1,704 research outputs found

    Automated GUI Testing Techniques for Android Applications

    Get PDF
    Mobile devices are integral parts of our daily lives; a little computer in our pocket has became a faithful assistant both for work than for amusement. The availability of mobile applications (commonly referred as apps) has made more and more useful bringing these devices with us everyday. The number of such applications in these years has faced a tremendous growth due to the market attractiveness; according to Forbes, by 2017 more than 270 billion mobile applications will be downloaded worldwide. The quality of a mobile application is a major concern for developers, users and application stores. According to a survey conducted by SmartBear from October to December 2013 nearly 50% of consumers will delete a mobile app if they encounter a bug. So, testing mobile applications to prevent the occurrence of software exceptions in production can be considered one of the key factor in uencing its quality together with the market response. As today, in literature many techniques have been presented aiming at testing mobile applications. In particular, many of them have been presented in the context of GUI Testing. The research activity described in this thesis is focused on proposing novel techniques and tools in the field of Automated GUI Testing for Mobile Applications. In particular, the work is targeted to the Android Operating System, that currently is the dominating operating system in the mobile devices market, although the results can be generalized to other mobile platforms

    Learning the language of apps

    Get PDF
    To explore the functionality of an app, automated test generators systematically identify and interact with its user interface (UI) elements. A key challenge is to synthesize inputs which effectively and efficiently cover app behavior. To do so, a test generator has to choose which elements to interact with but, which interactions to do on each element and which input values to type. In summary, to better test apps, a test generator should know the app's language, that is, the language of its graphical interactions and the language of its textual inputs. In this work, we show how a test generator can learn the language of apps and how this knowledge is modeled to create tests. We demonstrate how to learn the language of the graphical input prior to testing by combining machine learning and static analysis, and how to refine this knowledge during testing using reinforcement learning. In our experiments, statically learned models resulted in 50\% less ineffective actions an average increase in test (code) coverage of 19%, while refining these through reinforcement learning resulted in an additional test (code) coverage of up to 20%. We learn the language of textual inputs, by identifying the semantics of input fields in the UI and querying the web for real-world values. In our experiments, real-world values increase test (code) coverage ~10%; Finally, we show how to use context-free grammars to integrate both languages into a single representation (UI grammar), giving back control to the user. This representation can then be: mined from existing tests, associated to the app source code, and used to produce new tests. 82% test cases produced by fuzzing our UI grammar can reach a UI element within the app and 70% of them can reach a specific code location.Automatisierte Testgeneratoren identifizieren systematisch Elemente der Benutzeroberfläche und interagieren mit ihnen, um die Funktionalität einer App zu erkunden. Eine wichtige Herausforderung besteht darin, Eingaben zu synthetisieren, die das App-Verhalten effektiv und effizient abdecken. Dazu muss ein Testgenerator auswählen, mit welchen Elementen interagiert werden soll, welche Interaktionen jedoch für jedes Element ausgeführt werden sollen und welche Eingabewerte eingegeben werden sollen. Um Apps besser testen zu können, sollte ein Testgenerator die Sprache der App kennen, dh die Sprache ihrer grafischen Interaktionen und die Sprache ihrer Texteingaben. In dieser Arbeit zeigen wir, wie ein Testgenerator die Sprache von Apps lernen kann und wie dieses Wissen modelliert wird, um Tests zu erstellen. Wir zeigen, wie die Sprache der grafischen Eingabe lernen vor dem Testen durch maschinelles Lernen und statische Analyse kombiniert und wie dieses Wissen weiter verfeinern beim Testen Verstärkung Lernen verwenden. In unseren Experimenten führten statisch erlernte Modelle zu 50% weniger ineffektiven Aktionen, was einer durchschnittlichen Erhöhung der Testabdeckung (Code) von 19% entspricht, während die Verfeinerung dieser durch verstärkendes Lernen zu einer zusätzlichen Testabdeckung (Code) von bis zu 20% führte. Wir lernen die Sprache der Texteingaben, indem wir die Semantik der Eingabefelder in der Benutzeroberfläche identifizieren und das Web nach realen Werten abfragen. In unseren Experimenten erhöhen reale Werte die Testabdeckung (Code) um ca. 10%; Schließlich zeigen wir, wie kontextfreien Grammatiken verwenden beide Sprachen in einer einzigen Darstellung (UI Grammatik) zu integrieren, wieder die Kontrolle an den Benutzer zu geben. Diese Darstellung kann dann: aus vorhandenen Tests gewonnen, dem App-Quellcode zugeordnet und zur Erstellung neuer Tests verwendet werden. 82% Testfälle, die durch Fuzzing unserer UI-Grammatik erstellt wurden, können ein UI-Element in der App erreichen, und 70% von ihnen können einen bestimmten Code-Speicherort erreichen

    Automating Test Case Generation for Android Applications using Model-based Testing

    Get PDF
    Testing of mobile applications (apps) has its quirks as numerous events are required to be tested. Mobile apps testing, being an evolving domain, carries certain challenges that should be accounted for in the overall testing process. Since smartphone apps are moderate in size so we consider that model-based testing (MBT) using state machines and statecharts could be a promising option for ensuring maximum coverage and completeness of test cases. Using model-based testing approach, we can automate the tedious phase of test case generation, which not only saves time of the overall testing process but also minimizes defects and ensures maximum test case coverage and completeness. In this paper, we explore and model the most critical modules of the mobile app for generating test cases to ascertain the efficiency and impact of using model-based testing. Test cases for the targeted model of the application under test were generated on a real device. The experimental results indicate that our framework reduced the time required to execute all the generated test cases by 50%. Experimental setup and results are reported herein

    LLM for Test Script Generation and Migration: Challenges, Capabilities, and Opportunities

    Full text link
    This paper investigates the application of large language models (LLM) in the domain of mobile application test script generation. Test script generation is a vital component of software testing, enabling efficient and reliable automation of repetitive test tasks. However, existing generation approaches often encounter limitations, such as difficulties in accurately capturing and reproducing test scripts across diverse devices, platforms, and applications. These challenges arise due to differences in screen sizes, input modalities, platform behaviors, API inconsistencies, and application architectures. Overcoming these limitations is crucial for achieving robust and comprehensive test automation. By leveraging the capabilities of LLMs, we aim to address these challenges and explore its potential as a versatile tool for test automation. We investigate how well LLMs can adapt to diverse devices and systems while accurately capturing and generating test scripts. Additionally, we evaluate its cross-platform generation capabilities by assessing its ability to handle operating system variations and platform-specific behaviors. Furthermore, we explore the application of LLMs in cross-app migration, where it generates test scripts across different applications and software environments based on existing scripts. Throughout the investigation, we analyze its adaptability to various user interfaces, app architectures, and interaction patterns, ensuring accurate script generation and compatibility. The findings of this research contribute to the understanding of LLMs' capabilities in test automation. Ultimately, this research aims to enhance software testing practices, empowering app developers to achieve higher levels of software quality and development efficiency.Comment: Accepted by the 23rd IEEE International Conference on Software Quality, Reliability, and Security (QRS 2023

    Securing the Next Generation Web

    Get PDF
    With the ever-increasing digitalization of society, the need for secure systems is growing. While some security features, like HTTPS, are popular, securing web applications, and the clients we use to interact with them remains difficult.To secure web applications we focus on both the client-side and server-side. For the client-side, mainly web browsers, we analyze how new security features might solve a problem but introduce new ones. We show this by performing a systematic analysis of the new Content Security Policy (CSP)\ua0 directive navigate-to. In our research, we find that it does introduce new vulnerabilities, to which we recommend countermeasures. We also create AutoNav, a tool capable of automatically suggesting navigation policies for this directive. Finding server-side vulnerabilities in a black-box setting where\ua0 there is no access to the source code is challenging. To improve this, we develop novel black-box methods for automatically finding vulnerabilities. We\ua0 accomplish this by identifying key challenges in web scanning and combining the best of previous methods. Additionally, we leverage SMT solvers to\ua0 further improve the coverage and vulnerability detection rate of scanners.In addition to browsers, browser extensions also play an important role in the web ecosystem. These small programs, e.g. AdBlockers and password\ua0 managers, have powerful APIs and access to sensitive user data like browsing history. By systematically analyzing the extension ecosystem we find new\ua0 static and dynamic methods for detecting both malicious and vulnerable extensions. In addition, we develop a method for detecting malicious extensions\ua0 solely based on the meta-data of downloads over time. We analyze new attack vectors introduced by Google’s new vehicle OS, Android Automotive. This\ua0 is based on Android with the addition of vehicle APIs. Our analysis results in new attacks pertaining to safety, privacy, and availability. Furthermore, we\ua0 create AutoTame, which is designed to analyze third-party apps for vehicles for the vulnerabilities we found

    Security Analysis of Web and Embedded Applications

    Get PDF
    As we put more trust in the computer systems we use the need for securityis increasing. And while security features like HTTPS are becomingcommonplace on the web, securing applications remains dicult. This thesisfocuses on analyzing dierent computer ecosystems to detect vulnerabilitiesand develop countermeasures. This includesweb browsers,web applications,and cyber-physical systems such as Android Automotive.For web browsers, we analyze how new security features might solve aproblem but introduce new ones. We show this by performing a systematicanalysis of the new Content Security Policy (CSP) directive navigate-to.In our research, we nd that it does introduce new vulnerabilities, to whichwe recommend countermeasures. We also create AutoNav, a tool capable ofautomatically suggesting navigation policies for this directive.To improve the security of web applications, we develop a novel blackboxmethod by combining the strengths of dierent black-box methods. Weimplement this in our scanner Black Widow, which we compare with otherleading web application scanners. Black Widow both improves the coverageof the web application and nds more vulnerabilities, including ones inPrestashop, WordPress, and HotCRP.For embedded systems,We analyze the new attack vectors introduced bycombining a phone OS with vehicle APIs and nd new attacks pertaining tosafety, privacy, and availability. Furthermore, we create AutoTame, which isdesigned to analyze third-party apps for vehicles for the vulnerabilities wefound

    Enhancing Automated GUI Exploration Techniques for Android Mobile Applications

    Get PDF
    Mobile software applications ("apps") are used by billions of smartphone owners worldwide. The demand for quality to these apps has grown together with their spread. Therefore, effective techniques and tools are being requested to support developers in mobile app quality engineering activities. Automation tools can facilitate these activities since they can save humans from routine, time consuming and error prone manual tasks. Automated GUI exploration techniques are widely adopted by researchers and practitioners in the context of mobile apps for supporting critical engineering tasks such as reverse engineering, testing, and network traffic signature generation. These techniques iteratively exercise a running app by exploiting the information that the app exposes at runtime through its GUI to derive the set of input events to be fired. Although several automated GUI exploration techniques have been proposed in the literature, they suffer from some limitations that may hinder them from a thorough app exploration. This dissertation proposes two novel solutions that contribute to the literature in Software Engineering towards improving existing automated GUI exploration techniques for mobile software applications. The former is a fully automated GUI exploration technique that aims to detect issues tied to the app instances lifecycle, a mobile-specific feature that allows users to smoothly navigate through an app and switch between apps. In particular, this technique addresses the issues of crashes and GUI failures, that consists in the manifestation of unexpected GUI states. This work includes two exploratory studies that prove that GUI failures are a widespread problem in the context of mobile apps. The latter solution is a hybrid exploration technique that combines automated GUI exploration with capture and replay through machine learning. It exploits app-specific knowledge that only human users can provide in order to explore relevant parts of the application that can be reached only by firing complex sequences of input events on specific GUIs and by choosing specific input values. Both the techniques have been implemented in tools that target the Android Operating System, that is today the world’s most popular mobile operating system. The effectiveness of the proposed techniques is demonstrated through experimental evaluations performed on real mobile apps

    Sapienz: Multi-objective automated testing for android applications

    Get PDF
    We introduce Sapienz, an approach to Android testing that uses multi-objective search-based testing to automatically explore and optimise test sequences, minimising length, while simultaneously maximising coverage and fault revelation. Sapienz combines random fuzzing, systematic and search-based exploration, exploiting seeding and multi-level instrumentation. Sapienz significantly outperforms (with large effect size) both the state-of-the-art technique Dynodroid and the widely-used tool, Android Monkey, in 7/10 experiments for coverage, 7/10 for fault detection and 10/10 for fault-revealing sequence length. When applied to the top 1, 000 Google Play apps, Sapienz found 558 unique, previously unknown crashes. So far we have managed to make contact with the developers of 27 crashing apps. Of these, 14 have confirmed that the crashes are caused by real faults. Of those 14, six already have developer-confirmed fixes

    Deep Reinforcement Learning Driven Applications Testing

    Get PDF
    Applications have become indispensable in our lives, and ensuring their correctness is now a critical issue. Automatic system test case generation can significantly improve the testing process for these applications, which has recently motivated researchers to work on this problem, defining various approaches. However, most state-of-the-art approaches automatically generate test cases leveraging symbolic execution or random exploration techniques. This led to techniques that lose efficiency when dealing with an increasing number of program constraints and become inapplicable when conditions are too challenging to solve or even to formulate. This Ph.D. thesis proposes addressing current techniques' limitations by exploiting Deep Reinforcement Learning. Deep Reinforcement Learning (Deep RL) is a machine learning technique that does not require a labeled training set as input since the learning process is guided by the positive or negative reward experienced during the tentative execution of a task. Hence, it can be used to dynamically learn how to build a test suite based on the feedback obtained during past successful or unsuccessful attempts. This dissertation presents three novel techniques that exploit this intuition: ARES, RONIN, and IFRIT. Since functional testing and security testing are complementary, this Ph.D. thesis explores both testing techniques using the same approach for test cases generation. ARES is a Deep RL approach for functional testing of Android apps. RONIN addresses the issue of generating exploits for a subset of Android ICC vulnerabilities. Subsequently, to better expose the bugs discovered by previous techniques, this thesis presents IFRIT, a focused testing approach capable of increasing the number of test cases that can reach a specific target (i.e., a precise section or statement of an application) and their diversity. IFRIT has the ultimate goal of exposing faults affecting the given program point

    WEB Based Applications Testing: Analytical Approach towards Model Based Testing and Fuzz Testing

    Get PDF
    Web-based applications are complex in the structure which results in facing an immense amount of exploiting attacks, so testing should be done in a proactive way in order to identify threats in the applications. The intruder can explore these security loopholes and may exploit the application which results in economical lose, so testing the application becomes a supreme phase of development.  The main objective of testing is to secure the contents of applications either through static or automatic approach. The software houses usually follow fuzz based testing in which flaws can be explored by randomly inputting invalid data while on the other hand model-based testing is the automated approach which tests the applications from all perspectives on the basis of an abstract model of the application. The main theme of this research is to study the difference between fuzz based testing and MBT in terms of test coverage, performance, cost and time. This research work guides the web application practitioner in the selection of suitable methodology for different testing scenarios which save efforts imparted on testing and develop better and breaches free product.
    • …
    corecore