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Abstract

This thesis aims to examine ways in which topical information can be used to

improve recognition and retrieval of spoken documents. We consider the interrelated

concepts of locality, repetition, and ‘subject of discourse’ in the context of speech

processing applications: speech recognition, speech retrieval, and topic identification

of speech. This work demonstrates how supervised and unsupervised models of topics,

applicable to any language, can improve accuracy in accessing spoken content.

This work looks at the complementary aspects of topic information in lexical con-

tent in terms of local context - locality or repetition of word usage - and broad context

- the typical ‘subject matter’ definition of a topic. By augmenting speech processing

language models with topic information we can demonstrate consistent improvements

in performance in a number of metrics. We add locality to bags-of-words topic identi-

fication models, we quantify the relationship between topic information and keyword

retrieval, and we consider word repetition both in terms of keyword based retrieval

and language modeling. Lastly, we combine these concepts and develop joint models

of local and broad context via latent topic models.
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ABSTRACT

We present a latent topic model framework that treats documents as arising from

an underlying topic sequence combined with a cache-based repetition model. We

analyze our proposed model both for its ability to capture word repetition via the

cache and for its suitability as a language model for speech recognition and retrieval.

We show this model, augmented with the cache, captures intuitive repetition behavior

across languages and exhibits lower perplexity than regular LDA on held out data in

multiple languages. Lastly, we show that our joint model improves speech retrieval

performance beyond N-grams or latent topics alone, when applied to a term detection

task in all languages considered.

Primary Reader: Sanjeev Khudanpur

Secondary Reader: David Yarowsky
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Chapter 1

Introduction

The goal of this thesis is to leverage multiple aspects of topical information in

spoken language to improve access to informal media. By richer modeling of topical

phenomena in spoken language we aim to improve speech recognition and speech

retrieval systems. Our English word topic, which captures the abstract notion of a

particular ‘subject of discourse’, arises from the Greek root, τoπoς, meaning a physical

‘place’ or ‘location’. As the etymology suggests, the semantic concepts of a particular

subject are not disjoint from the physical location of the words themselves.

For this reason we focus this work on two related aspects of topic, subject-

relatedness and locality. First, word usage is affected by the semantic ‘subject of

discourse’ and secondly, word usage is affected by proximity. Two words are topically

related because they refer to the same subject, but likewise words are topical in the

sense of sharing the same place (τoπoς).

1



CHAPTER 1. INTRODUCTION

In this thesis we examine the idea that in modeling informal speech, these two

modes of topicality are complementary in the sense that we can leverage them for a

joint positive impact on various speech retrieval tasks. We examine both properties of

topicality in the context of speech recognition and retrieval and conclude by offering

a framework to jointly model both locality and subject-relevance.

1.1 Motivation

Informal spoken content is being generated, stored, and shared on mind-boggling

scales across the globe. Smart phones and social media, among other technologies,

have enabled the creation of high volume repositories of user-generated, informal

content in almost all languages. A recent snapshot from YouTube has users upload-

ing over 100 hours of video every minute, 75% of which is coming from outside the

United States and is localized over 60 countries and languages [1].

The problem underlying this thesis is how to organize this wealth of language-rich,

spoken content and “make it universally accessible and useful” [2]. This touches on

many individually challenging application areas such as speech recognition, language

modeling, and information retrieval. Three constraining factors are the wide variety of

languages, the informal genre of much of the user-generated content, and the massive

data volumes.

Because of these limitations on processing high volumes of multimedia in diverse

2



CHAPTER 1. INTRODUCTION

languages, to date little of the content itself is accessible in the same manner as tradi-

tional web documents. User tags, links, PageRank, user compiled lists or ‘channels’,

or other metadata are the means by which one links to multimedia content. None

of the linguistic content encoded in the audio or video signal is used in the retrieval

process.

The diversity of languages implies that in most cases applications operate in lan-

guages without extensively annotated corpora on which automated processing algo-

rithms are typically built. Both corpora limitations and data volumes (which imply

processing speed and accuracy trade-offs) require operating in an extremely noisy

environment, as measured by traditional metrics such as word error rate (WER).

We choose to focus on topicality because of the mass of evidence that the topic

signal in informal speech is highly robust to speech recognition errors (cf. [3]). We

argue that leveraging this robust information is a reasonable route to effective systems

in such an environment. Whereas various authors have studied topicality in respect

to one or more of the aforementioned application areas, we aim to develop a unified

approach, focused on speech retrieval as the end goal.

Although online media content covers a broad spectrum from entertaining to infor-

mative, we motivate the effort to improve access to all this content with the words of

an Egyptian protester in Tahrir Square during the 2011 Arab Spring popular uprising:

We use Facebook to schedule the protests, Twitter to coordinate, and
YouTube to tell the world [4].

Although not all such informal content has the geopolitical import of the Arab Spring

3
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protest movement, the ability to access online videos (YouTube), lecture videos (MIT

Lecture project), oral histories (the Malach project) online course material (Kahn

academy), instructional videos, entertainment, and in a corporate setting, accessing

meeting interchanges would benefit a variety of demographics.

1.2 Speech Retrieval

We consider the application of topic information to speech retrieval from the

perspective of an information retrieval (IR) task.

Given the user query, the key goal of an IR system is to retrieve informa-
tion which might be useful or relevant to the user. [5]

The notion of what “might be useful” is expressed as the user’s information need.

We can argue that one criterion for a document being relevant to the user’s query

is that the topic of the document, in terms of its ‘subject of discourse’ contributes

information that matches the user’s need or answers the user’s question. We can

think of the notions of information need and topic of interest as synonymous.

In speech retrieval the modality of the relevant documents is different, but the

overall goal is the same. In practice, however, we have to transform raw multimedia

data into a format that can be indexed and searched efficiently in response to user

queries. Typically this transformation is effected by automatic speech recognition

(ASR). We will refer to ASR portion of this process as tokenization so as to be

4



CHAPTER 1. INTRODUCTION

Figure 1.1: A typical speech retrieval workflow.

agnostic to the types of word or other units used to characterize the universe of

documents. Figure 1.1 illustrates this stylized view of speech retrieval.

Early attempts at speech retrieval treated the tokenized documents as if they were

human-generated text documents and applied standard text-based IR systems to the

output. When this approach was applied to broadcast-only style media, during the

2000 NIST TREC Spoken Document Retrieval (SDR) evaluation [6], the consensus

was that SDR was now a solved problem, given the relatively high accuracy of ASR

systems applied to formal, broadcast speech.

However, when NIST revisited the issue in 2006 with the Spoken Term Detection

evaluation [7], a different set of conclusions emerged. The 2006 evaluation focused

on informal speech and languages other than English (Mandarin Chinese and Lev-
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antine Arabic) and on conversational speech in addition to the traditional broadcast

news domain. Performance on these other languages were about 50% worse than the

English systems. Additionally, by treating ASR output as distinct from plain text,

techniques such as indexing multiple ASR hypotheses led to significant gains over the

black-box approach from the 2000 TREC eval. [8]

For this reason Figure 1.1 shows the tokenization, indexing, and retrieval steps

in the overall workflow broken out explicitly. We would consider the application of

topic information to all three areas of the speech retrieval process.

1.3 Topics in Recognition and Retrieval

An additional aspect of 2006 NIST evaluation, the evaluation criteria, suggests

that incorporating topic information is a reasonable direction to explore in with re-

spect to extracting information from spoken content a language-rich digital environ-

ment. Rather than evaluate speech recognition as a transcription task, where accu-

racy is measured over all words in the corpus - i.e. the word error rate (WER), the

2006 and subsequent evaluations focused on the retrieval of key words and phrases.

In other words, we would measure our system accuracy not over all words, but the

information-rich ‘topic’ words.

If we look at model-based retrieval, which arises in the literature as text catego-

rization or classification (e.g., spam filters, document routing, author attribution), we
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find that most algorithms operate on bags-of-words, which are simply accumulated

token counts. As a consequence, we need not be constrained by the accuracy of par-

ticular token instances - the WER - and can attempt the task with limited training

higher WER systems.

For this reason we would like to focus on introducing topic information into the

retrieval pipeline. We focus on the term detection or keyword search task as our

particular instantiation of speech retrieval in keeping with recent evaluations (cf. [7],

[9]). For both the tokenization step and for indexing/retrieval we direct our emphasis

at adding topic information to the modeling of word sequences: language modeling.

For tokenization or ASR, the basic statistical question is to identify the most

likely sequence of words given the observed acoustic signal. Also described as the

noisy channel model of ASR, we often see this expressed as:

Ŵ = argmax
W

P (W |O) ≈ argmax
W

P (O|W ) · P (W ) (1.1)

We will make a reasonable simplifying assumption that the acoustics of a word,

P (O|W ), are unrelated to any topic information about a particular word instance.

Which again brings our focus to the latter component of a type speech recognizer,

the language model P (W ).

Similarly, for keyword retrieval, we are interested in the likelihood of the query

word or phrase at a particular time instance, which we can also express by the above
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equation, only without the ‘argmax’. So for both recognition and retrieval we will

discuss what topic information can be included in the language model.

Typically, and particularly so for ASR, the language model for a word sequence

W of m words, usually denoted as w1, . . . , wm, is expressed, via the chain rule, as the

product of the individual word probabilities conditioned on a short word history or

word context.

p(W ) =
m∏
i=1

p(wi|Φ(wi)) (1.2)

In all major commercial ASR systems this context is expressed assumed to be the

(N−1) words immediately preceding wi, hence the N-gram language model. However,

we chose to let Φ(wi) stand for any context that influences the occurrence of wi -

N-grams, syntax, repetitions, or topic information .

The specific goal of this thesis then is to relate the two modes of topic information,

subject-relatedness and locality, which we informally refer to as broad and local topic

context, to formal language models. Both broad and local contexts influence word

usage in language and we show that by modeling word in such a manner improves

speech recognition and retrieval tasks.

1.4 Contributions

We aim to analyze the behavior of topic information in informal speech and to

model that behavior in ways to improve speech retrieval applications.
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Locality for Topic Classification - We will demonstrate that a temporal analy-

sis of the topic signal (locality) can be used to improve topic classification of informal

speech.

Locality and Topicality for Speech Retrieval - We will demonstrate that

we can model both locality of word usage and subject relevance to improve speech

retrieval. We show locality can be expressed implicitly as part of the retrieval task,

but also explicitly as part of the language model for the speech recognition component

of the retrieval task.

Cauche-augmented Latent Topic Models - We will capture our intuition

from the previous two results and describe a latent topic model that incorporates

both the subject-relevance aspect of topicality as well as locality or repetition-based

properties. We demonstrate that broad and local context, as we have defined them,

are complementary sources of information when applied to speech recognition and

retrieval.

1.5 Outline

The rest of this thesis is organized as follows. In Chapter 2 we present back-

ground materiel placing the notion of ‘topic’ in context with classification, language

modeling, speech recognition and retrieval. We aim to present a concise picture about

how different techniques have been used to incorporate topic information into speech
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and language processing. Chapter 3 examines how topics and location interact in

classification-based retrieval of speech. We also show how retrieval metrics provide a

better gauge of system error with respect to topic-related tasks than tradition word-

level transcription metrics.

In Chapter 4 we present three approaches relating to how topic information both

in terms of locality and subject-relevance can be applied to language models and to

speech retrieval. We formalize this intuition in Chapter 5 and present a set of locality-

aware latent topic models targeted for speech recognition and retrieval. In Chapter

6 we analyze the ability of our proposed models to capture both aspects of topicality

and in Chapter 7 we focus on our model’s application to the speech retrieval task.

Finally, we summarize the individual components and their connection to topicality

in speech and discuss possible directions for future work.
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Chapter 2

Background

The goal of this chapter will be to highlight the body of research from a range

of fields at the intersection of topic and language modeling, speech recognition, and

retrieval. In particular we will highlight where topic information, both in terms of

subject-relevance and in terms of locality, has been incorporated into various pro-

cesses, algorithms, and models of speech and language.

We begin by defining a set of commonly used evaluation metrics to which we

will refer throughout the rest of this and subsequent chapters. We will then look at

the most straightforward application of topic information, document classification,

with an emphasis on spoken document classification and to highlight the robustness

of the topic signal. We also discuss related work in which the locality of information

is studied or leveraged.

In Section 2.3 we examine the role of topic and locality as applied to speech
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recognition. Although much of this work is applicable to language modeling in

general, we focus on its impact on speech recognition and related applications. We

then discuss how topic and locality have been applied to models for information

retrieval, primarily in the text domain.

Finally we examine the connection between different discrete random process for-

malisms and how different generative models of language, such as latent topic

models and N-gram language models, arise, and in particular we highlight their dif-

ferent expressions of locality.

2.1 Evaluation Metrics

The identification error rate, classification error rate, or simply ID Error is the

fraction of incorrect labels applied by the system out of the N total test items:

Error ≡ #incorrect

N
(2.1)

Related to this is the Word Error Rate (WER) of a transcription task, which

requires an alignment to the reference transcript in order to count different error

types - substitutions (S), insertions (I), and deletions (D). Note that because of the

accounting for insertions, errors can outnumber the references words W . Anecdotally,

a WER > 1 typically indicates an error or bug in the experiment configuration, not
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an extremely poor performing system.

WER ≡ S + I +D

W
(2.2)

If we look at a system from the point of view of detection - detecting words or doc-

uments or topics - a common metric from the Speaker and Language ID communities

is the Equal Error Rate (EER). By measuring the probability of missing a correct

detection, P (miss), and the probability of a false alarm, P (FA), EER is defined as

the value at which the two quantities are equal for a particular set of detections.

EER ≡ P (miss) = P (FA) (2.3)

Specifically for term detection (keyword search) evaluations, NIST defined a Term

Weighted Value metric for measuring keyword detection accuracy, for which, unlike

the previous three error metrics, higher is better. Also defined in terms of P (Miss)

and P (FA), TWV is based on weighted cost function balancing the importance of

misses and false alarms. TWV is computed given a fixed score threshold θ, and is

averaged over all query terms in some evaluation set Q. For the NIST evaluations, Q

is defined explicitly as a list of key words or phrases, but we can think of this as any
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discrete set of queries.

TWV ≡ 1− 1

‖Q‖
∑
q∈Q

[P (miss, q, θ) + β · P (FA, q, θ)] (2.4)

The cost tradeoff parameter β can be set, in theory, to any value reflecting an ap-

plication’s preference for high recall (low P (miss)) or high precision (low P (FA))

results.

Lastly, we define related ranked retrieval metrics, typically used by the information

retrieval community, but applicable to any scenario in which a ranked (ordered) list of

results and binary judgments (correct or relevant) for each result is available. Recall

and precision can be defined, at any threshold in the list, as the number of correct

results (C) over either the total number of positive examples in the list (T ) or the

number of hypotheses in the list before the threshold (H).

Recall ≡ C

T
Precision ≡ C

H
(2.5)

Average precision (AP) is found by computing precision for each threshold

where a correct item is found in the list. So with T total correct items, AP is

computed from T precision values. Mean average precision (MAP) is simply

average precision computed for each of the queries in the test query set Q. MAP can

also be interpreted as the Mean Area Under the recall-precision Curve (MAUC).

Of all the metrics described, EER and average precision depend only on the
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rank order of a particular result set. That is to say they do not require calibrated

scores or the selection of a particular threshold when computed on the list of re-

sults from a particular query or scores from a classifier over a set of documents. We

mention this in particular for the TWV keyword search metric, which is particularly

sensitive to thresholding. In subsequent sections we will make the distinction between

techniques that keep system output the same but alter score values (and thus thresh-

olding) versus techniques that cause the system, a speech recognizer, for example to

output a fundamentally different set of results.

2.2 Topic Classification

Since the late 1990’s there has been an accumulation of evidence supporting the

claim that topic classification of speech is highly robust to ASR errors. We use the

term topic classification to describe a set of tasks also referred to as topic identifi-

cation, text categorization, topic detection, topic filtering, or in a call center context,

call routing. These techniques may be used for the retrieval task in cases where a

user provides examples of the content in which they are interested, where supervised

machine learning algorithms are applied to user input.

Two excellent overviews to classification of text and speech can be found in [10]

and [11] respectively, but we will briefly describe common relevant assumptions here.

Sebastiani describes the basic machine learning problem of text categorization as:
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the task of assigning a Boolean value to each pair dj, ci ∈ D × C, where
D is a domain of documents and C = {c1, . . . , c|C|} is a set of predefined
categories. [10]

For our purposes assume ‘categories’ correspond to ‘topics’ in the sense of discourse

subject. The machine learning problem is then, given N labeled examples (dj, ci), to

assign the correct label to some new document d. The relationship between classifi-

cation and word distributions of language arises when we consider how to represent

a document d.

Each document d is typically represented by a real-valued vector W where W =

〈w1, w2, ..., w|V |〉. The process of generating W from the lexical content (written or

spoken) of d is usually referred to as the feature extraction step. The most common

feature extraction schema is the bag-of-words model. Each document vector has |V |

dimensions, one for each word in the system vocabulary V . The values wi for a

document d are computed by weighting the number of occurrences (counts) of word

i in d. Various weighting schemes have been proposed, some specific to particular

classifiers (cf. [12], [13]), but a typical weighting is TF-IDF (term-frequency/inverse-

document-frequency) based, where common words that occur in many documents

(high DF) are discounted. Irrespective of the weighting scheme, bag-of-words vectors

are a sparse representation. A small fraction of vocabulary words occur in any par-

ticular document. Bags-of-words are entirely count-based. The order of words or any

other location information is discarded in this representation.
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The use of bags-of-words may contribute to the robustness of topic classification to

speech recognition errors. A standard pipeline for this task applies automatic speech

recognition (ASR) to the data, then constructs bags-of-words from the extracted word

or subword tokens for classification. These bags-of-words are based on accumulated

token counts, not derived from specifics of individual tokens (at their particular loca-

tions). As a consequence, we need not be constrained by the accuracy of particular

token instances - i.e. the word error rate (WER). As we will show, we can attempt

the task with limited training higher WER systems.

Existing approaches to topic classification of speech tend to fall into three dif-

ferent categories based on the type of tokenization used: full vocabulary word-based

ASR, subword (phonetic) ASR systems or zero-resource systems. Zero-resource refers

here to the lack of in-language, transcribed resources for building supervised acoustic

models, not the lack of topic labels or unlabeled acoustic data.

Initial work on the Switchboard corpus [14] by Peskin et al. (cf. [15]), using 44%

WER transcripts, demonstrated Topic ID error rates comparable to using human

transcripts. The 0.8% error on the 10 topic task was so low that until recently, the

task was considered trivial. More recent work, on the 40-topic Fisher English and 25-

topic Fisher Spanish corpora give a more complete picture of the relationship between

recognition errors and topic classification.

Results from Hazen, Richardson, and Margolis [16] using manual transcripts in-

dicate a more difficult overall classification task than Switchboard, irrespective of
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WER. They demonstrated the usefulness of leveraging ASR word lattices for the task,

achieving a 9.6% error rate, an improvement over 1-best ASR output, but still higher

than the 8.2% human transcript baseline. In this case, unlike the earlier Switchboard

results, the impact of ASR errors is not negligible. Sacrificing transcription accuracy

for improved decode speed, a necessity for high data volumes, [17] found more signif-

icant increases in ID error (from 10% to 19%) as WER reached 47%. Nonetheless,

the WER’s reported above do not approach the 60-70% WER recognition observed

during the first evaluation period of the IARPA Babel/OpenKWS program, for the

10 hour Limited LP training condition [18].

2.2.1 Limited Resource Approaches

The implication of limited linguistic corpora and resources when addressing the

language diversity of sites like YouTube with a global reach suggests one of two solu-

tions. Focus on the generation of large informal speech corpora for all of the world’s

6000+ languages on par with what is available in English or Spanish, or develop suffi-

ciently accurate and viable technology using only limited linguistic resources. Despite

all the rage over Big Data - most of the big data is unsupervised. With respect to

supervised resources - transcriptions, lexicons, treebanks, etc. - for most languages

speech technologies must make do with small data to start.

We can divide existing low-resource approaches between supervised and unsuper-

vised approaches. A typical supervised approach is to train a phonetic or subword
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ASR system. Arguments for subword-based approaches are that they require less

training data than large vocabulary systems and avoid the limitations of fixed vocab-

ularies. However, in the Fisher experiments on informal speech, in-language phonetic

tokens more than double the classification error rate from from 9.6% to 22.9% [16].

Likewise, cross-lingual phonetic recognition, using a phone recognizer in language

X to generate tokens from speech in language Y, the error rate more than doubles

again to 53%. Subsequent work showed that applying minimum classification error

(MCE) training for feature weighting reduces the classification error on in-language

and cross-lingual phonetic tokens to 19.2% and 47.7% respectively [19]. This still

represents a significant degradation from a word-based approach.

Unsupervised acoustic modeling techniques aim to discretely tokenize speech with-

out benefit of transcribed training data. From the perspective of topicality, if one

learns a stable and consistent set of tokens, one can detect the topic signal regard-

less of how tokens are labeled. In their work on self-organizing units (SOUs), Siu et

al. achieved 45.9% error on Fisher using HMMs with Segmental Gaussian Mixture

Models (SGMMs) to discover word like units from 4 hours of English unsupervised

training data [20]. This result compares to the cross-language phone tokenization

in [19].

The pseudoterm approach from Dredze et al. reported 7.5% ID error on the Switch-

board task [21]. At a high level a pseudoterm is one instance within a cluster of

acoustically similar speech intervals. Work by Carlin et al. considered the viability of
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Figure 2.1: Effect of ASR errors on topic classification of informal speech.

various features for pseudoterm discovery during the acoustic match phase, including

fully zero-resource features such as FDLP, PLP, and MFCC [22].

With respect to leveraging topicality, we proposed an alternative word-based, low-

resource approach using limited vocabulary keyword spotting in [3]. Rather than build

full-vocabulary LVCSR systems, we train a keyword spotter on only topic-rich words

and generate token counts in a spoken term detection framework. When combined

with deep neural net (DNN) acoustic models, this approach achieved Topic ID results

near the human transcript baseline. We will analyze these results further in Chapter

3 to consider alternatives to WER in predicting the utility of topic information.

If we collect reported classification error rates on available informal speech cor-

pora (LDC’s Fisher English and Spanish, Switchboard), we can plot them against
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the reported (or estimated1) WER (cf. Figure 2.1). Our own experiments on the

Fisher Spanish 25-topic task are the most comprehensive, in terms of variety of error

conditions and illustrate that the topic information necessary for this particular task

resides in at most 10-20% of the word tokens.

2.2.2 Within Document Locality

Much of the literature regarding topic classification of speech focuses on corpora

where topic labels are applied at the whole-document level. However, it is realistic

to suppose that during an actual conversation, lecture, or other informal spoken

document, participants may speak on multiple subjects at various points within the

document. Separating a document into coherent topical regions, topic segmentation

can be considered a task unto itself or useful for downstream retrieval tasks.

Early on in the information retrieval literature, it was recognized that the “subtopic

structuring” of documents could be used to improved full-document retrieval [23].

Hearst’s TextTiling algorithm [24], used in the aforementioned document retrieval

experiments, is the most widely sited text segmentation algorithm in the literature

and relies exclusively on bag-of-words “lexical co-occurrence patterns” roughly at the

paragraph level. We would argue that her results indicate that information relevant

to a particular query is often localized in sub-sections of the document.

1We have included only word-based systems in this graph, for which we can compute WER.
For word-spotting systems, we estimate WER from keyword detections, treating all other words as
out-of-vocabulary.
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A number and variety of algorithms have sought to improve on the straightforward

sliding-window approach of the TextTiling algorithm. Reynar’s Ph.D. thesis refers

to the notion of a “topic shift” in developing his segmentation algorithm [25]. Choi’s

C99 algorithm [26] improves on TextTiling in terms of speed and accuracy.

In terms of segmentation, Bayesian or latent topic models provide a simple frame-

work for expressing this notion of ‘subtopic-structuring’. In a Bayesian sense, a

topic is defined simply as a distribution over the corpus vocabulary [27]. Given this

definition, we can define a document as generated by a weighted mixture of topic

distributions. For segmentation, the latent topic distributions of a document vary

from region to region within that document. We will discuss latent topic models and

their relationship to language models in depth in subsequent sections, but a number

of improved topic segmentation models have been developed using Bayesian topic

modeling technique.

The current state of the art techniques, Du et al.’s Structured Topic Models

[28] and Ngyuen et al.’s SITS (Speaker Identity for Topic Segmentation) model [29]

have also been evaluated on informal meeting speech. The ICSI meeting corpus [30]

has been annotated to include topic segments. The only other corpus of informal

speech, to our knowledge, annotated at this level of granularity is the CallHome

Spanish corpus, which was annotated to study discourse structure [31]. However,

most corpora are not annotated to this level, so segmentation effects can only be

evaluated implicitly.
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Given the lack of segment-level labels, there is some work being done to consider

the effect of topic locality on the classification task. In our own work, we applied the

assumption underlying in Hearst’s IR work - that not all document segments need

to be relevant to the query - to the classification task. We focused on an aspect of

LDC’s informal corpora, whereby participants begin discussing the prompted topic,

then drift off-topic as the conversation progresses. We found that by modeling this

topic drift explicitly in a bag-of-words framework, we could reduce the ID error rate

by 23-47% [32]. By contrast, in the Reuters text categorization corpus, we found no

evidence of topic drift, at least as far as impacted ID error. We will consider these

results in more detail in Chapter 3.

Our assumption that the labeled topic in a supervised setting is most prominent

at the beginning of a spoken document need not be true, and is almost certainly too

restrictive in general. Recent work on a “theme identification” task for call centers

by Morchid et al. considers a location-dependent model for classification [33]. Here,

location is discretized to one of four quantiles of the spoken document and improves

classification accuracy by 7% over a comparable bag-of-words system. In this case,

no restriction is placed on which quantile is most relevant to the task.

We would draw two main conclusions from the body of work on topic charac-

terization (to include both classification and segmentation) of speech. First, as we

have mentioned is the robustness to ASR errors of topic information in terms of the

‘subject of discourse’. Second is the weakness of typical bags-of-words models, given
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the loss of information about word locations. We are certainly not the first to point

out the limitations of the bag-of-words assumptions, but we would simply highlight

the role of location or proximity in word usage. As we consider other formal models

of language for speech recognition and retrieval we will again notice how the locality

of word usage must be taken into consideration.

2.3 Speech Recognition

In the context of speech recognition, a number of efforts have been made to aug-

ment traditional N-gram language models with topic information. While there is a

broader literature focused on the general problem on modeling word sequences, such

as incorporating syntax or approaches to N-gram frequency estimation, we highlight

efforts on topic and locality in particular.

Two flavors of models have been examined, each focusing on a different aspect

of topicality. Cache-based language models (also referred to as adaptive or trigger

models) attempt to exploit the ‘burstiness’ property of language, that is, words are

more likely to repeat within the same document. Topic mixture models look to

exploit the different word co-occurrence patterns that occur when different topics are

discussed within a document. These two areas correspond to our definitions of local

and broad topic context, respectively.

Cache-based language models assume that the probability of a word or N-gram in
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a given word sequence W is influenced both by the global frequency of that word or

N-gram as well as the frequency within the current document or preceding K words.

The intuition behind this assumption is that most words are rare at a corpus level, but

when they occur, they occur in bursts. Because of this, a local frequency estimate,

such as from a K word ‘cache’ of recently observed words, may be more reliable than

the global frequency. Such a cache or adaptive approach has the advantage of being

straightforward to implement. Jelinek [34] and Kuhn [35] both find benefits to using

these types of models for speech recognition. Rosenfeld also examined adaptive mod-

els within a maximum entropy framework, focusing on what he referred to as ‘trigger

pairs’, and also realizing significant gains in WER [36]. More recently, Singh-Miller

and Collins adapted Rosenfeld’s work to improve discriminative language models for

N-best and lattice rescoring [37].

Adaptive or cache-based language models leverage what is referred to elsewhere

as the contagion property of words. Backoff and smoothing techniques for traditional

N-gram models have also aimed to model this property, in order to better account

for observed word frequency distributions. Arguably the most effective N-gram lan-

guage model technique, Modified Kneser-Ney smoothing [38], captures this property

of language and has proved highly effective for speech recognition. Beeferman et al.,

building on Rosenfeld’s trigger models developed a model based on expontial families

to model the distance between trigger pairs based on the empirical measurements of

the strength of this contagion property [39]. Beeferman’s model was initially applied
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to text segmentation [40] rather than speech recognition. We will discuss the conta-

gion property with respect to language models and its relation to topicality in more

detail in the last section of this chapter.

While cache-based or trigger models focus on information within the current doc-

ument, topic-based mixture models aim to incorporate information based on word

usage patterns across documents. The basic idea is to identify in some way the topic

or topics in the document to be processed and then to use topic-specific language

models in place of or interpolated with a base language model to do the particu-

lar computation (decoding, re-scoring, or simple likelihood computation). In some

respects, using topic information in this way can considered a form of domain adap-

tation.

Techniques that attempt to incorporate topics in this manner must first construct

a set of topic-dependent language models on training data. This could be done by

explicit labels, in supervised setting, or by learning clusters or latent topic models on

the training data. Work in 1999 by Florian and Yarwosky [41] and Khudanpur and

Wu [42] aim to create topic-dependent N-gram models using a clustering approach.

In their work, explicit topic labels were assigned to training to documents via vector-

space clustering methods, and then counts taken from the labeled partitions. For

speech recognition, first pass output must be used to decide which topic model or

models will be interpolated with the global N-gram model. This approach was shown

to decrease WER by up to 1% absolute.
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Other approaches, using LDA [43], PLSA [44], or similar latent variable mixture

models have been proposed similar to the works by Florian and Khudanpur. How-

ever, instead of vector-space clustering, topic inference is done within a probabilistic

framework, either at training or decoding time. Both Heidel [45] and Hsu [46] use

latent topic mixture models to re-score N-best hypotheses using a mixture of topic-

dependent and topic-independent N-gram language models based on the inferred topic

distribution of the test document. In Hsu’s work, however, a hard clustering of doc-

uments, rather than latent states, is used when training topic-dependent N-gram

models. The work by Hsu resulted in a 2.4% reduction in WER on the MIT Lectures

data set. Similar (though smaller) gains were observed by Liu et al. on Mandarin

broadcast conversation [47] and by Huang et al. on the AMI meeting corpus [48].

Almost exclusively, the works cited above focus only on re-scoring recognizer

output. However, the lattice of possible word sequences (and by implication any N-

best list) are generated and pruned using the original acoustic and language models.

If a word sequence that is more likely under the topic models gets pruned before

re-scoring, having a good topic-dependent model does not help.

In the context of latent topic models, we can explicitly define a topic-dependent

unigram language model for any given document d, once we have inferred, through

any technique, the mixture of topics for that document, θ(d). For a latent topic model

with T topics, θ(d) is a T -dimensional vector where each element i is the fraction of d

that can be attributed to topic i. Practically, θ(d) acts a mixture weight so that the
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unigram language model associated with d is given as:

P (w) =
T∑
i=1

θ
(d)
i · P (w|topici) (2.6)

In recent work, we found that interpolating these document-specific unigram mod-

els with the base N-gram model and using this topic-biased model for decoding did

indeed have a significant effect on the pruning of keywords. We took four languages

from the first and second evaluation periods of the IARPA Babel program [9] (Taga-

log, Vietnamese, Zulu, Tamil) and learned an LDA topic model with 100 topics from

the training transcripts. We used lattice soft counts from the first pass recognition

output in a manner similar to [47] to infer the topic proportions θ(d) of each document.

From this we could construct topic-biased unigram models for each document which

we applied during a second decoding pass.

We verified the impact of topic information on lattice pruning by looking at lat-

tice recall of the Babel evaluation keyword lists (roughly 2-5K words or phrases per

language). Table 2.1 shows the impact of applying topical unigrams at decoding time,

versus the baseline output, measured in terms of the proportion of keyword hits that

could be found somewhere in the output lattices. By merely adding topic-dependent

unigrams to the base language model, we were able to preserve 2-5% of keyword hits

from pruning [49].
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Language Baseline / Re-score Re-decode

Tagalog 0.778 0.792
Vietnamese 0.555 0.567
Zulu 0.718 0.739
Tamil 0.573 0.622

Table 2.1: Keyword Recall obtained re-decoding with topic-augmented models.

2.4 Retrieval

Language models have applications not just for decoding, but also during retrieval

of documents. Language model-based retrieval is major area in the information re-

trieval (IR) community, staring with the work in the late 90’s by Ponte and Croft [50].

Incorporating topicality into the retrieval language models, as with Heart’s use of lo-

cality, has improved retrieval performance.

In many text retrieval tasks, queries are often tens or hundreds of words in length

rather than short spoken phrases. The likelihood of the query word sequence is then

evaluated under a document-specific language model. Similar to the manner in which

we computed a topic-dependent model from the per-document topic proportions θd,

multiple efforts in the IR community have used LDA or similar techniques to compute

a topic-dependent document model (cf. [51], [52], [53]). In these efforts, the topic

model information was helpful in boosting retrieval performance above the baseline

vector space or N-gram models.

As previously discussed, topicality also arises in the burstiness property of lan-

guage. Church and Gale examine this property in great depth in their studies of
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Figure 2.2: Word frequencies of matrimonio (marriage) in documents grouped to-
gether by topic.

document frequency [54], Poisson mixtures, [55], and word adaptation [56]. Look-

ing at content words in the Brown corpus, they illustrate how content words tend

to not be evenly distributed across a corpus (as a Poisson generative assumption

would predict), but instead occur in bursts in a small number of documents or topics

(genres) [55].

As an example of this phenomenon, we can visualize these bursts on LDC’s Fisher

Spanish corpus (as Church and Gale did for the Brown corpus) by plotting the fre-

quency of content words in each document, grouping documents with the same topic

label adjacent to one another. Documents are given as points on the horizontal axis

and dashed blue lines indicate topic boundaries. We can compare the plot for matri-

monio (marriage, cf. Figure 2.2) with the same plot for a more common word juntos

(together, cf. Figure 2.3).
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Figure 2.3: Word frequencies of juntos (together) in documents grouped together by
topic.

While juntos is commonly used in contexts unrelated to human relationships, there

are noticeable bursts in the Dating and Breaking Up topics. Taking the χ2 statistic,

used for selecting strongly correlated features for text classification (cf. [57]), we obtain

scores of 46.2 and 323.4 for juntos co-occurring with those two topics, respectively.

For 25 topics, a χ2 of greater than 44.3 indicates a 99% confidence of a correlation

between the frequency of juntos and a given topic label. Conversely, the scores for

juntos and the other 23 topics are less than 11.5, which is the 1% confidence level, as

a score of 0 indicates no correlation. In these cases, we are comfortable relating the

burstiness in particular documents to the underlying topic.

By contrast, the function words el and como - ‘the’ and ‘how’ respectively - while

quite variable in the frequency with which they occur in particular documents, are

not as clearly correlated with particular topics (cf. Figures 2.4,2.5). The highest
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Figure 2.4: Word frequencies of el (the) in documents grouped together by topic.

correlated topic for como according to the χ2 metric is Memories with a score of

21.4, which is outside the confidence interval. However, the word el, according to the

χ2 metric, is correlated with the Power topic with a score of 122.0. The word el is

clearly repeated quite frequently in all documents, but it seems hard to argue that

this is because it is closely related to the subject matter.

We will look at the application of both burstiness (or local context) and topic

information (broad context) to the retrieval task in Chapter 4. The burstiness prop-

erty (or contagion) can account for the power law distribution of word frequencies in

a corpus. With this in mind, we conclude this discussion of topics within research

areas surrounding speech recognition and retrieval by looking at how topics arise in

different formal frameworks for statistical language modeling.
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Figure 2.5: Word frequencies of como (how) in documents grouped together by topic.

2.5 Generative Models of Language

We have heretofore discussed language models and latent topic models (LDA)

somewhat interchangeably. In this section we want to sketch the relationship be-

tween N-gram language models and latent topic models, focusing on the burstiness

or contagion property. Given the properties of these models, we would then propose

our own building on the strengths and weaknesses for our stated task.

2.5.1 Urn Models

There is a family of models, mostly attributed to George Pólya, which can be used

to model the burstiness phenomena in language. In the multivariate formulation, we

consider an urn filled with balls of V different colors, initially containing xi balls of

color i. At each point in time one is drawn, its color noted. This ball is then replaced
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along with an additional ci balls of the same color. This ci is often referred to as the

contagion parameter.

Thus ‘burstiness’ is modeled as a rich-get-richer scenario. If we use words tokens

instead of balls and word types in place of colors, we have a simple generative model

for corpora. If we have initial counts xi and let ni be the number of additional words

of type i that have been drawn, the probability of a particular word at this time in

the generative process is given as:

P (colori) =
xi + ni · ci∑V

j=1 (xj + nj · cj)
(2.7)

One of the properties of Pólya urn models is exchangeabilty : the probability of

an n-length sequence of draws depends only on the number of balls drawn of each

color, not on the order in which they are drawn. This property is also evident in

bag-of-word models, which represent only counts of words and not their order.

Pólya urn models arise in the related distributions in latent topic modeling: multi-

nomials (the topics) and the Dirichlet (the prior on the multinomials). At the limit,

the proportion of balls in the urn scheme is distributed as a Dirichlet with parameters

(c1, . . . , cV ) identical to the contagion parameters on the urn [58]. Multiple authors

also note that the Dirichlet-Multinomial is a Pólya distribution, arising from such

an urn scheme (cf. [59], [60], [61]). In a Bayesian setting such as Latent Dirichlet

Allocation (LDA), the hyperparameter β for the Dirichlet prior of the multinomial

34



CHAPTER 2. BACKGROUND

topic word distribution is viewed as a smoothing constant or concentration parame-

ter [27]. In the Bayesian sense this is intuitive, given a V -dimensional Dirichlet acts

as a distribution over V−dimensional multinomials. But in terms of an urn model,

β is simply a uniform contagion parameter.

We can characterize the relationship between latent topic models like LDA and

these Dirichlet-Multinomial urn models as many to one. The LDA generative model

holds that a document is generated from a weighted mixture ofK topics (i.e. Dirichlet-

Multinomial unigram models). In contrast, a cache or adaptive language model is a

single constrained urn model, where the initial contents of the urn are given by the

base N-gram language model, and the contagion parameters are captured by the

interpolation weight.

2.5.2 Dirichlet Processes

Urn models can also be thought as arising out of a class of models called Dirichlet

processes. Dirichlet processes are thought of as “distributions of distributions.” [62]

In particular, Pittman-Yor processes, which are a particular family of Dirichlet pro-

cesses, have been shown to relate to both N-gram language models and to Dirichlet-

Multinomial mixtures (i.e. LDA).

Both Goldwater et al. [63] and Teh [64] demonstrate the equivalence between

Interpolated Kneser-Ney (IKN) language models and what Teh calls “hierarchical

Pittman-Yor” language models and what Goldwater et al. refer to as a “two stage”
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Figure 2.6: Relationships between various models of word generation.

Pittman-Yor process. Teh also argues that Modified Kneser-Ney (MKN) is an ap-

proximation to this hierarchical Bayesian non-parametric model.

A stylized UML diagram of the relationship between various language and topic

models, based on the previous discussion and showing direct generalization where

possible, is presented in Figure 2.6. This is meant to be illustrative, not authoritative

or exhaustive.

One final note contrasting MKN or IKN with a cache or adaptive language model,

which is directly related to our work in this area. At recognition time, with a typical

N-gram language model, the urn is fixed, so to speak. A cache model on the other

hand allows the generative process to continue and recognition to benefit from the

topic information in the unseen document (at a cost).
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In Dirichlet-Multinomial mixture models such as LDA and variants or any the

latent variable models such as Du et al.’s Structured Topic Models for example, one

of the principle modeling challenges is estimating the unobserved (latent) parameters

from the observed data (word sequences). In the literature, this task is referred to

as approximate posterior inference, and as topic information is often expressed as a

latent property of the data we will introduce the most common techniques here. We

will refer back to these techniques in Chapter 5 when we develop our own cache-

augmented latent topic model.

2.6 Posterior Inference

We now describe the most common posterior inference techniques. In the context

of speech retrieval we will distinguish estimation, whereby we learn model parameters

on some training corpus, and inference, where we obtain the latent variable state on

unseen or held-out data (i.e. the ASR development or test set). Nonetheless, both

steps are examples of approximate posterior inference, in which the latent variable

properties are learned from observed data.

Posterior inference techniques typically applied to graphical models can be cat-

egorized as Variational Bayes (VB) or Markov Chain Monte Carlo (MCMC) tech-

niques. Variational Bayes techniques perform optimization on a distribution similar

to but simpler than the true posterior distribution, typically via the Expectation
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Maximization (EM) algorithm. MCMC techniques estimate the posterior distribu-

tion by integrating sampled values from a Markov chain that converges to the desired

distribution.

Blei and Jordan, in their original derivation of LDA [43], presented a Variational

Bayes method for estimating the LDA parameters. This is built off of Jordan’s early

work where he introduces variational methods that leverage Jensen’s inequality to

bound the log likelihood [65]. In their original paper, Blei and Jordan refer to the

topic distributions with the variable β, and the variational approximation as φ2. The

variational approximation to the topic mixtures θ is given as γ. Blei and Jordan

show that the Kullback-Leibler divergence between the true posterior distribution

(conditioned on the true parameters β, θ) and the variational distribution q(θ, z|γ, φ)

can indeed be optimized using the EM algorithm.

(γ∗, φ∗) = arg min
(γ,φ)

D [q(θ, z|γ, φ)‖p(θ, z|w, α, β)] (2.8)

The variational approach necessitates finding some appropriate q that is tractable

for optimization techniques. The second approach to posterior inference is a set of

sampling techniques referred to as Markov Chain Monte Carlo. MCMC sampling was

first introduced by Metropolis et al. [68] in their work on modeling behavior of atomic

particles and generalized in a statistical framework by Hastings in 1970 [69].

2Except for here, will use φ to refer to the original topic distributions, to be consistent with the
nomenclature of Stevyvers et al. [66] and related work
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The basic idea is arrived at by combining the definition of the expected value

of a continuous random variable and Monte Carlo approximations of integrals. The

expected value E[f(X)] is given by the integral:

E [f(X)] =

∫
f(X) · P (X) dX (2.9)

The intuition behind MCMC is to apply Monte Carlo methods for numerically ap-

proximating the expected value of X.

In the specific case of approximate inference, the X we are interested in is just

the parameter values given the observed data W (for simplicity, we denote all of our

latent parameters (Z,K,Θ,Φ) = X:

E [X|W ;α, β, ν] =

∫
X · P (X|W ;α, β, ν) dX (2.10)

If one could sample from the posterior distribution P (X|W ), then one can numerically

approximate the interval in Equation 2.10 and obtain an estimate of the true value.

The Markov Chain part of MCMC requires one to produce a Markov chain such that

as the sampling procedure progresses, the sample approaches (in the limit) a random

sample from P (X|W ) [70]. By extension, averaging samples from the chain gives the

desired expected value estimate.

Two related MCMC sampling techniques that produce such a Markov Chain are

Gibbs Sampling and the Metropolis-Hastings algorithm. Gibbs Sampling pro-
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ceeds by sampling one unobserved variable at a time, conditioned on the observed

data and the current sampler state for the other unobserved values. By the sampler

state, we mean the currently sampled values temporarily assigned to the unobserved

variables. In our model this would mean sampling each zd,i and then each kd,i given

the observed words and current state of the other sampled variables Z and K. The

Markov Chain properties of the procedure ensure that as we proceed, the sampled

values approach the expected values of the topic and cache states given the observed

words. In layman’s terms, the expected value gives us the best approximation for the

topic and cache mixture underlying the observed words.

In the general case, assuming a series of latent states Z = {z1, . . . , zn} and obser-

vations X = {x1, . . . , xm}, Gibbs sampling proceeds as follows. Assign some initial

values to the states Z. Then, iteratively, for each zi, sample a new value for zi accord-

ing to the distribution P (zi|Z−i, X). As elsewhere, the subscript −i indicates that

the sequence does not contain the ith item.

Gibbs Sampling can be shown to be a specific case of the Metropolis-Hastings

algorithm (see [70] for a full overview of the various MCMC techniques). Metropolis-

Hastings constructs the Markov Chain of samples for the unobserved variables by

means of proposal distribution (also called a jumping distribution). The proposal

distribution is used to suggest samples, given the current sampling state. Any function

f(Z,X) which is proportional to the posterior distribution P (Z|X) we are trying to

approximate is used to accept or reject proposed samples, making Metropolis-Hastings
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a form of generalized rejection sampling.

If the current sampling state is Zt and a new value z′ is proposed for zi, then

with Metropolis-Hastings, the acceptance probability α of that particular sample is

calculated as:

α = min

{
1,
f(z′, Zt

−i, X)

f(Zt, X)

}
(2.11)

The new sampling value is assigned to the sampling state for zi with probability α.

In the Gibbs Sampling instance of Metropolis-Hastings, the proposal distribution

is simply the distribution P (zi|Z−i, X) and samples are always accepted. In practice,

this need not be the case. A burn-in period may be used, where samples are dropped

from the first N iterations, so as to allow the Markov process to move away from the

initial conditions to a steady state. Another alternative is to use thinning where only

a proportion of samples are kept. The effectiveness of either technique is best judged

empirically.

2.7 Summary

We have aimed to highlight both the multiple aspects of topicality in language,

the theoretical frameworks within which they live and by which they are evaluated,

as well as the their successful application to various areas of speech recognition and

retrieval. Given the positive impact of topic information in its various forms discussed

in this chapter, we believe it worthwhile to examine this in more depth.
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Topic Classification

In this chapter we examine locality and topic information in the context of topic

classification of speech. We wish to highlight the importance of locality as pertains

to the topics of informal speech but also to highlight the error robustness of the

topic signal. We demonstrate a much stronger relationship between keyword retrieval

metrics and Topic ID Error than between that and word error rate (WER). This

analysis leads us to focus in subsequent chapters on more specific models of topic

information for keyword-based retrieval.

3.1 Locality in Informal Speech

We first examine the location-sensitive nature of topic information in spoken doc-

uments. By a simple initial experiment we can show that information corresponding
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to the topic label for the available topic-annotated spoken corpora tends to be con-

centrated towards the beginning of documents (cf. Table 3.1). Building on this result

we then present a model for topic locality within a bag-of-words framework. Apply-

ing our model to the classification task, effectively ignoring irrelevant words later in

documents we can reduce the error rate by up to 50% (cf. Figure 3.1).

Figure 3.1: Topic ID Error reduction for location-dependent features

Presumably topic location dynamics is domain-specific, so we contrast informal

speech with newswire text, where we do not expect our assumptions about speech to

hold. We perform the classification task using the Fisher English and Spanish human

transcripts and the Reuters RCV1 text categorization corpus [72].

Rather than building bags-of-words from each document in its entirety, we restrict

each document vector to a specific quartile. If the topic signal is evenly distributed,

we do not expect the performance on one quartile to be significantly better or worse

than another. By the first quartile, for example we mean that will construct features
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Corpus All 0-25% 25-50% 50-75% 75-100%

Reuters 20.1 23.5 21.9 21.7 21.2
Fisher English 11.2 8.9 24.3 38.5 43.6
Fisher Spanish 25.0 25.6 34.7 42.1 48.3

Table 3.1: ID Error rate (%) observed when training and testing on data by quartile.

for both training and testing classifiers from only the first 25% of words (by position)

in each document. So for a document with 100 words, we would only count words 1

to 25 for the first quartile test, words 26-50 for the second 25%, and so on.

Table 3.1 shows the results of this simple test using a Naive Bayes classifier as

described in [32]. Not surprisingly, performance on the Fisher corpora, in which

participants are asked to call in and are prompted to talk about a particular topic

(which is used as ground truth for the task), is significantly higher on the first quar-

tile, roughly as good as using the entire conversation, and significantly lower on the

remaining 75%. Conversely, the Reuters corpus does not exhibit any obvious location

dependence, as we expected.

3.1.1 Static Topic Drift

In the general case, there is no reason to believe an arbitrary division such as

a quarter of a document should capture within-document topic locality. Instead we

propose to model the observed topic drift, in which the contribution of individual

occurrences of words to the effective topic signal (as measured on the identification
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task) decreases over the course of the document.

We first model drift by supposing a global decay rate for all words in the vocabu-

lary. This idea is similar in spirit to decaying cache language models (cf. [73]). Within

our framework we can also learn word-specific decay rates for each word using a min-

imum classification error (MCE) training framework. With the dynamic approach,

for the informal corpora we are able to cut ID errors in half from the full bag-of-words

baseline.

To apply a decay model to the word counts of a document when computing a bag-

of-words vector, for each word type we apply a decay function to each token instance

evaluated at position p and with decay rate λ and sum over tokens. So the count cw

for a word w in a document of |D| words is given as:

cw =

|D|∑
i=1

d

(
p =

i

|D|
, λ

)
· Iw(wi) (3.1)

Iw(wi) is an indicator function whose value is 1 where wi = w and 0 otherwise.

We considered three possible decay functions, exponential, gaussian, and linear

(cf. Eqns. 3.2,3.3,3.4) over the range [0, 1]. Examples of each for different λ values
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(a) Exponential (b) Gaussian (c) Linear

Figure 3.2: Decay function behavior for selected λ.

are shown in Figure 3.2.

dexp(p, λ) = exp (−λ · p) (3.2)

dgauss(p, λ) = exp

(
−λ

2 · p2

2

)
(3.3)

dlin(p, λ) =


1− λ · p : p ∈ [0, 1]

0 : p /∈ [0, 1]

(3.4)

In the static case, we swept values for λ from 0 to 5, where 0 corresponds in each

case to the unweighted baseline counts and 5 being the point after which we observed

no additional benefit or degradation in performance. The linear decay generally

performed poorly, regardless of λ.

The best results of the static model are listed in Table 3.2. Again we see that

modeling drift has no significant effect on performance on the Reuters text corpus

whereas for the informal speech, the exponential decay with λ = 4 decreases ID error
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over the bag-of-words baseline by 46% and 23% relative for English and Spanish

respectively. Interestingly enough, evaluating dexp(p = 0.25, λ = 4) = 0.37 shows

that words after the first quartile are discounted by at least 63%, but do contribute

a small amount to the overall weighted word counts.

3.1.2 Word-specific Topic Drift

While the static model is effective in applying location-dependent weighting to all

words uniformly, our dynamic model supposes that specific words are more or less

sensitive to their position in the document with respect to the Topic ID task. We

simply extend Equation 3.1 with per-word decay rate λw.

cw =

|D|∑
i=1

d

(
p =

i

|D|
, λw

)
· Iw(wi) (3.5)

We optimize per-word weights λw using a Minimum Classification Error (MCE)

discriminative framework. We configure our Naive Bayes classifier to compute a score

S(t|D) for each document D against each topic t. We can compute a loss function

based on a misclassification measure M(D) and maximize the difference between the

score for the correct topic tC and the highest scoring incorrect hypothesis tI .

M(D) = S(tI |D)− S(tC |D) (3.6)
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We compute the partial derivative and update equations for a gradient-descent

optimization of M(D) over λw. These partial derivatives, with the score function

S(t|D) given by a Naive Bayes classifier based on our modified counts cw, can be

expressed terms of the decay functions. A full derivation for λw updates is provided

for reference in Appendix A.

Allowing the gradient descent to run to convergence reduces the error rate further

over the static model. the overall results are listed in Table 3.2. Learning λw for an

exponential decay (dexp), outperformed the best static decay model, which was also

exponential, with a fixed decay reate of λ = 4. These numbers correspond to the error

rate reductions highlighted a the start of the chapter (Figure 3.1). A representative

run of the MCE training, contrasting the loss function on both train and test data

with the observed error metrics on the test data is given in Figure 3.3a.

If we look at the words with the highest learned decay rate (Table 3.3b) on the

Spanish corpus, two things stand out. High decay rates are learned on both informa-

tion rich words (guatemala, méjico, boston) and typical stopwords (hm, oh, śı). Given

the corpus, where participants who do not know one another call into a switchboard

at LDC to be recorded, this makes sense. The place names, while information rich,

typically occur during the chit-chat at the beginning of the conversation, but are in

fact irrelevant to the topic.

As we have seen, topic information can be highly localized, and we argue that

the phenomenon we have observed and modeled lend support to the consideration of
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(a) Error measures on learning λw.

Word (Decay Rate)

hm 10.44 boston 8.31
guatemala 10.19 muy 8.28
asunción 9.95 más 8.16

acá 9.85 chicago 8.13
oh 9.09 miércoles 8.09
śı 9.01 puerto 8.06
uh 8.86 me 8.04

méjico 8.66 um 7.96
ajá 8.52 es 7.86

bonito 8.40 uhum 7.83

(b) Highest decay-rate words

Figure 3.3: MCE training measures

Corpus λ Iterations Error
dgauss dexp

Reuters 0 - - 20.1%
1 - 20.5 20.5%

English 0 - 11.2%
4 - 7.3% 6.0%
λw 2000 5.7% 5.5%

Spanish 0 - - 25.0%
4 - 19.9% 19.3%
λw 2000 15.3% 14.2%

Table 3.2: Topic ID error by corpus for feature decay models.

decaying cache style language models. We will now turn our attention to topicality

and its relation to speech recognition errors. Although topics are highly localized,

the information is extremely robust to a high number of ASR errors.
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3.2 Word Error Robustness

As we discussed in Chapter 2, topic classification performance on speech recog-

nition output is remarkably insensitive to changes in word error rate (WER) over a

broad range of reasonable operating points.

In the rest of this chapter we present and elaborate on work originally presented

in [3] to demonstrate how errors on information-rich keywords are more predictive of

classification performance than WER. These experiments motivate subsequent chap-

ters where we focus on using topic information to target improvement of KWS accu-

racy.

The reason why classification performance is insensitive to WER is fairly intuitive,

particularly given the work on feature selection for classification (cf. [57], [16]). Fea-

ture selection experiments generally indicate that using only the most discriminative

words results in equal or better performance than using the entire vocabulary. WER

by contrast is computed over all words in the vocabulary, as we mentioned in Chapter

2. Feature selection results imply that most words are uniformly distributed between

positive and negative training examples (and thus uncorrelated with the topic label).

We would assume that the insensitivity of classification error to WER changes indi-

cates that errors on these ‘uninteresting’ words are also evenly distributed between

positive and negative training examples. In other words, most of the change in WER

is related to these words that have no relevance to the topic content.

We replicated the analysis in [57] and demonstrate this effect on the Fisher Spanish
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Figure 3.4: Effect of χ2 feature selection on the Fisher Spanish classification task.

25-topic classification task described previously. By selectively increasing the vocab-

ulary used for classification based on the χ2 statistic, we achieve the best error rates

using only a small fraction (2-3%) of the vocabulary (Figure 3.4). We test a wider

range of error conditions using keyword search metrics, by narrowing our focus to the

top 1000 words, according to the χ2 statistic.

3.2.1 ASR Models

To capture the relationship between ASR errors and topic classification perfor-

mance, we first decode the Fisher Spanish with a range of acoustic and language

models of varying complexity. We contrast the performance of the actual ASR sys-

tem with randomly generated word errors induced on the ground truth but covering
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a wider range. To increase the amount of error further (without simulation and using

the same training data) we also construct limited vocabulary keyword spotters for

the same task.

We first use the Kaldi speech recognition toolkit [74] to train a 45K word Spanish

ASR system on only the 14 hour Spanish Call Home data [75]. The vocabulary and

pronunciations are also restricted to the Call Home lexicon. This translates to out-

of-vocabulary (OOV) rates of 47% (types) and 5.7% (tokens). In fact, roughly 10%

of our top keywords were OOV.

For all acoustic model training, we use 13-dimensional perceptual linear predictive

(PLP) features. These PLPs are used to train both speaker-independent and speaker-

adapted triphone models using typical state-clustered HMM’s with GMM output

densities (denoted GMM in subsequent figures). We also trained Subspace GMM’s

[76] (SGMM) from the PLP’s as well (denoted SGMM). The SGMM parameters can

also be boosted with a maximum mutual information (MMI) criterion. All models use

a trigram language model estimated on the Call Home transcripts, and the individual

data points for a specific acoustic model reflect varying the language model weight

during decoding (cf. Figure 3.5).

We also use Kaldi’s CPU-based deep neural net (DNN) acoustic models in a hy-

brid HMM-DNN configuration [77] (denoted DNN). For small training sets (∼10hrs)

Kaldi uses a smaller network configuration of only 2 hidden layers and 879 input and

output dimensions. The DNN features had little impact on the full vocabulary ASR
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results, but large impact on the keyword spotting results, as we will see.

Figure 3.5 shows just how little effect a large change in WER has on topic classi-

fication, consistent with previous work. The dashed lines indicate the EER of topic

classification training and testing on human transcripts with an SVM (7.1%) or Naive

Bayes (12.2%) classifier. We see that a 9.4% difference in WER still falls within the

bounds of performance on manual transcripts.

Figure 3.5: Relation between WER and topic detection EER for Fisher Spanish

To understand the significance of this performance range we simulate word errors

over the entire range from 5 to 95% WER by randomly inducing either substitutions

or deletions in the ground truth transcripts. The full vocabulary systems tended to

exhibit roughly twice as many substitution errors as deletions. To induce a 35% WER

system, each word in the true transcripts had a 35% change of being modified, and if

chosen, a 33.3% change of being deleted or a 67% chance of being replaced with an

incorrect word. Word substitutions were selected uniformly from the vocabulary. In
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Figure 3.6: Simulated WER and topic detection EER for Fisher Spanish

an actual ASR system, substitutions are often ‘sounds-like’ errors, but this distinction

is lost when computing WER. For comparison we also simulated systems over the

same WER range but entirely with deletions.

Figure 3.6 compares topic classification performance on the simulated errorful

transcripts at 5% WER intervals. We ran 10 trials for each type of error induction

method at each WER point, and the standard error over the trials are indicated by

the error bars. Figure 3.6 is plotted with the EER on a log scale for legibility. For

the deletion-only systems, we do not see changes in classification EER larger than a

single standard deviation until WER exceeds 50%. For the mixed error simulation

(Sub+Del) significant changes are observed at lower WER (higher accuracy) systems.
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Figure 3.7: Simulated WER and topic detection EER for Fisher Spanish. Actual
ASR systems in green.

The difference between the two simulations makes intuitive sense in terms of the

classification task. Deletion errors suggest missing but not misleading evidence for the

conversation topic. If we place the actual ASR systems on the same graph with the

simulations (cf. Figure 3.7) we observe that despite exhibiting a 2 to 1 substitution to

deletion ratio, the true ASR errors induce topic classification performance closer to the

deletion-only simulation. For example, in the a system with 65% WER, approximately

2500 out of 291000 substitution errors differed only by the addition or subtraction of

the plural ‘s’ at the end of the word - e.g. matrimonio vs. matrimonios. A random

substitution is much more likely to result in a topically unrelated word.
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3.2.2 Keyword Spotting Models

To present an additional perspective on where topic content begins to be lost

due to speech recognition errors we also built a limited vocabulary keyword spotting

system for the top 1000 keywords. In most cases the keyword spotting system does

not permit classification performance on par with the human transcript baseline. By

evaluating the higher error system in terms of keyword retrieval metrics, rather than

aggregate WER, we are better able to identify which errors from the ASR system on

which to focus subsequent efforts for improvement. In our analysis, ranked retrieval

metrics, particularly the area under the keyword recall-precision curve (AUC), are

better predictors of the ability to perform topic classification.

We construct a keyword spotting system from standard HMM-based ASR tools,

again with the Kaldi framework. Our training corpus is the same as the full vocab-

ulary system, however we assume that only instances of the top 1000 keywords are

annotated for acoustic training. The remaining speech is mapped to a filler word.

The language model, if useful at all, models the transition from filler word to the

keywords and vice versa. However, the best retrieval performance was observed with

a minimal language model scaling factor, indicating the acoustic model contained

most of the useful information.

The keyword spotting follow the same training procedure as for the full vocabulary

system so we obtain results for GMM, SGMM, and DNN output density models

on HMM states (i.e. context-dependent triphones). Further details of the keyword
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spotting architecture can be found in [3].

3.2.3 Results

In contrast to the full-vocabulary systems, the keyword spotting models do not

exhibit Topic ID performance on par with the transcript baseline, except for the

DNN-based models (cf. Table 3.3). Rather than be disappointed by these results,

we use this opportunity to look at the retrieval results and identify causes for the

degradation.

The most noticeable difference between the DNN and GMM models is the increase

in recall. On average, the DNN models recalled nearly twice as many keyword

instances as the other models. By contrast, the GMM keyword spotters had the

highest precision on the search task but the lowest overall topic performance. We

may conclude that a higher false alarm rate (low precision) does not by itself inhibit

topic classification performance.

Based on the recall and precision of the keyword spotters, (top portion of Ta-

ble 3.3) it is tempting to argue that recall by itself is sufficient for reasonable Topic

ID performance. However, the ranked retrieval performance reveals something more

nuanced.

Figure 3.8 shows the keyword spotting retrieval results in terms of the mean search

AUC (MAUC) of all keywords plotted against EER. The keyword spotting systems,

even with DNN features, are at least 50% lower in terms of search accuracy than full-
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Keyword Spotting Systems

Acoustic Model EER Recall Prec. MAUC TWV

GMM 0.39 0.084 0.641 0.043 -0.004
SGMM 0.29 0.172 0.545 0.079 -0.012
DNN 0.12 0.379 0.338 0.154 -0.038

Full Vocabulary ASR

GMM 0.09 0.278 0.464 0.395 0.342
SGMM 0.08 0.318 0.482 0.428 0.384
DNN 0.07 0.269 0.458 0.433 0.384

Table 3.3: Naive Bayes Topic ID EER and keyword retrieval performance for various
metrics. Paired t-test gives p < 2 × 10−16 between different acoustic model EER
results.

vocab ASR performance. The DNN system, however is twice as accurate in terms of

ranked retrieval than all other keyword spotters.

Ranked retrieval metrics reflect the order of results. Higher AUC implies that

correct keyword detections are more likely at the top of the term detection results.

As we generate counts for Topic ID from the results, detections at the top contribute

more to our bag-of-words model. We conjecture that for the DNN models, retrieval

is good enough, given sufficient recall of topic-relevant words, that false alarms that

obscure the topic signal do not occur high up in the result list.

3.3 Conclusion

In this chapter we considered topic information from the perspective of the topic

classification task. We have drawn two conclusions, first, topic information is sensitive
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Figure 3.8: Effect of keyword accuracy on Topic EER. Dashed lines indicate Naive
Bayes and SVM performance on human transcipts. Dotted lines indicate standard
deviation across topics on human transcript performance.

to location, that is, a bag-of-words model that ignores location does not accurately

model topic information spoken documents (with respect to classification). Secondly,

we have examined the robustness of topic information in speech with respect to recog-

nition errors. We have argued that improving keyword retrieval is more relevant to

improving topic classification than is optimizing word error rate. Thus in subsequent

chapters, we will be more interested in developing techniques that improve KWS

performance on speech, not just WER.
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Topic Information and Speech

Retrieval

Having considered the strength of the topic signal from the perspective of classi-

fication, we analyze the impact of topic information on the keyword retrieval task.

We shift our focus from a supervised setting, where the user information need is ex-

pressed explicitly by labeled examples, to an unsupervised setting, where queries are

expressed as key words or phrases. In this chapter we demonstrate how both local

context, in terms of repetition and cache-based language models, and broad context,

expressed as latent topic mixture models, individually and jointly, improve keyword

retrieval performance. The results in this chapter motivate the joint model of both

contexts that follows in Chapter 5.

To understand how word context can affect keyword performance, we describe
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standard approaches for generating keyword scores from ASR systems. We are going

to incorporate topical word contexts primarily by modifying the ASR system’s lan-

guage model. Both interpolation-based approaches to adapting standard backoff N-

gram language models and more recent discriminative language model re-scoring can

be expressed expressed in terms of finite state transducer (FST) operations. Through

the FST formulations we present a contrastive view of the adaptation approaches

before looking at the empirical performance.

We then present a keyword-specific method for leveraging local (within-document)

repetition in any speech retrieval system. By using only the KWS score, and treating

the retrieval system as a black box, we can incorporate local context without mod-

ifying the underlying speech recognition models. This approach, which we describe

in Section 4.3, is generally applicable to any KWS system and improves retrieval

performance across a spectrum of language conditions. However, this approach only

incorporates the repetition aspect of topic context.

By contrast, in the latter part of this chapter, we show how we can apply both

latent topics (broad context) and cached N-grams (local context) directly to the

recognizer’s language model. By interpolating unigrams from broad topic context

derived from a standard LDA topic model [43, 66] we improve retrieval performance

by up to 1% absolute via lattice re-scoring (applying a new N-gram language model

to the recognition output). Re-decoding with the same topic-adapted language model

improves accuracy by up to 2.1%. Adding local context via cached N-grams improves
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performance by up to 1.6%. A cascaded approach - re-decoding with latent topics

then re-scoring with cached N-grams - gives an overall absolute improvement of up

to 2.4%. For all languages we consider, combining broad and local topic information

into the language model outperforms each individual method.

4.1 Lattice-based Keyword Scores

In the previous chapter we briefly mentioned that when using ASR word outputs

either for keyword search or classification, we typically use the posterior probability

of a particular word output in computing expected counts for feature generation or

for ranking keyword results. In this section define how these scores are computed and

formally illustrate how the ASR/KWS output is impacted by language model-based

techniques for incorporating topic information.

We start with the definition of the posterior probability of a word hypothesis wi

given the word lattice output L of an ASR system for a single segment of acoustic

input. The posterior and subsequently the ASR/KWS scores are composed using

the various ASR model likelihoods for the word wi given the acoustic input: acous-

tic model lAM , language model lLM and HMM transition model, lH . At this level

modifications or adaptions of the language model occur.

A speech recognition lattice L is a directed acyclic graph representing the ASR

system’s hypothesized set of word sequences W = {w1, ..., wn} for a fixed amount of
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acoustic input. The nodes (states or vertices) of L correspond to particular locations

in the input. The arcs (or edges) are labeled with the words wi to be output for the

corresponding input. The model likelihoods for an arc a with output label wi are

captured in a weight or set of weights on a. A subset of the nodes are marked initial

nodes and a subset are denoted as final. We denote a sequence of arcs staring at an

initial state and ending with a final state as a path π. We denote a path that passes

through the arc a with word hypothesis w0 as π[a]. With this instantiation we can

safely treat L as a finite state transducer (cf. [78]).

The path likelihoods l(π) are given by multiplying the acoustic, language, and

transition model probabilities along the arcs in the path (Eqn. 4.1). We compute the

posterior probability of a word hypothesis p(w0|a,L) as the fraction of the fraction of

the total likelihood captured by the paths that contain the arc a (Eqn. 4.2).

l(π) =
∏
ai∈π

lAM(ai) · lLM(ai) · lH(ai) (4.1)

p(w0|a,L) =

∑
πi[a]∈L l(πi[a])∑

π∈L l(π)
(4.2)

SKWS(hL,w0,i) =
∑

a∈A(w0)

p(w0|a,L) (4.3)

In practice L often contains multiple arcs with slightly different starting times for

the same word. This effectively dilutes the posterior probability for a single word

occurrence across multiple arcs. In KWS systems, arcs covering similar time intervals
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are clustered and the arc posteriors are summed to obtain a single posterior detection

score S(w0) for w0 (cf. [79]). We distinguish the word type w0 from the ith cluster of

arcs Ci(w0), which corresponds to a single KWS system output hypothesis hL,w0,i.

Our first proposed method of keyword-based repetition re-scoring (Section 4.3)

operates directly on this KWS score. The rest of the methods discussed in this chapter

impact the language model likelihood directly. The LM probabilities contribute to

the KWS score computation through the path likelihoods, composed of individual arc

likelihoods.

In many current ASR implementations, output lattices are indeed instantiated

as Weighted Finite State Transducers (WFSTs). Typically the above likelihoods are

captured by the weights on the WFST transitions, interpreted as costs, and stored

as negative log-likelihoods. Standard FST operations such as determinization and

minimization (cf. [80]) can be applied and are typically done in negative log space.

The output lattice L can also be considered a realization of the composition of

an FST consisting of the acoustic input (U) for each frame (discrete input time step,

typically 100ms) and the decoding graph, denotedHCLG, which combines the lexicon

(L), language model (G), context-dependencies (C) and HMM structure (H) [78]:

L ≈ S ≡ U ◦HCLG (4.4)

We conflate the definitions given in [78] to indicate that the actual lattice L is obtained
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by heuristically pruning the true search space S. Additionally, the lattices generated

in the Kaldi WFST implementation (following [78]) conflate the language model and

transition model probabilities into a “graph cost”. From this we can express the path

cost as:

− log(l(π)) =
∑
ai∈π

− log(lAM(ai))− log(lLM(ai))− log(lH(ai)) (4.5)

This last has practical implications for re-scoring L with a new language model.

4.1.1 Language Model Adaptation

When incorporating topic information into KWS systems via the language model,

we want the language model probability for each arc in Equation 4.5 to be influenced

by more than the preceding 2 or 3 words. We can express the topic information

from either latent topic models (broad context) or local, cached context as a lower

order N-gram language model and adapt the baseline N-gram model using the topic

or cache language model.

Many approaches for combining two N-gram language models exist (cf. [81]), how-

ever we will focus on two related techniques - linear interpolation of probabilities and

count merging - and contrast them with a more recent alternative cache-based, dis-

criminative approach (cf. [37, 82]).

If we have two N-gram models A and B, for each of which we can compute
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PA(wi|hi) and PB(wi|hi) for some word wi with history hi then with linear inter-

polation the adapted probability is simply:

Padapted(wi|hi) = λPA(wi|hi) + (1− λ)PB(wi|hi) (4.6)

On the other hand, count merging necessitates we maintain the N-gram frequencies

underlying PA(wi|hi) and PB(wi|hi) and the new model is obtained by computing:

Padapted(wi|hi) =
fA(hi, wi) + βfB(hi, wi)

fA(hi) + βfB(hi)
(4.7)

In [83], Hsu showed that these two approaches were both special cases of a more

general model of linear model interpolation. In both cases, the interpolation weights

λ and β are empirically determined.

Once new N-gram probabilities are obtained, the new language model can readily

be expressed as an FST (for example, using the algorithm presented in [84]). We

denote the original language model FST as GNG and the adapted model as Gadapt.

The new Gadapt can be used in any other FST operations in place of the original GNG,

such as in constructing the decoding graph HCLG as we will see subsequently, and

in lattice re-scoring.

Lattice re-scoring, in the sense of replacing the existing LM probabilities (as costs)

in L can be expressed as two FST composition operations (in an WFST framework

such as Kaldi where LM and HMM costs are expressed as a single graph cost). First,
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the costs of the original GLM can be subtracted from the lattice arcs by composing

with an FST constructed by scaling the arc weights of GNG by -1. Then, the new

Gadapt can be composed with the result to add in the LM costs of the new model.

Lrescored = (L ◦ scale(−1, GNG) ◦Gadapted (4.8)

The path cost of this new lattice, by rewriting Equation 4.5, captures the fact that the

lattice posteriors are now computed using the new language model (cf. Eqn. 4.9). The

LM costs for the word (and history) at arc ai reflect both the N-gram and additional

topic information. Equation 4.10 shows the linear interpolation form of adaptation

as an example.

− log(lrescored(π)) =
∑
ai∈π

− log(lAM(ai))− log(Padapted(ai))− log(lH(ai)) (4.9)

=
∑
ai∈π

− log(lAM(ai))− log (λPNG(ai) + (1− λ)Ptopic(ai))− log(lH(ai)) (4.10)

To present a contrasting model to the interpolation based approach, we can con-

sider how the discriminative, trigger-based language model adaptation of Singh and

Collins (cf. [37]) is expressed in this framework. The Singh-Collins model is a cache-

augmented version of the perceptron-based discriminative language model from Roark

et al. (cf. [82]). In brief, the Roark model trains a perceptron whose features are N-

gram counts from the ASR utterance (lattice or set of N-best discrete word sequences).
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The Singh-Collins model adds trigger features - unigrams and bigrams from a local

document context outside the current utterance to the perceptron.

One interpretation of the perceptron is as a simple linear model: a dot product

of a feature vector Φ with the model weights α, both of which are vectors whose

dimensionality is one more than the number of observed N-gram types (Eqn. 4.11).

Both models fix the first dimension Φ0 to be the total cost (negative log-likelihood)

of the current hypothesized word sequence to be re-scored, which is precisely the

path cost in Equation 4.5. The other dimensions correspond to the N-gram counts

in the word sequence (and in the case of the Singh-Collins model, the binary trigger

features).

In terms of applying the model, a path through the lattice and a sequence of words

are equivalent. Scoring a particular path with the perceptron model produces a new

path cost, which thus gives new recognition (and in our case, retrieval) outputs. To

use the notation in [82], where the path cost under the discriminative model D we

have:

wD[π] = 〈Φ(π), α〉 (4.11)

= α0 · − log(l(π)) +

|α|∑
i=1

αi · Φ(π) (4.12)

We want to emphasize what Roark et al. point out, namely that by applying the

model to each path in the lattice, we can interpret D as a WFST such that the lattice
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obtained by composing our original L with D contains path with the perceptron-re-

scored weights in previous equation (4.11).

Lrescored = α0L ◦ D (4.13)

Although the cost of a path in this not necessarily properly normalized, if we

interpret the cost as a negative log-likelihood, we obtain the following in the lattice

re-scored with D:

− log(lrescored(π)) =
∑
ai∈π

−α0(log(lAM(ai) · PNG(ai) · lH(ai))) + wD[ai] (4.14)

=
∑
ai∈π

−α0(log(lAM(ai) · lH(ai))− α0 · log(PNG(ai)) + wD[ai]

(4.15)

As with the models adapted via linear interpolation, the new lattice costs still

contains both the original language model information plus the new model, expressed

as wD, derived from the the N-gram and trigger features of the model. In some

respects, the discriminative model D is a dynamic scaling of the original language

model.1

Padapted = wD[ai] · PNG(ai)
α0 (4.16)

1In practice, there is already a language model scaling factor applied to the language model or
(as an inverse) acoustic model component. So in practice it is β log(PNG(a)) that is being carried
through the above equations.
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Both Gadapt and D are dynamic in principal. The probabilities represented by G

depend on the new language model derived from topic context or cached N-grams,

which will change from document to document, or in the cache of a cache or trigger

model, from utterance to utterance. In the Roark model, one can show that D is

static, given a set of perceptron parameters α. However, in the trigger model of

Singh and Collins, the weights of D also depend on the trigger features, which vary

from utterance to utterance.

4.2 Corpora

We evaluate these contrastive approaches under the term detection task paradigm

using a variety of languages from the IARPA Babel research program [9]. The Babel

task is modeled on the 2006 NIST Spoken Term Detection evaluation [7] but focuses

on more limited resource conditions. We focus specifically on the no target audio

reuse (NTAR) condition to make our method broadly applicable. This condition

states that the audio may not be reprocessed after obtaining the search keywords.

The languages of the Babel program are provided under two conditions, Full LP

(Language Pack) and Limited LP. The Full LP condition for a language consists

of 100 hours of transcribed audio and a pronunciation lexicon. The Limited LP

condition contains only 10 hours of transcribed audio and lexicon. For all of our

experiments with the Babel languages, we limit acoustic and language model training
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to the transcribed portions of the language packs. Each corpus also contains a 10

hour transcribed development set, for which re report recognition (WER) and retrieval

(TWV) performance. Transcripts for the official Babel evaluation data have not been

released at this point in time. The languages we consider in this chapter include

Cantonese, Pashto, Turkish, Tagalog, Vietnamese, Zulu and Tamil.2

4.3 Keyword Repetition Model

We first aim to leverage word repetition as a simple form of topicality. One rea-

son words tend to repeat within a document is that words relevant to the document’s

subject become more likely. In Chapter 2 we illustrated how strongly topical words

like ’matrimonio’ occurred in bursts within documents related to that topic (cf. Fig-

ure 2.2).

However, to exploit this burstiness for keyword search, we don’t need to model

the document’s subject matter explicitly. The bursts will occur whether we know

the subject or not. We can use this phenomenon, across a spectrum of languages, to

boost low-scoring keyword hits. By applying a repetition model, these hypothesized

keywords, which may have been unlikely due to acoustic or language model scores,

are now detected as repetitions of other detected keywords.

2Language collection releases babel101-v0.4c, babel104b-v0.4bY, babel105b-v0.4, babel106-v0.2g,
babel107b-v0.7, babel206b-v0.1e, and babel204b-v1.1b respectively.
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SBOOST (hd,w,i) = (1− α) · SKWS(hd,w,i) + αmax
j

[SKWS(hd,w,j)] (4.17)

Our model is a straightforward score interpolation that boosts scores for keywords

seen more than once in a document. We assume we are given results from a term

detection system run over a corpus of spoken documents D using a list of keywords W .

The system outputs Hw,d hypothesized detections for each document d and keyword

w. We take the top-scoring hypothesis for each w, d as evidence that w occurred at

least once in d. We boost every other hypothesis for w in d by the top score, so the

final score depends on the underlying ASR/KWS system as well as the presence of

repetition (cf. Equation 4.17).

This notation differs slightly from the KWS score computation based on ASR

lattices presented earlier (cf. Eqn. 4.3) so as to illustrate that this method is not

restricted to word-lattice based KWS output. This re-scoring formula can apply to

any system (or combination of systems) that can generate detection hypotheses for

the keywords. In practice, our experimental results do use the latter lattice-based

scoring.

We demonstrate that the method generalizes well, by applying it to all 2013

Babel languages (Cantonese, Turkish, Tagalog, Cantonese and Vietnamese). We

demonstrate consistent improvements in all languages in both the Full LP and Limited

72



CHAPTER 4. TOPIC INFORMATION AND SPEECH RETRIEVAL

LP settings, suggesting both the utility and universality of repetition phenomena.

4.3.1 Repetition Measures

Two measures for word repetition over a corpus suggests this approach ought to

be effective for a broad range of keywords: burstiness and adaptation. Burstiness

(Equation 4.18) is the expected number of occurrences k of a word w per document,

given that w has been seen at least once in the document. Adaptation (Equation 4.19)

is the probability of a word w occurring more than once in a a document, given it is

seen at least once (that is, over documents containing the word).

Ew[k|k > 0] =
fw

DFw
(4.18)

Padapt(w) = Pw(k > 1|k > 0) (4.19)

Figure 4.1 illustrates these two measures for each word in the Babel Tagalog

100 hour training corpus. Each point represents a word in the vocabulary, and we

look at how burstiness and adaptation vary with the corpus frequency fw of each

vocabulary word w. Given a fixed size corpus, burstiness naturally increases with

fw, given the document frequency DFw is somewhat artificially capped by the corpus

size. However, in both measures, we can see a large number of low-frequency words

that have significantly higher burstiness and adaptation than the general trend.

If we hold with the statement that “Low frequency words tend to be rich in
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(a) Burstiness (b) Adaptation

Figure 4.1: Burstiness and adaptation probability for Tagalog training vocabulary

content, and vice-versa,” [54], then a significant number of content-rich keywords

should exhibit this burstiness, and we can exploit this at search time. While we

do not claim any particular threshold defines “content-rich”, in the context of the

Tagalog corpus, we observe that 26% of all tokens and 25% of low-frequency words

(fw < 100) have at least 50% adaptation. This is enough of a broad trend that we

can indeed leverage this for improved search.

4.3.2 Interpolation

Now that we have a score interpolation model and a reasonable expectation of

successful application, based on the observed strength of repetition in the data, we

are faced with the choice for selecting an effective interpolation weight α (cf. Equa-
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tion 4.17). How much should repetition matter? Should we vary the interpolation

weight by keyword or by document?

Considering the adaptation probability, we can obtain an intuitive and effective

interpolation weight directly from the training data. The actual re-scoring depends

only on scores local to d, so we need only a linear pass over the results for d to

obtain max [Skws(hw,d)]. Not having to re-compute α avoids incurring additional

computation at search time. In addition, we showed in work published in 2014 that the

effective interpolation weight also captured some inherent tendency towards repetition

of each corpus. [85].

To illustrate, we consider two different methods for estimating α. First, we at-

tempt to select different weights αw on a per-keyword basis. Alternatively we estimate

a single α̂ for each language (from the available training data). We estimate each α

based on the adaptation probability Padapt(w), but we find that the application is not

trivial.

Using the Tagalog Full LP (100 hour) training corpus and 10 hour development

set, we empirically test the two approaches. If we first compare estimates of Padapt for

words that occur both in the training and development sets, we find, not surprisingly,

that the difference between the two estimates is only consistent for high frequency
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(a) Difference in estimates of Padapt

Estimate TWV P (Miss)

None 0.470 0.430
Padapt(w) 0.423 0.474
(1− e−DFw)Padapt(w) 0.477 0.415
α̂ = 0.20 0.483 0.416

(b) KWS Performance

Figure 4.2: Estimating interpolation weights on Tagalog Full LP corpus

words (cf. Figure 4.2a).

αw = (1− e−DFw) · P̂adapt(w) (4.20)

α̂ = Avg
w

[αw] (4.21)

Given this fact, when applying adaptation values learned from the training data

to the search task, we discount our per-word α estimates based on the document fre-

quency DFw (Equation 4.20). For a global interpolation, α̂, we take the average over

all the discounted per-word estimates. Table 4.2b shows the impact of these different

choices for the interpolation weight in our keyword re-scoring formula (Equation 4.17).

The global (per-language) interpolation weight clearly outperforms any other

choice in terms of keyword accuracy (TWV). The decrease in P (Miss) is also an

important result, because it indicates that our re-scoring does in fact boost repeated
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keywords above the detection threshold, increasing the number of correct keyword

detections.

We include our final estimate for α̂ with the results for the Full LP (Table 4.1)

and Limited LP condition (Table 4.2). The relative values correspond to our expec-

tations by language. The lowest values (least repetition) occur for the Turkish data,

a language known for its morphological complexity, hence word units are less likely to

repeat. The highest values occur for Cantonese and Vietnamese, which for the Babel

program was transcribed with syllable-level word units.

4.3.3 Experiments

The complete procedure for each language in each condition (Limited or Full

LP) is as follows. We first estimate adaptation probabilities from the ASR training

transcripts. From these we take the weighted average as described, obtaining a single

interpolation weight α̂ for each language and training condition. We train ASR acous-

tic and language models from the training corpus using the Kaldi speech recognition

toolkit [74] following the default Babel training recipe which is described in detail by

Chen et al. [18]

Algorithm 4.1 Repetition-based term detection re-scoring

1: Estimate α̂ on training corpus.
2: Train ASR Acoustic and Language Models
3: Decode search audio corpus.
4: Apply KWS algorithm
5: Re-score KWS results.
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Language α̂ TWV (%±) P (Miss) (%±)

Full LP setting

Tagalog 0.20 0.523 (+1.1) 0.396 (-1.9)
Cantonese 0.23 0.418 (+1.3) 0.458 (-1.9)
Pashto 0.19 0.419 (+1.1) 0.453 (-1.6)
Turkish 0.14 0.466 (+0.8) 0.430 (-1.3)
Vietnamese 0.30 0.420 (+0.7) 0.445 (-1.0)

Table 4.1: Word-repetition re-scored results for Full LP term detection corpora, im-
provement over baseline system denoted as percentage change.

We decode each development corpus with both Full and Limited LP models to

generate ASR word lattices for the search task. We then execute Kaldi’s keyword

search module which is an FST-based implementation of Saraclar and Sproat’s lattice-

based search speech search algorithm [86]. Lastly, we re-score the search output

by interpolating the top term detection score for a document with subsequent hits

according to Equation 4.17 using the α̂ estimated for the corresponding training

condition. We outline these steps in Algorithm 4.1, re-iterating that our contributions,

steps 1 and 5, can be carried out regardless of the ASR/KWS specifics of steps 2-4.

The overall improvements of our re-scoring algorithms are given in Table 4.1 (Full

LP) and Table 4.2. In both Full LP and Limited LP settings, using only keyword

repetition information, we observe improved KWS accuracy in terms of TWV between

0.7 and 1.3% absolute. Just as importantly, given TWV can be improved by either

reducing false alarms or reducing misses, we decrease the miss probability in all but

one condition (the exception being Vietnamese Limited LP).

The reduction in P (Miss) indicates that the proposed re-scoring approach does
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Language α̂ TWV (%±) P (Miss) (%±)

Limited LP setting

Tagalog 0.22 0.228 (+0.9) 0.692 (-1.7)
Cantonese 0.26 0.205 (+1.0) 0.684 (-1.3)
Pashto 0.21 0.206 (+0.9) 0.682 (-0.9)
Turkish 0.16 0.202 (+1.1) 0.700 (-0.8)
Vietnamese 0.34 0.227 (+1.0) 0.646 (+0.4)

Table 4.2: Word-repetition re-scored results for Limited LP term detection corpora,
improvement over baseline system denoted as percentage change.

in fact do what we intend - raise the scores of repeated keywords above the system

threshold. Keywords that otherwise were unlikely under either the ASR acoustic or

language model are indeed boosted because they occur elsewhere in the document.

4.4 Language Model Adaptation

Whereas for the keyword repetition model we treat ASR/KWS systems as a black

box, we now consider the effect of adding topic context directly to the ASR system’s

language model explicitly. By representing broad and local context as word N-gram

probabilities that are re-computed on a document by document or utterance by ut-

terance basis, we can use the adaptation methods described in Section 4.1 to augment

the system’s baseline N-gram model.

Given the augmented language model can be used either to re-score existing lattice

output or to re-decode the audio to generate new lattices. We can show that adding

topic context to the language model improves search accuracy in both cases, and in
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particular, combining both types of context (local and broad) improves accuracy of

either approach individually.

Re-scoring corresponds to the re-computing the language model scores on an exist-

ing lattice L (cf. Eqns. 4.8,4.13). The structure of L and thus the words it represents

are unchanged, but ideally the correct words in a more accurate model would re-score

higher than incorrect words. Re-decoding, by contrast, constructs an entirely new

lattice L′, by modifying the decoding graph HCLG.

L′ ≈ S ≡ U ◦ (H ◦ C ◦ L ◦Gadapted) (4.22)

As lattice-generation involves pruning the search space, low likelihood word hypothe-

ses are removed from the final lattice. Changing the language model at this stage

can cause a different set of words to appear in the lattice. By measuring lattice

keyword recall, we can also show that by decoding with topic-augmented language

models, more correct keywords survive the pruning process, which contributes to a

larger search accuracy improvement.

4.4.1 Latent Topic Language Models

We represent the broad topic context of a document using a standard LDA topic

model. In LDA and similar latent topic models, words and documents are modeled as

arising from a document-specific mixture of T topics. A topic in this framework is a
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multinomial distribution over the corpus vocabulary - a unigram language model. A

document’s topic context is encoded by the inferred topic mixture for that document,

θ(d). We will look at parameter estimation and inference in detail in the next chapter.

We obtain estimates for φ and θ(d) then use the latter as a set of mixture weights to

compute a document-specific unigram language model PT (w|θ(d)) (cf. Equation 4.23).

This document-specific model can then be used to adapted the original LM as we

described previously.

PT (w|θ(d)) =
T∑
t=1

θ
(d)
t · φ(t)

w (4.23)

For each language in our experiments we learn a latent topic (LDA) model from

the training corpus transcripts. We use the Gibbs sampling approach as implemented

in the Mallet toolkit [87], with minor modifications in order to allow operations on

soft counts (i.e. lattice expected counts). Model estimation yields T topics, prior

probabilities α(t) for each topic, and the symmetric Dirichlet hyperparameter β for

the unigram distributions [66]. The θ(d) for the training data are computed, but not

used for our task.

In order to compute θ(d) for the documents in the search corpus we apply the

Gibbs sampler, seeded with the learned model parameters, to expected word counts

extracted from lattices generated by the baseline ASR system. Our baseline system

for the experiments in this section and in Chapter 7 deep neural net (DNN) acoustic
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Language Metric N-Gram LDA(R) LDA(D)

Tagalog WER 60.8 61.6 61.6
TWV 0.244 0.247 0.254
L. Recall 0.778 0.778 0.792

Vietnamese WER 62.0 61.9 62.1
TWV 0.254 0.257 0.269
L. Recall 0.555 0.555 0.567

Zulu WER 67.8 68.2 68.1
TWV 0.270 0.278 0.283
L. Recall 0.718 0.718 0.739

Tamil WER 76.0 76.1 76.2
TWV 0.216 0.226 0.237
L. Recall 0.573 0.573 0.622

Table 4.3: Recognition and retrieval performance re-scoring and re-decoding with
topic-augmented LMs

models and a 3-gram backoff language model, described in detail in [49] and elsewhere.

Given θ(d) for the test lattices and φ(t) from the training transcripts, we can compute

the document-specific unigram models for adaptation. We also conducted oracle

experiments using the true test transcripts to infer θ(d) mixture weights on the test

data, and the term detection results were identical to the fair results presented here.

We apply our topic-adapted language models to ASR/KWS systems built un-

der the Limited LP setting in Tagalog, Vietnamese, Zulu, and Tamil. We test the

topic-adapted models for both re-scoring and re-decoding the development data. We

adapted the baseline model using linear interpolation (cf. Eqn. 4.6) with interpolation

weight λ. We showed in [49] that we can select the λ that minimizes perplexity on the

first pass one-best output, and that approach is reflected in the results in Table 4.3.
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The results in Table 4.3 illustrate the importance of focusing on retrieval perfor-

mance and not just word error rate (WER). The topic-adapted language models in

most cases increase WER, and if that were our only metric, we would perhaps dis-

regard the technique. However, re-scoring with topic information increases retrieval

accuracy by 0.3 to 1.0% absolute and re-decoding improves keyword retrieval by 1.0

to 2.1%.

Additionally, applying topic-augmented models at decoding time increases the

overall recall of keyword occurrences (Lattice Recall) from 1.2 to 4.9%. We can

conclude that the topic context, which in cases where the keywords were not in the

baseline lattices, can in fact boost the probabilities for topically related words such

that they survive the pruning process and can be retrieved by the KWS system.

4.4.2 Cache-based Language Models

We incorporate local context by implementing a cache-augmented language model.

The approach we adopt here and in [49] is based off of the work from Jelinek [34] and

Kuhn [35] where we leverage the assumption that a local word or N-gram frequency

estimate may be more reliable than the global frequency. Here we adapt the base lan-

guage model via the count merging method of model interpolation. For a contrastive

system, we implemented the discriminative trigger model from [37].

We define the local context for a particular utterance specifically as the expected

lattice-counts for N-grams from all other utterances in the document. We also experi-

83



CHAPTER 4. TOPIC INFORMATION AND SPEECH RETRIEVAL

mented with a exponentially decaying cache (cf. [73]) that favors adjacent utterances

but found no difference in performance. For each utterance we compute an adapted

language model by adding the expected lattice counts for N-grams in the local con-

text to the original training frequencies (count-merging). In our implementation of

the Singh-Collins trigger models we use the same context in computing the trigger

activation.

The interpolation parameter β for the count-merging approach (cf. Eqn. 4.7) can

be interpreted as a scaling factor on the local counts. We experimented with a coarse

set of scaling factors, β = [1, 5, 10, 20], but found empirically that no additional gain

was found beyond β = 10. Re-estimating backoff language models on an utterance by

utterance basis using the SRI Language Modeling toolkit [88] (SRILM), we required

the use of the floor function on the fractional expected lattice N-gram counts. This

also had the effect, with β = 10 of pruning any counts with posterior probability of

less than 0.1.

For the contrastive trigger model, we trained the perceptron models as described

in [82], by decoding the training corpus and generating 100-best hypotheses for each

training utterance. Each perceptron model on which we report was trained with 2

iterations over the data as in the previous work. For the test data we instantiated

the discriminative model directly as the FST D and performed the composition with

the output lattice.

As with the topic-specific language models, we re-score each output lattice and
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Language Metric N-gram Trigger(R) Cache(R)

Tagalog WER 60.8 61.7 60.3
TWV 0.244 0.161 0.260

Vietnamese WER 62.0 63.7 61.5
TWV 0.254 0.190 0.256

Zulu WER 67.8 69.2 67.5
TWV 0.270 0.192 0.276

Tamil WER 76.0 76.9 75.5
TWV 0.216 0.138 0.229

Table 4.4: Recognition and retrieval performance re-scoring with cache-augmented
LMs

apply the Kaldi lattice keyword search to the re-scored lattices. Unlike the topic-

specific models, the cache-augmented language models reduce WER on the Babel

development data and increases term detection accuracy from 0.2% to 1.6% absolute

(cf. Table 4.4). The discriminative trigger model performs noticeably worse, the

reported results arising from unigram-only trigger features, which outperformed any

other feature combination from [37] when applied to the Babel data. However we

would point out that the WER of the Babel systems are at least twice that of the

English systems used to train the trigger models in [37] and the resulting lattice scores

not well calibrated posterior probabilities, which would more negatively impact the

TWV score.
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Language Metric N-gram Cache(R) LDA(D) LDA+Cache

Tagalog WER 60.8 60.3 61.6 59.7
TWV 0.244 0.260 0.254 0.267

Vietnamese WER 62.0 61.5 62.1 61.8
TWV 0.254 0.256 0.269 0.271

Zulu WER 67.8 67.5 68.1 67.4
TWV 0.270 0.276 0.283 0.289

Tamil WER 76.0 75.5 76.2 75.4
TWV 0.216 0.229 0.237 0.240

Table 4.5: Recognition and retrieval performance with topic-augmented decoding
followed by cache re-scoring.

4.5 Conclusion

Lastly, we look at the broad and local contexts in terms of complementary infor-

mation. In [49] we showed how we could apply the cache re-scoring after decoding

with the topic-augmented language models. This result, for the Babel corpora is de-

scribed for both recognition (WER) and retrieval (TWV) in Table 4.5. The cascaded

result strongly suggests that the two types of topic context, while related, provide

complementary information for the retrieval task.

We illustrate the overall performance impact of incorporating topic context di-

rectly into the ASR language model in Figure 4.3. The overall conclusion is as we

hoped, that both broad context, implemented as topic mixture models, and local con-

text, implemented as cached N-grams, when added to the language model, improve

keyword retrieval performance.

In general, across all 4 languages re-decoding with the topic-augmented models,
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(a) Tagalog (b) Vietnamese

(c) Zulu (d) Tamil

Figure 4.3: Term detection performance when adapting ASR language models.
Dashed line indicates ad-hoc repetition performance.
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denoted LDA(D), outperforms simply re-scoring existing lattices, denoted LDA(R).

The relative performance of local context, Cache(R) versus the LDA models de-

pended on the language. In Zulu and Tamil, the cache re-scoring outperformed

the LDA re-scoring, but not re-decoding. In Tagalog, the cache re-scoring outper-

formed both LDA(R) and LDA(D). In Vietnamese, the cached models only slightly

outscored the baseline.

For comparison we include the performance of the non-LM repetition re-scoring

algorithm described in the first half of the chapter, represented as the dashed line in

Figure 4.3. As we might expect, this method tracks with the cache results, performing

best on the Tagalog corpus, where the cache-adapted LM also out-performed other

methods, and underperforms on Vietnamese, just as the Cache(R) approach.

The final conclusion we can draw from our experiments is that the combination of

LDA(D) and Cache(R) in a simple cascade outperforms each method individually,

in all 4 languages. This result leads us to assert that the two types of topic context,

while related, are complementary, and in the remaining chapters we will consider a

joint model of the two phenomena, with an eye towards retrieval performance.
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Chapter 5

Cache-augmented Latent Topic

Models

We have thus far empirically shown ways in which topic information as local

context (repetition) and broad context (subject matter) can improve speech retrieval

tasks. Our cascaded mixture of a standard Dirichlet-Multinomial topic mixture model

(LDA) with cached N-grams suggests that jointly modeling should yield similar re-

sults. The goal of this chapter is to construct a formal model capturing both types of

context and deriving the sampling distributions necessary for an efficient implemen-

tation.

Given the related space of topic and language models we aim to introduce location

dependency while preserving the power-law property of Dirichlet-Multinomial distri-

butions. Additionally, given the results of the previous chapter a LDA-style unigram
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topic mixture is easily interpolated with traditional backoff N-gram language models.

As our goal is to apply the model in speech recognition and retrieval, we do not want

to give up the proven effectiveness of short N-gram contexts.

To this end we propose a straightforward extension of the standard LDA topic

model [43, 66] whereby words can be generated either from a latent topic or from

a document-level cache. At each word position we flip a biased coin. Based on

the outcome we either generate a latent topic and then the observed word, or we

pick a new word directly from a document-level cache of already observed words. In

this model we simultaneously learn the underlying topics and the tendency towards

repetition.

The rest of this chapter is organized as follows. We first present the model in its

generative form. From this we can derive the joint probability for the observed and

latent variables and from the joint probability we then derive sampling distributions

necessary for parameter estimation and inference via a Gibbs sampling (Markov Chain

Monte Carlo) procedure.

5.1 Cache-augmented Generative Process

As with LDA, we assume documents in a corpus a generated from T latent top-

ics. For this chapter, we will use the term topic specifically to refer to a unigram

distribution over a vocabulary of size V (cf. [27]). Each topic t is denoted by φ(t), a
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Algorithm 5.1 κ-LDA cache-augmented generative process

1: for topic t ∈ T do
2: Draw φ(t) ∼ Dirichlet(β) # Draw topic distributions
3: for all d ∈ D do
4: Draw θ(d) ∼ Dirichlet(α) # Draw topic proportions
5: Draw κ(d) ∼ Beta(ν0, ν1) # Draw cache proportions
6: for wd,i, 1 ≤ i ≤ |d| do
7: Draw kd,i ∼ Bernoulli(κ(d)) # Draw cache usage state per word
8: if kd,i = 0 then
9: Draw zd,i ∼ θ(d) # Draw topic state per word

10: Draw wd,i ∼ φ(t=zd,i) # Generate word from topic
11: else
12: Draw wd,i ∼ Cache(Wd,−i, i) # Generate word from cache

Multinomial random variable with V dimensions, and the vector component φ
(t)
v is

the probability P (wv|t). As with LDA, topics are drawn from a Dirichlet distribution

with uniform prior β.

The topic mixture for a document d is also a Multinomial random variable of T

dimensions, denoted by θ(d). Each θ(d) is also drawn from a Dirichlet distribution,

parameterized by the T -dimensional prior α. The vector component θ
(d)
t gives the

probability for a topic given the document, P (t|d). In terms of topic mixtures, our

model acts in the same manner as an LDA model, and our implementation follows

the best practices from Wallach et al. (cf. [27]) in periodically re-estimating the

hyperparameters β and α.

Our primary extension of the basic LDA topic model is a formal integration of a

document-level cache to the generative process and sampling mechanisms. To capture

the interaction with cached local context, we introduce two additional sets of variables,

κ(d) and kd,i. The state kd,i is a Bernoulli random variable where a value of 1 indicates
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Figure 5.1: Plate diagrams illustrating the differences between LDA and our proposed
model

that the word wd,i is to be drawn from the cache. A value of 0 for kd,i indicates that

wd,i will be drawn from the latent topic state.

The κ(d) variable is a document specific prior on the cache state kd,i. We intend

for this latent state to capture the amount of repetition present in the document, and

by extension, the corpus. We evaluate this empirically in Chapter 6. We κ(d) be a

Beta prior for the Bernoulli state variables kd,i. The Beta variable is parameterized

by the terms ν0 and ν1, which can be equivalently expressed as a two-dimensional

Dirichlet prior ν. As with the Dirichlet priors on the topic and document multino-

mials, the Beta-Bernoulli conjugacy allows for a straightforward formulation of the

joint probability P (W,Z,K,Φ,Θ, κ) for subsequent inference tasks.

This generative process is provided as pseudocode in Algorithm 5.1. For com-
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parison we also give the generative process psuedocode for standard LDA as Algo-

rithm 5.2. Our notation in Algorithm 5.1 for the cache distribution at a specific

word wd,i, Cache(Wd,−i, i), is intended to convey that when kd,i = 1, the generative

distribution for wd,i depends only on the observed words in d. We use the shorthand

Wd,−i to denote the sequence of words in d without wd,i, which is equivalent to the

set difference: {wd,1, . . . , wd,|d|} \ wd,i

Plate diagrams contrasting our model with the standard LDA model are provided

in Figure 5.1. Graphically, we can illustrate the dependence of the current word wd,i

both on the broad topic context, via latent topic state zd,i as well a cache of observed

words, which we denote as Wd,−i (cf. Figure 5.1b). Within this notation, observed

variables are shaded, latent variables unshaded, and the quantity at the lower right

portion of the plate indicated the number of i.i.d. instances of the set of variables

contained within.

We do not specify whether the cache component contains of unigrams or higher

order N-grams. Neither do we need to specify the size of the cache or any decay

properties given the position i in the document. Without loss of generality, we can

subsequently show that the model as presented easily handles any such variations of

the cache that depend only on the observed words.
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Algorithm 5.2 LDA generative process

1: for topic t ∈ T do
2: Draw φ(t) ∼ Dirichlet(β) # Draw topic distributions
3: for all d ∈ D do
4: Draw θ(d) ∼ Dirichlet(α) # Draw topic proportions
5: for wd,i, 1 ≤ i ≤ |d| do
6: Draw zd,i ∼ θ(d) # Draw word topic state
7: Draw wd,i ∼ φ(t=zd,i) # Generate word from topic

Given this procedure and the dependencies between variables, we can factor the

joint probability of observed and latent variables as follows:

P (W,Z,K,Θ,Φ|α, β, ν) = P (Φ|β) · P (Θ|α) · P (κ|ν) · P (W,Z,K|Θ,Φ, κ)

= P (Φ|β) · P (Θ|α) · P (κ|ν) · P (Z|Θ,Φ) · P (K|κ) · P (W |Z,K)

(5.1)

We use uppercase letters to denote sequences of the variables from Algorithm 5.1 and

Figure 5.1b.

Now that we can express this factorization of the joint distribution, what we are

most interested in for this and other graphical models is an estimate of the poste-

rior distribution of the latent variables given the observed data. In our cases, we

want to estimate the distribution of the various (φ(t), θ(d), κ(d)), that is the topics,

document-specific topic mixtures , and document-specific cache usage , us-

ing the observed word sequences. Without a closed-form solution, we need to turn

to approximate posterior inference, and in particular we employ a Collapsed Gibbs

Sampling approach.
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5.2 Collapsed Gibbs Sampler

As was outlined in Section 2.6, in order to obtain the necessary machinery for

a Gibbs sampler, we must obtain the sampling distributions for our latent variables

Z and K where the value of a single latent variable is conditioned on the current

state of all other variables, observed and unobserved (Equations 5.2,5.3). Here we

present a derivation of both sampling distributions, how the per-document cache op-

erates within the sampling framework, and the bookkeeping required for a reasonable

implementation.

P (zd,i|W,Z−i, K) (5.2)

P (kd,i|W,Z,K−i) (5.3)

First, we simplify the joint probability by collapsing the priors - integrating over

Φ, Θ, and K. This is a common technique for latent variable models such as LDA. We

collapse the priors in each factor of the joint probability to transform P (W,Z,K,Θ.Φ)

from Equation 5.4 to 5.5:

P (W,Z,K,Θ,Φ|α, β, ν) =

P (Φ|β) · P (Θ|α) · P (κ|ν) · P (Z|Θ,Φ) · P (K|κ) · P (W |Z,K)

(5.4)

P (W,Z,K|α, β, ν) = P (W |Z,K, β) · P (Z|α) · P (K|ν) (5.5)
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We integrate out the priors Φ, Θ, and K in a straightforward fashion because of the

Dirichlet-Multinomial and Beta-Bernoulli conjugacy and conditional independence

assumptions.

The second step in the derivation is to obtain the sampling distributions from this

collapsed joint distribution. It follows that:

P (zd0,j = t0|W,Z−j, K, α, β, ν) =
P (W,Z,K|α, β, ν)

P (W,Z−j, K|α, β, ν)
(5.6)

P (kd0,j,i = k0 ∈ {0, 1}|W,Z,K−i, α, β, ν) =
P (W,Z,K|α, β, ν)

P (W,Z,K−i|α, β, ν)
(5.7)

The numerator and denominator both refer to the closed form of the collapsed joint

distribution, evaluated at particular choices for W , Z, and K - the current sam-

pling state plus the new possible values t0 and k0. The only difference is that the

denominator does not contain terms for the state to be sampled.

We have modeled our subsequent derivations after a very useful tutorial on Gibbs

sampling by Korsos and Taddy (cf. [89]). They follow the usage from Steyvers et al.

where topics are represented by Φ, states by Z, per-document topic priors by Θ and

hyperparameters α and β. Keeping with this notation, we now show how to obtain

the collapsed form for each factor of the joint probability (Equation 5.4).
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5.2.1 Notation

To make the derivations of each factor readable, we introduce a handful of count

vectors and other shorthand notations. First, we use the term I(·) as an indicator

function that returns 1 when its arguments are true and 0 otherwise. Secondly, we use

the notation B(a) for both the Dirichlet and Beta pdf normalizing factor given that

the latter is a two-parameter instance of the generalized Beta function (cf. Eqn. 5.8).

B(a) =

∏|a|
i=1 Γ(ai)

Γ(
∑|a|

i=1 ai)
(5.8)

Count vectors that capture the current sampler state can be defined in terms of sums

over indicator functions.

Each topic state variable zd,i ∈ Z is associated with a particular word wd,i = w0

and has an assigned state value corresponding to some topic t0 - when the correspond-

ing cache indicator kd,i = 0. We aggregate the counts of states associated with a topic

t0 as vectors C(t0) in the dimension of the vocabulary. Subscripted by a particular

word we can express the current topic-word association as:

C(t0)
w0

=
D∑
d=1

|d|∑
i=1

I(wd,i = w0 ∧ kd,i = 0 ∧ zd,i = t0) (5.9)

We also need to capture the current per-document topic mixture which we express
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by the T -dimensional vector N (d), which is given by:

N
(d0)
t0 =

|d0|∑
i=1

I(kd0,i = 0 ∧ zd0,i = t0) (5.10)

Each cache state variable kd,i ∈ K, although also associated with a particular

word wd,i = w0, as we will see, need only contribute to a document-level count. We

define two vector terms L and T to capture the number of cache versus topic states

in a particular document.

Ld =

|d|∑
i=1

I(kd,i = 1) (5.11)

Td =

|d|∑
i=1

I(kd,i = 0) (5.12)[
D∑
d=1

Td

]
=

T∑
t=1

V∑
v=1

C(t)
v (5.13)

As we only consider topic-word associations where the word is generated from a

topic-state, the K variables divides the corpus into two parts, words generated from

the topics or words generated from the cache. We necessarily have:

D∑
d=1

|d| =

[
D∑
d=1

Td

]
+

[
D∑
d=1

Ld

]
(5.14)

From this, we can also describe our generative model for words by a process

whereby a document author (or speaker) introduces some topical word, but then as
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he or she proceeds, based on a propensity for repetition (κ(d)), repeats previously

uttered words for either syntax or purposes of redundancy.

5.2.2 Derivations

For the term P (W |Z,K, β, ν) we integrate over the topic prior φ. The first ob-

servation we make is that the cached words do not depend at all on φ, given the

current cache state, so we can treat the cache probabilities independent of the topic

likelihoods.

P (W |Z,K, β) (5.15)

=

∫
φ
P (W |Z,K, φ) · P (φ|β)dφ (5.16)

= PC(W{kd,i=1})

∫
φ

 T∏
t=1

D∏
d=1

|d|∏
i=1

P (wi|zd,i = t)I(kd,i=0)

P (φ|β) dφ (5.17)

= PC(W{kd,i=1})

∫
φ

 T∏
t=1

D∏
d=1

|d|∏
i=1

φ(t)
wi

I(kd,i=0)

[ T∏
t=1

1

B(β)

V∏
v=1

φ(t)
v

βv−1

]
dφ (5.18)

= PC(W{kd,i=1})

∫
φ

T∏
t=1

[
1

B(β)

V∏
v=1

φ(t)
v

βv+C
(t)
v −1

]
dφ (5.19)

= PC(W{kd,i=1})
T∏
t=1

[
B(β + C(t))

B(β)

]
(5.20)

We have denoted the cache probability of the sub-sequence of words whose cache
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state kd,i is currently set to 1 as PC(W{kd,i=1}). Expanding out this term, we obtain:

PC(W{kd,i=1}) =
D∏
d=1

|d|∏
i=1

Pcache(wd,i|Wd,−i)
I(kd,i=1) (5.21)

As we stated previously, we have shown our sampler can be constructed independently

of the size, order, or any other properties of the cache language model.

Moving on, to the term P (K|ν), we integrate out κ by means of the Beta-Bernoulli

conjugate prior in a manner identical to the Dirichlet-Multinomial prior.

P (K|ν) =

∫
κ

P (K|κ) · P (κ|ν)dν (5.22)

=

∫
κ

D∏
d=1

[
κ(d)Ld

(1− κ(d))Td
] [κ(d)ν0(1− κ(d))ν1

B(ν0, ν1)

]
dκ (5.23)

=

∫
κ

D∏
d=1

[
κ(d)ν0+Ld(1− κ(d))ν1+Td

B(ν0, ν1)

]
dκ (5.24)

=
D∏
d=1

[
B(ν0 + Ld, ν1 + Td)

B(ν0, ν1)

]
(5.25)

The third term P (Z|α) can be obtained in the same manner by integrating over the

topic mixtures θ. This quantity is derived in the same manner as a collapsed Gibbs

sampler for standard LDA, except the topic counts must exclude words generated

from cache states.

100



CHAPTER 5. CACHE-AUGMENTED LATENT TOPIC MODELS

P (Z|α) =

∫
θ

P (Z|θ) · P (θ|α)dθ (5.26)

=

∫
θ

D∏
d=1

 |d|∏
i=1

P (zd,i|θ(d))I(zd,i=0)

P (θd|α)dθ (5.27)

=

∫
θ

D∏
d=1

 |d|∏
i=1

θ(d)
zd,i

I(zd,i=0)

 1

B(α)

T∏
t=1

θ
(d)
t

αt−1
dθ (5.28)

=

∫
θ

D∏
d=1

[
1

B(α)

T∏
t=1

θ
(d)
t

αt+N
(d)
t −1

]
dθ (5.29)

=
D∏
d=1

[
B(α +N (d))

B(α)

]
(5.30)

Combining the closed form for the terms P (W |Z,K, β), P (K|ν), and P (Z|α) we

obtain the desired joint probability P (W,Z,K|α, β, ν):

PC(W{kd,i=1})
T∏
k=1

[
B(β + C(k))

B(β)

] D∏
d=1

[
B(ν0 + Ld, ν1 + Td)

B(ν0, ν1)

] D∏
d=1

[
B(α +N (d))

B(α)

]
(5.31)

5.2.3 Sampling Distributions

We can now use this collapsed, factored, joint probability to obtain the sampling

distributions needed to update each topic state zd,i and cache state kd,i. For Z we

compute the sampling distribution for each possible topic value, iterating over each
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state, giving T · |W | computations per iteration over the training corpus. For K,

which can take on values {0, 1}, we have 2·|W | computations per iteration, so the

overall sampling cost is still linear in the size of the corpus.

The key insight, which has been demonstrated numerous times in derivations for

LDA and similar variants, is that most terms in the joint probability are unchanged

when considering different values for a particular state zd,i. Removing the particular

state zd0,j from the sequence only changes the count vectors C(t0) and N (d0) for one

topic in one dimension (v = wd0,j). All other B(·) terms in other documents for other

topics cancel. Also, because we are sampling a topic state, we must assume the cache

variable kd0,j = 0. This implies that sub-sequences W{kd0,i=1} and W{kd0,i=1},−j are

identical, so the cache probabilities cancel as well.

P (zd0,j = t0|W,Z−j, K, α, β, ν) =
P (W,Z,K|α, β, ν)

P (W,Z−j, K|α, β, ν)
(5.32)

=
P (Z|α) · P (W |Z,K, β) · P (K|ν)

P (Z−j|α) · P (W |Z−j, K, β) · P (K|ν)
(5.33)

=
P (Z|α) · P (W |Z,K, β)

P (Z−j|α) · P (W−j|Z−j, K, β) · P (Wj|α, β)
(5.34)

∝ P (Z|α) · P (W |Z,K, β)

P (Z−j|α) · P (W−j|Z−j, K−j, β)
(5.35)

∝
D∏
d=1

[
B(α +N (d))

B(α +N
(d)
−j )

]
· P (Wk=1)

P (W−j,k=1)
·
T∏
t=1

[
B(β + C(t))

B(β + C
(t)
−j)

]
(5.36)

∝ B(α +N (d0))

B(α +N
(d0)
−j )

· B(β + C(t0))

B(β + C
(t0)
−j )

(5.37)
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Applying the definition of the B(·) function (from the Dirichlet distributions of

Φ and Θ), we can further simplify the various Γ(·) expressions. For brevity, we’ll

express the components of vector arguments [α + N (d)]t and [β + C(t)]v as at and cv

respectively.

P (zd0,j = t0|W,Z−j, K, α, β, ν) (5.38)

∝
B
(
α +N (d0)

)
·B
(
β + C(t0)

)
B
(
α +N

(d0)
−i

)
·B
(
β + C

(t0)
−i

) (5.39)

∝
∏T

t=1 Γ(at)

Γ
(∑T

t=1 at

) Γ
(
−1 +

∑T
t=1 at

)
Γ(at0 − 1)

∏
t6=t0 Γ(at)

B
(
β + C(t0)

)
B
(
β + C

(t0)
−i

) (5.40)

∝ Γ(at0)(∑T
t=1 at

)
Γ(at0 − 1)

B
(
β + C(t0)

)
B
(
β + C

(t0)
−i

) (5.41)

∝ at0(∑T
t=1 at

) B (β + C(t0)
)

B
(
β + C

(t0)
−i

) (5.42)

∝ at0(∑T
t=1 at

) ∏V
v=1 Γ(cv)

Γ
(∑V

v=1 cv

) Γ
(
−1 +

∑V
v=1 cv

)
Γ(cwd0,j

− 1)
∏

v 6=wd0,j
Γ(cv)

(5.43)

∝ at0(∑T
t=1 at

) Γ(cwd0,j
)(∑V

v=1 cv

)
Γ(cwd0,j

− 1)
(5.44)

∝ at0(∑T
t=1 at

) cwd0,j(∑V
v=1 cv

) (5.45)

∝
(αt0 +N

(d0)
t0 )(∑T

t=1 αt +N
(d0)
t0

) (β + C
(t0)
wj )(∑V

v=1 β + C
(t0)
v

) (5.46)

Evaluating Equation 5.46 for each possible topic value t0 gives a proportional set
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of values that can be used to sample from P (zd,i) for each topic state. In terms of

notation, this looks exactly like LDA, except the term-topic counts must not contain

words in the sampler state currently drawn from the cache.

For the cache states, we can take a number of simplifying assumptions. First, if a

word wd0,j is going to be drawn from the cache state (kd0,j = 1) then the topic count

vectors C(t) and C
(t)
−j , with and without state kd0,j are identical, so the β terms drop

out. Also, the number of topic states is unchanged (Td) and the number of cache

states differs only for document d0. Assuming conditional of the word probabilities

from the cache, as one might expect, the sample probability of the cache state depends

only on the cache probability of the word in d0 at position j (cf. Equation 5.49).

P (kd0,j = 1|W,Z,K−j, α, β, ν) =
P (W,Z,K|α, β, ν)

P (W,Z,K−j|α, β, ν)
(5.47)

∝
PC(W{kd0,i=1})

PC(W−j,{kd0,i=1})
·
T∏
t=1

[
B(β + C(t))

B(β + C
(t)
−j)

]
·
D∏
d=1

[
B(ν0 + Ld, ν1 + Td)

B(ν0 + (Ld)−j, ν1 + (Td)−j

]
(5.48)

∝ PC(wd0,j|Wd,−j) ·
B(ν0 + Ld0 , ν1 + Td0)

B(ν0 + Ld0 − 1, ν1 + Td0)
(5.49)

However, if a word at (d0, j) is to be drawn from a topic instead (Eqn. 5.50),

the number of cache states (Ld) is unchanged for all documents so the cached word

sequences W{kd,i=1} and W−j,{kd,i}=1 are identical, and that term can be removed.
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P (kd0,j = 0|W,Z,K−j, α, β, ν) =
P (W,Z,K|α, β, ν)

P (W,Z,K−j|α, β, ν)
(5.50)

=
P (Z|α) · P (W |Z,K, β) · P (K|ν)

P (Z|α) · P (W |Z,K−j, β) · P (K−j|ν)
(5.51)

=
P (W |Z,K, β) · P (K|ν)

P (W−j|Z,K−j, β) · P (K−j|ν) · P (Wj|α, β)
(5.52)

∝ P (W |Z,K, β) · P (K|ν)

P (W−j|Z,K−j, β) · P (K−j|ν)
(5.53)

∝
PC(W{kd0,i=1})

PC(W−j,{kd0,i=1})
·
T∏
t=1

[
B(β + C(t))

B(β + C
(t)
−j)

]
·
D∏
d=1

[
B(ν0 + Ld, ν1 + Td)

B(ν0 + Ld, ν1 + (Td)−j

]
(5.54)

∝ B(β + C(zj))

B(β + C
(zj)
−j )

· B(ν0 + Ld0 , ν1 + Td0)

B(ν0 + Ld0 , ν1 + Td0 − 1)
(5.55)

As with the sampling distribution for Z, we can expand the B(·) function and

simplify to obtain a closed form for the K sampling distribution values. Given that

the Beta distribution normalizer is a two-parameter case of the generalized B(·) nor-

malizer for the Dirichlet, we get the same simplification result as in Equation 5.38.

P (kd0,j = 1|W,Z,K−j, α, β, ν) (5.56)

∝ PC(wd0,j|Wd,−j) ·
B(ν0 + Ld0 , ν1 + Td0)

B(ν0 + Ld0 − 1, ν1 + Td0)
(5.57)

∝ PC(wd0,j|Wd,−j) ·
ν0 + Ld0

(ν0 + ν1 + |d0|)
(5.58)
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P (kd0,j = 0|W,Z,K−j, α, β, ν) (5.59)

∝ B(β + C(zj))

B(β + C
(zj)
−j )

· B(ν0 + Ld0 , ν1 + Td0)

B(ν0 + Ld0 , ν1 + Td0 − 1)
(5.60)

∝
(β + C

(t0)
wj )(∑V

v=1 β + C
(t0)
v

) ν1 + Td0
(ν0 + ν1 + |d0|)

(5.61)

∝ ν1 + Td0
(ν0 + ν1 + |d0|)

(5.62)

As the sampler depends on the prior state of Z, which is captured in the count

vectors C(t). If the previous state of kd0,j were 0, then zj will have some topic state

t0, so the probability mass is proportional to Equation 5.61. However, if the previous

state of kd0,j were 1, a cache state, then we would argue that the count vectors C · and

C ·−j are identical, so mass can be simplified to Equation 5.62. Other assumptions

here for implementation are certainly possible. A pseudocode example for the sampler

is provided in Appendix B.
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5.2.4 Summary

In brief, we’ve derived the quantities necessary to estimate all the parameters of

our proposed model using a Gibbs Sampling procedure.

P (zd0,j = t0|W,Z−j, K, α, β, ν) ∝
(αt0 +N

(d0)
t0 )(∑T

t=1 αt +N
(d0)
t0

) (β + C
(t0)
wj )(∑V

v=1 β + C
(t0)
v

) (5.63)

P (kd0,j = 1|W,Z,K−j, α, β, ν) ∝ PC(wd0,j|Wd,−j) ·
ν0 + Ld0

(ν0 + ν1 + |d0|)
(5.64)

P (kd0,j = 0|W,Z,K−j, α, β, ν) ∝
(β + C

(t0)
wj )(∑V

v=1 β + C
(t0)
v

) ν1 + Td0
(ν0 + ν1 + |d0|)

(5.65)

At any point in the sampling procedure we can then obtain quantities for the

topics, φ, topic mixtures θ, and cache usage κ as:

[φ(t)]w =
βw + C

(t)
w∑V

v=1 βv + C
(t)
v

(5.66)

[θ(d)]t0 =
αt0 +N

(d)
t0∑T

t=1 αt +N
(d)
t

(5.67)

κ(d) =
ν0 + Ld

ν0 + ν1 + |d|
(5.68)

5.3 N-gram Extension

Given this framework, it is straightforward (and has been shown elsewhere) to

extend the LDA Gibbs sampling algorithm to N-grams (cf. [90]). The Topical N-gram

model of Wang et al. allows for conditional formation of N-grams. An alternative
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approach would be to allow every word drawn from a topic distribution to also be

conditioned on the preceding (N − 1) words.

Without any additional constraints, each topic φ can now be expressed as a set

of multinomial distributions, one for each possible (N-1) length word history. The

unigram parameter [φ(t)]w becomes [φ(h,t)]w, which captures the probability of word

v, conditioned on the word history h and given topic t, P (w|h, t). As φ arises only

in the sampling distribution for topic states zd,i, it turns out we only need a slight

modification to the unigram Z sampler (Equation 5.63). We only need to recompute

the sub-term P (W |Z,K, β).

First, as before, we integrate out the φ terms (Eqn. 5.74). Although all T · V N−1

distributions appear in P (W |Z,K, β) when we compute the sampling distribution,
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only the terms for the current topic and word history remain (cf. Equation 5.75).

P (W |Z,K, β) (5.69)

=

∫
φ

P (W |Z,K, φ) · P (φ|β)dφ (5.70)

= PC(W{kd,i=1})

∫
φ

 T∏
t=1

D∏
d=1

|d|∏
i=1

P (wi|hi, zd,i = t)I(kd,i=0)

P (φ|β) dφ (5.71)

= PC(W{kd,i=1})

∫
φ

 T∏
t=1

D∏
d=1

|d|∏
i=1

φ(hi,t)
wi

I(kd,i=0)

 T∏
t=1

V N−1∏
h=1

1

B(β(h))

V∏
v=1

φ(h,t)
v

β
(h)
v −1

 dφ
(5.72)

= PC(W{kd,i=1})

∫
φ

T∏
t=1

V N−1∏
h=1

1

B(β(h))

V∏
v=1

φ(h,t)
v

βv+C
(t)
v −1

 dφ (5.73)

= PC(W{kd,i=1})
T∏
t=1

V N−1∏
h=1

B(β(h) + C(h,t))

B(β(h))

 (5.74)

As with the topics φ, we also index the counts for topics and words by word

histories h. The counts C(t) from the unigram case become C(h,t), where [C(h,t)]w

is the number of occurrences of w with history h and with topic state t. Because,

as with the unigram case, during sampling these count vectors only differ by 1 at

any particular word, the P (W |Z,K, β) term of the sampling proportions can now be

expressed as:
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P (W |Z,K, β)

P (W−j|Z−j, K, β)
=

V n−1∏
h=1

[
B(β(h) + C(h,t))

B(β(h) + C
(h,t)
−1 )

]
(5.75)

=
B(β(h0) + C(h0,t))

B(β(h0) + C
(h0,t)
−j )

(5.76)

=
β(h0) + C

(h0,t)
wd,j∑V N−1

h=1 β(h) + C
(h,t)
wd,j

(5.77)

5.4 Conclusion

We have fully described a latent topic model framework the jointly models words as

either generated from a broad context (topics) or local context (cache). We have also

derived the computations necessary to perform parameter estimation, by means of

approximate posterior inference, using a Gibbs sampler. Our model can accommodate

any type of document-level cache model that conditions the probability of a particular

word only on other observed words in the same document.

Two main questions we will address in the remaining chapters. First, how well does

this model capture both topic repetition properties of the data? Secondly, returning

to our motivating problem, does this model generate useful language models for speech

retrieval?
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Figure 5.2: N-gram Cache-augmented Topic Model
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Chapter 6

Model Analysis

Any proposed model such as the one detailed in Chapter 5 can be analyzed ei-

ther intrinsically or extrinsically, with or without reference to a particular task. We

evaluated standard LDA and cache-based language models extrinsically in Chapter

4 in the context of the keyword retrieval task, and we will evaluate our proposed

cache-augmented topic model on the same extrinsic task in Chapter 7. In this chap-

ter, we begin by looking directly at intrinsic, observable properties of the model, but

also examine model properties through extrinsic tasks such as language modeling and

topic discovery.

We estimate model parameters on informal speech corpora in a number of lan-

guages and consider the model behavior from different perspectives. We first look at

the convergence and consistence of the approximate inference process itself. Given the

stochastic nature of Gibbs sampling, we look at consistency and convergence across
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multiple iterations on the same corpora. Next we look specifically of the repetition

properties inferred by our model. We ask whether the inferred cache properties corre-

spond to our intuitions and related repetition phenomena of the data. We then look

at constructing a unigram language model from the learned topic distributions and

look at perplexity behavior on held out data, contrasting this with standard LDA

models on the same data. Lastly, we use external topic discovery tasks to asses the

quality of the ‘subject matter’ topic distributions.

6.1 Convergence and Consistency

In recent years, many approximate inference techniques have been well studied in

the context of the standard LDA topic model, to include different implementations

and optimizations (cf. [67], [91], [71]). One standard point of comparison is the

convergence of different algorithms or models in terms of some metric. Convergence

speaks to both the stability of the model and the efficiency of inference algorithm.

Typically convergence can be expressed as the likelihood (or derived metrics, log-

likelihood or perplexity) of either the training data or a held out data set under the

model.

Additionally, because of the stochastic nature of Gibbs Sampling (and other

MCMC) approaches we can ask how consistent different runs of the inference algo-

rithm are for LDA or for our cache-augmented model. To illustrate both consistency
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and convergence of our proposed model, we perform 5 trials of parameter estimation

on a number of similarly sized speech corpora. We can show that in terms of consis-

tency, both LDA and our cache-augmented model are equivalently stable across trials

and exhibit similar convergence behavior over time. We also analyze the convergence

and consistency specifically of the κ(d) parameter under different corpora and number

of topics. Again, we can show the parameter estimation converges and is stable across

trials, but as intuition suggests, the behavior differs across languages.

In this chapter and in the next we focus primarily on low-resource speech recog-

nition and retrieval scenarios. As before we utilize Limited Language Pack (Limited

LP) resources from the IARPA Babel program, which contain only 10 hours of tran-

scribed audio. The languages we consider in this chapter include Turkish, Tagalog,

Vietnamese, Zulu and Tamil.1 For interpretability of topics and cached words, we

also estimate models on the CallHome Spanish corpus from LDC, which contains

roughly 14 hours of transcribed conversational speech [75], LDC’s Fisher Spanish

transcripts [92], with 178 hours of transcribed speech, and the 359 hour subset of

LDC’s Fisher English transcripts we previously used for Topic ID experiments.

Corpus statistics are provided in Table 6.1. The Babel corpora are roughly all of

the same size in terms of number and length (number of utterances) of documents.

For speech corpora, we generally use silence-segmented utterances, roughly corre-

sponding to a single conversation turn, instead of sentences. Sentences are generally

1Language collection releases babel105b-v0.4, babel106-v0.2g, babel107b-v0.7, babel206b-v0.1e,
and babel204b-v1.1b respectively.
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Corpus Docs Utts/Doc Tokens/Doc Tokens/Utt

Turkish 128 81.45 565.17 6.94
Tagalog 132 87.52 534.02 6.10
Vietnamese 126 80.71 932.86 11.56
Zulu 124 85.20 520.45 6.12
Tamil 125 85.77 601.57 7.01
Spanish (CallHome) 160 107.51 903.84 8.41
Spanish (Fisher) 1286 159.25 986.32 6.19
English (Fisher) 2060 189.31 1899.05 10.03

Table 6.1: Corpus sizes in terms of documents, utterances, and word tokens

not well delineated in speech transcripts. The Spanish corpora contain noticeably

longer documents at least in terms of the number of utterances. English contains

more words per utterance. There is some variance in terms of the number of word

tokens per utterance, particularly for Vietnamese, which as has been mentioned was

transcribed with syllable level word tokens.

For each corpus we analyze the training log-likelihood (per word token) over 1000

iterations of Gibbs Sampling, and averaged over 5 independent trials. We contrast the

Mallet implementation of LDA with our proposed cache-augmented model (abbrevi-

ated κLDA) with either unigram or bigram cache. We also consider topic mixtures

(under all models) of {50,100,150,200}.

Figure 6.1 illustrates the convergence of the per-word log-likelihood over 1000 it-

erations for each model condition when training on the CallHome Spanish corpus.

The shaded area around the 100 topic condition indicates ± 1 sample standard de-

viation of the log-likelihood measurement across the 5 trials. The tightness of the
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Figure 6.1: Model log-likelihood convergence over sampling process for CallHome
Spanish transcripts.
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log-likelihood estimates over all iterations indicates that sampling under our cache-

augmented model is roughly as stable as LDA across trials.

For the sake of comparison we present the convergence figures for the Babel Viet-

namese and Turkish (cf. Figures 6.2a, 6.2b). Indeed from a convergence perspective,

the two behave similarly under standard LDA. However the sampling becomes signifi-

cantly less smooth moving from Vietnamese to Turkish. For completeness, we include

convergence figures for all corpora in Appendix C. With respect to log-likelihood con-

vergence, in all cases the trajectory consistently changes around iteration 250, which

is consistent with the application of the hyperparameter re-estimation from Wallach

et al. [93] from that point on in all trials.

Alternatively, if we look at the absolute model log-likelihood we see that the

cache-augmented models underperform standard LDA in both the unigram and bi-

gram cache cases. However we will re-visit this shortly in terms of language model

perplexity. Table 6.2 details the likelihood values as well as the sample standard

deviation across trials (in parentheses) under all model conditions. Irrespective of

the absolute value, the low variance across trials is a quantitative indication of the

likelihood stability of both LDA and our proposed variants. Included are the results

for the 100 topic case, with results for the 50, 150, and 200 topic case provided in full

in Appendix C.
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(a) Vietnamese (b) Turkish

Figure 6.2: Model log-likelihood convergence over sampling process for Babel Viet-
namese and Turkish transcripts.

118



CHAPTER 6. MODEL ANALYSIS

Corpus LDA κLDA-1 κLDA-2

Turkish -7.554 (0.02) -9.173 (0.04) -8.535 (0.02)
Tagalog -6.523 (0.02) -8.210 (0.03) -7.910 (0.04)
Vietnamese -6.498 (0.01) -8.245 (0.03) -8.044 (0.03)
Zulu -7.887 (0.02) -9.912 (0.03) -8.594 (0.03)
Tamil -7.887 (0.02) -9.993 (0.04) -8.853 (0.03)
Spanish (CallHome) -7.034 (0.02) -8.341 (0.04) -8.164 (0.04)
Spanish (Fisher) -7.505 (0.01) -8.381 (0.01) -8.270 (0.03)

Table 6.2: Model log-likelihood per word after 1000 iterations, averaged over 5 runs,
sample standard deviation in parenthesis.

6.2 Repetition

The next manner in which we can look intrinsically at the parameters output

by our cache-augmented model is by analyzing to what extent the latent variables

capture token repetition within various corpora. Within our model, repetition is

captured by the cache indicator variables kd,i and per-document cache prior κ(d). We

expect the former to be assigned to word types that tend to repeat within documents

and the latter to represent the amount of repetition within a particular document,

and generally this is in fact the case when looking at the data.

We continue to analyze the corpora described in the previous section, however we

focus primarily on the IARPA Babel corpora, which are designed to be of equal size

both in terms of length and number of documents. We will first look at estimates for

the prior term κ(d) then look at individual state assignments kd,i.

One lens through which we view how our proposed model captures repetition is

the corpus κ value, defined as the mean over all documents’ κ(d). We expect this value
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(a) Vietnamese (b) Turkish

Figure 6.3: Convergence and stability in κLDA sampling process for corpus κ.

to correspond to language-specific tendencies towards repetition similar to what we

found in Chapter 4 with our learned interpolation weight α̂ for repeated keywords.

As with likelihood, we also look at the convergence and stability of the estimates

of κ during the sampling process. Unlike the likelihood, which we expect in general

to only increase, we have no such expectation for the κ estimates. The convergence

figures for Vietnamese and Turkish are shown in Figure 6.3 and the same for all

languages are given in Appendix C. As with the log-likelihood across trials, the sample

standard deviation for the mean of κ(d) across 5 trials was 0.01 or less for all languages

and conditions, again letting us quantify the stability of the sampling procedure.

We highlight Turkish and Vietnamese as two languages whose repetition behavior

we would expect to be most distinct. Morphologically the two languages are quite
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different. Turkish is an agglutanitive language and also exhibits vowel harmony be-

tween roots and affixes. The result of multiple affixes, plus their harmonized forms,

applied to a root word results in a large number of distinct word types as compared

to other corpora (see [94] for a discussion of the implications of these properties for

speech recognition and language modeling). From our perspective, the addition of

affixes may have the effect of turning a word token which could have been a repetition

of a previous token into a new word type, lowering the likelihood of repetition.

Vietnamese, by contrast is transcribed at the syllable level and for speech recog-

nition, N-gram language models are also applied at the syllable level, so for purposes

of comparison the only available word unit is the syllable. Although it is sometimes

described as ‘devoid of morphology’ [95] many of its units have what Noyer describes

as a ‘reduplicative counterpart’ in which the syllable is repeated, perhaps with a

change in tone to serve different syntactic or semantic roles. This, in addition to the

combinatorics of a fixed alphabet and small word length limits the number of possible

word types and thus increased the likelihood that any particular word type will be

repeated in a particular document.

Table 6.3 lists the corpus κ values for the Babel development corpora, with Turkish

and Vietnamese figures called out. Figure 6.4 shows the same estimates, and include

error bars representing 1 sample standard deviation across 5 independent trials. As

we would have expected, for a particular number of latent topics T , the highest κ

value is inferred from the Vietnamese corpus, and the lowest, indicating least token
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Language T = 50 100 150 200

Tagalog 0.41 0.29 0.22 0.16
Turkish 0.31 0.19 0.13 0.09
Vietnamese 0.51 0.39 0.29 0.22
Zulu 0.33 0.26 0.21 0.16
Tamil 0.36 0.27 0.18 0.14

Table 6.3: Corpus κ inferred from 10 hour development data, by number of latent
topics

repetition, is inferred from the Turkish Corpus.

We compare our κ estimates to a simple measure of repetition in each corpus, the

percentage of tokens in each document that are repeated (i.e. non-singletons).

DocumentRepetition =
1

|D|
∑
d∈D

[
1− # types in d

# tokens in d

]
(6.1)

This better quantifies our intuition about the repetition within the Babel languages,

as Zulu, Tamil, and Turkish have both low within-document token repetition and low

corpus κ, while Vietnamese has both high κ and a high percentage of token repetition

(cf. Figure 6.5).

6.2.1 Document-Level Repetition

Independent of language, a second property of the model that emerges is the

overall decrease in cache usage, as captured by estimated κ as the number of latent

topics increase. This is evident in Table 6.3 and Figures 6.4 and 6.5. We will consider
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Figure 6.4: Corpus κ inferred from development corpora, averaged over 5 sampling
runs.

Figure 6.5: Corpus κ of development corpora, compared against the percentage of
repeated tokens within each document.
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Language T=50 100 150 200

Tagalog 0.18 0.20 0.19 0.18
Turkish 0.18 0.17 0.15 0.13
Vietnamese 0.13 0.16 0.16 0.16
Zulu 0.20 0.19 0.18 0.17
Tamil 0.15 0.16 0.15 0.14

Table 6.4: Sample standard deviation of κ(d) estimates across documents from 10
hour development data by number of topics T

within the context of retrieval in the next chapter to what extent a larger number of

topics leads perhaps to overfitting and reducing the need to rely on the cache.

We can see the variation by number of latent topics in more detail by shifting our

focus from the corpus level κ to the per-document estimates of κ(d). If we consider

the histograms of the κ(d) estimates (cf. Figure 6.6) we can see that the variance

across individual documents is not insignificant. Sample standard deviations for the

data in Figure 6.6 is provided in Table 6.4.

6.2.2 Cached Word Types

To finish our analysis of the repetition patterns that are learned by our proposed

model we look at the individual cache state assignments. Recall that during the

generative process, each word in the corpus is assigned a latent state variable, kd,i,

indicating whether the word wd,i is to be sampled from the a latent topic or from the

current document’s cache. We consider models trained on the Fisher Spanish and

English corpora in order to examine which word types are most frequently inferred
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(a) Zulu

(b) Tamil

(c) Turkish

(d) Tagalog

(e) Vietnamese

Figure 6.6: Histograms of per-document κ(d) by language and number of topics T .
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as having been drawn from the cache (kd,i = 1).

We focus on the sampler state after 1000 iterations. Each token in the training

corpus is associated with a state value of kd,i = 0 or kd,i = 1. For each word v in the

corpus vocabulary we count the number of tokens of that word type assigned a value

of 1. We can define the cache token count (CC) over the corpus as sampling state

precisely as:

CC(v) =
∑
d∈D

|d|∑
i=1

I(wd,i = v ∧ kd,i = 1) (6.2)

where I(·) is an indicator function taking a value of 1 when its expression is true and

0 otherwise.

We can compare this quantity with other frequency measures that we considered

in section 4.3.1, in particular, corpus frequency (fw or CF), document frequency

(DF), and burstiness, which we previously defined as fw/DFw. Plotting the cache

token count from the final sampling state against the raw corpus frequency for each

vocabulary word, we see a strong correlation, but a number of low frequency words

have relatively high cache counts (cf. Figure 6.7a). This pattern also emerged when

looking at word burstiness (cf. Figure 6.7b).

Again, this phenomenon appears to indicate that we are not just modeling overall

frequent words with the cache states. If we take the words most frequently assigned

a cache state (CC Rank) and look at how they are ranked by corpus frequency (CF

Rank) and document frequency (DF Rank), irrespective of raw counts, we see that

many topic words occur more frequently as cached tokens (cf. Table 6.5). The
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(a) Cache counts (b) Burstiness

Figure 6.7: Measures of repetition for the Fisher Spanish vocabulary. Each point in
the graph represents a word in the training vocabulary.

highlighted topic words (chosen from the top 200 cached tokens) are clearly related

to various labeled topics within the Fisher collection and occur more frequently by

rank in the cache than overall in the corpus by raw or document frequency.

Although the highlighted frequently cached words are related to the labeled topics,

if we compare the CC rank to the χ2 feature selection metric (cf. [57]) only a few score

highly in terms of χ2 rank. Indeed if we look across the vocabulary (cf. Figure 6.8),

we can see that χ2 is much more strongly associated with infrequent words, both in

terms of DF (Figure 6.8b) or cache sample frequency (Figure 6.8b).

If we follow the same analysis for the Fisher English corpus we can observe the

same phenomena. Our proposed cache model captures more than simply frequent

words (in terms of corpus or document frequency). In Table 6.6 we again highlight

the content words (indicative of the reference human topic labels) that occur within
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CC Rank Word CF Rank DF Rank χ2 Rank

1 que 1 6 1574
2 no 2 2 1821
3 de 4 7 6241
4 y 3 1 6223
5 śı 5 12 927
6 la 6 5 794
7 en 9 4 1863
8 es 7 3 8112
9 a 8 8 984
10 yo 10 10 3065
11 música 90 368 1

...
46 religión 177 425 2
90 iglesia 304 566 9
98 teléfono 176 277 11991
13 york 160 190 4493
114 nueva 154 174 3147
117 dinero 169 201 860

...

Table 6.5: Words in Fisher Spanish most frequently assigned a cache state of kd,i = 1.

128



CHAPTER 6. MODEL ANALYSIS

CC Rank Word CF Rank DF Rank χ2 Rank

1 i 11 1 1114
2 you 5 2 913
3 and 4 3 3836
4 the 3 4 1797
5 yeah 29 8 1519
6 know 19 7 750
7 to 10 5 4512
8 a 2 6 1192
9 that 9 9 780
10 like 13 12 1696

...
73 school 213 123 59
77 watch 317 160 24
84 family 269 168 9
88 minimum 1018 278 2
91 wage 1093 292 1
93 money 209 129 142
95 dog 879 282 4
103 computer 506 270 21

...

Table 6.6: Words in Fisher English most frequently assigned a cache state of kd,i = 1.

129



CHAPTER 6. MODEL ANALYSIS

(a) Cache counts (b) Burstiness

Figure 6.8: Measures of topic relevance and repetition for the Fisher Spanish vocab-
ulary. Each point in the graph represents a word in the training vocabulary.

roughly the top 100 cached words. Figure 6.9 contrasts the cached state frequencies

to the burstiness measure, showing trends similar to the Spanish corpus. Likewise,

Figure 6.10 also shows how words that obtain a high χ2 score relative to the reference

topic labels tend to occur with low document frequency and cache usage.

Given the examples from the English and Spanish corpora, we can see that the

cache state in our model captures unique properties of the given languages: not simply

frequency, not capturing just an additional latent topic. In the following section we

will look at our proposed model as a unigram language model and consider to what

effect our modeling of repetition contributes to that task.
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(a) Cache counts (b) Burstiness

Figure 6.9: Measures of repetition for the Fisher English vocabulary. Each point in
the graph represents a word in the training vocabulary.

(a) Cache counts (b) Burstiness

Figure 6.10: Measures of topic relevance and repetition for the Fisher English vocab-
ulary. Each point in the graph represents a word in the training vocabulary.
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6.3 Language Models

Up to this point we have looked primarily at intrinsic properties of the model, di-

rectly observable or measured from the estimated parameters on our various corpora.

Beginning in this section we begin to shift our focus to external tasks, starting with

language modeling. As we described in the previous chapter, once we have obtained

the topic proportions for a document (denoted as θ(d)), it is straightforward to obtain

a document-specific unigram language model as a mixture of the topic distributions

φ(t) (cf. Eqn. 6.3).

Given the topic distributions and topic proportions we can generate these document-

specific unigram LM’s either from standard LDA topic models or from our proposed

model. Under our model we can also incorporate the probabilities from the cache

frequencies essentially on a word by word basis (cf. Eqns. 6.4,6.5).

Pd(wi) =
T∑
t=1

θ
(d)
t · φ

(t)
i (6.3)

Pcachewi =
fcache(wi)∑|V |
j=1 fcache(wj)

(6.4)

Pd+cache(wi) =κ(d)Pcache(wi) + (1− κ(d)) · Pd(wi) (6.5)

Given these unigram language models we can look at the performance of LDA

and our proposed model in terms of perplexity on the held-out data sets. Here we

take the document-level cache prior κ(d) as a natural interpolation weight (Eqn. 6.5).
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Language T LDA κLDA′ κLDA

Tagalog 50 142.90 163.30 134.43
100 136.63 153.99 132.35
150 139.76 146.08 130.47
200 128.05 141.12 129.94

Vietnamese 50 257.94 283.52 217.30
100 243.51 263.03 210.05
150 232.60 245.75 205.59
200 223.82 234.44 204.25

Zulu 50 183.53 251.52 203.56
100 179.44 267.42 217.11
150 174.79 269.01 223.90
200 175.65 252.03 217.89

Tamil 50 273.08 356.40 283.82
100 265.02 369.18 297.68
150 259.42 361.79 301.92
200 236.30 341.32 298.26

Turkish 50 273.08 356.40 283.82
100 265.02 369.18 297.68
150 259.42 361.79 301.92
200 236.30 341.32 298.26

Table 6.7: Perplexity of topic-mixture unigram language models with and without
unigram cache

We contrast the perplexity under three conditions on the 10 hour Babel development

corpora. First, taking the θ(d) and φ(t) from standard LDA models, second using

only the topic mixtures for our proposed model (denoted κLDA′), and third, our

full proposed unigram model of topic mixtures interpolated with cache probabilities

(denoted κLDA).

We can see from Table 6.7 that perplexity in general decreases as the number of

latent topics T increases. However, as we will see in Chapter 7, this is not necessarily

predictive of the best retrieval performance. By themselves, the topic mixtures from
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our proposed model underperform LDA in terms of perplexity. However, when the

cache probabilities are mixed in, for Tagalog and Vietnamese the perplexity under

our proposed model is relatively 3 to 15% lower than the perplexity under LDA.

6.4 Topic Discovery

While perplexity measures give us a notion of how well our proposed model ex-

plains the development data in a general sense, we would like to have some measure of

how well our proposed cache-augmented model is able to extract the ‘subject matter’

of the various corpora. We wish to avoid presenting list of most frequent words in the

learned topic distributions, which, though a compelling demonstration of the learning

capability of topic models for English, is nonetheless still subjective in nature.

We will instead extend the analysis followed by May et al (cf. [96]) which looks at

both the extrinsic performance of topic models as low-dimensional feature representa-

tions for classification, but also at the topic discovery task, where topic distributions

are evaluated as clusterings of the data against a gold standard. What we find is that

in terms of classification performance, our proposed model performs slightly worse

than a typical LDA model

In order to compare against a gold standard set of topic labels, we restrict the

analysis to the labeled LDC Fisher English and Spanish transcripts, with training

and testings splits consistent with our previous published work (cf. [17, 32]). Classi-
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fication based measures of latent topic models indirectly evaluate the learned topic

distributions by posing the question, are the latent topics assigned to each document

predictive of the labeled topic in terms of effective features for classification? Cluster-

based measures ask the question, are the documents generated from the same latent

topics also assigned the same topic label by a human annotator?

6.4.1 Classification

In terms of the first question, we use the topic proportions θ(d) for each document

as a T -dimensional feature vector where T is the number of latent topics. We extract

θ(d) for our cache-augmented model (denoted κLDA) using the Gibbs sampling for-

mulation detailed in Chapter 5. We also extract θ(d) using the Mallet implementation

of LDA. Comparison of these two models gives us an indication of what if any ability

to capture the subject matter is lost when words are modeled as generated from the

cache in our model.

We train topic models with T = {50, 100, 200, 300, 600} under our model and

LDA, inferring θ(d) for both train and test partitions of the Fisher English and Spanish

transcripts. We train N 1-vs-all binary classifiers, where N = 40 for Fisher English,

and N = 25 for Fisher Spanish. All results reported are averaged over all N classifiers.

For a state-of-the art baseline we use TF-IDF weighted bags-of-words features using

the full training partition vocabulary in each corpus (26606 and 30170 respectively).

As with previous experiments, we report detection Equal Error Rate (EER), Identi-
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fication Error Rate (ID Error) and Area Under the recall-precision Curve (AUC) for

each system. General trends are consistent across these metrics, but reflect different

application scenarios.

We capture the results of both English and Spanish classification tasks in Fig-

ure 6.11. From the perspective of classification we can conclude that our cache-

augmented model, for all but the largest number of latent topics, lose some ability to

capture the labeled topic signal in order to model repetition, vis-à-vis the LDA topic-

only model. This is best visualized as the gap between the performance of the feature

vectors θ(d) inferred from LDA versus κLDA and κLDA-2 (bigram cache model).

In hindsight the results in Figure 6.11 follow naturally from the analysis of κ

estimates in Section 6.2. As the number of latent topics increase the cache usage

decreases, as measured by κ(d) for each document (cf. Figure 6.4). We might expect

the topics learned by our cache-augmented model to approach those learned by the

original LDA model as the number of latent topics grows, and from the perspective

of classification, this is indeed the case.

It is worth noting again that the classification metrics are an indirect measure

of how well the aforementioned models capture ‘subject matter’ behavior, viewed

through the lense of a single set of human annotations. The results in Figure 6.11

suggest that for fewer number latent topics, the cache-augmented models differ sig-

nificantly from LDA in terms of their discovered topics. However, if we consider a

cluster-based evaluation, we may conclude that this difference in models (LDA versus
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(a) EER (b) ID Error

(c) AUC

Figure 6.11: Classification performance using latent topic features.
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κLDA) is in part application-specific.

6.4.2 Clustering

As in May et al. [96], we also evaluate topic discovery of the models in terms of V-

measure [97]. V-measure is defined as the harmonic mean of two desirable properties

homogeneity and completeness, similar to F-measure, in which degenerate solutions

can result in perfect recall or precision, but not both. Likewise a degenerate clustering

can be obtained where all documents are assigned a single cluster (c = 1), or where

each document is given its own cluster or latent topic (h = 1).

The formal definitions of homogeneity h, completeness c, and V-measure Vβ follow.

V-measure can be parameterized by a β, a specific preference for h versus c. All of

our results report V1 where β = 1 and homogeneity and completeness are weighted

equally. The metric depends on the contingency table A whose entries ack are the

number of documents assigned to class (labeled topic) c and cluster k. As in [96] we

assign cluster membership based on the most likely latent topic for both LDA and

κLDA.

Vβ =
β + 1 · h · c
β · h+ c)

(6.6)
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h =


0 , if H(C) = 0

1− H(C|K)
H(K)

, else

(6.7)

H(C|K) =−
|K|∑
k=1

|C|∑
c=1

ack
N

log
ack∑|C|
c=1 ack

(6.8)

H(C) =−
|C|∑
c=1

∑|K|
k=1 ack
N

log

∑|K|
k=1 ack
N

(6.9)

c =1− H(K|C)

H(K)
(6.10)

H(K|C) =−
|C|∑
c=1

|K|∑
k=1

ack
N

log
ack∑|K|
k=1 ack

(6.11)

H(K) =−
|K|∑
k=1

∑|C|
c=1 ack
N

log

∑|C|
c=1 ack
N

(6.12)

We use the same topic models from the previous section, trained with T =

{50, 100, 200, 300, 600}. Again we obtain the inferred topic proportions θ(d) for each

document d in the training partition. Taking the most likely topic t (argmaxt θ
(d)
t ) as

the cluster assignment for d, we compute V1 for the topic model induced clustering

and some set of class labels C over the training documents.

We consider two choices for class labels. We can use the human topic labels from

the Fisher corpora as a ‘gold standard’ set of classes C for both English and Spanish

(where |C| is 40 and 25, respectively). However we can also take an unsupervised

clustering of the transcript bags-of-words as an alternate set of classes. For the

latter comparison, we compute clusters on the training data for each corpus of sizes

|C| = {25, 50, 100}. The latter approach is a viable measure when we have no ground
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truth topic labels. All of the bags-of-words clustering against which we compare were

generated from the training transcripts using the CLUTO toolkit’s [98] vcluster tool

with default settings.

The cluster analysis of the LDA and κLDA topic distributions gives a different

perspective from the classification task to the question, how well do the models cap-

ture topic content in the corpora considered? Whereas in the classification task, there

was a consistent gap between LDA and κLDA performance the cluster accuracy with

respect to the human class labels (cf. Figure 6.12a) is affected by the addition of

the cache model for some models but not for all. Indeed for most of the Spanish

models, the V1 performance is similar. In absolute terms, neither topic model induces

clusters as accurate in terms of V1 as a bag-of-words clustering (denoted TF-IDF in

Figure 6.12a).

In Figure 6.12b we show the V1 computed in comparing the topic clusters to a

bags-of-words clustering of 25, 50, or 100 clusters. We observe a similar patter in

terms of the behavior of V1 given the algorithm and number of topics as compared to

the human labeled classes, which we should at the least expect for the English corpus,

given the high V1 (0.83) for the bags-of-words versus the human labels. In all cases,

as with the classification task, the bigram κLDA (κLDA-2) is consistently worse.

We can repeat the comparison between the topic-model induced clusters and a

bag-of-words clustering on the low-resource IARPA Babel transcripts and observe

similar trends as with the larger Fisher corpora. For the Babel Tagalog, Vietnamese,
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(a) Human labeled topic classes. (b) Bag-of-words clustered labels.

Figure 6.12: Clustering performance with latent topic features.

Zulu, and Tamil training transcripts, we generated reference bag-of-words clusters in

the same manner, except for due to the smaller corpus size we looked at cluster sizes

of |C| = {10, 20, 30, 40}. We used the inferred topics from the models trained using

T = {50, 100, 150, 200} latent topics to induce clustering based on the most likely

latent topic for each document and computed V1. The clusering evaluation results for

each combination are captured in Figure 6.13.

In general the bigram κLDA models give clusterings that are highly dissimilar

to the baseline bag-of-words clusters. For the unigram cache-augmented model, the

similarity with the bag-of-words relative to standard LDA varies by language. With

the exception of Zulu, the clustering performance of the cache-augmented model

generally increases with the number of latent topics. The Vietnamese results stand
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Figure 6.13: Clustering evaluation of babel corpora
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out particularly, both in terms of the best performing bigram model and in terms

of the unigram κLDA which at 150 and 200 latent topics, appears to generate topic

clusters consistent with standard LDA.

In conclusion, we can have some confidence that our proposed topic learns simi-

lar topic distributions to standard LDA although they do not prove as effective for

classification. The difference in the results between the larger Fisher corpora and the

smaller Babel corpora may suggest that the training set size has an effect, but this

needs to be separated from language-specific effects.

6.5 Conclusions

In this chapter we analyzed the behavior of a cache-augmented topic model from

a variety of perspectives - model likelihood, cache usage and repetition behavior,

perplexity, and topic clustering behavior. We considered multiple factors which could

affect the various metrics, and different facets of our proposed model responded in

different degrees to language properties, training size, model parameters such as the

number latent topics, and not surprisingly the intended task for each metric.

In terms of the repetition properties of our proposed models, we observed a num-

ber of salient phenomena. We found that the configured number of latent topics

impacted the inferred cache usage (as captured by the κ(d) estimate) across all lan-

guages. We also saw that cache usage aligned with what we might expect given
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intrinsic morphological and other properties of the particular languages. When we

looked at the individual word types that were frequently assigned to the cache state

we saw, via English and Spanish examples, that we are not simply replicating word

or document frequency properties.

If we focus on the comparison in each case between our proposed model and

a standard LDA topic model, we have a mixed set of results in terms of metrics

that allow a quantitative comparison such as cluster accuracy, perplexity, or topic

classification performance. Perplexity, for example, is lower under our proposed model

in two of the 5 low-resource Babel languages, Tagalog and Vietnamese, which by

our metrics, also exhibited the most token repetition. Similarly, these two languages

exhibited the best performance in terms of clustering accuracy (versus standard LDA)

when compared with bag-of-word based clusters.

If we consider how much the task affects interpretation of the model performance,

for example, when we compare clustering and classification performance, we want to

consider carefully each task and topic model combination. In the next chapter we will

do that by looking specifically at external evaluations of our model in the context of

speech recognition and retrieval tasks.
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Speech Retrieval

Thus far we have presented a variety of methods to incorporate topic information

into the speech retrieval pipeline: topic classification (Chapter 3), repetition-based

keyword re-scoring (Chapter4), and an ad-hoc fusion of latent topic and cached N-

gram language models (Chapter 4). Building upon the intuitions developed through

these experiments, we presented a model in Chapter 5 that formally and distinctly

captures both subject matter and repetition aspects of topicality. In this chapter we

extrinsically evaluate our proposed model against the spoken keyword retrieval task.

We compare the results from our joint model against the system cascade of re-

decoding with topic-only augmented language models followed by re-scoring with a

cache-augmented N-gram model. As in Chapter 4 we report our primary results in

terms of term-weighted value (TWV) so as to be consistent with published results on

the same corpora. Our intent in proposing the model in Chapter 5 was to capture
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Language Baseline LDA(D) Cache(R) L(D)+C(R) κLDA(D)

Tagalog 0.244 0.254 0.260 0.267 0.266
Vietnamese 0.254 0.269 0.256 0.271 0.271
Zulu 0.270 0.283 0.276 0.289 0.287
Tamil 0.216 0.237 0.229 0.240 0.241

Table 7.1: Overall KWS accuracy improvements using joint model (κLDA), compared
to LDA and previous cascaded LDA+Cache combination

the same information as in the system combination approach, but for the case where

we decode the search corpus with our cache-augmented topic language models, we

only perform one additional pass over the data, as opposed to the system cascade

which requires two passes. As we summarize in Table 7.1 and subsequently describe

in detail, our proposed model performs as well as the system combination approach,

but with one less pass over the corpus.

We begin this chapter by reviewing the retrieval task and the corpora involved.

Then we elaborate the algorithm by which we incorporate our cache-augmented topic

model into the speech recognizer’s N-gram language model. In particular we look

again at the question of language model interpolation weights. We briefly look at

whether sub-document locality, expressed by decaying cache frequencies, is preferable

to using the entire document as the local context (for our task it does not). Finally

we look at performance on the retrieval task in detail to consider lattice re-scoring

versus re-decoding and unigram versus bigram cache models.
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7.1 Task and Corpora

The retrieval task is formulated as a term detection or keyword search task, defined

by NIST for a 2006 evaluation on English, Mandarin Chinese, and Levantine Arabic

broadcast and conversational corpora [7]. The assumption is that document retrieval

is dependent on the retrieval of individual keywords. The NIST task focuses on

locating a set of key terms (defined as one or more adjacent words) in a corpus

of audio. As previously mentioned, the 2006 evaluation also introduced the Term

Weighted Value (TWV) metric: given a list of putative term detections, a weighted

sum of the false alarm probability and miss probability, averaged over all terms.

We present our empirical retrieval results within the same framework as it is

applied to the IARPA Babel retrieval corpora. As in Chapter 4 we focus specifically

on the no target audio reuse (NTAR) condition for breadth of applicability and to be

consistent with other published work on this particular task. This condition states

the audio may not be reprocessed after obtaining the search keywords, so it is worth

noting that our topic models (or standard LDA) are applied without any knowledge

of the evaluation keyword list.

As before, we focus on the Limited Language pack (LP) low-resource condition for

speech recognition, language, and topic model training. The Limited LP partitions of

the Babel corpora contain only 10 hours of transcribed audio and a lexicon restricted

to those transcripts. To report recognition (WER) and retrieval (TWV) performance,

we decode and search the 10 hour development set, using the released evaluation
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keywords, again to facilitate comparison with our previous work and other published

results. The languages we consider in this chapter include Tagalog, Vietnamese, Zulu

and Tamil.1 These cover the first two years of the Babel program and include the

2013 and 2014 OpenKWS languages [99,100] (Vietnamese and Tamil).

The ASR acoustic and N-gram language models are the same as those used in

Chapter 4 and all experiments carried out within the Kaldi speech recognition toolkit

[74]. Kaldi implements language models for ASR as weighted finite state transducers

(WFSTs) and relies on the OpenFST [101] package for its language model operations.

This has practical implications for implementing custom language models, which we

will discuss as we present our full retrieval procedure.

7.2 Procedure

All of the following retrieval experiments follow the basic procedure outline as

Algorithm 7.1. In terms of the topic models themselves, we vary the number of latent

topics T and compare the use of a unigram or bigram cache. As with the experiments

with standard LDA in Chapter 4 we also compare re-scoring the ASR lattices from

the first decode pass to re-decoding the audio with the document-specific, cache-

augmented language topic models. We also consider the effect of applying a decay

weight to the computation of cache frequencies.

1Language collection releases babel106-v0.2g, babel107b-v0.7, babel206b-v0.1e, and babel204b-
v1.1b respectively.
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Algorithm 7.1 Repetition-based term detection re-scoring

1: Train ASR Acoustic and Language Models
2: Train Cache-Augmented Topic Language Models
3: Decode search audio corpus D.
4: for d ∈ D do
5: Infer θ, κ from first pass output.
6: Compute document-specific unigram model Pd given θ(d)

7: for Utterances u ∈ d do
8: Compute cache probabilities from û 6= u
9: Interpolate Pd, Pcache(u), and PNG

10: Re-score or Re-decode u to obtain a new lattice.
11: Perform KWS on new lattices

Two primary implementation considerations for this model are: how should the

cache probabilities be computed, and how should the topic and cache language models

be interpolated with the baseline ASR language model? The cache probabilities need

to be computed both during the inference sampling process for κ(d) (cf. Equation 5.64)

and when augmenting the ASR language model during recognition. As mentioned,

we need to select the N-gram order of the cache and the scope of the cache: how

much of the current document ought to influence the cache probabilities.

7.2.1 Cache Frequencies

We pay special attention to the cache scope given the implementation constraints

of the WFST framework. The unsmoothed N-gram cache probability computation

Pcache can be defined according to Equation 7.1, summing over occurrences of the

word v and its history H.

149



CHAPTER 7. SPEECH RETRIEVAL

Pcache(wd,i = v|hi = H) =

∑|d|
j=1 δ(i, j, |d|) · I(wd,j = v ∧ hj = H)∑|d|

j=1 δ(i, j, |d|) · I(hj = H)
(7.1)

We can use this equation to describe a decaying cache by specifying a decay function

δ(i, j, |d|), or a non-decaying cache by letting δ(·) = 1 for all words. For example, a

Gaussian decay on the normalized range [0, 1] and parameterized by decay rate λ can

be expressed as:

δ(i, j, |d|) = exp

{
−λ2(i− j)2

2|d|2

}
(7.2)

Alternatively, the weight function δ(·) can be used to restrict the cache to a fixed

window before and after the current word position:

δ(i, j, |d|) =


1 if |i− j| < 100

0 if |i− j| ≥ 100

(7.3)

The difficulty applying a cache-based language model within a WFST speech

recognition framework is twofold. While a static backoff N-gram language model can

be expressed as a WFST, the frequencies of a dynamic cache model change potentially

at every word position, particularly if a window or decay function is applied. The

cache-based LM cannot be expressed by a single fixed FST.

The second difficulty with applying a dynamic language model is one of efficiency.

The WFST decoding system can be expressed as a composition of four WFST com-

ponents: the language model, G, the lexicon, L, the triphone contexts C, and the
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HMM states H. Typically, the system is constructed by composing L with G, then

composing with C, and finally with H (cf. [80]).

HCLG = H ◦ (C ◦ (L ◦G)) (7.4)

This construction is followed by the Kaldi toolkit and other WFST-based systems.

A number of dynamic alternatives have been proposed for re-computing HCLG (cf.

[102, 103]), primarily by providing the ability to efficiently compose (H ◦ C ◦ L) and

some G′ and obtain the same decoding graph had the original composition order been

enforced.

HCLG = ((H ◦ C ◦ L) ◦G′) = (H ◦ (C ◦ (L ◦G′)) (7.5)

Given these limitations, our approach is to compute a fixed cache on an utterance

by utterance basis. In effect, we approximate a fully dynamic cache component.

Formally we can define the cache component Pcache(u) of Algorithm 7.1 by computing

the cache frequencies for Equation 7.1 with either any of the following decay functions:

Gaussian (δgauss), Exponential (δexp), and windowed (δwin). The function δ0 is the

baseline, non-decaying cache, and u(i) just denotes the utterance containing word wi.
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δ0(i, j, |d|) =


1 if u(i) 6= u(j)

0 if u(i) = u(j)

(7.6)

δwin(i, j, |d|) =


1 if |i−j||d| < λ ∧ u(i) 6= u(j)

0 if u(i) = u(j)

(7.7)

δgauss(i, j, |d|) =


exp

{
−λ2(i−j)2

2|d|2

}
if u(i) 6= u(j)

0 if u(i) = u(j)

(7.8)

δexp(i, j, |d|) =


exp {−λ ∗ |i− j|} if u(i) 6= u(j)

0 if u(i) = u(j)

(7.9)

7.2.2 Language Models

Now that we have defined how we will compute the cache probabilities, the sec-

ond consideration is how to combine the three available language models, the cache,

Pcache(u), the document-specific topic language model, Pd, and the baseline N-gram

model, PG.

Pd(wi) =
T∑
t=1

θ
(d)
t · φ

(t)
i (7.10)

Pdc(u)(wi|hi) =κ(d)Pcache(wi|hi) + (1− κ(d)) · Pd(wi) (7.11)

PGdc(u)(wi) =λPdc(u)(wi) + (1− λ) · PG(wi|hi) (7.12)
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As we discussed in Chapter 4, the document specific model Pd is computed from

each test document given the inferred topic mixture θ(d) and the topic distributions

φ(t) (cf. Eqn. 7.10). The model we proposed in Chapter 5 models each word as being

drawn from either the cache or topic mixture with probability κ(d), so we propose

the document κ(d) as a natural interpolation parameter. Interpreting our model as a

unigram language model for a particular utterance u, we obtain Pdc(u) according to

Equation 7.11.

Lastly, we want to combine the cache-topic mixture with the base N-gram language

model PG. We again use a linear interpolation of probabilities, as with in Chapter 4.

Unlike the cache-topic mixture, we have no intuition as to optimal values for the

interpolation weight λ, but based on our previous results (cf. [49]) we select the value

that minimizes perplexity on the one-best output for that utterance.

We evaluate our approach primarily on keyword retrieval, but we also look at

word error rate and lattice recall. As with previous models, re-decoding with the

augmented language models consistently improves overall recall of keywords. We can

also now show that the cache-augmented topic models when used to re-decode the

test corpus, improves retrieval (TWV) and recognition (WER) performance across

all languages.
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(a) Gaussian (b) Exponential (c) Windowed (δwin)

Figure 7.1: Decay function examples

7.3 Results

As previously discussed, we can either use the augmented language models for

lattice re-scoring or full re-decoding. We first consider the impact of various decay

models as compared to a full document cache (i.e. δ0) on the re-scoring task. We can

show that there is little benefit of applying a decay function to the cache frequencies

within each document and for subsequent results we assume no decay in our cache

model. We then compile a complete set of results, comparing lattice re-scoring only

versus re-decoding with the κLDA augmented language model, and unigram cache

versus bigram cache.

7.3.1 Decaying Cache Frequencies

As mentioned, the computation of the cache frequencies can incorporate a decay

function δ(·). In keeping with the notion of locality of repetition, the closer a word
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Language (T ) Baseline Decay TWV
TWV λwin 1.02 0.75 0.5 0.25

λgauss,exp 0.5 1.0 1.5 2.0

Tagalog (50) 0.244 δwin 0.257 0.258 0.258 0.262
δgauss 0.258 0.258 0.257 0.258
δexp 0.257 0.257 0.258 0.258

Vietnamese (200) 0.254 δwin 0.254 0.254 0.254 0.255
δgauss 0.2540 0.254 0.254 0.254
δexp 0.254 0.254 0.253 0.254

Zulu (100) 0.270 δwin 0.281 0.281 0.281 0.280
δgauss 0.276 0.281 0.281 0.280
δexp 0.281 0.281 0.281 0.281

Tamil (100) 0.216 δwin 0.229 0.228 0.228 0.226
δgauss 0.229 0.228 0.228 0.228
δexp 0.228 0.228 0.228 0.228

Table 7.2: TWV effects of applying decaying cache frequencies to lattice re-scoring,
compared with the baseline N-gram language model.

occurs to the current utterance, the more it ought to effect the likelihood of the

current word. In Chapter 3, application of decay functions to the computation of

bags-of-words frequencies had a significant impact on classification tasks. However,

when applied to the cache component of the language model for the retrieval or

transcription task, we find no significant difference in performance between the decay-

weighted cache versus whole-document cache (δ0).

Table 7.2 shows retrieval performance for lattice re-scoring in terms of the NIST

TWV metric for the different decay models over the baseline N-gram model. Table 7.3

shows the transcription performance in terms of WER. We restrict our analysis of

the decay-weighted cache models to those models whose number of latent topics

2Corresponds to δ0
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Language (T ) Baseline Decay WER (%)
WER λwin 1.0 0.75 0.5 0.25

λgauss,exp 0.5 1.0 1.5 2.0

Tagalog (50) 59.8 δwin 59.8 59.8 59.7 59.7
δgauss 59.8 59.8 59.7 59.7
δexp 59.8 59.7 59.8 59.8

Vietnamese (200) 62.0 δwin 61.9 62.0 62.0 62.0
δgauss 62.0 61.9 61.9 62.0
δexp 61.9 62.0 62.0 62.0

Zulu (100) 67.6 δwin 67.3 67,2 67.2 67.2
δgauss 67.2 67.2 67.2 67.2
δexp 67.3 67.2 67.2 67.3

Tamil (100) 75.8 δwin 75.5 75.5 75.5 75.5
δgauss 75.5 75.5 75.5 75.5
δexp 75.5 75.5 75.5 75.4

Table 7.3: WER effects of applying decaying cache frequencies to lattice re-scoring,
compared with the baseline N-gram language model

T performed best overall in terms of the retrieval task. The λ parameter for the

windowed ‘decay’ function δwin is given in descending order as it is a threshold and

not a decay rate, and so moving left to right the cache frequencies are effectively

computed from a decreasing fraction of the current document (illustrated graphically

in Figure 7.1). Given the limited impact of the various decay functions (in general ¡

0.1% absolute in each metric), the rest of our experiments are reported with the full

non-decaying cache frequencies.

7.3.2 Re-scoring and Re-decoding

When we compare performance between re-scoring and re-decoding using our

cache-augmented models, we again observe the same positive effect that we saw in
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section 4.4.1 on retrieval accuracy (TWV and lattice recall) and for Tamil and Zulu,

recognition accuracy (WER). Table 7.5 presents the accuracy results in terms of

TWV, Table 7.4 shows results for the same systems in terms of lattice recall (the

overall percentage of keyword occurrences captured in the ASR lattices), and Table 7.6

shows the results in terms of WER.

If we look specifically at lattice recall (Table 7.4), we observe 2.5 to 5 % absolute

increase in recall in the unigram case (depending on the language), and from 0.7%

to 4.6% in the bigram cache case. These results are consistent with the results in

Chapter 4 with the topic-only (LDA) augmented models, and supports the premise

that by boosting keywords with lower probability under the baseline N-gram model,

they survive the decoder pruning low-likelihood paths from the lattice.

We have highlighted the rows for which choice of T resulted in the highest lattice

recall per language (Tagalog:100, Vietnamese:50, Zulu:100, and Tamil:100). However

for Tagalog and Vietnamese those choices for T did not result in the highest overall

retrieval accuracy (again, highlighted similarly in Table 7.5).

The bigram cache model (used for re-decoding) consistently underperformed the

unigram cache model in terms of lattice recall and in terms of TWV. The difference

is not as evident for lattice re-scoring, but it is clear that the bigram cache is not

offering any additional benefit.

Retrieval in all languages is improved by decoding with the cache-augmented topic

model. With respect to recognition, the results varied widely depending on language.
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Language T Baseline Lattice Recall (%)
1-gram 2-gram

Tagalog 50 77.8 79.8 79.0
100 79.8 79.3
150 79.3 79.0
200 79.3 79.0

Vietnamese 50 55.4 57.1 56.6
100 56.3 56.5
150 56.5 56.4
200 56.7 56.1

Zulu 50 71.7 74.2 73.1
100 74.3 73.3
150 74.1 73.1
200 74.2 73.1

Tamil 50 57.3 62.3 61.5
100 62.3 61.9
150 62.6 61.7
200 62.4 61.8

Table 7.4: Improvements in Lattice Recall when decoding with cache-augmented topic
language models.
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Language T Re-score Re-decode
1-gram 2-gram 1-gram 2-gram

Tagalog N-grams: 0.244 Trigger: 0.161
50 0.257 0.257 0.261 0.258

100 0.256 0.258 0.258 0.260
150 0.254 0.255 0.257 0.256
200 0.257 0.253 0.254 0.258

Vietnamese N-grams: 0.254 Trigger: 0.190
50 0.256 0.253 0.267 0.260

100 0.254 0.253 0.265 0.259
150 0.255 0.256 0.264 0.261
200 0.254 0.254 0.269 0.263

Zulu N-grams: 0.270 Trigger: 0.192
50 0.272 0.272 0.285 0.275

100 0.281 0.277 0.287 0.280
150 0.277 0.279 0.282 0.278
200 0.279 0.279 0.284 0.278

Tamil N-grams: 0.216 Trigger: 0.138
50 0.225 0.225 0.240 0.234

100 0.229 0.226 0.241 0.238
150 0.228 0.223 0.237 0.236
200 0.228 0.225 0.240 0.237

Table 7.5: Effect on Term Weighted Value (TWV) of applying cache-augmented topic
model
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Language T Re-score Re-decode
1-gram 2-gram 1-gram 2-gram

Tagalog N-grams: 60.0 Trigger: 61.7
50 59.8 59.6 59.8 59.7

100 60.0 59.8 60.0 59.8
150 60.2 59.9 60.1 60.0
200 60.3 60.0 60.3 60.1

Vietnamese N-grams: 62.0 Trigger: 63.7
50 61.9 61.8 61.9 61.8

100 61.9 61.8 61.9 61.9
150 61.9 61.8 61.9 61.9
200 61.9 61.8 62.0 61.9

Zulu N-grams: 67.6 Trigger: 69.2
50 67.2 67.2 67.1 67.1

100 67.3 67.2 67.2 67.2
150 67.5 67.3 67.2 67.2
200 67.2 67.4 67.2 67.3

Tamil N-grams: 75.8 Trigger: 76.9
50 75.5 75.4 75.5 75.4

100 75.5 75.5 75.4 75.5
150 75.5 75.4 75.5 75.4
200 75.6 75.6 75.6 75.6

Table 7.6: Effect on Word Error Rate (%) of applying cache-augmented topic model
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The WER of the Tamil and Zulu systems were improved by the ungram models by

0.5% and 0.4% absolute over the baseline, whereas Vietnamese improved by at most

0.2% and Tagalog was actually worsened by up to 0.3% absolute.

Given these full sets of results we conclude by comparing the best results of Ta-

ble 7.5 with the LDA results from Chapter 4 on a language by language basis (cf.

Figure 7.2). We can visualize the impact of adding the local context from the cache

probabilities in addition to the latent topic models by comparing the LDA versus

κLDA figures. As with our previous work in Chapter 4 we see incremental improve-

ments with the cache information in addition the latent topics in all languages except

for Vietnamese. Similarly in Tagalog, we see, as before, the cache information has a

proportionally larger effect relative to the latent topics. Nonetheless, we maintain the

same conclusion, given the evidence across all four languages, that the topic and cache

contexts provide complementary information, effective in boosting keyword retrieval.

7.4 Conclusions

In conclusion, we have demonstrated that our joint cache-augmented topic model

captures similar improvements in keyword retrieval to the ad hoc approach described

in Chapter 4. By modeling both broad and local contexts in a single model, we

arrived at the same result with one fewer passes over the data.

We found no additional benefit from a bigram cache. However, as we have focused

161



CHAPTER 7. SPEECH RETRIEVAL

Figure 7.2: Comparison of κLDA retrieval performance with LDA

primarily on the limited resource setting, we intend to extend this work to larger

training corpora. As we suggested, bigram cache estimates for more accurate ASR

output may in fact be beneficial, however this may be offset by a more accurate

N-gram language model overall.

We address our initial constraints of large data volumes and language diversity

with a model that improves accuracy in the low resource setting, and we improve

computational efficiency without sacrificing retrieval accuracy by moving from a two

pass model to a single joint model.
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Summary and Future Work

This thesis has considered the utility of topic information for speech retrieval

from a number of different perspectives. In a multinational, interconnected, online,

and loquacious world, but with limited and expensive traditional annotated linguistic

resources, this thesis demonstrates that anyone in the business of delivering rela-

tive spoken content to users benefits by leveraging topic information for both speech

recognition and retrieval.

This thesis demonstrates that there is a virtuous cycle between topic informa-

tion and keyword retrieval. Keyword retrieval drives supervised topic classification

of speech, and latent topic information can improve keyword retrieval. This the-

sis presents a number of novel techniques to exploit these facts to improve speech

recognition and retrieval accuracies across a wide range of languages. We conclude

this thesis with a summary of the specific contributions described in the preceding
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chapters, and outline a number of promising future directions for this research.

8.1 Contributions

We can summarize the contributions of this thesis in three main areas. First, we

focus on the importance of keywords and locality to topic identification. Second we

present novel techniques for exploiting keyword repetition in any language. Third,

we develop latent topic and language modelling techniques that jointly leverages

broad (subject matter) and local (repetition) topic context to improve both speech

recognition and retrieval across a broad range of languages.

8.1.1 Topic Identification

This thesis makes the following contributions in the area of topic identification of

spoken documents:

• Quantify the importance of sufficient keyword retrieval accuracy over word error

rate to predict successful topic identification on ASR output.

• Proposed a new model for discriminative feature selection to add location sen-

sitivity to bag-of-words classification features.

In Chapter 2 we discussed previous work showing the robustness of the topic sig-

nal to automatic speech recognition errors (cf. Figure 2.1). In Chapter 3 we further
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elaborated on the relative insensitivity of the topic signal to recognition errors as

expressed in terms of WER (cf. Figure 3.5). We showed that uniformly random

word substitutions are significantly more detrimental to topic classification perfor-

mance than random deletions, but such substitution errors in actual ASR output are

not uniformly random. Not only do a small percentage of words from the overall

vocabulary contribute to optimal topic classification performance, as has been previ-

ously shown, but only a fraction of these keywords need to be recognized correctly

to achieve performance similar to what can be achieved with full human transcripts.

(cf. Table 3.3).

In addition to the importance of keyword recognition to the classification task, we

also demonstrated a strong location-dependent aspect to the topic signal. Following

from the concept that topicality is related to local co-occurrence of words, combined

with the observation that participants in a conversation tend to drift away from

the original (labeled) topic, we incorporate this location sensitivity to bag-of-words

feature vectors (cf. Section 3.1). The proposed discriminative, location-sensitive

feature vectors out-perform both full document and static topic-drift models.

Given these results, particularly the importance of keyword retrieval to topic clas-

sification, the remainder of the thesis focused on applying topic information, and the

related phenomena of locality and repetition, to improve keyword retrieval perfor-

mance.
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8.1.2 Repetition in Keyword Retrieval

This thesis makes the following contributions in the modeling of repetition for

keyword retrieval:

• Developed a general re-scoring algorithm for applying keyword repetition infor-

mation to keyword retrieval results from any system in any language.

• In the context of keyword re-scoring, developed a method for computing the

score interpolation weight α̂ that generalizes across languages and can be esti-

mated from the adaptation statistics of the training data.

Without modifying the underlying speech recognition or retrieval system, we

demonstrated that the presence of a high-scoring keyword in a document could be

used to boost the scores for subsequent repetitions. In arriving at an effective in-

terpolation formula we also showed how modeling repetition reflects unique language

characteristics through the iterpolation weight α̂.

8.1.3 Joint Topic and Repetition Models

This thesis makes the following contributions in topic and language modeling for

speech recognition and keyword retrieval:

• Demonstrated the complementary use of broad (subject matter) and local (rep-

etition) context to improve keyword retrieval in a broad range of languages.
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• Presented a new model for jointly modeling both subject-matter and repetition-

based latent topics.

• Developed an extensible topic model that captures the related nature of subject-

matter topicality and repetition through its latent cache states.

• Showed that latent topics and repetition could be effectively combined in a single

joint model that improved speech recognition and keyword retrieval to the same

degree as a multi-pass application of individual topic and cache models.

We demonstrated, first in an ad hoc combination, then more formally, how both

repetition and subject matter can be expressed in terms of dynamic N-gram language

models, and how incorporating those models positively impacts speech recognition

and retrieval systems. In isolation we showed that either broad topic context (subject

matter) or local context (as captured by within-document N-gram repetition) could

be added to N-gram languages models to improve repetition. The magnitude of the

effect of either type of topic information depends on language specific characteris-

tics. However we have shown that together, the two types of topic information are

complementary in terms of improving speech retrieval in all languages considered.

Based on this result we showed that we can jointly capture the two phenom-

ena with a single model, with positive results both in terms of intrinsic analysis of

spoken corpora and in terms of extrinsic, task-based, retrieval results. Our model cap-

tures properties of word repetition for each corpus under consideration different from
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traditional frequency-based metrics and demonstrates language-specific behavior con-

sistent with known properties of the languages considered. When incorporated into

speech recognition systems, we can demonstrate on a spectrum of spoken language

corpora that our proposed model improves both overall speech recognition accuracy

as well as keyword retrieval accuracy.

Finally, when we contrast our ad hoc pipeline from Chapter 4 with our formal

model from Chatper 5, we show that we can achieve equivalent performance improve-

ments, by incorporating both repetition and subject matter, but with one rather than

two additional passes over the audio.

8.2 Future Work

We would suggest that the line of work described here in this thesis can be ex-

tended in multiple directions: first in terms of generalization and further consideration

of the models presented in this work, and second in terms of further development of

the models from the perspective of computational efficiency. We feel that broad appli-

cability, in terms of languages to which they are successfully applied, of the concepts

discussed in this thesis warrants further exploration of the means by which they might

become viable in commercial production systems.

In terms of our proposed cache-augmented topic language models, there are many

probabilistic topic model frameworks to which we could consider the addition of ex-
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plicit cache or repetition behavior. As an example, it would be reasonable to consider

our model under other, more general Dirichlet process or hierarchical topic model

frameworks. We would ask whether the repetition behavior we modeled explicitly

might or might not arise naturally and separate from subject-matter topics under

other models. Additionally, we would like to consider frameworks which could effi-

ciently represent N-gram topic mixtures in addition to an N-gram cache.

In terms of efficiency, we highlight two complementary directions for future work.

First, and most straightforward, we would incorporate known Finite State Transducer

(FST) composition algorithms designed specifically for using dynamic language mod-

els with a WFST-based ASR system such as Kaldi. For experimental purposes we

re-constructed the ASR decoding graph for each segment’s topic-cache-augmented

model PLdc. In a production setting, on-the-fly graph construction techniques such

as proposed by Allauzen et al. [103], suggest our dynamic language model approach

could be efficiently applied.

Secondly, we would examine techniques to speed up estimation of our model pa-

rameters for topic and cache usage at the point where new audio is to be decoded.

Indeed with the recent expansion of neural-net (NN) based language models, a natural

extension of this work would be to ask what other methods could be used to approx-

imate the topic and cache estimates, θ and κ, necessary for generating document-

specific cache language models as described in Chapter 5-7. In particular we would

envision comparing our approach with techniques such as Recurrent Neural Network

169



CHAPTER 8. SUMMARY AND FUTURE WORK

Language models (RNNLMs) or Long-Short-Term Memory language models (LSTMs)

which also aim to capture context beyond simple N-grams.

Additionally, in neural net acoustic modeling, there is some evidence that output

layers representing context-dependent triphone likelihoods (referred to as senones)

capture lexical as well as purely acoustic content (cf. [104]). These likelihoods are

produced without a full decoding pass from the ASR system and could be used in

approximating topic information before lattice generation, resulting in a single pass

system.

There are many opportunities for efficiently exploiting topic and repetition for

speech recognition and retrieval which we have not listed here. It is our belief that

this will continue to be a rich and widely applicable source of gains for speech pro-

cessing systems in any language.

What we call the beginning is often the end

And to make an end is to make a beginning.

The end is where we start from. And every phrase

And sentence that is right (where every word is at home,

Taking its place to support the others,

The word neither diffident nor ostentatious,

An easy commerce of the old and the new,

The common word exact without vulgarity,

The formal word precise but not pedantic,

The complete consort dancing together)

Every phrase and every sentence is an end and a beginning,

Every poem an epitaph.

T.S. Eliot, Little Gidding
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Topic Drift Gradient Descent

Derivation

We present a method for estimating λ̂w for each word w in the classification

training corpus using a minimum classification error (MCE) training [105], following

a derivation for the gradient-descent update given by [19]. The major difference

between derivations is that the parameter λw we wish to optimize occurs inside the

decay function, so we are obliged to take the partial derivative of the decay, d(p, λw)

as well as of the Naive Bayes scoring function.

The MCE method attempts to minimize a loss function l(D) over the training

corpus, where l is defined for each document D. The loss function is defined in terms

of a misclassification measure M(D), the same measure as in [19], and loss function

l(D), which maps M(D) to a [0, 1] range. Here tC is the correct topic label for D and
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and tI is the incorrect topic with the highest score. For notational simplicity, we also

define M(w) as the word specific component of M(D).

M(D) = S(tI |D)− S(tC |D) (A.1)

l(D) =
1

1 + e−βM(D)
(A.2)

M(w) = log

(
P (w|tI)
P (w|tI)

)
− log

(
P (w|tC)

P (w|tC)

)
(A.3)

The scoring function is defined by combining a log-likelihood ratio form of Naive

Bayes (Equation A.4) with the decay-weighted counts (Equation A.5. We obtain an

S(t|D) where the per-word contribution is a weighted sum over each position, rather

than a single term (Equation A.6).

S(t|D) =
∑
w∈D

cw · log
(
P (w|t)
P (w|t)

)
(A.4)

cw =

|D|∑
i=1

d(
i

|D|
, λ̂w) · Iw(wi) (A.5)

S(t|D) =

|D|∑
i

d(
i

|D|
, λw) · log

(
P (wi|t)
P (wi|t)

)
(A.6)

We now compute the partial derivative and update equations for gradient-descent
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optimization of M(D), which contain our decay function d(p, λw).

∂l(D)

∂λw
= β · l(D)(1− l(D)) ·M(w)

 |D|∑
i

∂d( i
|D| , λw)

∂λw

 (A.7)

λw
′ = λw − ε

1

N

N∑
j=1

∂l(Dj)

∂λw
(A.8)

Given the computational cost of performing the gradient descent, we evaluate

the MCE training using only the exponential and Gaussian decay functions, which

performed better in our static tests. The partial derivatives for d(p, λw) are given as

follows:

∂dexp
∂λw

= −p · exp (−λw · p) (A.9)

∂dgauss
∂λw

= −p2 · λw2 · exp
(
−λw

2 · p2

2

)
(A.10)

In our experiments we use 5-fold cross-validation to compute the training loss. We

found empirically that for the English data ε = 10 and β = 0.01 achieved the best

results, whereas for Spanish ε = 100 and β = 0.1 were best.
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Gibbs Sampler Pseudocode

Here we present pseudocode for the implementation of the Gibbs sampler derived

in Section 5.2. For practical reasons, we maintain the cache on an utterance by

utterance basis. Cache probabilities are conditioned on counts from all utterances in

the document except the one whose states are currently being sampled.

Algorithm B.1 Sampler initialization

1: Initialize K and Z states randomly
2: for all t ∈ T do
3: for all v ∈ V do
4: Ct

v =
∑

i,d I(wd,i = v ∩ zd,i = t)
5: Ft =

∑
v C

t
v

The following code snippets are repeated n times for each document d, where n

is the overall number of sampling iterations.
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Algorithm B.2 Per-document initialization - each iteration over d

1: for all uj ∈ d do
2: Add n-grams in u to cache
3: Ld0 =

∑
i I(kd,i = 1)

4: Td0 =
∑

i I(kd,i = 0)
5: for all t ∈ T do
6: Nt =

∑
i I(zd,i = t)

7: for all t ∈ T do
8: for all v ∈ V do
9: Ct

v =
∑

i I(wd,i = v ∩ zd,i = t)
10: Ft =

∑
v C

t
v

We then sample states K and Z one utterance (or sentence) at a time. We first

sample all Ku states, then Zu states for the current utterance u.

Algorithm B.3 Single iteration - Ku

1: Remove n-grams in u from cache
2: for all wd,i ∈ u do
3: kold = kd,i
4: if kold = 1 then
5: Ld0 = Ld0 − 1 # Decrement cache state count
6: s0 = (ν1 + Td0) # Sampler proportional mass for k = 0
7: else
8: Td0 = Td0 − 1 # Decrement topic state count
9: zold = zd,i # Decrement topic count variables

10: Czold
wd,i

= Czold
wd,i
− 1

11: Fzold = Fzold − 1, Nzold = Nzold − 1

12: s0 = (ν1 + Td0) · (β + C
(zd,i)
wd,i )/(β · |V |+ Ft)

13: s1 = Pcache(wd,i) · (ν0 + Ld0)
14: Draw s ∼ Uniform(0, s0 + s+ 1)
15: if s > s0 then
16: kd,i = 1, Ld0 = Ld0 + 1
17: else
18: kd,i = 0, Td0 = Td0 + 1

175



APPENDIX B. APPENDIX

Algorithm B.4 Single iteration - Zu
1: for all wd,i ∈ u where kd,i = 0 do
2: for all t ∈ T do
3: st = (αt +Nt + 1) · (β + Ct

wd,i
+ 1)/(β · |V |+ Ft + 1)

4: Draw s ∼ Uniform(0,
∑

t st)
5: s0 = 0
6: for all t ∈ T do
7: s0 = s0 + st
8: if s < s0 then
9: zd,i = t # New sampled topic is now t

10: Ct
wd,i

= Ct
wd,i

+ 1 # Increment topic count variables
11: Ft = Ft + 1, Nt = Nt + 1
12: Add n-grams in u back to cache
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Model Convergence

Here we include log-likelihood convergence figures for all of the languages consid-

ered in Chapter 6, followed by convergence figures for κ estimates in all languages.
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Corpus Topics LDA κLDA-1 κLDA-2

Turkish 50 -7.497 (0.02) -9.239 (0.03) -8.351 (0.03)
100 -7.554 (0.02) -9.173 (0.04) -8.535 (0.02)
150 -7.554 (0.03) -9.022 (0.04) -8.620 (0.03)
200 -7.543 (0.04) -8.865 (0.04) -8.681 (0.03)

Tagalog 50 -6.551 (0.02) -8.288 (0.03) -7.761 (0.02)
100 -6.523 (0.02) -8.210 (0.03) -7.910 (0.04)
150 -6.525 (0.01) -8.081 (0.04) -7.952 (0.04)
200 -6.508 (0.02) -7.898 (0.04) -7.919 (0.03)

Vietnamese 50 -6.564 (0.03) -8.352 (0.03) -8.067 (0.02)
100 -6.498 (0.01) -8.245 (0.03) -8.044 (0.03)
150 -6.483 (0.01) -8.017 (0.03) -8.019 (0.02)
200 -6.471 (0.01) -7.788 (0.03) -7.942 (0.04)

Zulu 50 -7.864 (0.04) -9.758 (0.04) -8.418 (0.03)
100 -7.887 (0.02) -9.912 (0.03) -8.594 (0.03)
150 -7.881 (0.02) -9.855 (0.03) -8.715 (0.03)
200 -7.910 (0.02) -9.787 (0.05) -8.844 (0.03)

Tamil 50 -8.044 (0.03) -9.919 (0.04) -8.629 (0.03)
100 -7.887 (0.02) -9.993 (0.04) -8.853 (0.03)
150 -8.048 (0.01) -9.869 (0.04) -8.991 (0.04)
200 -7.910 (0.02) -9.761 (0.04) -9.063 (0.03)

Spanish (CallHome) 50 -6.981 (0.03) -8.439 (0.03) -7.933 (0.04)
100 -7.034 (0.02) -8.341 (0.04) -8.164 (0.04)
150 -6.994 (0.03) -8.228 (0.05) -8.240 (0.06)
200 -6.971 (0.03) -8.074 (0.03) -8.227 (0.04)

Spanish (Fisher) 50 -7.431 (0.02) -8.384 (0.23) -8.193 (0.27)
100 -7.505 (0.01) -8.381 (0.01) -8.270 (0.03)
150 -7.553 (0.01) -8.341 (0.02) -8.329 (0.03)
200 -7.544 (0.01) -8.292 (0.02) -8.436 (0.03)

Table C.1: Overall Log-likelihood and sample standard deviation per word
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Figure C.1: Model log-likelihood convergence over sampling process, CallHome Span-
ish
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Figure C.2: Model log-likelihood convergence over sampling process, Fisher Spanish
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Figure C.3: Model log-likelihood convergence over sampling process, Tagalog
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Figure C.4: Model log-likelihood convergence over sampling process, Turkish

182



APPENDIX C. CONVERGENCE

Figure C.5: Model log-likelihood convergence over sampling process, Vietnamese
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Figure C.6: Model log-likelihood convergence over sampling process, Zulu

184



APPENDIX C. CONVERGENCE

Figure C.7: Model log-likelihood convergence over sampling process, Tamil
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(a) Turkish (b) Taglog

(c) Vietnamese (d) Zulu

Figure C.8: κ convergence in κLDA sampling process.
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(a) Tamil (b) CallHome Spanish

Figure C.9: κ convergence in κLDA sampling process.
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[77] K. Veselỳ, A. Ghoshal, L. Burget, and D. Povey, “Sequence-discriminative

Training of Deep Neural Networks,” in Proc. of Interspeech, 2013.

[78] D. Povey et al., “Generating exact lattices in the wfst framework,” in Proc.

of IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), 2012.

[79] D. Miller et al., “Rapid and Accurate Spoken Term Detection,” in Proc. of

Interspeech, 2007.

[80] M. Mohri, F. Pereira, and M. Riley, “Weighted Finite-state transducers in

Speech Recognition,” Computer Speech & Language, vol. 16, no. 1, pp. 69–88,

2002.

[81] J. R. Bellegarda, “Statistical Language Model Adaptation: Review and Per-

spectives,” Speech Communication, vol. 42, no. 1, pp. 93–108, 2004.

200



BIBLIOGRAPHY

[82] B. Roark, M. Saraclar, M. Collins, and M. Johnson, “Discriminative Language

Modeling with Conditional Random Fields and the Perceptron Algorithm,”

in Proceedings of the 42nd Annual Meeting on Association for Computational

Linguistics. Association for Computational Linguistics, 2004, p. 47.

[83] B.-J. Hsu, “Generalized Linear Interpolation of Language Models,” in Proc. of

IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU).

IEEE, 2007, pp. 136–140.

[84] C. Allauzen, M. Mohri, and B. Roark, “Generalized Algorithms for Construct-

ing Statistical Language Models,” in Proceedings of the 41st Annual Meeting on

Association for Computational Linguistics-Volume 1. Association for Compu-

tational Linguistics, 2003, pp. 40–47.

[85] J. Wintrode, “Can you repeat that? Using Word Repetition to Improve Spoken

Term Detection,” in Proc. of ACL, 2014.

[86] M. Saraclar and R. W. Sproat, “Lattice-Based Search For Spoken Utterance

Retrieval,” in HLT-NAACL, 2004.

[87] A. K. McCallum, “MALLET: A Machine Learning for Language Toolkit,” 2002,

http://mallet.cs.umass.edu.

[88] A. Stolcke, “SRILM – An Extensible Language Modeling Toolkit,” in Proc. of

the International Conference on Spoken Language Processing, 2002.

201



BIBLIOGRAPHY

[89] L. F. Korsos and M. Taddy, “Gibbs Sampling for n-Gram Latent Dirichlet

Allocation,” http://home.uchicago.edu/∼lkorsos/GibbsNGramLDA.pdf, 2011,

[Online; accessed Sep-2015].

[90] X. Wang, A. McCallum, and X. Wei, “Topical N-grams: Phrase and Topic

Discovery, with an Application to Information Retrieval,” in Proc. of IEEE

International Conference on Data Mining. IEEE, 2007, pp. 697–702.

[91] K. Zhai, J. Boyd-Graber, N. Asadi, and M. L. Alkhouja, “Mr. LDA: A Flexible

Large Scale Topic Modeling Package using Variational Inference in MapRe-

duce,” in Proceedings of the 21st international conference on World Wide Web.

ACM, 2012, pp. 879–888.

[92] D. G. et al., “Fisher Spanish - Transcripts,” http://catalog.ldc.upenn.edu/

LDC2010T04, Linguistic Data Consortium, 2010.

[93] H. M. Wallach, D. M. Mimno, and A. McCallum, “Rethinking LDA: Why Priors

Matter,” in Neural Information Processing Systems (NIPS), vol. 22, 2009, pp.

1973–1981.

[94] E. Mengusoglu and O. Deroo, “Turkish LVCSR: Database Preparation and

Language Modeling for an Aglutinative Language,” in Proc. of IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 6.

IEEE; 1999, 2001, pp. 4018–4018.

202

http://home.uchicago.edu/~lkorsos/GibbsNGramLDA.pdf


BIBLIOGRAPHY

[95] R. Noyer, “Vietnamese ’Morphology’ and the Definition of Word,” University

of Pennsylvania Working Papers in Linguistics, vol. 5, no. 2, p. 5, 1998.

[96] C. May et al., “Topic Identification and Discovery on Text and Speech,” in

Proc. of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), 2015.

[97] A. Rosenberg and J. Hirschberg, “V-Measure: A Conditional Entropy-based

External Cluster Evaluation Measure,” in Proc. of the 2007 EMNLP-CoNLL

Joint Conference, 2007.

[98] G. Karypis, “CLUTO - a Clustering Toolkit,” DTIC Document, Tech. Rep.,

2002.

[99] NIST, “OpenKWS13 Evaluation,” http://www.nist.gov/itl/iad/mig/

openkws13.cfm, 2013, [Online; accessed Sep-2015].

[100] ——, “OpenKWS14 Evaluation,” http://www.nist.gov/itl/iad/mig/

openkws14.cfm, 2014, [Online; accessed Sep-2015].

[101] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “OpenFst: A

General and Efficient Weighted Finite-State Transducer Library,” in Proceed-

ings of the Ninth International Conference on Implementation and Application

of Automata, (CIAA 2007), ser. Lecture Notes in Computer Science, vol. 4783.

Springer, 2007, pp. 11–23, http://www.openfst.org.

203



BIBLIOGRAPHY

[102] D. Caseiro and I. Trancoso, “Using Dynamic WFST Composition for Recog-

nizing Broadcast News,” in Proc. of Interspeech. Citeseer, 2002.

[103] C. Allauzen, M. Riley, and J. Schalkwyk, “A Generalized Composition Algo-

rithm for Weighted Finite-state Transducers,” in Proc. of Interspeech, 2009, pp.

1203–1206.

[104] J. Wintrode, G. Sell, A. Jansen, M. Fox, G.-R. Daniel, and A. McCree,

“Content-Based Recommender Systems for Spoken Documents,” in Proc. of

IEEE International Confernce on Acoustics, Speech and Signal Processing

(ICASSP), 2015.

[105] B.-H. Juang and S. Katagiri, “Discriminative learning for minimum error clas-

sification,” IEEE Transactions on Signal Processing, vol. 40, no. 12, pp. 3043–

3054, 1992.

204



Vita

Jonathan Wintrode received the A. B. degree cum

laude in Computer Science from Harvard University

in 2000, the M. S. degree in Computer Science from

the Naval Postgraduate School in 2005, enrolled in the

Computer Science Ph.D. program at Johns Hopkins

University in 2010, and completed the M. S. E. de-

gree in Computer Science in 2014. He won the Naval Postgraduate School Computer

Science Department’s Outstanding Department of Defense Student Award in 2005.

205


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Speech Retrieval
	Topics in Recognition and Retrieval
	Contributions
	Outline

	Background
	Evaluation Metrics
	Topic Classification
	Limited Resource Approaches
	Within Document Locality

	Speech Recognition
	Retrieval
	Generative Models of Language
	Urn Models
	Dirichlet Processes

	Posterior Inference
	Summary

	Topic Classification
	Locality in Informal Speech
	Static Topic Drift
	Word-specific Topic Drift

	Word Error Robustness
	ASR Models
	Keyword Spotting Models
	Results

	Conclusion

	Topic Information and Speech Retrieval
	Lattice-based Keyword Scores
	Language Model Adaptation

	Corpora
	Keyword Repetition Model
	Repetition Measures
	Interpolation
	Experiments

	Language Model Adaptation
	Latent Topic Language Models
	Cache-based Language Models

	Conclusion

	Cache-augmented Latent Topic Models
	Cache-augmented Generative Process
	Collapsed Gibbs Sampler
	Notation
	Derivations
	Sampling Distributions
	Summary

	N-gram Extension
	Conclusion

	Model Analysis
	Convergence and Consistency
	Repetition
	Document-Level Repetition
	Cached Word Types

	Language Models
	Topic Discovery
	Classification
	Clustering

	Conclusions

	Speech Retrieval
	Task and Corpora
	Procedure
	Cache Frequencies
	Language Models

	Results
	Decaying Cache Frequencies
	Re-scoring and Re-decoding

	Conclusions

	Summary and Future Work
	Contributions
	Topic Identification
	Repetition in Keyword Retrieval
	Joint Topic and Repetition Models

	Future Work

	Topic Drift Gradient Descent Derivation
	Gibbs Sampler Pseudocode
	Model Convergence
	Bibliography
	Vita

