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Abstract
Data overload is a well-known problem due to the availability of big on-line

distributed databases. While providing a wealth of information the difficulties to
find the sought data and the necessary time spent in the search call for technologi-
cal solutions. Classical search engines alleviate this problem and at the same time
have transformed the way people access to the information they are interested in.
On the other hand, Internet also has changed the music consuming habits around
the world. It is possible to find almost every recorded song or music piece. Over
the last years music streaming platforms like Spotify, Apple Music or Amazon
Music have contributed to a substantial change of users’ listening habits and the
way music is commercialized and distributed. On-demand music platforms of-
fer their users a huge catalogue so they can do a quick search and listen what
they want or build up their personal library. In this context Music Recommender
Systems may help users to discover music that match their tastes. Therefore mu-
sic recommender systems are a powerful tool to make the most of an immense
catalogue, impossible to be fully known by a human.

This project aims at testing different music recommendation approaches ap-
plied to the particular case of users playlists. Several recommender alternatives
were designed and evaluated: collaborative filtering systems, content-based sys-
tems and hybrid recommender systems that combine both techniques.

Two systems are proposed. One system is content-based and uses correlation
between tracks characterized by high-level descriptors and the other is an hybrid
recommender that first apply a collaborative method to filter the database and then
computes the final recommendation using Gaussian Mixture Models. Recommen-
dations were evaluated using objective metrics and human evaluations, obtaining
positive results.
Key words: Recommender System; Music Recommendation; Music Information
Retrieval; Collaborative Filtering; Gaussian Mixture Models.
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1. Introduction

This bachelor thesis aims at designing, developing and testing a music rec-
ommender system. In the course of the development process different alternatives
were analysed and evaluated. Although the initial intention was to obtain a unique
system, experimental results led that finally two different systems were proposed.

The first system is correlation-based, proposed for applications with enough
computing power to obtain recommendations as fast as needed or for situations
were time is not an important limitation. The second one is an hybrid system,
composed by a collaborative filtering method and a content-based system that
models the playlist with a Gaussian Mixture Model.

The document is structured in the following way:

• First in Chapter 1 an introduction about the context of music recommenda-
tion is explained, including the regulatory framework and socio-economic
environment. In that chapter the economic information of this particular
final thesis are also detailed.

• Chapter 2 and Chapter 3 contain the state of the art in recommender systems
in general, music representation and music recommenders in particular .

• In Chapter 4 and Chapter 5 the proposed recommender systems are pre-
sented, as well as the experimental process that justifies the decisions made
during the development of the systems.

• Final conclusions are stated in Chapter 5 as well as the unexplored alterna-
tives that are proposed as possible future work.
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1.1. Motivation

The main objective of a music recommender system is to ease users finding new
music that match their personal preferences at each moment. Playlists are lists of
music pieces and songs that share some characteristics. As tracks in a playlist are
intended to be listened sequentially we can assume that they will probably be lis-
tened in the same context. This simplifies a big problem of music recommenders
that need to use user interactions or other sources of information if they want to
provide recommendations adapted to the preferences of the user at each moment.
One person could like different music styles but will not enjoy all of them in the
same situation.

Also music streaming platforms offer considerably big music databases to the
user that can be listened instantly. This increases the need of the users to or-
ganize their personal collections according to some criteria, which can be used
to make quality recommendations that the user enjoy and find useful to discover
new music. The size of the catalogue of these services may overwhelm users.
Recommender systems can help find music they like without doing an extensive
searching.

Music recommendation has become a hot topic for both academia and indus-
try. RecSys Challenge 2018, which is the annual challenge that takes place in
the context of the ACM Conference Series on Recommender Systems, focused on
music recommendation specifically on automatic playlist continuation. As part of
the challenge Spotify released a large and public dataset of playlists created by
real users, which is very useful for research on this topic because it can be used to
improve recommendations for the new listening habits of users.

Music recommendation has evolved in recent years due to that increasing in-
terest in the topic. Music recommenders nowadays are able to provide successful
recommendations very often but there is still room for improvement. In this thesis
different recommender systems approaches are applied to a database of playlists
to explore the possibilities of those techniques in that specific scenario.

2



1.2. Socio-economic Environment

1.2.1. Socio-economic impact

There are mainly two agents affected by music recommender systems: the music
industry and music aficionados. Music recommender systems are typically useful
in music streaming services. With the raise of music streaming platforms such
as Spotify, Apple Music, Pandora or Deezer, music aficionados can explore and
listen music databases that contain most of the pieces and songs that have been
recorded in the last century. Some of the databases are freely accessible for users
of the music service and others require to pay a certain amount of money for
accessing. Money is no longer an impediment for listening the music we want
at each moment. Also the effort needed to listen the preferred music is a minor
issue, since most of the times it is only necessary to do an easy search of the song
we decide that takes a few seconds. But such a cultural enrichment can be missed
due to the choice overload. In that context music recommenders have the ability
to help users by filtering the database according to their music tastes. Playlists
and recommendations together can also be useful when a user is occasionally
interested on a music style that does not correspond to the personal preferences so
the user do not want to be recommended that type of music in the future.

As the number of users of those streaming platforms increase, artists have the
opportunity to be listened by people around the world. Their music can be rec-
ommended to users that will probably like it. For not so popular artists it means
their music will be listened by users that otherwise would never have known them.
Small groups or musicians can reach a level of popularity that would have required
more expensive promotional campaigns or marketing strategies. However depend-
ing on the recommender system used by the platform, songs from not well-known
artists can be in a disadvantage position compared to popular songs in terms of
possibilities of being recommended. Music publishers, distributors and compa-
nies related to music marketing could be also interested in recommendations be-
cause it can contribute to increase the popularity of music without investing as
much money as in a promotional campaign. Music will be directly recommended
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to the group of user that are more likely to be interested, so it can serve as an
automatic market segmentation.

1.2.2. Budget

The development process of the project generated several costs:

• An on-line course about recommender systems in coursera was taken.

• There were weekly meetings with the advisor during 9 months that required
a 35 Km car trip to the Universidad Carlos III School of Engineering.

• A computer was used for the whole process, which consumed much elec-
tricity. It was used for research on the topics of the project, for programming
all experiments presented in Chapter 5,other tests and writing the memory
document. Experiments required a lot of time (some of them even several
days) so approximately the computer was used 1180 hours.

• Stationery for taking notes and printing relevant papers discussed during the
weekly meetings.

Considering the circumstances stated before, an approximation of the total
budget is 319 e.

Concept Price (e)
On-line course 40
Travel costs 238
Electricity costs 41
Total 319

Table 1.1. Approximate total budget of the bachelor thesis.
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1.3. Regulatory Framework

Music recommenders are affected by some legal concerns, related to music royal-
ties, users privacy and patents.

If the analysis of the audio signal is used for computing recommendations
music royalties are paid first to get copyrighted music. Although there is royalty-
free music, normally music intellectual property is owned by a person or a group
people. Usually Intellectual Property and copyright royalties are managed by spe-
cialised organizations. A licence is needed in order to provide users the music
audio. In Spain the most important institution is SGAE1 and they specify several
fees depending on the service provided: if downloads are available to the user or
if the system is integrated in a music streaming service. In the first case there are
different fees depending on the number of downloads. In the second case monthly
fees depend on several characteristics of the platform, that can be summarized as
follows:

• Use: commercial or non-commercial.

• Number of monthly service visitors.

• Number of users that can play music on-line and the number of users that
can play music off-line.

Another issue that concern recommender systems is the data protection regu-
lation. The General Data Protection Regulation2 (GDPR) came into force in the
European Union in 2018 and it regulates the processing of personal data. If the
recommender system need to process private data of users, affirmative consent of
the user is required. The user also has the right to erasure. On the other hand in the
EU there is also free flow of non-personal data, so databases that do not contain
personal information of users can be freely distributed.

1http://www.sgae.es
2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
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Recommender systems, and in particular of music recommender systems are
patentable. According to the European Patent Convention if the system is sus-
ceptible of industrial application and is innovative it can be patented. There is a
wide range of music recommender patents, for example a biometric-based music
recommendation or music recommendation using emotional modelling.

6



2. Recommender Systems Overview

The large volume of available data on the internet is overwhelming and it
grows everyday. Some filtering is needed for the relevant information to be useful.
The main objective of recommender systems is to filter a big amount of data and
provide a recommendation that might be of some interest to the user.

Recommendations can be personalized if any information of the user is used in
the filtering process, or it can be non-personalized if no individual data of the user
is taken into account. Deciding whether to use one or the other depends on the
situation. For example in the case of a new user with no associated information,
it is only possible to make non-personalize recommendations. On the other hand
with active users it is possible to construct a profile that models their personal
preferences, so in that case a personalized recommendation could be made.

To make a good recommendation at a certain moment to a specific user is very
difficult because apart from the music itself there are other factors that may influ-
ence preferences. Some of them are quite static, like cultural or socio-economic
factors, for example age, country or gender of the user. But other things that affect
what people want to listen are more varying,like mood, weather, context or the
activity the user is doing. Music is listened in many occasions with different pur-
poses: motivating on sports, mood regulation, as background music on a friends
meeting, etc.

Music recommendation has some particularities that make it different from
similar systems, like book, film or products recommendation [4] . One important
singularity is the size of the database. The size of music streaming platforms’ cat-
alogues are in the range of tens of millions, while catalogues of films and series
are typically up to tens of thousands. That makes scalability an important issue.
Another particularity is that usually songs have a duration of around 3 minutes
and are listened sequentially more likely than one at a time. In contrast films, se-
ries and specially books take more time to the user to skip to another one. Music
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recommendation is also more dependent to the context compared to the other men-
tioned systems, a user may prefer completely different types of music depending
on the situation and might not want to listen that song in other contexts.

In Figure 2.1 a general classification of recommender systems is illustrated.
The main three categories are:

• Collaborative-Filtering Systems. They focus on the interactions of users
with the items (like ratings or personal lists).

• Content-Based Systems. They use characteristics of the items and their sim-
ilarity to build preference models of users. The main goal of this type of
recommender systems is to find the common characteristics of items liked
by a user (items that received a good rating) and then recommend new items
with that characteristics to the user.

• Hybrid systems. They combine methods from the previous systems to ben-
efit from their advantages.

2.1. Collaborative Filtering

The basis of this type of recommender systems is that users with similar tastes
would like similar items. Their aim is to predict how much a user will like an item
and according to that select some items to recommend. In a typical scenario of a
CF system the main elements are a set of items and a list of users. Traditionally
the collaborative filtering problem was mainly focused on rating prediction. In
that case preferences can be expressed explicitly by consciously voting items, but
sometimes implicit votes are inferred from their behaviour. For inferring that
implicit votes, actions of the users are interpreted in terms of what they show
about the user’s preferences. If there is a misunderstanding of the meaning of the
behaviour of the user votes may not correspond to the actual preferences of the
users and it will make the recommendation worse.
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Fig. 2.1. General taxonomy of recommender systems. Source: [1]

Reacently collaborative filtering with binary, positive-only data is acquiring
importance. Systems with binary, positive-only data aslo work with explicit and
implicit feedback. In this case an example of explicit feedback could be ’likes’ on
a social network and implicit feedback could be the videos watched by the user.
Rating prediction has become less important due to several reasons [5]:

• In systems that work with users ratings, collecting data requires that users
make the effort of rating items.

• Correlation between users behaviour and their rating is not as high as ex-
pected because users tend to give higher ratings to items they think they
should consume (e.g. users might rate higher a classic book of world liter-
ature than a superheroes comic even when they prefer reading the second
one).
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• In many cases only the higher predicted ratings are used because they would
match users preferences better and at the end low ratings are irrelevant.
But in rating prediction high and low ratings are computed with the same
accuracy.

Users are characterized by a vector of votes, but depending on the system this
vector can be a binary vector (that expresses if the user is interested in an item or
not) or a non-binary vector filled with votes in other numerical scale. Typically
there are missing votes in users’ vectors. One important issue in some CF systems
is how to interpret that missing information. For example: in a system in which
votes of the users are inferred from the times they click on items, a user might not
click on an item because he/she is not interested in that or because it is unknown
to him/her.

Typically datasets in collaborative filtering are very sparse, which makes the
problem more challenging. CF algorithms can be categorized into two subgroups
[6] : memory-based methods and model-based methods.

2.1.1. Memory-based algorithms

The database is used to make recommendations based on similarities between in-
memory users or items. The algorithm predicts the rating of a target user from the
votes of other users. There are two different approaches: if similarity is computed
by rows of the rating matrix (by users) it is a user-user memory-based system, if
similarity is computed by columns (by items) it is an item-item memory-based
system. In Figure 2.2

There are three important aspects that should be taken into account when de-
signing a collaborative-filtering system: normalization of ratings, similarity com-
putation, weighting the individual contributions and finally the selection of neigh-
bours.

10



Fig. 2.2. Diagram of a user-based collaborative filtering system recommendation process.
Source: [1]

Rating Normalization.

Different users may have different criteria when evaluating an item even when they
have similar tastes. For example if we consider two users with similar preferences,
one user could be inclined to assign higher ratings than the other. So there are two
problems to solve:

• Shifted average ratings. As in the mentioned example, users may have dif-
ferent criteria when evaluating an item.

• Different rating scales. Some users tend to assign more extreme scores than
others.

To account those factors a widely used option is to normalize for mean and
standard deviation to obtain their z-score. So instead of using directly users rat-
ings, similarities are computed from their normalized version. The normalization
of users ratings ri for the standards deviation and means to obtain the z-score is
given by:

zi =
ri − ri

var(ri)
(2.1)
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Let I j be the set of items that a user j had rated, so the mean rating of that user is:

r j =
1
|I j|

∑
i∈I j

r ji (2.2)

The predicted rating of an item i from a set of n items taking N users into account
for the calculation can be expressed as a weighted sum as follows:

rti = rt +
∑

j

(
r ji − ri) ω jt (2.3)

Where rti is the prediction of the rating of the target user t over item i, rt and r j

are the average ratings of the target user and a user i respectively, r ji is a vector
with the ratings of item i of the other users and ω jt is the weights that represent
similarity.

Similarity Metrics and Weighting.

There are several metrics that can be used to calculate the similarity between vec-
tors, like Pearson Correlation Coefficient, Cosine Distance and Adjusted Cosine
Distance [7].

• Pearson Correlation Coefficient (PCC). It was first proposed in [8] to com-
pute similarities between users in the context of the GroupLens project, that
was very important for the CF research. The correlation coefficient goes be-
tween +1 and -1. The closer to +1 the correlation is the more similar their
preferences are. A coefficient close to 0 means there is a little correlation
between the users and a negative correlation can be interpreted as they have
opposite tastes but it doesn’t give information on how different they are, ac-
cording to some experimental studies. The Pearson correlation between the
target user t and a user i is defined as:

ωt,i =
Covt,i

σt σi
=

∑
j(rt j − µt) (ri j − µi)√∑

j(rt j − µt)2∑
j(ri j − µi)2

(2.4)
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The item-based version of the Pearson correlation coefficient of the queried
item k and another item j is:

ωk, j =
Covk, j

σk σ j
=

∑
u∈Uk j

(ruk − µk) (ruk − µ j)√∑
u∈Uk j

(ruk − µk)2∑
u∈Uk j

(ru j − µ j)2
(2.5)

Where Uk j is the set ot users that rated both items, µk and µ j are the mean
rating assigned to items k and j, ruk and ru j are the ratings that user assigned
to the items.

• Cosine Distance (CD). It measures the cosine of the angle formed by the
rating vectors. The cosine distance between the target user t and a user i
would be:

ωt,i =
rtri

||rt|| · ||ri||
=

∑
j rt j ri j√∑

j r2
t j

√∑
j r2

i j

(2.6)

where denotes the dot-product of the vectors.

• Adjusted Cosine Distance (ACD). In item-based systems the CD has a draw-
back because of the different evaluation criteria of the users so ACD sub-
tracts the mean rating assigned by the user, µu. The final coefficient is de-
fined as:

ωk, j =

∑
u∈Uk j

(ruk − µk) (ruk − µ j)√∑
u∈Uk j

(ruk − µu)2∑
u∈Uk j

(ru j − µu)2
(2.7)

Neighbours Selection.

The number of neighbours and the criteria used for their selection affect directly
the system’s performance. In big recommender systems the number of users can
be too large to store in memory all users similarities. So in some cases it would be
convenient to pre-filter the user database to reduce the number of candidates that
will be taken into account in the recommendation. The three main methods that
can be used separately or combined are [9]:
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• Top-N filtering. By this filtering method only the N nearest-neighbours and
their similarity weights. Parameter N must be chosen to be large enough to
not lose too much variety but small enough to have an efficient system.

• Threshold filtering. All neighbours that have a similarity measure over or
equal a certain threshold th are kept. This method is more flexible than the
previous one but the chosen value must suit the systems requirements.

• Negative filtering. Negative correlations indicate that users belong to differ-
ent ’groups’ in terms of preferences but they don’t give useful information
for the recommendation. According to that, users with negative correlation
could be discarded without worsen the system’s performance.

2.1.2. Model-based algorithms

The database is processed to learn a model of preferences of a user based on previ-
ous ratings or purchases, which then predicts ratings of unrated items. The model
can be built from various machine-learning or data mining techniques, some of
the most used ones the following [1] :

Clustering.

Given un-labeled data, clustering techniques partition data into a set of meaningful
sub-clusters. When the clusters are computed, recommendations for a user can be
made by averaging ratings of users that belong to the same cluster and taking the
items that have higher mean ratings. Many clustering algorithms try to minimize a
function that measures the quality of the clustering, so it is an optimization prob-
lem. The optimization problem is computationally difficult so many algorithms
use heuristics (e.g. k-means algorithm ending in local minima).

One of the most common clustering methods is K-means [10] . It is an iterative
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process to minimize:

E =
K∑
i

∑
xn∈S i

d(xn, λi) (2.8)

where K is the number of clusters, S i is the ith cluster of items which centroid
is λi and d(xn, λi) denotes distance between an item and the centroid of ith cluster.
K-means partitioning process can be summarized as follows:

1. Select K centroids randomly from the dataset.

2. Items are assigned to the cluster which centroid is closer to them.

3. Centroids are re-calculated to minimize the sum of distances to the centroid
of all the items belonging to the same cluster.

4. Repeat steps 2. and 3. until no items change their cluster membership.

K-means algorithm is very efficient however the final clusters are very sensi-
tive to the selection of the initial centroids and it has problems with outliers.

Association rule

Association rule mining algorithms try to find rules that predict the occurrence
of an item based on the occurrences of other items in a transaction [10]. An
association rule is an expression of the form X ⇒ Y where X and Y are itemsets.
The fraction of transactions that contain an itemset is its support. The frequency
of an itemset is called support count. The confidence of the rule X ⇒ Y is how
often items in Y appear in transactions that contain X . The goal of association
rule mining is to find all rules that have support ≥ min support threshold and
confidence ≥ min confidence threshold.
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Decision Trees

Based on the way tree graphs are bluilt, decission trees builds a predictive model
that maps the input to a predicted value based on the input’s attributes [11] . Each
node of the tree corresponds to an attribute and the link from a parent to a child
node corresponds to a possible value (or set of values) of the attribute. At each
node an attribute is chosen as a split attribute. Then for each possible attribute
value there is a link to a child node so that each child receives as inputs all items
that have the appropriate value of the attribute that corresponds to the child-node.
One of the attributes is pre-defined as the target attribute. The process repeated
until all the items that goes to the node have the same target attributes value or until
the number of items reaches a certain threshold. In collaborative systems attributes
refer to the feedback provided by the user while in content-base approaches the
attributes are the content features.

Bayesian Classifiers

These classifiers are based on the Bayes’ theorem and the definition of conditional
probability. The probability of a model given the data (posterior probability) is
proportional to the product of its likelihood times its prior probability as stated in
the Bayes’ theorem. Given a set of N observations X = {x1, ..., xN} the goal is to
find the class Ck that maximizes the posterior probability of the class given the
data. Applying the Bayes’ theorem:

P(Ck|X) ∝ P(X|Ck)P(Ck) (2.9)

A common Bayesian classifier is the Naive Bayes Classifier, that assumes the
observations are independent to estimate the conditional probability P(X|Ck) so
that:

P(X|Ck) = P(x1|Ck)P(x2|Ck)...P(xN |Ck) (2.10)

Naive Bayesian classifiers are robust to outliers in the observations data set
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but the independence assumption can not be always applied.

Artificial Neural Network (ANN)

It is a structure of inter-connected nodes and weighted links. ANN assembly is
inspired in the architecture of the biological brain, so nodes are called neurons.
The network have the ability to learn a classification problem after being trained
with sufficient data [10] .

The main advantage of ANNs is that, deppending on the activation function,
they can estimate nonlinear functions and model complex data relationships. An
important disadvantage is the great difficulty to find the ideal topology of the net-
work given a problem and that it would act as a lower bound for the classification
error [1] .

2.1.3. Advantages and drawbacks of CF systems

Collaborative-filtering systems have been widely used because of several advan-
tages:

• Simplicity. They are relatively easy to understand and simple to implement
when comparing to content-based systems that need a content characteriza-
tion.

• Justifiability. Collaborative systems don’t behave as a ’black box’. Predic-
tions can be justified and understood.

• Efficiency. One of its main advantages is their computational efficiency,
specially memory-based systems because they don’t need any training or
data content analysis.

• Serendipity. Unlike most content-based recommendations, collaborative fil-
tering has the ability to recommend items that are different from the ones
that the user have rated. The user is not always recommended items with
the same characteristics.
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On the other hand collaborative-filtering has some drawbacks:

• Cold start problem. When a new user registers to the system or a new item is
added to the catalogue there is not enough data associated to those users or
items. In the case of the new item it means that it will not be recommended
until a number of users rate it while in the case of the new user it implies
that the system is not able to compute a proper recommendation.

• Popularity bias. Items that have been rated by more users are more likely to
be recommended to other users.

• Scalability. Typically computation grows linearly with the number of users
and items so an algorithm that is efficient at a certain volume of items and
users might not be able to maintain the quality of the recommendation pro-
cess.

• Synonymity. In some databases very close items or even the same item,
can have the different names or entries. They are treated as independent
items worsen the systems efficiency and performance.

2.2. Content Based

Systems that implement a content-based recommendation analyze descriptions of
items previously rated by a user (or other user information depending of the avail-
able data) and build a model of user interests based on the attributes of those items.
Then for the recommendation the user model is matched with items obtaining a
relevance estimation for each one.

In a general content-based information filtering system, as illustrated in Figure
2.2.1, three main components can be identified [2] :

1. Content Analyzer. The objective of this component is to represent the con-
tent of the items. Feature extraction techniques are used to analyze data
items. The resulting representation is the input of the other components, the
profile learner and the filtering component.
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2. Profile Learner. The user preferences’ model is built based on features of
rated items. As in collaborative-filtering systems ratings or preferences
of users can be obtained from explicit ratings or inferred from users’ be-
haviour.

3. Filtering Component. The user profile is matched with the items feature
representation to obtain a binary judgement or a relevance estimation. They
are computed using some similarity metrics (e.g. as described in section
2.1) .

Fig. 2.3. General architecture of a CB recommender system. Source: [2]

The implementation of these scheme depends on the nature of the data on
each recommendation domain. The case of content-based music recommenders is
discussed in chapter 3.
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2.2.1. Advantages and Drawbacks of CB systems

The content-based information filtering technique has several advantages com-
pared to the collaborative one:

• User independence. Collaborative filtering approaches need other users rat-
ings to find users with similar tastes, so the recommended items will be
the most liked by the neighbours. A content based recommender do not
take into account other users so a big community of users is not needed to
provide a quality recommendation.

• Transparency. It is easier to understand why items were recommended or
not analysing the descriptions or features of those items. In collaborative
systems, in contrast, the only explanation is that other unknown users with
similar tasted liked that item.

• New items. New items are equally likely to be recommended as the old
ones. Collaborative methods need that a significant number of users rate a
new item for it to be recommended as the older items.

• Popularity bias. As in the previous case items that have been rated by more
users (more popular items) are more likely to be recommended than less
rated items in a collaborative systems. That doesn’t happen in a content-
based system since it only takes into account features or descriptions of
items.

But content-based methods have also some drawbacks that affect their perfor-
mance in real applications:

• Serendipity problem. Content-based systems recommendations tend to
have a limited degree of novelty since their characteristics are similar to the
items already rated by the user. This could be managed by introducing in
the system some randomness and in certain cases not recommending items
that are too similar
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• Description dependence. The effectiveness of the recommendation is di-
rectly dependent to the quality of the content description.

• New user problem (cold-start problem). When a new user registers to the
system there is not enough information associated to that user so the system
is not able to properly recommend items to the user.

• Computational complexity. Depending on the nature of the items, extract-
ing descriptors and running the recommendation algorithm may be a time
and memory consuming task.

• Scalability. If the number of items grows considerably the amount of
resources needed to run the algorithm can make the system not feasible.

2.3. Hybrid Systems

A recommender system can also combine strategies from different approaches.
In that case the system is classified as ’hybrid’. Hybrid systems commonly have
better prediction accuracies than ’pure’ systems separately because their objective
is to exploit the advantages of different systems. Researcher R.Burke described
several hybridization methos in [12] :

• Weighted. The final score of a recommended item in a weighted hybrid sys-
tem is computed as a combination of the individual scores obtained by the
different recommendation techniques that compose the system. An example
could be a linear combination of the scores given by a collaborative and a
content-based approach.

• Switching. Switching hybrid methods use some criterion to switch between
recommendation techniques depending on the item. A good example is the
DailyLearner system [13] that uses a content-based method in first place but
if the obtained recommendation doesn’t have enough level of confidence
then the collaborative system is used.
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• Mixed. Several recommendation techniques are used simultaneously and
then recommendations from more than one system are presented to the user.

• Feature combination. In this type of hybridization the output of a collabora-
tive system is used as an additional feature by a content-based system. This
reduces considerably the cold-start problem of collaborative methods in the
final recommendation.

• Cascade. One recommendation method is used first and then a second one,
but focusing only on the items discriminated by the first system. Cascading
methods are useful when the second recommendation technique requires a
substantial data reduction.

2.4. Reducing Dimensionality

In recommender systems dimensionality reduction methods are very used because
typically matrices are large and sparse (in the case of collaborative filtering) or to
reduce dimensions of the item (or user) feature representation. One of the most
relevant algorithms is Principal Component Analysis (PCA).

Principal Component Analysis.

This algorithm is one of the oldest and best known techniques of multivariate
analysis. PCA is a widely used technique for dimensionality reduction, lossy data
compression, feature extraction and data visualization [14] . For dimensionality
reduction, the idea is to reduce a large dataset that contains interralated variables
without losing much of the original variability of the data. Original data is trans-
formed to a new set of uncorrelated variables (the principal components) listed in
order of contribution to the total variation of the original data [14].

Data points are projected onto a lower dimensionality space (the principal sub-
space) which its main characteristic is that the orthogonal projection of the original
datapoints onto this subspace maximizes the variance of the projected points [15]
.
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Let’s consider the projection onto a one-dimensional space (M = 1). If the
original dimensionality of the problem is D, the direction of the new space can be
defined using a vector u1 . For convenience it is a unit vector so that uT

1 u1 = 1 (we
are interested in the direction of the vector, not its magnitude). Because M = 1
each data point xn is projected to a scalar value uT

1 xn . The mean point of the data
projected in the subspace is uT

1 x , where x is the mean of the sample set composed
of N observations, defined as

x =
1
N

N∑
n=1

xn (2.11)

The variance of the projected data is given by

1
N

N∑
n=1

(
uT

1 xn − uT
1 x
)2
= uT

1Σu1 (2.12)

where Σ is the covariance matrix defined as:

Σ =
1
N

N∑
n=1

(
xn − x

)(
xn − x

)T (2.13)

Now the goal is to maximize the variance of the projected data with respect to
u1. The normalization condition uT

1 u1 = 1 prevent ||u1|| → ∞. so the maximization
is constrained. To enforce this constrain a Lagrange multiplier λ1 is introduced
and then the following unconstrained maximization with respect to u1 is done:

(
uT

1Σu1 + λ1
(
1 − uT

1 u1
))′
= 0 (2.14)

So we get

Σu1 = λ1u1 (2.15)
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Left-multiplying both terms by uT
1 and simplifying uT

1 u1 = 1 we get that the
variance is given by

uT
1Σu1 = λ1 (2.16)

It means that the maximum variance will be obtained for u1 equals to the
eigenvector with the largest eigenvalue (λ1). That eigenvector is known as the first
principal component.

Considesing now a general case of an M-dimensional projection space, the
optimal linear projection for which the variance of the projected data is maximized
is given by the M eigenvectors u1, ...,uM of the data covariance matrix Σ that
correspond to the M largest eigenvalues λ1, ..., λM [15] . The projection of a set of
observations Y onto the new subspace can be calculated as Y = XU, where X is
the matrix of N-dimensional original observations. The remaining data variability
in percentage after the dimensionality reduction can be calculated as:

VM =

∑M
i=1 λi∑N
i=1 λi

× 100 (2.17)

Some useful properties of the final principal components are:

• Their variance is in decreasing order (λ1 > ... > λM).

• They are uncorrelated, that is cov(xui, xu j) = uT
i Σu j = λ juT

i u j = 0 for i , j,
because the eigenvectors u are orthonormal so the matrix U of eigenvectors
is orthogonal UUT = I where I is the identity matrix.

2.5. Evaluating Recommender Systems

There are several metrics that can be used to evaluate the quality othe a recommen-
dation algorithm [4]. Depending on the filtering technique some metrics might be
more suitable than others. Also some metrics quantify the ability of the system to
find good items, like precision and recall metrics, while others measure the ability
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to rank in the initial positions of the recommendation list good recommendations,
like MAP, NDCG or MPR.

Mean absolute error (MAE).

This metric measures the quality of the recommender by computing the average
absolute deviation between the estimated rating and the actual rating provided by
the users, it is computed as:

MAE =
1
|T |

∑
ru,i∈T

|ru,i − r̂u,i| (2.18)

where ru,i represents the real rating of user u to item i , r̂u,i represents the
estimated rating of user u to item i and T is the test set of users ratings.

Root mean square error (RMSE).

As in the MAE it is centered on the deviation between the actual rating and the
estimated one but this metric squares the error, which penalizes larger deviations.
It is calculated as:

RMS E =

√
1
|T |

∑
ru,i∈T

(ru,i − r̂u,i)2 (2.19)

Precision.

This metric was designed for binary relevance judgements and it is defined as the
ratio of recommended items that are relevant to the user in the test set T over
the total number of recommended items. For the top K recommended items the
precision is defined as:

Pu@K =
|Lu ∩ L̂u|

|L̂u|
(2.20)
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where Lu denotes the set of relevant items for user u in the test set T and
L̂u represents the recommended set with the K top rated items according to the
prediction for user u. The global precision is calculated averaging the individual
Pu@K of all the users in the test set.

Mean average precision

It is defined as the average of the overall precision value P@K for different lengths
of the recommendation set K as follows:

AP@K =
1
N

K∑
i=1

rel(i)P@i (2.21)

where rel(i) is equal to 1 if the ith recommended item is relevant or 0 if it is
not, N is the total number of relevant items.

Recall

is the fraction of relevant items that are in the recommendation list over the total
number of relevant items. For the top K recommended items recall is defined as:

Ru@K =
|Lu ∩ L̂u|

|Lu|
(2.22)

The overall relevance of the system is computed as the average of the recalls
obtained for the different users.

Normalized discounted cumulative gain (NDCG)

is a metric that is widely used for evaluating the effectiveness of information re-
trieval systems. In the context of recommender systems it measures the ranking
quality of the recommendations. The discounted cumulative gain for a user u
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DCGu is defined as:

DCGu =

N∑
i=1

ru,i

log2(i + 1)
(2.23)

where ru,i is the actual rating provided by the user u for the item ranked at
position i in the recommendation list with length N. Due to the different criteria
when rating items, DCGu values are not directly comparable between users. The
NDCG is used instead, and it is computed from the DCGu and the ideal DCG of
the user IDCGu as:

NDCGu =
DCGu

IDCGu
(2.24)

The overall NDCG of the system is computed by averaging the individual
NDCGu.
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3. Music Representation and
Recommendation

3.1. Introduction

The reaserch field of Music Information Retrieval (MIR) is relatively recent and
has grown significantly in less that two decades as the result of a range of factors
such us the increase of personal computers’ computing power, the improvement
of audio compresion techniques and more recently the raise of music streaming
services popularity [3] [16]. Some subfields of the research area are [3]:

• Feature extraction such as beat tracking, melody extraction and timbre de-
scription.

• Music similarity measurement

• Music classification. Examples of classifications are genre classification,
mood recognition and instrument classification.

• Applications such as music recommendation, context-aware and adaptive
systems, playlist continuation and audio fingerprinting.

This chapter is focused on two important MIR tasks: music feature extraction
and music representation.

3.2. Music Representation

A large list of audio descriptors have been designed for different purposes. Ac-
cording to the definition given in the MPEG-7 standard [17], a content descriptor
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is a ‘distinctive characteristic of the data which signifies something to somebody’.
This standard was released in 1999 and was designed to be a standardization of the
way multimedia content is described. It only standardize the way the descriptions
are structured, not how they are obtained or used.

One important aspect of music content description, as other systems dealing
with audiovisual content,is that it has the drawback of the semanticgap. That
is, as defined by Smeulders et al. in [18], ‘ the lack of coincidence between the
information that one can extract from the (sensory) data and the interpretation that
the same data has for a user in a given situation’.

Also that characterization should be useful for a specific purpose. It might not
be needed the same information in a musical instrument discrimination task than
in a music recommendation one. One way to do this characterization in terms
of human perception is manually associate the tracks with some tags that define
them, but it is not possible when working with big databases. It is then more
convenient to compute those characteristics automatically and as fast as possible.

3.2.1. Features Taxonomy

Gouyon et al. [19] and Leman et al. [20] among others suggested three differ-
ent criteria to classify music content descriptors: level of abstraction (low,mid
and high-level), temporal scope (instantaneous, frame-based or global scope) and
according to the different musical facets (harmony/tonality, melody, rhythm, tim-
bre/instrumentation, editorial, textual, bibliography).

1. Temporal scope. The description provided by a feature may apply to the
whole signal (e.g. the attack duration of a sound), that is the case of global
descriptors . Also descriptors can be computed for each time frame, then
they are instantaneous descriptors (e.g. the spectral centroid of a signal,
which can vary along time). In order to compute the final features the tem-
poral vectors of the instantaneous descriptors are processed by a modeling
module. [21]
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2. Levels of abstraction. Three levels of abstraction are considered to classify
music content description:

• Low-level descriptors. Computed directly from the signal or from a
derived representation, (e.g. from the Fourier Transform of the signal).
They are suitable for computer systems but they are not understand-
able for most of the users unless they have any technical background.

• Mid-level descriptors. They characterize aspects of the music that are
more ’objective’ (e.g. like chords, keys or timbre descriptors)but are
not technical aspects of the signal. Mid-level descriptors are under-
standable for users with a general knowledge about music theory.

• High-level (or semantic)descriptors. These descriptors are computed
from Mid and Low-level descriptors. They are designed to charac-
terize music audio with terms that humans use to describe music in a
more subjective way (e.g. western or non-western music, genre clas-
sification).

3. Facets of Music Information. Researcher J.S. Downie proposed to an-
alyze music information according to seven facets [16]: pitch, temporal,
harmonic, timbre, editorial, textual and bibliographic facets. Those facets
are not mutually exclusive, since some concepts can be classified in sev-
eral facets depending on the context. They can also depend on other facets
like the harmonic one, that depends on the pitch and temporal facets. De-
scriptors organized according to this classification are of a high-level of ab-
straction and most of them are computed from lower-level descriptors (e.g.
timbre descriptors are computed from spectrum features).

• Pitch facet. Information about the tones present in the music. Pitch is
a function of its fundamental frequency. There are different represen-
tations of the pitch, like a symbolic representation as notes written on
a stave or as numbers on a tablature for example.

• Temporal facet. It covers everything related to the duration of musical
events.
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• Harmonic facet. The music harmony as the units (formed by a set
of tones) that we analyse by hearing. Typically harmonies are con-
structed by chords, but sometimes they can be present in an interval
(two different tones together). The concept is quite abstract and is
linked to the western music tradition so the description of non-western
music in terms of its harmonic facet is difficult. Another difficulty is
the lack of consensus in the classical music community about some
harmonic analysis.

• Timbre facet. It includes the information related to the tune color. It
is what help us differentiate the same tune played by a trumpet or a
mandolin. One instrument may have different colors depending on the
way it is played.

• Editorial facet. They are mainly performance instructions. From dy-
namic instructions (e.g crescendo, f , mp) fingering, articulation, bow-
ing to any other symbol related to performance. One important dif-
ficulty of this facet is that the information can be textual or iconic.
Another difficulty is that there are symbols very specific for an instru-
ment and it could be the case that one symbol in different music sheets
can have different meanings. Specially in contemporary compositions
there might be symbols invented by the author.

• Textual facet. Operas’ libretti, lyrics of songs or any other music com-
position are included here. There are certain lyrics or sentences that
have a melody associated to them, but since there are translated ver-
sions of a lot of songs a melody may have several texts associated to
it.

• Bibliographic facet. It includes information about the title, composers,
performers, catalogue number, etc. It is music meta data rather than
information about the content of the audio.
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3.2.2. Feature Extraction

Time and Frequency Representation

Music features are computed from the time and frequency representations of the
signal [3] . The time-domain representation is used to obtain descriptors related to
the temporal evolution of the waveform, like the zero-crossing rate that measures
the number of times the signal changes from positive to negative sign and vice
versa. In Figure 3.1 there are two examples of the time-domain representation of
two tracks from very different styles:

Fig. 3.1. Time representation of ’Chaconna’ by J.S. Bach and ’Macarena’ by Los del Rio

The frequency spectrum of a time-domain signal is its representation in de fre-
quency domain. In speech recognition using the Fourier Transform (FT) is very
common and since several of the music signal analysis techniques were based on
the speech recognition pre-existing ones, the FT is also very important in MIR.
When working with digital audio the discrete version of the FT is the Discrete
Fourier Transform. One of the most used techniques for spectrum analysis is
the Fast Fourier Transform (FFT) because it is an efficient algorithm for calculat-
ing the DFT [22]. The spectral content of an audio signal changes very quickly
so sometimes it is more useful to compute the spectral representation over short
time segments of the signal using the Short-Time Fourier Transform (STFT). The
STFT is computed windowing the time-domain signal with an sliding window of
the desired type (e.g. rectangular, Hamming, triangular) and the chosen overlap
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between consecutive windows, and then applying the FFT to the individual sig-
nal segments. In Figure 3.2 the final result of applying the STFT is illustrated
as a power spectrogram. The main parameters that influence the analysis are the
window size, the overlap and the type of window used in the analysis.

Fig. 3.2. Soectral representation of ’Chaconna’ by J.S. Bach and ’Macarena’ by Los del
Rio

Low level descriptors extraction

The list of low level features is considerably large because for the different MIR
tasks some specific features were designed. For the CUIDADO project [21] a large
set of audio features was described. Most low-level features describe loudness and
timbre and are extracted from the time representation and frequency representa-
tion of the audio signal. In Figure 3.3 the general extraction process of low-level
descriptors is depicted.

Frequency Cepstrum Coefficients

A powerful spectral feature widely used in speech recognition and in MIR are
the Mel Frequency Cepstrum Coefficients (MFCCs), because they represent in a
compact way (as a finite number of coefficients, typically 13 in the literature) the
signal spectrum. They were proposed for speech recognition and later B. Logan
[23] demonstrated the same process could be applied for music modelling.
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Fig. 3.3. Diagram of low-level features extraction. Source: [3]

Fig. 3.4. Block diagram of the MFCC extraction. Source: [3]

The main steps are illustrated in Figure 3.4. The typical windowing function is
a Hamming window to remove edge effects. The spectral representation is filtered
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using a Mel-scale filterbank3. The DFT (or FFT) of each frame is computed and
then the logarithm of the amplitud spectrum is obtained. This step is based on hu-
man sound perception, because it has been shown to be approximately logarithmic
in terms of loudness perception and that it prioritizes the amplitude of the spec-
trum over the phase information. Then the log spectrum amplitud is converted to
Mel-frequency scale to emulate the human spectral perception. This is done filter-
ing the log-amplitude spectrum with a filterbank of overlaping triangular windows
which bandwidths follow the Mel-frequency scale. Finally the DCT is applied to
obtain decorrelated coefficients for each frame. The low order MFCCs gives in-
formation about the spectral envelope and the higher order ones describe the fast
variations of the spectrum. MFCCs are commonly used in speach recognition but
also in MIR tasks such as musical instrument identification [25], music similarity
[26] and music recommendation [27]

In the Annex an extensive list of low-level music descriptors is provided. The
list corresponds to low-level features that can be extracted using the audio library
Essentia 4.

3.3. Music Recommendation

Music recommendation is an inportan MIR tasks and it has been approached in
many different ways. Music similarity between tracks is a very close MIR task
that can be used to compute recommendations, however it is also useful for other
issues such us song cover identification.

Data about music is essential for a music recommender. Research studies on
music recommendation uses three different sources of information [28]: manual
expert annotations, automatically extracted annotations from the Internet (e. g.
keywords from web pages and social media or social tags) and collaborative data
generated by users (such us songs or artists ratings or playcounts).

3Mel-Scale is a perceptual scale that tries to measure the psychological perceived pitch of the
soud [24]

4http://essentia.upf.edu
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Collaborative filtering methods can also be used for music recommendation as
they are directly applicable to most of the recommendation domains. The music
recommender system proposed in [29] was one of the first that applied a collabo-
rative filtering method to music recommendation.

Appart from collaborative filtering, may approaches are focused on informa-
tion extracted from the music audio. D. Bogdanov in [28] classified many music
recommenders according to the content information they used:

• Timbral information. Typically represented by the MFCC.

• Temporal information, such as loudness evolution with time, rhythm infor-
mation or structure of the music.

• Tonal information, related with harmonies, chords and key.

• Inferred semantic information, such us extensive automatically extracted
genre tags or unsupervised clustering methods in the feature space.

Once the music information is extracted, different techniques can be used to
compute the recommendations. Some that have been explored for music recom-
mendation are [28]:

• Distance based ranking, using similarity metrics such as euclidean distance,
cosine distance and Pearson correlation.

• Discriminative models, such us kNN algorithm or support vector machines
(SVMs).

• Probabilistic generative models, e.g. GMMs or hidden Markov models
(HMM).

• Automated reasoning using ontologies.

In practice, many of the music similarity measures are based on timbral sim-
ilarity with MFCCs (e.g. [27],[30], [31], [32]) in a similar way as they are used
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for speech recognition [33]. There are different approaches that use GMM and
MFCC, e.g. MFCCs and GMM with initial parameters obtained using k-means
algorithm [32], the same approach but obtaining init parameters using a Univer-
sal Backgruond Model (UBM) and a GMM and using a GMM supervector [31].
GMMs have also shown to be performe well when using other features e.g. se-
mantic descriptors [27]
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4. Description of the Proposed Systems

4.1. Introduction

In this chapter the database used, the feature extraction process and two differ-
ent systems are described. After evaluating several approaches of recommender
systems, as detailed in chapter 5, two systems were chosen. Each one of them is
more convenient for a different situation. The first system is purely content-based
and uses the Pearson correlation between the feature representation of all tracks
to rank the items according to their minimum distance to any track of the user’s
playlist. It is the system that obtained better results but it also was the slowest
one. This system is proposed for situations with enough computational power to
store all correlations between items so that it is not necessary to to compute all
distances each time a recommendation is requested or for situations were instant
recommendations are not required. The second proposed system is an hybrid sys-
tem that filters the database using kNN algorithm and models the playlist of the
user using GMM. This second system is considerably faster than the first one but
its results were not as good, so the better architecture depends on the

4.2. Description of the Database

Two potentialy usefull databases were found. One is the Million Song Dataset
(MSD) [34] , originally a collaborative project between The Echo Nest 5 and
LabRosa 6. It is a freely-available dataset of audio features and metadata of a
million popular music tracks. The MSD also contains complementary datasets,
one of which is called the Tase Profile subset. This complementary dataset pro-
vides real user play-counts. The audio analysis and the corresponding catalogue

5http://the.echonest.com
6https://labrosa.ee.columbia.edu/

38



ID of the songs were provided through The Echo Nest API in the past but in
June 2016 Echo Nest shut down their API. This is a problem because the MSD
uses Echo Nest identifiers to refer each track and metadata (including names of
artists, songs and tracks), and they were only accessible through the API. Inside
the Acoustic Brainz project 7 they provide mappings of Echo Nest song identifiers
in the MSD to IDs of other services if they are available (e.g. identifiers of Spo-
tify, 7digital and musicbrainz catalogues) 8 . The MSD can still be used however
this year another dataset was released and it has some characteristics that make it
more interesting. Spotify released a database called The Million Playlist Dataset
(MPD) 9 that contains 1 million playlists created by users of the Spotify platform.
An important characteristic of playlists is that they are intended to be listened in
sessions. Songs that are added to a playlist typically share some characteristics
that make the user want to listen them one after the other. Additionally metadata
of all tracks can be obtained through the Spotify API directly, since in the MPD
they provide Spotify identifiers. Also a 30 seconds preview is available for most
of the tracks.

The Million Playlist Dataset

In the context of the RecSys Challenge 2018 Spotify released a database called
The Million Playlist Dataset (MPD) that contains 1 million playlists created by
users of the Spotify platform in the United States. Those playlists were created
between January 2010 and October 2017 and selected randomly from the huge
amount of playlist created by users that fulfil the selection criteria:

• Creator is at least 13 years old and lives in the Unated States.

• Public at the time MPD was generated

• Contains at list 5 tracks
7http://acousticbrainz.org
8https://labs.acousticbrainz.org/million-song-dataset-echonest-archive/
9 Million Playlist Dataset, official website hosted at https://recsys-challenge.spotify.com/
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• Contains no more than 250 tracks

• Contains at least 3 unique artists

• Contains at least 2 unique albums

• Has no local tracks (local tracks are non-Spotify tracks that a user has on
their local device)

• Has at least one follower (not including the creator)

• Was created after January 1, 2010 and before December 1, 2017

• Does not have an offensive title

• Does not have an adult-oriented title if the playlist was created by a user
under 18 years of age

Playlists are stored in groups of 1.000 playlists in JSON files. Playlists contain
a set of tracks and additional metadata that gives information about: name of
the playlist, user-provided playlist description, instant of last update, number of
tracks, artists, albums, followers and editing sessions, total duration of all tracks
of the playlist and whether the playlist is collaborative or not. Every track consists
in: track name and URI, artist name and URI, album name and URI, position in
the playlist and duration. Using the provided track URI a preview of 30 seconds
can be obtained using the Spotify API, but it is not available for all tracks.

Final dataset

The MPD was pre-processed for the purpose of this project to reduce the com-
putational cost of each experiment and reduce the difficulty of the collaborative
filtering. The final set has 3,142 playlists with the following characteristics: they
have at least 20 tracks per playlist and eack track of the playlist appears in at least
20 playlists of the final set. Album and artist information is not taken into account
for the recommendation so we only filter the dataset by track related characteris-
tics. In the dataset there are 6.034 unique tracks, all of them with available preview
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though the Spotify API. The number of playlists were not increased because the
time of execution in some of the evaluated systems in chapter 5 is directly depen-
dent on the database size, so to be consistent all recommenders were tested using
this reduced database.

4.3. Recommendation

4.3.1. Feature Extraction

The feature extraction process was based on [28] and has three steps, as depicted
in figure 4.1: in the first one low-level descriptors are extracted from the audio file,
then a high-level representation is obtained using the low-level descriptors and at
the end a lower dimension representation of the feature vector is obtained using
PCA. At the end of the process we have a semantic representation of the track that
will be used by the content-based algorithm.

Audio

Low-level extractor

High-level extractor

PCA

Final feature vector

Fig. 4.1. Feature extraction process.

Feature extractors from the audio library Essentia [35] are used to obtain the
low-level and high-level representations. Essentia is an open-source library for
audio analysis and audio-based music information retrieval created and supported
by the Music Technology Group of the Universidad Pompeu Fabra. This extrac-
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tors are suited for batch processing on large music sets so the process is quite fast
considering the amount of features extracted.

4.3.2. Low level descriptors

The set of low-level features describes a wide range of aspects (or facets) of the
music, so the number of low-level descriptors is large. Once the low-level features
are computed they are used to obtain the the high-level representation of the track
in the next step.

Before computing low-level descriptors the audio signal is re-sampled to 44kHz,
converted to mono and normalized using its ReplayGain value (which is a gain
value for a given track for loudness normalization according to the ReplayGain
specification) by the Essentia low-level extractor. This is done because otherwise
comparisons between tracks with different characteristics of the digital audio sig-
nal could lead to erroneous results. Frame-wise descriptors are summarized by
their statistical distribution.

In Essentia low-level descriptors are divided in three groups: low descriptors,
tonal descriptors and rhythm descriptors. Frame-wise descriptors are summarized
by their statistical distribution. Below is an overview of the different groups of
low-level descriptors, a detailed description is given in Annex I.

Low-level descriptors

In this group there are spectral and time-domain descriptors. The spectral content
of the signal is analysed in different perceptual scales: Mel, Bark and Equivalent
Rectangular Bandwidth (ERB). Some features describe the spectral distribution,
e.g. central moments, crest and flatness that are computed over energies in Bark
bands, Mel bands and ERB bands. Other features that are used to describe the
spectral shape are the spectral centroid, spectral spread, spectral skewness and
spectral roll-off. Other features that belong to this group are the average loudness,
which gives information about the dynamic range of the signal, the silence rate
for several thresholds and the zero-crossing rate, which gives information about

42



the noisiness of the signal.

Tonal descriptors.

In this category we have the general key of the track, information about chords like
the chord strength, the sequence of chords or the chords change rate. Also some
high-resolution chroma features are computed. They give information about the
tuning system or scale which is very useful for comparative analysis of music
from a western or non-western traditions.

Rhythm descriptors.

Features of this group are the onset rate, danceability (which is a musical descrip-
tor proposed by S. Streich and P. Herrera in [36] ) and some descriptors charac-
terizing the BPM histogram and the actual beats (their count, positions in time,
loudness and band ratio).

High level (semantic) descriptors

High-level features try to reduce the semantic gap so that they can describe mu-
sic content closer to human perception than the low-level descriptors. They are
computed using several classifiers, each of them trained on a different semantic
dimension such as genre, moods, instrumentation, rhythm and tempo [28] . Clas-
sifiers were built using 20 ground truth music collections corresponding to 20
classification tasks. Support Vector Machines (SVMs) were used for the classifi-
cation. Parameters of each SVM were found by a grid search with 5-fold cross-
validation. Then classifiers were trained using the previously mentioned music
collections, which low-level features were selected by the Correlation-based Fea-
ture Selection (CFS) method as described in [37] according to the specific music
collection.

In Table 4.1 we can see that the set of features are focused on different charac-
teristics of the music (e.g. genre, mood, instrumentation). Some models describe

43



Classifier Category Classes
G1 Genre Alternative, blues, electronic, folk/country,

funk/soul/rnb, jazz, pop, rap/hiphop, rock
G2 Genre Classical, dance, hip-hop, jazz, pop, rhythm

’n blues, rock, speech
G3 Genre Blues, classical, country, disco, hip-hop,

jazz, metal, pop, reggae, rock
GEL Genre Ambient, drum ’n bass, house, techno,

trance
CUL Cultural Western, non-western

MHA Mood Happy, non-happy
MSA Mood Sad, non-sad
MAG Mood Aggressive, non-aggressive
MRE Mood Relaxed, non-relaxed
MAC Instrumentation Acoustic, non-acoustic
MEL Instrumentation Electronic, non-electronic
MCL Mood 5 mood clusters (more information in Annex

I)
RPS Tempo (perceptual) Slow, medium, fast
RBL Genre Chachacha, jive, quickstep, rumba, samba,

tango, viennese waltz, waltz
ODA Cultural Danceable, non-danceable
OPA Cultural Party, non-party
OVI Instrumentation Voice, instrumental

OTN Tonal Tonal, atonal
OTB Timbre Bright, dark
OGD Voice gender Male, female

Table 4.1. High-level descriptors models.

the track according to different music genre classifications. Although it could be
case in which one track did not belong to any of the genres of the classification
provided by one model, that information is still descriptive of the content of the
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track. For example RBL classifies a track according to several music genres that
correspond to a dance style. If one track does not belong to any of them but it
is classified as waltz, that information could mean that the track is not rhythmic
or energetic. So no classifiers are discarded at these point to compute the content
description.

4.3.3. Final feature vector

Once all semantic descriptors are extracted, dimensions of the feature vectors are
reduced using PCA. Dimensionality is reduced for several reasons:

• Playlists can have a minimum length of 20 tracks. The method used for
building the GMMs from the library scikit-learn restricts the number of
samples, so they must be greater or equal to the number of features.

• Descriptors taken from the same classifier might be highly correlated since
they sum up to one. There are several multi class classifiers and using all
classes may not give really unique and uncorrelated information.

• Some genre classifiers have similar or even the same classes. As in the
previous case those features could be highly correlated.

• Reducing dimensions of track representation lightens the system so it takes
less time to compute each recommendation.

The chosen number of components is 15 because, after computing the total ex-
plained variance as a function of the number of components as detailed in section
5.3 , the total explained variance for 15 components were more than 95%.

4.4. Proposed Content-based System

This is the system that obtained the best metrics of all the evaluated recommen-
dation techniques and is also one of the more simple ones. It is a distance-based
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method that recommends the tracks from the database that are closer to any of the
user playlist tracks in the feature space.

First all distances between the tracks from the user playlist and database tracks
need to be calculated. Distance is measured with the Euclidean distance of the
feature representation of the tracks. Then tracks are ranked according to their
minimum distance to any track of the user playlist.

4.5. Proposed Hybrid System

Content-based methods obtained better results than the collaborative ones but they
also were considerably slower as can be shown in chapter 5. While the maximum
average time per recommendation of a collaborative method was 11 seconds the
fastest average time per recommendation of a content-based method was 128 sec-
onds. Combining GMMs with kNN algorithm improved metrics and average time.
Also in a human evaluation its recommendations were rated positively so also it
was not the recommender system that obtained better results

The proposed hybridization method is cascade, as depicted in the diagram of
the system in figure 4.2 . The kNN method is used as a first stage of the hybrid
system to filter the database and provide a smaller set of tracks so that the final
recommendation list provided by the content-based technique is computed faster.

4.5.1. Collaborative Filtering: kNN

After comparing kNN filtering and threshold filtering with different parameters,
the variant that obtained better results was kNN with 30 neighbours, so it is the
collaborative method used in combination with a content-based filtering method.
Similarity between playlists is measured using the Pearson correlation coefficient
because it is a widely used similarity measure in collaborative filtering that has
shown good recommendation accuracies compared to other distance metrics [9].
The singularity of kNN method is that, after computing correlations between
playlists, only the set of k playlists with higher correlation values are used to
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Fig. 4.2. Block diagram of the proposed hybrid recommender. The number of neighbours
used in the kNN algorithm is 30 and the number of components in the GMM is
9.

compute the recommendation. The final score of each track is the sum of the cor-
relation values of all playlists that contain that track divided by k, the number of
neighbours. Tracks of the database are ranked in decreasing order of the score val-
ues and the a list with the first 1000 tracks are used by the content based method
to obtain the final recommendation. Different lengths of that list were tested as
explained in chapter 5 and 1000 was found to the be the smallest number that did
not worsen the metrics.
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4.5.2. Content-Based Algorithm: Gaussian Mixture Models(GMM)

In the content-based method first preferences of the user are modelled with a
GMM. Then the probability of all the tracks of the collaborative filtering list is
obtained and finally tracks are ranked in descendent order of probability.

It was one of the two the content based techniques that, in cascade with kNN,
showed better overall performance. Its accuracies were the second best ones but
its computing speed was significantly better than the speed of the system with
better accuracies.

Music recommendation using GMM

Gaussian Mixture Models are probability generative models that can be used to
estimate a probability density distribution [38]. A GMM can be seen as a linear
combination of uni modal Gaussian densities, also called components. The model
is defined by a set of parameters Θ = (Θ1, ...,ΘC) where C is the number of
components of the model. Each component ci is described by a set of parameters
Θi = {µi, Σi, λi}, which are the mean µi the variance Σi and the weight of the
components (the prior probability of the component) λi = P(ci|Θ).

For a GMM with C components, that is described by parameters Θ to model
the user playlist probability distribution, a single track x would have a probability
defined as the marginalization over all components of the model:

p(x|Θ) =
C∑

i=1

P(ci|Θ)p(x|ci,Θ)

=

C∑
i=1

P(ci|Θ)
1

(2π)n/2|Σi|
1/2 exp

(
−

1
2

(x − µi)TΣi
−1(x − µi)

) (4.1)

where n is the length of the feature representation of each track and the co-
variance matrix Σi is diagonal because feature vectors are transformed by PCA,
so they are uncorrelated. The goal is to estimate parameters Θ so that the GMM
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models the distribution of the user playlist. For a user playlist V = v1, ..., vM

where M is the length of the playlist and vi is the n-dimensional feature repre-
sentation of a track from the playlist, the maximum likelihood estimation of the
model parameters would be defined as follows:

ΘML = argmaxΘ
∏
v∈V

P(v|Θ)

=
∏
v∈V

C∑
i=1

P(ci|Θ)
1

(2π)n/2|Σi|
1/2 exp

(
−

1
2

(v − µi)TΣi
−1(v − µi)

) (4.2)

Expectation Maximization algorithm is used to find the model parameters be-
cause Eq.4.2 is hard to solve analytically [38].

Expectation Maximization (EM) algorithm

The Expectation Maximization is an algorithm that iterates between estimating a
posteriori class probabilies for each sample given some model settings (E-step)
and re-estimating parameters of each component. Each EM iteration consists of
the following steps [38]:

• E-step: Estimate hidden sample to component assignments hi j for each
sample vj and component ci:

hi j = P(ci|v j) =
p(v j|ci)P(ci)∑C

c=1 p(vj|ccP(cc)
(4.3)

• M-step: compute new component’s parameters to maximize the joint dis-
tribution of component assignments and samples p(V,H|Θ), where H is the
matrix with all sample assignments hi j. For each parameter it means:

µnew
i
=

∑
j hi jvj∑

j hi j
, (4.4)

Σnew
i
=

∑
j hi j(vj − µ

new
i

)(vj − µ
new
i

)T∑
j hi j

, (4.5)
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P(ci)new =
1
N

∑
j

hi j. (4.6)

Before EM, initial parameters are computed by k-means method as explained in
section 2.1.2.1.Then this iterative process is repeated until a convergence thresh-
old is reached.

Number of components estimation

After performing a grid search the number of mixtures that showed to model better
users playlist for the recommendation was 9.

50



5. Experiments

In order to choose the architecture of the system that better suited the avail-
able databases and computing power, several variants of different algorithms were
evaluated empirically. The experimental study was structured around four funda-
mental issues:

1. Recommendation approach: collaborative filleting, content-based filtering
or hybrid system.

2. Collaborative technique: neighbour selection (threshold vs kNN).

3. Content based technique: distance or GMM.

4. Hybridization method: cascade or combination.

5.1. Procedure and evaluation

Each variant was tested using scripts in Python created for this thesis. Python
was the chosen programming language because there are several Python libraries
that are very useful for signal processing, audio analysis and machine learning
tasks. The library Scikit-learn was used to model the GMMs and compute the
PCA, distances were computed using the Scipy library and audio descriptors were
obtained by the Essentia extractors [35] .

The evaluation metrics that were used to compare all recommendation tech-
niques were the ones used in the RecSys Challenge 2018 because they are more
appropriate than other metrics to evaluate this type of recommender (music rec-
ommender with no ratings). These are variants of the ones explained in section
2.5. Here we specify their exact implementation within the Challenge as provided
by the organizers in an executable script. Although in the Challenge artist level
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is also taken into account, for the purpose of this thesis only track level was eval-
uated. For an ordered list of recommended tracks R and the ground truth set of
tracks G metrics are defined as:

• Precision. This metric is the ratio of the number of relevant items over the
number of known relevant items:

Precission =
|G ∩ R1:|G||

|G|
(5.1)

where |G| denotes the size of the ground truth set and R1:|G| denotes the first
|G| items in the recommendation list. As it is an intersection of two sets
of items it does not depend on the order of the recommended tracks within
R1:|G|.

• Normalized discounted cumulative gain (NDCG). As mentioned in section
2.5 DCG measures the ranking quality of the recommendation. It is an
adapted version for situations were there no ratings are estimated. It takes
higher values when relevant items are in higher positions of the recommen-
dation list. The ideal DCG (IDCG) is the DCG when the recommended
items are perfectly ranked. Then the NDCG is the ratio of both values.
DCG and IDCG are calculated as follows:

DCG =
|R|∑
i=1

reli

log2(i + 1)
(5.2)

IDCG =
|G|∑
i=1

1
log2(i + 1)

(5.3)

were reli equals 1 if the item at position i is a relevant item (i.e. it belongs
to the ground truth set) and 0 otherwise. And finally the NDCG is defined
as:

NDCG =
DCG
IDCG

(5.4)
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If the intersection of G and R is empty, the DCG is 0 so the NDCG would
be also 0.

• Clicks. In Spotify there is a feature called Recommended Songs that recom-
mends 10 additional tracks given a set of tracks in a playlist. Every time the
list is refreshed it produces 10 more tracks. The metric clicks represents the
number of times the Recommended Songs list needs to be refreshed before
a relevant track is shown to the user. It is calculated as follows:

Clicks =
⌊
argmini{Ri : Ri ∈ G} − 1

10

⌋
(5.5)

If there is no relevant track in R the maximum number of clicks is picked
(which is 51).

The provided final value of each metric is the average of the individual metrics
values obtained for each user playlist used in the evaluation.

5.2. Neighbour selection technique in CF

In memory based collaborative filtering the relevance of each item is calculated as
a weighted sum of contributions from the set of users that are more similar to the
target user. The set of similar users can be composed the top k more similar users
(k nearest neighbours) or the users whose similarity metric is higher than a certain
threshold. Parameters of both techniques, that are the threshold and the number of
neighbours, were estimated using a grid search method. Both methods are similar
but there are some particularities that may affect the final ranking:

1. k Nearest Neighbours (CF-kNN). Only the playlists with higher correla-
tion values contribute to the final track ranking. The singularity of kNN
method is that, after computing correlations between playlists, only the set
of k playlists with higher correlation values are used to compute the rec-
ommendation. The final score of each track is the sum of the correlation
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values of all playlists that contain that track divided by k. Tracks of the
database are ranked in decreasing order of score values.The constant num-
ber of neighbours is a problem because the actual correlation is not taken
into account. When there are more than k neighbours that are highly corre-
lated to the user playlist the rest of them are discarded so there is potentially
useful information that is neglected. In the opposite case when all playlists
are low correlated to the user, the information that is used to rank tracks is
not representative of the user preferences.

Neighbours NDCG Clicks Precision Aprox. Time/recom (s)
15 0.0047 46.94 0 10
20 0.0082 45.31 0.0006 10
25 0.0089 43.46 0.0032 10
30 0.0116 42.83 0.0034 10
35 0.0077 44.49 0.0007 10

Table 5.1. CF-kNN evaluation with neighbour numbers
between 15 and 35

2. Threshold filtering (CF-TH). Playlists that have a minimum correlation to
the user playlist are considered for the final track ranking. The number
of playlists that reach that threshold is not constant, it changes depending
on the user playlist. This method ensures that only playlists with a mini-
mum similarity to the user are taken into account. The difficulty lies in the
threshold selection. It should not be too restrictive so there is not enough
information to build a good quality recommendation but it should also be
low enough so to avoid playlists with little similarities to contribute to the
recommendation. In figure 5.1 the cumulative distribution of playlists that
on average are under a threshold is depicted. It can be seen that with thresh-
olds higher or equal to 0.05 in average more than 88% of the playlists are
discarded to compute the recommendation. On the other hand with thresh-
olds higher or equal to 0.2 on average 99% of the playlists in the database
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did not contribute to the recommendation. Considering that, the system was
evaluated using thresholds from 0.05 to 0.3.

Fig. 5.1. Cumulative distribution of playlists below a certain threshold.

Threshold NDCG Clicks Precision Aprox. Time/recom (s)
0.05 0.0033 48.22 0 10
0.1 0.0052 47.24 0.0012 11
0.2 0.0042 47.18 0 9
0.3 0.0046 47.24 0 5

Table 5.2. CF-TH evaluation with thresholds between 0.05
and 0.3
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Conclusions:

According to the obtained experimental results we can say that the threshold
method did not provide good recommendations, since all of them show almost
the worst metrics. The best results are the ones given by the threshold 0.1 but
they are very close to the ones obtained with the other thresholds. Although the
CF-kNN method did not obtained much better metrics statistics, it can be seen
that metrics obtained by the CF-kNN method are better than the threshold ones.
Metrics of the best case in CF-kNN evaluation are more than two times bigger
that the threshold best case. In conclusion we can say that these two methods, in
terms of number of relevant tracks recommended and ranking quality, do not pro-
vide quality recommendations the majority of the times, at least with the subset of
the database we are using. However CF-kNN provided better recommendations
specially for k = 30.

5.3. Content based techniques

Two main approaches were evaluated: distance similarity and GMMs. These de-
cission was based on the comparison of several music content based recommenda-
tion approaches done by Bogdanov et. al. in [27] . They tested several algorithms,
some of them using low level descriptors and others using high level descriptors.
The approaches that had better results were the ones that used high level descrip-
tors. Those high-level descriptors can be now obtained using Essentia extractors
and were used in the evaluated content based approaches.

5.3.1. Distance based methods

Three variants using Pearson distance similarity were tested:

1. Distance to the user mean feature vector (CB-DIST-MEAN). The user is
represented by a single point in the feature space. The point is calculated by
averaging the feature of all the tracks in the user playlist. Then the tracks
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in the recommendation list are the ones that are closer (more similar) to
the user point in the feature space. Distance between the user (target) vec-
tor xt and another track feature vector xi is calculated using the Pearson
correlation coefficient, and then the tracks with higher correlations are rec-
ommended. The main drawback of this method is that diversity of user
preferences is simplified to only one average preference. In that case rec-
ommendations might suite worse the playlist content and the performance
of the system could be worse.

2. Top distance to individual tracks (CB-DIST-TOPI). In this variant all dis-
tances between user tracks and tracks from the database are computed and
then only the database tracks with lower distance to any of the user tracks
are recommended. Distances are calculated using the Pearson correlation
as mentioned before and then tracks are ranked according to their minimum
distance to a track in the user list. This way the variability of the playlist
is not simplified in a unique vector and the recommendation list can match
different music styles present in the user playlist. It was used in [27] . This
recommendation method depends on the distribution of the database along
the different music styles. If an outlier of a user playlist is close to a group
of songs in the feature space and the rest of the playlist is located in an area
with very few close neighbours the majority of the recommendations will be
more similar to the outlier. A real user might like those recommendations
but our computational evaluation will worsen.

3. Top average distance to individual tracks (CB-DIST-TOPA). To reduce the
impact of outliers while taking into account most of the diversity in the user
list, this method rank tracks according to their average distance to all tracks
in the user playlist. If there is a playlist which tracks are far and dissemi-
nated in the feature space all mean distances will be low but tracks that are
closer to some of the user tracks will still have lower mean distance, so the
diversity of styles present in the playlist will affect to the final recommen-
dation list.
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Name NDCG Clicks Precision Aprox. Time/recom (s)
CB-DIST-
MEAN

0.0216 40 0 470

CB-DIST-TOPI 0.0419 27.4 0.0139 4036
CB-DIST-TOPA 0.0293 35.11 0 4041

Table 5.3. CB-DIST methods evaluation

5.3.2. GMM based methods

Three variants using GMMs were tested. In all of them a dimensionality reduction
of the track representation is performed by PCA for several reasons:

• Descriptors taken from the same classifier might be highly correlated since
they sum up to one. There are several multi class classifiers and using all
classes may not give really unique and uncorrelated information.

• Playlists can have a minimum length of 20 tracks. The method used for
building the GMMs from the library scikit-learn restricts the number of
samples, so they must be greater or equal to the number of features. This
is not a problem when the model is trained using 5 second segments of the
tracks but otherwise that restriction affect directly the number of features
that can be used.

• Reducing dimensions of track representation lightens the system so it takes
less time to compute each recommendation.

The number of components were chosen analyzing the explained variance of
the PCA. If the total variance is the sum of the variances of all principal com-
ponents, the variance explained by a number of principal components is the sum
of their variances over the total variance. In Figure 5.2 we can see that with 15
components more than 95% of the variance is explained. It is a very convenient
number because even with the shortest playlists the restriction in the number of
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features for training the GMMs is fulfilled. To evaluate the quality of the rec-
ommendations 20% of the tracks in the user playlist are taken, so the minimum
number of tracks will be 16 instead of 20.

Fig. 5.2. Explained variance as a function of the number of components, computed over
the entire database of tracks

1. Gaussian Mixture Model (CB-GMM). A GMM is trained with the tracks’
feature vectors of the user playlist. As in [27] initial parameters are initial-
ized using the k-means method. A grid search method was used to obtain
the best number of mixture components. The evaluation of recommenda-
tions obtained for different numbers of mixture components is in Table 5.4

2. GMM with sliced user playlist (CB-GMM-WIN). Extracting the feature
characterization of the signal in overlapping windows is a very used tech-
nique in speech recognition when working with GMMs. In this case with
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N.Comp NDCG Clicks Precision Aprox. Time/recom (s)
1 0.0072 47.14 0.004 130
2 0.0013 48.3 0 129
3 0.0089 45.54 0.0032 129
4 0.0055 47.12 0.0028 128
7 0.0048 47.3 0 129
9 0.0090 42.7 0.0018 129
11 0.0043 47.34 0 129

Table 5.4. CB-GMM evaluation with number of mixture
components between 1 and 11

30s tracks, we trained the user model with features extracted from 5s sec-
tions overlapped 1s. The purpose of this variant is to try to obtain more in-
formation about the user playlist so that the GMM can model it better. It was
evaluated using 9 mixture components as it was the number of components
for which the best metrics were obtained in the evaluation of CB-GMM.

N.Comp NDCG Clicks Precision Aprox. Time/recom (s)
9 0.0162 42.667 0 3454

Table 5.5. CB-GMM-WIN evaluation with number of
mixture components equal to 9

3. GMM with Universal Background Model (CB-GMM-UBM). Using a UBM
has shown to give good results in music similarity tasks [31]. The chosen
number of components of the GMM is 9 because it was the number that gave
better results in the valuation of CB-GMM. Init parameters of the UBM
were initialized using k-means method.
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N.Comp NDCG Clicks Precision Aprox. Time/recom (s)
9 0.0211 41 0.0125 260

Table 5.6. CB-GMM-UBM evaluation with number of
mixture components equal to 9

Conclusions

Clearly distance-based methods CB-DIST-TOPI and CB-DIST-TOPA obtained
better metrics. The reason behind this could be that if the characterization of
the tracks is good then the distance between them is also a good measurement
of their similarity and perhaps playlists tend to have several subgroups of tracks
that are very similar between them but not necessary between other subgroups of
the playlist. GMMs and CB-DIST-MEAN do not give that much importance to
the individual variability of the tracks from the playlist. However CB-DIST-TOPI
and CB-DIST-TOPA were the slowest methods because all distance combinations
between playlist tracks and the whole database are computed. In a real database
distances between tracks could have been pre-computed and stored so the actual
time to compute recommendations can be highly reduced. If all distances need to
be calculated, those two methods and CB-DIST-MEAN are not scalable since the
number of distances that need to be computed is a multiple of the database size.

Comparing the GMMs variants (CB-GMM, CB-GMM-WIN and CB-GMM-
UBM) we can say that while CB-GMM-WIN and CB-GMM-UBM increased the
average time per recommendation, they did not obtained considerably better re-
sults than CB-GMM with the same number of mixture components. Specially CB-
GMM-WIN needed much more time per recommendation because windowing all
tracks of the user playlist and obtaining their corresponding feature representation
was very slow.
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5.4. Hybridization method

For improving the quality of the final recommendations two hybridization meth-
ods were tested. Because CF-kNN was the collaborative method that obtained bet-
ter results it is the only collaborative method tested in combination with content-
based systems. The hybridization methods that were evaluated are the following:

1. Cascade. The content-based recommender is given a list of track with
length L by the collaborative system to compute the final recommendation,
instead of using the whole database. This reduces the time of the content
based recommendation, which is an important improvement since one of
the main problems of that type of recommenders is that they can be consid-
erably slow. Depending on the L collaborative filtering has more or has less
importance for the final recommendation.

CB method L NDCG Clicks Precision Aprox Time/recom(s)
CF-kNN + CB-GMM 500 0.014 40.14 0.001 33
CF-kNN + CB-GMM 1000 0.0222 36.1 0.0034 33
CF-kNN + CB-GMM 1000 0.021 38.17 0.0051 44
CF-kNN + CB-GMM 2000 0.018 38.08 0.0034 55
CF-kNN + CB-DIST-
TOPI

100 0.0047 48.98 0 70

CF-kNN + CB-DIST-
TOPI

300 0.0047 41.64 0 590

CF-kNN + CB-DIST-
TOPA

100 0.0039 49 0 70

CF-kNN + CB-DIST-
TOPA

300 0.0106 43.4 0.0028 590

Table 5.7. Cascade hybridization method evaluation were L is
the length of the list of tracks that are taken into account in

the conten-based method of the system
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2. Combination. Recommendations are computed separately in a collaborative
and a content-based system. Then the track ranking is built taking into ac-
count results given by each recommender. For the combination of kNN and
GMM, the probability obtained in the content-based recommender is mul-
tiplied by a factor in the k tracks with higher correlation in the collaborative
system. Combination factors were chosen inspecting the tracks probabili-
ties given by each method. On average the difference between the highest
probability and the lowest probability of the first 100 tracks in the collab-
orative recommendation list has 7 orders of magnitude. Considering that
two combination factors were tested for the simplest GMM method. Only
CB-GMM was tested .

Comb. Factor NDCG Clicks Precision
100 0.0149 38.96 0.0011
1000 0.0188 39.41 0.0089

Table 5.8. HYB-COMB-GMM evaluation with combination
factors 100 and 1000

Conclusions

CF-kNN + CB-GMM improved the results obtained by CB-GMM specialy for
L = 1000 getting quite good metrics compared to other systems apart from CB-
DIST-TOPI and CB-DIST-TOPA. In was also faster than CB-GMM so the im-
provement is substantial.

CF-kNN + CB-DIST-TOPA and CF-kNN + CB-DIST-TOPI were tested to
try to reduce the average time per recommendation. However when the average
time was more similar to the average time of CF-kNN + CB-GMM results wors-
ened dramaticaly. For CF-kNN + CB-DIST-TOPI to have good results L should
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be greater which implies that the average time would be also increased. So this
hybridization did not improve CB-DIST-TOPA performance.

5.5. Human evaluation

Since recommender systems fundamental purpose is to provide recommendations
to humans, an small survey was done to a group of 20 people. The main objective
of this experiment was to compare human evaluations with objective metrics and
see if there is a correlation between them so that they are a reliable measurement.

5.5.1. Survey details

The survey consisted in first listening several tracks from the user playlist and then
evaluating the first 5 tracks of the recommendation list. The recommendation list
is ordered according to the estimated relevance so the first 5 tracks are the ones
the system considered they are more likely to match with the preferences of the
user.

The hybrid system HYB-CA-GMM was the chosen system because it has been
tested with a bigger number of playlists. After computing recommendations to
100 playlists four playlists were randomly selected for the human evaluation. Two
playlist were selected from the group that was not recommended any relevant track
and the other two were selected from the group of playliststhat was recommended
any relevant item.

For practicality of the survey only a set of tracks from the users playlist were
used in the evaluation instead of the whole playlist, because if would have taken
too much time to be listened considering that the maximum length of a playlist in
the database is 200.

People was asked to rate from 1 to 10 each recommended track according to
two different criteria:

• Criterium 1: "Do you think the user will like this song?"
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• Criterium 2: "Do you think the song is similar to the songs from the playlist?"

The first one is a more subjective question than the second one and tries to
take into account the taste profile each person think the user has. The second
one is only related to similarity, that can also be representative of the potential
acceptance of the recommendation but not always, as shown in the comparison of
content based approaches were the most successful system was the one that took
more into account the variability of the user playlist.

5.5.2. Final results of the survey

Test number NDCG Clicks Precision
Mean
rating

1 0 51 0 6.2
2 0.07 4 0 7.8
3 0 51 0 4.3
4 0.3 0 0.16 8.9

Table 5.9. Human mean rating on each test compared to objective
metrics.

Metrics are very different to the true average value of the ratings obtained in
the human evaluation, however we can say that both evaluations are correlated.
The average ratings were higher in the playlists that obtained better metrics and
lower on the ones that obtained the worst metrics.
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6. Conclusions

6.1. Conclusions

Several types of recommender systems with a range of complexity levels were
compared: memory-based collaborative systems, two types of content-based sys-
tems and hybrid systems. Also criteria and methods that were used to choose the
architecture of the systems and for parameter optimization were provided.

An objective evaluation process was done to test all the considered methods.
The chosen metrics took into consideration the number of relevant recommen-
dations as well as the ranking quality of the recommendation list. This process
concluded obtaining two different options of music recommender system archi-
tectures. Those final systems provided satisfactory recommendations according
to the objective metrics.

If we take into account the time needed for the recommendation, the most
functional option was an hybrid recommender that is composed of two methods
in cascade. A kNN filtering method in the first stage and a GMM to compute the
final recommendation.

The system that obtained better results was a content-based system that rec-
ommends the tracks that are closer to any of the user playlist tracks in the feature
space generated by the high-level features provided by Essentia. The drawback of
this system is the time needed for the computation.

After providing an overall view of recommender systems, analysing the spe-
cial case of music recommendation and evaluating different approaches of music
recommender systems, two architectures were proposed as possible solutions to
the problem of music recommendation for user playlists.
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6.2. Future work

There are some possibilities that were not evaluated and could be interesting to
compare to the options already tested or that could have obtained better results:

• Model-based collaborative filtering was not tested. More complex collabo-
rative filtering methods might have better results than the one tested.

• Only one recommender was evaluated by humans. Since objective metrics
and human ratings were so different it could be interesting to compare the
two evaluation techniques with more recommendation algorithms.

• A real recommendation evaluation experiment could be done to obtain more
useful evaluations. Rating other users’ recommendations is not necessary
representative of what a real user would have evaluate.

• Proposed systems were not tested with a different database. A database
with playcounts or other types of user behaviour information could affect
the performance of the recommender systems. Evaluating if the systems
are directly exportable to other databases might be of some interest.

• Only Essentia high-level descriptors were used. To evaluate if semantic de-
scriptors are more useful for the recommendation task lower lever features
could be tested, for example MFCCs.
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Annex

Low-level descriptors

List of all low-level descriptors extracted by the Essentia music extractor [35]

Low descriptors

Complete list of low-level descriptors belonging to the subclass ’Low’ in al-
phabetical order:

• Average Loudness

• Barkbands crest

• Barkbands flatness

• Barkbands kurtosis

• Barkbands skewness

• Barkbands spread

• Barkbands

• Dissonance

• Dynamic complexity

• ERB bands crest

• ERB bands flatness

• ERB bands kurtosis

• ERB bands skewness

• ERB bands spread

• ERB bands

• GFCC

• HFC

• Melbands crest

• Melbands flatness

• Melbands kurtosis

• Melbands skewness

• Melbands spread

• Melbands

• MFCC

• Pitch salience



• Silence rate 20dB

• Silence rate 30dB

• Silence rate 60dB

• Spectral centroid

• Spectral complexity

• Spectral contrast coeffs

• Spectral contrast valleys

• Spectral decrease

• Spectral energy

• Spectral energyband high

• Spectral energyband low

• Spectral energyband middle-high

• Spectral energyband middle-low

• Spectral entropy

• Spectral flux

• Spectral kurtosis

• Spectral rms

• Spectral rolloff

• Spectral skewness

• Spectral spread

• Spectral strong peak

• Zero-crossing rate

Rhythm descriptors

Complete list of low-level descriptors belonging to the subclass ’Rhythm’ in al-
phabetical order:

• Beats count

• Beats loudness

• Beats loudness band ratio

• Beats position

• bpm

• bpm histogram first peak bpm



• bpm histogram first peak spread

• bpm histogram first peak weight

• bpm histogram second peak bpm

• bpm histogram second peak spread

• bpm hist. second peak weight

• Danceability

• Onset rate

Rhythm descriptors

Complete list of low-level descriptors belonging to the subclass ’Tonal’ in alpha-
betical order:

• chords histogram

• chords key

• chords number rate

• chords scale

• chords strength

• hpcp entropy

• hpcp

• key (key)

• key (scale)

• key strength



• tuning diatonic strength

• tuning equal tempered deviation

• tuning frequency

• Tuning nontempered energy ratio

High-level descriptors

Additional information about semantic descriptors extracted by Essentia high level
extractor

5 mood cluster classifier

A set of five mood clusters was proposed in [39] with the intention of reduce the
mood space into a smaller and more manageble set. Each cluster is defined by
several words, as shown in the following table 6.1:

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Rowdy Amiable/Good natured Literate Witty Volatile
Rousing Sweet Wistful Humorous Fiery

Confident Fun Bittersweet Whimsical Visceral
Boisterous Rollicking Autumnal Wry Aggressive
Passionate Cheerful Poignant Quirky Intense

Table 6.1. Words that define the mood spaces of the 5 mood
clusters.

Accuracies of the classifiers



Classifier Classes Accuracy
G1 Alternative, blues, electronic, folk/country, funk/-

soul/rnb, jazz, pop, rap/hiphop, rock
60.25%

G2 Classical, dance, hip-hop, jazz, pop, rhythm ’n blues,
rock, speech

87.55%

G3 Blues, classical, country, disco, hip-hop, jazz, metal,
pop, reggae, rock

75.52%

GEL Ambient, drum ’n bass, house, techno, trance 91.69%
CUL Western, non-western 93.47%

MHA Happy, non-happy 84.90%
MSA Sad, non-sad 87.82%
MAG Aggressive, non-aggressive 97.50%
MRE Relaxed, non-relaxed 93.20%
MAC Acoustic, non-acoustic 92.98%
MEL Electronic, non-electronic 86.38%
MCL 5 mood clusters 57.08%
RPS Slow, medium, fast 77.64 %
RBL Chachacha, jive, quickstep, rumba, samba, tango, Vi-

ennese waltz, waltz
73.20%

ODA Danceable, non-danceable 92.41%
OPA Party, non-party 88.38%
OVI Voice, instrumental 93.8%

OTN Tonal, atonal 97.67%
OTB Bright, dark 94.31%
OGD Male, female 87.21%

Table 6.2. High-level descriptors and accuracies of the classifiers.
Source: http://essentia.upf.edu/documentation/svm_

models/accuracies_v2.1_beta1.html.

http://essentia.upf.edu/documentation/svm_models/accuracies_v2.1_beta1.html
http://essentia.upf.edu/documentation/svm_models/accuracies_v2.1_beta1.html
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