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Abstract

Recent advances in deep neural networks (DNNs) have seen automatic speech

recognition (ASR) technology mature and start to become mainstream. Many systems

visibly employ ASR technology for services such as voice search and many more systems

employ it in back-end systems to index online videos or to generate television subtitles.

Speech recognition is a multifaceted problem that can, and, in order to perform

well, must be, tackled at many levels. Deep neural networks are very powerful tools for

classification and can be used at the word level to predict the probability of a word in a

given context as well as at the phonetic level to classify feature vectors extracted from

the speech signal into acoustic units. Deep neural networks can also be used to help

extract good features from the speech signal by leveraging their hidden layer’s ability

to learn new representations of inputs and setting such a hidden layer to the desired

feature size.

These separate levels are, however, often addressed independently from one another.

This thesis hopes to remedy that problem and presents a modular deep neural network

for acoustic unit classification that can combine multiple well trained feature extraction

networks into its topology. A word prediction deep neural network is also presented

that functions at the lower subword level.

The use of multiple similar and yet still, to a certain extent, complementary

features in deep feature extraction networks is investigated and demonstrated to be

a good method of feature combination. Using multiple different input features is also

shown to improve deep neural networks acoustic units classification ability. Despite

the recent advances in deep neural networks the selection of these acoustic units used

as classification targets is still performed using older non neural network modeling

methods. In this thesis an approach is presented that alleviates this requirement and

demonstrates how a deep neural network can be used in lieu of the older method.
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The proposed modular deep neural network exploits the already well trained deep

feature extraction networks, that can make use of multiple input features, in order to

improve its classification ability. In principle, the modular deep neural network design

is not limited by the number of different feature extraction networks included within it.

This thesis evaluates the inclusion of up to seven of them and compares the results to

post recognition combinations of normal deep neural networks using the same variety

of input features.

Another problem addressed in the thesis is that of long compound words in German.

Speech recognition systems require a vocabulary of all the words they can possibly

recognize. The aspect of the the German language to allow multiple words to be

combined to form new words results in those words being unrecognizable. The proposed

solution uses a subword vocabulary in which some of the subwords are marked with

an intraword symbol allowing for a deterministic construction of the fullword sentence

after recognition. A neural network that predicts word probabilities is adapted for use

at the subword level.

A final neural network is investigated that combines the output of the subword

prediction model with the output of the modular deep neural network.
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Zusammenfassung

Moderne Spracherkennungssysteme bestehen aus vier Komponenten, der

Vorverarbeitung, dem akustischen Modell (AM), dem Sprachmodell (SM) und

dem Dekoder. Im Rahmen dieser Arbeit werden diese einzelnen Komponenten

durch neuronale Netze ersetzt oder ergänzt. Neuronale Netze haben sich bei einer

Vielzahl von Lernaufgaben als sehr nützlich erwiesen. Es wird gezeigt, wie mit einem

neuronalen Netz (NN) bessere Merkmalsvektoren aus einer Kombination verschiedener

Vorverarbeitungsmethoden gewonnen werden können. Darauf aufbauende, durch

modulare neuronale Netze modulierte, akustische Modelle werden untersucht und

ihre Leistungsfähigkeit demonstriert. In Verbindung mit einem durch ein neuronales

Netz moduliertes Subwortsprachmodell können weitere Verbesserungen erreicht

werden. Ein neuronales Netz zum Kombinieren der beiden Modelle im Dekoder

wird vorgestellt und analysiert. Die Integration dieser neuronalen Netze in ein

Vorlesungsübersetzungssystem wird untersucht und für die dabei auftretenden

Probleme werden Lösungen präsentiert. Deutliche Fehlerreduzierungen und Erfolge

bei internationalen Evaluationskampagnen belegen die Effektivität dieser Arbeit.

Vorverarbeitung Die Vorverarbeitung extrahiert aus einem Audiosignal

eine Sequenz von Merkmalsvektoren. Man kann beobachten, dass

Spracherkennungssysteme, die unterschiedliche Vorverarbeitungsmethoden verwenden,

unterschiedliche Fehler produzieren. Durch Kombinationsalgorithmen können die

Ausgaben solcher Systeme verwendet werden, um eine Gesamthypothese zu erzeugen,

die weniger Fehler enthält als die beste Einzelsystemausgabe. Es wird ein neuronales

Netz vorgestellt, welches diese Kombination in der Vorverarbeitung durchführt und

eine Sequenz von kombinierten Merkmalsvektoren erzeugt. Die Wichtigkeit der

verschiedenen Parameter wird experimentell untersucht und optimiert.
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Akustische Modellierung Auch in der akustischen Modellierung werden neuronale

Netze verwendet. Diese Netze bestehen aus derselben Eingabeschicht wie die Netze

der Vorverarbeitung, enthalten aber keinen Bottleneck. Die Ausgabeschicht enthält

pro akustischer Einheit ein Neuron. Die besten Netze verwenden ca. 18000

kontextabhängige akustische Einheiten. Es wird gezeigt, wie ein solches Netz modular

aufgebaut werden kann, indem zuerst ein Netz zur Bottleneckmerkmalsextraktion

über ein Zeitfenster des Audiosignals verschoben mehrfach angewandt wird. Es wird

experimentell gezeigt, dass solche Netze die Erkennungsleistung erheblich verbessern

und die Fehlerrate um über 10%, im Vergleich zu einem herkömmliches NN-AM,

reduzieren können. Des Weiteren wird eine Methode vorgestellt, mit der ohne Gaußsche

Mixturmodelle kontextabhängige akustische Einheiten ausgewählt werden können.

Sprachmodellierung In einem weiteren Teil der Arbeit wird ein Subwort-NN-SM

gebaut und dessen Fähigkeit analysiert mit den vielen Wortzusammensetzungen im

Deutschen umzugehen. Es wird Subwortvokabular ausgewählt werden, das sowohl

Subwörter als auch vollständige Wörter enthält. Das Subwort-NN-SM erhält in

der Eingabeschicht einen Kontext von drei, als Vektoren kodierte, Subwörtern und

berechnet die Wahrscheinlichkeit des Folgesubwortes. Das Subwort-NN-SM erweist

sich als deutlich leistungsfähiger als sowohl ein statistisches SM als auch ein normales

NN-SM.

Neuronale Kombination aus Sprachmodell und akustischem Modell Der

Dekoder verwendet die Ausgaben vom SM und vom AM, um die beste Wortsequenz zu

finden. Diese werden normalerweise loglinear mit Gewichten kombiniert, die auf einem

Entwicklungsdatensatz optimiert werden. Es wird ein NN vorgestellt, welches diese

Kombination übernehmen kann und das nur auf den Trainingsdaten des AMs trainiert

ist. Es enthält keine Gewichtungsparameter, die auf einem Entwicklungsdatensatz

optimiert werden müssen.
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Chapter 1

Introduction

The past decade from 2005 to 2015 has seen automatic speech recognition (ASR)

technology mature and become mainstream. As well as many visible applications such

as voice search [FHBM06], audio commands on smartphones [Aro11], or the automatic

transcriptions of lectures [CFH+13], ASR technology is also used in many backend

systems such as indexing online videos or creating subtitles for television programs.

While the second set of applications can be processed in multiple steps and with

multiple complementary ASR systems using large HPC (High Performance Computing)

clusters the first set of applications require a careful balance between accuracy and

latency. A simple way to create complementary ASR systems that can increase accuracy

when combined is to use several different methods of extracting a sequence of feature

vectors from the audio. This feature extraction part of an ASR system is referred

to as its front-end. Although many front-ends are fundamentally similar and equally

useful, they are still, to some extent, complementary and the outputs of ASR systems

trained separately on different front-ends can be combined in such a manner that

the combined output contains fewer transcription errors than either of the individual

outputs [MBS00a, Fis97]. While very useful, this high level combination method has

the disadvantage of requiring multiple ASR systems to be run in parallel. In this thesis

an alternative approach is proposed that uses deep neural networks (DNNs) to combine

the features in either a multi-feature front-end or in the ASR system’s so called acoustic

model (AM).

The acoustic model is one of the two main models in an ASR system and

estimates the conditional probability that a word sequence produces the sequence of
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1. INTRODUCTION

observed feature vectors that the front-end had extracted from the audio. Until 2013

the dominant approach to acoustic modeling in large vocabulary continuous speech

recognition (LVCSR) used hidden Markov models (HMMs) with Gaussian mixture

models (GMMs) for estimating their emission probabilities. Recent advances in deep

neural networks (DNNs) and in the field of general-purpose computing on graphics

processing units (GPGPU) have caused hybrid HMM/DNN AMs to supplant the

HMM/GMM AMs as the default acoustic model in state of the art ASR systems

[MHL+14]. The use of HMM/DNN AMs can reduce word error rates (WERs) by

up to 30% relative [SSS14, DYDA12, HDY+12].

Both HMM/DNN AMs and HMM/GMM AMs have an underlying HMM topology

where the states of the HMM correspond to the acoustic units that are modeled using

either the GMM or the DNN. The acoustic units chosen as states should be small enough

so as not to contain much fluctuation and instead be mostly stationary. This means

that the beginning of the acoustic unit should sound the same as its end. Phonemes,

the basic unit of a language’s phonology, do not satisfy this stationary condition. This

can clearly be seen in the fact that diphthongs, sounds that begin sounding like one

vowel and end sounding like a different vowel, are often considered to be phonemes

[Hay11]. A common approach, therefore, is to subdivide the phonemes into multiple

parts (e.g. beginning, middle and end) and to use these sub phonemes as states in the

HMM. This approach assumes that all instances of a phoneme sound similar regardless

of their context and is referred to as a context independent (CI) acoustic model. Since

phonemes are in fact pronounced differently depending on the proceding and following

phonemes, state of the art speech recognition systems instead use context dependent

(CD) AMs that model phonemes in a specific phonetic context called polyphones.

Modelling these small acoustic units has the added advantage of allowing speech

recognition systems to be able to recognize words for which the training data did not

contain any example pronunciations. Instead ASR systems only require a dictionary

that describes the words using the selected acoustic units. This is normally done by

providing a mapping from each word to a sequence of phonemes. We refer to all these

words for which an ASR system has a phonetic mapping as its vocabulary and only

words contained in the vocabulary can be recognized by the ASR system. Since the

vocabulary cannot possibly contain every word or name that an ASR system may

encounter it will produce errors when dealing with so called out of vocabulary (OOV)

2



Words
noch bis Freitag diskutieren die achtundsechzig Abgeordneten
<NOISE> ob Wirtschaftswachstum auch umweltfreundlich und
dauerhaft geht

Sub-words
noch bis Freitag diskutieren die acht+ und+ sechzig Abgeordneten
<NOISE> ob Wirtschafts+ wachstum auch umwelt+ freundlich und
dauerhaft geht

Phones N O CH B I S F R A I T AH K D I S K U T IE ER E2 N ...
Quinphone N($,$|O,CH) O($,N|CH,B) CH(N,O|B,I) B(O,CH|I,S) ...
Generalized
Quinphones

N(12) O(88) CH(2) B(61) I(13) S(41) F(16) R(77) A(9) I(17) ...

Phones states N-b N-m N-e O-b O-m O-e CH-b CH-m CH-e B-b B-m B-e ..
Quinphones
states

N-b($,$|O,CH) N-m($,$|O,CH) N-e($,$|O,CH) O-b($,N|CH,B) ...

Generalized
quinphones states

N-b(17) N-m(2) N-e(8) O-b(76) O-m(19) O-e(38) CH-b(27) ...

Waveform

Table 1.1: An example utterance viewed at multiple levels.

words. Some languages like Turkish or German allow new compound words to be

constructed from two or more pre-existing words. The German words Tee (eng: tea)

and Kanne (eng: canister), for example, can be combined into Teekanne (eng: teapot).

In order to deal with these compound words ASR systems can employ a sub-word

vocabulary instead of the normal fullword vocabulary.

The goal of this thesis is to apply and evaluate the effectiveness of neural networks

at all the levels at which an utterance can be viewed from the waveform / feature level

over the phoneme / polyphone state level to the level of sub-words and words. An

overview of these different levels is provided in Table 1.1 for an example utterance.

The utterance is a segment from the German evening news Tagesschau and can be

translated as ”until Friday the eighty six delegates will still be discussing <NOISE>

if economic growth can be sustainably environmentally friendly”. It contains two

compound words Wirtschaftswachstum (eng: economic growth) and umweltfreundlich

(eng: environmental friendliness ) as well as the number achtundsechzig (68) which in

German is written together in one word as eight-and-sixty.

This word level is where the language model, the second main model of an ASR

system, comes into play and estimates the a priori probability of a word sequence.

3



1. INTRODUCTION

This is important because certain words or phrases sound similar and the only way to

differentiate them is to look at the linguistic context. Consider the sentence they’re

over there, since there, their and they’re are all pronounced identically prior knowledge

about their usage in sentences is required in order to decide which word was spoken. In

practice this is done by using a model that estimates the probability of the next word

based on the preceding few words. Statistical language models that use the last n− 1

words are called ngram language models and are trained on large amounts of text data

that do not necessarily have to have any audio associated with them. Besides ngram

language models, neural network based language models have been shown to be very

effective at language modeling. In this work the methods of neural networks are applied

at the sub-word level and a sub-word neural network language model is developed for

German that greatly reduces its OOV and significantly improves the WER.

The next part of Table 1.1 shows the sentence represented at the level of phones

and polyphones. Polyphones that consider a context of one phone to the right and

one to the left are called tri-phones and when, like here, two phones to the right and

left are taken into consideration the polyphone is called a quinphone. The notation

CH(N,O|B,I) indicates that the center phone CH is proceeded by the phones N and O,

and followed by the phones B and I. On the phone state level the three states beginning,

middle and end are marked by appending -b, -m or -e to the phone or quinphone. The

phoneset used in this example contains 46 different phonemes with 3 states each as well

as an extra silence phoneme modeled using only a single state which results in over 600

million quinphone states.

Training models to robustly estimate the emission probabilities of over 600 million

states is impossible given the amounts of acoustic model training data currently

available. Most states would have to be estimated using only a few samples and

many states would not contain any examples at all in the training corpus. The models

would also become very large and unwieldy with the HMM/DNN AM requiring a DNN

with a 600 million neuron output layer and 600 million GMMs being necessary for

the HMM/GMM AM. Overcoming this problem requires clustering the quinphones

into clusters of similarly pronounced quinphones called generalized quinphones (e.g.

CH(2) - generalized quinphone with CH as the center phone no. 2) Modeling the

generalized quinphones in multiple states can be done by either first clustering the

phones into generalized quinphones and then using multiple states per generalized

4



quniphone or instead by beginning with the phone states and clustering them into

generalized quinphone states, often called senons. The second approach is the more

popular as it provides more flexibility during clustering [Hua92].

The emission probabilities for each quinphone state in a generalized quinphone state

are the same and are learned using all their examples in the training data. This means

that the number of clusters chosen to group the quinphones into directly determines the

number of GMMs a HMM/GMM AM requires and the size of the output layer in DNN

AM. The standard method of clustering is with the help of classification and regression

trees (cluster trees) that pose questions regarding the properties of the phonetic context

of a phoneme. They require a distance measure between clusters of polyphones in

order to choose the best question to ask for any given context. A commonly used

distance measure is the weighted entropy distance. This is calculated on the mixture

weights from a semi-continuous HMM/GMM system in which a GMM is trained for each

polyphone state encountered during training and all polyphone states with the same

center state use the same set of Gaussians. An equally powerful alternative approach is

presented in this thesis that uses an HMM/DNN AM and allows the weighted entropy

distance to be calculated without either training or evaluating any Gaussians.

The leaves of the cluster tree represent the states in the HMM and correspond to

the neurons in the output layer of the DNN. The other important aspects of a DNN AM

are its topology and the input features on which it is trained. In contrast to the default

topology which consists of just a feed forward neural network with an input layer for

the features, a number of equally sized hidden layers that are fully connected to their

neighbours and an output layer, this thesis proposes a new modular topology. It involves

training deep, possibly multi-stream, feature extractors using a multilayer perceptron

(MLP) containing a so called bottleneck which is a hidden layer that is reduced in size

to the dimension of the desired feature vector. After training, all layers following the

bottleneck are discarded. The remaining network maps the input features to so called

bottleneck features (BNFs) or to deep bottleneck features (DBNFs). The proposed

modular DNN AM uses one or more pretrained DBNF networks and combines the

outputs from multiple neighbouring time frames as the input to a further feed forward

neural network. During the joint training, weight sharing is used to average the changes

accumulated by a DBNF network at various time frames.
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1. INTRODUCTION

Figure 1.1: 3D model of a cortical column in a rat’s brain. Source: [OdKB+12]

The forth and final component that this thesis augments by using neural networks

is the decoder that combines the outputs of the AM and the LM in its search for the

optimal hypothesis. The decoder intelligently restricts the search because examining

all word sequences that can be produced from the ASR system’s lexicon would require

a prohibitively large amount of computational resources. By combining information

from both the LM and AM as well as from other sources it can create a ranking of the

most probable hypotheses. The thesis replaces the log-linear combination of AM and

LM in the decoder with a neural network combination.

The multi-level view of an utterance is not just necessary for the technical

application of an ASR system but also reflects the stages in which human infants

acquire their first language. In roughly the first nine months after birth infants learn

which phonemes and combinations of phonemes are possible in their native language

and begin to lose the ability to discriminate non-native phonemes that are just variants

of their native language’s phoneme [WT84] (e.g Japanese Infants lose the ability to tell

/l/ and /r/ apart). Research has shown that by about twelve months infants are able

6
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to recognize from about a dozen to over a hundred individual words as well as some

short phrases like “come here” [FDR+94, CBC+95] and their vocabulary will continue

to steadily increase. Children learn various simple multi-word utterances from about

1-2 years of age [Bro73] and then from about the age of three begin to understand

the structure of sentences [NRP11a]. Both their vocabulary and their knowledge of

grammar continues to improve as they grow older.

The deep neural networks used in this work are themselves inspired by the structure

of the nervous system. Like their biological counterparts the individual artificial neurons

contain a number of inputs from other neurons that can cause them to activate (fire)

sending a signal on to their downstream neurons. Figure 1.1 depicts a 3D model of a

cortical column, a group of neurons in the cerebral cortex or outer layer of the brain,

that appears structurally similar to a feed forward deep neural network.

Despite these similarities and the their biological motivation there are still major

differences between the artificial neural networks and biological neural networks that

connot be ignored. Artificial neural networks run synchronously in discrete time steps

but biological neural networks work asynchronously. Depending on the activation

function the output of an artificial neuron can have many possible values whereas

real neurons can only either fire or not fire and therefore convey information using the

frequency with which they fire. Further differences can be found in the way the weights

are learned in artificial neural network and how the connections are formed and pruned

in biological neural networks.

The analogy of speech recognition technology to the development of language

understanding in humans should not be carried too far. Human brains do not learn

language perception in isolation: Speech production and perception complement each

other and unlike ASR systems, words are also learned and associated with certain real

world objects or actions.

1.1 Contributions

As eluded to earlier this thesis is concerned with the improvement to or introduction

of neural networks to the four major components of an ASR system:

7
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� Front-end: Existing techniques for deep bottleneck are expanded upon to build

multi-stream bottleneck features that combine several different front-ends. Their

topologies are optimized and their performances evaluated.

� Acoustic model: Introduction of multi-stream deep neural network acoustic

models that also combine several different front-ends and improve upon DNNs

that only use a single input feature. Modular deep neural network acoustic models

are presented which use one or more multi-stream bottleneck networks applied at

multiple time frames as the basis of the deep neural network, and are shown to

significantly improve the performance of DNN AMs. A method of constructing a

cluster tree using a CD DNN AM is described and is shown to be slightly better

than the GMM AM based approach. Contributions are also made in the use of

singular value decomposition (SVD) in initializing new layers in DNNs, where

this thesis evaluates some of its applications and shows how it can both increase

the performance of a DNN as well as reduce the number of its parameters.

� Language model: A sub-word vocabulary is proposed and shown to be very

effective at reducing both the OOV rate and the WER of German ASR systems.

A standard approach for building word level language models is adapted and used

to build a sub-word neural network language model. An error analysis shows how

it noticeably reduces the number of errors from compound words.

� Decoder: A combination neural network is designed to optimally combine the

outputs of the language model and acoustic model as well as other features such

as word count. It is integrated into the ASR system as a replacement for the

standard log linear model combination and can be trained directly on the system’s

training data without the need of a development set to optimize the interpolation

parameters.

1.2 Overview and Structure

This thesis is structured as follows. The required theoretical background knowledge is

covered in chapter 2 with section 2.1 presenting an overview of neural networks, their

training methods and the parameters that affect their performance. An overview of

the structure of an ASR system, including a description of its four major components,

8
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is given in section 2.2 as well as an explanation of the metric used to evaluate the

performance of ASR systems. The chapter continues with an overview of the related

research and concludes by explaining how this thesis fits into the context of that related

work.

Chapter 3 explores the speech recognition tasks on which the achievements of the

thesis are evaluated, with section 3.4 introducing the data sets on which the WER are

measured and section 3.5 examining and analysing the various training corpera. This

chapter also discusses the structure of our baseline ASR system in section 3.6 with an

overview of our neural network training presented in section 3.7.

Feature extraction using neural networks is discussed in chapter 4. It begins in

section 4.1 with an overview of the 4 different features, lMEL, MFCC, MVDR and

tonal features used in the following experiments. After a general introduction to

bottleneck features the first initial experiments on combining two feature streams,

MVDR and MFCC, are discussed in section 4.3. This is followed in section 4.3.2.1 by

an investigation into the optimal topology for a deep MVDR+MFCC bottleneck MLP

and section 4.3.2.2 where various combinations of the 4 input features are compared to

each other. Integration level experiments are performed in section 4.3.3 and section 4.4

presents optimized training strategies for large DBNF based GMM AMs.

Chapter 5 is devoted to the analysis of neural network acoustic models. It begins

with an analysis of the effects of different input feature combinations to the deep neural

network in section 5.2.1 and moves on to present the modular deep neural network in

section 5.2.2. This is followed in section 5.3 by a method of building cluster trees using

DNNs and section 5.4 which shows how new hidden layers can be initialized using SVD.

A subword language model is presented in chapter 6. The proposed subword

vocabulary, explained in section 6.2.1, is designed to alleviate the errors found in the

error analysis in section 6.1. After analyzing the performance on an ngram language

model in section 6.2.4 the proposed subword neural network language model is described

and evaluated in section 6.3. The chapter is finished with a discussion of the subword

vocabulary’s integration into the lecture translation system installed at the KIT in

section 6.4.

Chapter 7 describes a neural network that can be used to combine the output of an

AM and an LM. Its topology is presented in section 7.2 and the error function required

to train it is explained in section 7.2.1. The results are then discussed in section 7.3

9



1. INTRODUCTION

The thesis in concluded with a short summary in chapter 9 and contains appendices

with additional information on the language model data and the backpropagation

algorithm as well as a detailed derivative of MMIE error function required to train

the combination neural network.
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Chapter 2

Theory und Related Work

This chapter briefly lays out the required theoretical foundations in the fields of

automatic speech recognition (ASR) and artificial neural networks (ANN) on which

the experiments performed in this thesis are based. It covers the design and training of

neural networks, explains the parameters that have to be considered when training a

neural network and how neural networks can be used in various ASR components. An

overview of the structure of an ASR system is given together with an introduction of

its major components.

Since neural networks have seen many uses in ASR over the years an overview and

description of approaches similar to the ones examined in the thesis is also presented

in this chapter followed by a discussion on how this thesis fits into the context of that

related work.

2.1 Neural Network Basics

Artificial neural networks are biologically motived statistical models that can be trained

using data to solve various different problems such as character recognition, playing

backgammon or controlling a robot arm. They consist of a number of individual

artificial neurons that are connected to each other, often organized into layers. Some

neurons are referred to as input neurons and instead of possessing incoming connections

they allow their values to be set, thereby acting as the inputs to the neural network.

Analogously output neurons do not forward their output to other neurons but instead

present it as the output of the neural network. The character recognition neural
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network, for example, might have 1024 input neurons mapped to the pixels of a 32

pixel by 32 pixel image and 26 output neurons, one for each letter in the English

alphabet.

2.1.1 Perceptron

A neural network consisting of only a single neuron is called a perceptron. The model

has m inputs x0..xm − 1 that can be real numbers and are connected to the neuron

together with an extra input xm that is always set to +1. Each connection is associated

with a weight w0..wm. The weight wm that is always connected to +1 is called the

bias. The output y of the perceptron is computed by multiplying each input with its

connection’s weight, adding all these values together and then applying a so called

activation function ϕ.

y = ϕ

 m∑
j=0

wjxj

 (2.1)

There are many possible activation functions and while the original model proposed by

Rosenblatt [Ros57] uses the heaviside step function the sigmoid activation is currently

more popular due to its useful properties in multilayer neural networks:

ϕstep(x) =

{
1 if x > 0

0 if x ≤ 0
(2.2)

ϕsig(x) = sigmoid(x) =
1

1 + e−x
(2.3)

The perceptron model is a form of nonparametric supervised classification and requires

a set of labeled training examples (x1, t1)..(xn, tn) on which the optimal weights can

be learned. For the original perceptron model using the Heaviside step function as the

activation function the following weight update rule can be used for all weights wi:

ws+1
i = wsi + η(tj − yj)xj,i (2.4)

where yt is the output of the network for the input xi, η is the learning rate with

0 < η ≤ 1 and s the current iteration. The update rule is repeated either until

convergence or for a certain number of iterations. Due to its simplicity the perceptron

12
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x0 x1 xm-1

W12

W23

W34

hidden layer 1 
with bias b2 

hidden layer 2 
with bias b3 

o1 o2 on

output layer 
with bias b4 

Figure 2.1: An MLP

can only solve linearly separable problems and fails at learning even simple nonlinear

functions like the XOR function [MS69]. More complicated problems may be tackled

with networks of these small neurons.

2.1.2 Multilayer Neural Networks

As well as input and output neurons multilayer neural networks also contain a number

of hidden neurons. There are two main categories of multilayer neural networks, feed

forward neural networks that only contain connections to neurons whose outputs do not

directly or indirectly affect them and recurrent neural networks that can contain neurons

connected in loops. A simple type of feed forward neural network is the multilayer

perceptron which, like the normal perceptron, has a set of inputs x0..xm − 1. The

inputs are connected to every neuron in the first layer of hidden neurons. The outputs

of these neurons are connected to every neuron in the next layer. Two layers with

this type of connection between them are said to be fully connected. After one or

more hidden layers that are fully connected to each other the network finishes with an

output layer that is fully connected to the last hidden layer. As well as the incoming

13
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connections each neuron also has its own bias and activation function.

An example MLP with 2 hidden layers is presented in Figure 2.1. Such MLPs are

often referred to as having 4 layers: an input layer, 2 hidden layers and an output

layer. Since the input layer doesn’t contain any functionality it is often ignored and the

network is said to have 3 layers. This thesis uses the more common 4 layer description.

If we look at the transition between two layers where the first layer has n1 neurons and

the second layer has n2 then there will be n1×n2 weights connecting the two layers as

well as n2 biases. Using a vector notation we can write the outputs y1 of the first layer

as y1 ∈ Rn1 , the outputs y2 of the second layer as y2 ∈ Rn2 , the weights wi,j connecting

the two layers can be thought of as a matrix W1,2 ∈ Rn2×n1 and the biases as the vector

b2 ∈ Rn2 allowing their relationship to be expressed using this equation:

y2 = ϕ (W1,2 · y1 + b2) (2.5)

Applying the activation function ϕ to a vector is defined as applying it separately

to each component. The example MLP in Figure 2.1 can now be described using three

weight matrices W1,2,W2,3,W3,4 and three vectors b2, b3, b4:

h1 =ϕ (W1,2 · x+ b2) (2.6)

h2 =ϕ (W2,3 · h1 + b3) (2.7)

o =ϕ (W3,4 · h2 + b4) (2.8)

where x is the input vector, h1 and h2 are the outputs of the hidden layers and o

is the output vector of the MLP. When used for classification it is common to have

one output neuron per class and use the one of n encoding for the class labels. The

one of n encoding represents the class j as an n dimensional vector with a 1 in

position j and zeros everywhere else. As in the case of the simple perceptron these

parameters (weights and biases) have to be trained using a set of labeled training

examples (x1, tx1)...(xN , txN ) which is typically performed using the backpropagation

algorithm.
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2.1.3 Backpropagation Algorithm

The backpropagation algorithm is a two phase supervised method for training neural

networks by first, in the forward phase, sending examples through the network and

accumulating the errors made by the network and then, in the backward phase,

propagating the error back though the network while using it to update the network’s

weights. It is, therefore, sometimes called backward propagation of errors.

A summary of the algorithm is ommited here but can be found in appendex B.

Using the derived δk the update rule can now be written as:

ws+1
ji ← wsji + ηδkxji (2.9)

This works for any feed forward neural network topology. The algorithm, however,

cannot decide how the topology should look, which error function and which activations

to use or what to set the learning rate η to. These, so called hyperparameters, have to

be optimized independently of the learning algorithm.

2.1.4 Hyperparameters in Neural Networks

Neural networks depend on two types of parameters: weights ~w and Hyperparameters

~θ. Weights ~w can be learned by acquiring a set X of labeled examples and performing

backpropagation in order to find the weights ~w that minimize an error function.

Hyperparameters have to be intelligently selected by the neural network designer before

the neural network can be trained. This section will cover three hyperparameters that

are relevant to this thesis, the error and activation functions as well as how to choose

the best learning rate and why a constant learning rate may not be the best choice.

2.1.4.1 Error Functions

The two most common error functions are the mean squared error (MSE) error function

and the cross entropy (CE) error function [B+95]. The MSE error function defined in

equation B.1 penalizes large differences more than small differences and performs well

on tasks such as function approximation and in cases where the outputs of the NN are

real values and do not simply lie between 0 and 1.
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Figure 2.2: The sigmoid activation function

The CE error function performs well in classification tasks and is defined as:

ECD(~w) = −
∑
x∈X

∑
k

[tkx log(okx) + (1− tkx) log(1− okx)] (2.10)

It has a derivative that when combined with a sigmoid activation function results in a

simple update rule. In addition to these error functions chapter 7 also introduces an

ASR specific error function.

2.1.4.2 Activation Functions

The identity function can be viewed as the most trivial activation function.

ϕlinear(x) = x (2.11)

Also referred to as a linear activation function it is often used in combination neurons

for function approximation problems. Neural networks that use only linear activation

functions can be simplified and replaced by a single perceptron making them unsuitable

as the default neuron in multilayer neural networks [MS69].

The heaviside step function defined in 2.2 has the major disadvantage that its

derivative is almost always equal to 0 which makes it unusable for neural networks

trained using backpropagation. The sigmoid activation function shown in figure 2.2

can be interpreted as a smoothed version of the step function and is defined as.

ϕsig(x) = sigmoid(x) =
1

1 + e−x
(2.12)
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It is easy to differentiate (dϕ(x)dx = ϕ(x)(1−ϕ(x))) and has a tendency to saturate which

happens when the input is either very large or very small thereby putting it in a state

where its derivative will be very close to zero which then leads to very small weight

updates. Depending upon where and when it happens this saturation effect can have

either positive or negative consequences.

The sigmoid activation function can be generalized to a group of neurons in such a

way that their output sums to one and forms a discrete probability distribution.

ϕsoftmax(netj) =
enetj∑
k e

netk
(2.13)

This is called the softmax activation function and is common in classification tasks

where the goal is to use a neural network to find the probability P (c|f) that a particular

input f is a member of a certain class ci.

All real activation functions discussed so far have only had possible output values

between 0 and 1. In cases where negative outputs are also required the hyperbolic

tangent is often a good choice:

ϕtanh(x) = tanh(x) =
ex − e−x

ex + e−x
(2.14)

It has the added advantage of not changing the mean of the input from 0 if the input

already has a mean of 0.

In recent years rectified linear units have become quite popular in deep neural

networks [NH10]. They are neurons with an easy to compute activation function:

ϕReLU(x) = =

{
x if x > 0

0 if x ≤ 0
(2.15)

A neural network using these neurons will only have about half its neurons active (6= 0)

at any particular time making it more sparse than networks not using rectified linear

units.

2.1.4.3 Learning Rate Schedule

The learning rate determines by how much a weight parameter is updated each iteration:

wji ← wji + ηδjxji (2.16)
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Choosing a constant learning rate can be problematic because if a large learning rate

is chosen then it may quickly saturate some of the neurons and it could also lead to

the learning algorithm constantly jumping past the minimum. If, on the other hand,

a very small learning rate is chosen then the learning procedure will slow down and it

may get stuck in a local minimum. For these reasons it is advisable to use a learning

rate schedule instead of a constant learning rate.

We can observe that starting with a high learning rate and reducing it later results

in our learning algorithm both converging fast and tending to find a better minimum.

We can accomplish this using various learning rate strategies:

� Predetermined piecewise constant learning rate: Use a predetermined

sequence of ηi. After ever epoch (or every n training examples) the learning

rate is replaced with the next one in the list. This has the disadvantage that we

have to set a whole list of learning rates.

� Exponentially decaying learning rate: Multiply an initial learning rate by a

constant factor α ( 0 < α < 1 ) after ever epoch: ηt = ηt−1 ∗ α = η0 ∗ αt

� Performance scheduling: Periodically measure the error on a cross validation

set and decrease the learning rate when the learning routine stops showing

improvements on the cross validation set.

� Weight dependent learning rate methods: Use a different learning rate

for parameter (weight or bias). Algorithms like AdaGrad and AdaDec can be

employed to compute and decay η on a per-parameter basis.

� Newbob learning rate schedule: The newbob learning rate schedule is a

combination of the performance scheduling and exponentially decaying learning

rate. At first the learning rate is kept constant and the performance of the

neural network is measured on a validation set every epoch (or every n training

examples). A soon as the validation error shows that the network’s improvement

has dropped below a predetermined threshold it switches to an exponentially

decaying learning rate schedule and decays the learning rate every epoch. The

performance on the validation set is still measured and used as a termination

criterion when the network’s improvement again dips below a predetermined

threshold.
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Most of the neural networks trained in this thesis use the Newbob learning rate

schedule.

2.1.5 Autoencoders and Pre-Training of Deep Neural Networks

Neural networks with multiple hidden layers are often referred to as deep neural

networks (DNNs). Since the introduction of deep belief networks (DBN) by Hinton et

al. in 2006 [HOT06], DNNs have become very popular in the field of machine learning

and have outperformed other approaches in many machine learning and classification

tasks making them the default technique for solving complex or high dimensional

classification problems [Ben09]. The exact point at which a neural network becomes a

deep neural network is not well defined [Sch15] but in general DNNs will have some of

the following properties:

� Multiple hidden layers: A neural network requires at least 2 hidden layers in order

to be considered deep. In some cases, as in bottleneck feature MLPs, deep neural

networks will have at least 4 hidden layers [Geh12]. The multiple hidden layers

in a DNN should allow it to represent complex functions with fewer weights than

shallow DNNs.

� Large layers: While the individual layers in a DNN may be somewhat smaller

than the layers in a shallow NN designed for the same purpose, they will not be

multiple orders of magnitude smaller. With multiple fully connected layers the

number of weight parameters in a DNN will be quite high: From a few tens of

thousands of parameters to well over a few tens of millions of parameters.

� Large training sets: DNNs tend to be trained on large amounts of annotated

data. This property is very task dependent and in part related to the necessity of

a large amount of data being required to train the large number of parameters.

� Trained on GPUs: The consequence of having many parameters and a large set of

training examples is that training becomes very computationally expensive and

time consuming. GPU based backpropagation implementations have been shown

to be several orders of magnitude faster than basic CPU based implementations

[JO+13] allowing networks to be trained in hours or days instead of weeks or
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Figure 2.3: A denoising autoencoder. The input x is corrupted and fed into a neural
network that is then trained to undo the corruption.

months. The faster turnover makes it possible for many more experiments to be

performed and more hyperparameter configurations to be examined.

� Pre-training: Neural networks typically use small random values to initialize the

weights prior to training with backpropagation. Pre-training involves making use

of the training data to intelligently initialize the weights. It is generally performed

in an unsupervised manner (without using the labels) and layer-wise. The use of

stacked restricted Boltzmann machines (RBMs) [AHS85] was pioneered by Hinton

et al. in 2006. They begin by initializing the first hidden layer with an RBM.

Once trained the RBMs parameters are frozen and used to map the training

data to the feature space of the first hidden layer. The second hidden layer is

initialized with another RBM. This procedure is repeated for all hidden layers

[HOT06]. Stacked autoencoders can also be used to pretrain DNNs [BLP+07]

and can be improved with the use of sparse autoencoders [BC+08] or denoising

autoencoders [Geh12]. While DNNs using pretraining have demonstrated some

impressive results [DYDA12, SLY11, Le13] other approaches have shown that

state-of-the-art DNNs can be trained without using any pretraining methods

[HDY+12, VGBP13].

With the exception of some initial experiments on shallow bottleneck MLPs most

neural networks used in this thesis can be called deep neural networks. They will
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generally have 3 or more hidden layers with at least 600 neurons per hidden layer,

and be trained on millions of training examples. All the neural network training setups

make use of GPUs. Pre-training is implemented using denoising autoencoders and used

consistantly thoughout all the DNN experiments.

An autoencoder is a feed forward neural network that contains a single hidden

layer and identically sized input and output layers. It is trained on unlabeled data

with the backpropagation algorithm by using the input data as the targets tx = x in

order to learn a different representation of the input data in the hidden layer. If the

number of neurons in the hidden layer is less than the dimensionality of the input then

the autoencoder functions as a method of dimensionality reduction. After training

the output layer, its biases and all weights connecting it to the hidden layer can be

discarded and the remaining parts of the network used to map the input data from its

original feature space to a new feature space.

A modified type of autoencoder, called a denoising autoencoder (DAE) is shown

in figure 2.3 where the data is corrupted prior to being put through the network

[VLBM08]. Training a network like this causes it to learn how to reconstruct corrupted

input vectors. The corruption cr is performed by randomly setting a predetermined

percentage (r) of the inputs dimensions to zero:

x̃ = cd(x) (2.17)

Due to the symmetry of the model the weight transition matrix from the input layer

to and from the hidden layer can be tied reducing the number of parameters that have

to be learned. The reconstructed output of the DAE is:

h1 =ϕ2a (W1,2 · x̃+ b2) (2.18)

z =ϕ2b

(
W T

1,2 · h1 + c2
)

(2.19)

and can be compared to the input x using either the CE error function or the MSE

error function. After training, the data can be mapped onto the new feature space

learned in the hidden layer

x′ = ϕ2a (W1,2 · x+ b2) (2.20)
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and the procedure repeated using x′ as the input to the DAE:

x̃′ = cd(x
′) (2.21)

h2 =ϕ3a

(
W2,3 · x̃′ + b3

)
(2.22)

z′ =ϕ3b

(
W T

2,3 · h2 + c3
)

(2.23)

where z′ is now compared to x′ in this DEA’s error function. After all hidden layers

have been pre-trained a final classification output layer can be added and the whole

stack of autoencoders transformed into a DNN. This setup has been demonstrated to

work well in both image recognition [VLL+10] and speech recognition tasks [Geh12]

2.2 Overview of Automatic Speech Recognition

Automatic speech recognition systems aim to extract the sequence of words spoken in

an audio signal or audio file. In both cases microphones are used to measure variations

in air pressure that are then digitized and either saved to file or sent directly to the

ASR system. When the digitized audio is sent directly to the ASR system we talk

about online ASR and in the other case, where recorded audio files are processed, it is

called offline or batch ASR.

The audio signal or file is then feed to the front-end of an ASR system which

analyzes it and converts it into a sequence of feature vectors X. We now wish to find

the most probable sequence of words W , given this sequence of feature vectors X.

Ŵ = argmax
W

P (W |X) (2.24)

The application of the Bayes’ rule to this probability gives us the fundamental formula

of speech recognition, where the prior probability p(X) of the feature sequence X can

be ignored due it being constant for all word sequences.

Ŵ = argmax
W

P (W |X) = argmax
W

p(X|W )P (W )

p(X)
(2.25)

= argmax
W

P (X|W )P (W ) (2.26)

Individual parts of this formula correspond to the four main components of an ASR

that was informally discussed in chapter 1. The front-end extracts the feature vectors
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"Hallo"

 "can you hear me"

"is this thing switched on"

Language
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Figure 2.4: ASR system setup

X and since they are derived from real world measurement they are said to have been

observed. The acoustic model estimates the probability p(X|W ) that the sequence of

feature vectors X is observed given the word sequence W . P(W) is the prior probability

of a word sequence independent of the observed sequence of feature vectors X and is

estimated in a so called language model. argmaxW corresponds to the decoder that

combines the output of the AM and LM and searches for the most probable sequence

of words Ŵ . An overview of these components is given in 2.4.

2.2.1 Language Model

The language model estimates the prior probability P (W ) of the word sequence

W = w0w1...wN and can be broken down into a product of the probabilities of each word

wi occurring, given its context or history h = wi−1wi−2...w0 which is often approximated

to just the last few words.

P (W ) =
N∏
i=0

P (wi|wi−1, wi−2, ..., w0) (2.27)

≈
N∏
i=0

P (wi|wi−1, wi−2, ..., wi−(n−1)) (2.28)

This is typically done by using n-grams that estimate the probability of a word given

the last n−1 words. N-gram models are trained using a maximum likelihood estimation

on a large corpus of text:

P (wi|wi−1, wi−2, ..., wn−1) =
#(wi−(n−1), ..., wi−1, wi)

#(wi−(n−1), ..., wi−1)
(2.29)
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Depending on the value of n we speak of uni-grams (n = 1), bi-grams (n = 2), tri-gram

(n = 3), 4-grams (n = 4) and so on. In ASR, language models normally use values of

n from about 3 to 5 but even for the smaller bi-grams it would be impossible to find

training examples for each word in every possible context, leading to some estimates

being 0. Sentences containing these n-grams could never be recognized by the ASR

system because the LM would give them a prior probability of 0. Statistical n-gram

models use two techniques to combat this problem discounting and smoothing.

Discounting reduces the probabilities of the nonzero estimates by a small amount

and smoothing intelligently redistributes this discounted probability mass across the

other the ngrams for which no training example are given. This can be done by backing

off to the estimate of a lower order n-gram or even to the unigram if none of the lower

order ngrams are non-zero. Alternatively an ngram model can be interpolated with all

of its lower order models [CG96].

Neural network language models on the other hand do not suffer from this sparseness

problem as they begin by mapping the n − 1 words in the history of the n-gram into

a continuous vector space such as Rm, where similar words are closer together. The

n − 1 word vectors are concatenated together and used as the input layer to a DNN

where the softmax output layer contains a neuron for every word [Sch07]. While more

powerful than ngram-LMs NN LMs have some disadvantages: they take at lot longer

to train, require a method of word vectorization (embedding), are much slower than

ngram-LMs at runtime and it is infeasible to have an output layer that is as large as

the typical vocabulary used in LVCSR.

The training time can be reduced by only using the most useful training data and

not all the available data. Word embedding can either be performed prior to training

the NN using a dedicated algorithm (or external tool like word2vec [MCCD13]) or

while training the NN by providing the words using the 1-of-n-encoding and learning a

shared projection matrix. When the vocabulary becomes to large for the output layer

to handle, it can be reduced to a shortlist that covers 80-95% of the expected words

and the remaining words are modeled using a normal n-gram LM [Sch07]. NN LMs can

be speeded up a bit during decoding by caching the whole output layer or alternatively,

methods exist that can convert them into backoff ngram LMs [AKV+14]. If they are

only used in a second pass after all contexts required for an utterance are already known

then these can be efficiently precomputed in batch mode.
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Two broad catagories of neural networks are used for language modelling, recurrent

neural networks [SSN12, MKB+10] where a hidden layer depends on the previous word’s

hidden layer and the vector representation of the current word to predict its successor

and feed forward neural networks [Sch07] which have a fixed input context of word

representations.

2.2.2 Acoustic Model

The acoustic model estimates the conditional probability p(X|W ) that the sequence

of observed feature vectors X = x0, ..., xT is produced by the word sequence

W = w0, ..., wN . Its units of modeling are, as discussed in chapter 1, at the subphoneme

level which are assumed to be stationary, i.e the observations will be constant for a

period time spanned by one or more feature vectors or frames. Both common types of

acoustic models HMM/DNNs and HMM/GMMs use hidden Markov models to model

their structure and to describe how the subphoneme acoustic units are concatenated

together to form the sequence of words [Rab89].

2.2.2.1 Hidden Markov Model (HMM)

An HMM models a system where a sequence of visible observations o0, o1, ..., oT depend

on an internal sequence of hidden states s0, s1, ..., sT . The Markov assumption of this

model means that the probability of transitioning to a state depends only on the current

state. They are defined over a vocabulary V and a set of states S = s1, s2, .... [Fuk13]

For each state si there is a probability p(sj |sj) of transitioning to sj and each state

has an emission probability distribution that describes the emission probabilities of the

symbols in the Vocabulary V after transitioning to the state. When applied to ASR

systems that vocabulary V is the set of all possible feature vectors, typically Rn. Due

to its continuous nature the emission probabilities are estimated using the probability

density function p(xt|st). The transition probabilities between the states are defined

by the HMM’s topology which often limits the possible transitions by setting some of

them to 0. In a three state (beginning, middle, end) topology, for example, a particular

phoneme’s beginning state may only have non-zero connections to itself and to the

phoneme’s middle state while the end state would have connections to itself and to all

other phonemes’ beginning states.
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A dictionary or lexicon can provide us with a mapping from a word sequence to a

sequence of phonemes which we subdivide further resulting in a sequence of subphoneme

acoustic units that can each span multiple frames. What is unknown at this point

is at which time step the transitions between these states occur. So a given word

sequence W = w0, ..., wN can be represented by many different possible state sequences

s0, s1, ..., sT whose lengths are all the same as the length of the feature vector sequence

x0, ..., xT because each feature vector has to be emitted by a state in the HMM [Hei10]:

p(X|W ) =
∑

Sj∈S(W )

p(X|Sj) (2.30)

where S(W ) is the set of all possible state sequences of W . With Sj = s0, ...sT as

a possible state sequence we can now separate it into the product of the individual

emission and transition probabilities and, when using the Viterbi algorithm [Vit67],

the summation over all possible state sequences is approximated by using only the

most probable sequence [Hei10].

p(X|W ) =
∑

Sj∈S(W )

T∏
t=1

p(xt|st)p(st|st−1) (2.31)

≈ max
Sj∈S(W )

{
T∏
t=1

p(xt|st)p(st|st−1)} (2.32)

Depending on the type of AM the emission probabilities p(xt|st) are either estimated

with a DNN or with a GMM.

2.2.2.2 HMM/GMM Acoustic Models

For a long time GMM AMs were the de-facto standard for acoustic modeling. Even with

the rise of DNN AMs they are still useful in many applications thanks to the many well

researched techniques on discriminatively training them [BBdSM86, PKK+08, WW03]

or on performing speaker adaptation [GW96]. There are two main variants of

HMM/GMM AMs, semi-continuous and fully-continuous models. Semi-continuous

HMM/GMM AMs have a global pool (codebook) of M n-dimensional Gaussians

N1, ...,NM with means µ1, ..., µM and covariance matrices Σ1, ...,ΣM that are shared

between all models. Each state’s emission probability is then a weighted sum over all
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the Gaussians.

p(xi|si) =
M∑
j=1

aijNj(xi, µj ,Σj) (2.33)

Fully continuous HMM/GMM AMs differ by not having a global pool of Gaussians and

instead use a separate set Gaussians for each state.

p(xi|si) =
M∑
j=1

aijNji(xi, µji,Σji) (2.34)

In some systems both approaches are combined by having codebooks that are shared

by only some states, e.g. all variants of a phone state in a CD-AM.

It is beneficial for feature vectors to be augmented by either their differences with

neighbouring features or by using a window of feature vectors instead of a single feature

vector. In both cases the dimension of the feature vector sequence sent to the ASR

system can easily become very large resulting in larger dimensional Gaussians that

require more parameters. Dimensionality reduction techniques are therefore required

in order to still benefit from the stacked feature vectors without inflating the number

of parameters in the GMM AM. A common method for performing this dimensionality

reduction is the principal component analysis (PCA) which can be learned without

labels and performs a linear transformation of the features into a decorrelated feature

space where the first few dimensions contain most of the variance. Linear discriminant

analysis (LDA) is an alternative linear approach that is trained with label information

and is optimized for class separability [Fuk13]. Chapter 4 will present and expand on

another common method that uses an MLP with a small hidden layer for dimensionality

reduction.

2.2.2.3 HMM/DNN Acoustic Models

HMM/DNN AMs do not have a problem with large feature vectors and can, without

resorting to dimensionality reduction preprocessing steps, even use very large windows

of stacked features. They are modeled with a DNN that uses the (stacked) feature

vector as the input layer and, after multiple hidden layers, have an output layer whose

neurons correspond to the states in the HMM. Using the softmax activation function
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in the output layer lets the DNN generate the probability P (si|xi) for each state.

P (si|xi) =
p(xi|si)P (si)

p(xi)
(2.35)

The prior probability p(xi) of the feature vector is generally set to a constant value

like 1[RMB+94]. This gives us the following approximation of the emission probability

using the output of the DNN and the prior probability of the states [BM94].

p(xi|si) ≈
P (si|xi)
P (si)

(2.36)

In recent years speech recognition systems have significantly improved due to the use

of deep neural networks (DNN) with layer wise pretraining as acoustic models (AM)

[DYDA12].

2.2.2.4 Context Dependent Acoustic Models and Cluster Trees

As mentioned in chapter 1 state of the art speech recognition systems use CD-AM due

to phonemes being pronounced differently depending on their neighbours. They instead

use various types of polyphones, like tri-phones, when the context only includes one

left and one right neighbour or quinphones when the context includes two neighbours

from each side. This can lead to a large number of possible polyphone states, many of

which are never seen in the training data, with many almost identical to each other.

Clustering algorithms are used to group these triphone or quinphone states together

and reduce the total number of states that have to be modeled. This directly affects

the size of the DNN-AM’s output layer.

We refer to a decision tree used to cluster the large number of possible polyphones

into a manageable number of classes as a cluster tree. The basic procedure requires

a set of yes/no questions that can be asked about a phoneme, such as whether it is a

vowel or if it is at a word boundary. An example cluster tree, where a set of triphones is

split after asking the question ”is the previous phoneme a vowel” is shown in figure 2.5.

The following steps describe how to build a cluster tree:

1. Go over the alignment and get statistics on all existing polyphones.

2. Begin with all polyphones that have the same center phone clustered into one

cluster per HMM state (e.g. beginning, middle, end).
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Figure 2.5: An example cluster tree for the center phone E. The notation E(A|D)
indicates that the phone E is preceded by the phone A and followed by the phone D. The
question ”-1= vowel” asks if the preceding phone is a vowel.

3. Select a cluster to split. Each yes/no question splits a cluster into two separate

clusters. Only take questions into consideration that produce clusters of a

minimum size. Find the best questions to pose.

4. Split a cluster using the best question and repeat from step 3 until all clusters

that can be split are split.

5. Prune the tree back until it has the desired number of leaves.

The key point in this procedure is how to find the best question. Given two clusters

A and B we require a distance metric d(A,B) that is high for good splits and low for

bad splits. A common metric is the weighted entropy distance between A and B. It

is the entropy difference between both clusters being joined and them being separate.
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Let the number of occurrences of each cluster be nA and nB, then the weighted entropy

distance can be defined as:

d(A,B) = (nA + nB)H(A ∪B)− nAH(B)− nAH(B) (2.37)

where H(A) is the entropy of cluster A, H(B) is the entropy of cluster B and H(A∪B)

is the entropy of the merged cluster. Using the equation

H(p) =

k∑
i=1

p(i) log p(i) (2.38)

we can compute the entropy of a k dimensional probability distribution. Furthermore,

given probability distributions (over the same probability space) pA and pB for both

clusters the probability distribution of the merged cluster can be computed as:

pA∪B(i) =
nA pA(i) + nA pB(i)

nA + nB
(2.39)

The required probability distributions can be defined in multiple ways. One method

would be to train a single Gaussian on the training examples belonging to a particular

cluster. In this case the probability space would be the feature space. Another approach

uses the discrete mixture weights of a shared codebook of Gaussians as the feature

space. This GMM based approach requires a semi continuous CI HMM/GMM system,

where each phone (monophone) state is modeled using a weighted mixture of a set of

Gaussians trained specifically for that phone state. For all polyphone states appearing

in the training data derived from the same monophone state a new GMM is trained by

only learning the mixture weights and keeping the codebook of the monophone. The

normalized mixture weights of the polyphone states can be regarded as the probabilities

of a discrete distribution which can be used in the entropy distance measure.

2.2.3 Decoder

The decoder uses the outputs of the LM and AM to find the most probable word

sequence given the observed sequence of feature vectors. It is generally limited by

a predetermined search vocabulary V and it contains all the possible words the ASR

system could potentially recognize. Even for a small search vocabulary the total amount

of possible word sequences for a short utterance would be so large that they could not
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all be evaluated. A search vocabulary containing 10000 words would allow for 1080

possible sentences containing exactly 20 words, which is about the same number as

our current best estimate for the total number of atoms in the observable universe.

Instead of evaluating every possible hypothesis the decoder builds them up state by

state and only follows the most likely partial hypotheses at any time and marks the

others as dead ends. The marking of partial hypotheses as dead ends is call pruning and

generating new partial hypotheses by evaluating the next possible states of a current

partial hypothesis is referred to as expanding it. Partial hypotheses that have neither

been pruned nor expanded are considered to still be active.

There are two main types of decoders: synchronous and asynchronous.

Asynchronous decoders have a list of the possible partial hypotheses. In each step

they expand the best one and sort the new partial expanded hypotheses back into

the list. The individual partial hypotheses can have different lengths. In synchronous

decoders each time step generates a new set of partial hypotheses based on the partial

hypotheses of the previous time step. In both cases the set or list of active partial

hypothesis has to be limited by either a maximum size, or through use of a relative

cutoff that prunes partial hypotheses that are less probable, the probability of the

best partial hypotheses multiplied by a factor or beam. Both pruning methods can be

combined allowing the decoder to prune a lot and speed up in cases where it is very sure

of current best partial hypotheses (their probabilities are much higher than competing

ones) and if it is unsure then the maximum amount of partial hypotheses prevents it

from slowing down too much.

When computing the probability of partial hypotheses the decoder has to

compensate for the fact that while the language model is estimating a real probability

P (W ) the acoustic model has to deal with X ∈ Rn and supplies a continuous probability

distribution. As these two values are not directly comparable, a scaling factor has

to be applied. Other problems that the decoder has to deal with are the varying

utterance lengths, the very small probabilities that occur when many small probabilities

are multiplied together and the non-word acoustic events like laughing, coughs or

background noise. A further word penalty term can be added to the speech recognition

equation to deal with the varying utterance lengths and because the word sequence

that maximizes the probability of P (W |X) also maximizes its logarithm logP (W |X)
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we can replace the multiplication of the small probabilities with a summation of log

probabilities, which we refer to as scores.

Ŵ = argmax
W

P (W |X) = argmax
W

P (X|W )P (W )

= argmax
W

logP (W |X) = argmax
W

log(P (X|W )P (W ))

≈ argmax
W

log(P (X|W )P (W )α e|W |wβ e|W |nγ)

= argmax
W

logP (X|W ) + αlogP (W ) + |W |wβ + |W |nγ

The parameter α is the scaling factor between the language model and the acoustic

model, β is the word penalty, γ is a noise penalty which is used instead of the language

model score for the non-word acoustic events, |W |w is the total number of words in

the word sequence W and |W |n is the number of non-word acoustic events which are

ignored by the language model [OTI98].

2.3 Related Work

Neural networks have been used in many different forms in ASR in the past 30+ years.

Although the late 90s saw them almost uniformly replaced with GMM based ASR

systems, in the last decade they have returned to prominence and can be found in the

front-end, AM and LM. Especially their use of DNNs with layer wise pretraining as

acoustic models AM has lead to a significant improvement in ASR systems.

In many ways this thesis can be seen as a continuation and an extension of the

time-delay neural network (TDNN) [WHH+89]. TDNNs are designed to be time

invariant and work on sequences of feature vectors. As well as the current feature vector

xt the neurons of the first hidden layer are also connected to a few of the preceding

feature vectors xt−1xt−2, .... The time-delay procedure is applied at the transition from

the first hidden layer to the second hidden layer. The neurons of the second hidden

layer also possess connections to the first hidden layer’s outputs at the preceding steps.

A second similarity is the TDNN’s modular design. Sawai et. all [SMM+91] show

how individual TDNN modules can be joined into a large phonemic TDNN. They used
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9 TDNN modules: 6 consonant class modules, an intra-class module, a silence module

and a vowel module. The outputs of the 2nd hidden layers of each of the modules are

joined, together with a span of their preceding outputs in a 3rd hidden layer. The final

output layer contains 24 neurons, one for each of the 24 phonemes. For continuous

speech recognition the output layer is used in an LR parser [Tom85].

TDNNs were also used to demonstrate the effectiveness of training, combining

separately trained modules. Each TDNN module can be trained to discriminate

between phonemes with small phonetic classes (e.g. voiced stops: B, D & G). Waibel et

al. [WHH+87a, WHH+87b] show that two small and easy to train 3-phoneme TDNNs

modules can be combined by training a joint second hidden layer while keeping the

weights of both modules’ first hidden layer constant. They also tried two dimensional

shift invariance by sharing along the frequency axis as well as the time axis. Further,

combining pre-trained modular networks allows for a faster training time than a normal

6-phoneme TDNN without any degradation in performance [Wai89].

Le Cun [LB95] applied 2-dimensianl time delay networks to images and coined the

term CNN. In recent years this approach has been reapplied to speech recognition by

again considering the time and frequency to be the two dimensions [SMKR13]. This

results again in impressive improvements of 6% to 11% compared to a baseline DNN.

TDNNs address the time dependent nature of speech by incorporating the past

outputs of each layer into the inputs of the next layer. An alternative approach to

the problem is the use of recurrent neural networks (RNN) which, unlike feed forward

neural networks, can contain loops. The input of at least one of an RNN’s layers will

depend upon its output at a previous time step. In order to still be able to train such

networks using backpropagation they can be unrolled through time and trained using

weight sharing. This setup is called backpropagation through time (BPTT) [Moz89]. A

common RNN variant used in many ASR applications is the long short-term memory

(LSTM) [HS97] which addresses the RNNs vanishing gradient problems.

An early application of RNNs to ASR used them to eastimate the emission

probabilities in an HMM [Rob94, RHR94]. They trained an RNN with a single layer

to predict the probabilities of each phone class. Through their recurrent nature RNNs

are aware of the preceding context but unaware of the future context. The authors

compensate for this by delaying the output by 4 frames and training separate backwards

RNNs on the reversed data. The phone probabilities of both the forward and backward
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models are weighted equally and interpolated. This combination of output probabilities

can be extended by further RNNs trained on different input features.

A recurrent neural network is used by Plahl et. al to directly combine three different

feature streams [PKSN13]. The features are stacked and used as the input to a shallow

RNN which is trained to classify the phone targets. In a 2nd step the output layer of

the RNN is augmented by its input features, stacked in a window of up to 9 frames and

used as the input to a shallow MLP which is also trained to classify phone targets. A

GMM-AM is then trained using the output of this MLP.

Both this RNN feature extraction setup and the RNN phone probability estimater

rely on having prior knowledge of the sequence labels as states in the HMM. This is lost

when an RNN is used to replace the HMM and trained to directly convert a sequence

of feature vectors to a sequence of phonemes. In [GFGS06] Graves et al. introduce a

method of learning such networks called connectionist temporal classification. At each

time step the RNN produces a probability distribution over its possible output symbols

P (p|t), the language’s phonemes and null symbol. Given the input feature vectors of a

whole utterance it can generate a probability distribution over all possible phoneme

sequences P (p|x) by summing up the probability of x generating each phoneme

sequence or path. A sequence of symbols becomes a path after removing subsequent

multiple activations of the same symbol and all null symbols. The error function is

the log-probability P (z|x) of the RNN producing target phoneme sequences provide by

the training data. Using a LSTM-RNN this setup is able to outperform HMM based

systems on the phoneme recognition test set TIMIT [GJ14]. In [HCC+14] an RNN

based ASR system is presented that outperforms many tradional HMM based system.

That paper, however, also clearly demonstrates the current limitations of this approach.

In order to compete with state of the are DNNs and CNNs trained on 300hours of data

they have to train their RNN on over 2000 hours of data.
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Chapter 3

Speech Recognition Tasks

This chapter introduces the datasets on which the approaches presented in the following

chapters are trained and tested. Speech recognition systems can be used in a variety of

different application scenarios. Although the main focus of this thesis is on the offline

recognition of recorded speech like podcasts, the possible application of the developed

methods to an online low latency speech recognition task is also investigated. All offline

tests are performed on development sets from both the Quaero project and the IWSLT

evaluation campaign.

3.1 Quaero

Quaero1 was a French lead research project running from 2008 to 2013 with

German participation. During the project multimedia and multilingual indexing and

management tools were developed for automatic analysis, classification, extraction,

and exploitation of information. Within the project, work was performed on search

engines for multimedia, professional audiovisual asset management, personalized video

selection and distribution, enhancing access services to audiovisual content [SKK12a]

and digitalization and enrichment of library content. Basic research organized into the

Core Technology Cluster (CTC), was performed to supply the target applications with

the necessary underlying technologies such as speech recognition.

During the project six evaluations of the participating speech recognition partners

were performed from 2008 to 2013. The evaluation sets were typically reused as the

1Quaero: http://www.quaero.org
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development set for the following year’s evaluation which is why the Quaero 2011

development set is referred to as the Quaero 2010 evaluation set (or eval2010) in this

thesis.

3.2 International Workshop on Spoken Language

Translation (IWSLT)

The International Workshop on Spoken Language Translation (IWSLT)1 is a workshop

that organizes a yearly evaluation campaign on spoken language translation [CNS+13].

In recent years it has focused on the transcription and translation of TED and TEDx

talks and operates tracks on machine translation (MT), spoken language translation

(SLT) and automatic speech recognition.

TED2 which stands for Technology, Entertainment, Design is a recurring conference

where speakers give short 5-20min talks, called TED talks, on a plethora of different

topics in English. Due to the prestigious nature of the event the speakers are generally

very well prepared and the event is recorded in a very high quality. TEDx conferences

are events set up in the same manner as a TED conference but independently organized.

TEDx talks and recordings may not necessarily be of the same quality as normal TED

talks but the independent organizers can choose to allow the talk in languages other

than English like German. TED also hosts the Open Translation Project which allows

volunteers to help transcribe and translate TED and TEDx talks.

3.3 Lecture Translation

In 2011 the Karlsruhe Institute of Technology became the first university to install

an online low-latency lecture translation system [CFH+13]. In 2012 the system began

operation in 3 lecture halls and provides students with a textual translation of the

lecture to their laptops, tablets or smart phones via a website with a delay that is

typically only a few seconds long. Its goal is to help foreign students, who are attending

German lectures, to follow the lecture even if they still lack the required level of German

proficiency.

1IWSLT: http://workshop2014.iwslt.org/
2http://www.ted.com/
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It is set up in a distributed manner with the only requirements for the lecture

hall being internet access, a microphone for the lecturer and a small laptop or pc that

streams the audio to a mediator. The mediator then coordinates individual workers that

perform the subtasks such as ASR, punctuation prediction and sentence segmentation

and MT. The resulting translation is displayed on a website next to the ASR output

after it has been post processed by a punctuation prediction component.

3.4 Test Sets

During the course of this thesis experiments were performed on multiple test sets and

the techniques developed were also applied to other languages besides German. Most

experiments, however, were performed on either the Quaero 2010 evaluation set or the

IWSLT 2012 development set. In many cases the experiments were performed on both

sets to demonstrate that results of the presented systems are generalizable.

3.4.1 Quaero Test set (eval2010)

The German 2010 Quaero evaluation set [SKK12a] contains 3 hours and 34 minutes of

broadcast news (5 files) and conversational speech (6 files). It was collected between

the 19th and 26th of March 2010 from NDR, HeuteNews, Tagesschau and SWR2 and

contains 135 speakers. 88 of them are male and 45 female. The reference transcriptions

contain 32231 words. The results of the systems are measured using WER and reported

with an accuracy of two decimal places.

3.4.2 IWSLT TED Test set (dev2012)

With a reference length of 17913 words and a runtime of 2 hours the German IWSLT

2012 development set is a bit smaller then the Quaero test set. It consists of 7

German TEDx talks by 7 separate speakers. The IWSLT evaluation campaign imposes

restrictions on the text data that can be used for build language models and only allows

sources explicitly listed on the webpage of the evaluation campaign. The relatively small

size of the IWSLT 2012 development set means that providing WER with any more

accuracy than one decimal place would not be useful because changes there would not

have a high likelihood of being significant. With the exception of the initial experiments

on shallow BNFs all design decisions were made using test set.
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3.5 Training Data

The acoustic and language models trained in this system use data from numerous

different sources. This section sheds some light on what data sets exist and where they

stem from.

3.5.1 Audio

Well transcribed audio data is hard to come by, especially if it one wishes it to be in a

particular domain and language. In order to gather training data for the KIT lecture

translation system a large corpus of lectures was gathered in-house, transcribed and

translated. In total, 197 hours and 26 minutes of lectures given by 44 lecturers were

recorded and 86 hours and 21 minutes of them were transcribed. Most lecturers were

male and the majority (185h) of the recorded data stemmed from computer science

lectures. While over 110 hours of CS data remained untranscribed only 35 minutes of

non-CS data was not transcribed.[SKM+12]. The final transcriptions contained 831k

words of which 712k were from CS lectures.

During the course of the Quaero project, audio files collected from publicly available

sources, and their transcripts were released in yearly batches. The Quaero project used

two types of transcriptions, detailed and quick. Quick transcriptions were automatically

preprocessed and segmented into estimated speaker turns which the transcriber did

not have to correct while transcribing the audio. Detailed transcriptions on the other

hand are correctly segmented into speaker turns and, unlike the quick transcripts, have

annotated noises. The whole corpus contains 214 hours of data (detailed: 130:20h /

quick 83:45h).

Most of the collected data is in the form of broadcast conversations where

multiple people are talking with each person being individually recorded. Talk shows

and podcasts are often in this format. A small amount of broadcast news data

(Tagesthemen, Tagesschau and Heute Journal) as well as some recordings from the

European parliament’s plenary sessions are also included. The broadcast conversation

data was collected from NDR, SWR2, ARD, ZDF, Radio Eins, Dradio and SR3.

A further corpus contains 18 hours and 35 minutes of broadcast news collected from

the news program Tagesschau prior to 2008.
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The Landtag (parliament) of the German state Baden-Württemberg has publicly

available transcripts and recordings of their plenary sessions. As well as lacking

timestamps the transcripts are also often heavily edited and therefore sometimes only

roughly match the recordings. Of the over 400 hours of recordings just over 123 hours

of well aligned segments were extracted.

This thesis uses the following collections (databases) of corpora:

� Lecture DB: Contains only the lecture corpus.

� Quaero partial DB: Contains all the Quaero data released prior to 2012 and the

Tagesschau corpus (197:09h).

� Quaero DB: Only contains the full Quaero data (214 hours). The Tagesschau

corpus is no longer included.

� Quaero extended DB: Consists of all the Quaero data released prior to 2012, the

Tagesschau corpus and the Landtag corpus (320:09 h)

3.5.2 Text

Although some text corporas, such as those provided by the WMT, are available in a

format and encoding that allows them to be used to train an LM most them require

some form of preprocessing. Text from websites is generally the hardest to extract

clean text from because it may still contain HTML tags, encoding is often incorrect or

inconsistent and it sometimes contains English text instead of German. The complete

cleaning setup involves:

� Encoding Normalization: Large corpora often contain data from different

sources with possibly different encodings (e.g utf-8, ISO 8859-1, HTML entities,

...). This can sometimes also be seen on websites where a user can contribute text.

It is, therefore, important to perform encoding checking and normalization at the

paragraph level and not at the document level. Even then, texts can sometimes

be seriously messed up. Sometimes uft-8 encoded files are opened as if their

contents were ascii and then converted from ascii to utf-8 and saved again resulting

in words like f\xc3\x83\xc2\xBcr (für) Gr\xc3\x83\xc2\xB6\xc3\x83\xc2\x9fer

(Größer). Common encoding errors like these can be fixed using a lookup table.
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� Character Normalization: Sometimes encodings allow for multiple

representations of a single character. In utf-8 an ä, for example, can either be

its own unique letter or it could be the letter a with a modifier. A consistent

normalization has to be chosen to allow for string comparisons. Punctuation

marks almost always require normalization as there are many different types of

quotes, dashes etc. It helps to have a predetermined set of punctuation marks and

all other punctuation marks are either mapped to one from that set or removed.

� Identify and remove junk: If the correct encodings can’t be found, the data

we are trying to process isn’t text, or if it is text but unsuitable for language

modeling (e.g. football result, code snippets, ...) then it should be removed.

� Sentence segmentation: Language model toolkits generally require one

sentence per line. [Koe05]

� Number normalization: Text sources tend to have numbers represented using

digits which are pronounced differently depending upon what they represent:

dates, times, cardinal numbers, etc. This step replaced the digits with their

context dependent written form.

� Word normalization: acronyms, initialisms, words with hyphens and words

with multiple spellings also have to be normalized to a consistent token. Common

spelling mistakes can also be corrected.

In most cases preprocessing a raw text source will reduce the number of tokens.

Only a fraction of the token in a raw dump of a websites, for example, will turn out to

be usable. Some steps like number normalization or word normalization may increase

the total number of tokens by replacing a single token like UN with multiple tokens

like U. N..

The text corpora used in this thesis originate from many different sources. A full

list can be found in Table 3.1 including the raw word counts of the text corpora, their

sizes after cleaning and the dates when the original texts included in the corpora were

first published. The most notable corpora are:

� A query based webdump: This webdump was originally performed in order

to collect data for a language model used in human robot interaction1. From the

1SFB 588 Humanoid Robots: http://www.sfb588.uni-karlsruhe.de
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small amount of existing in-domain data 30k short phrases were extracted and

used as search terms in an online search engine1. The websites in the top search

results were downloaded and cleaned.

� ODP Crawl: The Open Directory Project2 is a collection of over 4 Million

links which have been sorted into over 1 Million relevant categories by human

editors and has a hierarchical structure. Volunteer editors extend and maintain

the directory. The raw data of the ODP can be downloaded as a large XML file.

This corpus contains all the German websites linked to by the ODP in March of

2009. [Kil09]

� Baden-Württemberg Landtag transcripts: The state of

Baden-Württemberg is the 3rd largest in Germany and this corpus contains the

transcripts from the plenary discussions of their state parliament in Stuttgart

from the 12th, 13th and the first half of the 14th legislative periods3.

� GeneralNews: An old collection of German news articles first published prior

to the 10th of September 1998 from the German Associated Press4, Agence

France-Presse5, Deutsche Presse-Agentur6, Frankfurter Allgemeine Zeitung7 and

the Süddeutsche Zeitung8.

� LM data from the Quaero project: Over the course of the Quaero project a

large amount a language modeling data was collected mostly from news websites

and blogs and then released in multiple stages [LCD+11]. The sources are

Zeit Online, Aachener Nachrichten9, Overblog10, Bild11, Nordkurier12, Spiegel13,

1Google: https://www.google.com
2ODP http://www.dmoz.org
3BW Landtag: https://www.landtag-bw.de/cms/home/dokumente/plenarprotokolle.html
4Acquired by the ddp in 2009 and now operates as the DAPD - Deutscher

Auslands-Depeschendienst: https://www.dapd.de/
5AFP: https://www.afp.com/
6DPA: http://www.dpa.de/
7Frankfurter Allgemeine Zeitung: http://www.faz.net/
8Süddeutsche Zeitung: http://www.sueddeutsche.de/
9Aachener Nachrichten: http://www.aachener-nachrichten.de/

10Overblog: https://de.over-blog.com/
11Bild: http://www.bild.de/
12http://www.nordkurier.de/
13Welt: http://www.spiegel.de/
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TAZ1 and Welt2, many of which were released together as a single corpus, labeled

Various News Websites in the table.

� AM data transcripts: Although very small, the transcripts of the acoustic

model training data can be very useful for multiple reasons. Unlike webdumps or

newspaper articles it contains actual spoken data and is therefore relevant for LM

in ASR systems. The AM training data is often collected in the domain we wish

our system to be deployed so it may also be in domain data. This is especially

the case for the Quaero task.

� WMT Data: The workshop on statistical machine translation organises a yearly

evaluation campaign on statistical machine translation and provide both parallel

and monolingual data3.

� European Language Newspaper Text: A corpus containing German

newspaper articles published by AFP, AP and DP prior to 1995. [GF94]

� German Political Speeches Corpus: A corpus of the speeches made by the

German presidents from 1984 to 2011 and by the German chancellors from 1998

to 2011. [Bar12]

� Google Web and Book ngrams: Unlike the other corpora, the Google web4

and book5 ngrams are not provided as raw text but instead as ngram counts.

1TAZ: http://www.taz.de/
2Welt: http://www.welt.de/
3http://www.statmt.org/wmt14/translation-task.html
4Google Web 1T 5-gram, 10 European Languages: https://catalog.ldc.upenn.edu/LDC2009T25
5Google Books Ngrams: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Source Name from raw tokens cleaned tokens

A query based webdump 2008 343.4M 360.1M

ODP Crawl 2008 120.7M 116.9M

Uni Karlsruhe Webpage Crawl 2007-05-25 - 1.4M

Meeting transcriptions <2005 - 77.4k

KogSys Lecture Notes 2007 - 63.2k

Presentation transcripts 2007 - 13.1k

European Parliament
Plenary Session (EPPS)

1996-05-15
to 2003-09-03

27.9M 24.3M

Baden-Württemberg Landtag
transcripts

1996 to 2009 16.2M 14.1M

GermNews
1996-11-19
to 2000-01-31

0.92M 0.86M

GeneralNews <1998-09-10 - 108.1M

Aachener Nachrichten Online <2010 307.2M 84.0M

Zeit Online <2000 332.2M 134.0M

Zeit Online 2000 - 2009 354.7M 177.6M

Over-Blog 2007 - 2009 265.6M 135.2M

Zeit Online Forum 2007 - 2009 132.1M 63.7M

Various News Websites
2009-05-11
to 2010-02-28

570.1M 148.8M

Zeit Online 2010 7.6M 7.6M

Aachener Nachrichten Online 2010 18.3M 18.3M

Various News Websites
2010-02-28
to 2010-02-31

40.6M 40.7M

Various News Websites 2011 112.3M 106M

AM data transcripts <2012 - 1.8M

NewsCrawl (WMT) 2007 - 2013 - 1427.2M

CommonCrawl (WMT) <2013 - 48.6M

News Commentary (WMT) <2014 - 4.5M

EuroParl (WMT) [Koe05] 1996-2011 - 47.7M

MultiUN Corpus 2000-2010 5.9M 5.8M

European Language Newspaper
Text
LDC95T11

<1995 105.4M 92.0M

ECI Multilingual Text
LDC94T5

<1995 13.8M 13.7M

HUB5 German Transcripts
LDC2003T03

1997 30.6k 19.8k

German Political Speeches Corpus 1984 - 2012 5.6M 5.5M

CALLHOME German Transcripts
LDC97T15

<1997 0.23M 0.17M

IWSLT LM Data <2014 - 2.8M

TED Transcripts Translated <2014 - 2.6M

Google Web 1T 5-grams
LDC2009T25

<2008 - -

Google Books Ngrams <1508-2012 - -

Table 3.1: List of all text sources
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3.6 Baseline System

The decoding and GMM AM training uses the Janus Recognition Tool-kit (JRTk)

with the Ibis single pass decoding developed at Karlsruhe Institute of Technology in

cooperation with Carnegie Mellon University [SMFW01].

3.6.1 Language Model and Search Vocabulary

The data usage restrictions imposed by the IWSLT campaign result in different text

sources being used to train the language models for both tasks which we refer to as

the QuaeroLM and the IwsltLM. A full list of which sources went into which LM is

provided in appendix A. The tuning set for the QuaeroLM is derived from the acoustic

model transcripts of the Quaero data from which roughly 628k words are used. The

remaining acoustic model transcripts become a training source. In lieu of the Quaero

audio data transcripts the IwsltLM uses the example data provided by the campaign

organizers. 240k words of this data are used as the tuning set and the rest used as a

training source.

Both the IwsltLM and the QuaeroLM use the same vocabulary method and the

same approaches to language model building. Only their text sources and tuning sets

differ and all other parameters are kept the same. Some of the larger corpora listed

in table 3.1, like the NewsCrawl, are split into multiple smaller text sources based on

publication year or source.

For each of these text sources a Witten-Bell smoothed unigram language model is

built using the union of the text sources’ vocabulary as the language models’ vocabulary

(global vocabulary). With the help of the maximum likelihood count estimation method

described in [VW03] the best mixture weights are found for representing the tuning

set’s vocabulary as a weighted mixture of the sources’ word counts thereby giving us a

ranking of all the words in the global vocabulary by their relevance to the tuning set.

The top 300k words are then used as the vocabulary.

With the selected vocabulary, a 4gram case sensitive language model with modified

Kneser-Ney smoothing is built for each of the used text sources. This is done using the

SRI Language Modeling Toolkit [Sto02]. The language models are then interpolated

using interpolation weights estimated on the tuning set resulting in a large >10 GByte

language model. Because even compressed in an easy to load binary format the language
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model uses up a lot memory it is loaded into a region of shared memory which allows

multiple decoder instances running on the same server to share it.

All experiments in chapter 4 and chapter 5 are performed using the subword

vocabulary developed in chapter 6 but not the neural network subword language model

which is the culmination of that chapter.

3.6.2 Acoustic Model

All acoustic models use left to right HMM without skip states where each of the 46

normal phonemes have three HMM states and the silence phoneme has only a single

state. The initial cluster tree is built using the method described in section 2.2.2.4 with

6016 leaves.

The baseline GMM AM setup uses codebooks with 128 Gaussians per model. The

CD AM is trained using multiple steps. First an LDA trained to reduce the input

feature’s dimension to 42 then GMM models are trained using incremental splitting of

Gaussians (MAS) training, followed by the training of a global STC matrix and two

rounds of Viterbi training [SKK12a]. All models use vocal tract length normalization

(VTLN [ZW97]) and feature space constraint MLLR (cMLLR) [FLBG07] speaker

adaptive training.

Boosted MMIE (bMMIE), an updated version of MMIE,[PKK+08] where the lattice

confusions with the largest phone error are given more weight (boosted), in order to

improve the discriminative capability of the acoustic model, consistently improves all

trained GMM AMs. It is, however, not included in many experiments due its high

demand for computational resources. Its consistent gains allow it to be skipped when

evaluting front-end features.

The JrTk [SMFW01] is extended with a DNN AM object that implements the same

interface to the Ibis decoder as the existing GMM AM. A diverse range of topologies

are supported by allowing their computation to be controlled by a tcl script.

3.6.3 System Combination

The outputs of multiple systems can be combined using confusion network combination

(cnc) to produce a combined output with a lower error rate. The individual system’s

lattices are merged into a confusion network which consists of a sequence of slots

containing the possible words including the null word that, according to the lattices,
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could occur in that part of the utterance. At the same time the posterior probability

of each word in a slot is calculated and then used to select the sequence of words that

should result in the lowest word error rate [MBS00b].

3.7 Neural Network Training

Some training of shallow MLPs is preformed with a consistent [Joh04] toolkit that

allows for fast network training on GPUs. Quicknet, however, can only train networks

with up to 3 hidden layers. In order to train networks with more hidden layers an

inhouse solution based on Theano[BBB+10] was developed. In his master thesis Jonas

Gehring, explored the application of denoising autoencoders as a method of pre-training

DNNs for feature extraction. Using Theano he implemented a flexible DNN training

setup that included multiple forms of pretraining, various error functions, activation

functions and layer types. All DNN experiments trained in chapters 4 through 6 used

either this setup or a modified and extended version of this setup. Due to the novel

error function and the tight integration with a lattice rescoring setup the DNNs trained

in chapter 7 required their own specialized training setup, which was also based on

Theano.

Pretraining was consistently performed layerwise using denoising autoencoders. A

normal setup would use 2M of mini batches with a corruption of 20%, a constant

learning rate and the sigmoid activation function. Because the input data to the

network is mean normalized the first denoising autoencoder has to use the tanh

activation function in its output layer. It still uses the sigmoid activation function

in its hidden layer so that all further layers only have inputs between 0 and 1, allowing

them to use the sigmoid activation function in their output layers and the CE error

function. The first hidden layer has to use the MSE error function. Pretrained hidden

layers can be cached and reused in experiments that only change the output layer or

the total number of hidden layers. After pretraining the final layer(s) can be added,

with the output layer using the softmax activation function. The full DNN is then

fine-tuned using the newbob learning rate schedule.
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Chapter 4

Neural Network Feature

Extraction

This chapter deals with the uses of neural networks in the feature extraction process.

Good features can significantly improve the performance of HMM/GMM AM based

ASR systems. The origins of this approach stem from a time when HMM/GMM AMs

were fast becoming the dominant approach to acoustic modeling. In 2000 Hermansky

et al. [HES00] successfully used the MLP output of a context independent hybrid

system as the input to a GMM based AM (Tandem approach). After an error analysis

[RGE02] showed that systems using MLP features and systems using cepstral features

produced different errors, attempts were undertaken to combine both features at the

input level to the GMM. In [BBC+01] PCA is performed independently on both MLP

and cepstral features while for [ZCM+04] performing HLDA on the cepstral features

and PCA on the MLP features resulted in the best system when using MLLR speaker

adaptation. Since these neural network based features are only augmenting the existing

cepstral features in the input to the GMMs, techniques designed to improve GMM based

systems like MLLR speaker adaptation and MMIE discriminative training can also be

leveraged to improve systems using neural network features. Similar approaches have

been used to clean up noisy audio signals [TW88]. This chapter starts off with a quick

overview of the relevant initial front-end features from which the neural network based

features will be extracted and goes on to explain how MLPs can be used to extract

so called bottleneck features. Experiments on MVDR in particular show how to make

the best use of bottleneck features. Further experiments show how multiple front-end
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4. NEURAL NETWORK FEATURE EXTRACTION

features can be combined using bottleneck features and improved with the use of deep

bottleneck features.

4.1 Features for Speech Recognition

In the past, a myriad of input features have been tested in ASR, and no single feature

found to be the best in all circumstances. Input features are often considered to

be good if they were simple to compute, discarded irrelevant information, such as

who is speaking or where they’re speaking, and preserved or enhanced the distinctive

properties of the speech signal. In many cases the input features were also required to

be robust against distortions like echos or background noises. Many feature extraction

algorithms have been inspired by the physiology of the human ear. In the outer ear

an incoming sound wave is filtered and focused on the eardrum. The vibrations of

which are transmitted, with the help of 3 small bones, to the fluid in the cochlea.

Different frequencies of vibrations resonate in different places within the cochlea and

cause the hair cells in those places to release a neurotransmitter resulting in neurons

of the auditory nerve sending a signal to the brain [Kal15]. This can conceptually be

thought of as analogous to a short-time Fourier transform (STFT) of the audio signal,

which computes the Fourier transformation on a small window of the audio signal, often

referred to as a frame. While human hearing is asynchronous, the STFT performed

when extracting features for speech recognition uses a fixed window size (normally

16-32ms) and a fixed frameshift (8-40ms). Plotting the magnitude of an STFT results

in a spectrogram where the Y-Axis represents the frequency and the X-axis the time.

4.1.1 Log-MEL Features (lMEL)

Also motivated by the physiology of human hearing is the mel scale developed by

[SVN37]. Humans find it easier to distinguish frequency differences at lower frequencies

than at higher frequencies. We can assume from this that the lower frequencies contain

more speech relevant information. To emulate this a filterbank of triangular window

functions is applied to each frame after performing a short-time Fourier transform. The

windows are smaller and closer together at lower frequencies and larger and further

apart at higher frequencies. Each window function corresponds to a coefficient in the

feature vector. The final step involves taking the log of each coefficient. By taking the
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logarithm we are able to transform convolutional noise of the audio signal that became

multiplicative noise after the Fourier transformation into additive noise that is much

easier to handle.

4.1.2 Mel Frequency Cepstral Coefficients (MFCC)

Applying an inverse Fourier transformation to the lMEL features preserves the additive

nature of the originally convolutional noise in the cepstrum. Under the assumption

that, while the speech signal varies, the noise is constant during an utterance, it can

estimated using the average signal over the timeframe of the utterance and compensated

by subtracting it from each utterance. A discrete cosine transformation is generally

used instead of a the inverse Fourier transformation. Mel frequency ceptral coefficients

(MFCC) have established themselves as the most common front end feature in speech

recognition.

4.1.3 Minimum Variance Distortionless Response (MVDR) Spectrum

Some alternative feature extraction methods are based on linear predictive coding

that aims to estimate samples as a linear combination of the preceding n samples

[Her90]. Basic linear prediction tends to overemphasize the harmonic peaks seen in

medium and high pitched voices. Minimum variance distortionless response [MR00]

(MVDR) solves this problem and is improved by (mel)-warping the frequency axis

prior to spectral estimation. This allows for more parameters in the low frequency

regions of the spectrum and fewer in the high frequency regions [WM05]. In some

circumstances warped Minimum Variance Distortionless Response (MVDR) features

for speech recognition have been shown to be better [WMW03] than MFCC features.

4.1.4 Tonal Features

The use of pitch in languages to distinguish between words, their inflections or

grammatical meaning is refereed to as tone. Pitch information is generally not

considered to be very useful in speech recognition systems for non-tonal languages.

Even for tonal languages like Mandarin, Cantonese, and Vietnamese, that use tones

to represent phone level distinctions [Bao99] and therefore make them essential to

distinguish between words, tonal features only provide a modest boost to performance
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[VS09, CW95]. Modeling tones and integrating tonal features into a recognition system

is challenging and often optimized to the particularities of the language the system is

designed for. [CGM+97, LGL+11].

In non-tonal languages like German and English, pitch can be considered a prosodic

feature along with rhythm (phoneme duration) and loudness (acoustic intensity). These

are generally only useful for modeling information in speech beyond the word level such

as emotion, emphasis or intonation [Pie80, Hir83]. On a word level pitch may contribute

a small part to lexical stress but only a small number of word pairs exist that require

lexical stress to distinguish them: for example INcline (sloped surface) vs inCLIne

(tendency to do something) [Wai88].

In work performed together with Metze, Gehring and others [MSW+13a] various

tonal models and methods of integrating tonal features are analyzed on both tonal and

non tonal languages. That work reports, for the first time, results of using fundamental

frequency variation [LHE08] features for speech recognition of tonal languages.

4.1.4.1 Pitch Features

The pitch features in this work use the approach described by Kjell Schubert in his

thesis [Sch98]. The distinguishing information in many tonal languages is not so much

the absolute pitch height but more its change or contour. In Mandarin, for example,

the word chūn contains a flat tone and can be translated into English as spring. Simply

altering the tone contour to a falling-rising tone (chǔn) changes the meaning of the word

to stupid. Good tonal features should, therefore, detect rising, falling, or otherwise

marked pitch contours.

Kjell’s pitch features use dynamic programming over a cepstrogram with a window

length of 32 ms to find the best pitch for each frame without exceeding certain

constraints, such as the maximum pitch difference between two frames. Using the

three right and left neighbours delta and double delta features are computed. Together

with an optimal frame-based cross-correlation feature, this results in 8 coefficients.

4.1.4.2 Fundamental Frequency Variation (FFV) Features

Normal pitch features have problems in dealing with silent segments of speech where

pitch isn’t defined. FFV features, on the other hand, can handle silent segments and

have been successful in tasks like speaker verification. A geometric interpretation
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Figure 4.1: Visualization of Fundamental Frequency Variation (FFV) features,
from [LHE08]: The standard dot-product between two vectors (spectra at a distance T0
each from a center point) is shown as an orthonormal projection onto a point at infinity
(left panel), while the proposed “vanishing-point product” for a point τ generalizes to the
former when τ →∞ (right panel). Image source: [LHE08]

of FFV features based on the vanishing-point product is shown is figure 4.1. For a

given center point two spectra at a distance of +- T0 are combined using a so called

vanishing-point product that can be interpreted as a generalized dot-product. In the

standard dot-product the coefficients of the vectors are multiple pair-wise, with the

pair selected by an orthonormal projection to a point at infinity. The vanishing-point

product (with vanishing point τ : −∞ < τ <∞) results in a warping of spectra vectors

so that the corresponding coefficients lie on lines that intersect at the vanishing point.

Varying τ from −∞ to ∞ leads to the FFV spectrum.

The 7 FFV features are derived by applying a filter-bank over the FFV spectrum.

A trapezoidal filter in the middle aims to capture flat or constant pitch, two trapezoidal

filters slightly to the left and right target slowly changing pitch and two trapezoidal

filters further to the left and right try to capture fast changing pitch information. The

5 trapezoidal filters are augmented by 2 rectangular filters at the left and right edges

of the spectrum.
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Figure 4.2: Example MLP architecture (4kx2k): A 9 frame context window, each with 20
wMVDR coefficients is used as the input feature. The 147 node target layer (one node per
subphone) and the 2k 3rd hidden layer are discarded after the MLP is trained. A 9 frame
context window of the MLP output at the 42 node bottleneck layer is then used as the new
372 dim BNF feature which is reduced back to 42 using an LDA [KTNW13].

4.2 Bottleneck Features

In MLPs the outputs of a given layer can be thought of as an alternative representation

of the input feature vector. A small hidden layer in the middle of an MLP will,

therefore, provide compact alternative features, with the number of coefficients being

controlled by the number of neurons in the hidden layer. An example of a 5 layer MLP

with a bottleneck in its middle layer is shown in figure 4.2. Bottleneck features are

discriminativly trained using either context dependent or context independent subphone

states as targets. For small (shallow) bottle feature networks the topology is described

by listing the sizes of the hidden layers, with an x being used for the bottleneck layer.

The bottleneck network in figure 4.2 is referred to as 4kx2k because it contains 4000

neurons in the first hidden layer followed by a bottleneck layer and 2000 neurons in the
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final hidden layer.

4.2.1 Related Work

This 5 layer bottleneck MLP was first introduced by Greszl et al. in 2007 [GKKC07]

where it was shown to outperform both an HLDA dimensionality reduction on the

input features and the posterior phoneme probabilities used by the traditional tandem

systems. They saw further improvements by using phone states as targets instead of

phones [GF08], using a topology with twice as many neurons in the first hidden layer

than in the second hidden layer and by adding delta features to their input.

Temporal Pattern (TRAP) features proposed by Hermansky [HS98] use multiple

small MLPs trained on long, (up to 1s) temporal features that each correspond to a

frequency band in the spectrum. The individual MLPs can then be joined in a further

MLP and its output used as in the tandem system setup. In a similar setup Valente

et al. [VVP+07] describe a hierarchical approach to neural feature extraction where an

MLP is trained on spectral features spanning a short temporal context. Its output is

then combined with spectral features spanning a long temporal context and used as the

input to a further MLP. In [PSN10] this approach is extended by adding bottlenecks

to both of the MLPs and is shown to be significantly better than a normal bottleneck

MLP on the same features, the hierarchical setup without a bottleneck and the TRAP

features.

A method of using BNFs to combine multiple feature streams proposed in [PSN11],

shows that combining MFCC, PLP and gammatone features in the input layer of an

MLP can lead to a system that performs better than the system combination of the

lattices of the individual systems. The MLP using the combined input feature also

outperforms the best single feature MLP by a small amount. In contrast to this work

they, however, only look at shallow networks. Instead they focus on integrating the

multiple features into a shallow RNN [PKSN13] trained to classify the phone targets.

In [YS11] bottleneck features are pretrained using stacked restricted Boltzmann

machines which improve the performance of the subsequently trained MLP. An

approach using denoising autoencoders instead of restricted Boltzmann machines also

shows impressive reductions in WER [Geh12]. Both case’s setups allow the number of

hidden layers prior to the bottleneck layer to be increased and improve the quality of

the BNFs.
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4.3 Combining Features with a Bottleneck MLP

The initial experiments to ascertain if this approach is feasible and what sort of input

contexts should be used are performed on MFCC and MVDR features using a small

bottleneck network with only 3 hidden layers. The results of these experiments motivate

the setup of the later experiments on combining multiple features using deep bottleneck

feature networks.

4.3.1 Experimental Optimization of MFCC+MVDR-BNF Features

Intuitively one may assume that larger input vectors, derived from a larger stack on

consecutive frames, should contain more information and should therefore result in

better BNFs. Especially when the results of the TRAP features [HS98] are taken

into consideration which show that useful information can be found in contexts up

to 1s. On the flip side larger input vectors mean more parameters which can also

cause problems. In this section the effects of various input feature sizes is examined

on MFCC+MVDR-BNF feature networks of different topologies compared with both

MVDR-BNF and MFCC-BNF features. Since feature stacking can also be performed

in the LDA prior to GMM training the size of the feature stack is also scrutinized.

4.3.1.1 MLP Topology

All MLPs use a 42 node bottleneck as the 2nd hidden layer. The 2k MLPs contain a

2000 node hidden layer between the bottleneck layer and the input layer. This layer has

4000 nodes in the 4kx2k MLPs which also include a 3rd hidden layer with 2000 nodes

between the bottleneck and output layers. Further increases in layer sizes decreased the

MLPs performance. The ratio of 2:1 between the 1st and 3rd hidden layers is motivated

by [GKKC07]. We performed pretraining on the German MLPs by training first on all

available German audio data (sets 1+2) and then fine-tuning with only the in-domain

data (set 1).

All audio is sampled at 16 kHz with a 16 ms window size, 10 ms frame shift and a

frame size of 20 coefficients. Between 1 and 15 consecutive frames are concatenated

to form the input of the MLP. To provide a comparison both an MFCC-BNF system

and a MVDR-BNF system using the same parameters are trained in parallel for each
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MFCC-BNF 2k 27.87 23.95 22.86 20.51 22.86 21.92 22.08
MVDR-BNF 2k 27.02 21.26 21.98 21.58 19.92 20.33 20.49

MVDR+MFCC-BNF 2k 25.67 20.38 19.97 19.47 19.58 19.44 19.73

MFCC-BNF 4kx2k - - - 18.52 18.69 18.42 18.36
MVDR-BNF 4kx2k - - - 18.40 18.64 18.79 18.77

MVDR+MFCC-BNF 4kx2k - - - 18.35 18.11 18.81 -

Table 4.1: LDA test tested on the German Quaero 2010 evaluation data on inputs from
1 to 13 frames.

MVDR+MFCC BNF system. The inputs for the MVDR+MFCC MLP are derived by

concatenating the MVDR and MFCC feature vectors.

The output layer of the MLP is initially set to the number of phone states in our

ASR system. This results in an MLP with an output layer containing 147 neurons, an

input layer with between 20 and 300 neurons for the MVDR and MFCC MLPs and

between 40 and 600 neurons for the MVDR+MFCC MLPs. Using the best context

window a further MLP is trained on each input feature where instead of 139 phone

states as targets 6016 context dependent phone states are used.

4.3.1.2 MLP Integration

Before the BNF features are used in the GMM acoustic model they are stacked over a

short timeframe and an LDA is preformed to reduce the dimension back down to 42.

The effect of different window sizes is analyzed by training systems with window sizes

from 7 to 13 for the best non-pretrained BNF of each frontend. We did not include

discriminative training in our standard AM training setup due its high demand for

computational resources. The KIT Quaero 2012 German evaluation system included

bMMIE trained models which resulted in our MFCC system improving from 20.69% to

19.90% and our MFCC-BNF system improving from 18.82% to 17.80%. Other systems

showed a similar consistent improvement. This observation allows us to compare

frontend performance without discriminative training.
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MFCC-BNF 2k 22.86 - 19.83 19.98
wMVDR-BNF 2k 19.92 - 20.28 20.88

wMVDR+MFCC 2k 19.58 - 19.81 19.38

MFCC-BNF 4kx2k 18.69 18.53 18.83 18.45
wMVDR-BNF 4kx2k 18.64 18.18 18.95 18.84

wMVDR+MFCC 4kx2k 18.11 17.81 19.79 18.38

Table 4.2: Comparison of all 3 frontends with and without pretraining on various input
sizes and topologies. Tested on the German Quaero 2010 evaluation data. First published
in [KTNW13]

4.3.1.3 Sytem Training

The MLPs are trained with Quicknet [Joh04] on the Quaero partial DB. Using the

Quaero extended DB which also includes the out of domain and in some cases poorly

aligned Landtag corpus degraded the performance of the BNF frontend. The results of

discriminately pretraining the MLPs using the Quaero extended DB are evaluated by

performing one round of training on the Quaero extended DB and using the resulting

network as the initial network for a second round of training with only the Quaero

partial DB. The Quaero partial DB also proved to be better than the Quaero extended

DB for training the GMM acoustic model.

4.3.1.4 Results

The analysis of the best LDA context for the BNFs is presented in table 4.1. The very

small LDA context values are omitted for the larger 4kx2k networks. The optimum

values vary slightly between 7 frames for the small 2k MVDR+MFCC BNF system and

15 frames for the larger 4kx2k MFCC-BNF system. The results of the larger 4kx2k

networks seem to vary much less with the size of the LDA context than the smaller

2k systems. All further experiments are performed using an LDA context window of 9

frames.

Table 4.2 shows that pretraining with the Quaero extended DB can help improve

system performance when used to pretrain the MLPs as described in section 4.3.1.1. For
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Figure 4.3: Evaluation of the effects of different input layer dimensions for MFCC-BNF,
MVDR-BNF and MVDR+MFCC-BNFs. The 4kx2k topologies were not tested with input
sizes smaller than 7 stacked frames. Tested on the German Quaero 2010 evaluation set.

the 2k setup pretraining either only slightly improves the performance or decreases the

performance. The larger 4kx2k BNF are all noticeably improved by using pretraining.

The 15 frame MVDR+MFCC frontend, in particular, went from being the worst 15

frame 4kx2k frontend without pretraining to being the best 15 frame 4kx2k with

pretraining. In general the trend seems to be that larger MLPs benefit more from

pretraining than smaller MLPs.

While the 2k BNFs are tested on context windows of 1-15, the 4kx2k BNFs are only

tested on context windows of 7-15 due to the very poor results of the 2k networks on

those small contexts. As can be seen in figure 4.3 the smaller context windows of 1-5

perform poorly. With the exception of the 2k-MFCC-BNF system all systems seem to

perform best at or around a window size of 9 frames.

As reported in [KTNW13] the results of the single system experiments are compared

to baseline MVDR and MFCC systems in table 4.3 and show that all the systems

significantly outperform the baseline MFCC system. Compared to the best MFCC-BNF

system our best MVDR-BNF system only decreased the WER slightly from 18.53% to
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System WER Improvement

MFCC baseline 20.67% -
wMVDR baseline 20.91% -

MFCC-BNF 18.69% 9.7%
MVDR-BNF 18.64% 9.9%

MVDR+MFCC-BNF 18.11% 12.5%

pretrained MFCC-BNF 18.53% 10.4%
pretrained MVDR-BNF 18.18% 12.1%

pretrained MVDR+MFCC-BNF 17.81% 13.9%

Table 4.3: Results of our best systems for each frontend with and without pretraining
compared to baseline MFCC and MVDR systems. Tested on the German Quaero 2010
evaluation data.

System CI targets CD targets

MFCC-BNF 18.53% 18.24%
MVDR-BNF 18.18% 17.68%

MVDR+MFCC-BNF 17.81% 17.36%

Table 4.4: Results of our best systems for each frontend on both context independent
target and context dependent targets. All systems used supervised pretraining. Tested on
the German Quaero 2010 evaluation data.

18.18% (2% relative) whereas our best MVDR+MFCC system was able to achieve a

relative improvement of 3.9% resulting in a decrease of WER from 18.53% to 17.81%.

Further improvements can be achieved in all systems by replacing the context

independent phone state target with context dependent phone state targets. This

increases the size of the output layer from 139 neurons to 6016 neurons and also

drastically increase the training time of the MLPs. The MFCC-BNF is improved by

only 0.29% and the other two BNFs (MVDR & MVDR+MFCC) are both improved by

about 0.5% absolute. An overview of these results can be seen in table 4.4.

This experimental optimization of MFCC+MVDR-BNF features shows that while

MFCC and MVDR features are fundamentally similar and equally useful, they are still,

to some extent, complementary and training BNFs on their union can outperform BNFs

trained on either feature individually.
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4.3.2 Deep Bottleneck based Feature Combination

In the previous section the effects of different sizes of inputs are analyzed on both

single feature and multifeature BNF networks. This section expands on those results

by increasing the number of hidden layers in the neural networks for BNF extraction

and examines the effects of also integrating lMEL and tonal features. We refer to BNFs

whose neural networks contain two or more hidden layers prior to the bottleneck layer

as deep bottleneck features (DBNF). An example of such a network with 4 hidden layers

prior to the bottleneck layer is given in Figure 4.4. The input, output and bottleneck

layers remain unchanged but the number of hidden layers between the input layer and

the output layer has increased from one to four. In order to avoid increasing the number

of parameters too drastically the size of the hidden layers is reduced. The largest

network analyzed so far uses an input feature vector of 600 followed by a 4000 neuron

hidden layer, a bottleneck layer with 42 neurons, a final smaller hidden layer of 2000

neurons and a 6016 neuron output layer. Since all layers are fully connected the network

contains 14 684 000 connections. Adding an extra hidden layer with 4000 neurons just

prior to the bottleneck would increase the number of connections by 16 000 000 to

30 684 000, more than doubling them. By reducing the size of the hidden layers to 1200

neurons we can build a deep bottleneck network with 5 hidden layers between the input

and the bottleneck that contains only 13 800 000 connections. With the exception of

the bottleneck all hidden layers in a DBNF are the same size and the hidden layers

prior to the bottleneck are referred to as the main hidden layers. This allows us to

name the example network 5x1.2k where the 5 refers to its number of hidden layers

and 1.2k refers to its size.

The experiments on DBNFs are evaluated on both the IWSLT dev2012 test set and

the Quaero eval2010 test set. Although the results are reported together the tests were

initially run on dev2012 and all design decisions based on those results. Only after all

DBNF experiments were evaluated on dev2012 are the same models used to evaluate

the eval2010 test set. The test sets are dissimilar enough so that improvements and

trends that then also show up the in eval2010 can be considered real improvements and

not merely test set tuning.

While the results in section 4.3 are obtained using the Quaero 2011 evaluation

system the results in this section employ both the Quaero 2012 evaluation system
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Figure 4.4: An example DBNF with 4 hidden layers prior to the bottleneck layer

and the IWSLT 2014 evaluation systems. The Quaero DB is used to train the newer

systems which contain slightly more AM training data then the Quaero partial DB

and the frame alignments are performed using using a better AM. The LM of the

Quaero 2012 evaluation system contains more data sources and improves on the Quaero

2011 evaluation system’s LM. The LM used in the IWSLT 2014 evaluation system is

restricted to the data sources permitted by the evaluation campaign organizers. In

order to compare the results of this section with the results of the previous section two

MVDR+MFCC-DBNF networks with 5 main hidden layers are trained on both the old

and new data.

The outcome of this experiment is given in table 4.5 and shows that changing the

topology from a BNF with a single hidden layer of 4000 neurons to DBNF with an

equivalent number of parameters reduces the WER on our test set by 0.80% absolute

from 17.36% to 16.56%. Increasing the size of the hidden layers to 1600 neurons leads

to a further WER reduction to 16.42%. Transitioning to the 2012 AM data with the

new alignments and using an updated language improves the WER on the Quaero 2010
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topology AM & LM data eval2010 dev2012

4kx2k 2011 17.36% -
5x1.2k 2011 16.56% -
5x1.6k 2011 16.42% -
5x1.2k 2012 15.53% 20.6%
5x1.6k 2012 15.54% 20.3%

Table 4.5: Comparison of the 2011 evaluation setup with the 2012 evaluation setup using
a DBNF with 1200 or 1600 neurons in the hidden layer. The results on the dev2012 test set
are measured with the IWSLTLM and the results on the eval2010 set are measured using
the QuaeroLM.

evaluation set by about 0.9%. While both deep topologies perform equally well on the

Quaero 2010 evaluation set the larger 5x1.6k network is 0.3% ahead of 5x1.2k network

on the IWSLT development set.

4.3.2.1 Deep MVDR+MFCC Bottleneck Features

As described in [YS11], adding more hidden layers can greatly improve the quality

of deep neural networks. Based on the results of [YS11] and [Geh12] that show

improvements in single feature BNFs this section explores the effects of applying those

techniques to the proposed MVDR+MFCC BNF network. In order to find the optimum

topologies for DBNFs this section examines the effects of various layer sizes and tries

to determine how deep the network should be.

All networks described in this section are variations of the network depicted in

figure 4.4. The smallest uses only two main hidden layers of 1200 neurons and has

9 480 000 connections. Each new hidden layer increases the number of connections

proportional to the square of its size: 1 440 000 for the 1200 neuron layer, 2 560 000 for

the 1600 neuron layer and 4 000 000 for 2000 neuron hidden layer. The largest network

tested has 33 400 000 connections and uses six main hidden layers of 2000 neurons.

In total 15 systems are trained using DBNFs of depths ranging from 2 hidden layers

to 6 hidden layers with 3 different sizes of hidden layers and tested on both the 2014

IWSLT development set and the Quaero 2010 evaluation set. In all cases pretraining

is performed using the same data (Quaero DB) that is also used to both fine-tune the

network and to train the GMM AM. After fine-tuning, the two layers following the

bottleneck are discarded. The targets for all networks are the 6016 context dependent
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4. NEURAL NETWORK FEATURE EXTRACTION

Topology 1200 1600 2000
eval2010 dev2012 eval2010 dev2012

2 hidden layers 16.0 20.8 16.0 20.4 15.9 20.7
3 hidden layers 16.0 20.7 15.8 20.4 15.5 20.4
4 hidden layers 15.7 20.6 15.8 20.6 15.5 20.3
5 hidden layers 15.5 20.6 15.5 20.3 15.5 20.5
6 hidden layers 15.7 20.8 15.5 20.8 15.5 20.8

Table 4.6: Results of MVDR+MFCC DBNFs test with 1 to 6 hidden layers and three
hidden layer sizes. Tested on both the dev2012 test and eval2010 test set.

phone states. As a comparison a separate MFCC system is trained on the best two

topologies as well as an MVDR system on the 5x1.6k topology.

The results of this experiment, presented in table 4.6, show variations in WER on

both test sets of about 0.5%. Networks with only two main hidden layers perform poorer

than networks with more hidden layers. Although increasing the number of hidden

layers initially results in an improved performance, after reaching an optimal depth it

starts to harm the network. The optimal depth is dependent on the size of the hidden

layers. For networks with hidden layers containing 1200 or 1600 neurons the optimal

depth is 5. The larger networks with 2000 neurons in their hidden layers reach their

optimum depth sooner after only 4 hidden layers. The MFCC comparison system with

5 hidden layers containing 1600 neurons each has a WER of 15.95% on the eval2010

test set and 20.8% on the dev2012 test. The same topology using MVDR feature

vectors achieved a slightly better WER of 15.84% and 20.6%. The MVDR+MFCC is

significantly better than both of these systems with WERs 0.4% and 0.29% lower on

the eval2010 test set and on the dev2012 test set 0.5% and 0.3% lower. Significance is

at p < 0.001 tested using the McNemer’s test of significance. Using the 4x2k topology

also shows significant improvements for the MVDR+MFCC network.

4.3.2.2 Exploring Additional Features

So far this chapter has shown the effectiveness of the MVDR+MFCC multifeature

network. This section expands on that network by including further features in

the input layer to the MLP and evaluating the gains seen after adding them. All

feature combinations are trained using the best two topologies found in the previous

62



4.3 Combining Features with a Bottleneck MLP

Topology 5x1.6k 4x2k
eval2010 dev2012 eval2010 dev2012

MFCC 15.95 20.8 16.07 20.7
+MVDR 15.55 20.3 15.56 20.3
+Tone 15.04 20.2 15.32 20.4
+lMEL 14.81 20.1 14.84 19.9

lMEL 15.34 20.4 15.34 20.4
+Tone 15.27 20.1 14.95 20.1

MVDR 15.84 20.6 - -

Table 4.7: Results of systematically increasing the number of different features used in
as the input to MLPs of two different topologies. Results are reported on both the Quaero
eval2010 test set and the IWSLT dev2012 test set.

experiment: the 5x1.6k topology with 5 hidden layers of 1600 neurons each and the

4x2k topology with 4 hidden layers containing 2000 neurons each. The only difference

to the preceding experiments are the compositions and sizes of the input features.

The single feature MFCC and MVDR MLPs both have 20 coefficients and the merged

MVDR+MFCC network has 40 coefficients. Adding the tonal features (7 FFVs and

7 pitch) brings it up to 54 for the MVDR+MFCC+TONE MLP. Since the lMEL

feature uses 40 coefficients the lMEL+TONE MLP also has an input of 54. The final

MVDR+MFCC+TONE+lMEL network containing all the features has 94 coefficients.

The first four lines in table 4.7 show that starting with MFCC based BNFs and

adding more features consistently results in better systems. The only exception is

the system using the MFCC+MVDR+TONE (which from now on will be abbreviated

as m2+t) features and the 4x2k topology which is 0.1% worse than the same setup

without the tonal features test on the dev2012 test set. The exception can be considered

an outlier since the same system slightly improves the eval2010 test set by 0.16% to

15.32% from 15.56% for the MVDR+MFCC system and the addition of tonal features

to the 5x1.6k MVDR+MFCC system significantly (p < 0.001) improves both test sets.

The addition of tonal features also improves all the lMEL features using all topologies

and on both test sets. Further gains can be seen be using all input features with

the MVDR+MFCC+TONE+lMEL (from here on referred to as m3+t) achieving the

lowest WER rate on all 4 cases. This m3+t system improves the best best single

feature system which uses lMEL BNF features by about 0.5% and the normal MFCC
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Figure 4.5: Late versus early integration of tonal features for acoustic models trained on
deep bottleneck features. Source: [MSW+13a]

BNF system by 0.7% to 1.14%.

4.3.3 Integration Level

So far all features have been integrated into the system as early as possible. The cepstral

MFCC, MVDR and the tonal FFV & Pitch features could, however, be combined at

different levels. In this section we compare a late integration setup using features joined

just prior to being used in the GMM-AM to an early integration setup using merged

features for bottleneck feature training.

4.3.3.1 Late: As Parallel Features

The parallel feature setup concatenates FFV and Pitch features with DBNFs extracted

from MFCC and MVDR features and stacks them over a 9-frame context. An LDA

is used to reduce the feature dimensionality to 42. This setup has the advantage that

it allows us to add tonal features to an existing DBNF based ASR system by simply

retraining the acoustic model, keeping the number of parameters in the GMM constant.

4.3.3.2 Early: At the MLP Feature Level

It has already been shown that training DBNFs on a concatenation of multiple ASR

features can result in improvements compared to BNFs trained on any of the individual

features. The merged DBNF training uses a 715-dimensional input vector consisting
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4.3 Combining Features with a Bottleneck MLP

of 20 MFCC and 20 MVDR coefficients joined with 7 FFVs and 8 Pitch features and

stacked over a 13-frame context window. The remaining DBNF topology and training

procedure is unaltered.

4.3.3.3 Integration Level Experiments

In order to ascertain how to optimally integrate the tonal features described in

section 4.1.4 tests are performed on Vietnamese, a tonal language instead of one the

usual German test sets.

The Vietnamese systems are trained using data released within the IARPA Babel

program which consists of about 80 hours of transcribed conversational telephone speech

per language. A 3-gram Kneser-Ney smoothed [CG96] language model is trained from

the transcripts using the SRILM toolkit [Sto02]. The acoustic models used in this

section are trained using GMMs and initialized using a flat start setup based on

6 iterations of EM-training and regeneration of training data alignments. Phonetic

contexts are clustered into roughly 10 000 context-dependent quinphone states that

also serve as targets for fine-tuning the DBNFs. The flat start and non-DBNF baseline

systems use 13 MFCC coefficients that are stacked over 15 frames and reduced to

42-dimensional feature vectors with LDA. Tests are performed on a 2-hour subset of

the official 10-hour IARPA Babel development set.

The Baseline DBNF systems use 20 MFCC coefficients concatenated with 20

MVDR coefficients, stacked over 13 frames. The deep bottleneck feature network

consists of 5 layers containing 1,200 neurons each, followed by the bottleneck layer

with 42 neurons, a further hidden layer and the final layer. Layers prior to the

bottleneck are initialized with unsupervised pre-training and a stack of denoising

auto-encoders [VLL+10]. Fine-tuning is performed for 15-20 epochs using the newbob

learning rate schedule. The activations of the 42 bottleneck units are stacked over a 9

frame context window and reduced back to 42 features using LDA.

As can be seen in Table 4.8, by performing late integration, systems using parallel

features improve on the baseline DBNF systems by 0.7%. Showing improvements of

2.6%, integrating the tonal features early as additional input to the DBNF network

performs much better. These integration experiments clearly show that using all

features as the input to a bottleneck MLP to be the best stratagy.
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System Tonal Phones

Baseline MFCC 68.9%
Tonal features 65.3%
Baseline DBNF 54.7%
Tonal DBNF (late int.) 54.0%
Tonal DBNF (early int.) 52.1%

Table 4.8: Results obtained on a Vietnamese test set in Word Error Rate (WER).
[MSW+13a]

Tonal Features in Non-Tonal Languages The best tonal setup is tested two

non-tonal languages, German and English, in order to examine whether or not these

potentially superfluous features had a detrimental effect. Table 4.7 already shows that

adding tone features actually results in significant gains in German. In an English

system, a small improvement of 0.5% from 16.0% to 15.5% could be obtained with this

approach. Again, all other parameters are the same for tonal and non-tonal systems.

4.4 Optimized BNF based Acoustic Model Training

Bottleneck features, especially deep bottleneck features are orders of magnitude

more computationally expensive to train than traditional MFCC or MVDR features.

Optimizing the training of DBNF based GMM AMs is necessary in order to not let

their training time increase too much compared to MFCC GMMs and in order to allow

for a rapid turnover in DBNF topology experiments. The first optimization technique

makes use of the large amount of RAM available to modern HPCs.

In order to achieve an acceptable training time the steps are parallelized by splitting

the training data. Interprocess communication is quite low since most steps only

require a single final merging procedure. For past systems a shared network memory

partition (network-attached storage (NAS)), which all nodes can access was used since

this merging can only be done by a single process and all the fragmental results need to

be available to that process. This method, however, leads to enormous cluster network

traffic and therefore large memory access times.

The new approach uses the nodes’ tmpfs, a small RAM disk partition, which can

be used by all processes running on one node. Since the tmpfs is in local RAM the
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Step tmpfs NAS (1 node) NAS (4 nodes)

LDAs ≈ 16 min ≈ 20 min ≈ 5 min
Samples ≈ 9 min ≈ 68 min ≈ 17 min
MAS ≈ 9 min ≈ 104 min ≈ 26 min
OFS ≈ 116 min ≈ 184 min ≈ 46 min
Viterbi ≈ 54 min ≈ 80 min ≈ 20 min

total ≈ 204 min ≈ 456 min ≈ 114 min

Table 4.9: Runtime of different training steps comparing use of tmpfs (RAM disk) and
shared network memory (NAS). All training steps using tmpfs are run on a single node,
training steps using NAS are run on 4 nodes. The middle column, NAS (1 node), was
computed from the NAS (4 node) column in order to better demonstrate the resources
saved by using tmpfs. Source: [KSM+11]

access times are short and there is no need to send data over the network. We limit

the maximal number of processes per step to the number of cores in a node. Table 4.9

compares the training time of several training steps of a non-BNF system computed

on one node with 16 cores using tmpfs to their runtime using shared network memory

and more nodes, with an extra column showing the hypothetical runtime of the NAS

setup if only a single node is used. It can be seen that most steps are absolutely

faster using tmpfs or at least relatively faster according to the number of processes.

The steps performed during GMM training involve first training an LDA matrix after

which samples are written in order to build the initial GMM models using incremental

splitting of Gaussians (MAS ) training, followed by the training of a global STC matrix

and two rounds of Viterbi training. In total the tmpfs approach requires only about

half as many cluster node minutes as the NAS approach. The presented numbers are

from a time of low cluster traffic. At times of high cluster traffic the NAS approach is

slowed down even more.

The second optimization directly addresses the issue raised by the botteneck

features. Caching them locally in RAM for the duration of the whole training process

means that their increased computational cost only has to be paid once. This, however,

comes at the expense of requiring machines with a large amount of RAM. For smaller

machines a compromise solution that caches them on a local disk is implemented.

Table 4.10 clearly shows that the computation of the DBNF features dominates the

GMM training process and that caching the features reduced the training time by a
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Step tmpfs + featCache tmpfs

LDAs ≈ 195 min ≈ 210min
Samples ≈ 1min ≈ 209min
MAS ≈ 20 min ≈ 23 min
OFS ≈ 8 min ≈ 17 min
Viterbi ≈ 6 min ≈ 265 min

total ≈ 230 min ≈ 724

Table 4.10: Runtime of different training steps comparing the use of tmpfs (RAM disk)
with and without feature caching.

factor of 3. The system trained uses 4 layer DBNF with MFCC features augmented

by tonal features and is trained on 100h of training data using a cluster node with 64

cores and 512 GBytes of RAM.

4.5 Summary

In this chapter a DBNF setup is presented that increases in performance with each

added feature. Even tonal features are shown to result in a performance gain in

German, a non-tonal language. The topology and parameters for both flat and deep

MVDR-MFCC MLPs are optimized. The two best topologies have 5 hidden layers with

1600 neurons each and 4 hidden layers with 2000 neurons each. Compared to a simple

MFCC system which has WER of 20.81 on the eval2010 test set the best DBNF system

presented here with a WER of 14.81 achieves an improvement of 6% absolute (29%

relative). It also improves a MFCC DBNF by 1.14% and the best single feature DBNF

by 0.53%. The multifeature DBNF is now a standard system component and used in

all languages.

4.5.1 Evaluation Usage

The shallow bottleneck feature techniques from section 4.2 were used in the 2011 Quaero

evaluation and contributed to the KIT German and Russian systems outperforming

all other submissions. Shortly after the IWSLT 2011 evaluation the approaches were

introduced to the English evaluation system which was then able to produce results

better than the best submitted evaluation system [KTNW13].
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Chapter 5

Neural Network Acoustic Models

This chapter examines acoustic models that use neural networks to estimate their

emission probabilities. This approach was first introduced in 1993 by Bourlard

[BM94] and is explained in section 2.2.2.3. Initially only phone states or a very

small number of context dependent phone states could be used as targets for the

neural network. In recent years, with the advent of powerful graphics processing

units and NN training algorithms that make use of them [BBB+10], the number of

context dependent phone states that can reasonably be used has increased to well

over 10 000. The increased output layer size coupled with bigger and deeper networks

trained on a lot of data has lead to impressive reductions in WER by up to 30% relative

[SSS14, DYDA12, HDY+12]. The multiple feature streams, introduced in chapter 4 as

inputs to DBNF networks, are applied to DNNs in this chapter and the actual DBNF

networks evaluated there are reused as building blocks for a larger modular DNNs. This

chapter also investigates how to train a cluster tree without using a GMM based AM

and how SVD based layer initialization can be applied to DNNs.
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Figure 5.1: An example of a deep neural network with 4 hidden layers and an output
layer with corresponding CD phone states. Its input is a 2s+1 frame window containing
both MFCC and MVDR features.

5.1 Deep Neural Networks

A series of normal single feature DNN experiments are performed in order to ascertain

the baseline performance of DNNs on our task and in order to select the best topologies

for further experiments. The system used in these experiments is based on the KIT 2013

IWSLT evaluation system [KTNW13]. An example DNN AM is shown in figure 5.1.

It has an input layer that uses stacked MVDR+MFCC features in a window spanning

from s frames prior to the current frame to s frames after the current time frame,

followed by four hidden layers that use the sigmoid activation function. The final

output layer where the neurons correspond to the CD phone states uses the softmax
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5.1 Deep Neural Networks

Figure 5.2: Baseline setup. The sizes of hidden layers vary from 400 neurons to 2000
neurons. Layer depth is evaluated up to the 10th hidden layer. Image Source: [Tse]

activation function.

For the baseline experiments the neural network acoustic models are trained using

the data in the Quaero DB described in section 3.5. The input features consist of

13 stacked lMEL frames ( s = 6 ). All layers are pretrained layer-wise as denoising

autoencoders after which the final classification output layer is added and the complete

network is fine-tuned. The output layer contains 6016 context dependent phone states.

DNNs with hidden layer sizes varying from 400 neurons to 2000 neurons are trained for

all depths up to the 10 hidden layers.

The results of this initial experiment can be seen in figure 5.2. DNNs with the same

sizes of hidden layers are connected using coloured lines. An analysis of this chart leads

us to the following conclusions:

� The addition of further hidden layers does not result in any noticeable

improvement for DNNs with more than 5 hidden layers.

� Increasing the size of the hidden layers does not result in much improvement for

DNNs with a size of more than 1200 units.
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� Networks with hidden layer sizes between 1200 and 2000 neurons deteriorate

when more than 8 hidden layers are used and from about 4 hidden layers only

very modest gains can be seen by adding further hidden layers.

The results of the baseline experiment are consistent with similar experiments, such as

by Mohamed et al. [MDH12], who also found that adding more than four hidden layers

to their DNN AM does not show any significant improvement. As with the DBNF

experiment the two topologies 5x1.6k (5 hidden layer with 1600 neurons each) and

4x2k (4 hidden layer with 2000 neurons each) are used for further experiments.

5.1.1 Multifeature DNN

This experiment mirrors the DBNF experiment in section 4.3.2.2 where multifeature

DBNFs are compared. Each feature combination is trained on the 5x1.6k topology as

well as on the 4x2k topology. Both the MVDR and MFCC features use 20 coefficients

while the lMEL features have 40 coefficients and are the same size as the merged

MVDR+MFCC feature vector. The addition of 14 tonal features brings the input sizes

up to 54 for both the MVDR+MFCC+TONE (m2+t) and the lMEL+TONE (lmel+t)

networks. The final MVDR+MFCC+TONE+lMEL (m3+t) MLP that contains all

available features has an input of 94. All other MLP parameters are the same in the

baseline experiment.

5.1.1.1 Results

As with the DBNFs, combining the MVDR and MFCC input features results in a

network with a significantly (p < 0.005 for 5x1.6k ) lower WER than either of the

individual features and is about on par with networks using the lMEL feature that

have the same number of coefficients. The 5x1.6k lMEL system is 0.06% better on

the eval2010 test set but 0.2% poorer on the dev2012 test set. A pattern in the results

shown in table 5.1 can be found that suggests that input features using more coefficients

tend to perform better. Both m2+t topologies reduce the WER compared to their

MVDR+MFCC equivalents on the dev2012 test set by 0.1% and on the eval2010 test

set by 0.5%. The addition of tonal feature to the lMEL networks proved to be even more

useful with improvements of 0.61% on eval2010 and 0.5% on dev2012 for the 5x1.6k

topology and for the 4x2k topology 0.45% on eval2010 and 0.4% on dev2012. The best
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Topology 5x1.6k 4x2k
eval2010 dev2012 eval2010 dev2012

MFCC 15.88 20.3 16.17 20.5
+MVDR 15.45 19.9 15.59 20.0
+Tone 14.96 19.8 15.08 19.9
+lMEL 14.72 19.5 14.86 19.4

lMEL 15.39 20.1 15.31 20.3
+Tone 14.77 19.6 14.86 19.9

MVDR 15.56 20.2 - -

Table 5.1: Evaluation of 5x1.6k and 4x2k DNNs using various combinations of MFCC,
MVDR, TONE and lMEL input features. Result presented on the IWSLT dev2012 and
Quaero eval2010 test sets.

results on the eval2010 test set are achieved by using the 5x1.6k topology and all input

features (m3+t) which is slightly but significantly (p < 0.005) better than the 5x1.6k

lmel+t DNNs. On the dev2012 test set the 4x2k m3+t DNN has the lowest WER with

19.4% which is a full 0.5 lower than both the m2+t DNN and the lmel+t DNN. During

development only the results on the dev2012 test set were measured so the decision was

made to only use the 4x2k topology as the basis for all further experiments.

5.2 Modular DNN-AM

In this section the proposed modular deep neural network acoustic model is introduced.

An early version of this approach designed for low resource languages [GLK+13] was

published in 2013 and modified to make use of language resources outside of the target

language [GNMW13]. The results of this section have been accted for publication at

the 2015 IWSLT conference[KW15]. An example modular DNN (mDNN) AM using

MVDR+MFCC features is shown in figure 5.3. Two features (MFCC & MVDR) are

extracted at each frame and used as inputs to a DBNF network. In chapter 4 an

investigation into the effects of various window sizes demonstrates that BNF networks

using a stack of about 9-15 frames as their input perform well. Similar conclusions

can be taken from the experiment looking into how the input window size to the LDA

affects the resulting GMM-AM. At its heart the modular DNN-AM design aims to

reproduce this double time window context. The final layers of a modular DNN-AM

are same as the final layers in a normal DNN-AM. Instead of a normal input layer the
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Figure 5.3: An example mDNN with 4 hidden layers in the BNF-module and 4 hidden
layers in the DNN-module. The input of the DNN-module requires 2r + 1 outputs of the
BNF-module at different frames. The BNF-module uses a 2s+1 frame window as its input
so the whole mDNN network requires 2(s+ r) + 1 input features which in the example are
a concatenation of both MVDR and MFCC features.

modular DNN-AM has a bottleneck layer which consists of stacked BNF frames from

an already fine-tuned DBNF network. We refer to those final layers as the classification

module (or DNN-module) and after integration the DBNF network is referred to as the

BNF module. If the classification module has an input context of 2r+1 (r-BNF frames

before and after the current frame) and the BNF module has an input context of 2s+1

then the total network requires an input context of 2(r + s) + 1 frames. For the BNF

frame at t− i the input frames from t− i− s to t− i+ s have to be stacked and used

as the input to the BNF-module. The BNF-module is applied 2r+ 1 times to generate

each of the 2r + 1 BNF frames in the BNF layer.

During fine tuning the weights of the BNF-module are tied. Errors can be
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propagated back past the BNF-layer into all applications. Weight tying allows the

modular DNN-AM to continue on using a single BNF-module while it continues to

learn and have its weight updated using the average update:

∆wj =

2r+1∑
k=1

∆wkj (5.1)

Such a single BNF-module learns to produce good BNFs that can be used in any part

of a stacked BNF layer.

Although the total computation cost for a single frame is very high, the BNF frames

can be cached a reused for the next frame. At frame t the DNN-module of the example

mDNN in figure 5.3 requires the output of the BNF-module for 2r + 1 different inputs

from t − r to t + r. For frame t − 1 it requires outputs from the BNF-module for the

inputs from t−1−r to t−1+r. So with the exception of the output of the BNF-module

at t+ r all of the required outputs for frame t have already been produced and cached.

The BNF-module is simply used to convert a stream (or multiple streams) of input

features into a stream of DBNF features which are then used as the input stream

for the DNN-module. In an offline setting the stream of input feature vectors from

an utterance forms a matrix and the BNF-module converts this matrix into a matrix

where the columns are BNFs.

Because it is faster to perform a single matrix times matrix operation using a fast

BLAS (Basic Linear Algebra Subprograms) library than it is to perform many vector

times matrix operations, it makes sense to compute the first hidden layer for all features

at the same time. So in an mDNN, if T features are extracted from the wavefile of

an utterance they are first transformed into T activations of the first hidden layer of

the BNF-module, then to T activations of the 2nd, 3rd and so on hidden layers and

then to T bottleneck features followed by T activations of the first hidden layer of

the DNN-module. After transitioning though all the hidden layers the T probability

distributions over the CD phone states are all produced at the same time.

If T features are extracted from the utterance then computing the BNF at frames

t = T or t = 1 could be problematic since these frames require information about the

features at t = T + r or t = −r. To solve this, every requested feature vector prior to

the first one is set to the value of the first feature and the final feature vector is used

75



5. NEURAL NETWORK ACOUSTIC MODELS

Best normal DNN Modular DNN Comparable CNC
Name eval2010 dev2012 eval2010 dev2012 eval2010 dev2012

MFCC mfcc 15.88 20.3 15.35 19.5 - -
+MVDR m2 15.45 19.9 14.71 19.4 15.55 20.0
+Tone m2+t 14.96 19.8 14.54 19.3 - -
+lMEL m3+t 14.72 19.4 14.31 18.9 15.09 19.6

lMEL lmel 15.31 20.1 14.72 19.5 - -
+Tone lmel+t 14.77 19.6 14.52 19.0 - -

MVDR mvdr 15.58 20.2 14.81 19.5 - -

Table 5.2: Results of the multifeature mDNNs compared with both normal DNN using the
same input feature combinations and equivalent confusion network combinations. Tested
on both the eval2010 and dev2012 test set.

for every feature that could follow it. The same out of bounds rule is applied when the

BNFs are used as an input to the DNN-module of the mDNN.

5.2.1 Multifeature Modular DNN

The mDNN topology is evaluated using the combinations of input features from the

previous experiment and compared with those results. The BNF-modules used in

the experiment are taken from section 4.3.2.2 where the multifeature DBNFs are

evaluated. The DNN-modules are pretrained by first mapping the input features

into the bottleneck feature space and performed by training and stacking denoising

autoencoders. After pretraining the classification layer is added and the whole mDNN

network is jointly finetuned. The input feature sizes range from 20 for the mfcc network

features to 94 for the m3+t network. With r, the number of BNF frames before and

after the current frame used as the input to the DNN-module, set to 7 and each BNF

layer containing 42 neurons the DNN-modules input layer has 630 neuron. All mDNN

networks have the same topology. Both their BNF-modules and their DNN-modules

have 4 hidden layers of 2000 neurons. The whole network, therefore, has 9 hidden

layers.

5.2.1.1 Results

The results of the this experiment are shown in table 5.2. As a comparison, for each

input feature combination, its best result with a normal DNN regardless of the topology,
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is shown in the first two columns of the table. The last column contains a comparison

to a confusion network combination performed on the DNN outputs of single feature

DNNs. The cnc comparison result in line two of the table is a combination of the best

MVDR DNN and the best MFCC DNN and although it is slightly better than both

of them it is outperformed by both the MVDR+MFCC DNN and the MVDR+MFCC

mDNN. The cnc comparable to the m3+t network is a combination of the MFCC DNN,

the MVDR DNN, and the lmel+t DNN and does not even improve on the performance

of the lmel+t DNN.

For all input feature combinations the mDNN outperforms the normal DNN by 0.5%

absolute or more on the dev2012 test set. On the eval2010 test set the improvements

varied from an improvement of 0.25% on the lmel+t features to over 0.7% on both the

MVDR and MVDR+MFCC features. The relative usefulness of features is not altered

by using an mDNN. With 19.4% on dev2012 the m3+t DNN has 4.5% relative lower

WER than the basic MFCC DNN which has a WER of 20.3 and a 3.5% lower WER

than the lMEL DNN which is the best single feature DNN. In the modular case the

improvements are slightly less. All single feature mDNNs have a WER on dev2012 of

19.5% and the m3+t network has a 3% lower WER at 18.9%. For the single feature

inputs the mDNN results in improvements of 3-4% compared to the normal DNN while

the multifeature inputs are only improved by 2.5-3.5%.

Using only lMEL features and inputs performs as well as using the combined

MVDR+MFCC feature in both the DNN and the mDNN and on both test sets. The

addition of tonal features boosts the performance of the lMEL DNN and mDNN more

than the MVDR+MFCC DNN and mDNN.

In total the best multifeature mDNN reduces the WER of a basic MFCC DNN by

7% relative from 20.3% to 18.9% on the dev2012 test set and by 10% relative from

15.88% to 14.31% on the eval2010 test set. Compared to the best single feature DNN,

lMEL, it still improves the dev2012 test set by 6% and the eval2010 test set by 6.5%.

5.2.2 Modular DNNs with multiple BNF-modules

The modular DNN is not restricted to a single BNF-module and can use multiple

BNF-modules at the same time. Figure 5.4 shows an example mDNN with two 4

layer BNF-modules. The upper BNF-module uses MFCC features as its input and the

lower BNF-module uses MVDR features as its input. Although both networks in this
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Figure 5.4: An example mDNN with a 4 layer DNN-module built on top of two
BNF-modules: a 4 layer MFCC BNF-module and a 4 layer MVDR BNF-module. The
input of the DNN-module requires 2r + 1 outputs of both the BNF-modules at different
frames.

example have an input window of 2s + 1 frames they could, if it were desired, have

different sized input windows and they could also have a differing number of hidden

layers. The outputs of both modules’ BNF layers are concatenated and stacked over a

2r + 1 window.

The effectiveness of the mDNN with multiple BNF-modules is evaluated by training

8 mDNN with between two and seven BNF-modules. The results are compared to

performing a CNC on normal DNN networks that use the same input features and the

BNF-modules. The BNF-module are the same as in the multifeature mDNN experiment

and can themselves contain multiple input features. After mapping the training data
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Modular DNN Comparable CNC
Name eval2010 dev2012 eval2010 dev2012

mfcc 15.35 19.5 - -
⊕ mvdr sys01 14.54 19.2 15.55 20.0
⊕ m2 sys03 14.73 19.3 15.44 19.9

mfcc ⊕ mvdr ⊕ lmel+t sys02 14.24 18.7 15.09 19.6

m2+t ⊕ lmel+t sys04 14.19 18.8 14.68 19.4
⊕ m3+t sys08 14.06 18.7 14.45 19.2
⊕ mfcc ⊕ mvdr sys06 14.33 18.9 14.83 19.4
⊕ m2 ⊕ lmel sys05 14.44 18.8 14.69 19.4

m2 ⊕ lmel sys07 14.34 19.1 15.07 19.8

Table 5.3: Comparison of mDNNs using multiple BNF-modules with confusion network
combinations of normal DNNs using the same input features. The ⊕ is used to indicate
that multiple BNF-modules are combined in a single mDNN.

into the bottleneck feature spaces of all BNF-modules used. The DNN-module is

pretrained on the merged BNF features. All other training parameters are the same as

in the previous experiments.

5.2.2.1 Results

In all cases the mDNN outperformed the confusion network combination of DNN

systems using the same input features. The best mDNN with multiple BNF-modules

m2+t ⊕ lmel+t ⊕ m3+t (⊕ is used to indicate that a combination of BNF-modules)

improves the best single module mDNN by 0.2% from a WER 18.9% to 18.7% on the

dev2012 test set and by 0.25% from 4.31% to 14.06% on the eval2010 test set. Using

McNemar’s significance test this is found to be significant at p < 0.005. The overview

of the results given in table 5.3 begins with single BNF-module mDNN using mfcc

input features that achieves a WER of 15.35% on eval2010 and 19.5% on dev2012. The

next entry augments that mDNN with an MVDR BNF-module and improves dev2012

by 0.3% to 19.2% and eval by 0.81% from 15.35% to 14.54%. The further addition

of the MVDR+MFCC BNF-module degraded the dev2012 test set to 19.3% and the

eval2010 test set to 14.73%. In place of the MVDR+MFCC BNF-module the lmel+t

BNF-module is added to the mfcc ⊕ mvdr. mDNN is then further improved to 14.24%

on eval2010 and 18.7% on dev2012.
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The best mDNN with two BNF-modules is the m2+t ⊕ lmel+t mDNN which has

a WER of 14.19% on eval2010 and 18.8% on dev2012. The addition of an m3+t

BNF-module improves it slightly by 0.13% to 14.06% on the eval2010 test set and by

0.1% to 18.7% on the dev2012. The further inclusion of both the MVDR BNF-module

and the MFCC BNF-module slightly increases the WER on both sets. Increasing the

number of BNF-modules to 7 by also including the m2 and lmel BNF-modules into the

mDNN results in another slight increase in WER.

The usefulness of tonal features can be clearly seen by comparing the m2 ⊕ lmel

mDNN to the m2+t ⊕ lmel+t DNN which add tonal features to the input to both

of the BNF-modules. They are able to improve the dev2012 test set by 0.3% and the

eval2010 test set by 0.15%.

Using an mDNN with multiple BNF-modules increases the mDNN’s overall

improvement compared to an MFCC-DNN by 8% relative on the dev2012 test and

by 11.5% on the eval2010 test set. Compared to an lMEL DNN it reduced the WER

by 7% relative from 20.1% to 18.7% on dev2012 and by 8% relative from 15.31% to

14.07%.

5.3 DNN based Clustertrees

This section examines in more detail the output layer of the DNN AM. As discussed

in chapter 2 the neurons in the output layer of DNN AM each correspond to a context

dependent phone state which are leaves in a cluster tree. Section 2.2.2.4 explains how a

cluster tree can be used to cluster all the possible polyphones into a predetermined

number of generalized polyphones. At its heart the clustering algorithm uses the

weighted entropy distance defined as

d(A,B) = (nA + nB)H(A ∪B)− nAH(B)− nAH(B) (5.2)

in order to compute the distance between two classes A and B and decide which question

(cluster devision) to use. The entropy of a cluster

H(p) =

k∑
i=1

p(i) log p(i) (5.3)
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requires a probability distribution over a feature space. The GMM based approach uses

discrete mixture weights of a shared codebook of Gaussians as the feature space.

This means that a GMM AM has to be trained before a cluster tree can be

built which is required in order to train a CD DNN AM. Another prerequisite to

training a DNN is the alignment of feature vectors to HMM states. This is normally

performed with the Viterbi algorithm and is necessary due to the fact that the training

data is only aligned at an utterance level. Despite the superiority of HMM/DNN

AMs most ASR systems still rely on HMM/GMM AMs to generate this alignment

[MHL+14]. A solution proposed by Senior et. al. [SHBL14] shows that this does

not have to be the case and demonstrates how to flat-start an HMM/DNN AM by

using a randomly initialized context independent HMM/DNN AM to generate an

initial alignment. However, after successfully bootstrapping a CI HMM/DNN AM they

“accumulate sufficient statistics to model each context dependent state with a diagonal

covariance Gaussian” in order to build the cluster tree. While their setup avoids the

use of any HMM/GMM AMs they still train Gaussians during clustering making their

setup not Gaussian free. Together with Zhu [Zhu15, ZKSW15] an alternative approach

was investigated that is truly Gaussian free.

5.3.1 CI DNN based Weighted Entropy Distance

A context independent DNN that uses phone states as targets can be trained without

the use of a cluster tree. If desired, the alignment can be flat-started without using a

GMM system by applying either the setup of [SHBL14] or the setup described below.

For each input feature the output of the CI DNN is a discrete probability distribution

of the target phonestates.

The probability distribution which can be used to replace the mixture weights of a

GMM is the average CI DNN output for all features extracted from the training data

which correspond to that polyphone. The assumption is that similar polyphone states

will also have similar average CI DNN outputs.

Therefore, entropy distance between polyphone states can be measured based on

their average CI DNN outputs:
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pA(i) =
1

nA

nA∑
j=1

PDNN (si, Fj) (5.4)

PDNN (si, Fj) is the probability distribution generated by the CI DNN for the feature

Fj . All features Fj are examples of the polyphone cluster A. After calculating its

entropy using the weighted entropy distance d(A,B) between two classes it can now be

computed without using any Gaussians.

5.3.2 Evaluation

The effectiveness of the proposed DNN based cluster tree is evaluated by building

quinphone cluster trees of various sizes from 3k leaves to 21k leaves and comparing

them to cluster trees built using the baseline GMM approach. An mDNN AM is

trained with the appropriate output layer for each of the models. As can be seen in

Figure 5.5 the larger cluster trees outperform the smaller cluster trees up to a size of

18k leaves. The WER reduction appears to be almost linear until about 12k leaves

after which more leaves lead to less of an improvement.

The baseline GMM based approach performed slightly better than the DNN based

approach for the smaller cluster trees but for the larger and better cluster trees the

DNN based approach consistently outperformed the GMM based approach. Using the

McNemar statistical test we compared the aligned hypothesis of both 18k systems and

found the system using the DNN based cluster tree to be significantly better than the

GMM based cluster tree with p < 0.005.

These results shows that the DNN based cluster trees are not only a simple

replacement for GMM based cluster trees in situations where CI-GMM AMs are not

available but can also outperform them.

5.3.3 Gaussian Free mDNN Flatstart

The previous section used alignments from a CI HMM/GMM AM to train the CI AM.

In order to demonstrate the claim of truly Gaussian Free training, fresh alignments are

initialized on the training data using a simple energy based speech/non-speech detection

scheme. The Quaero DB described in section 3.5 is used for the training data and these
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Figure 5.5: A comparison of our DNN base cluster tree with a baseline GMM based cluster
tree. We built cluster trees of various sizes between 3k leaves to 21k leaves and tested them
on the IWSLT 2012 development set. Source: [Zhu15]

initial alignments do not use the data transcripts and only classify each lmel feature

vector as either speech or non-speech.

These are used to train an initial DNN with only those two targets. A CI DNN is

then created by replacing the output layer with 139 neurons. Those neurons correspond

to speech based phone states and use the weights going to the original speech neuron.

Those corresponding to non-speech phone states such as laughter or breathing use the

weights from the non-speech neuron.

The CI-DNN is used to write alignments with which a second CI-DNN is trained.

It uses the first CI-DNN as the initial weights and is trained for 5 epochs at a constant

learning rate without measuring the CV rate as the alignments of the CV set are also

poor. After multiple iterations of CI-DNN training and alignment regeneration the

CV rate is good enough to change the training procedure so that it uses the newbob
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learning rate schedule and 4 more iterations are performed.

With the flatstarted CI-DNN a cluster tree is built which is then used to train a

CD-mDNN system with 4 hidden layers of 1600 neurons each. This system has a WER

of 20.3% on the dev2012 test set which is close to results of similar systems shown in

table 5.2.

5.4 Growing a DNN with Singular Value Decomposition

Figure 5.2 shows that for a fixed training corpus the performance gains from adding new

layers to a DNN taper off after a certain number of layers. For the Quaero DB examined

in that table, NN-AMs with 5 to 8 hidden layers had roughly the same performance.

Adding further hidden layers eventually started to degrade the performance.

Another problem with large DNNs is that the number of connections between the

hidden layers scales with the square of their size, so two hidden layers with 2000 neurons

each will have 4 million connections between them. The output layer of the DNN AM

typically models context dependent phone states and can contain upwards of 18000

neurons with 36 million connections to the final hidden layer.

Section 2.1.2 explains how the transition from layer i to layer i + 1 in a DNN can

be interpreted as a the multiplication of a vector with a matrix followed by a vector

addition and the element-wise application of the activation function.

xi+1 = φ(Wi,i+1xi + bi+1) (5.5)

Here xi is the output of layer i, bi+1 the bias of layer i + 1, φ the activation function

(computed elementwise), and Wi,i+1 the weight matrix representing the connections

between layers i and i+ 1.

The number of parameters that such large DNNs require can be reduced by applying

singular value decomposition (SVD) to simplify the matrix multiplication step. The

transition matrices Wi,i+1 can be decomposed into two smaller matrices. While

[XLG13] successfully reduces the number of parameters in a DNN without degrading its

performance this section shows how this decomposition can also be used to initialize new

layers with their own activation functions and biases between existing layers, thereby
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allowing us to grow an existing DNN while at the same time possibly also reducing the

number of parameters.

The approach presented in the section was developed together with I. Iseyzer and

first published in [Tse].

5.4.1 Singular Value Decomposition based Layer Initialization

SVD is a factorization method for matrices. An m × n matrix A can be decomposed

as:

Am×n = Um×nΣm×nV
T
n×n, (5.6)

where U is a unitary matrix, which is a matrix that when multiplied by its conjugate

transposed results in the identity matrix. Σ is a diagonal matrix. V T is the conjugate

transpose of another unitary matrix V . A can be approximated by Ak by setting all but

the highest k singular values in Σ to zeros. The row and columns in u and V T that are

now ignored can be removed and V T combined with Σ to form W (Wk×n = Σk×kV
T
k×n)

Ak =Um×kΣk×kV
T
k×n (5.7)

Am×n = Um×kWk×n. (5.8)

Now let Am×n be the weight matrix connecting layers i (containing m neurons) and

j (containing n neurons). After applying SVD to matrix Am×n, we have two matrices

of a smaller size Um×k and Wk×n, which we can interpret as a new layer containing k

neurons with linear activation functions and without biases inserted between layers i

and j. This process is illustrated in figure 5.6. Adding a nonlinear activation function

and learnable biases results in it becoming a fully functional layer. The original idea of

applying SVD to DNN AMs was introduced by [XLG13]. They are able to significantly

reduce the number of parameters in a DNN while incurring no or negligible accuracy

loss. This SVD application here expands on their approach by using it to initialize a

new layer.
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Figure 5.6: An example application of SVD applied to the transition between two layers.
a: The original transition using weight matrix Aij. b: After SVD a new hidden layer
between the two original layers is created. Image Source: [Tse]

5.4.2 Applications of SVD based Layer Initialization

SVD based layer initialization can be used in multiple ways to improve and optimize a

DNN. This section looks at the following applications of SVD to a DNN:

� Full size layer initialization: In its simplest form k can be set to the original layer

size and new layers initialized between the existing layers. The new layers are

the same size as the original layers and the number of parameters in the DNN

is increased by the number of weight matrices on which SVD is performed. This

application may prove to be a better initialization method for hidden layers than

the basic autoencoders approach.

� Half size layer initialization: Setting k to m
2 where m is the size of the hidden

layers does not change the number of parameters in the DNN. An m×m transition

matrix in the original DNN is replaced with an m × m
2 transition matrix to the

new hidden layer and another m × m
2 transition matrix away from it. In both

cases there are m2 weights between the original two layers. This could allow for

deeper and possibly better DNNs without increasing the number of parameters.
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� Small layer initialization: The total number parameters in the DNN can be

reduced by applying SVD with k < m
2 in one or more of its layer transitions.

� Decomposing the connections to the output layer: The output layer has a relatively

large size due to the use of CD phone states as targets. Decomposing the

connections between the final hidden layer and the output layer could significantly

reduce the number of connections in the whole network.

� Insertion of a bottleneck layer: Inserting a small hidden layer with SVD near the

end of the network can transform a DNN into DBNF.

5.4.2.1 Experimental Setup

All experiments in this section are again performed on the Quaero DB described

in section 3.5. lMEL input features are used for all DNNs. The original DNNs,

prior to inserting new hidden layer with SVD, are trained using the setup described

in section 5.1. After fine-tuning, one or more new hidden layers are inserted by

decomposing the transition matrices. The resulting DNN is then retrained. The

retraining procedure uses the same setup and parameters as the original fine-tuning.

All tests are performed on the eval2010 test set. When listing the number of parameters

in a DNN any biases present are neglected as they only grow linearly with the number

of neurons while the transition weights grow quadratically and therefore make up most

of the weights in a DNN.

5.4.2.2 Full Size Layer Initialization

This application is tested by applying SVD restructuring with k = m to the transitions

between the hidden layers in a DNN with 5 hidden layers of 1200 neurons each. A

new DNN with 9 hidden layers consisting of 1200 neurons each is created. The original

network contains 13.18M parameters and the new network contains 18.67M parameters.

A separate DNN with 9 hidden layers initialize using the normal layerwise pretraining

setup is trained as a comparison. The SVD initialized network reduces the WER

by 3.1% from 16.92% to 16.39% compared to the original network and by 2.2% in

comparison to the network with the same topology.
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Figure 5.7: Neural network before applying SVD. Image source: [Tse]

5.4.2.3 Half Size Layer Initialization

Figure 5.7) shows an example DNN with 4 hidden layers that was restructured in figure

5.8 using SVD to add 3 new layers between the existing hidden layers. The resulting

neural network has more layers but the number of connections remains the same. This

procedure is performed on 3 different baseline topologies that had either 4 (4x1.2k) or 5

(5x1.2k) hidden layers with 1200 neurons or 4 hidden layers with 2000 neurons (4x2k).

In each case all the transitions between hidden layers are decomposed and new hidden

layers inserted, 3 for the 4x1.2k and 4x2k DNNs and 4 for the 5x1.2k DNN resulting

in networks with either 7 hidden layers (7x1.2k/0.6k and 7x2k/1k) or 9 hidden layers

(9x1.2k/0.6k). The restructured DNNs are compared to DNNs of the same depth but

without reduced layers. The 9x2k/1k restructured DNN is also compared to a normal

DNN of the same topology that is only pretrained and finetuned.

Applying SVD to the 4x1.2k DNN reduces its WER by 4% relative from 17.29%

to 16.60% which is comparable to the normal DNN with the same number of hidden

layers. The SVD restructured DNN has 11.80M parameters, 25.9% fewer than the

15.93M parameters of the normal 7 layer DNN (see table 5.4). Both the 4x2k and 5x1.2k

DNN are also improved by 4% relative through the application of SVD restructuring
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Figure 5.8: Neural network after applying SVD restructuring on the weight matrices
connecting all the hidden layers. Image source: [Tse]

and again achieve about the same or slightly better WERs as their comparable normal

DNNs with the same number of hidden layers without requiring 40% more parameters.

The validation DNN with the identical topology to the 9x1.2k/0.6k SVD restructured

DNN has a WER 0.4% absolute lower than the restructured DNN. This demonstrates

the beneficial effects of the SVD restructuring.

Further experiments are performed on an 8x1.2k DNN where the SVD restructuring

is only applied at a specific layer. Initial experiments as well as previous work suggest

that the connections between the final hidden layers are more likely to be superfluous

[MDH12] than those of prior hidden layers. In the first experiment SVD is only applied

to the transition between the final two hidden layers. The next experiment adds a

second new hidden layer prior to the second last hidden layer and compared to a

validation DNN with the same topology. In the third experiment new hidden layers are

inserted prior to the final three hidden layers.

The original 8x1.2k DNN has a WER of 16.61% and adding a hidden layer prior to

a final hidden layer slightly reduced the WER to 16.45%. The second new hidden layer

further reduces the WER to 16.35%. Applying SVD but restructuring the DNN prior
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Topology SVD WER (%) Parameters

4x1.2k none 17.29 11.80M
7x1.2k none 16.66 15.93M

7x1.2k/0.6k 3 times 16.60 11.80M

4x2k none 17.17 24.25M
7x2k none 16.48 35.70M

7x2k/1k 3 times 16.42 24.25M

5x1.2k none 17.16 13.18M
9x1.2k none 16.76 18.67M

9x1.2k/0.6k 4 times 16.41 13.18M

9x1.2k/0.6k none 16.83 13.18M

Table 5.4: SVD restructuring applied to networks with 4 & 5 hidden layers and compared
to similar networks without SVD. The final row shows a network with the identical topology
to the SVD restructured to a 5 x 1200 DNN. Source: [Tse]

to the final 3 hidden layers only results in a WER of 16.46%. The validation DNN at

16.67% is again slightly worse that the restructured DNN of same topology. This may

be because SVD prunes away connections that were not fully trained in the first round

of fine-tuning.

5.4.2.4 Small Layer Initialization

A baseline 8x1.2k DNN is modified by applying SVD restructuring with k=120 to the

layer prior the final hidden layer. This reduces the number of parameters in the DNN

by 6.4% from 18.00M to 16.85M. Adding a second hidden layer using SVD restructuring

with k=120 prior to the second last original hidden layer reduces the number parameters

by a further 6.4% to 15.70M. Despite the reduction in parameters the performance is

hardly affected and actually improves slightly from baseline 8x1.2k DNN’s WER of

16.61% to 16.48% for a DNN with one new hidden layer and to 16.53% for the DNN

with two new hidden layers.

5.4.2.5 Decomposing the Connections to the Output Layer

The baseline 8x1.2k DNN used in the last two experiments has 18.00M parameters.

Only 0.72M of these are in the transition matrix of the input layer to first hidden

layer. The 7 transitions between hidden layers each require 1.44M parameters and

7.2M parameters, 40% of the total and are in the transition matrix from the final
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Topology Restructuring WER (%) Parameters

8x1.2k none 16.61 18.00M
9x1.2k,0.9k SVD k = 900 16.37 17.28M
9x1.2k,0.6k SVD k = 600 16.24 15.12M
9x1.2k,0.3k SVD k = 300 16.42 12.96M
9x1.2k,120 SVD k = 120 16.74 11.66M
9x1.2k,42 SVD k = 42 17.33 11.10M

Table 5.5: Results of performing SVD restructuring on the weight matrix connecting the
final hidden layer to the output layer. Source: [Tse]

hidden layer to the output layer. Restructuring this transition could noticeably reduce

the total number of parameters in the DNN. Even simply applying SVD k = 600

which kept the number of parameters constant when decomposing the connections

between hidden layers would result in an over 40% parameter reduction to 4.32M

(≈ 6016×600+1200×600). In this experiment values of 900 down to 42 are evaluated.

Table 5.5 shows that the baseline DNN is slightly improved by the first three SVD

restructurings with k=600 producing the DNN with the lowest WER of 16.24%. At

16.37% and 16.42% both the k=900 and k=300 SVD restructurings are also slightly

lower than the baseline WER of 16.61%. The SVD restructured DNN using k=600

only slightly increases to WER to 16.74% while at the same time reducing the total

number of parameters by over a third.

The best settings for the SVD parameter k in this application are from 50% hidden

layers down to 25% hidden layers due to their slight reduction in WER and significantly

reducing the total number of parameters by 16% and 28% respectively.

5.4.2.6 Insertion of a Bottleneck Layer

A bottleneck layer can be created between two existing hidden layers by setting k to a

small number. This transforms the DNN into a DBNF network and allows it to be used

to extract deep bottleneck features which, as discussed in chapter 4, can be a useful

feature on which a GMM AM can be trained. In this experiment a 42 neuron bottleneck

is inserted just prior to the final hidden layer of the baseline 8x1.2k DNN and compares

it to a DBNF using the same topology and trained using the setup from section 4.3.2.1.

The GMM training procedure is the same for both DBNF networks. The results show
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Topology WER (%) Parameters
5 × 1.2k + 1.2k,1.2k,1.2k,6k 16.61 18.00M

5 × 1.2k + 1.2k,0.6k,1.2k,0.6k,1.2k,6k 16.35 18.00M

5 × 1.2k + 1.2k,1.2k,1.2k,0,6k,6k 16.24 15.12M

5 × 1.2k + 1.2k,0.6k,1.2k,0.6k,1.2k,0,6k,6k 16.35 15.12M
5 × 1.2k + 1.2k,0.6k,1.2k,0.6k,1.2k,0,6k,6k (+ft) 16.16 15.12M

Table 5.6: Result of step-by-step fine tuning experiment. Source: [Tse]

that while a SVD based DBNF system has WER of 17.96% the validation DBNF only

has a WER of 18.31%.

5.4.3 Multistep SVD Restructuring

After an examination of possible SVD applications to DNNs in the previous section this

section applies two SVD reductions to a baseline 8x1.2k DNN in order to both reduce

its total number of parameters and to improve its accuracy. The first SVD reduction

involves the initialization of two new hidden layers, half the size of the original layers

prior to the final two hidden layers.

As can be seen in table 5.6 multiple applications of SVD restructuring can be

performed on the same DNN in order to achieve a reduction in the number of its

parameters and to improve its perfromance. The last two rows of that table, however,

illustrate an important point: After performing one application of SVD restructuring

the DNN has to be finetuned again before another SVD restructuring can be applied.
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Chapter 6

Subword Neural Network

Language Models

In this chapter neural network language modelling techniques are applied to a German

subword vocabulary. For a long time language models were built primarily using ngram

based methods. Although some early success was made by using neural networks to

predict word classes [NS88] is wasn’t until 2007 [Sch07], however, that the use of neural

network based language models started to become become more common. These come

in two varieties: feed forward neural networks which like traditional ngram methods

only base their prediction of the next word on a short history and recurrent neural

networks that predict the next word based on the previous word and the activation of

the networks’ hidden layer for the previous word [SSN12, MKB+10]. This recurrent

nature can be useful as it allows RNNs to base their predictions on a much larger

context but it comes at the price of no longer being able to recombine language model

histories and is, therefore, hard to integrate into a decoder. They are often either

only used to rescore existing lattices [HBG+12] or unrolled and converted into back-off

ngram language models [AKV+14]. As a seamless decoder integration is desired for the

proposed subword neural network language model a feed forward topology is chosen.

After an error analysis of a non subword German system an overview of other proposed

solutions is presented followed by a description of the subword selection process. Initial

experiments are performed using the subword vocabulary in an ngram language model

and its compatibility with the KIT lecture translation system is investigated. The

neural network LM is then introduced and its integration into the decoder explained.
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OOV English German
vocab errors vocab errors

transcription errors 0.34% - 0.60% -

compounds - 1.46% 49.2%
grammar 0.12% 31.0% 0.46% 15.4%
names (places) 0.03% 6.3% 0.34% 11.7%
names (people) 0.07% 14.7% 0.26% 8.8%
names (other) 0.04% 8.4% 0.24% 8.0%
science terms 0.08% 15.1% - -
abbreviations 0.06% 11.7% - -
other 0.07% 13.6% 0.15% 5.1%

total 0.52% 100% 2.96% 100%

Table 6.1: Error analysis of the OOVs in the first hour of the Quaero 2010 evaluation
set. The vocab column lists the error types as a percentage of the vocabulary and the error
columns list them as a percentage of the errors.

After its evaluation the final section looks at the effects of the subword vocabulary on

the lecture translation system.

6.1 Error Analysis

In order to determine which aspects of the ASR system to improve, the errors produced

in the first hour of both the English and the German Quaero 2010 evaluation [SKK12b]

sets are analyzed. The OOV errors are shown in table 6.1 and while the German

system had an OOV rate of 3% with a vocabulary of 300k the English system only

used a vocabulary of 120k words and had an OOV rate of 0.5%. Simple increases in

vocabulary size of the German system do not significantly reduce the OOV rate. The

analysis shows that the most common OOV words in the English system are grammar

based such videoing or washable that have base words, video and wash in this case,

which are in the vocabulary. In the more morphologically rich German this catagory

is responsible for about 3 to 4 times as many OOV words such as gedreifacht (eng.

tripled) or nachlese (eng. conjugated form of to read up). Despite that the grammar

catagory only causes 15.4% of the German OOVs. By far the largest contributor to

OOVs in German are the compound words.

Compound words are constructed from two or more normal German words and
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considered to be normal German words. The words Tee (eng: tea) and Kanne (eng:

canister) for example can be combined into Teekanne (eng: tea pot). Although roughly

66% of all compound words are constructed by simply combining the individual words

some require an extra linking morpheme in between [Mar06]:

� 19% -s: Gehaltserhöhung (eng: increase in pay)

� 7% -n: Tassenhalter (eng: cup holder)

� 3% -en: Sternenkarte (eng: sky map)

� all other linking morphemes occur in less than 2% of the compound words.

Some of these compound words appear to have multiple possible origins (splits). The

word Konsumentenumfrage is a compound of Konsument (eng: consumer) and Umfrage

(eng: questionnaire) taking an en as a linking morpheme this could also be split into

Konsum Enten Umfrage (eng: consume duck questionnaire).

When an ASR system recognizes all n component words of a compound word but

fails to merge them into a single word it will be penalized with n errors: a substitution

error and n − 1 insertion errors. In this paper we present a Subword Neural Network

Language Model that addresses this problem.

On the Quaero 2010 evaluation set the KIT baseline system had a WER of 24.17%,

10.21% of which (2.47% absolute) came from not correctly merging compound words

whose component words were correctly recognized. These high OOV rates also cause

problems for our online German to English lecture translation system.

6.1.1 Related Work

The only other similar approach that could be found in the literature is a neural network

based subword language model [MSD+12] from Mikolov which improves upon a baseline

4gram full word language model. It uses a vocabulary that only contains high frequency

words. Low frequency words are split into syllables and low frequency syllables are split

into characters. They only use a small output vocabulary of 1000 words, 2000 syllables

and 26 letters. It is able to outperform a 4gram language model by 0.2%.

In addition to the subword neural network paper discussed in section 2.3 other non

neural network works have tackled the problem of German subwords.
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Some older works following a similar approach to the one described in this paper

like [ADA00] and [KK01] restrict their maximum vocabulary sizes to smaller large

vocabularies and are therefore unable to mitigate the compound word problem by the

desired amount. On vocabulary sizes around 300k, Shaik et al. [SMSN11] report

improvements of up to 1.4% absolute for subword language models built using both

syllable subwords and morpheme subwords generated by the Morfessor toolkit [CLLV05]

on the Quaero 2009 evaluation set. The setup is improved with the use of maximum

entropy models [SMSN12]. Although this approach also solves some compound word

OOVs their initial goal addresses the problem of morphology which, as the error analysis

in section 6.1 showed, is less important.

A non subword method of merging compound words proposed in [NTMSN11]

involves generating a lattice of all possible word merging paths and rescoring it with

data from a separately trained LM. This method is able to decrease the WER by up

to 1.3% on the Quaero 2010 evaluation set.

6.2 Subword Ngram Language Model

This section presents the selection process of the subword vocabulary and evaluates a

subword ngram language model. A baseline full word vocabulary is required in order

to generate a subword vocabulary. Using the data sources listed in table A.1 and the

vocabulary selection technique described in section 3.6 a ranking of all the words in the

global vocabulary by their relevance to the tuning set is produced.

6.2.1 Subword Vocabulary

In order to select a subword vocabulary we first perform compound splitting on all

the text corpora and tag the split compounds with the intraword symbol +. Initial

experiments show that tagging just the head of a compound performs best. Linking

morphemes are attached to the proceeding word. Wirtschaftsdelegationsmitglieder is,

for example, split into Wirtschafts+ Delegations+ Mitglieder (eng: members of the

economic delegation).

Marek [Mar06] performed an in-depth analysis of German compound words and

splitting methods. The result of this work is that when a compound word can be split

in multiple ways, the split containing the longest subwords is most often the best split.
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Figure 6.1: The subword vocabulary selection process.

The compound splitting algorithm requires a set of valid subwords and selects the

best split from all possible splits by maximizing the sum of the squares of all subword

lengths [Mar06]. For the introductory example of Konsumentenumfrage this would

correctly choose Konsumenten Umfrage over Konsum Enten Umfrage.

As a set of valid subwords we selected the top k words from the ranked baseline

wordlist. This allows the production of compound split text corpora and a split tuning

text. The same maximum likelihood vocabulary selection method used to generate the

baseline vocabulary is used again to select the best vocabulary from this split corpora

resulting in a ranked vocabulary containing both full words and subwords tagged with

the intraword symbol. An overview of this setup is given in figure 6.1.

Pronunciations missing from the initial dictionary are created with both Festival

[BTCC98] and Mary [ST03]. Both the 4gram subword language model and the

subword neural network language model are trained on the split corpora and tuning

text analogous to the baseline language model explained in section 3.6.

6.2.2 Query Vocabulary Enhancement

In [MKLW11] the OOVs of German lectures are analyzed and a method is developed

for adapting a baseline vocabulary to a given lecture topic if a set of slides is available
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in advance. Queries are extracted from the lecture slides and sent to the search engine

Bing to produce a list of websites related to the lecture. On a set of lectures recorded

at the KIT this method reduces the baseline OOV rate of 3.1% to 1.2% for a 300k

vocabulary. The query vocabulary selection setup is rebuilt and adapted to make use

of subwords:

� the baseline subword language model is built (baseline subword vocab)

� the vocabulary from the slides is extracted (slide vocab)

� a set of queries is extracted from the slides

� for each query the resulting top 40 links from google search are downloaded

� the cleaning procedure described in section 3.5.2 is performed on each downloaded

webpage (and linked files such as pdfs)

� compound splitting is performed on the cleaned webpages

� all subwords occurring in the downloaded webpages words are ranked based on

how many of those websites they occur in and how often they occur in total (query

subword vocab)

� baseline subword vocabulary is interpolated with the query subword vocab, the

top 300k subwords selected are all then augmented by all the missing slide

vocabulary words

� the baseline subword LM is rebuilt

� an LM is built on the downloaded split webpages and interpolated with baseline

subword LM

This procedure is performed separately for each lecture.

6.2.3 OOV Analysis

The subword vocabulary requires the valid subwords for compound splitting to be

specified. OOVs of subword vocabularies are measured by splitting the reference text

in the same manner as the training text for the particular subword vocabulary was split.
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Figure 6.2: OOVs of subword vocabularies with various values of valid subwords for
splitting.

As described in section 6.2.1 the top k words from the baseline ranking are used. We

build several subword vocabularies varying “k” from 0 (baseline) to 100k. Figure 6.2

shows that the best value for this parameter depends on the total vocabulary size.

All subword vocabularies significantly reduce the OOV rate compared to the baseline

vocabulary and only vary slightly amongst each other. All further tests were conducted

using the 60k subword vocabulary.

99



6. SUBWORD NEURAL NETWORK LANGUAGE MODELS

WER

2011 Quaero MFCC system 24.04%
+ Subword LM 21.28%
+ Festival & Mary dictionary 20.37%

2014 IWSLT lMEL+T mDNN system 20.7%
+ Subword LM 19.2%

Table 6.2: Sub-word language model evaluated on the 2010 Quaero evaluation set and the
2012 IWSLT development set.

6.2.4 Offline Evaluation

The subword ngram LM setup is evaluated on both the Quaero 2010 evaluation set

(eval2010) and the IWSLT 2012 development set (dev2010). While the training setup

is the same, the language for the Quaero system is built from the text sources listed

in table A.1 and the language model for the IWSLT system is built from text sources

listed in table A.2. Both systems also use different acoustic models. The Quaero system

only uses a simple MFCC GMM based acoustic model trained on the Quaero partial

DB while the IWSLT system uses an lMEL+T mDNN acoustic model from section 5.2

trained on the Quaero DB. Postprocessing is performed after decoding to merge all the

words tagged using an intraword symbol with the following word.

The 1st pass 2011 Quaero-MFCC system gains a lot from the subword language

model improving from 24.04% to 21.28% by 2.76% absolute. In this system, Festival

is used to generate pronunciations of missing words for both the training and

decoding dictionaries. The inclusion of pronunciation variants from MARY (Modular

Architecture for Research on speech sYnthesis), which necessitates a retraining of the

acoustic model, results in an even lower WER of 20.37%. This setup also saw the

number of compound errors in non number words reduced from 2.46% to 1.49% and a

reduction of number word based compound errors by over 0.5%.

The more advanced 2014 IWSLT lMEL+T mDNN system is also significantly

(p < 0.005) improved by the inclusion of the subword ngram LM. Its WER drops

by 1.5% absolute from 20.7% down to 19.2%. In both the fullword and subword tests

the additional pronunciation variants of the missing words are generated with both

Festival and MARY.
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Figure 6.3: The 4gram neural network language model.

6.3 Subword Neural Network Language Model

An overview of our neural network language model can be seen in figure 6.3. Our

topology consists of three 300k input vectors using 1 of n encoding to represent words

that are mapped to continuous vectors (100 neurons per word) in the projection layer

followed by 3 hidden layers (600 neurons each) and the output layer. As in [Sch07]

the output layer of neural network language models is only a subset (called shortlist

S) of the full vocabulary because very large output layers are both slow to train and

slow to decode. Words not occurring in the shortlist are only modelled in a baseline

ngram language model (PB) and the result of the neural network language model (PN )

is interpolated with the baseline language model.

101



6. SUBWORD NEURAL NETWORK LANGUAGE MODELS

P (wi|h) =

{
PN (wi|h)PS(h)λ+ (1− λ)PB(wi|h) if wi ∈ S

PB(wi|h) otherwise

}
PS(h) =

∑
wj∈shortlist

PB(wj |h)

In this experiment a feed forward neural net language model with an input context of

3 words is used, with a 20k word shortlist and the 4gram baseline language model from

section 6.2.

6.3.1 Training Text Selection

Because using all 1.5 billion words to train the neural network would be extremely time

consuming we selected a subset of the data to train it. We tested 3 selection approaches:

� ML based: Sentences are selected from text sources based on the ML estimation

performed when building the baseline LM

� reduced ML based: the ML based text selection may result in some small but

highly relevant text sources having all their sentences selected multiple times. The

reduced ML based selection method prevents this from happening by capping the

number of times a sentence can be selected.

� random: sentences are randomly selected from the whole corpus.

Each text selection method used to generate a training corpus for the neural network

contains 2.7M lines or roughly 46M words, just over 3% of the size of the whole training

corpus. Due to the importance of two small text sources to the tuning text the ML

text selection method used the contents of one source about 20 times and the contents

of the other sources about 8 times. The reduced ML based text selection method limits

each sentence’s selection to 3 times.

6.3.2 Decoder Integration

This ibis decoder of the JrTk [SMFW01] interface with language model objects uses an

interface that abstracts the word history as a linguistic context (lct):

� extendLct: Takes a linguistic context, such as a 4 gram word history, extends it

by a word and returns a new linguistic context.

� scoreWord: Returns the language model score of the requested word in the given

linguistic context.
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Selection method WER

baseline full word ngram LM - 20.7%
full word NNLM ML 20.4%
subword ngram LM - 19.2%
subword NNLM ML 18.9%
subword NNLM reduced ML 18.8%
subword NNLM random 18.9%
subword NNLM (200dim PL) reduced ML 18.7%
subword NNLM (200dim PL) opt. int. weights reduced ML 18.4%

Table 6.3: Baseline and Subword language models evaluated on the German IWSLR
development set. All neural network LMs used a projection layer with 100 neurons per
word except for the final one which has 200 neurons per word.

� scoreArray: For the given linguistic context returns an array of all language

model scores.

When generating the language model score of a single word, the neural language

model automatically generates the language model scores for all words in that context.

This makes the scoreWord function superfluous. For the NN LM it only calls the

scoreArray function, that either fills the cache for that linguistic context and sets a

cache pointer or, if the cache is already full, simply sets the cache pointer. A runtime

experiment found that while a system using the baseline subword ngram language model

is able to run at about x1.2-1.4 real time, the runtime of the subword neural network

language model varied a lot from about x8 real time from some speakers to about x30

real time for other speakers.

6.3.3 Offline Evaluation

The proposed subword neural network language model is evaluated on the IWSLT

2012 development set using the system described in section 6.2.4. Both a fullword

and a subword neural network LM are trained on the data extracted using ML based

text selection method. Subword NN LMs are also trained using both the random

and reduced ML text selection methods and a further subword NN LM, using the

reduced ML method is trained using a larger projection layer. The projection layers are

initialized with the word2vec tool [GL14] and the remaining hidden layers are pretrained

as denoising auto encoders, after which, the network is jointly fine-tuned in the same

way as the DNNs training is described in section 3.6. As in section 6.2.4, postprocessing

has to be performed after decoding in order to merge all the words tagged using the

intraword symbol with the following word.
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The WER performances of the various subword neural network language models are

shown in table 6.3 and compared to a baseline ngram LM as well as to both a full word

neural network LM and a subword ngram LM. Using a subword vocabulary improves

both the baseline ngram LM and the NNLM by 1.5% absolute. The full combined

subword NN LM improves the fullword NN LM by 1.5% absolute and the subword

ngram LM by 0.3% resulting in an overall improvement of 1.8% when compared to

the full ngram LM. This improvement is further increased to 2% with the use of the

reduced ML selection method and an increase in the size of projection layer from 100

to 200. Optimizing the interpolation weights between the background subword 4gram

LM and the subword NN LM reduces the WER by a further 0.3%.

6.4 Integration into the KIT Online Lecture Translation

System

In this section the subword LM is integrated into the online lecture translation system

being deployed at the KIT [CFH+13]. Due to its technical nature these lectures have

a very high OOV rate. As described in section 6.2.2, [MKLW11] attempts to solve this

problem by generating a vocabulary from the results of queries built from phrases in the

slides of a lecture. Both the query vocabulary and the subword vocabulary selection

methods aim to reduce the OOV rate so an evaluation is performed on the a set of

lectures recorded in order to gauge their interaction.

As can be seen in figure 6.4 the query vocabulary performs better for smaller

vocabulary sizes and the subword vocabulary has a lower OOV rate with larger

vocabulary sizes. A combined subword + query vocabulary reduces the OOV rate

by almost the sum of the individual OOV rate reductions. This shows that the gains

of the subword vocabulary and the query vocabulary are orthogonal.

In contrast to the offline IWSLT system the online system uses a GMM AM with

parallelized score computation and speaker dependent models so that it can run in real

time with a low latency. This low latency requirement also restricted both the baseline

and subword language models to pure ngram models without the neural networks. They

are trained using the setup explained in section 6.2.2.

As can be seen in table 6.4 the subword language model reduces the word error

rate of all the lectures on which it was tested. Lecturer 4 and Lecturer 6 alternated in

giving the same class. The subword LM improved Lecturer 1’s WER the most. This is

probably due to the fact that the other classes were in computer science and already

covered to some degree in our baseline LM.
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Figure 6.4: OOVs of the baseline vocabulary, the query vocabulary, subword vocabulary
and a combined subword query vocabulary.

Lecturers Lecturer 4 Lecturer 6 Lecturer 2 Lecturer 1

Baseline 22.66% 18.16% 18.87% 34.79%
Subword 18.07% 15.39% 17.31% 23.87%

Table 6.4: Overview of the WERs on 4 Lecturers recorded at the KIT using both the
baseline full word language model and the subword language augmented with a query
vocabulary.
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6.5 Summary

This chapter presents a simple yet very effective method of selecting and integrating

a German subword vocabulary. An error analysis shows that the majority of the

OOV words in a German ASR stem from compound words. When used in an ngram

language model the subword vocabulary reduces the WER by 1.5% on the IWSLT

2012 development set and by 2.76% on the Quaero 2010 evaluation set. Integrated into

the KIT lecture translation system and augmented with query vocabulary it reduces

the WER of all four tested lecturers. An analysis of the OOV reductions shows that

its improvements are orthogonal to those of the query vocabulary. A neural network

language model is trained to estimate the probability of subwords for a given subword

context and is efficiently integrated into the speech recognition system with the help

of a score cache. Using the best text section method it decreases the word error rate

by a further 0.8% absolute from 19.2% to 18.4% on the IWSLT 2012 development set

resulting in a total improvement of 2.3%.

The German subword vocabulary has proven to be so effective that is has been

used in all systems built by our lab since 2011 and has, therefore, contributed to every

evaluation since then. Its initial integration into the 2011 Quaero evaluation system

helped our system achieve the lowest word error rate in that evaluation. It is also

currently running in the KIT lecture translation system that is being used to translate

a number of selected lectures from German into English so that foreign students can

follow them. To my knowledge the subword neural network language’s WER of 18.4%

on the IWSLT development set is lower then any result that can be found in the

literature and is only beaten by the results in section 5.3.
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Chapter 7

Neural Network Combination of

LM and AM

This chapter presents a method of combining an acoustic model and a language model

with a neural network and thereby joining all neural networks together in a speech

recognition system. The setup involves using the output scores of both the acoustic

model and the language model as the input to a neural network that is trained to

produce an optimal combined score. The setup of Graves et al. [GJ14] has a similar

goal of combining the whole speech recognition process in a neural network, but while

they use a recurrent neural network the setup proposed here continues to make use

of an HMM structure. This allows the individual acoustic and language models to be

trained independently of each other. Most speech recognition systems currently use a

form of loglinear combination.

7.1 Loglinear Model Combination

Recall the task of the decoder, described in section 2.2.3 that aims find the most

probable sequence of words:

Ŵ = argmax
W

logP (X|W ) + αlogP (W ) + |W |wβ + |W |nγ

Working at a word level, where the acoustic model scores for the words are known, this

can be seen as a form of loglinear combination [Hei10].

Ŵ = argmax
W

∑
w∈W

∑
i

λi · fi (7.1)

107



7. NEURAL NETWORK COMBINATION OF LM AND AM

The features used in the loglinear combination are:

� f1: the acoustic model score of the word:

log p(X|w) =
∑

s∈state(w)

log p(X|s)

� f2: the language model score: logP (w|h). Its output is 0 when w is not an actual

word.

� f3 = x1: 1 if w is an actual word and 0 otherwise

� f4 = x2: 1 if w refers to a noise model and 0 otherwise

One of the loglinear combination parameters can be ignored and set to one (λ1 = 1)

as the goal is to find argmaxW which is unaffected by scaling all the interpolation

parameters. The other parameters have the following interpretations:

� λ2 = α: The scaling factor between the language and the acoustic model.

� λ3 = β: A word penalty that can be used to penalize long/short word sequences.

� λ4 = γ: The language model replacement score for words that refer to noise

models and are not actual words

In cases that only have 2 to 4 parameters a simple grid search can be performed

to find the optimal value for each of the parameters (α, β, γ). With an increasing

number of parameters this becomes very time consuming. The baseline system used in

this chapter employs Powell’s conjugate direction method [Pow64] that transforms the

multi parameter optimization problem into a series of single parameter optimization

problems.

7.2 Combination Neural Network

Using a neural network changes equation 7.1 to:

Ŵ = argmax
W

∑
w∈W

ϕ(
∑
i

aix
(w)

i ) (7.2)

where x(w)

i is the output of neuron i in the last hidden layer generated by the word w,

ai is the weight connecting it to the output neuron and ϕ is the activation function.
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7.2 Combination Neural Network
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Figure 7.1: Schematic of a combination neural network.

A schematic of the neural network proposed to replace the loglinear combination is

shown in figure 7.1. It has 4 inputs, the acoustic model score and the language model

as well as the x1 and x2 explained in section 7.1. Both of its hidden layers contain 500

neurons and use the sigmoid activation function. It only has a single output neuron

that estimates the total score of the word. It uses a linear activation function.

7.2.1 Maximum Mutual Information Estimation Error Function

Maximum mutual information estimation has long been used in both discriminative

training of GMM based acoustic models [BBdSM86] as well as in sequence training of

DNN based acoustic models [VGBP13]. It compares the probability of a correct word

sequence Wu to all other possible hypotheses Whu generated by a speech recognition

system. For a given set of N utterance U with their corresponding correct transcripts

Wu and features sequences Fu the EMMI error is defined as:

EMMI = log
∏
u∈U

p(Fu|Wu)P (Wu)∑
Whu∈Ŵu

p(Fu|Whu)p(Whu)
(7.3)

When an ASR system gives a high probability to the correct word sequence and a

low probability to all other word sequences then the fraction will tend towards 1 and
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7. NEURAL NETWORK COMBINATION OF LM AND AM

the error towards 0. The full derivative ∂EMMI
∂ai

the MMIE error function is presented

in appendix C which shows that

∂EMMI

∂ai
=
(
δw|Wu

− Υ (w)
)

x(w)

i (7.4)

and that the δj required for the update rule of the backpropagation algorithm is:

δj = δw|Wu
− Υ (w) (7.5)

This error function is implemented in a separate neural network training tool that

can learn from the word lattice and the weights are initialized by performing a simple

function approximation to the existing loglinear function.

7.3 Experimental Setup and Results

The proposed method is evaluated and compared to a traditional loglinear approach

where the parameters are estimated on a development set. The combination neural

network is trained on the Quaero DB using lattices generated with the LM from

chapter 6 and a lMEL+T mDNN described in chapter 5. It is trained for 5 epochs

with a constant learning rate.

The loglinear parameters are optimized on the IWSLT 2012 development set

resulting in a WER of 18.3%. A test run using the same parameters on the Quaero 2010

evaluation set has a WER of 14.22%. Using the combination neural network reduced

this WER by 0.11% to 14.11% which is equates to only 40 more correct words. It

is, however, still a significant improvement with p < 0.005. An oracle experiment is

performed by optimizing the loglinear parameters on the Quaero 2010 evaluation set.

Its results in a WER of 14.03% which is slightly better than the combination neural

network.

7.4 Summary

This chapter has introduced a possible combination network that goes beyond the

traditional loglinear approach and uses a neural network to combine the outputs of

both the acoustic model and the language model. The neural network is trained on

the lattices of the training using the MMIE error function. It is able to slightly reduce

the WER on the Quaero 2010 evaluation set when compared to the loglinear approach

using parameters estimated on the IWSLT 2012 development set.
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Chapter 8

Results Summary

This thesis has touched on many aspects of automatic speech recognition and shown

how they can be further improved by the use of neural networks. This chapter will

present an overview of the most important results from these techniques as well as

their applications and combination effects.

Section 8.1 begins with the results the examination of multiple input features for

deep neural network bottleneck features. The results of the multi-feature modular deep

neural network acoustic model are presented in section 8.2. The results of the other

acoustic model experiments on the decision tree and using singular value decomposition

follow in sections 8.3 & 8.4. Section 8.5 tackles the key results from the subword neural

network language model experiments and the combination tests are summarized in

section 8.6.

The results of this thesis have been successfully used in multiple evaluation

campaigns aandre are being used in a deployed product. A summary of these

applications is provided in section 8.7. The chapter concludes with section 8.8 showing

the absolute improvements of the key techniques from this thesis as well as their

combined improvements.
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8. RESULTS SUMMARY

Figure 8.1: cc

Figure 8.2: Results overview of deep neural network bottleneck features trained on various
combinations of input features and tested on both the eval2010 and the dev2012 data

8.1 Neural Network Feature Extraction

The first main contribution of this thesis is in the use of multiple different input features

for deep neural network bottleneck features. Chapter 4 examined 4 types of input

features (MFCC, MVDR, lMEL & Tone) and showed consistent improvements when

more features were used as inputs to the neural network. This can be seen in figure 8.1

where adding MVDR features to the MFCC baseline results in improvements on both

test sets. Further improvements can be achieved by also adding in the Tone features

and then the lMEL features. The final setup using all tested input features improves

on the best single feature bottleneck system by about 0.5%.
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8.2 Modular Deep Neural Network Acoustic Models

Figure 8.3: Results overview of modular deep neural network acoustic models trained on
various combinations of input features and tested on both the eval2010 and the dev2012
data

8.2 Modular Deep Neural Network Acoustic Models

Similar multi-feature experiments were performed on deep neural network acoustic

models and found similar results. Including more varied inputs improved the network

and lead to speech recognition systems with lower word error rates. The introduction

of the modular deep neural network acoustic models where the already well trained

bottleneck networks are used as input modules to a neural network acoustic model

results in further consistent gains.

Figure 8.1 shows that on both test sets the modular deep neural network acoustic

models consistently outperform their respective non modular counterparts by at least
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8. RESULTS SUMMARY

BNF modules eval2010 dev2012

lMEL+Tone 1 14.52 19.0
MFCC+MVDR+Tone 1 14.54 19.3
MFCC+MVDR+Tone+lMEL 1 14.31 18.9

lMEL+Tone ⊕ MFCC+MVDR+Tone 2 14.19 18.8
⊕ MFCC+MVDR+Tone+lMEL 3 14.06 18.7
⊕ MFCC ⊕ MVDR 5 14.33 18.9

Table 8.1: Comparison of three multi module modular deep neural network acoustic models
with three of the best single module modular deep neural network acoustic models.

0.5% absolute. The figure also demonstrates the continued usefulness of including

multiple different input features into both the normal deep neural network acoustic

model as well as the modular deep neural network acoustic models.

The results in figure 8.1 were restricted to modular deep neural network acoustic

models that used a single input module. Using multiple input modules can result in

further improvements. A summary of these results can be found in table 8.1 where three

very good single module modular deep neural network acoustic models are compared to

three multi module modular deep neural network acoustic models with between 2 and

5 modules. The key result of this experiment is that while using a few input modules

improves the network’s performance at some point adding further modules begins to

degrade its performance.

This can be seen in line 5 of the table where the multi module modular deep

neural network acoustic model improves on the best single module modular deep neural

network acoustic model be 0.2% absolute on the dev2012 test set and 0.15% absolute on

the eval2010 test set. However the addition of two further modules on line 6 degraded

its performance to such an extent that it no longer outperformed the best single module

modular deep neural network.

In total the modular deep neural network acoustic models significantly reduced the

word error rate on both test sets and the improvements were orthogonal to the gains

from using multiple input features.

8.3 Deep Neural Network based Clustertrees

A further contribution of this thesis is the use of deep neural networks in the

construction of the cluster trees used to determine the otput layer of the acoustic

model’s deep neural network. By providing a method of computing the weighted
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8.4 Growing a DNN with Singular Value Decomposition

entropy distance directly from a context independent deep neural network acoustic

model without the use of Gaussians or Gaussian mixture models this approach allows

for a streamlining of the acoustic model training procedure without the need for legacy

Gaussian mixture models code.

The experiments showed that the alternative weighted entropy distance from a

context independent deep neural network acoustic model performed at least as well as

the traditional weighted entropy distance and in some cases even resulted in a slight

improvement.

8.4 Growing a DNN with Singular Value Decomposition

Another technique that has more practical applications then just reducing the word

error rate is the use of singular value decomposition to reduce the number of parameters

in a deep neural network without harming its performance, thereby resulting in a

network that can be computed faster. This is especially important in scenarios like

the lecture translator where a low latency response is critical.

A reduction of parameters from 18 million to 11 million is shown to be possible

without a significant loss in performance. However, intelligently reducing the

parameters to 15.12 million even resulted in a slight improvement of 0.4% absolute.

8.5 Subword Neural Network Language Model

The subword neural network language model is a big contributing factor to the total

reduction in word error rate achieved within this thesis. The introduction of the

subword language model was necessary to combat the high out of vocabulary rate seen

in German systems where it is not unusual for a 300k word German speech recognition

system to have an out of vocabulary rate of over 3% while a 120k English speech

recognition system may only have an out of vocabulary rate of 0.5%. While a basic

ngram based subword language model already resulted in a very good improvement

of 1.5% when compared to a baseline fullword ngram language model. Using the

subword vocabulary in a neural network language model resulted in synergistic and an

improvement of 2.0% over a baseline fullword neural network language model. These

results are shown in figure 8.4 where it can be clearly seen that the gains from the

combined subword and neural network language model are more than the sum of the

individual gains.
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Figure 8.4: Results overview of the subword neural network language.

8.6 Neural Network AM & LM Combination

A technique to use a neural network to combine the scores of both the neural network

acoustic model as well as the neural network language model with other features is

proposed in chapter 7. Although this network was able to show a statistically significant

improvement over the baseline loglinear method the small gain in no way offsets the

required effort.

8.7 Evaluation Results and Applications

The techniques developed for this thesis have been used in many evaluation campaigns

from both Quaero, where the primary metric was case dependent WER, and IWSLT,

where the primary metric is case independent WER. In the 2010 German Quaero

evaluation campaign our lab’s submission system performed poorly and trailed the best

system from RWTH by over 3% absolute WER. After introducing the subword language
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model and the first generation of multi-feature bottleneck neural network feature

extractors our submission system for the 2011 German Quaero evaluation campaign

was over 5% absolute better than previous year’s. This improvement was enough to

outperform all other participants in 2011, with our WER being just 0.1% ahead of

the submission from RWTH. Further improvements to the multi-feature bottleneck

neural network feature extractors and larger language models allowed us to repeat that

performance in the 2012 German Quaero evaluation campaign where our system again

had the lowest word error rate.

The multi-feature modular deep neural network acoustic models were introduced

for the both 2013 German Quaero and the 2013 German IWSLT evaluation campaigns.

The further boost in performance allowed our submission to the Quaero evaluation to

again outperform the other participants’ systems. In the IWSLT evaluation campaign

the submission from RWTH proved to be slightly better than ours resulting in us only

placing 2nd. However in 2014, after further optimizing the multi-feature modular deep

neural network acoustic models, our submission to the 2014 Germany IWSLT evaluation

campaign came out on top.

Besides being used in evaluation systems many of the techniques developed for

this thesis have also been integrated into our online lecture translation system. Here

the subword language model has turned out to be very important due the complected

vocabulary used in some lectures. On a mechanical engineering lecture, for example,

the subword language model was over 10% absolute better than the fullword language

model. Besides the language model the multi feature deep neural network acoustic

model also plays an important part in the lecture translator. Thanks to the singular

value decomposition based network growing and parameter reduction this deep neural

network acoustic model can be computed fast enough to ensure a low latency output

of the whole system.

Besides German the techniques developed in this thesis have also been used in

other projects to build systems for other languages such as English, Spanish, Pashto

and many more.

8.8 Results Overview

This final results overview section presents the individual and combined effects of the

techniques decribed in this thesis when applied to the IWSLT 2012 development set.

A baseline setup using a basic single feature deep neural network acoustic model and a

normal word ngram language model produced a WER of 21.4%. Upgrading this setup
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AM LM WER

single feature DNN word ngram LM 21.4
modular DNN word ngram LM 20.7
modular DNN subword ngram LM 19.2
modular DNN subword NNLM 18.4

best single feature DNN subword ngram LM 20.1
multi-feature DNN subword ngram LM 19.4

best single feature modular DNN subword ngram LM 19.5
best single module modular DNN subword ngram LM 18.9
best modular DNN subword ngram LM 18.7

best modular DNN subword NNLM 18.0

Table 8.2: Individual and combined results of the techniques described in this thesis.

to a modular DNN acoustic model improved the WER by 0.7% to 20.7%.

The introduction of the subword vocabulary lowered the WER dramatically by first

1.5% from 20.7% to 19.2% for the purely ngram subword language model and then by

a further 0.8% to 18.4% for the neural network subword language model. This total

reduction of over 11% relative clearly demonstrates the effectiveness of the implemented

subword neural network language model.

As can be seen in table 8.2 a system using the subword ngram language model and

DNN acoustic model with the best single input feature is able to produce a WER of

20.1%. Expanding the acoustic model to use multiple input features can reduce the

WER by 0.7% to 19.4%. A similar reduction in WER to 19.5% could also be achieved

by replacing the DNN acoustic with a single feature modular DNN acoustic model.

Both of these gains can be achieved together by using a modular DNN with a single

module that has multiple input features. This results in a total WER reduction of 1.2%

from 20.1% to 18.9% which is almost the sum of the individual improvements of 0.7%

and 0.6%. A further improvement of 0.2% can be achieved by using multiple different

models in the modular DNN acoustic model resulting in a WER of 18.7%.

Using the modular DNN acoustic model with multiple models together with the

best subword neural network language model reduces the WER to 18.0%. This shows

the orthogonal improvements of the acoustic model and the subword neural network

language model. In total the techniques described in this thesis result in an absolute

improvement of 3.4% from the baseline of 21.4% to 18.0%.
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Chapter 9

Conclusion

This thesis investigates the application and improvement of neural networks on all

levels of a speech recognition system. It begins with the feature level where deep neural

networks can be employed to extract useful features from the speech signal using their

hidden layer’s ability to learn new representations of inputs and by setting the hidden

layer to a desired feature size.

An investigation into the ability of these networks to combine and utilize multiple

different features is performed. This experiment show,s that while the normal

non-tonal features are very similar and in most cases interchangeable, they are also

complementary. Augmenting the input feature or feature combination with tonal

features proves to be beneficial in all evaluated settings. A similar experiment on

deep neural network acoustic models shows the same pattern: Adding more features to

the input of the neural network improves its classification ability.

The modular deep neural network acoustic model presented in this thesis

incorporates well trained feature extraction networks using multiple input features. It is

initially evaluated using only a single feature extraction module. This evaluation again

demonstrates the usefulness of using multiple different input feature vectors. Modular

deep neural networks, whose sole feature extraction network uses multiple features,

outperform those using fewer features or a single feature.

Using two or more different feature extraction networks as modules in the same

modular deep neural network results in further improvement. The best approaches use

three feature extraction networks that are, in turn, each trained using multiple input

features. The best modular deep neural network is able to reduce the word error rate

on the test data sets by up to 11.5% relative improvement compared to a baseline deep

neural network.
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A further problem addressed in this thesis is the reliance on older, non neural

network based modeling methods for the selection of the acoustic units which are used

as targets in the training of these modular deep neural network acoustic models. It is

shown that the probability distribution required by the clustering algorithm, in order to

measure the weighted entropy distance, can be generated using the average activation

of a context independent neural network acoustic model.

Furthermore, experiments are performed using singular value decomposition to

initialize new hidden layers in a deep neural network. An investigation of its possible

applications shows it to be useful for increasing the depth and performance of the neural

networks while at the same time allowing for a reduction in the number of parameters.

The parameter reduction is especially large when singular value decomposition is used

to initialize a small hidden layer just prior to the output layer.

A deep neural network is also used to build a subword neural network language

model. An error analysis concludes, that in German speech recognition systems,

compound words are a major source of errors. To solve this problem a subword

vocabulary selection method is developed that keeps normal words and splits compound

words. The use of an intraword tag allows a recognized sequence of subwords to

be easily combined into a sequence of words. This proves to be very effective and

results in a large gain when used in both a neural network language model and in an

ngram language model. As well as numerous applications in evaluation systems the

subword vocabulary is currently integrated into the KIT lecture translation system

and actively used to help foreign students to follow lectures held in German. This

integration requires the subword vocabulary to function together with a query based

vocabulary selection method that extracts queries from lecture slides. It uses a

search engine to find related documents and webpages and analyses them in order

to broaden the system’s vocabulary. An OOV analysis of the integrated system shows

that they complement each other well and give orthogonal gains. Performance issues,

unfortunately, prevent the integration of the subword neural network language model

into the lecture translation system.

In order to combine the outputs of both the acoustic model and the language model

a combination neural network is trained. It uses, as inputs, the acoustic model score

and the language model score of the word, for which it estimates the combined score.

Information about whether the word is a lexical word or noise word is also taken into

consideration. The network is trained using the lattices of the acoustic model training

data to minimize the MMIE error function. The training procedure is implemented

in a separate tool. It is evaluated and shown to be slight improvement on a normal
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loglinear combination.

Throughout this thesis various neural network techniques were presented that

improved the overall performance of the speech recognition system. Their usage in

evaluations help our systems achieve numerous placements the best German system.

When combined together in a single system the improvements on both language model

and the acoustic model reduce the word error rate by roughly 20% when compared to

a baseline system with a normal neural network language model and a normal deep

neural network acoustic model.
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[SKM+12] Sebastian Stüker, Florian Kraft, Christian Mohr, Teresa Herrmann,

Eunah Cho, and Alex Waibel. The kit lecture corpus for speech

translation. In LREC, pages 3409–3414, 2012. 38

[SLY11] Frank Seide, Gang Li, and Dong Yu. Conversational speech transcription

using context-dependent deep neural networks. In Interspeech, pages

437–440, 2011. 20

[SMFW01] Hagen Soltau, Florian Metze, Christian Fugen, and Alex Waibel. A

one-pass decoder based on polymorphic linguistic context assignment. In

Automatic Speech Recognition and Understanding, 2001. ASRU’01. IEEE

Workshop on, pages 214–217. IEEE, 2001. 44, 45, 102

[SMK+12a] Christian Saam, Christian Mohr, Kevin Kilgour, Michael Heck, Matthias
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Appendix A

Language Model Data

The data sources for the IWSLT language model are given in Table A.1. There are far

fewer sources because of evaluation campaign organizers restrict the allowable training

text to a list of publicly available corpera.

The two language models used in this thesis are trained of different training sources.

Table A.2 lists the text sources used for the Quaero language model from the 2012

Quaero evaluation. The 2011 Quaero evaluation systems uses almost exactly the same

sources. The various news websites from 2011 are omitted and it also does not contain

the newer parts of the AM data transcripts.
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A. LANGUAGE MODEL DATA

Source Name from raw tokens cleaned tokens

NewsCrawl (WMT) 2007 - 2013 - 1427.2M

CommonCrawl (WMT) <2013 - 48.6M

News Commentary (WMT) <2014 - 4.5M

EuroParl (WMT) [Koe05] 1996-2011 - 47.7M

MultiUN Corpus 2000-2010 5.9M 5.8M

European Language Newspaper
Text
LDC95T11

<1995 105.4M 92.0M

ECI Multilingual Text
LDC94T5

<1995 13.8M 13.7M

HUB5 German Transcripts
LDC2003T03

1997 30.6k 19.8k

German Political Speeches Corpus 1984 - 2012 5.6M 5.5M

CALLHOME German Transcripts
LDC97T15

<1997 0.23M 0.17M

IWSLT LM Data <2014 - 2.8M

TED Transcripts Translated <2014 - 2.6M

Google Books Ngrams <1508-2012 - -

Table A.1: Text sources used for the IWSLT language model
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Source Name from raw tokens cleaned tokens

A query based webdump 2008 343.4M 360.1M

ODP Crawl 2008 120.7M 116.9M

Uni Karlsruhe Webpage Crawl 2007-05-25 - 1.4M

Meeting transcriptions <2005 - 77.4k

KogSys Lecture Notes 2007 - 63.2k

Presentation transcripts 2007 - 13.1k

European Parliament
Plenary Session (EPPS)

1996-05-15
to 2003-09-03

27.9M 24.3M

Baden-Württemberg Landtag
transcripts

1996 to 2009 16.2M 14.1M

GermNews
1996-11-19
to 2000-01-31

0.92M 0.86M

GeneralNews <1998-09-10 - 108.1M

Aachener Nachrichten Online <2010 307.2M 84.0M

Zeit Online <2000 332.2M 134.0M

Zeit Online 2000 - 2009 354.7M 177.6M

Over-Blog 2007 - 2009 265.6M 135.2M

Zeit Online Forum 2007 - 2009 132.1M 63.7M

Various News Websites
2009-05-11
to 2010-02-28

570.1M 148.8M

Zeit Online 2010 7.6M 7.6M

Aachener Nachrichten Online 2010 18.3M 18.3M

Various News Websites
2010-02-28
to 2010-02-31

40.6M 40.7M

Various News Websites 2011 112.3M 106M

AM data transcripts <2012 - 1.8M

Google Web 1T 5-grams
LDC2009T25

<2008 - -

Table A.2: Text sources used for the Quaero language model
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Appendix B

Backpropagation Outline

In this appendix we refrain from presenting a full proof of the algorithm and will

instead show an outline of the proof with a focus on those parts on which some

experiments in chapter 7 are based. Further details can be found in [B+95, Mit97]

with the notation and proof outline used in this section based on [Mit97] and [Wai14].

The backpropagation variant described here is called stochastic gradient descent (SGD)

where a single training example is sent through the network, its error is calculated and

passed back resulting in an updated network for the next training example.

� m inputs to the NN: x ∈ Rm

� n outputs: ox ∈ {0, 1}n

� Training Data X: (x, tx) ∈ Rm×{0, 1}n with tx being the target or correct output

of the network for the input vector x and ox the actual output of the neural for

that input

� xji: input i of neuron j

� wsji: weight from input i of neuron j at iteration or step s

� ~w: all the parameters in the NN (weights and biases from all layers)

� netj =
∑

iwjixji

� oj = ϕ(netj) output of neuron j

� tj target output of neuron j

� outputs: neurons in the final layer
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B. BACKPROPAGATION OUTLINE

� Downstream(j): set of neurons whose inputs include neurons j

The backpropagation algorithm requires an error function that computes how much

of an error there is between the output of the network for a given input and its target or

what its output should have been. The two main error functions are the cross entropy

error and the mean squared error. Here we use the MSR error function:

EMSE(~w) =
1

2

∑
x∈X

∑
k∈outputs

(tkx − okx)2 (B.1)

The goal here is to find the parameter set ~w that minimizes this error function. Since

we are looking at SGD and only care about the error produced by a single training

example we can instead look at the error function:

Ex(~w) =
1

2

∑
k∈outputs

(tkx − okx)2 (B.2)

Minimizing all of these Ex error functions also leads to a minimum for the total error

function EMSE. The partial derivative of Ex with respect to a weight parameter wi

represents how much that weight affected the error and can be used to update that

weight:

ws+1
ji ← wsji − η

∂Ex
∂wji

(B.3)

The update is performed on all weights and then the new network is used for the next

training example. This procedure is repeated for either a predetermined number of

iterations or until convergence is reached. After all the training examples have been

seen once by the network an epoch is said to have passed. NNs normally require several

epochs of training until they have converged.

Computing the partial derivative of ∂Ex
∂wji

is a nontrivial problem that can be tackled

by using the chain rule ( (f ◦ g)′(x0) = f ′
(
g(x)

)
· g′(x0) ) and the observation that wji

can only affect ∂Ex through the input netj of neuron that wji leads:

∂Ex
∂wji

=
∂Ex
∂netj

∂netj
∂wji

=
∂Ex
∂netj

∂
∑

iwjixji
∂wji

=
∂Ex
∂netj

xij (B.4)

The derivative of ∂Ex
∂wji

, which we use to define −δj , depends on where in the network

the neuron is located. Neurons in the output layer directly affect the error function Ex

whereas neurons preceding them affect Ex through every neuron that has its output as
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an input. We therefore consider these two case separately. For the output neurons we

can again apply the chain as netj only affects Ex through the output ojx of the neuron

j:

−δj =
∂Ex
∂netj

=
∂Ex
∂ojx

∂ojx
∂netj

(B.5)

Here ∂Ex
∂ojx

is the partial derivative of the error function by the output of a single neuron

which is

∂Ex
∂ojx

= −(tjx − ojx) (B.6)

for the MSE error function. The partial derivative
∂ojx
∂netj

is the derivative of the

activation function by its input which we’ll note as ϕ′(netj) leading to:

∂Ex
∂netj

=
∂Ex
∂ojx

∂ojx
∂netj

= −(tjx − ojx)ϕ′(netj) (B.7)

In the 2nd case, where the neuron j is not an output neuron, it can only affect Ex

through the neurons for which it is an input (Downstream(j)) and their inputs netk are

only affected through neuron j’s output oj . By applying the chain rule and simplifying

with ∂Ex
∂netk

= −δj , we then get :

−δj =
∂Ex
∂netj

=
∑

k∈Downstream(j)

∂Ex
∂netk

∂netk
∂netj

(B.8)

=
∑

k∈Downstream(j)

∂Ex
∂netk

∂netk
∂oj

∂oj
∂netj

(B.9)

=
∑

k∈Downstream(j)

−δkwkjϕ′(netj) (B.10)

=ϕ′(netj)
∑

k∈Downstream(j)

−δkwkj (B.11)

Using the derived δk the update rule can now be written as:

ws+1
ji ← wsji + ηδkxji (B.12)

This works for any feed forward neural network topology. The algorithm, however,

cannot decide how the topology should look, which error function and which activations

to use or what to set the learning rate η to. These, so called hyperparameters, have to
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B. BACKPROPAGATION OUTLINE

be optimized independently of the learning algorithm.
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Appendix C

MMIE Error Function

This appendix contains the full derivative the MMIE error function used in the chapter

on neural network based AM and LM combination. This is similar to the MMIE

derivative used for sequences training in [VGBP13].
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C. MMIE ERROR FUNCTION

C.1 Terminology

U : a set of N utterances

Wu : correct transcript of utterance u ∈ U

Fu : features of u

Ŵu : all possible hypotheses from a lattice of u

Whu ∈ Ŵu : a hypothesis of u

Whu(w) ∈ Ŵu : a hypothesis of u containing the word w

w ∈W : a word in W

δw|W =

1, if w ∈W

0, otherwise

o(w) : output of the neural network (for word w)

ϕ : neural network activation funktion; its derivitive ϕ′

ai : weight from neuron i in the last hidden layer to the output neuron

x(w)

i : output of neuron i in the last hidden layer

net(w) =
∑
i

aix
(w)

i : input to the neural network

C.2 MMIE

For given set of N utterance U with their corresponding correct transcripts Wu and

features sequences Fu the EMMI error is defined as:

EMMI = log
∏
u∈U

p(Fu|Wu)P (Wu)∑
Whu∈Ŵu

p(Fu|Whu)p(Whu)
(C.1)

Since this scoring function is only being applied at word transitions we can assume that

we have the acoustic model score for whole words:

p(Fu|Wu) =
∏
w∈Wu

p(Fu|w) (C.2)
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C.2 MMIE

This decomposition to the word level is shown to also be possible for the language

model in section 2.2.1. This allows us to reform the error function as such:

EMMI = log
∏
u∈U

∏
w∈Wu

p(Fu|w)P (w|hw)∑
Whu∈Ŵu

∏
w∈Whu

p(Fu|w)p(w|hw)
(C.3)

= log
∏
u∈U

∏
w∈Wu

elog p(Fu|w)P (w|hw)∑
Whu∈Ŵu

∏
w∈Whu

elog p(Fu|w)p(w|hw)
(C.4)

In a loglinear interpolation the log p(Fu|w)P (w|hw) would be replaced with with

a loglinear combination of features. Here we instead replace it with the output of a

neural network

log p(Fw|w)p(w|hw) =o(w) = ϕ(
∑
i

aix
(w)

i ) (C.5)

p(Fw|w)p(w|hw) = e
ϕ(

∑
i
aix

(w)
i )

(C.6)

which is then inserted into C.4

EMMI = log
∏
u∈U

∏
w∈Wu

e
ϕ(

∑
i
aix

(w)
i )

∑
Whu∈Ŵu

∏
w∈Whu

e
ϕ(

∑
i
aix

(w)
i )

(C.7)

The outer logarithm can now be moved inside

EMMI =
∑
u∈U

log

( ∏
w∈Wu

e
ϕ(

∑
i
aix

(w)
i )
)
− log

 ∑
Whu

∈Ŵu

∏
w∈Whu

e
ϕ(

∑
i
aix

(w)
i )

 (C.8)

=
∑
u∈U

 ∑
w∈Wu

ϕ(
∑
i

aix
(w)

i )− log

 ∑
Whu

∈Ŵu

e

∑
w∈Whu

ϕ(
∑
i
aix

(w)
i )
 (C.9)

(C.10)

As with SVD we can restrict ourselves to the error induced by a single example
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C. MMIE ERROR FUNCTION

which, in this case, is the combination a an AM score and an LM of a a given word.

Taking the partial derivative of EMMI with respect to a weight ai gives us:

∂EMMI

∂ai
=
∂EMMI

∂net(w)

i

∂net(w)

i

ai
=

∂EMMI

∂net(w)

i

x(w)

i (C.11)

and

∂EMMI

∂net(w)

i

=δw|Wu
ϕ′(
∑
i

aix
(w)

i )−

∂

∂net
(w)
i

∑
Whu

∈Ŵu

e

∑
w∈Whu

ϕ(
∑
i
aix

(w)
i )

∑
Whu

∈Ŵu

e

∑
w∈Whu

ϕ(
∑
i
aix

(w)
i )

(C.12)

=δw|Wu
ϕ′(
∑
i

aix
(w)

i )−

∑
Whu

(w)∈Ŵu

e

∑
ŵ∈Whu

(w)
ϕ(

∑
i

aix
(ŵ)
i

)

∂

∂net
(w)
i

 ∑
ŵ∈Whu

(w)
ϕ(

∑
i

aix
(ŵ)
i

)




∑
Whu

∈Ŵu

e

∑
w∈Whu

ϕ(
∑
i

aix
(w)
i

)

(C.13)

Applying the partial derivative to the inner part of the logarithm removes all terms in

the sum that do not contain net(w)

i . This also happens again when applied to the inner

part of the exponential function resulting in

∂EMMI

∂net(w)

i

=δw|Wu
ϕ′(
∑
i

aix
(w)

i )−

∑
Whu

(w)∈Ŵu

e ∑
ŵ∈Whu

(w)

ϕ(
∑
i
aix

(ŵ)
i )

ϕ′(
∑
i
aix

(ŵ)

i )


∑

Whu
∈Ŵu

e

∑
w∈Whu

ϕ(
∑
i
aix

(w)
i )

(C.14)

=

δw|Wu
−

∑
Whu

(w)∈Ŵu

e

∑
ŵ∈Whu

(w)

ϕ(
∑
i
aix

(ŵ)
i )

∑
Whu

∈Ŵu

e

∑
w∈Whu

ϕ(
∑
i
aix

(w)
i )

ϕ′(
∑
i

aix
(ŵ)

i ) (C.15)

In training we will be using a lattice so the denominator of the fraction in this

equation is the sum of all possible hypotheses in the lattice and the nominator is the
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C.2 MMIE

sum of all hypotheses that pass through the node corresponding to the word w. This

makes it the posterior probability Υ (w) of the lattice node corresponding to the word

w.

Using the linear activation function with ϕ′(x) = 1 the final derivative can be

expressed as:

∂EMMI

∂ai
=
(
δw|Wu

− Υ (w)
)

x(w)

i (C.16)

The δj required for the update rule of the backpropagation algorithm is then:

δj = δw|Wu
− Υ (w) (C.17)
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