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Abstract

Keyword spotting (KWS) is a task to automatically detect keywords of interest in

continuous speech, which has been an active research topic for over 40 years. Recently

there is a rising demand for KWS techniques in resource constrained conditions. For

example, as for the year of 2016, USC Shoah Foundation covers audio-visual testi-

monies from survivors and other witnesses of the Holocaust in 63 countries and 39

languages [1], and providing search capability for those testimonies requires substan-

tial KWS technologies in low language resource conditions, as for most languages,

resources for developing KWS systems are not as rich as that for English.

Despite the fact that KWS has been in the literature for a long time, KWS tech-

niques in resource constrained conditions have not been researched extensively. In

this dissertation, we improve KWS performance in two low resource conditions: low

language resource condition where language specific data is inadequate, and low com-

putation resource condition where KWS runs on computation constrained devices.

For low language resource KWS, we focus on applications for speech data mining,

where large vocabulary continuous speech recognition (LVCSR)-based KWS tech-
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ABSTRACT

niques are widely used. Keyword spotting for those applications are also known as

keyword search (KWS) or spoken term detection (STD). A key issue for this type

of KWS technique is the out-of-vocabulary (OOV) keyword problem. LVCSR-based

KWS can only search for words that are defined in the LVCSR’s lexicon, which is

typically very small in a low language resource condition. To alleviate the OOV key-

word problem, we propose a technique named “proxy keyword search” that enables us

to search for OOV keywords with regular LVCSR-based KWS systems. We also de-

velop a technique that expands LVCSR’s lexicon automatically by adding hallucinated

words, which increases keyword coverage and therefore improves KWS performance.

Finally we explore the possibility of building LVCSR-based KWS systems with limited

lexicon, or even without an expert pronunciation lexicon.

For low computation resource KWS, we focus on wake-word applications, which

usually run on computation constrained devices such as mobile phones or tablets.

We first develop a deep neural network (DNN)-based keyword spotter, which is

lightweight and accurate enough that we are able to run it on devices continu-

ously. This keyword spotter typically requires a pre-defined keyword, such as “Okay

Google”. We then propose a long short-term memory (LSTM)-based feature extractor

for query-by-example KWS, which enables the users to define their own keywords.

Primary Advisor: Sanjeev P. Khudanpur

Secondary Advisor: Daniel Povey
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Chapter 1

Introduction

Keyword spotting (KWS) is a task to automatically detect keywords of interest

in continuous speech, which has been utilized in a broad variety of applications. A

majority of such applications relate to audio indexing and speech data mining. For

example, finding courses related to “speech recognition” from online lecture provider

Coursera [2], where a large number of lectures are available in video format, instead

of the traditional text format. Another portion of applications that are becoming

increasingly important are the wake-word applications, where keyword spotting is

performed to activate a device or initiate a voice interaction interface. For exam-

ple, Google’s voice search [3] features the keyword “Okay Google” where users can

simply say “Okay Google” to initiate Google’s voice search. Other popular applica-

tions include phone call routing, phone call monitoring, voice command, to name just

a few. In this dissertation, we will explore various techniques to improve keyword

1



CHAPTER 1. INTRODUCTION

spotting performance for audio indexing and wake-word applications in low resource

conditions.

1.1 Keyword spotting applications

Keyword spotting applications can be divided into two categories based on when

the speech data and the keywords are available.

In the first category, keywords of interest are only known at the spotting stage,

while the speech data is available beforehand. This type of keyword spotting tech-

nique is heavily used in applications related to speech data mining, and sometimes is

also called keyword search (KWS) or spoken term detection (STD). Since keywords

are unknown until the spotting stage, the focus of keyword spotting techniques for

applications in this category has been on how to accurately and efficiently build in-

verted index from the speech data so that spotting can be performed in almost no

time when keywords come.

In the second category, keywords of interest are pre-defined, while the speech data

comes in real-time. Applications include voice command (e.g., telephone routing,

commands on Google glass), wake-word (e.g., Okay Google, Hey Siri, Alexa), etc.

Since the speech data comes in real-time, keyword spotting techniques for applications

in this category usually do not rely on an inverted index of the speech data. The focus,

therefore, has been on how to filter out the keywords from a snippet of the speech

2
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data efficiently and accurately.

In this dissertation, we will discuss both categories in low resource conditions,

and propose techniques to improve keyword spotting performance in low resource

conditions for both categories.

1.2 Existing methods

Over the past 40 years, a lot of techniques have been proposed for keyword spot-

ting. Below we try to summarize the literature into 3 categories.

1.2.1 Query-by-Example methods

Query-by-example (QbyE) methods are among the earliest attempts for keyword

spotting [4], and the name query-by-example is self-explaining: examples of key-

words, usually exist in audio format, are used to spot the keyword. QbyE methods

typically consist of two steps: a template representation step where audio examples

of the keyword are represented as templates in a certain format (posterior features,

lattices, etc.), and a template matching step where templates are compared with the

target speech utterances which have been processed in the same way. Over the past

decades, research focus of QbyE has been primarily on novel template representation

methods[5, 6, 7, 8, 9, 10, 11, 12, 13], while most of those methods use some variants of

dynamic time warping (DTW) [14] for template matching [15, 6, 16]. QbyE methods
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are usually applied to keyword spotting applications in the second category.

1.2.2 Keyword/Filler methods

The keyword/filler method sometimes is also known as acoustic keyword spotting

[17], which models keyword and non-keyword (filler) explicitly in parallel using sub-

word units. At spotting stage, target utterances are aligned with both the keyword

model and the filler model, and decisions will be made based on the alignment cost.

In [18, 19, 20, 21, 22], Hidden Markov Models (HMMs) are used to model both

keywords and fillers, and spotting is done by searching through a decoding graph

where keywords and fillers appear parallelly. The latter research in this category

more or less follows this framework, with focus on filler word modeling [23, 24, 25, 26]

and advanced scoring procedure [27, 28, 29, 30]. Discriminative training methods

have also been explored in this context to directly optimize the keyword spotting

performance [31, 32]. This type of keyword spotting method is often used in keyword

spotting applications in the second category.

1.2.3 Large vocabulary continuous speech recogni-

tion methods

Large vocabulary continuous speech recognition (LVCSR) methods have been ex-

tensively used recently for applications such as audio indexing and speech data mining.
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In this case, speech utterances are transcribed into words with LVCSR systems, which

will be further indexed for efficient searching [33]. The 1-best hypothesis from LVCSR

systems usually contains errors, which hurts the spotting performance. For better per-

formance, confusion network [34, 35] or lattice [36, 37, 38] are commonly generated

instead of the 1-best hypothesis for indexing [39, 40, 41, 42]. One drawback of the

LVCSR-based keyword spotting methods is that the vocabulary of the LVCSR system

is usually pre-defined, and if a keyword is out-of-vocabulary (OOV) with respect to

the LVCSR system, there is no way the system can return anything for that keyword.

Several techniques have been proposed to overcome the OOV problem, including sub-

word modeling [43, 44], fuzzy search [45, 46], etc. Keyword spotting applications in

the first category typically rely on this kind of keyword spotting technique.

1.3 Low resource keyword spotting

Despite the fact that keyword spotting has been an active research topic for over

40 years, the low resource aspect of keyword spotting has not been researched exten-

sively. There are different types of low resource conditions depending on what kind

of application the keyword spotting technique is applied to.

For the first category of keyword spotting applications where speech data is avail-

able beforehand, LVCSR-based keyword spotting methods are typically used due to

their superior performance. LVCSR-based keyword spotting methods usually require
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large amount of labeled training data for good spotting performance. However, there

is a rising demand for developing LVCSR-based keyword spotting systems with lim-

ited language resource recently. For example, as for the year of 2016, USC Shoah

Foundation covers audio-visual testimonies from survivors and other witnesses of the

Holocaust in 63 countries and 39 languages [1], and providing searching capability

for those testimonies requires substantial KWS technologies in low language resource

conditions, as for most languages, speech recognition resources are not as rich as

that for English. Recent research activities such as the Johns Hopkins University’s

2012 summer workshop on zero resource speech technologies [47] and IARPA’s Babel

program [48] also propel the development of KWS technologies in this low language

resource condition.

For the second category of keyword spotting applications where speech data is

available at the spotting time, there also sees a recent focus on developing keyword

spotting techniques for computation constrained devices [49, 50, 51]. For example,

hands-free communication with mobile devices now becomes popular, where a KWS

algorithm listens to the audio constantly and wakes up the device when pre-defined

keywords are uttered (also known as wake-words). This requires the KWS algorithm

to be running in a computation constrained condition, while remain highly accurate.

Otherwise the KWS algorithm will quickly drain out the device’s battery.

In this dissertation, we improve keyword spotting performance in low resource

conditions for both categories of applications. For the first category, we focus on the
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LVCSR-based keyword spotting methods, and propose various techniques to alleviate

problems encountered in a low language resource condition. One of those problems

is the well-known out-of-vocabulary (OOV) keyword problem: an LVCSR can only

transcribe speech to the words that are defined in its lexicon, therefore if a keyword is

OOV with respect to the LVCSR’s original lexicon, there is no way that the LVCSR-

based keyword spotting can find anything for that keyword. This out-of-vocabulary

(OOV) keyword problem becomes extremely severe when the training language re-

source is limited. For example, in [52] the author report that OOV keyword rate hits

as high as 50% when they train their LVCSR system on a 10 hours training set. For

the second category, we focus on keyword spotting techniques in a low computation

resource condition, and propose two new keyword spotting methods that are capable

of running on computation constrained devices, and at the same time remain highly

accurate.

1.4 Contributions

We make the following contributions in this dissertation through different chap-

ters:

Chapter 2: Lexicon Value for Keyword Search

• Quantified the importance of pronunciation lexicons for LVCSR-based KWS

systems in a low language resource condition.
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• Discovered that lexicon augmentation had significantly greater impact on KWS

performance than LVCSR.

• Discovered that utilizing the augmented lexicon in the KWS stage via approx-

imate phonetic matching was much less effective than utilizing them in the

LVCSR stage.

Chapter 3: Proxy Keyword Search

• Proposed a weighted finite-state transducer (WFST)-based framework for gener-

ating acoustically similar in-vocabulary (IV) word proxies for out-of-vocabulary

(OOV) keywords. Intended for LVCSR-based KWS systems.

• Proposed a modified edit-distance transducer that allowed cost-inexpensive

phone insertions and deletions at word boundaries, making proxy search more

close to phonetic search.

• Evaluated the proposed method on 6 Babel languages and showed that proxy

search constantly improved KWS performance by enabling OOV KWS in a

regular LVCSR-based KWS system.

Chapter 4: Automatic Lexicon Expansion

• Proposed an automatic lexicon expansion technique that could expand the

LVCSR’s lexicon by adding a huge list of hallucinated words. Intended for

LVCSR-based KWS systems.
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• Evaluated the proposed method on 6 Babel languages and showed that the

proposed lexicon expansion constantly improved the KWS performance because

of the increased keyword coverage.

• Combined the proposed lexicon expansion with proxy keyword search and

showed that it was beneficial to perform proxy keyword search for keywords

that appeared in the expanded lexicon, but were not in the original lexicon.

Chapter 5: Limited Lexicon Keyword Search

• Evaluated LVCSR-based KWS systems with grapheme lexicons instead of ex-

pert pronunciation lexicons on 6 alphabetic Babel languages, and showed that

there were small degradations for both speech recognition performance and

KWS performance.

• Proposed an iterative framework that was capable of generating pronunciation

lexicons for logographic languages given a small seed expert pronunciation lexi-

con.

• Evaluated on Babel language Cantonese and showed that by using a seed lex-

icon of 1000 words, we were able to achieve reasonably well speech recognition

and KWS performance, when compared with an expert-crafted lexicon of 5000

words.
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Chapter 6: Deep Neural Network Keyword Spotter

• Proposed a lightweight DNN keyword spotter that could detect pre-defined

keywords, such as “Okay Google”.

• Proposed algorithm was capable of running on computation constrained devices

such as mobile phones, and was accurate enough for wake-word applications.

• Evaluated on a set of voice commands and showed that the proposed algorithm

outperformed the keyword/filler model trained on the same data set.

Chapter 7: Long Short-Term Memory Feature Extractor

• Proposed an LSTM-based feature extractor that could embed audio segments

of various length into a fixed length feature vector.

• Incorporated the proposed feature extractor to a QbyE KWS framework which

enabled the keyword to be defined by just 3 keyword examples.

• Proposed a template averaging technique that could combine 3 keyword tem-

plates in the QbyE framework into just 1 template, which could reduce the

detection computation by a factor of 3.

• Proposed algorithm was capable of running on computation constrained devices

such as mobile phones, and was accurate enough for wake-word applications.
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• Evaluated on a set of voice commands and showed that the proposed algorithm

outperformed the posteriorgram + DTW model on the same data set.

1.5 Organization

Chapter 2, Chapter 3, Chapter 4 and Chapter 5 of this dissertation focus on

KWS in low language resource conditions, for the keyword spotting applications in

the first category. In Chapter 2, we quantify the value of pronunciation lexicon for

LVCSR-based KWS systems. We show that OOV keyword problem is severe in a low

language resource condition, and pronunciation lexicon plays an important role. In

Chapter 3, we propose proxy keyword search that enables OOV keyword search using

regular LVCSR-based KWS systems. In Chapter 4 we expand the LVCSR’s lexicon by

adding a huge list of hallucinated words. We demonstrate that the expanded lexicon

increases keyword coverage, thus improving the KWS performance. In Chapter 5

we explore the possibility of building LVCSR-based KWS systems with limited, or

even without expert pronunciation lexicon, and we propose an iterative framework to

generate pronunciation lexicon for logographic languages, given a small seed expert

lexicon.

Chapter 6 and Chapter 7 of this dissertation give emphasis to KWS techniques in a

low computation resource condition, for keyword spotting applications in the second

category. In Chapter 6 a lightweight DNN-based keyword spotter is proposed for
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some pre-defined keywords, which is capable of running constantly on computation

constrained devices such as mobile phones or tablets. It also has extremely high

accuracy that it is qualified for wake-word applications. In Chapter 7, we propose an

LSTM-based feature extractor that embeds audio segments of various length into a

fixed length feature vector. A query-by-example KWS technique is further developed

based on the LSTM feature extractor, which enables a keyword to be defined with

just a few examples of the keyword.

1.6 Related publications

Chapter 2, Chapter 3, Chapter 5, Chapter 6 and Chapter 7 of this dissertation

are based on the following publications. Chapter 4 is based on our unpublished work.

• Guoguo Chen, Sanjeev Khudanpur, Daniel Povey, Jan Trmal, David Yarowsky

and Oguz Yilmaz. Quantifying the value of pronunciation lexicons for keyword

search in low resource languages. ICASSP 2013.

• Guoguo Chen, Oguz Yilmaz, Jan Trmal, Daniel Povey and Sanjeev Khudanpur.

Using proxies for OOV keywords in the keyword search task. ASRU 2013.

• Guoguo Chen, Carolina Parada and Georg Heigold. Small-footprint keyword

spotting using deep neural networks. ICASSP 2014.

• Guoguo Chen, Carolina Parada and Tara N. Sainath. Query-by-example key-
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word spotting using long short-term memory networks. ICASSP 2015.

• Guoguo Chen, Daniel Povey and Sanjeev Khudanpur. Acoustic Data-driven

pronunciation lexicon generation for logographic languages. ICASSP 2016.
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Chapter 2

Lexicon Value for Keyword Search

This chapter quantifies the value of pronunciation lexicons in large vocabulary

continuous speech recognition (LVCSR) systems that support keyword search (KWS)

in low resource languages. State-of-the-art LVCSR and KWS systems are developed

for conversational telephone speech in Tagalog, and the baseline lexicon is augmented

via three different grapheme-to-phoneme models that yield increasing coverage of a

large Tagalog word list. It is demonstrated that while the increased lexical coverage

— or reduced out-of-vocabulary (OOV) rate — leads to only modest (ca 1%-4%) im-

provements in word error rate, the concomitant improvements in actual term-weighted

value are as much as 60%. It is also shown that incorporating the augmented lexicons

into the LVCSR system before indexing speech is superior to using them post facto,

e.g., for approximate phonetic matching of OOV keywords in pre-indexed lattices.

These results underscore the disproportionate importance of automatic lexicon aug-
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mentation for KWS in morphologically rich languages, and advocate for using them

early in the LVCSR stage.

2.1 Related work

Thanks in part to the falling costs of storage and transmission, large volumes

of speech such as oral history archives [1, 53] and online lectures [54, 55] are now

easily accessible by large user populations via the world wide web. Unlike the text-

web, however, searching speech using keywords continues to be a challenging problem.

Manually transcribing the speech is often prohibitively expensive. Automatic keyword

search (KWS) systems are able to address the problem in some cases, but not in

others, because high performance KWS systems, in turn, rely on underlying large

vocabulary continuous speech recognition (LVCSR) systems that are also expensive

to develop. Good LVCSR systems utilize statistical acoustic and language models

trained from large quantities of transcribed speech and “conversational” text in the

search domain, and manually crafted pronunciation lexicons with good coverage of

the collection.

We are interested in improving KWS performance in a low resource setting, i.e.

where some resources are available to develop an LVCSR system — such as 10 hours

of transcribed speech corresponding to about 100K words of transcribed text, and

a pronunciation lexicon that covers the words in the training data — but accuracy
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is sufficiently low that considerable improvement in KWS performance is necessary

before the system is usable for searching a speech collection.

A fair amount of past research has been devoted to improving the acoustic models

from un-transcribed speech [56, 57, 58, 59, 60], and to adapt language models trained

from out-of-domain text to the task at hand. Such methods of improving the LVCSR

performance, which subsequently improve KWS performance, are not a focus of this

chapter. We investigate the role of the pronunciation lexicon in KWS systems.

The importance of pronunciation lexicons for LVCSR is not entirely underesti-

mated. Several papers have addressed the problem of automatically generating pro-

nunciations for out-of-vocabulary (OOV) words [61, 62] in order to improve LVCSR

accuracy. But once a reasonably large lexicon is available, speech transcripts in most

languages have a fairly small (1%-4%) OOV rate [63, 64]. Even when the OOV rate is

reduced by lexicon augmentation, the former OOVs are often absent from the LVCSR

transcript, due to poor triphone coverage or low LM probabilities. The impact of

lexicon expansion on LVCSR accuracy, therefore, is usually very small.

Two notable exceptions to this conventional wisdom are (i) accuracy on infrequent,

content-bearing words, which are more likely to be OOV, and (ii) accuracy in mor-

phologically rich languages, e.g. Czech and Turkish. These exceptions come together

in a detrimental fashion when developing KWS systems for a morphologically rich,

low resource language such as Tagalog. This is the setting in which we will quantify

the impact of increasing lexical coverage on the performance of a KWS system.
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We assume a transcribed corpus of 10 hours of Tagalog conversational telephone

speech, along with a 5.7K word pronunciation lexicon that covers all words seen in

the transcripts, as our primary acoustic model (AM) training corpus. We assume

that the language model (LM) training corpus is either just the transcripts (74K

words), or a larger corpus of 595K words. We first develop state-of-the-art LVCSR

and KWS systems based on the given resources. We process and index a 10 hour

search collection using the KWS system, and measure KWS performance using a set

of 355 Tagalog keywords. We then explore three different methods for augmenting

the 5.7K word lexicon to include additional words seen in the larger LM training

corpus. The augmented lexicons are used to improve the KWS system in two differ-

ent ways: reprocessing the speech with the larger lexicon, or using it during keyword

search. The efficacy of the augmented lexicons is measured in terms of their impact

on KWS performance, not just on LVCSR accuracy. We find that even though lexicon

augmentation results in only modest reductions in word error rate (WER), the con-

comitant improvement in actual term-weighted value (ATWV) is often dramatically

higher, particularly if the augmented lexicon is used in an early stage to generate the

speech lattices used for indexing and search.

The remainder of the chapter is organized as follows. We describe our core LVCSR

and KWS systems in Section 2.2, and the three lexicon augmentation methods in

Section 2.3. The impact of augmented lexicons on LVCSR is reported in Section 2.4

and on KWS in Section 2.5. The main claims are reiterated in Section 2.6.
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2.2 Baseline LVCSR and KWS systems

We conduct our investigations using the IARPA Babel Program Tagalog language

1. We use a 10 hour subset of the 80 hours of conversational telephone speech in

this corpus, the transcripts of this subset, and a pronunciation lexicon restricted to

cover only these transcripts, to simulate low resource conditions. The Babel Tagalog

collection also sets aside 10 hours of conversational telephone speech for development-

testing. We use a 1.5 hour subset of this development-test set for LVCSR system

tuning, e.g. acoustic and language model selection, and refer to it as the “dev” set.

The entire 10 hour development-test set, which we refer to as the “eval” set, is used

for KWS evaluation. Note that the LVCSR dev set is a part of the KWS eval set. We

believe that any minor over-fitting that may result from this inclusion has negligible

effect on KWS performance on the eval set. We use a list of 355 keywords (actually,

key phrases) created by and shared among the Babel program participants.

2.2.1 Kaldi-based LVCSR system description

Our LVCSR system is built using the Kaldi tools [65]. We use standard PLP

analysis to extract 13 dimensional acoustic features, and follow a typical maximum

likelihood acoustic training recipe, beginning with a flat-start initialization of context-

independent phonetic HMMs, and ending with speaker adaptive training (SAT) of

state-clustered triphone HMMs with GMM output densities. This is followed by the
1Language collection release IARPA-babel106b-v0.2f.
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training of a universal background model from speaker-transformed training data,

which is then used to train a subspace Gaussian mixture model (SGMM) for the

HMM emission probabilities. Finally, all the training speech is decoded using the

SGMM system, and boosted maximum mutual information (BMMI) training of the

SGMM parameters is performed.

Two different language models trained with the SRILM tools [66] are used in the

experiments reported below: a trigram LM estimated from the transcripts of the

10 hour acoustic training data (ca 74K words), and a larger trigram LM estimated

from the transcripts of the entire 80 hour Babel corpus (ca 595K words). The LMs

are estimated separately for each decoding lexicon, so that their vocabulary, the

probability of unseen words, etc. match decoding conditions.

The Kaldi decoder generates word lattices [38] for the eval data using the

GMM+SAT, SGMM and SGMM+BMMI models. The decoding lexicon is varied

systematically, from the low resource lexicon of 5.7K words (8.9K pronunciations),

through automatically augmented lexicons of three different sizes, to the full Babel

reference lexicon of 23K words (35K pronunciations). Decoding is performed with

the small as well as the large LM to create contrastive sets of lattices. A matrix of

word error rates is thus measured on the dev set for 3 AMs × 5 lexicons × 2 LMs.
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2.2.2 OpenFst-based KWS system description

Lattices generated by the BMMI models are processed using the lattice indexing

technique described in [41]. The lattices of all the utterances in the eval set are

converted from individual finite-state transducers (FST) output by Kaldi to a single

generalized factor transducer structure in which the start-time, end-time and lattice

posterior probability of each word token in every lattice is stored as a 3-dimensional

cost associated with that instance of the word. This factor transducer is, in essence,

an inverted index of all word sequences seen in the collection of eval set lattices, and

permits further manipulation easily using the Google OpenFst tools [67]. Interested

readers are referred to [41] for details.

Given a keyword or phrase, one creates a simple finite-state machine that accepts

the keyword/phrase and composes it with the factor transducer to obtain all occur-

rences of the keyword/phrase in the eval set lattices, along with the conversation ID,

start-time and end-time and lattice posterior probability of each occurrence.

All putative instance of a keyword thus obtained are sorted according to their

posterior probabilities. Furthermore, a YES/NO decision is assigned to each instance

using the method proposed by [68]. Specifically, for each keyword, its expected count

in the eval set is estimated by summing the posterior probabilities of all its putative

hits, and a decision threshold that maximizes the expected term-weighted value is

computed for each keyword. All keyword instances with posterior probabilities above

this keyword-specific threshold are marked as YES.
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Finally, the collection of all proposed keyword hits is evaluated against the ground

truth using the NIST 2006 Spoken Term Detection evaluation protocol to compute

the so called actual term-weighted value (ATWV).

2.2.3 Utilizing larger lexicons for KWS

A limitation of the word-based indexing scheme described above is that only words

present in the LVCSR lexicon appear in the factor transducer. If a word in the

keyword phrase is OOV relative to the lexicon, it will not be found by the FST

composition step described above. And yet, the LVCSR vocabulary in low resource

settings is often quite small, and the possibility that a keyword is OOV can be quite

large. E.g. the Tagalog baseline vocabulary comprises only 5.7K words, and of the

355 phrasal keywords provided for KWS system development, 25% contain at least

one OOV relative to this vocabulary.

However, if a large word list is provided, over and above the acoustic training

transcripts, a number of techniques are available to generate pronunciations for them,

and mitigate the possibility that a keyword is OOV.

A key goal of this chapter is to quantify the value of such lexicon augmentation to

the KWS application, specifically to the improvement in ATWV from having a larger

lexicon. Now, there are (at least) two ways in which one may utilize an augmented

lexicon.

• If the augmented lexicon is available before the speech is processed/indexed,
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one may incorporate it into the LVCSR stage. The lattices produced, and thus

the factor transducer generated for search, will then contain the newly added

words wherever there is sufficient evidence for them in the speech.

• An alternative to decoding all the speech with an augmented lexicon, which

is sometimes inconvenient or impossible, is to use it during keyword search.

Specifically, if K represents a finite-state acceptor for a keyword that is OOV

relative to a baseline lexicon L1, but in-vocabulary relative to an augmented

lexicon L2, where both L1 and L2 are finite-state transducers that accept phone

sequences and output words, and if E is an “edit-distance” transducer that

maps any phone sequence to any other phone sequence with a cost equal to

their Levenshtein distance, then

K ′ = Project
(
ShortestPath

(
(L∗1)

−1 ◦ E ◦ (L∗2) ◦K
))

represents the in-vocabulary keyword/phrase K ′ that is closest to K. One may

use K ′ as a proxy for K to search lattices generated using L1.

We investigate these two methods of utilizing an augmented lexicon L2 for handling

keywords that are OOV relative to the decoding lexicon L1 of the low resource KWS

system. We demonstrate that the first way is the preferred way to use an augmented

lexicon.
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2.3 Three lexicon expansion methods

We next describe the five lexicons L1-L5 used for generating lattices for indexation

and search. L1 (5.7K words) and L5 (23K words) were manually created, while L2-

L4 use different grapheme-to-phoneme (G2P) methods to cover progressively larger

subsets of the 17K words in L5 that are OOV relative to L1.

L1: The 5.7K reference lexicon contains 5.7K words (8.9K pronunciations), and

serves as our baseline lexicon.

L2: The Povey lexicon, developed for automatically augmenting English lexicons

in WSJ-like settings, which is able to cumulatively provide pronunciations for

6.6K of the 17K OOV words.

L3: The Yarowsky lexicon was developed with an explicit notion of morphology.

It is able to automatically generate pronunciations for 7.3K of the 17K OOV

words.

L4: The Sequitur lexicon, based on [69], was developed as a direct statistical

grapheme-to-phoneme model. It is able to cover all 17K OOV words.

L5: The 23K reference lexicon contains 23K words (35K pronunciations), and is

our most accurate lexicon.

The three G2P methods and their accuracies are summarized below. Note that the

methods vary in their ability to cover the same set of 17K OOV words, naturally
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yielding different-sized lexicons. But comparing different G2P methods is not a goal

of this chapter, only the value of larger lexicons. Therefore, we do not trim the

lexicons to be of equal size. Details of the methods are similarly not germane to the

chapter, and are omitted.

2.3.1 The Povey lexicon

This lexicon augmentation method, originally designed for English, operates by

splitting the OOV into potential prefixes and suffixes, finding the best possible match

for the resulting stem-affix pair in the 5.7K reference lexicon, and stitching together

a pronunciation from fragments of the matching lexicon entries. E.g., if the refer-

ence lexicon contains the entries beat ≡ /b i t/, beatable ≡ /b i t 6 b l/ and

bear ≡ /b E r/, and the word bearable is OOV, then it notes that bearable and

bear differ in the suffix -able, just as beatable and beat do. Since the pronunci-

ations of beatable and beat differ by the suffix /6 b l/, it generates bearable ≡

/b E r 6 b l/.

This lexicon covers 6.6K of the 17K OOVs (39%). Of the many pronunciations

produced for each word, at least one exactly matches an entire reference pronunciation

for 5.4K of those words (81%).
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2.3.2 The Yarowsky lexicon

Our second method for lexicon augmentation is based on a novel model of syn-

chronous word ≡ /pronunciation/ transduction which utilizes all existing entries in

a pronunciation lexicon to generate new candidate word/pronunciation pairs. For ex-

ample, in Tagalog, the method learns that the prefix transduction mag-↔i- of a word

stem is accompanied — with probability 0.96 — by a synchronous prefix transduction

/m 6 g/-↔ /? i/- of its pronunciation. This facilitates generation of a pronunciation

for an OOV word such as magtuturo from the pronunciation of the word ituturo,

which is present in the 5.7K reference lexicon. Additional evidence for the pronuncia-

tion of magtuturo also obtains from the synchronous transduction of the word suffixes

-turo ↔ -ro and the corresponding pronunciation suffixes -/t u r o ?/ ↔ -/r ?/,

and 76 other observed morphological phenomena, with a consensus probability of 0.98

for the correct pronunciation magtuturo ≡ /m 6 g t u t u r o ?/.

The algorithm requires as input only a reference lexicon, from which it infers a

set of globally-optimized, performance-weighted set of synchronous prefix and suffix

transductions. Post hoc inspection confirms that these transductions correspond to

regular morphological affixations, allophonic substitutions, and variable-length pre-

fixal and suffixal “rhymes”.

This lexicon covers 7.3K of the 17K OOVs (44%). Of the many pronunciations

produced for each word, at least one exactly matches an entire reference pronunciation

for 6.4K of those words (88%).
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2.3.3 The Sequitur lexicon

The third method of lexicon augmentation may be formalized as finding the most

probable sequence of phonemes (under a source-channel model) given the sequence of

graphemes. This method is implemented in the Sequitur G2P software, and is well

described in [69]. We recapitulate it briefly for completeness.

The method uses so-called joint-multigram models, i.e. alignments between con-

secutive n graphemes (n ≥ 0) and m phonemes (m ≥ 0). Contrary to the usual

practice, where these alignments are hand-crafted, Sequitur determines them auto-

matically during the training phase from the input lexicon.

There are two hyper-parameters available to control the size and coverage of the

augmented lexicon, namely V , the maximum number of pronunciation variants, and

Q, the cumulative probability of all the generated pronunciations for a given OOV

word. Multiple pronunciations are generated for a given OOV, in decreasing order of

probability, until one of these targets is reached. To choose the best values of these

two hyperparameters, we use the goodness criterion

Goodness(V,Q) = NC − k|NG −NR|,

where NG is the number of pronunciations variants generated at the given V and Q,

NC is the number of correct pronunciations among the NG, and NR is the number

of reference pronunciations. The weight k controls over-generation. We set k = 0.5,
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and find the optimal hyperparameters to be V = 2 and Q = 0.8.

This lexicon covers all 17K OOVs (100%). Of the many pronunciations produced

for each word, at least one exactly matches an entire reference pronunciation for 12K

of those words (75%).

2.4 LVCSR improvements

We perform LVCSR evaluations on the 1.5 hour dev set, and evaluate WERs for

three sets of acoustic models, two language models and five different lexicons. They

are reported in Table 2.1.

Lexicon L1 L2 L3 L4 L5

Words 5.7K 12K 13K 23K 23K
Pronunciations 8.9K 21K 24K 39K 35K

GMM+SAT acoustic models
3gram LM 74K 74.9 75.6 73.2 73.1 72.9
3gram LM 595K 73.4 74.8 72.0 71.3 71.0

SGMM acoustic models
3gram LM 74K 71.6 70.4 70.1 69.4 68.8
3gram LM 595K 69.3 68.7 68.2 67.4 66.4

SGMM+BMMI acoustic models
3gram LM 74K 71.1 70.1 69.8 68.9 68.5
3gram LM 595K 68.9 68.2 67.4 67.0 66.2

Table 2.1: WER (%) for 5 lexicons × 3 AMs × 2 LMs.

Note that small but consistent reductions in WER result from augmenting either

the lexicon or the LM alone, and reductions from lexicon and LM augmentation

are additive. Note also that the gains persist even as the acoustic models improve,
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demonstrating further complementarity of the three LVCSR components.

2.5 KWS Improvements

We perform KWS on the lattices produced by the BMMI acoustic models using

the OpenFst-based technique summarized in Subsection 2.2.2 above.

Lexicon L1 L2 L3 L4 L5

Words 5.7K 12K 13K 23K 23K
Pronunciations 8.9K 21K 24K 39K 35K

SGMM+BMMI acoustic models × 3gram LM 74K
In-Voc keywords 0.253 0.271 0.269 0.276 0.273
OOV keywords 0.000 0.163 0.262 0.373 0.388
All keywords 0.191 0.244 0.267 0.300 0.301

SGMM+BMMI acoustic models × 3gram LM 595K
In-Voc keywords 0.277 0.287 0.304 0.320 0.320
OOV keywords 0.000 0.138 0.294 0.405 0.416
All keywords 0.209 0.250 0.302 0.341 0.343

Table 2.2: ATWV for in-vocabulary (268), OOV (87) and all (355) keywords, when
the augmented lexicon is used in LVCSR.

To quantify the impact of using the augmented lexicons in the LVCSR stage of the

KWS system, we index and search the lattices corresponding to all ten SGMM+BMMI

systems in the bottom block of Table 2.1. For instance, the ATWV for the 5.7K

reference lexicon and 74K word LM is obtained by using the lattices whose WER is

71.1%, ATWV for augmenting the lexicon via the Yarowsky method and using the

595K word LM is obtained by using the lattices whose WER is 67.4%, etc. The

resulting ATWVs for 355 keywords are reported in Table 2.2, where we also provide
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a breakdown of the ATWV between 87 OOV keywords relative to the 5.7K reference

lexicon, and 268 keywords that are in-vocabulary.

Lexicon L1 L2 L3 L4 L5

Words 5.7K 12K 13K 23K 23K
Pronunciations 8.9K 21K 24K 39K 35K

SGMM+BMMI acoustic models × 3gram LM 74K
In-Voc keywords 0.253 0.253 0.253 0.253 0.253
OOV keywords 0.000 0.010 0.063 0.045 0.065
All keywords 0.191 0.194 0.206 0.202 0.207

SGMM+BMMI acoustic models × 3gram LM 595K
In-Voc keywords 0.277 0.277 0.277 0.277 0.277
OOV keywords 0.000 0.025 0.035 0.046 0.036
All keywords 0.209 0.215 0.217 0.220 0.218

Table 2.3: ATWV for in-vocabulary (268), OOV (87) and all (355) keywords, when
the augmented lexicon is used in a pre-indexed KWS system to create proxy keywords
K ′ for OOV keywords K.

Since OOV keywords have no chance to be found in word lattices generated using

the 5.7K lexicon, the gains in Table 2.2 may appear to be trivial to explain. To rule

out this trivial explanation, we also investigate utilizing the augmented lexicon to

generate in-vocabulary proxies for OOV keywords, as described in Subsection 2.2.3.

We construct the factor transducer from lattices generated using the 5.7K lexicon, but

each time we encounter an OOV word in a keywordK, we use the method described in

Subsection 2.2.3 to search the factor transducer using proxy in-vocabulary keywords

K ′. Note that we have noticed that when a proxy K ′ returns an unusually large

number of YES’es for an OOV keyword K, they are predominantly false alarms, and

hurt KWS performance, likely because K ′ is a frequent phrase. So we simply discard
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all hits due to high-yield proxies, be they true or false alarms. The resulting ATWVs,

again broken down between in-vocabulary and OOV keywords, are reported in Table

2.3.

2.6 Discussion and conclusion

Several interesting conclusions may be drawn from the three tables presented

above.

Begin by comparing the last line in Table 2.1, where relative WER improvement

is 4% (68.9% → 66.2%), with the last line in Table 2.2, where ATWV improves

64% (0.209 → 0.343). This demonstrates that lexicon augmentation has significantly

greater impact on KWS performance than LVCSR.

Next, compare the first column for the BMMI acoustic models in Table 2.1 with

the first column of the two “All keywords” lines in Table 2.2. The WER improves

by 3% relative (71.1% → 68.9%) in Table 2.1, but the ATWV improves by only 9%

(0.191 → 0.209) in Table 2.2. This demonstrates that not all WER reductions are

equal: errors reduced by lexicon augmentation matter more for KWS than errors

reduced by improving the LM.

Next, compare the two “All keywords” lines in Table 2.2, and note that ATWV

improves due lexicon augmentation from 0.191 to 0.301 (58%) for the small LM,

compared to 0.209 to 0.343 (64%) for the larger LM. This demonstrates that the KWS
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improvements from lexicon augmentation are persistent even after LM improvements.

Next, compare the last lines in Tables 2.2 and 2.3, and note that ATWV improves

in the former by 64%, but only 4% in the latter. This demonstrates that utilizing the

augmented lexicon in the KWS stage via approximate phonetic matching (Table 2.3)

is much less effective than utilizing them in the LVCSR stage (Table 2.2).

Finally, compare the ATWVs for in-vocabulary and OOV keywords in Table 2.2 to

note that while much of the improvement from lexicon augmentation is on keywords

that were previously OOV, there is significant (10%-15%) collateral improvement in

detecting in-vocabulary keywords as well.
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Chapter 3

Proxy Keyword Search

In this chapter we propose a simple but effective weighted finite-state trans-

ducer (WFST)-based framework for handling out-of-vocabulary (OOV) keywords in

a speech search task. State-of-the-art large vocabulary continuous speech recogni-

tion (LVCSR) and keyword search (KWS) systems are developed for conversational

telephone speech in languages such as Tagalog. Word-based and phone-based in-

dices are generated for search from word lattices, the latter by using the LVCSR

system’s pronunciation lexicon. Pronunciations of OOV keywords are hypothesized

via a standard grapheme-to-phoneme method, and OOV keywords are searched using

their in-vocabulary (IV) proxies (word or phone sequences) generated from a WFST

framework that permits incorporation of a phone confusion matrix. Empirical re-

sults when searching for the Babel/NIST evaluation keywords in the Babel 10 hour

development-test speech collection show that (i) searching for word proxies in the

32



CHAPTER 3. PROXY KEYWORD SEARCH

word index significantly outperforms searching for phonetic representations of OOV

words in a phone index, and (ii) while phone confusion information yields minor im-

provement when searching a phone index, it can yield up to 40% improvement in

terms of actual term-weighted value when searching a word index using word proxies.

3.1 Related work

Keyword search (KWS) for spoken documents has become more and more im-

portant nowadays as large speech repositories, such as oral history archives [1, 53]

and online lectures [54, 2] are easily accessible. Searching for keywords in spoken

documents, however, remains a challenging problem. Manual transcription of speech

is usually prohibitively expensive, and given the amount of the spoken material avail-

able online, it is impractical to manually transcribe any nontrivial portion for search.

Automatic KWS therefore is highly desirable. State-of-the-art KWS systems usually

rely on the large vocabulary continuous speech recognition (LVCSR) systems [44, 52].

In such systems, lattices of speech segments in the search collection are generated

first. An inverted index (postings list) is then created from the lattices. KWS now

can be performed by searching for a given keyword via the inverted index. The KWS

task should ideally be “open vocabulary”. LVCSR systems however typically have a

fixed vocabulary [70], making it impossible to search for out-of-vocabulary (OOV)

keywords. One therefore uses as large an LVCSR vocabulary as feasible.
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We are interested in KWS in low resource settings, where only limited resources are

available to develop the LVCSR and KWS systems, e.g. 10 hours of transcribed speech

corresponding to about 100K words of transcribed text, and a pronunciation lexicon

that covers only the words in the training transcripts. Due to the low coverage of the

pronunciation lexicon, OOV keyword rate in low resource settings can be extremely

high, e.g., 50%, leaving a lot of room for improvement over word-based KWS methods.

One way to alleviate the OOV problem is to preemptively expand the LVCSR’s

lexicon. In other words, one adds automatically generated pronunciations of a large

number of words to the LVCSR’s pronunciation lexicon before lattice generation and

indexing. In [52] it is shown that if one can anticipate the OOV keywords ahead of

time, such a method leads to remarkable improvement in terms of KWS performance.

However, advance knowledge of all possible keywords is rarely the typical operating

condition for KWS systems.

Another way to handle OOV keywords is via sub-word units such as phones,

syllables or word-fragments. A sub-word index can be created by either generating a

sub-word lattice [40, 71, 72], or by converting a word lattice into a sub-word lattice

with or without the use of an appropriate phone confusion matrix [73]. OOV keywords

are then represented as sequences of sub-word units, and are searched against the sub-

word index.

The idea of query expansion in text retrieval has also been adopted to tackle the

OOV problem in speech search. A confusion matrix is used in [74, 75, 70, 76] to
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generate alternative words or syllables for OOV keywords, which are used to search

a word or syllable index instead of the original keywords. Unlike the idea of query

expansion in the text retrieval field, wherein one augments a possibly unseen keyword

with other keywords that are semantically similar (e.g. synonyms), speech search

entails other keywords that are acoustically similar. We will therefore call them

proxy keywords in this work.

Our work is most similar to that of [70], where proxy keywords are created using

a phone confusion matrix. However, instead of searching for the proxy keywords in

an n-best list generated by the LVCSR system, we introduce a weighted finite-state

transducer (WFST)-based framework for directly matching multiple proxies against

the entire index generated from word lattices. We further demonstrate that using

word proxies with the word index usually outperforms searching for OOV keywords

in a converted phone index via their corresponding phonetic representations.

3.2 Proxy keyword generation

Let K represent a finite-state acceptor for an OOV keyword, and L2 a finite-

state transducer for the pronunciation of the OOV keyword; e.g. pronunciations

hypothesized via the joint-sequence model implemented in the Sequitur software [69].

Let E be an edit-distance transducer that maps a phone sequence to any other phone

sequence with costs estimated from a phone confusion matrix. Let L1 denote the
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pronunciation lexicon of the LVCSR system. Our WFST framework for generating a

proxy keyword K ′ can be described as,

K ′ = Project
(
ShortestPath

(
K ◦ L2 ◦ E ◦ (L∗1)−1

))
. (3.1)

This framework is similar to the method proposed in [52], where Levenshtein distance

was used as the cost in E. In this framework, phone confusion costs other than

Levenshtein distance can easily be encoded in E, which we will explain in the next few

sections. The WFST-based framework also makes it possible to carry the confusion

cost to the final decision making stage. Finally, the WFST framework supports both

phone and word proxies, as will be explained below.

3.2.1 OOV pronunciation generation

Pronunciations for OOV keywords are generated automatically using G2P soft-

ware Sequitur [69]. The core idea of Sequitur is to align graphemes and phonemes in

a set of training examples consist of “word + pronunciation” pairs to create the so-

called “graphones,” and then build a joint multigram model for graphone sequences.

Our model is trained on the lexicon with which we build the LVCSR system. Pro-

nunciations of an OOV keyword are “read off” the most likely graphone sequences

corresponding to the grapheme sequence of the keyword.
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3.2.2 Phone confusion matrix estimation

Phone confusion probabilities that can be encoded in E are obtained through a

standard maximum likelihood estimation. Training data for these conditional prob-

abilities are collected by aligning the reference phone sequences for some held-out

speech to the phone sequences that correspond to its ASR hypothesis. The alignment

maximizes the phone matching rate. A small subset of the development-test speech

is utilized for this. Deletions and insertions are treated separately from phone sub-

stitutions, so that high rates of deletions and insertions will not adversely affect the

estimation of E.

Figure 3.1: Example of a phone confusion encoding transducer E.

We encode the phone confusion statistics into the edit-distance transducer, as

illustrated in Figure 3.1.
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3.2.3 Phone proxy generation

Since languages usually have a closed phone set, a KWS system based on a phone

index can be considered as open vocabulary. Furthermore, as claimed in [76], adding

phone confusion to either the index or the phonetic representation K ◦ L2 of the

(OOV) keyword can help improve KWS performance. Generating such phone proxies

in our framework only requires a minor modification of Equation (3.1) as,

K ′′ = Project (ShortestPath (K ◦ L2 ◦ E)) . (3.2)

A phone index, however, represents a much larger search space as the lexical constraint

is removed. Therefore phone-based KWS system often suffers from higher false alarm

rates.

3.2.4 Improved word proxy generation

Instead of searching for phone proxies K ′′ of an OOV keyword K in a phone

index, we can generate word proxies K ′ and search directly against a word index.

The obvious advantage is that we do not have to keep a separate index for OOV

keywords — they share the index with the in-vocabulary (IV) keywords. Another

potential advantage is that by imposing the lexical constraints on the permissible

phone sequence via L∗1, the search space is greatly limited, which should reduce false

alarms.
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However, there is a disadvantage of using Equation (3.1) to generate word proxies,

as illustrated by the following made-up example in English. Suppose balloon ≡

/B AH L UW N/ is an OOV word, and some ≡ /S AX M/, Samba ≡ /S AA M B AH/

and loon ≡ /L UW N/ are IV words. If the decoder encounters the sequence some

balloon in the speech, it may hypothesize the word sequence Samba loon in that

location. Now, generating K ′ = Samba loon from K = baloon by Equation (3.1)

requires E to insert 3 phones /S AA M/, while generating K ′ = loon requires E to

delete 2 phones /B AH/. So both appear to be poor proxies, even though a perfect

phone sequence match for K exists in the lattice!

To address the problem described in the previous example, we modify the edit-

distance transducer of Figure 3.1 to the transducer E ′ shown in Figure 3.2.

Figure 3.2: Modified phone confusion encoding transducer E ′, with freer edits per-
mitted at the keyword-boundary.

In this modified transducer, insertions and deletions at the boundaries of the key-
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word K are allowed at a lower cost, making search-by-word-proxy closer to phonetic

search, while still retaining the lexical constraint on the phone sequence of K ′. Word

proxies are thus generated as,

K ′ = Project
(
ShortestPath

(
K ◦ L2 ◦ E ′◦ (L∗1)−1

))
. (3.3)

Note that the ShortestPath algorithm can be computationally expensive on large

WFSTs. We therefore resort to pruning in the ShortestPath algorithm as needed.

3.2.5 Language model impact

The proxy generation process in Equation(3.3) takes acoustic confusion into ac-

count, so that occurrences of K ′ in the index are good candidates for actual occur-

rences of K. But the word lattices from which the index is created contain both

acoustic and language model scores. The language model score for K ′ is arguably not

appropriate for comparing/sorting these occurrences. We will evaluate the impact of

retaining/discarding this score in Section 3.5.

3.3 Keyword search pipeline

Our KWS pipeline is comprised of two major parts: lattice generation and lattice

indexing. We build our pipeline using the open source toolkit Kaldi [65], which
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includes all the necessary tools for building LVCSR systems, as well as OpenFst [67]-

based keyword search systems. Code and scripts needed to reproduce the experiments

in this work have been checked into the Kaldi repository and are publicly available.

3.3.1 LVCSR system

For acoustic modeling, standard PLP analysis is employed to extract 13 dimen-

sional acoustic feature, and a maximum likelihood acoustic training recipe is followed

to train speaker adaptive models. After that, two different systems are trained: a

hybrid deep neural network (DNN) system and a subspace Gaussian mixture model

(SGMM) system with boosted maximum mutual information (BMMI) training. For

more details of those systems readers are referred to [77].

The language model is trained with the SRILM toolkit [66]. The n-gram order,

smoothing method and count-cutoffs are selected to minimize the perplexity on some

held-out subset. Typically, A n-gram order of 3 or 4, and smoothing techniques such

as Good-Turing smoothing or Kneser-Ney smoothing are selected.

Word lattices generated by the DNN model or SGMM + MMI model are further

converted to phone lattices where phonetic index is required; we do not directly

perform phonetic decoding in order to get the phone lattices.
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3.3.2 Indexing and search

We implemented the lattice indexing algorithm of [41] within the Kaldi toolkit.

Specifically, the lattice of each utterance is converted into a finite-state acceptor with

the posterior score, start-time and end-time for each word encoded as a 3-dimensional

weight. An inverted index is then created from these individual acceptors, with paths

to accept every possible word sequence in the original lattices. By applying standard

WFST operations, one can work out the posterior score, start-time and end-time of

each occurrence of a word sequence.

To carry out KWS, keywords (which include multiword key-phrases) are typically

compiled into linear acceptors K. By composing the acceptor K with the inverted

index, one obtains the posterior score, start-time and end-time of each occurrence of

that keyword. The keyword acceptors do not have to be linear acceptors. They can

be any acceptor, as long as each path in the acceptor represents a meaningful keyword

or keyword phrase, e.g., the acceptor K ′ of Equation (3.3) represents multiple proxies

for K. Furthermore, weights can be encoded in the keyword acceptors (such as the

edit-distance supplied by E ′) if a single keyword has more than one representation.

Finally, a YES/NO decision is made according to the posterior scores from the

search. We apply the keyword specific threshold proposed in [68], which uses the

expected count of the keyword to estimate the number of the “true hits” in the formula

for the actual term-weighted value (ATWV). ATWV is computed using the NIST

scoring tool F4DE.
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3.4 Experimental setup

3.4.1 Data

We evaluate the proposed proxy generation framework in the IARPA Babel Pro-

gram (IARPA-BAA-11-02) framework, which has released conversational telephone

speech corpora for several languages. In this work, we measure the system perfor-

mance on Tagalog1, Haitian2, Lao3, Assamese4, Bengali5 and Zulu6. We take the

limited language pack (LimitedLP), which contains a 10 hour of training data, to

simulate the low resource constrain. The limited language pack also comes with a 10

hour of development-test data which we use for evaluation.

3.4.2 Keyword list

We use a total of 7 keyword lists in our experiments. We start with Tagalog Eval

keyword list 7, with which we show the OOV keyword statistics, and investigate proxy

search performance in various settings. We then choose the best setting, and evaluate

the proxy keyword search performance for the 6 languages using their corresponding
1Language collection release IARPA-babel106b-v0.2g.
2Language collection release IARPA-babel201b-v0.2b.
3Language collection release IARPA-babel203b-v3.1a.
4Language collection release IARPA-babel102b-v0.5a.
5Language collection release IARPA-babel103b-v0.4b.
6Language collection release IARPA-babel206b-v0.1e.
7Keyword list IARPA-babel106b-v0.2g_conv-eval.kwlist2.xml.
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keyword lists, namely: Tagalog Dev keyword list 8, Haitian Dev keyword list 9, Lao

Dev keyword list 10, Assamese Dev keyword list 11, Bengali Dev keyword list 12, Zulu

Dev keyword list 13.

3.4.3 OOV keyword statistics

To better understand the importance of handling OOV keywords for keyword

search in a low resource setting, we start by breaking down Tagalog Eval keyword

list. Table 3.1 gives the keyword occurrence statistics of Tagalog Eval keyword list,

with respect to the LVCSR’s lexicon and the development-test dataset transcripts.

3805 keywords in Tagalog Eval keyword list
1736 in-vocab keywords 2069 OOV keywords

1067 669 670 1399
Found in Dev Not in Dev Found in Dev Not in Dev

Table 3.1: Tagalog Eval keyword statistics with respect to the LVCSR’s lexicon and
the development-test dataset transcripts.

From Table 3.1 we can see that 2069 of 3805 keywords (54%) are OOVs with

respect to the LVCSR’s lexicon, which is not atypical in a low resource setting. Also,

this keyword list was created for a separate (evaluation) search collection, so many

keywords do not appear in the 10 hour development-test data we use as our search col-
8Keyword list IARPA-babel106b-v0.2g_conv-dev.kwlist.xml.
9Keyword list IARPA-babel201b-v0.2b_conv-dev.kwlist.xml.

10Keyword list IARPA-babel203b-v3.1a_conv-dev.kwlist.xml.
11Keyword list IARPA-babel102b-v0.5a_conv-dev.kwlist.xml.
12Keyword list IARPA-babel103b-v0.4b_conv-dev.kwlist.xml.
13Keyword list IARPA-babel206b-v0.1e_conv-dev.kwlist.xml.
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lection. Indeed, only 1067 of 1736 in-vocabulary (IV) keywords, and 670 of 2069 OOV

keywords occur in our search collection. Since the ATWV metric ignores keywords

with zero true-positives, our KWS evaluation is effectively based on 1737 keywords.

Yet, 670 (39%) of them are OOV. Ignoring OOV keywords therefore still significantly

degrades the average ATWV.

3.5 Results

This section gives proxy keyword search performance over the 6 Babel languages.

We start by experimenting with different proxy search configurations on Tagalog

development-test search collection with Tagalog Eval keyword list, followed by a

thorough discussion. We then choose the best configuration, and apply it to all

the 6 languages.

Note that IV keywords are searched directly from the word index, while OOV

keywords are searched by seeking either their word proxies using Equation (3.3) in

the word index, or their phone proxies using Equation (3.2) in the corresponding

phone index. As we mentioned above, we convert word lattices into phone lattices

and then create the phone index. Since short keywords tend to generate much more

false alarms, we only generate proxies for OOV keywords with at least 5 phones.
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3.5.1 Comparison of 5 proxy configurations

We first explore proxy keyword search performance in 5 different configurations, as

shown in Table 3.2. This part of the experiment is carried out on Tagalog with Tagalog

Eval keyword list. The underlying LVCSR system is a SGMM system trained with

boosted maximum mutual information. As mentioned in Section 3.4.3, there are 670

effective OOV keywords (i.e., the keyword actually appears in the search collection) in

Tagalog Eval keyword list with respect to Tagalog development-test search collection.

The richness of the generated proxies is controlled by the pruning in the ShortestPath

step, and can either be measured by the average number of proxies per OOV keyword,

or by the average number of hits retrieved (correct or false alarms) per OOV keyword.

Figure 3.3 and Figure 3.4 give the proxy keyword search performance in terms of the

average ATWV over the 670 effective OOV keywords in the 5 different configurations.

Config. Index source Proxy type Uses E or E ′

1 Phone lattice Phone (K ′′) No
2 Phone lattice Phone (K ′′) Yes (E)
3 Word lattice Word (K ′) No
4 Word lattice Word (K ′) Yes (E ′)
5 Word lattice w/ Word (K ′) Yes (E ′)

no LM scores

Table 3.2: The numbered experimental configurations in Figures 3.3 and 3.4. The
first two designate phone-based search without and with the use of phone proxies in
Equation (3.2), the next two designate word-based search without and with the use of
word proxies in Equation (3.3), and the last designates word-based search with word
proxies after ignoring language model scores in the lattices.

Several conclusions can be drawn from Figure 3.3 and Figure 3.4. Comparing
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Figure 3.3: ATWV versus the number of proxies per keyword (Tagalog development-
test search collection, Tagalog Eval keyword list).

Configuration 4 (magenta) with Configuration 2 (blue) in Figure 3.3 suggests that

given a predetermined number of proxies per OOV keyword, searching a word index

using word proxies is more effective than searching a phone index using phone proxies.

Comparing Configurations 4 and 2 in Figure 3.4 suggests that for any given number

of hits returned per OOV, word proxies are again the better choice. The quick drop

in ATWV for Configuration 2 in both Figures 3.3 and 3.4 suggests that even some

highly ranked phone proxies cause significant false alarms. This affirms the value

of relying on phone sequences that satisfy lexical constraints implicitly in the word
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Figure 3.4: ATWV versus number of retrieved hits per keyword (Tagalog
development-test search collection, Tagalog Eval keyword list).

proxies. And since we use an expected count-based threshold for YES/NO decisions,

reducing the number of false alarms may indirectly increase the number of true hits

marked YES.

Next, contrasting the pair of Configurations 1 & 2 against the pair of Configura-

tions 3 & 4 in Figure 3.3 suggests that using a phone confusion transducer E or E ′

greatly improves KWS performance with word proxies (comparison of Configuration

3 with 4) but does not help much with phone proxies (comparison of Configuration 1

with 2). In fact, using E hurts performance in Configuration 2 when the number of
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phone proxies is large. This too may be explained by the inherent false alarm problem

with phone proxies. Adding the phone confusion transducer simply aggravates the

situation, unless the number of proxies is severely limited, e.g. to be around 10, as

suggested by Figure 3.3. On the other hand, the word proxies appear to have better

precision; admitting proxies permitted by phone confusion therefore further improves

the performance. We thus conclude that phone confusion information is very helpful

to word proxies (40% improvement in ATWV), but should be carefully constrained

when applying to phone proxies.

Next, compare Configuration 4 and Configuration 5 in Figure 3.3. The index in

Configuration 5 is built without language model scores. As explained in Section 3.2.5,

the mismatch between the proxies and the index may lead to some degradation in the

KWS performance, because the proxies are created merely based on acoustic confusion

while the index incorporates potentially incorrect language model scores. The result

in Figure 3.3 shows that there is a small degradation by retaining the language model

score in the index, but the degradation is usually negligible. Therefore, if only a single

index can be retained/searched for both IV and OOV keywords, we suggest retaining

the word index with language model scores.

Some clarification may be in order for Configuration 1 and Configuration 3, where

proxies are generated without a phone confusion transducer. If only one proxy were

possible for each OOV keyword without the phone edits permitted by E or E ′, then

curves for Configuration 1 and Configuration 3 in Figure 3.3 should be horizontal
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lines. However, multiple proxies are possible even without phone edits, because the

lexicon L1 contains multiple pronunciations for some words, and other legitimate

ambiguities (e.g. homophones) in the phone-to-word transduction. Therefore, the

curves first rise as multiple proxies are admitted by enlisting alternative shortest

paths in Equation (3.2) or Equation (3.3), but quickly become horizontal lines once

these limited alternatives are exhausted.

IV Kwds OOV Kwds All Kwds
Tagalog 0.351 0.110 0.216 → 0.258

Table 3.3: ATWV for word search on IV keyword list and proxy search on OOV
keyword list. Last column gives the overall ATWV improvement by searching OOV
keywords using proxies (Tagalog development-test search collection, Tagalog Eval
keyword list, proxy Configuration 4).

To close the discussion, we compare the performance of proxy keyword search on

the 670 OOV keywords with that on the 1067 IV keywords, as shown in Table 3.3.

We choose Configuration 4 as the ATWV performance of Configuration 4 is very close

to that of Configuration 5, and Configuration 4 does not require a separate index for

OOV keywords. As shown in Table 3.3, while post-facto search by proxies is still

much poorer than having them in-vocabulary, the average ATWV on the full Tagalog

Eval keyword list improves by 20% — from 0.216 to 0.258.
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3.5.2 Proxy keyword performance

From Section 3.5.1 we can see that proxy Configuration 4 and Configuration 5 yield

the best performance. While Configuration 5 requires removing the language model

score from the lattices, which essentially means keeping an additional set of indices

for the OOV keywords, Configuration 4 does share the same set of indices with the

IV keywords, with only a little bit of performance degradation. We therefore choose

proxy Configuration 4 for the rest of the experiments.

We evaluate the proxy keyword search performance for OOV keywords on all the

6 Babel languages. This time the underlying LVCSR system is a DNN system trained

on top of the SAT system, and we use the Dev keyword list for all the languages.

Detailed results are shown in Table 3.4.

IV Kwds OOV Kwds All Kwds
Tagalog 0.2784 0.2061 0.2096 → 0.2605
Haitian 0.4664 0.1842 0.3819 → 0.4153
Lao 0.4134 0.1873 0.3629 → 0.3858

Assamese 0.3100 0.0812 0.2183 → 0.2423
Bengali 0.3345 0.0892 0.2180 → 0.2490
Zulu 0.2789 0.0693 0.1013 → 0.1454

Table 3.4: ATWV for word search on IV keyword list and proxy search on OOV
keyword list. Last column gives the overall ATWV improvement by searching OOV
keywords using proxies (development-test search collection, Dev keyword list, proxy
Configuration 4).

From Table 3.4, it is clear that proxy search for OOV keywords is still far behind

word search for IV keywords in terms of performance, but it does improve the overall

search performance by extending search capability to OOV keywords without chang-
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ing the word index. On the 6 languages we experimented with, proxy keyword search

improves the overall ATWV by 18% relatively.

3.6 Summary

We have presented a simple, cheap and effective way to use word proxies to improve

KWS performance for OOV keywords. Experiments were done with various Babel

languages and the results suggest that such techniques are reasonably effective for

handling OOV words.
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Chapter 4

Automatic Lexicon Expansion

Chapter 3 attempts to alleviate the out-of-vocabulary (OOV) keyword problem for

large vocabulary continuous speech recognition (LVCSR)-based low resource keyword

search (KWS) methods in a post facto manner: it assumes the underlying LVCSR

system and its corresponding KWS system are developed beforehand without any

knowledge of the keywords, and at search time when an OOV keyword comes, it

generates in-vocabulary (IV) proxies for that OOV keyword and searches for those

proxies instead of the original OOV keyword. The results in Chapter 2, however,

suggest that incorporating the OOV keywords (if they are available beforehand) into

the LVCSR system before indexing the search collection is superior to using them post

facto, e.g., using approximate phonetic matching of OOV keywords in pre-indexed

lattices, or using our proxy keyword search technique proposed in Chapter 3. In

this chapter, we attempt to alleviate the OOV keyword problem before training the
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LVCSR system, by enlarging the LVCSR’s pronunciation lexicon. Since it is not very

practical to have prior knowledge of the keywords when building the LVCSR system,

we propose to create a huge pronunciation lexicon (e.g., with one million entries)

purely from the smallish original pronunciation lexicon (e.g., with a few thousand

of words). A long list of hallucinated words (e.g., one million) is first generated

using a grapheme-to-phoneme (G2P)-based technique. This list of hallucinated words

together with the corresponding pronunciations, which can also be inferred by G2P

methods, is then appended to the original pronunciation lexicon to form a huge lexicon

for the LVCSR system. We show in our experiments that although most words

in the hallucinated word list are not legitimate words in the language that we are

working on, the list does cover an averaged 24% of true words when evaluated on

a large expert-crafted lexicon (with an average of 26K words) from that language.

Experiments also suggest that this enlarged lexicon only has a modest impact on the

LVCSR’s performance in terms of word error rate (WER), but it improves the keyword

search performance in terms of actual term-weighted value (ATWV) by covering more

keywords that are OOV w.r.t. the original pronunciation lexicon. We also show that

combining the lexicon expansion technique proposed in this chapter with the proxy

keyword search technique proposed in Chapter 3 further improves the keyword search

performance.
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4.1 Related work

Suppose we have a list of words that are not in an LVCSR’s original vocabulary,

adding those words to the LVCSR’s vocabulary is not too difficult: first, a grapheme-

to-phoneme (G2P) model can be trained on the original lexicon; then the trained G2P

model can be applied to the list of words to generate candidate pronunciations for each

word; some optional steps can also be taken to further refine the generated pronun-

ciations, e.g., [78] takes an iterative approach to refine the pronunciations generated

by G2P models; finally, append the list of words together with their corresponding

pronunciations (generated by G2P model) to the original lexicon, and possible retrain

the acoustic model and language model. Lexicons expanded this way usually yield

relatively good word error rate (WER) performance when compared to an expert-

crafted pronunciation lexicon with the same set of words [78]. Further more, [52]

points out that expanding LVCSR’s vocabulary before indexing the search collection

is actually essential to keyword search performance in terms of actual term-weighted

value (ATWV). The problem with keyword search is, we typically only know the key-

words at search time, and adding the keywords to the LVCSR’s vocabulary (if they are

not already present) and then decode the search collection and rebuild the inverted

index can be quite time consuming, making it impractical in real applications. We

therefore propose to build LVCSR systems with a huge vocabulary, which increases

the chance of covering more keywords that are OOV w.r.t. the original lexicon, thus

improving the search performance. Now the problem boils down to how we can get
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such a large list of words for low resource languages.

One way to get a large list of words for a certain language is to crawl the Web.

Several different techniques have been proposed to retrieve relevant words from the

Web. In [79], spoken term detection (a.k.a. keyword search) is used together with

the Web data to recover the OOV words in the speech recognizer’s output. An OOV

detector is first applied to the LVCSR’s output to determine the OOV regions in

the lattices. Hypothesised words close to that region are then used to query the

Web and words relevant to those hypothesised words will be returned by the search

engine. Those returned words are then taken as keywords, and are converted to their

corresponding phonetic representation to query a phonetic spoken term detection

system built on the same dataset. If one of the returned words appears at the original

OOV region, then it is highly likely that this word is the OOV word that is supposed

to appear at that region. Other techniques more or less share the same philosophy

in the sense that methods are proposed to select words retrieved from the Web.

For example, in [80], local word context of the OOV words are used to retrieve

the OOV words in the unlimited set of Web documents, while in [81], words in the

metadata information of the audio document archive are used to argument the speech

recognizer’s vocabulary. This kind of technique usually works well for major languages

such as English or Spanish, since a large number of resources are available on the Web

for those languages. But when it comes to low resource languages, we may not be able

to retrieve reasonable amount of data from the Web to achieve good performance.
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Another way to expand the LVCSR’s lexicon in order to cover more OOV words is

to add sub-word units such as graphones [82]. This does not require retrieving a list

of actual words, therefore sometimes is also called a hybrid approach in the literature.

The general idea is, by adding sub-word units to the recognizer’s vocabulary, OOV

words will likely be represented by a combination of those sub-word units in the

decoding output [82, 83, 84], which can then be recovered by various techniques, e.g.,

the Web-based OOV recovery method proposed in [79]. This hybrid approach has

also been applied to LVCSR-based KWS systems to make the KWS system open-

vocabulary (i.e., any keywords can be searched). In [85], a hybrid LVCSR system

is first built with graphones added to the recognizer’s vocabulary as additional sub-

word units. The search collection is then decoded by this hybrid recognizer to generate

lattices that contain both words and graphones. After that, all the graphones in the

lattices are joined together to form words, which are possibly OOV w.r.t. the original

word lexicon. Now, the lattices are converted into an inverted index and keyword

search can be performed. One potential issue with this hybrid approach is that the

sub-word units added to the recognizer’s vocabulary are relatively short (e.g., phones,

syllables), therefore the recognizer may take the sub-word units to fill in the place of

IV words as well, which will likely hurt the performance of IV keywords.

In this chapter, we propose a G2P-based technique to generate a huge list of

hallucinated words for lexicon expansion purpose. A trigram language model is first

trained for the syllable sequences from the recognizer’s lexicon (we treat syllable
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sequence of one word as a sentence). This language model is then used to randomly

generate a huge number of syllable sequences, which are actually pronunciations for

potential words. We also train a G2P model from the original lexicon so that we

can map the pronunciations to their corresponding spellings. Now that we have both

spellings and pronunciations, we append them to the original lexicon to form a larger

lexicon that has a better chance of covering more OOV keywords.

Our approach in this chapter is similar to the sub-word approach above in the

sense that we also generate “pronunciation”-driven “words” from the original lexicon,

and those “words” are not necessarily legitimate. However, instead of generating sub-

word units, we generate longer units that can cover several syllables, which also have

a chance to be legitimate words in that language. Since longer units usually capture

more discriminative information, they are less likely to hurt the speech recognition

or keyword search performance for IV words. We show in our experiments that by

using our expanded lexicon, we achieve better keyword search performance in terms

of ATWV, without hurting the WER performance. We also show that combining the

expanded lexicon with the proxy keyword search technique proposed in Chapter 3

further improves the keyword search performance.
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4.2 Automatic lexicon expansion

The general idea of our lexicon expansion method is to generate a large number of

potential word pronunciations, and then map the pronunciations to their correspond-

ing spellings using G2P models. In the next few subsections, we will first explain

how G2P conversion works. We then describe how to train a pronunciation model to

generate potential word pronunciations, and finally we show how we can map from

pronunciations to spellings with G2P model.

4.2.1 Grapheme-to-phoneme conversion

G2P conversion is a task to map a word, represented by a sequence of graphemes,

to its pronunciation, represented by a sequence of phonemes [86]. Suppose w is the

grapheme sequence of a word, and p̂ its corresponding pronunciation, G2P can be

framed as follows [87]:

p̂ = argmax
p
P (p|w) = argmax

p
P (w, p) (4.1)

Therefore, one can either model the conditional distribution P (p|w) or the joint distri-

bution P (w, p). From Equation (4.1) it’s not difficult to see that the same technique

works for mapping from phonemes sequences to graphemes as well. In fact, if we swap

the grapheme sequences and phoneme sequences during training, the model trained in

the same way should be able to map from phoneme sequences to grapheme sequences.
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We use the open source toolkit Sequitur [69] for G2P conversion in this work.

4.2.2 Pronunciation model

The core idea of our proposed lexicon expansion method is to generate a large

number of potential word pronunciations. Our pronunciation model is essentially an

n-gram language model for syllables. Suppose we have the following lexical entry in

our lexicon (taken from Tagalog lexicon)

Buboy ≡ " b u · b oj

where “Buboy” is a Tagalog word, “" b u · b oj” is its corresponding pronunciation

with two syllables “" b u ” and “b oj”, “"” is a stress mark, and “·” is the syllable

separator. We treat the sequence of syllables in the lexical entry like the sequences

of words in a sentence, and train a language model for the syllable sequences. In the

above example, “" b u · b oj” will be treated as a sentence with two words “" b u”

and “b oj”.

We use SRILM [66] to train the language model. Typically we set n-gram order

to 3 and train the model with Kneser-Ney smoothing. The trained language model is

capable of generating random sentences with certain probabilities. In fact, sentences

generated this way are syllables sequences, which are essentially pronunciations of

potential words. We typically generate 12 million sentences, and we use SRILM to
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compute the probabilities of these sentences with the syllable language model.

4.2.3 Spelling generation

A lexical entry needs a spelling as well as a pronunciation. To do this we use

the G2P conversion from Sequitur in reverse to produce the most likely spellings for

each pronunciation (sentence generated in Subsection 4.2.2). Let us again take the

Tagalog lexical entry as an example. In the original lexicon, we have:

Buboy ≡ " b u · b oj

We reverse the grapheme sequence and the phoneme sequence in this lexical entry as

follows:

b"u"boj ≡ B u b o y

Note that the stress mark “"” has been applied to all the phones in that syllable. In

our actual implementation, we map the phones to ASCII symbols first, so that phones

like “oj” will only appear as one ASCII symbol. When we do the mapping, we treat

tags (e.g., the stress mark “"”) separately, so each tag has its own ASCII symbol, and

a phone with a tag would be rendered as two ASCII symbols.

The reversed lexicon is used to train a G2P model with Sequitur. Once we have

the G2P model trained, we apply the model to all the 12 million pronunciations (sen-

tences) generated in Subsection 4.2.2, and form lexical entries with both spellings and
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pronunciations. We generate at most 3 alternative spellings for each pronunciations,

and pronunciations with less than 3 phones are also removed since short words tend

to create false alarms in keyword search. Of course, lexical entries that are same to

those in the original lexicon are also removed.

We now define the probability of the generated lexical entry to further cut down

the lexicon size. Let PLM(p) be the language model probability of pronunciation

p from Subsection 4.2.2, let PG2P (p → w) be the spelling probability assigned by

G2P model, we define the probability of the new lexical entry “w ≡ p” as P (w ≡

p) = PLM(p)PG2P (p → w). We then sort all the generated lexical entries by their

probabilities, and append the best one million entries to the original lexicon. Note

that the probabilities of the one million lexical entries are further scaled so that

probabilities of all entries sum to unity.

4.3 Language model

As suggested by the work in [52], language model also plays an important role

in low resource keyword search. In [52], the authors utilize additional text data

that covers the expanded lexicon for language modeling. In our work here, however,

since most of the hallucinated words are not even legitimate words in that languages,

additional text data that covers the hallucinated words is unfortunately not available.

We therefore propose to simply add unigram probabilities to the language model for
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the hallucinated words.

We foresee two potential advantages of adding unigram probabilities to the lan-

guage model for those hallucinated words. First, since we only add unigram proba-

bilities for the hallucinated words, these words are less likely to appear as the 1-best

hypotheses in the decoding output, unless the acoustic model is extremely confident

about their appearance. This way, the hallucinated words are less likely to hurt the

original IV words performance, even if we augment the recognizer’s vocabulary by

one million lexical entries. Second, given the small unigram probabilities assigned

to the hallucinated words in the language model, they still have a chance to appear

the lattices. Various search techniques can then be adopted to improve the keyword

search performance, e.g., the proxy keyword search technique as we will explain in

Section 4.4.

We now explain how we assign unigram probabilities to the hallucinated words.

We treat all the hallucinated words as OOV words, as they do not appear in the

recognizer’s original lexicon. We take a 2 hour held-out set from the search collection,

and calculate the OOV rate on the recognizer’s original vocabulary. This OOV rate

is taken as the probability mass for all the hallucinated words. Let us denote it as

POOV , we then assign probability P (w ≡ p)POOV for word w in the language model,

where P (w ≡ p) is the normalized lexical entry probability from Subsection 4.2.3.

We make sure that the unigram probability we assign to the hallucinated word is not

more probable than the least probable word which is originally in the language model
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(excluding “<s>” and “</s>” symbols).

4.4 Proxy keyword search

In Chapter 3, a technique called proxy keyword search is proposed to alleviate the

OOV keyword problem in low resource keyword search. The general idea of proxy

keyword search is, if an OOV word appears in the search collection, the recognizer will

most likely interpret it as acoustically similar IV words that are in the recognizer’s

vocabulary. Therefore at search time, we can search those acoustically similar IV

words as proxies of the original OOV keyword. In this work, since we only add

unigram probabilities for the hallucinated words, their behavior should be similar

to actual OOV words, thus applying proxy keyword search for keywords that only

appear in the hallucinated word list should improve the keyword search performance.

Proxy keywords can be generated in a weighted finite-state transducer (WFST)

framework. Let K represent a finite-state acceptor for a keyword (possibly OOV),

and L2 a finite-state transducer for the pronunciation of that keyword. Let E be an

edit-distance transducer that maps a phone sequence to any other phone sequence

with costs estimated from a phone confusion matrix. Let L1 denote the pronunciation

lexicon of the LVCSR system. The WFST procedure for generating a proxy keyword
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K ′ can be described as,

K ′ = Project
(
ShortestPath

(
K ◦ L2 ◦ E◦ (L∗1)−1

))
(4.2)

K ′ is then used as proxies to search the index instead of the original keyword. Typi-

cally, the edit-distance transducer is modified to allow cost-inexpensive insertions and

deletions at word boundaries.

4.5 Experimental setup

4.5.1 Corpus

We evaluate the proposed lexicon expansion technique in the IARPA Babel Pro-

gram (IARPA-BAA-11-02) framework, which has released conversational telephone

speech corpora for several languages. In this work, we measure the system perfor-

mance on Tagalog1, Haitian2, Lao3, Assamese4, Bengali5 and Zulu6. We take the

limited language pack (LimitedLP), which contains a 10 hour of training data, to

simulate the low resource constrain. The limited language pack also comes with a 10

hour of development-test data which we use for evaluation. Note that since we do
1Language collection release IARPA-babel106b-v0.2g.
2Language collection release IARPA-babel201b-v0.2b.
3Language collection release IARPA-babel203b-v3.1a.
4Language collection release IARPA-babel102b-v0.5a.
5Language collection release IARPA-babel103b-v0.4b.
6Language collection release IARPA-babel206b-v0.1e.
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not have the full list of words for each language, we take the lexicon from the full

language pack (fullLP) and treat that as the “reference” word list. The lexicons from

fullLP have an average number of 26K words. For our keyword search performance,

we use the Dev keyword list for each language, namely: Tagalog Dev keyword list 7,

Haitian Dev keyword list 8, Lao Dev keyword list 9, Assamese Dev keyword list 10,

Bengali Dev keyword list 11, Zulu Dev keyword list 12.

4.5.2 System description

We use the open source toolkit Kaldi [65] for all our system development and

experiments. Standard PLP analysis is employed to extract 13 dimensional acous-

tic feature, and a maximum likelihood acoustic training recipe is followed to train

speaker adaptive models, which is further followed by a hybrid deep neural network

(DNN) system. Lattices are then generated for the development-test set of each lan-

guage using the DNN model. For the keyword search task, lattice indexing is further

performed after decoding to convert lattice of each utterance into a finite-state ac-

ceptor with the posterior score, start-time and end-time for each word encoded as

a 3-dimensional weight. An inverted index is then created from these individual ac-

ceptors, with paths to accept every possibly word sequence in the original lattices.
7Keyword list IARPA-babel106b-v0.2g_conv-dev.kwlist.xml.
8Keyword list IARPA-babel201b-v0.2b_conv-dev.kwlist.xml.
9Keyword list IARPA-babel203b-v3.1a_conv-dev.kwlist.xml.

10Keyword list IARPA-babel102b-v0.5a_conv-dev.kwlist.xml.
11Keyword list IARPA-babel103b-v0.4b_conv-dev.kwlist.xml.
12Keyword list IARPA-babel206b-v0.1e_conv-dev.kwlist.xml.
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This way, keyword search can be done by composing the keyword acceptor with the

inverted index. For details of speech recognition and keyword search systems, readers

are referred to [77, 45, 52].

4.6 Results

We report word error rate (WER) for the speech recognition task, and actual

term-weighted value (ATWV) for the keyword search task. WERs are reported in

percentage.

4.6.1 Precision and recall

Figure 4.1: Hallucinated word precision v.s. number of generated lexical entries.
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Figure 4.2: Hallucinated word recall v.s. number of generated lexical entries.

Figure 4.1 and Figure 4.2 illustrate the precision and recall of the hallucinated

words as the number of expanded lexical entries goes up to one million. Since we do

not have a full list of words in the 6 Babel languages that we test, we treat the lexicon

form full language pack (fullLP) of each language release as the ground truth. The 6

fullLP lexicons have an average of 26K words, with Zulu having the largest lexicon

with 61K words, and Lao having the smallest lexicon with only 6K words.

For the following experiments, we choose to expand the original with an additional

one million lexical entries, as most of the languages have a recall of 20% − 30% at

that operating point, except for Lao which only has a recall of 13% even after adding

one million lexical entries. We do not worry too much about the low precision at
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that operating point, because we only add unigram probabilities to the language

model for the hallucinated words, and most of those words will not be picked up by

the recognizer as the 1-best hypotheses — they will most likely appear deep in the

lattices, which can be recovered by keyword search methods.

4.6.2 Speech recognition performance

Original Lexicon Expanded Lexicon
Tagalog 61.0 60.5
Haitian 60.3 60.5
Lao 57.9 57.5

Assamese 64.0 64.1
Bengali 66.2 66.2
Zulu 68.9 68.3

Table 4.1: WER (%) performance of speech recognition system with original lexicon
and expanded lexicon.

Table 4.1 compares the WER performance of speech recognition with the original

lexicon and the expanded lexicon. Out of the 6 Babel languages we test, the expanded

lexicon system outperforms the original lexicon in 3 languages, and ties in 1 language.

On average, the expanded lexicon system reduces WER by 0.2% (absolute). This

confirms our previous claim that adding a huge list of hallucinated words does not

hurt the speech recognition performance.
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Original Lexicon Expanded Lexicon
Tagalog 0.2096 0.2856
Haitian 0.3819 0.3944
Lao 0.3629 0.3625

Assamese 0.2183 0.2257
Bengali 0.2180 0.2285
Zulu 0.1013 0.1453

Table 4.2: ATWV performance of keyword search system with original lexicon and
expanded lexicon. Proxy keyword search is not performed for OOV keywords.

4.6.3 Keyword search performance

Figure 4.2 shows that for most of the 6 Babel languages that we test, adding one

million lexical entries to the original lexicon can cover 20% − 30% of words in the

corresponding fullLP lexicon. This essentially reduces the number of OOV keywords,

therefore should improve the keyword search performance. Table 4.2 compares the

keyword search performance of the original lexicon system and the expanded lexicon

system. The expanded lexicon systems outperforms the original lexicon system in all

languages by a large margin, except for Lao where the expanded lexicon system gives a

little bit worse ATWV (0.0004) than the original lexicon system. This echoes with the

discovery earlier that the proposed lexicon expansion method generates a relatively

low precision and recall word list for Lao, when compared with other languages.

Note that in Table 4.2 we do not handle OOV keywords. In Chapter 3 proxy key-

word search is proposed to alleviate OOV keyword problem for low resource keyword

search. One way to combine proxy keyword search with the expanded lexicon is to

also perform proxy keyword search for those keywords that appear in the expanded
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Keyword Search Proxy Search
Tagalog 0.3853 0.3989
Haitian 0.2355 0.3509
Lao 0.0772 0.1091

Assamese 0.1030 0.1686
Bengali 0.1406 0.2161
Zulu 0.2744 0.2861

Table 4.3: ATWV performance with keyword search and proxy search in the ex-
panded lexicon system, for keywords that are in the expanded lexicon, but are not in
the original lexicon.

lexicon, but are not in the original lexicon, instead of just applying proxy keyword

search to OOV keywords. Table 4.3 compares the ATWV performance of keyword

search and proxy search for the set of keywords that only appear in the expanded

lexicon. It is clear that proxy search outperforms the regular keyword search in all

languages for that set of keywords. This is actually what we would expect because

the hallucinated words do not have examples in the acoustic training data, and we

only add unigram probabilities for them in the language model — they should behave

like OOV words.

Table 4.4 compares the ATWV performance of the original lexicon system and

the expanded lexicon system after combining the expanded lexicon system with proxy

keyword search. As suggested by Table 4.3, for the expanded lexicon system we also

apply proxy keyword search to those keywords that appear in the expanded lexicon,

but are not in the original lexicon. The “OOV” keywords in Table 4.4 under the

column “Expanded Lexicon” therefore are really only out-of-vocabulary w.r.t. the
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Original Lexicon Expanded Lexicon
IV Kwds OOV Kwds All Kwds IV Kwds OOV Kwds All Kwds

Tagalog 0.2784 0.2061 0.2605 0.3190 0.3052 0.3156
Haitian 0.4664 0.1842 0.4153 0.4651 0.2877 0.4329
Lao 0.4134 0.1873 0.3858 0.4104 0.1850 0.3829

Assamese 0.3100 0.0812 0.2423 0.3036 0.1137 0.2474
Bengali 0.3345 0.0892 0.2490 0.3240 0.1588 0.2665
Zulu 0.2789 0.0693 0.1454 0.2958 0.1841 0.2246

Table 4.4: ATWV performance of the proposed lexicon expansion method, OOV
keywords are out-of-vocabulary w.r.t. to the original lexicon, and are searched with
proxies.

original lexicon. From Table 4.4 we can see that with regular keyword search for

IV keywords, and proxy keyword search for OOV keywords, the expanded lexicon

systems outperforms the original lexicon systems in all languages except for Lao,

where the expanded lexicon system’s ATWV is a little bit lower than that of the

original lexicon system. For Tagalog and Zulu, the expanded lexicon even improves

the search performance of IV keywords.

4.7 Summary

We have proposed a G2P-based technique that automatically expands the lexicon

for low resource languages by adding a huge list of hallucinated words learned from

the original lexicon. Experiments on 6 Babel languages suggest that although the

expanded lexicon only leads to modest gain for speech recognition tasks, its contri-

bution to keyword search is remarkable, as it covers more keywords that are out-of-
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vocabulary w.r.t. the original lexicon. Experiments also show that combining the

expanded lexicon with proxy keyword search for OOV keywords further improves the

keyword search performance.
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Chapter 5

Limited Lexicon Keyword Search

Handcrafted pronunciation lexicons are widely used in modern speech recognition

systems as well as keyword search systems that rely on automatic speech recognition

systems. Designing a pronunciation lexicon, however, requires tremendous amount of

expert knowledge and effort, which is not practical when applying keyword search and

speech recognition techniques to low resource languages. In this chapter, we first show

that while it is relatively easy for alphabetic languages to completely avoid expert

pronunciation lexicons by developing grapheme-based speech recognition and key-

word search systems, avoiding expert pronunciation lexicon for logographic languages

is still pretty difficult, as the graphemes in such languages do not necessarily imply

the phonetic representation of the words, and the number of graphemes to model is

often quite large, e.g., a few thousand. We then propose to develop speech recogni-

tion and keyword search systems for logographic languages with only a small expert
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pronunciation lexicon. An iterative framework is proposed to generate and refine the

phonetic transcripts of the training data, which will then be aligned to their word-level

transcripts for grapheme-to-phoneme (G2P) model training. The G2P model trained

this way covers graphemes that appear in the training transcripts (most of which are

usually unseen in a small expert lexicon for logographic languages), therefore is able

to generate pronunciations for all the words in the transcripts. The proposed lexicon

generation procedure is further evaluated on Cantonese speech recognition and key-

word search tasks. Experiments show that starting from an expert lexicon of only 1K

words, we are able to generate a lexicon that works reasonably well when compared

with an expert-crafted lexicon of 5K words.

5.1 Related work

In the past few years there has been an increased interest in developing speech

recognition and keyword search systems for low resource languages. Building a speech

recognition system for a new language usually requires three major resources: first,

transcribed speech data for acoustic modeling; second, optional additional text data

for language modeling; and finally a lexicon that maps words to sub-word modeling

units, typically, phonemes. While it is relatively easy to collect transcribed speech

data and text data, the creation of the pronunciation lexicon is often expensive as

it requires large amount of expert knowledge and effort. The pronunciation lexicon,
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therefore, is the Achilles heel when building speech recognition and keyword search

systems for low resource languages.

A lot of techniques have been proposed in the literature to reduce the expert ef-

fort needed in lexicon design for automatic speech recognition. One solution is to

model graphemes instead of phonemes as the sub-word units, which completely re-

moves the necessity of a phonetic pronunciation lexicon in speech recognition. Such

techniques have found success in languages with alphabetic (a.k.a. segmental) writ-

ing systems [88, 89], but cannot naturally be extended to other writing systems, e.g.,

logographic, as the graphemes in those languages do not necessarily imply the pho-

netic representation of the words, and the number of graphemes is often quite large,

e.g., a few thousand. Other researchers have been looking into techniques that gen-

erate pronunciation lexicons in a data-driven and stochastic manner. In [90, 91], a

hierarchical Bayesian model is proposed to jointly discover the phonetic inventory as

well as the grapheme-to-phoneme (G2P) mapping rules using only transcribed speech

data. The authors show encouraging results in their papers, but the pronunciation

lexicon discovery process itself is quite time consuming with the proposed model,

making it the bottleneck when rapid development of speech recognition systems is

desired. A more practical technique for logographic languages is to start from a

small expert pronunciation lexicon, enlarge it by learning the pronunciations of ad-

ditional words and incorporate them into the existing speech recognition system. In

[92, 93, 94, 95, 78, 96], the expert lexicon is used to train a G2P model, with which
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pronunciations of additional words are generated, and added to the existing lexicon.

The enlarged lexicon can then be refined in a data-driven manner.

Most of the above mentioned techniques are developed for languages with al-

phabetic writing systems, for example, English and Spanish. But as we will show

in Section 5.2, developing speech recognition and keyword search systems for low re-

source alphabetic languages without an expert pronunciation lexicon is quite doable —

grapheme-based systems for those languages only give a small amount of performance

degradation when compared to the corresponding expert pronunciation lexicon-based

systems. We therefore will focus on logographic languages in this chapter. We are in-

terested in developing speech recognition and keyword search systems for logographic

languages with only a small expert pronunciation lexicon. We follow the general

techniques in [92, 93, 94, 95, 78, 96], where G2P conversion is used to generate pro-

nunciations for out-of-vocabulary (OOV) words. For logographic languages, due to

the large number of unique graphemes, G2P models trained on a small seed lexi-

con, as proposed in [78], typically are not able to generate pronunciations for all the

words in the training transcripts. Previous work on pronunciation modeling for lo-

gographic languages such as Mandarin Chinese mostly only focus on pronunciation

variants [97, 98], and does not address the problem of unseen graphemes. In this

chapter, we propose to incorporate the phonetic transcripts of the training data into

G2P modeling through an iterative framework, so that all the graphemes that appear

in the training transcripts will be modeled. We start from the initial expert lexicon
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and build a bootstrap speech recognition system, with which we generate phonetic

transcripts for the training data. These phonetic transcripts are aligned to their word-

level transcripts using a many-to-many alignment algorithm [99], which can then be

used for G2P modeling and lexicon update. This procedure is carried out iteratively,

and is able to generate pronunciations for words in the training transcripts.

We make three contributions through this chapter. First, we re-visit grapheme-

based speech recognition and keyword search systems, and show that while such

systems can yield competible results for alphabetic languages without an expert pro-

nunciation lexicon, directly applying them to logographic languages does not work

properly. Second, we propose an iterative framework that is capable of generating

pronunciations for any words in logographic languages, as long as the word appears

in the transcribed training data. This allows us to build speech recognition systems

with a small expert pronunciation lexicon. Third, the proposed iterative framework

is evaluated on Cantonese speech recognition and keyword search tasks, and we show

that the lexicon generated from the proposed framework performs reasonably well

when compared with an expert-crafted pronunciation lexicon.

The remainder of this chapter is organized as follows. We re-visit grapheme-

based speech recognition and keyword search systems in Section 5.2. We describe our

pronunciation generation method in Section 5.3, and explain how we handle multiple

pronunciations in our speech recognition system in Section 5.4. We then illustrate

our proposed iterative lexicon generation framework in Section 5.5. The experimental
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setup is detailed in Section 5.6, and results are provided in Section 5.7. Finally we

reiterate our main claims in Section 5.8.

5.2 Grapheme systems for alphabetic lan-

guages

A common way to avoid expert pronunciation lexicon when developing speech

recognition systems is to use graphemes as the modeling units instead of phonemes

[100, 101, 102]. In [89], the authors use the unicode of each grapheme as the modeling

unit, and show on several low resource languages (i.e., the training data available is

limited, e.g., 10 hours) that their unicode-based grapheme systems deliver compara-

ble, and complementary performance to phonetic lexicon-based systems.

However, almost all the grapheme-based approaches proposed in the literature are

intended for alphabetic languages, and their extension to other writing systems is not

very trivial. Take logographic languages as an example, graphemes in such languages

usually do not have an obvious relation with their corresponding pronunciations, mak-

ing it difficult to bridge the written words and their underlying acoustic realization.

Also, logographic languages typically have a large set of unique graphemes (e.g., a

few thousand), which makes it impractical to build context-dependent systems on top

of the modeling units.

We start this chapter by exploring the grapheme-based approaches for low resource
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speech recognition and keyword search systems. We follow [89] and take the unicode

of the grapheme as the modeling unit. The rest of our speech recognition and keyowrd

search pipeline is the same as that described in Section 5.6.2. Experiments are carried

out on 7 Babel languages, namely Tagalog1, Haitian2, Lao3, Assamese4, Bengali5

Zulu6 and Cantonese7. We use the 10 hour subset of the full language pack to simulate

the low resource condition. The first 6 languages are alphabetic languages, while the

last one Cantonese is logographic. The speech recognition part is evaluated in terms

of word error rate (WER), and the keyword search part is evaluated using actual

term-weighted value (ATWV). We use the “dev” keyword list for all the languages in

their corresponding language collection release, and we take the 10 hour development-

test set for each language as the evaluation set. Detailed results are given in Table

5.1.

From Table 5.1, we can see that for the 6 alphabetic languages, by switching the

expert lexicon to grapheme lexicon, there is a small amount of performance degra-

dation in terms of both WER and ATWV, but the performance is not very far away

when compared with that of the expert lexicon. For the logographic language Can-

tonese, switching modeling units from phonemes to graphemes caused an explosion

in size when compiling the decoding graph, so we did not perform WER and ATWV
1Language collection release IARPA-babel106b-v0.2g.
2Language collection release IARPA-babel201b-v0.2b.
3Language collection release IARPA-babel203b-v3.1a.
4Language collection release IARPA-babel102b-v0.5a.
5Language collection release IARPA-babel103b-v0.4b.
6Language collection release IARPA-babel206b-v0.1e.
7Language collection release IARPA-babel101b-v0.4c.
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Expert Lexicon Grapheme Lexicon
WER ATWV WER ATWV

Tagalog 61.0 0.2096 61.9 0.1969
Haitian 60.3 0.3819 61.0 0.3617
Lao 57.9 0.3629 59.0 0.3323

Assame 64.0 0.2183 63.7 0.2065
Bengali 66.2 0.2180 67.1 0.1867
Zulu 68.9 0.1013 69.3 0.0918

Cantonese 53.8 0.2623 - -

Table 5.1: WER (%) and ATWV performance when utilizing expert lexicon and
grapheme lexicon, DNN system.

evaluation for the Cantonese grapheme system. Generally speaking, grapheme-based

approaches are good candidates for alphabetic languages when expert pronunciation

lexicon is not available during speech recognition and keyword search system devel-

opment, but are not very helpful when it comes to logographic languages.

5.3 Pronunciation generation for logo-

graphic languages

A more practical way to reduce the expert effort when building speech recognition

and keyword search systems for low resource logographic languages is to start from a

small expert lexicon, and then learn the pronunciations automatically for the rest of

the words. The most commonly used technique for such pronunciation learning task

is grapheme-to-phoneme (G2P) conversion.
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G2P conversion is a task to map a word, represented by a sequence of graphemes,

to its pronunciation, represented by a sequence of phonemes [86]. Suppose w is the

grapheme sequence of a word, and p̂ its corresponding pronunciation, G2P can be

framed as follows [87]:

p̂ = argmax
p
P (p|w) = argmax

p
P (w, p) (5.1)

Therefore, one can either model the conditional distribution P (p|w) or the joint dis-

tribution P (w, p). In this work, we choose to model the later, and break it down into

three steps [103]: (i) an alignment step that aligns phonemes to graphemes, (ii) a

modeling step that takes the alignments and creates a pronunciation model, and (iii)

a decoding step that generates pronunciations for new words using the pronunciation

model.

The G2P formulation generally works for both alphabetic and logographic lan-

guages. For logographic languages, since there are usually a large number of unique

graphemes, special care should be taken during model training. Below we explain

how we generate pronunciations for logographic languages when we build a speech

recognition system with a small expert lexicon.
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5.3.1 G2P training data

G2P training data usually consists of a set of grapheme sequences and their cor-

responding phoneme sequences. For G2P conversion in speech recognition tasks,

oftentimes the pronunciation lexicon is used for G2P training.

In our task, since we are building speech recognition systems for logographic lan-

guages and we only have a small expert lexicon, training the G2P model using the

lexicon will result in a large number of unseen graphemes in the training data, and

the G2P model trained this way will not be able to generate pronunciations for all

the words in the training data.

In order to cover as many graphemes as possible, we propose to train the G2P

model on the phonetic training transcripts, in addition to the pronunciation lexicon.

A speech recognition system can first be trained with the small expert lexicon that

we start with. Training data will then be decoded into phoneme sequences using this

initial speech recognizer. Now for each utterance in the training data, we have a

sequence of graphemes, and their corresponding phonemes. We use those grapheme

and phoneme sequences together with the pronunciation lexicon to train the G2P

model, which will be able to generate pronunciations for all the words in the training

transcripts. The phoneme sequences generated by the initial recognizer will generally

be noisy, but it can be refined through an iterative procedure, which we will explain

in details in Section 5.5.
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5.3.2 G2P alignment

Grapheme and phoneme sequences provided in the G2P training data have to

be aligned into modeling units called “graphones” before building the pronuncia-

tion model. For logographic languages such as Cantonese, one grapheme typically

corresponds to multiple phonemes, we adopt a many-to-many alignment algorithm

proposed in [99]. We use the open source toolkit Phonetisaurus [103] to generate

our alignment, which implements a weighted finite-state transducer (WFST) version

of the many-to-many aligner. In our Cantonese experiments, we allow at most 1

grapheme, and at most 4 phonemes in a single graphone. A typical Cantonese gra-

phone generated by Phonetisaurus looks like “ 中 / dz1 u:1 N1”, where “ 中” is

a single grapheme (Chinese character), and “dz1 u:1 N1” is the phoneme sequence

aligned to it.

5.3.3 Joint n-gram model

After aligning graphemes and phonemes into graphones, a 4-gram language model

is trained for the graphone sequences using SRILM [66]. The language model is fur-

ther converted into a WFST G, whose input labels are graphemes, output labels are

phonemes, and weights are the n-gram scores. The WFST G serves as the pronunci-

ation model.
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5.3.4 Pronunciation generation

Given a grapheme sequence w of a certain word, generating pronunciation p for

the word is essentially finding the best path through G that has input label sequence

w, as described in Equation (5.2).

p = ShortestPath(Determinize(Project(w ◦G))) (5.2)

For our Cantonese experiments, we generate at most 5 different pronunciations for a

single word.

5.4 Handling multiple pronunciations

Since multiple pronunciations are generated for words that are not already in

the small expert lexicon, we explicitly model pronunciation and inter-word silence

probability as that has been found helpful when pronunciation variants exist in the

lexicon [104]. Unlikely pronunciations are further pruned away based on the estimated

pronunciation probabilities. We incorporate the estimated pronunciation and inter-

word silence probabilities into the lexicon transducer, which will be used in both

training and decoding.
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5.4.1 Pronunciation probability estimation

We estimate the pronunciation probabilities for a word with multiple pronuncia-

tions via simple relative frequency [105, 106, 107]. Let w.pi be the ith pronunciation

of word w, 1 ≤ i ≤ Nw, and Nw is the number of different baseform pronunciations

of word w in the lexicon. Let C(w,w.pi) be the count of “w w.pi” pairs in the aligned

training data. The probability of a pronunciation w.pi given the word w is simply

π(w.pi|w) =
C(w,w.pi) + λ1∑Nw

i=1(C(w,w.pi) + λ1)
, (5.3)

where λ1 is a smoothing constant that we typically set to 1. An undesirable con-

sequence of (5.3) is that a word with several equiprobable pronunciations is un-

fairly handicapped w.r.t words that have a single pronunciation. Max-normalization,

whereby the pronunciation probabilities are scaled so that the most likely pronunci-

ation of each word has “probability” 1, has been found helpful in speech recognition

[108]. This suggests using

π′(w.pi|w) =
π(w.pi|w)

max1≤i≤Nw π(w.pi|w)
. (5.4)

We do max-normalization for pronunciation probabilities in all our experiments. The

quantity π′(w.pi|w) is of course not a well defined probability any more.
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5.4.2 Silence probability estimation

This subsection explains how we model the probability of silence preceding or

following certain pronunciation. For a given sequence of words, we assume there

is either a silence or non-silence event between two consecutive words. Since such

an event usually depends on the neighbouring words, we further assume that it only

depends on the two surrounding words, i.e., we model the event using P (s |w.pi, w′.pj)

and P (n |w.pi, w′.pj), where w.pi and w′.pj are the surrounding pronunciations, s and

n represent silence and non-silence event. For computation simplicity, we decompose

this into two parts: (i) probability of inter-word silence (or non-silence) following the

pronunciation, and (ii) probability of inter-word silence (or non-silence) preceding the

pronunciation.

We use P (sr|w.p) to denote the probability of inter-word silence following the

pronunciation w.p, and P (nr|w.p) for the complementary probability of non-silence

following w.p. We compute P (sr|w.p) from training data counts as

P (sr|w.p) =
C(w.p s) + λ2P (s)

C(w.p) + λ2
, (5.5)

where C(w.p s) is the count of the sequence “w.p s” in the training data alignment,

C(w.p) is the count of pronunciation w.p, P (s) = C(s)/(C(s) + C(n)) is the overall

probability of inter-word silence, and λ2 is a smoothing constant that we set to 2 for

experiments.
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Directly modeling the probability of inter-word silence (or non-silence) preceding

the pronunciation will cause double counting problem. We therefore compute it as

correction term instead

F (sl|w′.p) =
C(s w′.p) + λ3

C̃(s w′.p) + λ3
, and (5.6)

F (nl|w′.p) =
C(n w′.p) + λ3

C̃(n w′.p) + λ3
, (5.7)

where C̃(s w′.p) and C̃(n w′.p) are the “mean” counts of silence or non-silence pre-

ceding w′.p, estimated according to C̃(s w′.p) =
∑

v C(v ∗ w′.p)P (sr|v), where the

sum is over all pronunciations v in the lexicon, the symbol “∗” in C(v ∗ w′.p) denotes

either s or n, and P (sr|v) is computed using Equation ((5.5)). λ3 is a smoothing

constant that we set to 2 for experiments reported here.

Putting it all together, we estimate the inter-word silence (or lack thereof) given

the neighbouring words as follows

P (s |w.pi, w′.pj) ≈ P (sr |w.pi)× F (sl |w′.pj), and

P (n |w.pi, w′.pj) ≈ P (nr |w.pi)× F (nl |w′.pj).

5.4.3 Pronunciation selection

Pruning of pronunciations is performed after estimating the pronunciation and

silence probabilities. For each word, we only keep the pronunciations with probability
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higher than 0.6. Note that this is the “max-normalized” probability, therefore each

word may have multiple pronunciations after pruning.

5.5 Iterative framework

Our pronunciation generation procedure follows a general iterative learning sched-

ule. Unlike [78] and [94], where the iterative procedure is more focused on selecting

the best pronunciation given the pronunciations generated by the G2P model, our

framework attempts to refine the phonetic transcripts generated by the speech recog-

nizer, which will then be used to train the G2P model together with the small expert

lexicon, as described in Section 5.3.1.

Figure 5.1 illustrates our proposed iterative framework for lexicon generation and

acoustic modeling. We start from a small expert pronunciation lexicon of 500 or

1000 words. Pronunciations of the words that are already in the small expert lexicon

are kept untouched throughout the whole process. The small expert lexicon is used

to train an initial G2P model, which is then applied to the words in the training

transcripts to create an extended lexicon. We generate at most 5 pronunciations for

each word in the training transcripts, if it is not already in the expert lexicon. Note

that the initial extended lexicon typically cannot cover all the words in the training

transcripts, due to the large number of unseen graphemes that are not covered by the

small expert lexicon. Those words are treated as OOV words in the first iteration.
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Figure 5.1: An iterative framework for lexicon generation and acoustic modeling.

For later iterations, since we add phonetic transcripts for G2P training, the extended

lexicon will be able to cover all the words in the training transcripts.

Early stages of acoustic model training are carried out with this extended lexicon,

typically till the speaker adaptive training stage. Since the extended lexicon contains

multiple pronunciations for each word, we estimate the pronunciation and inter-word

silence probabilities as described in Section 5.4, which has found its success when pro-

nunciation variants exist in the lexicon [104]. We further prune away pronunciations

with low (less than 0.6) “max-normalized” probabilities. The updated lexicon, as well

as the pronunciation and inter-word silence probabilities are incorporated into a new
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lexicon transducer for later stages of acoustic modeling as well as decoding.

After training the speech recognition system, if the word error rate (WER) per-

formance on some held-out dataset converges to a stable point, we stop the process.

Otherwise, we use the trained system to decode the training data into phoneme se-

quences, which will be sent back to re-train the G2P system, and start the process

again, till convergence. Note that in our experiments we set the language model

weight to 0 during the phonetic decoding process, but it may also make sense to use

a n-gram phone language model.

5.6 Experimental setup

5.6.1 Corpus

We evaluate the proposed framework using IARPA Babel language Cantonese 8.

The 10 hour subset of the full language pack is used to conduct our experiments.

The language pack also comes with an expert lexicon that contains 5.9K lexical

entries and 5K unique words, which covers all the words in the training transcripts.

The number of unique characters covered by this lexicon is 2K. To simulate the

situation where only a small expert lexicon is available for speech recognition system

development, we create two seed lexicons by randomly selecting 500 and 1000 words

from the original expert lexicon. These two lexicons have 0.63K and 0.95K unique
8Language collection release IARPA-babel101b-v0.4c.
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characters respectively. For the keyword search task, the “dev” keyword list 9 is used

for evaluation.

5.6.2 System description

We use the open source toolkit Kaldi [65] for all our system development and

experiments. Standard PLP analysis is employed to extract 13 dimensional acous-

tic feature, and a maximum likelihood acoustic training recipe is followed to train

speaker adaptive models. This is followed by the modeling of pronunciation and

inter-word silence probabilities, which updates the lexicon and prunes away unlikely

pronunciations. From this point, two different systems are trained: a hybrid deep

neural network (DNN) system and a subspace Gaussian mixture model (SGMM) sys-

tem with boosted maximum mutual information (BMMI) training. For the keyword

search task, lattice indexing is further performed after decoding to convert lattice of

each utterance into a finite-state acceptor with the posterior score, start-time and

end-time for each word encoded as a 3-dimensional weight. An inverted index is then

created from these individual acceptors, with paths to accept every possible word

sequence in the original lattices. This way, keyword search can be done by composing

the keyword acceptor with the inverted index. For details of speech recognition and

keyword search systems, readers are referred to [77, 45, 52].
9Keyword list IARPA-babel101b-v0.4c_conv-dev.kwlist.xml.
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5.7 Results

We report word error rate (WER) for the speech recognition task, and actual

term-weighted value (ATWV) for the keyword search task. WERs are reported in

percentage.

5.7.1 Performance

L1 (500 words) L2 (1000 words)
WER ATWV WER ATWV

baseline 75.6 0.0279 68.1 0.0908
Iteration0 72.9 0.0676 65.7 0.1381
Iteration1 61.6 0.1395 58.9 0.1787
Iteration2 61.8 0.1519 58.4 0.1859
Iteration3 60.9 0.1538 57.8 0.1891
oracle 54.2 0.2377 54.2 0.2377

Table 5.2: WER and ATWV performance of lexicons from different iterations,
SGMM BMMI system.

L1 (500 words) L2 (1000 words)
WER ATWV WER ATWV

baseline 74.3 0.0332 67.7 0.1086
Iteration0 71.6 0.0862 65.1 0.1495
Iteration1 61.8 0.1491 58.4 0.1959
Iteration2 62.1 0.1659 59.1 0.2108
Iteration3 61.4 0.1764 57.2 0.2216
oracle 53.8 0.2623 53.8 0.2623

Table 5.3: WER and ATWV performance of lexicons from different iterations, DNN
system.

Table 5.2 and Table 5.3 present the WER and ATWV performance of the auto-
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matically generated lexicons from various iterations. We evaluate two seed lexicons,

one with size 500 (L1), and the other with size 1000 (L2), as described in Section

5.6.1. The “baseline” in the two tables corresponds to the speech recognition system

trained only with the seed lexicon, and the “oracle” represents the system trained with

the full 5K words expert lexicon. Iteration0 corresponds to the system trained with

the initial extended lexicon, which does not contain all the words from the training

transcripts. Starting from Iteration1, phonetic transcripts can be generated by the

system, so the G2P model trained on that can generate pronunciations for all the

words. The iterative procedure is carried out for three times, excluding Iteration0.

Further iterations do not help in our experiments.

Let us start by looking at the ATWV numbers. It is clear from the table that

ATWV is increasing through the iterations. This implies that the pronunciation lex-

icon is indeed improving through the iterative framework. The WER improvements,

however, are not as steady as the ATWV improvements, although the best numbers

are all achieved at Iteration3. We suspect that this is partly because of decoding

noise, and partly because we discard the pronunciations when we update the lexicon

with the newly trained G2P model. It might make sense to combine the old and new

lexicons, and let the speech recognizer pick the best pronunciation.

Note that there is a performance jump from Iteration0 to Iteration1. This is

because the initial extended lexicon trained from the expert lexicon only covers a

small portion of words in the training transcripts, while the lexicon in Iteration1
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covers all the words.

It is encouraging to see that, starting from a lexicon of 1000 words, which is just

one-fifth of the original lexicon, we are able to achieve a WER of 57.2 and ATWV of

22.16 with our proposed iterative framework. This closes 76% of the WER gap and

74% of the ATWV gap between the baseline and the oracle lexicon.

5.7.2 Impact of phonetic transcripts quality

SAT transcripts DNN transcripts
WER ATWV WER ATWV

baseline 67.7 0.1086 67.7 0.1086
Iteration0 65.1 0.1495 65.1 0.1495
Iteration1 60.2 0.1883 58.4 0.1959
Iteration2 59.4 0.2046 59.1 0.2108
Iteration3 59.2 0.2066 57.2 0.2216
oracle 53.8 0.2623 53.8 0.2623

Table 5.4: WER and ATWV performance on the DNN system, with lexicons trained
on the SAT transcripts or DNN transcripts (L2 seed lexicon).

Phonetic transcripts of training data can either be generated by a model from

speaker adaptive training (SAT), or by DNN model. The later typically yields better

quality. Table 5.4 gives the performance comparison of lexicons generated by the

two models. The table suggests that generating high quality phonetic transcripts is

essential in our framework.
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5.8 Summary

We explored building grapheme-based speech recognition and keyword search sys-

tems for low resource alphabetic languages. Experiments on 6 Babel languages show

that one can avoid the expert pronunciation lexicon by building grapheme-based sys-

tems, with only a small performance degradation. We then presented an iterative

framework that is capable of generating pronunciation lexicons for logographic lan-

guages. This allows us to rapidly build speech recognition systems with limited expert

lexicon for those languages. Experiments on Cantonese suggest that by using a seed

lexicon of 1000 words, we are able to achieve reasonably well speech recognition and

keyword search performance, when compared with an expert-crafted lexicon of 5000

words.

96



Chapter 6

Deep Neural Network Keyword

Spotter

The recent rise of speech recognition technologies on mobile devices calls for key-

word spotting algorithms with a small memory footprint, low computational cost,

and high precision, which can be used to active the device without a touch. In this

chapter, we propose a simple approach based on deep neural networks for this pur-

pose. A deep neural network is trained to directly predict the keyword(s) or subword

units of the keyword(s) followed by a posterior handling method producing a final

confidence score. Keyword recognition results achieve 45% relative improvement with

respect to a competitive Hidden Markov Model-based system, while performance in

the presence of babble noise shows 39% relative improvement.
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6.1 Related work

Thanks to the rapid development of smartphones and tablets, interacting with

technology using voice is becoming commonplace. For example, Google offers the

ability to search by voice [3] on Android devices and Apple’s iOS devices are equipped

with a conversational assistant named Siri. These products allow a user to tap a device

and then speak a query or a command.

We are interested in enabling users to have a fully hands-free experience by de-

veloping a system that listens continuously for specific keywords to initiate voice

input. This could be especially useful in situations like driving. The proposed system

must be highly accurate, low-latency, small-footprint, and runs in computationally

constrained environments such as modern mobile devices. Running the system on

the device avoids latency and power implications with connecting to the server for

recognition.

Keyword Spotting (KWS) aims at detecting predefined keywords in an audio

stream, and it is a potential technique to provide the desired hands-free interface.

There is an extensive literature in KWS, although most of the proposed methods

are not suitable for low-latency applications in computationally constrained environ-

ments. For example, several KWS systems [68, 109, 72] assume offline processing

of the audio using large vocabulary continuous speech recognition systems (LVCSR)

to generate rich lattices. In this case, their task focuses on efficient indexing and

searching for keywords in the lattices. These systems are often used to search large
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databases of audio content. We focus instead on detecting keywords in the audio

stream without any latency.

A commonly used technique for keyword spotting is the Keyword/Filler Hid-

den Markov Model (HMM) [21, 18, 20, 25, 110]. Despite being initially proposed

over two decades ago, it remains highly competitive. In this generative approach,

an HMM model is trained for each keyword, and a filler model HMM is trained

from the non-keyword segments of the speech signal (fillers). At runtime, these sys-

tems require Viterbi decoding, which can be computationally expensive depending

on the HMM topology. Other recent work explores discriminative models for key-

word spotting based on large-margin formulation [111, 112] or recurrent neural net-

works [113, 114]. These systems show improvement over the HMM approach. The

large-margin formulation-based methods, however, require processing of the entire

utterance to find the optimal keyword region, which increases detection latency. We

have also been working on recurrent neural networks for keyword spotting, but with

a different application, which will be described in Chapter 7.

We propose a simple discriminative KWS approach based on deep neural networks

that is appropriate for mobile devices. We refer to it as Deep KWS . A deep neural

network is trained to directly predict the keyword(s) or subword units of the key-

word(s) followed by a posterior handling method producing a final confidence score.

In contrast with the HMM approach, this system does not require a sequence search

algorithm (decoding), leading to a significantly simpler implementation, reduced run-
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time computation, and smaller memory footprint. It also makes a decision every 10

ms, minimizing latency. We show that the Deep KWS system outperforms a standard

HMM-based system on both clean and noisy test sets, even when a smaller amount

of data is used for training.

6.2 Deep KWS system

Our proposed Deep KWS framework is illustrated in Figure 6.1.

Figure 6.1: Framework of Deep KWS system, components from left to right: (i)
Feature Extraction (ii) Deep Neural Network (iii) Posterior Handling.

The framework consists of three major components: (i) a feature extraction mod-

ule, (ii) a deep neural network, and (iii) a posterior handling module. The feature

extraction module (i) performs voice-activity detection and generates a vector of fea-

tures every frame (10 ms). These features are stacked using the left and right context

to create a larger vector, which is fed as input to the DNN (Section 6.2.1). We train

a DNN (ii) to predict posterior probabilities for each output label from the stacked

features. These labels can correspond to entire words or sub-words for the keywords
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(Section 6.2.2). Finally, a simple posterior handling module (iii) combines the la-

bel posteriors produced every frame into a confidence score which is then used for

detection (Section 6.2.3).

In the example of Figure 6.1, the audio contains the key-phrase “okay google”.

The DNN in this case only has 3 output labels: “okay”, “google”, and “filler”, and it

generates frame-level posterior scores shown in (iii). The posterior handling module

combines these scores to provide a final confidence score for the given window.

6.2.1 Feature extraction

The feature extraction module is common to our proposed Deep KWS system and

the baseline HMM system.

To reduce computation, we use a voice-activity detection system and only run the

KWS algorithm in voice regions. The voice-activity detector, described in [115], uses

13-dimensional PLP features and their deltas and double-deltas as input to a trained

30-component diagonal covariance GMM, which generates speech and non-speech

posteriors at every frame. This is followed by a hand-tuned state machine (SM),

which performs temporal smoothing by identifying regions where speech posteriors

exceed a threshold.

For the speech regions, we generate acoustic features based on 40-dimensional log-

filterbank energies computed every 10 ms over a window of 25 ms. Contiguous frames

are stacked to add sufficient left and right context. The input window is asymmetric
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since each additional frame of future context adds 10 ms of latency to the system.

For our Deep KWS system, we use 10 future frames and 30 frames in the past. For

the HMM baseline system we use 5 future frames and 10 frames in the past, as this

provided the best trade-off between accuracy, latency, and computation [116].

6.2.2 Deep neural network

The deep neural network model is a standard feed-forward fully connected neural

network with k hidden layers and n hidden nodes per layer, each computing a non-

linear function of the weighted sum of the output of the previous layer. The last

layer has a softmax which outputs an estimate of the posterior of each output label.

For the hidden layers, we have experimented with conventional logistic and rectified

linear unit (ReLU) functions [117], and consistently found that ReLU outperforms

logistic on our development set, while reducing computation. We present results with

ReLU activations only.

The size of the network is also dictated by the number of output labels. In the

following sub-sections we describe in detail the label generation and training for our

neural network. We also describe a learning technique that further improves the KWS

performance.
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6.2.2.1 Labeling

For our baseline HMM system, as in previous work [25, 110, 118] the labels in the

output layer of the neural network are context-dependent HMM states. More specifi-

cally the baseline system uses 2002 context dependent states selected as described in

[116].

For the proposed Deep KWS , the labels can represent entire words or sub-word

units in the keyword/key-phrase. We report results with full word labels, as these

outperform sub-word units. These labels are generated at training time via forced

alignment using our 50M parameter LVCSR system [119]. Using entire word labels as

output for the network, instead of the HMM states, has several advantages: (i) smaller

inventory of output labels reduces the number of neural network parameters in the

last layer, which leads to less computation, (ii) a simple posterior handling method

can be used to make a decision (as explained in Section 6.2.3), and (iii) whole word

models can achieve better performance, assuming the training data is adequate for

each word label.

6.2.2.2 Training

Suppose pij is the neural network posterior for the ith label and the jth frame xj

(see Section 6.2.1), where i takes values between 0, 1, ..., n − 1, with n the number

of total labels and 0 the label for non-keyword. The weights and biases of the deep

neural network, θ, are estimated by minimizing the cross-entropy training criterion
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over the labeled training data {xj, ij}j.

F (θ) =
∑
j

log pijj. (6.1)

The optimization is performed with the software framework DistBelief [120, 121] that

supports distributed computation on multiple CPUs for deep neural networks. We use

asynchronous stochastic gradient descent with an exponential decay for the learning

rate.

6.2.2.3 Transfer learning

Transfer learning refers to the situation where (some of) the network parameters

are initialized with the corresponding parameters of an existing network, and are

not trained from scratch [122, 123]. Here, we use a deep neural network for speech

recognition with suitable topology to initialize the hidden layers of the network. All

layers are updated in training. Transfer learning has the potential advantage that the

hidden layers can learn a better and more robust feature representation by exploiting

larger amount of data and avoiding bad local optima [122]. In our experiments we

find this to be the case.
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6.2.3 Posterior handling

The DNN explained in Section 6.2.2 produces frame level label posteriors. In

this section we discuss our proposed simple, yet effective, approach to combine DNN

posteriors into keyword/key-phrase confidence scores. A decision then will be made

if the confidence exceeds some predefined threshold. We describe the confidence

computation assuming a single keyword. However, it can be easily modified to detect

multiple keywords simultaneously.

6.2.3.1 Posterior smoothing

Raw posteriors from the neural network are noisy, so we smooth the posteriors

over a fixed time window of size wsmooth. Suppose p′ij is the smoothed posterior of pij

(Equation (6.1)). The smoothing is done with the following formula

p′ij =
1

j − hsmooth + 1

j∑
k=hsmooth

pik (6.2)

where hsmooth = max{1, j − wsmooth + 1} is the index of the first frame within the

smoothing window.
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6.2.3.2 Confidence

The confidence score at jth frame is computed within a sliding window of size

wmax, as follows

confidence = n−1

√√√√n−1∏
i=1

max
hmax≤k≤j

p′ik (6.3)

where p′ij is the smoothed state posterior in Equation (6.2), hmax = max{1, j−wmax+

1} is the index of the first frame within the sliding window. We use wsmooth = 30

frames, and wmax = 100, as this gives the best performance on our development set;

the performance however is not very sensitive to the window size. Also Equation

(6.3) does not enforce the order of the label sequence, we do not bother enforcing it

because the stacked frames fed as input to the neural network help encode contextual

information.

6.3 Baseline HMM KWS system

We implement a standard Keyword-Filler Hidden Markov Model as our baseline.

The basic idea is to create a HMM for the keyword and a HMM to represent all

non-keyword segments of the speech signal (filler model). There are several choices

for the filler model, from fully connected phonetic units [18] to a full LVCSR system

where the lexicon excludes the keyword [124]. Obviously, the latter approach yields

a better filler model, however it requires higher computational cost at runtime, and

significantly larger memory footprint. Given the constraints of our application, we
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implemented a triphone-based HMM model as filler. In contrast to previous work

[18, 124], our implementation uses a Deep Neural Network to compute the HMM

state densities.

Keyword HMMs

Filler HMMs

HMM HMM

HMM

HMM

end

HMM

......

HMM

start

Figure 6.2: HMM topology for KWS system, which consists of a keyword model
and a triphone filler model.

The Keyword-Filler HMM topology is shown in Figure 6.2. Keyword detection

is achieved by running Viterbi decoding with this topology and checking if the best

path passes through the Keyword HMM or not. The trade-off between false alarms (a

keyword is not present but the KWS system gives a positive decision) and false rejects

(a keyword is present but the KWS system gives a negative decision) is controlled

by the transition probability between keyword and filler models. High transition

probability leads to high false alarm rate and vice versa.
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An important advantage of the Keyword-Filler model is that it does not require

keyword-specific data at training time. It simply learns a generative model for all tri-

phone HMM states through likelihood maximization on general speech data. Knowl-

edge of the keyword can be introduced only at runtime, by specifying the keyword

in the decoder graph. However, if keyword-specific data is available for training, one

can improve system performance using transfer learning (Section 6.2.2), i.e., by ini-

tializing the acoustic model network with a network trained on the general speech

data and then continue training it using the keyword-specific data.

6.4 Experimental setup

Experiments are performed on a data set which combines real voice search queries

as negative examples and phrases including the keywords, sometimes followed by

queries, as positive examples. A full list of the keywords evaluated is shown in Table

6.1. We train a separate Deep KWS and build a separate Keyword-Filler HMM KWS

system for each key-phrase. Results are presented in the form of a modified receiver

operating characteristic (ROC) curves, where we replace true positive rate with the

false reject rate on Y-axis. Lower curves are better. The ROC for the baseline

system is obtained by sweeping the transition probability for the Keyword HMM

path in Figure 6.2. For the Deep KWS system, the ROC is obtained by sweeping the

confidence threshold. We generate a curve for each keyword and average the curves
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answer call dismiss alarm
go back ok google

read aloud record a video
reject call show more commands

snooze alarm take a picture

Table 6.1: Keywords used in evaluation.

vertically (at fixed FA rates) over all keywords tested. Detailed comparison is given

at 0.5% FA rate, which is a typical operating point for practical applications.

We compare the Deep KWS system and the HMM system with different size

of neural networks (Section 6.5.2), evaluate the effect of transfer learning for both

systems (Section 6.5.1), and show performance changes in the presence of babble

noise (Section 6.5.3).

6.4.1 Data

We use two sets of training data. The first set is a general speech corpus, which

consists of 3, 000 hours of manually transcribed utterances (referred to as VS data).

The second set is a keyword specific data (referred to as KW data), which includes

around 2.3K training examples for each keyword, and 133K negative examples com-

prised of anonymized voice search queries or other short phrases. For the keyword

“okay google”, 40K positive examples are available for training.

The evaluation set contains roughly 1K positive examples for each keyword and

70K negative examples, representing 1.4% of positive to negative ratio, to match
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expected application usage. Again, for keyword “okay google” we use instead 2.2K

positive examples. The noisy test set is generated by adding babble noise to this

test set with a 10db Signal to Noise Ratio (SNR). Finally, we use a similar size non-

overlapping set of positive and negative examples as development set to tune decoder

parameters and DNN input window size parameters.

6.5 Results

6.5.1 Initial results

Figure 6.3: HMM vs. Deep KWS system with 3 hidden layers, 128 hidden nodes
neural network.

We first evaluate the performance of the smaller neural networks trained for the

110



CHAPTER 6. DEEP NEURAL NETWORK KEYWORD SPOTTER

baseline HMM and the Deep KWS systems. Both systems use the frontend described

in 6.2.1. They both use a network with 3 hidden layers and 128 hidden nodes per layer

with ReLU non-linearity. However, the number of parameters for the two networks

differs. The DNN acoustic model used for the baseline HMM system uses an input

window size of 10 left frames and 5 right frames, and outputs 2, 002 HMM states,

resulting in around 373K parameters. The Deep KWS uses instead 30 left frames and

10 right frames, but only produces word labels reducing the output label inventory

to 3 or 4 depending on the key-phrase evaluated. The total number of parameters for

Deep KWS is no larger than 244K parameters.

Figure 6.3 shows the performance for both systems. Baseline 3x128 (VS) refers

to the HMM system with a DNN acoustic model trained on the voice search corpus.

Baseline 3x128 (VS + KW) is this same system after adapting the DNN acoustic

model using keyword specific data. Deep 3x128 (KW) refers to the proposed Deep

KWS system trained on keyword specific data. Finally, Deep 3x128 (VS + KW)

shows the performance when we initialize the Deep 3x128 KW network with a network

trained on VS data as explained in Section 6.2.2.

It is clear from the results that the proposed Deep KWS outperforms the baseline

HMM KWS system even when it is trained with less data and has fewer number of

parameters. For example, see Deep 3x128 (KW) vs Baseline 3x128 (VS + KW) in

Figure 6.3. The gains are larger at very low false alarm rate, which is a desirable

operating point for our application. At 0.5% FA rate, Deep 3x128 (VS + KW)
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system achieves 45% relative improvement with respect to Baseline 3x128 (VS + KW).

Training a network on the KW data takes only a couple of hours, while training it on

VS + KW takes about a week using our DistBelief framework described in Section

6.2.2.

6.5.2 Model size

Figure 6.4: HMM vs. Deep KWS system with 6 hidden layers, 512 hidden nodes
neural network.

Figure 6.4 presents the performance when evaluating both systems with a 6x512

network. In this case the number of parameters for the baseline increases to 2.6M

while that of the Deep models reaches 2.1M . Deep 6x512 (KW) system, actually

performs worse than the smaller 3x128 models, we conjecture this is due to not
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having enough KW data to train the larger number of parameters. However when

both systems are trained on VS + KW data, we observe a consistent improvement

with respect to their corresponding 3x128 systems. Here again, the Deep KWS system

has superior performance to the baseline.

6.5.3 Noise robustness

Figure 6.5: HMM vs. Deep KWS system with 3 hidden layers, 128 hidden nodes
neural network on NOISY data.

We also test the same models on a noisy test set, generated by adding babble noise

to the original test set with a 10db SNR. Results are shown in Figure 6.5 and Figure

6.6. Comparing Baseline 3x128 (VS + KW) in Figure 6.3 and Figure 6.5, at 0.5%

FA rate, the FR rate of the HMM doubles from 5% FR to 10% FR. The Deep KWS
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Figure 6.6: HMM vs. Deep KWS system with 6 hidden layers, 512 hidden nodes
neural network on NOISY data.

system suffers similar degradation. However it achieves 39% relative improvement

with respect to the baseline.

6.6 Summary

We have presented a new deep neural network-based framework for keyword spot-

ting. Experimental results show that the proposed framework outperforms the stan-

dard HMM-based system on both clean and noisy conditions. We further demonstrate

that a Deep KWS model trained with only the KW data yields better search perfor-

mance then the baseline HMM KWS system trained with both KW and VS data. The
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Deep KWS system also leads to a simpler implementation by removing the necessity

of a decoder, as well as reduced runtime computation, and a smaller model, and thus

is favored for our embedded application.

Since the detection application we are working on only requires a real-time

YES/NO decision, the proposed framework in this work does not model the key-

word ending time explicitly. We will extend the proposed method to model keyword

boundary in the future work.
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Chapter 7

Long Short-Term Memory Feature

Extractor

In this chapter we present a novel approach to query-by-example keyword spotting

(KWS) using a long short-term memory (LSTM) recurrent neural network-based

feature extractor. In our approach, we represent each keyword using a fixed-length

feature vector obtained by running the keyword audio through a word-based LSTM

acoustic model. We use the activations prior to the softmax layer of the LSTM

as our keyword-vector. At runtime, we detect the keyword by extracting the same

feature vector from a sliding window and computing a simple similarity score between

this test vector and the keyword vector. With clean speech, we achieve 86% relative

false rejection rate reduction at 0.5% false alarm rate when compared to a competitive

phoneme posteriorgram with dynamic time warping KWS system, while the reduction
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in the presence of babble noise is 67%. Our system has a small memory footprint, low

computational cost, and high precision, making it suitable for on-device applications.

7.1 Related work

With the growing popularity of voice control in mobile devices, the need for high

performance, small footprint, and low computational cost keyword spotting (KWS)

methods is becoming increasingly important [49]. In such applications, KWS usually

serves as a frontier of voice search: it listens to the audio continuously and initiates

the voice search if a specific keyword is detected, thus providing a fully hands-free

experience when interacting with devices.

A common use is to have a pre-defined keyword to activate devices. For example,

Google’s voice search [3] uses the phrase “Okay Google” to initiate the search interface

and Apple’s conversational assistant Siri features the keyword sequence “Hey Siri”.

However, this general phrase makes the experience less personal, and usually requires

additional speaker identification if the user does not want others to easily activate

their device. In this work we seek a keyword spotting method that allows users to

define their own keyword; for example, a user may select a keyword by saying the

word or phrase a few times during enrollment. After enrollment, the user-specified

keyword can be used to activate the device.

We are interested in small memory footprint and low computational cost solu-
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tions, suitable for on-device applications. While KWS is an active research area,

most techniques are not suitable with our constraints. A common KWS approach is

the Keyword/Filler Hidden Markov Model (HMM) [21, 18, 20, 25, 110]. It first builds

a special decoding graph that contains both keywords and filler words, and then uses

Viterbi decoding to determine the best path through the graph. This requires prior

knowledge of the keywords, which is not appropriate for our problem. Another area of

research relies on using large vocabulary continuous speech recognition (LVCSR) sys-

tems to decode the audio into lattices or confusion networks, and search the keywords

from there [68, 109, 52]. The keywords, however, are only limited to the words that

are already defined in the LVCSR vocabulary. While effort has been made to make

such systems keyword-independent [72, 125, 85, 45], there is usually a performance

degradation when the keywords are out of vocabulary. In addition, these approaches

are relatively expensive because of the LVCSR system.

Given our goal of detecting user-specified keywords, query-by-example (QbyE) is

the most appropriate KWS technique. QbyE methods usually take several examples

of the keywords as templates, and compare the test audio segment against the tem-

plates to make detection decisions. In [10] example keywords are decoded with an

LVCSR system to get their lattice representation as templates. This is computation-

ally expensive since the LVCSR system involves speaker adaptation, discriminative

features and model transformations [126]. It is also inappropriate for our memory

constraints. In [13] graph-based method is proposed to embed audio segments of
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arbitrary length into a fixed-dimensional space, but dynamic time warping (DTW) is

performed between the test audio segment and all the training segments in order to

compute the embedding, which can be slow given large number of training segments.

In [6, 8], Gaussian or phoneme posteriorgrams are generated as templates from ex-

ample keywords, and DTW is used to compare the templates. Though this type

of DTW-based method has well-known inadequacies [13], it is the most appropriate

KWS baseline for our application.

Given the constraints of our problem and the limitations of previous QbyE ap-

proaches, we propose a novel LSTM-based feature extractor. In our approach, first

an LSTM is trained with whole word output targets. Next, for each audio segment, a

fixed-length representation of the audio is created by taking the activations from the

last hidden layer of the LSTM and stacking them over a fixed number of frames. This

embeds audio segments of different length into a fixed-dimensional space, therefore

vector distance can be used for similarity measurement. Our method only requires a

forward pass computation of the neural network, followed by a vector distance compu-

tation, and therefore is more efficient than [10] where an LVCSR is involved and [13]

where multiple DTW computations are necessary. It also requires less computation

than [6, 8] since vector distance is used instead of DTW.

To understand the behavior of our proposed LSTM KWS system, we first conduct

experiments on a clean enrollment and evaluation set. We find that the LSTM KWS

system reduces the false rejection rate by 86% relatively at 0.5% false alarm rate,
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when compared to the DTW KWS system. Next, we explore its behavior at the

presence of noise. We add 10 dB babble noise to the evaluation set, and achieve 67%

relative false rejection rate reduction at the same false alarm rate. We further add 10

dB cafe noise to the enrollment set, and the reduction is 37%. Our proposed system

is consistently better than the standard DTW KWS system in various environments.

7.2 LSTM feature extractor system

The general idea of our proposed system is to embed audio segments of varying

lengths into a fixed-dimensional representation. Given the success of deep learning

[127], and the power of LSTMs for sequence modeling [128], we choose an LSTM to

learn this embedding. The LSTM is attractive because the state of the LSTM can

encode information about past history, and intuitively after processing a complete

audio segment, this LSTM state encodes information about the complete sequence.

This idea was motivated by face verification work in [129], with the key difference

in our work being that we use the LSTM state to embed a fixed-length representa-

tion of a variable length input sequence, as opposed to having a fixed-length input

representation and thus using a convolutional neural network.
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7.2.1 Feature extraction

To reduce computation, we use a voice-activity detection system and only run the

KWS algorithm in voice regions. The voice-activity detector, described in [115], uses

13-dimensional PLP features along with their deltas and double-deltas as input to a

30-component diagonal covariance GMM-trained system, which generates speech and

non-speech posteriors at every frame. This is followed by a hand-tuned state machine,

which performs temporal smoothing by identifying regions where speech posteriors

exceed a threshold.

For the speech regions, we generate 40-dimensional log-filterbank energies com-

puted every 10 ms over a window of 25 ms. For the deep neural network (DNN)-based

system, contiguous frames are stacked to add sufficient left and right context. The

input window is asymmetric since each future frame adds 10 ms of latency to the

system. We use 5 future frames and 10 past frames, to provide the best trade-off

between accuracy, latency, and computation [116]. For the LSTM-based system, no

frames are stacked.

7.2.2 Long short-term memory

Long short-term memory (LSTM) is a type of recurrent neural network (RNN)

used to model long-range dependencies [128]. RNNs are used for a variety of sequence-

labeling tasks. Specifically, given an input sequence x = {x1, . . . , xT}, an RNN
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computes a sequence of hidden vectors h = {h1, . . . , hT} and outputs y = {y1, . . . , yT}

for all time steps {1, . . . , T}. An LSTM uses special memory cells to model the

temporal sequence, which allows it to more effectively exploit long-range context

than an RNN.

Figure 7.1: LSTM architecture.

In our work, we train a 2-layer LSTM, as shown in Figure 7.1. The network

has 15k output targets, representing whole word units. We exclude the evaluation

keywords from the 15k output targets to make the feature extractor independent of

the test keywords. The network is trained with the cross-entropy criterion, using the

asynchronous stochastic gradient descent (ASGD) optimization strategy described

in [121]. The weights in each network are randomly initialized. The learning rate

is chosen specific to each network, and is chosen to be the largest value such that

training remains stable. Learning rates are exponentially decayed during training.
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7.2.3 LSTM feature extractor

After training the LSTM, given an audio segment, we use the LSTM to determine

a fixed-dimensional feature vector to represent the audio signal. Our fixed length

representation is created by removing the softmax layer and using the hidden units

from the 2nd LSTM layer. More specifically, given an acoustic feature x with T

frames, the hidden units from the second layer of the LSTM are given as

h2 = {h21, . . . , h2T}. (7.1)

Here h2i ∈ <n, where n represents the number of LSTM cells. As each h2i ∈ h2 encodes

information up to time i, there is no need to use all state vectors h2. We create a

fixed-length representation f by choosing the last k state vectors, as denoted by

f = {h2T−k+1, . . . , h
2
T} (7.2)

Here f has a fixed dimensionality of n × k. The parameter k can be estimated from

the enrollment templates. In our experiments, we choose k to be the averaged number

of frames of all the templates as we want to encode as much information as possible.

Zeros are padded in front of f if the segment length T is smaller than the desired

template length k.
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7.2.4 LSTM KWS

Now that we have described how to create a fixed-length representation from an

audio segment, in this section we describe the enrollment and verification phases of

our LSTM KWS system, as illustrated in Figure 7.2. In the enrollment phase, an

utterance is spoken three times. For each utterance, the activations from the last

hidden layer of the LSTM are calculated per frame, and the last k activations are

used to create a fixed feature vector f . Note that since we have three enrollment

templates, we can keep all the three as separate templates, or average them into one

single vector. We will show in our experiments of how template averaging impacts

performance.

Figure 7.2: Framework of the LSTM KWS system.

At runtime, another LSTM feature vector is generated in the same way from

a sliding window, and Cosine distance is used to measure the similarity between
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the keyword template(s) and the sliding window. Decisions are made based on the

similarity score.

7.3 DTW baseline system

DTW QbyE systems usually consist of two steps. First, features are extracted at

the frame level [13, 6, 8]. Second, DTW is performed to compare the feature matrix

of the templates and the test segment. A confidence score is then computed from the

DTW alignment cost.

We use phoneme posteriorgram features in our implementation. Specifically, we

label the training data by taking the forced-aligned 14, 336 context-dependent (CD)

state labels, and remapping them to a set of 43 phonemes, including the silence

phone. We then train a neural network (i.e., DNN, LSTM) with 43 phoneme outputs.

After training, each input frame of the template and test segments is converted to a

posteriorgram by passing this frame through the network. Another way of generating

phoneme posteriorgrams is to train a network to predict all 14, 336 CD states, and

then map them to 43 phonemes when computing the posteriorgrams. This, however,

greatly increases the number of model parameters due to the large output layer.

A full picture of the baseline DTW KWS system is shown in Figure 7.3. In the

enrollment phase, log filterbank energy features are extracted at the frame level for

the three keyword examples, which are then fed to the neural network to generate
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Figure 7.3: Framework of the baseline DTW KWS system.

keyword phoneme posteriorgrams. In the runtime phase, sliding window phoneme

posteriorgrams are computed in the same way, and DTW is performed to compare the

sliding window posteriorgrams and the keyword posteriorgrams. Detection decisions

are then made based on the DTW alignment scores. Note that for the baseline we

also have three keyword templates. We can either keep all the three templates, or

average the three templates into one using the technique proposed in Section 7.4.

7.4 Template averaging

It has been shown in [6] that increasing the number of enrollment templates usually

leads to performance improvements. In our work, we use three enrollment templates.

There are various techniques to perform evaluation with a test utterance given

multiple enrollment templates. For example, in [6], the test audio is compared against
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each of the enrollment templates, generating one score for each template. These

scores are then merged into one final score for decision making. Evaluating against

three templates also increases the computational cost, which is not favored by on-

device applications. Therefore, we propose to combine multiple templates into a single

template for scoring.

Figure 7.4: Example of template averaging.

Figure 7.4 shows how we combine templates. We use two templates in the figure

for simplicity, where T1 is the first template, and T2 is the second template. We first

align the second template T2 to the first template T1. For the DTW KWS system,

since the templates T1 and T2 have different length, we use DTW to align them.

Figure 7.4 shows the aligned frames in the same box. For the LSTM KWS system,

however, templates are fixed length, so we align them by their dimensionality index.

Once frames are aligned, we compute the combined frame by averaging them. For

example, f ′3 = (f1,3 + f2,3 + f2,4)/3. The combined template T ′ will be used as the

only template at runtime. If more templates are available, we always combine the

new template with the previous combined one.
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The proposed template averaging method relies heavily on the quality of the first

template. In our experiments we ignore this effect and simply choose the first template

randomly. Another option is to choose the longest template as the first one, as

proposed in [130].

7.5 Experimental setup

7.5.1 Keywords for evaluation

Table 7.1 lists keywords used in our experiments. Our test-set combines

anonymized voice search queries as negative examples, and utterances including these

keywords as positive examples.

hello genie hi galaxy
okay glass change watch face

open settings show agenda
show alarms show step count

Table 7.1: Keywords used in evaluation.

We build one keyword model for each (speaker, keyword) combination. It is out

of scope for this work to evaluate impostor performance (same keyword, different

speaker), so positive examples only include utterances from that selected speaker and

keyword.

Results are reported in the form of a modified version of receiver operating char-

128



CHAPTER 7. LONG SHORT-TERM MEMORY FEATURE EXTRACTOR

acteristic (ROC) curves [49], lower curves are better. False alarm and false rejection

counts are collected from all the models to compute the false rejection rate at a certain

false alarm rate. The curve is obtained by sweeping the decision threshold.

7.5.2 Training

The neural network models are trained with 2, 500 hours of speech data,

anonymized and manually transcribed. This dataset does not have any assumption

on the keywords that will be evaluated. All models are trained using the cross-entropy

criterion, with asynchronous stochastic gradient descent (ASGD) [121]. The weights

in each network are randomly initialized and learning rates are exponentially decayed.

The enrollment set contains 3 keyword examples for each (speaker, keyword) com-

bination. The evaluation set has 9k positive examples for the 8 selected keywords,

and 36k negative examples. We use many more negative than positive examples to

simulate the expected application usage.

7.6 Results

7.6.1 Initial results

Figure 7.5 shows the performance of the proposed LSTM Feature Extractor and

2 DTW KWS systems. The LSTM Feature Extractor system takes a 40-dimensional
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Figure 7.5: LSTM feature extractor vs. baseline.

input feature vector and has 2 LSTM layers, each with 128 cells, resulting in 152k

parameters. For the DTW KWS systems, we compare obtaining posteriors from a

DNN and an LSTM. The LSTM-posterior model also takes a 40-dimensional input

feature vector, followed by 2 LSTM layers, each with 128 cells, and 43 phoneme output

targets, resulting in 157k total parameters. The DNN-posterior model has 5 layers,

each with 128 hidden units, and 43 phoneme targets. It uses 40-dimensional feature

with 10 history frames and 5 future frames, resulting in a DNN with 152k parameters.

Those network topologies are mainly chosen to match each other’s parameter size,

and are not explicitly tuned for performance.

We first use clean enrollment and evaluation data. In Figure 7.5, at roughly the
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same parameter size, the Phone LSTM + DTW system outperforms the Phone DNN

+ DTW system. The proposed LSTM Feat Extractor system improves significantly

over both DTW systems. At 0.5% false alarm rate, which is the desired operating

point in our application, the LSTM Feat Extractor system yields 86% and 88% relative

improvements respectively over the DTW systems.

We also explore the robustness of the proposed KWS approach by adding 10 dB

of babble noise to the evaluation set. Results in Figure 7.5 show a performance

degradation for all the systems due to noise. However, the general story does not

change: the Phone LSTM + DTW (Babble) system is better than the Phone DNN +

DTW (Babble) system (a lot better in this noisy case), while the LSTM Feat Extractor

(Babble) system outperforms both of them.

7.6.2 Template averaging

Figure 7.6 compares the performance with and without template averaging. In

this figure, the dashed curves are generated with template averaging, i.e., all the three

templates are averaged into one template, and is used as the only template during

runtime. The solid curves are generated without template averaging. Figure 7.6

suggests that template averaging does not degrade performance significantly. This is

good news for on-device applications since we can reduce the runtime computation

greatly (3x) without hurting the performance.
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Figure 7.6: Impact of template averaging.

7.6.3 Whole word modeling

In Figure 7.7 we evaluate the importance of training the LSTM feature extractor

with whole word output targets. The Phone LSTM + DTW (Babble) and Word

LSTM Feat Extractor (Babble) curves are the same curves from Figure 7.5. For

the Phone LSTM Feat Extractor (Babble) curve, we take the Phone LSTM model,

remove the output layer and treat it as a feature extractor for keyword spotting. The

performance of this system is much worse than the original LSTM feature extractor

trained with whole word output targets, and it is also worse than the Phone LSTM +

DTW system where we take the LSTM from. This implies that whole word modeling

is critical in our LSTM KWS system.
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Figure 7.7: Impact of whole word modeling.

7.6.4 Noisy enrollment

Finally, we show the robustness of our proposed KWS approach when adding

different noise sources at enrollment and evaluation time. To simulate this, we add

10 dB of babble noise to the clean evaluation data, and also add a different 10 dB cafe

noise to the clean enrollment data, so that the keyword models built from the noisy

enrollment data are corrupted. As shown in Figure 7.8, the performance degrades

dramatically for all the systems. For example, at 0.5% (0.005) false alarm rate, the two

DTW KWS systems both give 99.8% false rejection, basically rejecting everything,

while the LSTM KWS system gives a false rejection rate of 63%.
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Figure 7.8: Impact of noisy enrollment.

7.7 Summary

We presented an LSTM feature extractor for the QbyE task in KWS. Experimental

results showed that our method outperformed the standard phoneme posteriorgram

+ DTW system. We also proposed a template averaging technique, which allows

us to combine multiple templates into one without performance degradation on our

dataset. This technique is especially important for on-device applications since it can

reduce the runtime computation cost. We tested the proposed QbyE system along

with the baseline systems on various enrollment/evaluation conditions, and showed

that it is important to have a clean enrollment environment for QbyE tasks.

As a future direction, we will look into ways to further improve our LSTM feature
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extractor. For example, dimensionality reduction can be applied to reduce the stacked

feature vector. We will also compare our method with the latest DTW QbyE systems,

as described in [130, 131].
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Chapter 8

Conclusion and Future Direction

8.1 Conclusion

In this dissertation we explored KWS in two low resource conditions: low language

resource condition where language specific data for KWSmodel training is inadequate,

and low computation resource condition where KWS runs on computation constrained

devices.

8.1.1 Low language resource

For low language resource KWS, we focus on applications for speech data mining,

where large vocabulary continuous speech recognition (LVCSR)-based KWS tech-

niques are widely used. Keyword spotting for those applications are also known as

keyword search (KWS) or spoken term detection (STD).
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A key issue for this type of KWS technique is the out-of-vocabulary (OOV) key-

word problem. Since LVCSR can only transcribe speech data to words that are defined

in its lexicon, the search capability of LVCSR-based KWS systems is also limited to

this lexicon, which is typically very small in a low language resource condition. This

essentially means a large portion of the keywords will likely be out-of-vocabulary, and

a regular LVCSR-based KWS system will not be able to search for those keywords.

We started by investigating the importance of pronunciation lexicon for LVCSR-

based KWS systems in a low language resource condition. We assumed a large list

of words was available, and compared 3 different grapheme-to-phoneme techniques.

We discovered that lexicon augmentation had significantly greater impact on KWS

performance than LVCSR. We also discovered that utilizing the augmented lexicon

in the KWS stage via approximate phonetic matching was much less effective than

utilizing them in the LVCSR stage.

One issue with utilizing the augmented lexicon in the LVCSR stage is, typically

we do not have prior knowledge of what keywords we are going to search for. In fact,

keyword search is supposed to be open-vocabulary. We therefore proposed a weighted

finite-state transducer (WFST)-based framework for generating acoustically similar

in-vocabulary (IV) word proxies for out-of-vocabulary (OOV) keywords. This was

motivated by the fact that speech recognizer usually interprets OOV words as acous-

tically similar IV words. We further proposed a modified edit-distance transducer that

allowed cost-inexpensive phone insertions and deletions at word boundaries, making
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proxy search more close to phonetic search, while retaining the lexical constrain.

Experiments on 6 Babel languages showed that the proposed proxy search technique

constantly improved KWS performance by enabling OOV search in a regular LVCSR-

based KWS system.

Our investigation of the lexicon value in LVCSR-based KWS also suggested the

importance of utilizing a large lexicon, if available, in the LVCSR stage. In a practical

low language resource condition, a large list of words may not be available, not to

mention the large lexicon. We therefore proposed an automatic lexicon expansion

technique that could expand the LVCSR’s lexicon by adding a huge list of hallucinated

words (e.g. 1 million), which greatly increased the keywords coverage. Experiments

on 6 Babel languages showed that the proposed lexicon expansion method constantly

improved the KWS performance because of the increased keyword coverage. We

further combined the proposed lexicon expansion method with proxy keyword search

technique and discovered that it was beneficial to perform proxy keyword search for

keywords that only appeared in the expanded lexicon.

Finally, we explored the possibility of building LVCSR-based KWS systems with-

out expert pronunciation lexicon. We started by evaluating LVCSR-based KWS sys-

tems with grapheme lexicons instead of expert pronunciation lexicons. Experiments

on 6 alphabetic Babel languages showed that there were small degradations for both

speech recognition performance and KWS performance. But the same experiment for

a logographic language Cantonese was not successful due to the large number of unique
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graphemes in logographic languages. We therefore proposed an iterative framework

that was capable of generating pronunciation lexicons for logographic languages given

a small seed expert pronunciation lexicon. Experiments on Babel language Cantonese

showed that by adopting the proposed iterative framework with a seed lexicon of 1000

words, we were able to close 76% of the speech recognition performance gap (mea-

sured by word error rate) and 74% of the keyword search performance gap (measured

by actual term-weighted value) between a KWS system with only the seed lexicon of

1000 words and a KWS system with an expert-crafted lexicon of 5000 words.

8.1.2 Low computation resource

For low computation resource KWS, we focus on wake-word applications, which

usually run on computation constrained devices such as mobile phones or tablets.

This type of application typically requires the underlying keyword spotting algo-

rithms to be extremely accurate since they will be running constantly in a wake-word

application. It is worth noting that LVCSR-based KWS techniques are inappropriate

for those applications, since they are usually computationally expensive.

We first proposed a lightweight DNN keyword spotter that could detect pre-defined

keywords, such as “Okay Google”. The proposed algorithm was capable of running

on computation constrained devices such as mobile phones, and was accurate enough

for wake-word applications. Experiments on a set of voice commands showed that

the proposed algorithm outperformed the keyword/filler model trained on the same

139



CHAPTER 8. CONCLUSION AND FUTURE DIRECTION

data set.

One issue with the DNN keyword spotter is that the model is trained for a specific

keyword, and the training requires a large amount of keyword specific data. This is

somewhat inconvenient if we would like to have a large number of models, e.g., user

specific wake-words.

We then proposed a query-by-example (QbyE) framework, which only required 3

keyword examples to create the keyword model. We proposed an LSTM-based feature

extractor for the QbyE framework, which could embed audio segments of various

length into a fixed length feature vector. We also proposed a template averaging

technique that could combine 3 keyword templates in the QbyE framework into just 1

template, which essentially reduced the detection computation complexity by a factor

of 3. Experiments on a set of voice commands showed that the proposed algorithm

outperformed the posteriorgram + DTW model trained on the same data set. Also

it was capable of running on computation constrained devices such as mobile phones,

and was accurate enough for wake-word applications.

8.2 Future direction

We believe the following directions can further improve the KWS performance if

we incorporate them with the techniques proposed in this dissertation, thus listing

them as future directions.
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• Language model. This is for LVCSR-based KWS. For all of our LVCSR-

based KWS experiments, we used a simple Kneser-Ney n-gram language model.

However, more advanced language model techniques have been proposed in the

literature. In [132], recurrent neural network-based language model (RNNLM)

is proposed, which significantly outperforms traditional n-gram language models

for speech recognition tasks. Applying RNNLM to LVCSR-based KWS should

also improve the search performance. In [133], class-based n-gram language

model is proposed. This kind of model will be very helpful in Chapter 4 when

we estimate the language model probabilities for the hallucinated words. Other

language models such as the cache-based language model [134] should generally

be helpful to low language resource LVCSR-based KWS as well.

• Score normalization. This is for LVCSR-based KWS. One key step of

LVCSR-based KWS is to make a final decision based on scores of all the re-

trieved instances. In this dissertation, we have proposed various techniques

to improve KWS in a low language resource condition, but scores from those

techniques may not be compatible with each other. For example, for the proxy

search technique in Chapter 3, we incorporate phone confusion cost to the final

score; for the lexicon expansion technique in Chapter 4, we include pronuncia-

tion scores (which are actually derived from the syllable language model and the

pronunciation G2P model). These scores are not directly compatible with each

other, and will cause problems if we do system combination. In [135], various
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score normalization methods are compared. We should also apply some of those

methods to our techniques.

• Computation complexity evaluation metric. This is for general KWS

methods with computation constrain. In our experiments in this dissertation,

we used the model size to estimate the computation complexity — smaller model

typically leads to less computation. This method is intuitive but not rigorous.

Adding other rigorous metrics will be helpful, e.g., the power consumption.

• Multilingual feature extractor. This is for LSTM-based feature extractor.

In Chapter 7 the LSTM feature extractor was trained on English corpus, and

technically the framework would only work well for English keywords. This is

inconvenient if support of multiple languages is desired. One plausible exten-

sion is to train a multilingual feature extractor. For example, in [136] univer-

sal phonological features are used for multilingual speech recognition. Similar

philosophies can be adopted in our feature extractor training.
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