecting POIs and Users

In this scenario, the user-poi matrices from the different POI categories are concatenated.
All inter-category duplicates of users and POIs are filtered out. The scenario simulates
a situation where there are no intersect of users and POI between the target and auxiliary
domain.

2. Scenario II: Multi-category with intersecting POIs and Users

In this scenario, the user-poi check-in matrices for the different categories are also
concatenated. However, all inter-category duplicates of users and POIs are not removed.
The newly combined matrix is randomised and partitioned into train, validation and
test sets.

The dataset used for the experiments is presented next followed by a description of the
different POI recommender models that were compared with the proposed in this chapter.
The methodology used to empirically validate the models’ performance and the results are
discussed in the later sections.

6.5.1 Dataset

The Yelp Open Dataset1 is a subset of Yelp’s businesses, business reviews, user and
location-based data for personal, educational, and academic purposes. The dataset provides
information about local businesses in 12 metropolitan areas across 4 countries. Each business
in Yelp is categorised into a set of nearly 1000 types according to the nature of the business.
Categories available in the Yelp dataset are grouped into 22 parent categories. These are
broad-level groups, e.g. Restaurants, Hotels and Travel, Event planning and Services. There
are also child categories which are used to specify fine-grained properties of the local business.

1The Yelp dataset was downloaded from https://www.yelp.co.uk/dataset/challenge
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For example, a business with parent category of restaurant can have pizza, vegetarian or
British as the child categories. We emphasise here that the parent categories are the groups
that we used as domains in the experiments of this chapter.

Apart from categorisation, the dataset also contains ratings and reviews where specific
preference of users for businesses are recorded as numeric values and textual comments.
The dataset also has attributes that explicitly defines the properties of each local business.
Some example of attributes in yelp dataset generally includes; type of parking, delivers (or
not), noise level or business ambience. Some business attributes are in more that one parent
category (e.g. type of parking), while others (e.g. deliveries) are unique to a parent category.

A subset of the 22 parent categories was selected for our experiments due to the size and
complexity of the dataset. Specifically, we selected the Restaurants category, Food category
and Nightlife category to represent 3 different domains for our experiments. Criteria for
selecting the subsets were as follows:

• POI and User Coverage: first we filtered out users profiles where the user had visited
less than 20 POIs. We also constrained the POIs to the ones that were visited by more
than 20 users in all categories.

• Maximum Number of Check-in: the dataset was processed such that there were no
intersect of users or POIs among all the categories. The top three categories with the
highest number of POI check-ins were then selected. Restaurant category had 106,704
check-ins, followed by food category with 28,640 check-ins. The category with third
highest check-ins was Nightlife category having 10,511 check-ins.

• Total Number of Users: Finally, the number of check-ins for the three categories were
constrained by the number of users in the category with the fewest users. The Nightlife
category had the fewest number of users at 874 and 3099 users for scenario I and II
respectively. The check-ins for the Restaurant and Food categories were therefore
bounded by the same number of users. This selection helped avoid bias due to differing
number of users in the categories during the training phase of experiments.

The statistics of the dataset selected for scenarios I (without intersecting user/POIs across
categories) and scenario II (With intersecting users/POIs) are detailed in table 6.1 and table
6.2 respectively. The venn2 diagrams in figure 6.1(a) and (b) show the size of User and POI
intersections among the 3 sets of categories in the dataset. Except for the intersection of

2The curves of the Venn diagram only show relationships and not the exact proportion of the users and POIs
in the category sets.
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Food and NightLife categories, the larger size of user intersections and POI intersections
compared to the size of users and POIs that do not intersect with other categories stands out
in both figures 6.1 (a) and (b).

Table 6.1 Statistics for 874 users in Restaurant, Food and Nightlife categories used in
performance evaluation of models without intersecting users and POIs.

Restaurant (RT) Food (FD) Nightlife (NL)

Number of Check-ins 16688 4216 2661

Number of POIs 3404 897 269

Number of Attributes 135 53 99

Number of Unigrams 28414 17025 10025 31550

Table 6.2 Statistics for 3,099 users in Restaurant, Food and Nightlife categories with
intersecting users and POIs.

Restaurant (RT) Food (FD) Nightlife (NL)

Number of Check-ins 74041 45578 41066

Number of POIs 3430 2103 1752

Number of Attributes 135 53 99

Number of Unigrams 124537 78521 70550
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(a) Intersecting and Unique user sizes. (b) Intersecting and Unique POI sizes.

Fig. 6.1 Venn diagrams showing sizes of intersecting and non-intersecting Users and POIs in category
for Food, Restaurant and NightLife.

6.5.2 Evaluated Approaches

We compared the performance of our "category-aware" model against the following recommendation
approaches:

• Most popular: The popularity of a POI is measured as the number of visitations it
receives from users in the training sample. This approach is not personalised, does not
consider geographic influence and does not use any other contextual information for
recommending POIs.

• Bayesian Personalized Ranking MF: we considered BRP as an important baseline
because it uses an alternative ranking criterion to our proposed models. The Bayesian
Personalized Ranking criterion is a pairwise optimisation ranking method proposed by
Rendle et al. (2009) and has become one of the most important ranking criteria in item
recommendation. BPR MF does not consider geographical influences in it’s ranking
optimisation.

• RankGeo MF: is a ranking-based MF model that learns users’ preference rankings
for POIs with consideration of the geographical influence of neighbouring POIs.
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According to Li et al. (2015), RankGeo MF uses an optimisation criterion known as
Ordered Weighted Pairwise Classification (OWPC) to derive an objective loss from a
ranking incompatibility function.

• RankGeo-Cos MF: this is the first of our proposed ranking-based MF models. The
model considers the categories of the POIs in computing the recommendation score
used for ranking the POIs. The model considers both geographic influence and POI
category similarity as contextual information for improving POI recommendation.
The model uses the cosine similarity metric to estimate the similarity between two
categories.

• RankGeo-Cat MF: this is our second model, and similarly to the previous one, it
considers the categories of the POIs in computing the recommendation score used
for ranking the POIs. The model also considers both geographic influence and POI
categories as contextual information for improving POI recommendation. However, it
uses a JSD distance metric to pre-compute category similarity.

6.5.3 Methodology and Metrics

In order to evaluate the performance of POI recommender models in the preceding subsection,
we follow the general set up for k-fold cross-validation approach described in our methodology
chapter. Our approach aligns with the methodology of Kluver and Konstan (2014) who
evaluated performances of recommender models with a user-based cross-validation protocol
(i.e. users are split in K sets). Specifically, we first divide the set of users in our dataset into
five disjoint sets of approximately equal size. At each stage of cross-validation, all the data
from four of the sets are used for training the model. The POIs visited by users in the fifth
set (i.e. test) are then randomly split into the three subgroups described below:

• A training subgroup, initially empty and incrementally filled with the POI visited by
users to produce different cold start profile sizes.

• A candidate subgroup, is the set of POIs visited by users for incrementing the training
subgroup and also used for tuning hyperparameters of the models,

• A testing subgroup used to compute the performance metrics. The POIs selected for
the testing subgroup were the most recently visited POIs of the user.
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The purpose of the experiments in this chapter was to understand how the different recommender
approaches perform as the number of POI visited in the training set increases i.e. at different
cold-start levels.

Finally, we followed the evaluation procedure originally proposed in Kluver and Konstan
(2014) illustrated in figure 6.2 and described below:

1. We train the recommendation algorithm on the training group, and then we compute
the evaluation metrics on the test group.

2. For every user in the test subgroup, a candidate POI is added to the training subgroup
and removed from the candidate subgroup.

3. The performance metrics are measured again on the test group, after re-training the
models on the extended training group.

Fig. 6.2 cross-domain POI recommendation

We investigated the models’ recommendation performances at different numbers of POI
visited by the users in the test set. Starting from no POI visit, i.e., the extreme new user
problem, we increment the number of POI in the users visit history one at a time. A POI
recommendation algorithm computes a ranking score for each candidate POI (i.e., POI that
the user has not yet visited) and returns the top-N highest ranked POIs as recommendations
to the targeted user. We use two popular metrics to evaluate the performance of the different
recommendation algorithms, namely precision@N and recall@N. In our experiment, we test
the performance when N = 5, 10, 20 with 5 as the default value.
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6.6 Results

In order to present results in the rest of the section, we differentiate between two cold start
states according to the size of the user’s profile:

• Extreme cold start, in this state none of the POIs already visited by the active3 user is
considered during the training phase of the evaluated models.

• Moderate cold start, at least one POI visited by the active user is used by the models
during training and their performance is evaluated incrementally as the number of POI
visited is increased.

First, the similarity scores between the categories considered for scenario I and scenario II
and described in section 6.5 are presented in table 6.3 and 6.4 respectively. The similarity
scores were calculated from Jensen Shannon Divergence metric in equation 6.2. It can
be seen in table 6.3 and 6.4 that JSD similarity score is lowest for Food and Restaurant
Categories at a value of 0.498 and 0.190 respectively. As introduced in section 6.4.1, the JSD
metric scores are used to model the contributions of similar categories to the personalised
ranking score.

Table 6.3 Jensen Shannon metric scores for Restaurant, Food and Nightlife categories when
there are no intersect of users or POI across categories.

Category Pair Metric Score

Food - Restaurant 0.498

Restaurant - Nightlife 0.597

Food - Nightlife 0.604

3Active users here refers to users in the test set that are used as ground truths
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Table 6.4 Jensen Shannon metric scores for Restaurant, Food and Nightlife categories when
there are intersect of users or POI across categories.

Category Pair Metric Score

Food - Restaurant 0.190

Restaurant - Nightlife 0.218

Food - Nightlife 0.350

In all the experiments the hyperparameter ε was set to 0.3 following Liu et al. (2015). These
values were used as an initial guide and adopted after validation with a grid search algorithm.
The rest of the hyperparameters (k - dimension and K - nearest POIs) were also tuned to
optimal values using a grid search on the validation set. We found k dimension to be optimal
at 300 and K nearest neighbour at 100.

First Scenario: Multi-category without intersecting Users and POIs
The first experiment was carried on the models of section 6.5.2 in a setting where the
categories were disjointed, i.e. no intersection of users and POIs among the categories. The
performance of the models at different cold start states is presented in figure 6.3. Evaluation
of the models started with an extreme cold-start condition where the profile size of users
reserved as ground truths (i.e. testing set) was zero. At the extreme cold start setup and

(a) Prec@5 for extreme cold start. (b) Prec@5 for different user profile sizes.

Fig. 6.3 Evaluated models at different user profile sizes for extreme and moderate cold starts with no
intersection of users or POIs among categories

considering precision when 5 POIs are recommended, figure 6.3(a) showed that models
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(a) Precision at different K. (b) Recall at different K.

Fig. 6.4 Performance of evaluated models with increasing number of recommend POIs, in scenarios
where there are no intersecting users and POIs among categories.

which included both location and category information as context (i.e. RankGeo-Cat MF
and RankGeo-Cos MF) performed better than the ones that included only location as context
(i.e. RankGeo MF). RankGeo-Cos MF had 9% better performance than RankGeo MF for
precision at k=5, while RankGeo-Cat MF had 15% better performance than RankGeo MF.
The performance of all the models improved as users’ profile size was increased at an interval
of one POI until 10 POIs were added to the profile of the active users.

The performance of the models in terms of precision and recall was evaluated at user profile
sizes of at least 10 POIs. The results are observed as the number of POIs recommended (k) are
varied. The precision and recall values are recorded at k = 5, 10 and 20 and presented in figure
6.4. Looking at figure 6.4(a) and (b), it is clear that the "Most popular" model which ranks
POIs based on popularity (i.e. most visited) performed worst for both precision and recall at
all evaluated k. As can be seen in figure 6.4, the performance of RankGeo MF, RankGeo-Cos
MF and RankGeo-Cat MF are all comparable and better than Most Popular and BayesianPR
MF which do not use context in computing ranking scores. However, RankGeo-Cat MF
performed better than the rest of the models as the number of POI recommended is varied.
RankGeo-Cat MF had the highest precision when 5 POIs are recommended (i.e. k=5) to
the users with a value that is 4.17% higher than RankGeo-Cos MF. In comparison with
the RankGeo MF when at its best performance, RankGeo-Cat MF had a 13.64% increase
in precision at k=5. The second best performing model is RankGeo-Cos MF which also
achieved its highest precision value at k=5. RankGeo-Cos MF had a 9.09% increase in
performance when compared to RankGeo MF at k=5.
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Second Scenario: Multi-category with Users and POIs Intersect

In the second scenario, there were users and POIs occurring in more than one category.
Experiments were first carried out to evaluate the model’s performance at extreme and
moderate cold start states. At the extreme cold start state, it is apparent from figure 6.5
that approaches that modelled context such as geographic and category influence into their
function for ranking POIs performed better than those that did not. The model that considered
geographic influence only performed less than those that included both geographic and
category influence. Specifically, RankGeo-Cat MF performed best with an improvement
of 5.2% over RankGeo-Cos MF at extreme cold start condition and when 5 POIs were
recommended to the users. RankGeo-Cat MF performed better than the RankGeo MF
with an increase in recommendation precision of 28.57% at k=5 and at extreme cold state.
Generally, as user profile size is increased and sparsity decreases, the performance of all the
models evaluated increased. An interesting aspect of the graph in figure 6.5(b) is the change
in best performing model from RankGeo-Cat MF to RankGeo-Cos FM at user profile size of
at least 6 POIs. The performance of RankGeo-Cos MF increased by 18.28% when more than
6 POIs were added to the active users’ profile.

At user profile size of 10, further experiments were carried out to evaluate the models’
performance as the number of POIs (k) are increased. As can be seen in figure 6.6(a) and (b),
the performance of models that included location and category as contextual information once
again outperformed the ones that did not in terms of precision and recall of recommended
POIs.
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(a) Prec@5 for exterme cold start with user/POI
intersection.

(b) Prec@5 for different user profile sizes and user/POI
intersection.

Fig. 6.5 Evaluated models at different user profile sizes for extreme and moderate cold start when
there are intersecting users and POIs among the categories.

(a) Precision at different K. (b) Recall at different K.

Fig. 6.6 Performance of evaluated models with increasing number of recommend POIs, in scenario
where there are intersecting users and POIs among categories.

RankGeo-Cos MF and RankGeo-Cat MF outperformed their base model (RankGeo MF) at k
= 5,10 and 20. Specifically, at k=5 when all the models achieved the best recommendation
precision, RankGeo-Cos MF outperformed RankGeo-Cat MF and RankGeo MF with an
improvement of 7.97% and 13.71% respectively. RankGeo-Cat MF which models JSD
similarity between categories as weights into a function that ranks POI performed better at
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5.32% higher precision than RankGeo MF which does not model category influences into its
ranking function.

6.7 Conclusion

The experiments reported in this chapter have shown that modelling geographic and category
influence into POI ranking functions improves the performance of a POI recommender
system. The improvement in performance was observed for cases with new users and at high
data sparsity for scenarios. Also, the models proposed outperformed other traditional models
in scenarios with and without overlapping users and POIs.

The two models proposed consistently performed better against other models in a 5-fold
cross-validation setting. Consequently, we can conclude from the cross-validation results that
POI models that add the influence of category similarities to a personalised ranking fuction
for POI recommendation improve the accuracy of recommendation.
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Conclusion and Future Work

7.1 Conclusion

In this thesis, we set out to address two of the challenges of collaborative recommender
systems. We considered the well known cold start and sparsity problem. Information
consumers and system users are generally cautious with sharing their preference information
and are only more willing to share them when some form of incentives are offered. Paid
surveys, loyalty cards or access to social media platforms are examples of incentives offered
by companies in exchange for users’ preference data. The recent high profile breaches1 in
data protection law which affected millions of users can potentially make users more sceptical
of sharing their preferences data. The nonavailability of historic preference data from users
will, in turn, make development and successful implementation of effective recommender
systems more challenging. Recommender system models proposed in this thesis can use
knowledge sources from an auxiliary domain to make recommendations for users in a target
domain. Models that function as such may relieve users from the constant need to supply
their preferences when interacting with items in different application domains.

Specifically, in this research work, we alleviated the effect of cold start and sparsity on rating
prediction accuracy in a target domain by implementing a cross-domain recommender system.
We leveraged the available metadata in the form of social tags in a dense auxiliary domain to
augment user and item latent factors in a matrix factorisation model. More significantly, we
went beyond traditional string pattern matching of the tags to consider inclusion of tags with
similar concept into the matrix factorisation model.

1The Facebook-Cambridge Analytica data breach in 2018.
https://www.bbc.co.uk/news/topics/c81zyn0888lt/facebook-cambridge-analytica-data-breach
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We first introduced a method based on concept coverage to determine the most suitable
semantic similarity measure for the tag-pairs in a movie and book domain datasets. The
method informed our decision in selecting the most appropriate semantic metric from a set
of well known lexical similarity metrics. We then investigated the assumption that rating
prediction accuracy improves as the size of the set of inter-domain tags across a target and
auxiliary domain increases. The selected semantic similarity metric was used to measure tag
similarities and vary the number of social tags shared between a movie and book domain.
Furthermore, a new augmentation to a tag-based matrix factorisation model for cross-domain
collaborative filtering was proposed to incorporate semantically related social tags as new
latent parameters. Finally, the concept of cross-domain recommendation was extended to
the field of POI recommendations. We extended a recent POI recommender model to use
categories of POI as context information in recommending POI to users. More importantly,
we implemented the model across multiple categories and tested the model’s performance at
handling cold-start and sparsity problems.

In this chapter we present our concluding statements and summarise the main themes that
have emerged from our research activities. In Section 7.1 we summarise the work of the
thesis and present the contributions that the research work adds to the body of work on
cross-domain recommender systems. In Section 7.2 we describe potential research issues for
future work.

7.2 Contributions and Summary

In this section, we summarise and highlight the main findings and contributions of this thesis,
and show how we have addressed the research questions raised in Chapter 1.

RQ1. Can a cross-domain recommender model perform better when the size of intersect
between the set of tags in a target and auxiliary domain increases?

In Chapter 4 of this thesis, we examined the effects on rating prediction accuracy when there
is an increase in the number of inter-domain tags between a movie and book domain.

Contribution 1. The empirical findings in chapter 4 provided a new understanding of the
performance of tag-based cross-domain MF models when the size of inter-domain tags is
increased using the dataset from a movie and book domain.

In this section, we note that the matrix factorisation approach used is based on a variety of
standard matrix factorisation known as SVD++. We did not develop a new MF approach in
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this chapter but adopted the MF model (TagGSVD++) proposed by Fernández-Tobías (2016)
which is an extension of SVD++. The contribution stated above is achieved by the research
activities in this chapter as summarised below:

• We formulated a semantic enhancement approach to modelling Tag-based cross-
domain recommenders. We adapted the latent tag-factor parameter in a tag-based MF
model (TagGSVD++) to include semantically related tags. A pre-selected semantic
relatedness metric was used to enlarge the size of intersect of tag sets from a movie
and book domain by grouping different together tags that have high relatedness score
as inter-domain tags.

• Through evaluation experiments with real-world datasets from a movie and book
domain, we demonstrate that the formulated approach is feasible for cross-domain
recommendation. However, the semantic enhancement of the tag-based cross-domain
MF models did not result in a significant difference in accuracy of predicted rating for
the movie and book domain.

RQ2. Can semantically related tags improve performance of cross-domain recommender
model when they are included as additional parameters to the model?

In contrast to the model presented in chapter 4, a new model which extends TagGSVD++
model proposed by Fernández-Tobías and Cantador (2014) is introduced in chapter 5.
The proposed model enhanced TagGSVD++ with new latent parameters to account for
semantically related tags between a target and auxiliary domain. In addition to knowledge
base semantic metrics, semantic relatedness of tags was computed using corpus-based
semantic metrics. We follow the general idea of specialising word embeddings by using
domain dependent corpora for training the word embeddings as opposing to using generic
corpora.

Contribution 2. This work contributes to existing knowledge by extending the tag-based
cross-domain MF model (TagGSVD++) with the addition of new parameters to account for
the influence of both unique tags and semantically related tags.

As in the previous contribution, we note that the MF approach used is based on a variety
of standard matrix factorisation known as SVD++. While we did not develop a new MF
approach, we extended the SVD++ model with new latent parameters. The contribution in
this chapter are achieved by the theoretical models and research work summarised below:
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• We present an alternative approach to semantically enhanced cross-domain recommender
model by proposing the addition of two new latent parameters to the tag-based cross-
domain model. One parameter modelled the influence of unique tags, while the other
parameter modelled the influence of semantically related tags.

• We present a variant of the model where the semantically related tags for the second
latent parameter were obtained using corpus-based semantic similarity. A series of
experiments using corpora from a movie and book domain showed the value of utilising
word embeddings with domain knowledge for semantically enhanced cross-domain
metrics.

RQ3. Can performance of a multi-category POI recommender be improved by incorporating
category similarity as context into the model?

We have so far considered social tags and ratings as inferred and explicit latent factors in an
MF-based model for rating predictions. As a point of divergence from the previous chapters,
we consider recommending items (i.e. item recommendation task) instead of predicting
item ratings in Chapter 6. We focused on a sub-field of recommenders systems known as
Point-of-interest (POI) recommendation and investigated how cross-domain recommender
approaches can be adapted to outperform conventional POI recommendation techniques.
Point-of-interest (POI) recommendation is an essential service to Location-Based Social
Networks (LBSNs) that can benefit both users and businesses when their performance is
optimal.

Contribution 3. This is the first study to investigate the effect of including category
similarity as contextual information to multi-category POI ranking model for improved
POI recommendation score and performance.

Similarly to previous chapters, contributions in this chapter did not involve the development
of new MF approach. A variant of the standard SVD++ MF version which is popular for been
adaptable is once again used in this chapter to include context information. The contributions
in this chapter are highlighted by the models and experiments summarized below:

• We propose a novel multi-category POI ranking model that uses additional context
information in the form of category type to score and recommend POI to users. A new
latent parameter is included to the scoring function of a popular ranking recommender
(RankGeoFM) to model the interest of users for location categories similar to categories
of locations they have previously visited.
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• We present a variant of the model where the weights assigned to the parameter
that models the influence of category types are calculated from Jensen Shannon
Divergence (JSD) similarity metric. The JSD similarity value indicated how adaptable
the categories POI are for multi-category POI recommendation.

• Extensive experiments on real-life location based datasets from 3 different POI
categories (Food, Restaurant and Nightlife) were carried out to demonstrate that models
which include category similarities as additional context can outperform state-of-the-art
methods significantly in POI recommendation.

7.3 Future Research Directions

In this thesis, we have presented models that can make use of data available in a dense
auxiliary domain to recommend items to users in a target domain with cold-start and sparsity
problems. The findings in our experiments, however, shows that exploiting additional
information from a dense domain for recommendations in a sparse target domain may not
improve the performance of a cross-domain recommender model. Specifically when we used
datasets from a movie and a book domain we have concluded that there is no difference in
performance of cross-domain recommender models after experimenting with varying inter-
domain tags from two particular datasets (MovieLens and LibraryThing) domains. Utilising
datasets from other domains for the same experiment may result in a more significant
difference in the performance of the cross-domain model. In practice, a system should
decide in advance whether the dataset from an auxiliary domain is worth being exploited for
cross-domain recommendation or not. An automatic technique of intelligently determining if
datasets from an auxiliary domain should be considered will be advantageous to the cross-
domain recommender systems. Finding out the adequacy of an auxiliary domain before
use in tag-based cross-domain recommender systems is an interesting direction for future
research work. The following subsections provide details of other open research issues that
emerged from our work.

7.3.1 Future Research for Tag-Based Cross-Domain Recommenders

We note here that it is possible to go beyond single text matching (i.e. tag to tag) between
two domains. Text matching methods are usually restricted to lexical categories. We also
note that the similarity of tags used is limited to the total number of word concepts available
in WordNet. In future, we want to explore more extensive knowledge base networks (e.g.
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DBpedia) and more advanced text similarity methods such as those that use bi-grams and
considers the context of the tags. Therefore future direction will include using larger lexical
knowledge-base such as DBpedia in computing semantic similarity. Also, the work in
this thesis, we have mainly computed numeric numbers and used Mean absolute error to
determine the accuracy of our model at predicting missing ratings. We did not consider
other important factors that may affect user preferences such as the design of the interface of
systems that will serve as the front end to the models we have investigated. Our model may
have performed well offline, but there are other practical components of creating a successful
recommender system that was not within the scope of our work. Optimising the models to
take account of memory and time complexity is another possible area of future research.

7.3.2 Future Research for Next POI Recommenders

Regarding improvement of performance of multi-category POIs recommenders, we did not
consider a cross-category scenario where one category is set as the target and the others
as the auxiliary. Results from a multi-category scenario show that the application of our
model to a cross-category scenario is a promising direction for future work. In order to
improve POI recommendation to users, recent research works have added the sequential
behaviour of human movement to POI recommender models. The additional detail in users
movement is essential for POI recommendation because human movement has been shown
to follow sequential patterns (Cheng et al. (2013)). The new POI recommender models
are used to predict the next POI a user is most likely to visit and known as Next POI
recommenders (Feng et al. (2015)). Next POI recommender systems can benefit from cross-
domain recommendation approaches because cross-domain approaches enhance transfer of
knowledge which in this case may be sequential patterns of users movement. The application
of cross-domain approaches to Next POI recommenders presents a new line of future research
work.

7.3.3 Future Research for Knowledge-Based Recommenders

Different types of content and collaborative filtering models have been proposed and used
for improving recommendations in domains of quality and taste products such as books,
music and movies. However, more complex product domains such as cars, Computers,
apartments, or financial services present a different kind of recommendation problem (such
as rarer purchases and feedback). Knowledge-based recommender technologies have been
known to be best suited to tackle such recommendation challenges by exploiting explicit user
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requirements and deep knowledge about the underlying product domain for the calculation
of recommendations (Felfernig et al. (2007)).

In contrast to collaborative filtering and content-based recommender models, knowledge-
based recommenders do not have cold-start problems because user requirements are generated
during the recommendation session. According to Felfernig and Burke (2008), there are two
basic procedures to be considered when implementing a knowledge-based recommender
application. One is creating a recommender knowledge base and the second involves running
a knowledge base recommender process. Extracting domain knowledge for creating the
knowledge base require enormous manual work by domain experts before the recommendations
can be generated in the knowledge-based recommender application. For this reason, using
knowledge transfer techniques in Cross-domain recommender approaches will be an interesting
direction for future work. This is because utilizing models that can transfer domain knowledge
which has been manually curated from an auxiliary domain to a target domain may help
reduce the manual efforts required from domain experts. The techniques used to semantically
enhance tag-based cross-domain models may also be applicable in the process of transferring
knowledge from a domain with an older knowledge base to a newer domain of interest.
Specifically, the semantic relatedness of keywords extracted from an auxiliary domain with
already created knowledge base can be compared to keywords of a newer target domain. The
average semantic relatedness score between keywords of the auxiliary and target domains
may help determine if the domains are similar enough to be considered for transfer of other
properties of the knowledge base.
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Appendix A

Experiment Tools

A.0.1 Software Tools/APIs

In order to satisfy the functional requirements of our model as specified in the introduction,
we utilized and extended several methods and classes across three different programming
languages (Python and C-sharp). We maintained connectivity and data flow between
applications of the different programming languages by following a sequential order of
operation. The data output from the application of a specific language is first stored in a
system directory 1 from where the applications in the other languages can subsequent read
and process the data.
In order to further support reproducibility of our experiments, we implemented our model
using free/open source software distributed under the terms of the GNU General Public
License. The Jiang-Conrath semantic similarity scores were computed using the NLTK
implementation of the popular WordNet::Similarity, which is a Perl module available for
download from https://sourceforge.net/projects/wn-similarity.

Natural Language Tool kit - Python

This provides a python Application Programming Interface (API) for a variety of semantic
similarity and relatedness measures based on information found in the lexical database
WordNet. It supports well established semantic measures such as Resnik, Lin, Jiang-Conrath,
Leacock-Chodorow and Hirst-St.Onge. After selecting the Jiang-Conrath (JC) measure as
the most optimal from the experiment in Chapter 3, we obtained a list of tag-pairs with JC

1Databases and database drivers were used to handle the application connectivity in later experiments that
include larger datasets from multiple domains
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scores which were sorted from the highest to the lowest. Table 4.3 show a sample of the
tag-pairs and their corresponding JC scores.

MyMediaLite Library - C-sharp

MyMediaLite is a recommender system library for the Common Language Runtime (.NET).
According to Gantner et al. (2011), it addresses the two most common scenarios in collaborative
filtering: rating prediction (e.g. on a scale of 1 to 5 stars), and item recommendation from
positive-only feedback (e.g. from clicks, likes, or purchase actions). Figure 4.8 shows the
general overview of interfaces/class structure in MymediaLite. We extended the SVDPlusPlus
class in the library under rating prediction in order to create and evaluate our model according
to our experimental design.

Fig. A.1 General overview of main interfaces and classes in MymediaLite.

The SVDPlusPlus class like the model it represents specifically considers only explicit
ratings given by user as implicit feedback when predicting missing values in the test
set. We created our model’s class by extending the functionality of the SVDPlusPlus
class and implementing the interface that allows taking other item and user attributes
(ItemAttributeAware/UserAttributeAwareRecommender Interfaces) into account when predicting
missing rating values. As detailed in equation 4.10, our model adopt tags —words/texts
that users assigns to items— as attributes for the respective user and item in the matrix
factorization (SVD) model.
The training phase of our model uses stochastic gradient decent typically utilized in learning
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the parameters required for predicting missing rating values in a high dimensional rating
matrix [Koren et al. (2009), Enrich et al. (2013), Manzato (2013), Shi et al. (2011), Fernández-
Tobías and Cantador (2014)]. General inputs essential to SGD algorithm for learning the
parameters used by the prediction models are; unique users/items identifiers, ratings values,
the learning rate, regularization parameter and a number of latent factors. In cases where
the prediction model takes additional inputs to make more accurate predictions, the SGD
algorithm will consequently require unique identifies for the attributes.
Additional information about users (user attributes, e.g. gender, age, geographical location,
occupation) and items (item attributes, e.g. genres, product categories, keywords) can be
added to the latent features of the matrix before the dimensionality reduction process using
SVD Gantner et al. (2010). The AttributeData class in the Mymedialite library performs this
mapping function for the uniquely identified tag attributes while the RatingData class maps
the unique IDs for user/item to the latent features of a matrix.
The matrices of user, item and tag attribute make up the set of parameters to be estimated for
predicting rating values. These parameters (qi, pu,xv,xs,yt ,ys) as shown in algorithm 4.1 are
initialized to small values at the start of the SGD iteration. The algorithm then loops through
all ratings in the training set and updates the learning parameters until the error function of
equation is approximately zero. The final values of these parameters are then used to estimate
the ratings of test set.
Our model introduced the parameter xs,ys which respectively represent user and item tag
attributes that are semantically similar (based on high JC scores) between two domains as part
of the parameters to be learnt for estimating the rating values in the test set. The validation
sets described in the subsection above were first used to determine optimal number of factors
to utilize. The graph of figure 4.9 which shows the number of factor for which the model
performs best is generated by plotting the accuracy of the predicted ratings against increasing
numbers of common tags. We set the other inputs to our model i.e. learning rate and
regularization to the default 2 value used in the SVDPlusPlus model (regularization=0.045,
learning rate=0.019). Finally, we investigated the effect of increasing inter-domain tags
between the movie domain and the book domain by plotting the rating prediction accuracy
of the model over 30 consecutive iterations.

2The values of these parameters are optimized in chapter 5 using the gridsearch optimization techniques.
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Preliminary Experiment on Semantic
Metric Selection

B.1 Evaluating Semantic Measures

As systems that make use of artificial intelligence become more commonplace, there
is a corresponding increase in the need to ascertain the type of semantic relationships
that exits between operating entities of the system. According to Harispe et al. (2013)
semantic measures are widely used today to estimate the strength of the semantic relationship
between elements of various types: units of language (e.g., words, sentences, documents),
concepts or even instances semantically characterized (e.g., diseases, genes, geographical
locations). They have been utilized to compare these elements based on the closeness
of the knowledgerepresentations that underpins their meaning or describe their natural
sense. Semantic measures are therefore essential for designing intelligent agents such as
recommender systems that can take advantage of semantic inferences that are close to the
human ability to compare objects and make useful recommendation there off.

Table 3.6 shows the relevant statistics of the metrics and similarity score in each batch. The
metric with the highest cumulative AUC over the subset of 2000 similarity scores was taken
as the most effective. The charts of figure 3.2 - 3.5 show the specific and total effectiveness of
the similarity metrics. We found the Jiang-Conrath measure to have the highest culmulative
area under a curve equalled to 4.413 over 8 bins of 2000 highest scoring pairs.
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Table B.1 Computational performance of the different Semantic Similarity Metrics

Metric Scores Returned Time (min) Scores ≥ 75th%

Leacock-Chodorow 508,923 45 24,084

Resnick 687,459 45 9,944

Lin 508,923 45 5,926

Jiang-conrath 493,461 45 9,308

Hirst-St-Onge 48,294 45 543
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Table B.2 Area under the curve for all metrics with ranked similarity score

Score Bin Thresholds Type Leacock-Chod. Resnik Lin Jiang-Con.

intra 164 170 167 171

1 - 250 250 inter 86 80 83 79

AUC 0.549 0.546 0.515 0.573

intra 138 138 143 145

256 - 500 250 inter 112 112 107 105

AUC 0.513 0.532 0.506 0.535

intra 156 142 147 147

501 - 750 250 inter 94 108 103 103

AUC 0.500 0.552 0.484 0.634

intra 151 169 156 148

751 - 1000 250 inter 99 81 94 102

AUC 0.500 0.622 0.570 0.477

intra 137 141 142 135

1001 - 1250 250 inter 113 109 108 115

AUC 0.545 0.514 0.501 0.559

intra 131 162 135 155

1251 - 1500 250 inter 119 88 115 95

AUC 0.514 0.420 0.493 0.557

intra 155 150 159 155

1501 - 1750 250 inter 95 100 91 95

AUC 0.500 0.550 0.532 0.563

intra 153 160 142 153

1751 - 2000 250 inter 97 90 108 97

AUC 0.500 0.599 0.540 0.515

Cumulative AUC 4.121 4.335 4.141 4.413
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Fig. B.1 Chart showing area under the curve for leacock Chodorow measure
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Fig. B.2 Chart showing area under the curve for Resnik measure

Fig. B.3 Chart showing area under the curve for lin measure

Fig. B.4 Chart showing area under the curve for Jiang-Conrath measure
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