14 research outputs found

    Deep maxout networks for low-resource speech recognition

    Full text link

    LOW RESOURCE HIGH ACCURACY KEYWORD SPOTTING

    Get PDF
    Keyword spotting (KWS) is a task to automatically detect keywords of interest in continuous speech, which has been an active research topic for over 40 years. Recently there is a rising demand for KWS techniques in resource constrained conditions. For example, as for the year of 2016, USC Shoah Foundation covers audio-visual testimonies from survivors and other witnesses of the Holocaust in 63 countries and 39 languages, and providing search capability for those testimonies requires substantial KWS technologies in low language resource conditions, as for most languages, resources for developing KWS systems are not as rich as that for English. Despite the fact that KWS has been in the literature for a long time, KWS techniques in resource constrained conditions have not been researched extensively. In this dissertation, we improve KWS performance in two low resource conditions: low language resource condition where language specific data is inadequate, and low computation resource condition where KWS runs on computation constrained devices. For low language resource KWS, we focus on applications for speech data mining, where large vocabulary continuous speech recognition (LVCSR)-based KWS techniques are widely used. Keyword spotting for those applications are also known as keyword search (KWS) or spoken term detection (STD). A key issue for this type of KWS technique is the out-of-vocabulary (OOV) keyword problem. LVCSR-based KWS can only search for words that are defined in the LVCSR's lexicon, which is typically very small in a low language resource condition. To alleviate the OOV keyword problem, we propose a technique named "proxy keyword search" that enables us to search for OOV keywords with regular LVCSR-based KWS systems. We also develop a technique that expands LVCSR's lexicon automatically by adding hallucinated words, which increases keyword coverage and therefore improves KWS performance. Finally we explore the possibility of building LVCSR-based KWS systems with limited lexicon, or even without an expert pronunciation lexicon. For low computation resource KWS, we focus on wake-word applications, which usually run on computation constrained devices such as mobile phones or tablets. We first develop a deep neural network (DNN)-based keyword spotter, which is lightweight and accurate enough that we are able to run it on devices continuously. This keyword spotter typically requires a pre-defined keyword, such as "Okay Google". We then propose a long short-term memory (LSTM)-based feature extractor for query-by-example KWS, which enables the users to define their own keywords

    Low Resource Efficient Speech Retrieval

    Get PDF
    Speech retrieval refers to the task of retrieving the information, which is useful or relevant to a user query, from speech collection. This thesis aims to examine ways in which speech retrieval can be improved in terms of requiring low resources - without extensively annotated corpora on which automated processing systems are typically built - and achieving high computational efficiency. This work is focused on two speech retrieval technologies, spoken keyword retrieval and spoken document classification. Firstly, keyword retrieval - also referred to as keyword search (KWS) or spoken term detection - is defined as the task of retrieving the occurrences of a keyword specified by the user in text form, from speech collections. We make advances in an open vocabulary KWS platform using context-dependent Point Process Model (PPM). We further accomplish a PPM-based lattice generation framework, which improves KWS performance and enables automatic speech recognition (ASR) decoding. Secondly, the massive volumes of speech data motivate the effort to organize and search speech collections through spoken document classification. In classifying real-world unstructured speech into predefined classes, the wildly collected speech recordings can be extremely long, of varying length, and contain multiple class label shifts at variable locations in the audio. For this reason each spoken document is often first split into sequential segments, and then each segment is independently classified. We present a general purpose method for classifying spoken segments, using a cascade of language independent acoustic modeling, foreign-language to English translation lexicons, and English-language classification. Next, instead of classifying each segment independently, we demonstrate that exploring the contextual dependencies across sequential segments can provide large classification performance improvements. Lastly, we remove the need of any orthographic lexicon and instead exploit alternative unsupervised approaches to decoding speech in terms of automatically discovered word-like or phoneme-like units. We show that the spoken segment representations based on such lexical or phonetic discovery can achieve competitive classification performance as compared to those based on a domain-mismatched ASR or a universal phone set ASR

    Neural approaches to spoken content embedding

    Full text link
    Comparing spoken segments is a central operation to speech processing. Traditional approaches in this area have favored frame-level dynamic programming algorithms, such as dynamic time warping, because they require no supervision, but they are limited in performance and efficiency. As an alternative, acoustic word embeddings -- fixed-dimensional vector representations of variable-length spoken word segments -- have begun to be considered for such tasks as well. However, the current space of such discriminative embedding models, training approaches, and their application to real-world downstream tasks is limited. We start by considering ``single-view" training losses where the goal is to learn an acoustic word embedding model that separates same-word and different-word spoken segment pairs. Then, we consider ``multi-view" contrastive losses. In this setting, acoustic word embeddings are learned jointly with embeddings of character sequences to generate acoustically grounded embeddings of written words, or acoustically grounded word embeddings. In this thesis, we contribute new discriminative acoustic word embedding (AWE) and acoustically grounded word embedding (AGWE) approaches based on recurrent neural networks (RNNs). We improve model training in terms of both efficiency and performance. We take these developments beyond English to several low-resource languages and show that multilingual training improves performance when labeled data is limited. We apply our embedding models, both monolingual and multilingual, to the downstream tasks of query-by-example speech search and automatic speech recognition. Finally, we show how our embedding approaches compare with and complement more recent self-supervised speech models.Comment: PhD thesi

    Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1186/s13636-015-0063-8Spoken term detection (STD) aims at retrieving data from a speech repository given a textual representation of the search term. Nowadays, it is receiving much interest due to the large volume of multimedia information. STD differs from automatic speech recognition (ASR) in that ASR is interested in all the terms/words that appear in the speech data, whereas STD focuses on a selected list of search terms that must be detected within the speech data. This paper presents the systems submitted to the STD ALBAYZIN 2014 evaluation, held as a part of the ALBAYZIN 2014 evaluation campaign within the context of the IberSPEECH 2014 conference. This is the first STD evaluation that deals with Spanish language. The evaluation consists of retrieving the speech files that contain the search terms, indicating their start and end times within the appropriate speech file, along with a score value that reflects the confidence given to the detection of the search term. The evaluation is conducted on a Spanish spontaneous speech database, which comprises a set of talks from workshops and amounts to about 7 h of speech. We present the database, the evaluation metrics, the systems submitted to the evaluation, the results, and a detailed discussion. Four different research groups took part in the evaluation. Evaluation results show reasonable performance for moderate out-of-vocabulary term rate. This paper compares the systems submitted to the evaluation and makes a deep analysis based on some search term properties (term length, in-vocabulary/out-of-vocabulary terms, single-word/multi-word terms, and in-language/foreign terms).This work has been partly supported by project CMC-V2 (TEC2012-37585-C02-01) from the Spanish Ministry of Economy and Competitiveness. This research was also funded by the European Regional Development Fund, the Galician Regional Government (GRC2014/024, “Consolidation of Research Units: AtlantTIC Project” CN2012/160)

    Adaptation and Augmentation: Towards Better Rescoring Strategies for Automatic Speech Recognition and Spoken Term Detection

    Full text link
    Selecting the best prediction from a set of candidates is an essential problem for many spoken language processing tasks, including automatic speech recognition (ASR) and spoken keyword spotting (KWS). Generally, the selection is determined by a confidence score assigned to each candidate. Calibrating these confidence scores (i.e., rescoring them) could make better selections and improve the system performance. This dissertation focuses on using tailored language models to rescore ASR hypotheses as well as keyword search results for ASR-based KWS. This dissertation introduces three kinds of rescoring techniques: (1) Freezing most model parameters while fine-tuning the output layer in order to adapt neural network language models (NNLMs) from the written domain to the spoken domain. Experiments on a large-scale Italian corpus show a 30.2% relative reduction in perplexity at the word-cluster level and a 2.3% relative reduction in WER in a state-of-the-art Italian ASR system. (2) Incorporating source application information associated with speech queries. By exploring a range of adaptation model architectures, we achieve a 21.3% relative reduction in perplexity compared to a fine-tuned baseline. Initial experiments using a state-of-the-art Italian ASR system show a 3.0% relative reduction in WER on top of an unadapted 5-gram LM. In addition, human evaluations show significant improvements by using the source application information. (3) Marrying machine learning algorithms (classification and ranking) with a variety of signals to rescore keyword search results in the context of KWS for low-resource languages. These systems, built for the IARPA BABEL Program, enhance search performance in terms of maximum term-weighted value (MTWV) across six different low-resource languages: Vietnamese, Tagalog, Pashto, Turkish, Zulu and Tamil

    Topic-enhanced Models for Speech Recognition and Retrieval

    Get PDF
    This thesis aims to examine ways in which topical information can be used to improve recognition and retrieval of spoken documents. We consider the interrelated concepts of locality, repetition, and `subject of discourse' in the context of speech processing applications: speech recognition, speech retrieval, and topic identification of speech. This work demonstrates how supervised and unsupervised models of topics, applicable to any language, can improve accuracy in accessing spoken content. This work looks at the complementary aspects of topic information in lexical content in terms of local context - locality or repetition of word usage - and broad context - the typical `subject matter' definition of a topic. By augmenting speech processing language models with topic information we can demonstrate consistent improvements in performance in a number of metrics. We add locality to bags-of-words topic identification models, we quantify the relationship between topic information and keyword retrieval, and we consider word repetition both in terms of keyword based retrieval and language modeling. Lastly, we combine these concepts and develop joint models of local and broad context via latent topic models. We present a latent topic model framework that treats documents as arising from an underlying topic sequence combined with a cache-based repetition model. We analyze our proposed model both for its ability to capture word repetition via the cache and for its suitability as a language model for speech recognition and retrieval. We show this model, augmented with the cache, captures intuitive repetition behavior across languages and exhibits lower perplexity than regular LDA on held out data in multiple languages. Lastly, we show that our joint model improves speech retrieval performance beyond N-grams or latent topics alone, when applied to a term detection task in all languages considered

    Modularity and Neural Integration in Large-Vocabulary Continuous Speech Recognition

    Get PDF
    This Thesis tackles the problems of modularity in Large-Vocabulary Continuous Speech Recognition with use of Neural Network
    corecore