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ABSTRACT
We introduce Sapienz, an approach to Android testing
that uses multi-objective search-based testing to automati-
cally explore and optimise test sequences, minimising length,
while simultaneously maximising coverage and fault revela-
tion. Sapienz combines random fuzzing, systematic and
search-based exploration, exploiting seeding and multi-level
instrumentation. Sapienz significantly outperforms (with
large effect size) both the state-of-the-art technique Dyno-
droid and the widely-used tool, Android Monkey, in 7/10
experiments for coverage, 7/10 for fault detection and 10/10
for fault-revealing sequence length. When applied to the top
1,000 Google Play apps, Sapienz found 558 unique, previ-
ously unknown crashes. So far we have managed to make
contact with the developers of 27 crashing apps. Of these,
14 have confirmed that the crashes are caused by real faults.
Of those 14, six already have developer-confirmed fixes.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Search-based software engineering;

Keywords
Android; Test generation; Search-based software testing

1. INTRODUCTION
There are over 1.8 million apps available from the Google

Play marketplace, as of January 2016 [9]. For developed
internet markets such as the US, UK and Canada, mobile
app usage now dominates traditional desktop software us-
age [29]. Unfortunately, testing technology has yet to catch
up, and software testers are faced with additional problems
due to device fragmentation [2], which increases test effort
due to the number of devices that must be considered. Ac-
cording to a study on mobile app development [45], mobile
app testing still relies heavily on manual testing, while the
use of automated techniques remains rare [48].

Where test automation does occur, it typically uses
Google’s Android Monkey tool [36], which is currently inte-
grated with the Android system. Since this tool is so widely
available and distributed, it is regarded as the current state-
of-practice for automated software testing [53]. Although
Monkey automates testing, it does so in a relatively unintel-
ligent manner: generating sequences of events at random in
the hope of exploring the app under test and revealing fail-
ures. It uses a standard, simple-but-effective, default test
oracle [22] that regards any input that reveals a crash to be
a fault-revealing test sequence.

Automated testing clearly needs to find such faults, but
it is no good if it does so with exceptionally long test se-
quences. Developers may reject longer sequences as being
impractical for debugging and also unlikely to occur in prac-
tice; the longer the generated test sequence, the less likely
it is to occur in practice. Therefore, a critical goal for auto-
mated testing is to find faults with the shortest possible test
sequences, thereby making fault revelation more actionable
to developers.

Exploratory testing is “simultaneous learning, test design,
and test execution” [11], that can be cost-effective and is
widely used by industrial practitioners [21, 43, 46] for test-
ing in general. However, it is particularly underdeveloped
for mobile app testing [41,42]. Although there exist several
test automation frameworks such as Robotium [10] and Ap-
pium [3], they require human-implemented scripts, thereby
inhibiting full automation.

We introduce Sapienz, the first approach offering multi-
objective automated Android app exploratory testing that
seeks to maximise code coverage and fault revelation, while
minimising the length of fault-revealing test sequences. Our
goal is to produce an entirely automated approach that max-
imises fault revelation with short test sequences. The key
insight in our approach is that minimising test sequence
length and maximising other objectives can be combined in
a Pareto-optimal multi-objective search-based approach to
Android testing. By using Pareto optimality, we do not sac-
rifice longer test sequences, when they are the only ones that
find faults, nor where they are necessary to achieve higher
code coverage. Nevertheless, through its use of Pareto opti-
mality, Sapienz progressively replaces such longer sequences
with shorter test sequences when equally good. The paper
makes the following primary contributions:
1) The Sapienz approach: the paper introduces the first
Pareto multi-objective approach to Android testing, combin-
ing techniques used for traditional automated testing, adapt-
ing and extending them for Android testing. The approach
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Table 1: At a glance: summary of existing tools and techniques for automated Android app testing (‘OSS’
and ‘CSS’ refer to Open-Source and Closed-Source Software used as evaluation subjects respectively).

Technique Venue
Publicly
Available

Box Approach
Crash
Report

Replay
Scripts

Emulator /
Real Device

Eval. Subjects Size
Type OSS CSS

Monkey [36] N/A Yes Black Random-based Text No Both N/A N/A N/A
AndroidRipper [15] ASE’12 Yes Black Model-based Text No Emulator OSS 1 0
ACTEve [16] FSE’12 Yes White Program analysis N/A Yes Emulator OSS 5 0

A3E [20] OOPSLA’13 Partially Grey Model-based N/A Yes Real device CSS 0 25
SwiftHand [27] OOPSLA’13 Yes Black Model-based N/A No Both OSS 10 0
ORBIT [61] FASE’13 No Grey Model-based N/A No Emulator OSS 8 0
Dynodroid [52] FSE’13 Yes Black Random-based Text, Image Yes Emulator Both 50 1,000
PUMA [37] MobiSys’14 Yes Black Model-based Text Yes Both CSS 0 3,600
EvoDroid [53] FSE’14 No White Search-based N/A No Emulator OSS 10 0
SPAG-C [50] TSE’15 No Black Record-replay N/A Yes Real device Both 3 2
MonkeyLab [51] MSR’15 No Black Trace mining N/A Yes Both OSS 5 0
Thor [12] ISSTA’15 Yes Black Adverse conditions Text, Image Yes Emulator OSS 4 0
TrimDroid [54] ICSE’16 Yes White Program analysis Text Yes Both OSS 14 0
CrashScope [57] ICST’16 No Black Combination Text, Image Yes Both OSS 61 0
Sapienz ISSTA’16 Yes Grey Search-based Text, Video Yes Both Both 78 1,000

combines random fuzzing, systematic and search-based ex-
ploration, string seeding and multi-level instrumentation, all
of which have been extended to cater for, not only traditional
white box coverage (which we term ‘skeletal coverage’), but
also Android user interface coverage (which we term ‘skin
coverage’).
2) Experimental results: we present the results of two
systematic experimental studies on open-source real-world
Android apps. The first uses the 68 apps from an Android
benchmark suite [28], while the second uses a controlled
random sample of 10 apps from the entire F-Droid suite,
for which Sapienz always outperforms both Dynodroid and
Monkey, statistically significantly and with large effect size
in 24 out of 30 cases.
3) The tool, Sapienz: a practical Android testing tool
Sapienz, which we make publicly available1.
4) Demonstration of usefulness: an empirical study of
the practical usefulness of the technique on the top 1,000
Google play apps. Sapienz found 558 unique crashes. The
crashing behaviour has been verified on real Android devices
(as well as Android emulators). At the time of writing, we
have started reporting these to the developers, and 14 have
been confirmed to be genuine, previously undetected, faults,
6 of which have already been confirmed as fixed by their
developers. Since these are the most popular apps in cur-
rent use, they will likely have been thoroughly tested, not
merely by their developers, but also by their many (hun-
dreds of thousands of) users. These results demonstrate that
Sapienz is a practical tool for Android developers as well as
for researchers. This paper is the first Android app testing
work to report a large-scale evaluation on popular Google
Play apps with developer-confirmed real-world faults.

2. RELATED WORK AND MOTIVATION
Table 1 presents a brief survey of the characteristics of ex-

isting Android testing techniques and tools, which we briefly
describe below.

The most closely related work employs search-based meth-
ods. Mahmood et al. introduced EvoDroid [53], the first
search-based framework for Android testing. EvoDroid ex-
tracts the interface model (based on static analysis of man-
ifest and XML configuration files) and a call graph model
(based on code analysis by using MoDisco [8]). It uses these

1http://github.com/Rhapsod/sapienz

models to guide the computational search process. Unfortu-
nately, its implementation is no longer publicly available.

Several previous approaches are based on random testing
(fuzz testing), which inject arbitrary or contextual events
into the apps. Monkey [36] is Google’s official testing tool
for Android apps, which is built into the Android platform,
and therefore likely to be more widely used than any other
automated testing tool for Android apps. Monkey generates
(pseudo) random input events, which include both User In-
terface (UI) events, such as clicks and gestures, and system
events such as screen-shot capture and volume-adjustment.
Dynodroid [52] is a publicly available and open-source tool
that extends pure random testing with two feedback di-
rected biases: BiasedRandom, which uses context adjusted
weights for each event, and Frequency, which has a bias
towards least recently used events. The implementation sup-
ports the generation of both UI and novel system events.

GUI and model-based approaches are popular for testing
Android apps [14,15,20,27,37,61]. App event sequences can
be generated from models, either manually constructed, or
obtained from project artefacts, such as code or XML con-
figuration files and UI execution states. For example, An-
droidRipper [15] (subsequently MobiGUITAR [14]) builds
a model using a depth-first search over the user interface.
Its implementation is publicly available however not open-
sourced. A3E [20] consists of two app exploration strategies,
the DFS strategy (like AndroidRipper) and a taint-targeted
strategy which constructs a static activity transition graph.
Although the tool is publicly available, the version does not
support taint targeting. SwiftHand [27] dynamically builds
a finite state machine model of the GUI, seeking to reduce
restart time, while improving test coverage. ORBIT [61]
is based on a combination of dynamic GUI crawling and
static code analysis, using analysis to avoid generation of
irrelevant UI events. PUMA [37] is a flexible framework for
implementing various state-based test strategies.

Prior Android testing work also employs several other ap-
proaches, such as those that are program-analysis-based or
reuse-based. ACTEve [16] is based on symbolic execution
and concolic testing and supports the generation of both UI
and system events. CrashScope [57] uses a combination of
static and dynamic analyses to generate natural language
crash descriptions with replicable test scripts. SPAG-C [50]
implements a capture-reply based on image comparison of
screen-shots to provide reusable and accurate test oracles,



Android

Device

GA

V
a
ry

Evaluate

S
elect

Gene Interpreter Test Replayer

Test Generator

Fitness Extractor

Initialiser

States Logger Report Generator

Decompiler Static Strings

Solutions

(Test Suites)

C
ra

s
h
 

R
e
p

o
rt

C
o

v
e
ra

g
e
 

R
e
p

o
rt

R
e
p

la
y
 

V
id

e
o

Instrumented APK Multi-level Instrumenter

DB

    SRC/APK

MOTIFCORE

  Atomic Genes

      Motif Genes

SAPIENZ

A
U

T

Figure 1: Sapienz workflow.

while Thor [12] makes use of existing test suites, seeking to
expose them to adverse conditions. TrimDroid [54] is backed
with program analysis by extracting interface activity tran-
sition and dependency models.

Collectively, these techniques cover several important test
objectives, such as coverage, test sequence length, execu-
tion time, readability and replicablity, yet none optimises
these competing objectives simultaneously nor provides a
set of optimal tradeoff solutions like Sapienz. Furthermore,
many of these previously proposed techniques require de-
tailed app information, such as source code [16, 53], general
UI models [44] and interface and/or activity transition mod-
els [20, 53, 54, 55]. While any such additional information
can help to guide test data generation, this additional in-
formation requirement can be an impediment to easy and
widely-applicable automation. Given the pressing need for
fully automated Android testing, we designed the Sapienz
approach to require only the binary executable. Of the pub-
licly available tools, Dynodroid and Monkey were found to
perform best in the recent comprehensive study by Choud-
hary, Gorla and Orso [28]. Therefore, we regard these as
denoting the state-of-the-art and state-of-current-practice,
which we seek to improve by the introduction of Sapienz.

3. THE SAPIENZ APPROACH
We first outline the workflow used by our approach. Then

we provide component summaries of our evolutionary al-
gorithm. The exploration strategy and app analysers of
Sapienz are described in Sections 3.2 and 3.3 respectively.

Sapienz’ overall workflow is depicted in Figure 1.
Sapienz starts by instrumenting the app under test, which
can be achieved in a white box, grey box or black box man-
ner as follows: When the app’s source code is available,
Sapienz uses fine-grained instrumentation at the statement-
level (white box). By contrast, should it turn out that
only the binary APK file is available (as is often the case
in real-world, industrial-strength Android testing scenarios),
Sapienz uses undexing and repacking to instrument the app
at method-level (grey box). However, where the developers
disallow repackaging (as is common for commercial apps),
Sapienz uses a non-invasive activity-level ‘skin’ coverage,
which can always be measured (black box).

Sapienz extracts statically-defined string constants by re-
verse-engineering the APK. These strings are used as inputs
for seeding realistic strings into the app, which has been
found to improve the performance of search-based software
testing techniques for web based testing [13], and traditional
application testing [32], and also to improve realism [23],

Algorithm 1: Overall algorithm of Sapienz.

Input: AUT A, crossover probability p, mutation probability q,
max generation gmax, execution time t

Output: UI model M , Pareto front PF , test reports C
M ← K0; PF ← ∅; C ← ∅; . initialisation
generation g ← 0;
boot up devices D; . prepare app exerciser
inject MotifCore into D; . for hybrid exploration (see §3.2)
static analysis on A; . for string seeding (see §3.3)
instrument and install A;
initialise population P ; . hybrid of random and motif genes
evaluate P with MotifCore and update (M ,PF ,C);
while g < gmax and ¬ timeout(t) do

g ← g+1;
Q← wholeTestSuiteV ariation(P, p, q); . see Algorithm 2
evaluate Q with MotifCore and update (M ,PF ,C);
F ← ∅; . non-dominated fronts
F ← sortNonDominated(P ∪Q, |P |);
P ′ ← ∅; . non-dominated individuals
for each front F in F do

if |P ′| ≥ |P | then break;
calculate crowding distance for F ;
for each individual f in F do

P ′ ← P ′ ∪ f ;

P ′ ← sorted(P ′,≺c); . see equation 3 for operator ≺c

P ← P ′[0 : |P |]; . new population

return (M ,PF ,C);

but has not previously been used in Android testing. Test
sequences are generated and executed by the MotifCore
component, which combines random fuzzing and systematic
exploration, which corresponds to two types of genes: the
low-level atomic genes and the high-level motif genes.

Sapienz’ multi-objective search algorithm initialises the
initial population via MotifCore’s Test Generator. Dur-
ing the genetic evolution process, genetic individuals are as-
signed to the Test Replayer when evaluating individual fit-
nesses. The individual test scripts are further decoded into
executable Android events by the Gene Interpreter, which
communicates with the the Android device via the Android
Debugging Bridge (ADB). The States Logger monitors the
execution states (e.g., covered activities, crashes) of the App
Under Test (AUT) and produces measurement data for the
Fitness Extractor to calculate the fitnesses. A set of Pareto-
optimal solutions and test reports are generated at the end
of the search.

3.1 Multi-objective Search Based Testing
Algorithm 1 presents Sapienz’ top-level algorithm.

Sapienz optimises for three objectives: code coverage, se-
quence length and the number of crashes found, using a
Pareto-optimal Search Based Software Engineering (SBSE)
approach [38,39].

Each executable test suite ~x for the AUT is termed as
a solution and a solution ~xa is dominated by solution ~xb

( ~xa ≺ ~xb) according to a fitness function if and only if:

∀i = 1, 2, ..., n, fi( ~xa) ≤ fj( ~xb) ∧
∃j = 1, 2, ..., n, fj( ~xa) < fj( ~xb)

(1)

A Pareto-optimal set consists of all Pareto-optimal solu-
tions (belonging to all solutions Xt), which is defined as:

P ∗ , { ~x∗ | @~x ∈ Xt, ~x ≺ ~x∗} (2)

Sapienz’ search-based approach uses NSGA-II to build
successively-improved Pareto-optimal sets, seeking new
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dominating test vectors. NSGA-II is a widely-used multiob-
jective evolutionary search algorithm, popular in SBSE re-
search [39], the details of which can be found elsewhere [30].

At the end of search, testers can choose any test suites of
interest from the Pareto-optimal set generated by Sapienz.
In addition to the Pareto-optimal solution, Sapienz also
produces an all-crash-test-suite with a set of videos for each
crashing scenario. This crashing test suite is generated by
an archive operator which stores any crashes found during
the search process.
SBSE representation: Sapienz performs the whole test
suite evolution [13, 33] thus each individual corresponds to
a test suite. The representation of an individual test suite
generated by Sapienz is illustrated in Figure 2. Sapienz
generates a set of these individual test suites, which cor-
responds to a population of individuals in the evolution-
ary algorithm. Each individual consists of several chromo-
somes (test sequences 〈T1, T2, ..., Tm〉) and each chromosome
contains multiple genes (test events 〈E1, E2, ..., En〉), which
consist of a random combination of atomic and motif genes.
An atomic gene triggers an atomic event e that cannot be
further decomposed, e.g., press down a key, while a mo-
tif gene is interpreted as a series of alleles (atomic events
〈e1, e2, ..., ep〉).
SBSE variation operator: We define a whole test suite
variation operator to manipulate individuals. The operator
is depicted in Algorithm 2: It applies one of the finer-grained
crossover, mutation and reproduction operators on each in-
dividual (at test suite level). Sapienz’ inter-individual vari-
ation is achieved by using a uniform set element crossover
among individuals (test suites). The inner-individual varia-
tion is manipulated by a more complex mutation operator.
Since each individual is a test suite containing several test
cases, the operator first randomly shuffles test case orders
and then performs a single-point crossover on two neigh-
bouring test cases with probability q, where the prior shuffle
operation aims to improve crossover diversity. Subsequently,
the more fine-grained test case mutation operator shuffles
the test events within each test case with probability q, by
randomly swapping event positions. Although atomic events
include (mutable) parameters, we choose instead to mutate
the execution order of the events, thereby reducing the com-
plexity of the variation operator. Mutants are possible to
operate on new GUI widgets not exercised by any initial
test case, because the timing of the operations are mutated.
The reproduction operator simply leaves a randomly chosen
individual unchanged.
SBSE selection: We use the select operator from NSGA-
II [30], which defines a crowding-distance-based comparison

operator ≺c. For two test sequences ~a, and ~b. We say ~a ≺c
~b

if and only if:

~arank <~brank ∨ (~arank = ~brank ∧ ~adist >~bdist) (3)

Algorithm 2: The whole test suite variation operator.

Input: Population P , crossover probability p, mutation
probability q

Output: Offspring Q
Q← ∅;
for i in range(0, |P |) do

generate r ∼ U(0, 1);
if r < p then . apply crossover

randomly select parent individuals x1, x2;

x′
1, x

′
2 ← uniformCrossover(x1, x2);

Q← Q ∪ x′
1

else if r < p + q then . apply mutation
randomly select individual x1;
. vary test cases within the test suite x1

x← shuffleIndexes(x1);
for i in range(1, |x|, step 2) do

generate r ∼ U(0, 1);
if r < q then

x[i−1], x[i]← onePointCrossover(x[i−1], x[i]);

. vary test events within the test case x[i]
for i in range(0, |x|) do

generate r ∼ U(0, 1) ;
if r < q then

x[i]← shuffleIndexes(x[i]);

Q← Q ∪ x

else Q← Q ∪ (randomly selected x1); . apply reproduction

return Q;

This selection favours test sequences with smaller non-
domination rank and, when the rank is equal, it favours the
one with greater crowding distance (less dense region).
SBSE fitness evaluation: The fitness value is recorded as
a triple for each of the objectives: coverage, length of the
test and number of revealed crashes.

SBSE Fitness evaluation can be time-consuming, but it
is fortunately also embarrassingly parallel [19, 25, 56, 62].
Therefore, in order to achieve time-efficient search, Sapienz
supports parallel fitness evaluation, assigning individuals to
multiple fitness evaluators, which may run on distributed de-
vices (a single multicore machine was used in our evaluation,
when comparing Sapienz with other techniques).

3.2 Exploration Strategy
Android apps can have complex interactions between the

events triggerable from the UI, and the states reachable
and consequent coverage achieved. In manual testing, the
testers’ knowledge can be deployed to explore such com-
plex interactions [42]. However, for automated testing, some
other way to handle complex interactions has to be found.
Simple approaches to automated Android testing use only
atomic events. Even with combinations of such events, the
lack of state and context awareness, makes it difficult to dis-
cover complex interactions. This may be one reason why
many research tools were found to under-perform by com-
parison with Monkey in the benchmark study conducted by
Choudhary et al. [28].

To address this issue, Sapienz uses motif patterns, which
collect together patterns of lower level events, found to be
good at achieving higher coverage. Motif genes are based
on the UI information available in the current view, which
is widget-based for Android apps. Motif genes work together
to perform behavioural usage patterns on the app, e.g, fill
all input fields in the current view and submit.

This is achieved by pre-defining patterns to capture
testers’ experience regarding complex interactions with the
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app. The motif gene is inspired by how a DNA motif works:
A DNA motif is a short sequence pattern that has a biolog-
ical function. Motifs are combined with atomic sequences
so that, together, they can express the overall DNA func-
tion. In our case, our motif genes seek to achieve high-level
functions (by defining patterns) and to work together with
atomic genes to achieve higher test coverage. As we explain
below, in Section 3.4, our evaluation of Sapienz relies solely
upon a single obvious, default, generic motif gene, to avoid
any risk of experimenter bias. However, in future work, we
may learn motifs from captured human-led test activities.

Hybrid exploration: Atomic genes and motif genes are
complementary (see Figure 3), so Sapienz combines them to
form hybrid sequences of test events. Random exploration
may (randomly) manage to cover unplanned UI states for
compound events (of which consists of a random combina-
tion of atomic events), but may generally achieve low overall
coverage. Systematic exploration may achieve good coverage
within planned UI state regions, but can be blocked by un-
planned compounds. The hybrid strategy used by Sapienz
is shown in Algorithm 3.

3.3 Static and Dynamic Analysis
Sapienz performs two types of analysis: static analysis

for string seeding and dynamic analysis for multi-level in-
strumentation. These two features provide necessary infor-
mation for Sapienz to generate realistic test inputs and to
guide the search toward optimal test suites with high test
coverages.

String seeding: In order to extract statically de-
fined strings, Sapienz first reverse-engineers the APK file.
Sapienz obtains a list of globally applicable strings from
the decompiled XML resource files. These natural lan-
guage strings are randomly seeded into the text fields by the
MotifCore component, when performing its hybrid explo-
ration. We found this seeding to be particularly useful when
testing apps that require a lot of user-generated content, e.g.,
Facebook, because it enables Sapienz to post and comment
in an apparently more human-meaningful way. When the
APK file cannot be reverse-engineered successfully, which
is a common case for commercial apps, predefined dummy
strings2 will replace the extracted strings from the app.

Multi-level instrumentation for skeleton and skin
coverage: In order to be practical and useful, an auto-
mated Android testing technique needs to be applicable to
both open and closed-source apps. To achieve this, Sapienz
uses multi-level instrumentation at one or all of the three
levels of applicable instrumentation granularity. The coars-

2In our particular implementation, a single string of ‘0’ is
used to ensure that no fields is empty.

Algorithm 3: The MotifCore exploration strategy.

Input: AUT A, test sequence T = 〈E1, E2, ..., En〉, random
event list R, motif event list O, static strings S existing
UI Model M and test reports C

Output: Updated (M,C)
for each event E in T do

if E ∈ R then . handle atomic gene
execute atomic event E and update M ;

if E ∈ O then . handle motif gene
currentActivity ← extractCurrentActivity(A)
uiElementSet← extractUiElement(currentActivity)
for each element w in uiElementSet do

if w is EditText widget then
seed string s ∈ S into w;

else
exercise w according to motif patterns in E;

update M ;

(a,m, s)← get covered activities, methods, statements;
C ← C ∪ (a,m, s); . update coverage reports

if captured crash c then
C ← C ∪ c; . update crash reports

return (M,C);

est instrumentation granularity is always possible, and is
performed through activity/screen interactions to achieve
black box testing or ‘skin coverage’ as we call it, because
it only interacts with the ‘surface’ UI and system actions
of the app. Carino and Andrews also use a similar met-
ric based on the change of GUI widgets [26]. We use the
term ‘skeletal coverage’ for the more fine-grained coverages,
achieved by grey and white box instrumentation. In some
cases, even when source code is unavailable, a finer-grained,
grey box coverage is possible at the method level, which
we term ‘backbone’ skeletal coverage. This backbone cov-
erage can be achieved by undexing the APK file, insert-
ing probes and then repackaging the binary file. Of course,
where source code is available, we can and do use traditional
statement coverage (which we term ‘full skeletal coverage’).
For such systems we can cover both the ‘skeleton and the
skin’; white box statement level coverage and black box user
interface/activity coverage.

3.4 Implementation
We have implemented the Sapienz tool on top of the

Deap framework [31] for multi-objective test suite evolution.
Sapienz achieves full skeletal coverage (statement coverage)
using EMMA [6] and backbone coverage (method coverage)
using ELLA [5]. It calculates skin coverage (activity cover-
age) by calling Android’s own ActivityManager for extract-
ing activity/screen information.

For atomic genes, the evaluation version of Sapienz sup-
ports 10 types of atomic events that originate from Android
system source, including Touch, Motion, Rotation, Track-
ball, PinchZoom, Flip, Nav (navigation key), MajorNav,
AppSwitch, SysOp (system operations such as ‘volume mute’
and ‘end call’). Regarding motif genes, of course, there is a
wide range of choices for motif patterns, and we distinguish
between those that are generic (applicable to all apps) and
those that are bespoke (applicable to only a small homoge-
neous set of apps). For our evaluation purposes, we resisted
the temptation to have any bespoke motif genes, since these
would require human intuition and intelligence. Further-
more, we imbued our evaluation version of the Sapienz tool
with only a single (intuitively obvious) generic motif gene



that systematically exercises text fields and clickable UI wid-
gets under the corresponding view, which is applicable to all
apps. It first seeds strings into all text fields and then at-
tempts to exercise each clickable widget to transfer to the
next view. Such a motif pattern might perform appropriate
actions in scenarios such as filling in and submitting a form.
We used this simple-minded approach for the evaluation ver-
sion of Sapienz, to avoid risking any experimenter bias that
might otherwise introduce human ingenuity into the motif
gene construction process. As a result, the findings reported
in the following section can be regarded as lower bounds on
the performance of our approach; with a smarter selection of
generic motif patterns, results will improve, and would fur-
ther improve with the construction of bespoke motif genes
for particular apps.

The Sapienz tool generates a set of artefacts for reuse,
including reusable test suites, detailed coverage reports and
crash reports (with corresponding fault-revealing test cases
and automatically captured crash videos as witnesses for the
failures induced by test cases).

4. EVALUATION
We evaluate the Sapienz approach by conducting three

empirical studies on both open-source and popular closed-
source Android apps. We investigate whether Sapienz can
optimise multiple objectives and find previously unknown
real faults, within limited (30 minutes per app) execution
time on real-world production hardware.

As a sanity check, we first want to establish that we have
a reliable experimental infrastructure. This is because there
are a number of settings and parameter choices that could
affect the results and, as been widely noted in other areas of
empirical software engineering [58,60], the choice of param-
eter tuning options can have a dramatic effect on results. To
ensure reliability, we check that our infrastructure replicates
the results previously reported by Choudhary et al. [28].

RQ0 (Reliable replication): Does our experimental
infrastructure reliably replicate the results from the recent
thorough study by Choudhary et al. [28]?

We call this RQ0 (rather than RQ1) since it merely estab-
lishes that our experimental infrastructure replicates recent
results, suggesting that it is reliable for answering the sub-
sequent (novel) questions. A natural question to ask for
RQ1, once we have established replication of Choudhary
et al. in RQ0, is one that is asked by many other stud-
ies [20, 27, 51, 52, 53, 54, 61]: ‘what coverage is achieved by
the newly proposed technique?’

RQ1 (Code coverage): How does the coverage achieved
by Sapienz compare to the state-of-the-art and the state-
of-practice?

Coverage is one useful indicator, simply because failure to
achieve coverage leaves aspects of the app untested. Nev-
ertheless, there is evidence that coverage alone, cannot be
relied upon to indicate test effectiveness [57]. Therefore,
our second question focuses on fault detection; regardless
of coverage achieved, the effectiveness of any software test-
ing technique should also be assessed by its ability to reveal
faults.

RQ2 (Fault revelation): How do the faults found by
Sapienz compare to those found by the state-of-the-art and
the state-of-practice?

Sapienz targets coverage, fault revelation and length of
fault-revealing test cases. Longer test sequences might

achieve higher coverage, but we need to provide short se-
quences to testers for debugging purposes [17]. Intuitively,
shorter sequences are more likely to be attractive and ac-
tionable to developers [34,49]. This motivates RQ3.

RQ3 (Sequence length): How does Sapienz compare
to the state-of-the-art and the state-of-practice in terms of
the length of the fault-revealing test sequences it returns?

We wish to go further in our empirical analysis, because
the Choudhary et al. benchmark suite set [28], although an
excellent starting point, consists of only 68 apps, whereas
there are, in total (at the time of writing) 1,112 apps in the
overall F-Droid community [7]. There could potentially be
some sampling or other biases if we restrict ourselves solely
to the benchmark apps. Furthermore, since Sapienz and
the other techniques use randomised algorithms, it is widely
regarded as best practice to perform an inferential statistical
analysis of the performance of each algorithm, reporting sta-
tistical significance and effect size [18, 40]. Therefore, RQ4
investigates the findings that can be reported using statisti-
cal significance and effect size on multiple runs of the tools,
each applied to a random sample of apps from the 1,112
F-Droid apps publicly available:

RQ4 (Statistical significance and effect size): How
does Sapienz perform, compare to the state-of-the-art and
the state-of-practice, on randomly selected apps, with infer-
ential statistical testing?

Finally, we want to investigate the usefulness of the
Sapienz technique on real-world commercial apps. There-
fore, we follow the practice adopted by some previous au-
thors [37, 52] of applying the technique to a large number
of popular apps in Google Play. This avoids the potential
bias of applying the technique only to apps chosen from F-
Droid, which does not contain any of the most popular apps
in current use. Since we do not have access to the source
code of these popular commercial apps, it also tests the ef-
fectiveness of the technique when used in ‘black box mode’,
where it has least available information to guide the test
generation process, and only high level, non-invasive, ‘skin
coverage’ instrumentation is possible.

RQ5 (Usefulness): Can Sapienz find any real bugs on
popular closed-source real-world apps?

4.1 Experimental Setup
We conduct three studies to answer the above research

questions: Study 1 addresses RQ0 to RQ3, Study 2 ad-
dresses RQ4 and Study 3 addresses RQ5. Study 1 and Study
2 are based on the execution of the testing approaches under
evaluation on a single PC. Study 3 augments this, by using
real-world physical (Samsung and Google) devices to demon-
strate the practicality of Sapienz. For all these studies, we
evaluate on Android KitKat version (API 19) because it is
the most widely-used version [1] at the time of writing. All
techniques under evaluation are fully automated. We choose
not to provide manual assistance (e.g., logins) in testing the
subjects, because we aim for an unbiased and rigorous as-
sessment of what can be achieved entirely automatically.

Since Dynodroid itself manipulates the emulator and de-
pends on its own customised Android system image, we fol-
low its user guide [4] and use its own image file to execute the
tool. For all the approaches under evaluation, we limit only
the execution time and the assigned hardware resource, so
that our comparison is direct head-to-head test effectiveness
achieved in a certain amount of elapsed wall-clock time. This



setting is consistent with the benchmark study conducted by
Choudhary et al. [28], which allows us to perform a direct
comparison with the results in that previous study.

We set Sapienz’s crossover and mutation probability to
0.7 and 0.3 respectively. The maximum generation is set
to 100 with the population size of 50 and each individual
contains 5 test cases. None of the parameters available to
Sapienz are tuned; all remain set at the same value through-
out all our experiments. We adopt this approach in order
to ensure that the comparison is strictly fair; results for
Sapienz might be improved by tuning, but this might also
introduce bias and unfairness in the experimentation. We
conducted Study 1 and Study 2 on a PC with a single hexa-
core 3.50GHz CPU and 16GB RAM on Ubuntu 14.04. For
Study 3, we also use a mobile device Samsung Galaxy Note
II and a cluster of 10 Google Nexus 7 (2013 version) tablets.

For Study 1, we test each subject for one hour by us-
ing each tools under evaluation. We record their achieved
coverage every 5 minutes. When comparing fault-revealing
test sequence lengths, we need to be careful to normalise
the results: each technique might find a different number
of faults, so measuring the total length of fault-revealing
test sequences would be unfair. Rather, we compare the
mean length of the fault-revealing test sequences returned by
each approach. We count an atomic event as one event and
decompose our high-level motif genes into multiple atomic
events for a fair comparison.

For Study 2, we use random selection to identify 10 sub-
jects from the 1,112 apps in the overall F-Droid set. We
conduct an inferential statistical analysis of the performance
of each of the Android testing techniques applied to these
randomly selected apps. Details of the 10 randomly selected
apps can be found in the left-hand columns of Table 5. Since
we cannot rely on Gaussian (aka ‘Normal’) distribution of
test results, we use a non-parametric multiple comparison
inferential statistical significance test, the Kruskal-Wallis
test [24] (at the 0.05 alpha level) with the Bonferroni cor-
rection, and the Vargha-Delaney effect size measure [59], as
widely recommended [18, 40]. The differences between ap-
proaches are characterised as small, medium and large when
the Â12 effect size exceeds 0.56, 0.64, and 0.71, respectively.
We repeat each experiment 20 times to provide a sample
of runs for statistical analysis. In total, this more rigorous
statistical evaluation requires 25 days of execution time.

Since Study 3 concerns the evaluation of Sapienz on 1,000
apps, it is inherently time-consuming. Fortunately, since we
are interested in the usefulness of the technique, we want
to investigate whether it can find faults quickly. Therefore,
we restrict the wall-clock execution time for this study to 30
minutes per app per setting. Furthermore, since emulators
may not reflect real device behaviour perfectly, we conduct
this study under three device settings: on a PC with emu-
lators, on a smart mobile device (Samsung Note II ) and on
a small cluster of 10 tablets (Google Nexus 7 ). The entire
computation time of the experiment, on all 1,000 apps un-
der three settings, to answer RQ5 is 1,050 hours (nearly 44
days); 500 hours on emulators, 500 hours on the Samsung
Note II and 500/10 hours on the Google Nexus 7 tablets.
In this study, we use only the non-invasive ‘skin coverage’
to guide Sapienz, so the results are a lower bound on the
performance that would be observed by a developer, who
could have access to source code and could therefore exploit
the finer granularity levels of coverage.

Table 2: Results on the 68 benchmark apps.
Subject Coverage #Crashes Length

M D S M D S M D S
a2dp 43 29 46 0 1 3 - 315 148
aarddict 14 46 18 0 0 0 - - -
aLogCat 68 49 71 0 0 2 - - 114
Amazed 66 63 69 1 0 1 1429 - 96
AnyCut 63 65 66 0 0 1 - - 103
baterrydog 64 66 67 0 1 1 - 81 173
swiftp 13 13 14 0 0 0 - - -
Book-Catalogue 46 27 33 1 0 1 1941 - 177
bites 38 25 41 1 0 1 19124 - 116
battery 76 68 79 0 0 4 - - 198
addi 16 26 20 2 1 2 1367 315 129
alarmclock 72 51 77 4 1 5 1716 170 144
manpages 64 68 75 0 0 3 - - 120
mileage 40 25 54 2 1 4 878 390 153
autoanswer 13 24 16 0 0 0 - - -
hndroid 4 6 10 2 1 2 206 - 117
multismssender 43 49 61 0 0 0 - - -
worldclock 93 94 94 0 0 1 - - 98
Nectroid 69 46 76 1 0 2 416 - 118
acal 15 15 29 1 0 5 62717 - 177
jamendo 62 3 72 0 0 2 - - 191
aka 79 76 84 1 0 7 42804 - 136
yahtzee 62 51 58 2 0 0 31767 - -
aagtl 30 29 31 4 0 5 1756 - 188
CountdownTimer 60 62 62 0 0 0 - - -
sanity 32 1 19 2 1 2 8377 12 90
dalvik-explorer 69 * 73 2 * 4 3720 * 165
Mirrored 69 68 64 0 0 1 - - 147
dialer2 38 55 42 0 0 0 - - -
DivideAndConquer 85 72 83 0 0 2 - - 186
fileexplorer 40 56 50 0 0 0 - - -
gestures 36 48 52 0 0 0 - - -
hotdeath 78 3 79 1 0 3 63975 - 152
adsdroid 23 36 38 2 1 1 356 48 128
myLock 28 33 31 0 0 0 - - -
lockpatterngenerator 78 79 81 0 0 0 - - -
mnv 49 * 67 2 * 4 30381 * 150
aGrep * 38 * * 0 * * - *
k9mail 7 5 7 0 0 1 - - 238
LolcatBuilder 24 23 31 0 0 0 - - -
MunchLife 70 73 76 0 0 0 - - -
MyExpenses 51 25 65 0 1 2 - 67 150
LNM 58 66 60 1 0 1 51621 - 48
netcounter 44 63 77 0 0 2 - - 156
bomber 76 70 73 0 0 0 - - -
frozenbubble * 63 * * 0 * * - *
fantastischmemo 36 9 60 1 0 6 25375 - 156
blokish 50 50 52 1 1 2 2512 252 194
zooborns 35 38 36 0 0 0 - - -
importcontacts 41 43 42 0 0 0 - - -
wikipedia 36 32 32 0 0 5 - - 232
PasswordMaker 63 53 64 3 0 1 3406 - 180
passwordmanager 11 7 16 0 0 0 - - -
Photostream 16 23 38 1 1 2 317 29 125
QuickSettings 50 33 50 0 0 1 - - 134
RandomMusicPlayer 58 82 59 0 0 0 - - -
Ringdroid 26 * 29 1 * 2 550 * 161
soundboard 42 60 53 0 0 0 - - -
SpriteMethodTest 82 37 83 0 0 0 - - -
SpriteText 59 57 62 0 0 0 - - -
SyncMyPix 21 20 22 0 0 4 - - 187
tippy 83 48 83 0 0 0 - - -
tomdroid 55 43 58 0 1 1 - 165 91
Translate 48 45 49 0 0 0 - - -
Triangle 76 69 79 0 0 0 - - -
weight-chart 58 57 77 2 1 4 10588 236 186
whohasmystuff 74 * 80 0 * 0 - * -
Wordpress 4 * 7 0 * 1 - * 137

4.2 State of the Art and Practice
According to the thorough empirical study by Choudhary

et al. [28], existing techniques fail to outperform the stan-
dard Monkey Android testing tool in ‘continuous mode’. In
this mode, each testing tool is given one hour execution
time and the same hardware configuration. We therefore
chose to evaluate in the same way, comparing against Mon-
key and Dynodroid, which Choudhary et al. found to per-
form best among the research prototype techniques (beating
recently proposed techniques including black box based An-
droidRipper [15], A3E [20], PUMA [37] and white-box based
ACTEve [16]). Monkey and Dynodroid also performed
best in a slightly more recent study [57], and, therefore, if
Sapienz outperforms both Monkey and Dynodroid, we will
also have reasonable evidence to conclude that it is likely
to outperform AndroidRipper [15], A3E [20], PUMA [37]
and ACTEve [16]. Note that Sapienz also yields a Pareto
front at the end of its execution, which might be a useful
by-product. However, we choose to evaluate Sapienz only
in the ‘continuous mode’, for a fair comparison with Monkey
and Dynodroid, which do not yield Pareto fronts.



Figure 4: Progressive coverage on benchmark apps.

Figure 5: Code coverage on the 68 benchmark apps.

4.3 Results

4.3.1 Study 1: Benchmark Subjects
The detailed experimental results on each subject for

Study 1 are given in Table 2, where ‘Coverage’ reports
statement coverage achieved by each of the three tools,
‘#Crashes’ indicates the number of unique crashes detected
by each and ‘Length’ reports the fault-revealing test se-
quence length for each. The column headings ‘M’, ‘D’ and
‘S’ refer to the three tools we compare; Monkey, Dynodroid
and Sapienz. The entry ‘*’ indicates the tool cannot start
the corresponding app, while the entry ‘-’ indicates that the
fault-revealing length is undefined, because no faults were
found.

RQ0 (Experimental replication). We first evaluate
Monkey and Dynodroid to check that our experiment in-
frastructure replicates the results reported by Choudhary et
al. [28]. We calculated progressive average coverages across
all 68 subjects every 5 minutes for each of the three tech-
niques and report the direct comparison on the final cov-
erages achieved. The progressive coverages of Monkey and
Dynodroid are shown in Figure 4. The shape of the growth
in coverage over time very closely resembles the results re-
ported by Choudhary et al. [28]. However, the final coverage
values achieved by these two tools are slightly higher than
those reported by Choudhary et al. This may be caused by
the hardware setting: Choudhary et al. ran the experiments
on virtual machines while we conducted our experiments
on a physical PC which may be faster. Since the overall
growth trend closely resembles the results of Choudhary et
al., and given that better performance only raises the bar
that Sapienz must clear in order to outperform them, we
believe these results indicate we have a firm foundation on
which to perform our subsequent experiments.

RQ1 (Code coverage). We used an identical evalua-
tion approach for Sapienz as that used in the replication
study reported in RQ0 for Monkey and Dynodroid. As can
be seen from Figure 4, Sapienz outperformed Monkey and

Figure 6: Pairwise comparison on found crashes.

Table 3: Statistics on found crashes.
App Crashes Monkey Dynodroid Sapienz
# App Crashed 24 13 41
# Unique Crashes 41 13 104
# Total Crashes 1,196 125 6,866

Dynodroid from the 10th minute onwards, finally achiev-
ing the highest overall statement coverage at the end of the
hour’s experimental time allowed for each of the 68 subjects.
To further investigate these results, Figure 5 presents the
boxplots (for which a circle indicates the mean) of the final
coverage results for apps grouped by size-of-app. This analy-
sis reveals that Sapienz achieved the highest mean coverage
across all four app size groups. We conclude that there is
evidence from the 68 benchmark apps that Sapienz can at-
tain and maintain superior coverage after approximately 10
minutes of execution on a standard equipment.

RQ2 (Fault revelation). In answering RQ2, we re-
port not only on the number of crashes found by each tech-
nique, but also the overlap between the crashes found by
each technique. This allows us to investigate whether the
techniques are complementary, or whether one subsumes an-
other, as well as reporting on the overall effectiveness (in
terms of number of crashes found). Of course a crash may
be triggered by different test sequences, so we report unique
crashes, considering a crash to be unique when its stack trace
differs from all others. We excluded those crashes caused by
the Android system or the test harness itself, which were not
caused by the faults from the subjects. Such crashes can be
identified by checking the corresponding stack traces. A re-
cent study [57] has highlighted this issue and pointed out
that these crashes are, essentially false positives, so should
not be counted.

As shown in Table 3, Sapienz revealed the largest num-
ber of both unique and total crashes in 41 of the 68 apps.
Sapienz also found 30 unique crashes in 14 apps for which
neither Monkey nor Dynodroid found any crashes. We also
provide a pairwise comparison of the unique crashes found
in Figure 6 (where the black bars show common crashes;
those revealed by both techniques): Across the 68 subjects,
Sapienz found 72 and 99 unique crashes, undetected by
Monkey and Dynodroid respectively, while it missed only 9
crashes found by Monkey and 8 by Dynodroid. We conclude
that there is strong evidence from the 68 benchmark apps
that Sapienz outperforms both Monkey and Dynodroid in
terms of fault revelation, as measured by the number of
crashes found.

RQ3 (Sequence length). Table 4 shows the mean
length of fault-revealing test sequences of the three tools,
grouped by various subject size ranges (where the group sizes
are given in the brackets). On all subject groups except ‘3K-
30K’, Sapienz generated the shortest fault-revealing test se-
quences. On the ‘3K-30K’ subject group, Dynodroid gener-



Table 4: Fault-revealing test sequence length.
Monkey Dynodroid Sapienz

Size
< 3K (31) 13,843 186 132

3K-30K (30) 14,775 77 153
> 30K ( 7) 21,501 276 169

Overall (68) 15,305 161 149

ated the shortest fault-revealing test sequences (although its
code coverage and number of found crashes are lower than
Sapienz). We conclude that there is strong evidence from
the 68 benchmark apps that Sapienz outperforms the fault-
revealing test sequence length of Monkey, and that on larger
subjects it also outperforms Dynodroid.

4.3.2 Study 2: Inferential Statistical Analysis
RQ4 (Statistical significance and effect size). For

all 10 randomly sampled F-Droid programs, and for all three
criteria of interest, Sapienz outperformed both Monkey and
Dynodroid. However, in this study, we are concerned with
the statistical significance in effect size of these results. We
first present the boxplots of the performance comparison on
10 F-Droid subjects, as shown in Figure 7.

Table 5 shows Vargha-Delaney Â12 effect size for the
three objectives, coverage, the number of crashes found and
fault-revealing sequence length. For each objective, the
columns contain the effect size comparisons for Sapienz-
Monkey (S-M), Sapienz-Dynodroid (S-D), and, for com-
pleteness, Monkey-Dynodroid (M-D), where the result is
significant. As shown in the table, Sapienz significantly
outperforms Monkey with large effect size on 7/10 subjects
for coverage, 8/10 for crashes, and 10/10 for length (with
large effect size). Sapienz significantly outperforms Dyn-
odroid, with large effect size on 9/10 subjects for coverage,
9/10 for crashes and 10/10 for length. We also replicated
the finding of Choudhary et al. [28] that Monkey tends to
outperform Dynodroid, but further note that it does so less
conclusively than Sapienz does. The overall results suggest
that Sapienz outperforms both the state-of-the-art and the
state-of-practice approaches on all three objectives.

4.3.3 Study 3: Top 1,000 Popular Apps
RQ5 (Usefulness). In total, Sapienz found 558 unique

crashes in 329 of the 1,000 Google Play apps to which it
was applied. In the previous study of Dynodroid [52], it also
tested top 1,000 apps, however the budget used and total
number of found unique crashes are not mentioned. The
authors found 6 bugs (that led to non-native crashes) in 5
out of 1,000 apps tested. Our found 558 unique crashes were
caused by 22 types of errors/exceptions. The distribution
of the most common crash types (those with more than 4
crashes each) is shown in Figure 8, revealing that most were
caused by ‘native’ crashes, indicating that the crash occurred
outside the Android Java Virtual Machine, while executing
the app’s native code. Another common class of crashes
found were those due to null pointers.

We reported the non-native crashes to the app provider,
giving a stack trace for each crash type. In total, we reported
175 crashes3. Unfortunately, since these apps are commer-
cial apps, we do not have direct access to the developers, as

3For each app, we reported the first found crash that cor-
responds to each non-native crash type. We did not report
native crashes because their stack traces do not explicitly
point to the source lines of the potential faults.

Figure 7: Performance comparison on 10 F-Droid
subjects. (Boxplots grouped by subject.)

one might in an open-source environment, but we were able
to contact only the associated customer support team. We
got 58 replies in total, excluding those that were automatic
generated. For such a ‘cold call’ outreach activity, 58 from
175 emails is relatively high [35,47].

Of these 58 replies, in 27 cases we got feedback from the
app developers (after our email was redirected by their cus-
tomer support teams). Furthermore, 14 developer teams
confirmed that the crashes resulted from real faults in their
apps, and 6 of them have already fixed the reported crashes.
Among the 13 unconfirmed crashes out of 27 developer
replies, 6 indicated that our reports were helpful or that the
developers were working on the issue. A further 6 respon-
dents seek additional information. One of the 13 responded
that they could not identify the cause of the crash.

We list the anonymised details4 of these 14 faults con-
firmed by developers in Table 6: These 14 apps vary greatly
in categories and install numbers, with at least 148 mil-
lion installs in total. The 6 confirmed faults, with further
fixes from their developers are labelled as ‘Confirmed’ in
the ‘Fixed’ column. For the remaining 8 apps, we found
that 7 of the confirmed crashes can no longer be observed
when testing their most recent versions. However since we
have not received confirmation from developers that these
faults are definitely fixed, we label them as ‘Unconfirmed’ in
the ‘Fixed’ column. We observed only one of the confirmed
faults was not fixed (still crashes).

4.4 Threats to Validity
Like any empirical study, there are potential threats to

validity of our experimental results:
Internal validity: Threats to internal validity concern

4App versions are omitted for anonymity.



Table 5: Vargha-Delaney effect size (‘-’ indicates a statistically insignificant result).

Subject Description Ver. Date SLOC
Coverage #Crash Length

S-M S-D M-D S-M S-D M-D S-M S-D M-D
Arity Scientific calculator 1.27 2012-02-11 2,821 - 1.00 1.00 - 1.00 0.98 1.00 1.00 -
BabyCare Timer for when to feed baby 1.5 2012-08-23 8,561 1.00 1.00 - 0.84 0.92 - 1.00 1.00 -
BookWorm Book collection manager 1.0.18 2011-05-04 7,589 0.96 1.00 - 0.97 1.00 - 1.00 0.95 -
DroidSat Satellite viewer 2.52 2015-01-11 15,149 - - - 1.00 1.00 - 0.90 0.90 -
FillUp Calculate fuel mileage 1.7.2 2015-03-10 10,400 - 1.00 1.00 0.73 0.73 - 0.95 0.80 0.23
Hydrate Set targets for water intake 1.5 2013-12-09 2,728 0.85 1.00 0.92 0.95 - 0.23 0.73 0.73 -
JustSit Meditation timer 0.3.3 2012-07-26 728 1.00 1.00 - 1.00 1.00 - 1.00 1.00 1.00
Kanji Character recognition 1.0 2012-10-30 200,154 1.00 1.00 0.84 - 1.00 1.00 1.00 1.00 0.98
L9Droid Interactive fiction 0.6 2015-01-06 18,040 1.00 1.00 0.99 0.89 0.90 - 0.94 0.91 -
Maniana User-friendly todo list 1.26 2013-06-28 20,263 0.99 1.00 1.00 1.00 1.00 - 1.00 1.00 -

Table 6: Confirmed app faults identified by Sapienz.
App Category Installs Caused By Device Description Fixed
P* Photography 10M-50M NullPointer Nexus 7 Unable to start activity from a customer support SDK. Unconfirmed
K* Simulation 10M-50M NullPointer Nexus 7 Concurrent error while executing doInBackground() Unconfirmed
B* Business 10K-50K NullPointer Nexus 7 Null object reference in a third party SDK No
D* Education 500K-1M NullPointer Emulator Exception from event handler onOptionsItemSelected() Confirmed
T* Simulation 10K-50K NullPointer Emulator Exception from onAnimationEnd() in FlipGameActivity Confirmed
T* Lifestyle 500K-1M NullPointer Emulator Error when CameraUpdateFactory is not initialized Confirmed
T* Transport 1M-5M NullPointer Emulator Exception from onClick() in StationInfoFragment Confirmed
S* Education 1M-5M NullPointer Emulator Unable to start a third party activity Unconfirmed
T* Weather 10M-50M NullPointer Emulator Error when CameraUpdateFactory is not initialized Unconfirmed
W* Weather 10K-50K OutOfMemory Note II Error inflating class on binary XML file Unconfirmed
S* Puzzle 5M-10M ActivityNotFound Note II No Activity found to handle SHARE_GOOGLE Intent. Unconfirmed
F* Photography 10M-50M NullPointer Note II Exception from onGlobalLayout() in ViewUtil Confirmed
T* Music&Audio 100M-500M NullPointer Note II Unable to start the activity of PlayerActivity Unconfirmed
P* Music&Audio 5K-10K ActivityNotFound Note II No Activity found to handle a View Intent Confirmed

Figure 8: Main crash types on Google Play subjects.

factors in our experimental methodology that may affect our
results. For Study 1, 50 of the 68 ASE benchmark subjects
originate in a single article [52], which might have resulted
in selection bias. To mitigate this issue, we conducted Study
2 on 10 open-source apps, selected using unbiased random
sampling. Regarding the particular Sapienz implementa-
tion, we implemented only a single motif pattern to exercise
all text fields and clickable UI widgets under the correspond-
ing view, which is applicable to all apps. Performance of
Sapienz may improve when considering different motif pat-
terns, but could not be worse, since this single option will
always be available. Also, the choice of parameter setting
for each of the three tools may affect their performance sig-
nificantly. To reduce this threat, we followed the default
configurations for Monkey and Dynodroid, as used in the
previous thorough benchmark assessment study Choudhary
et al. [28] and we resisted any temptation to tune Sapienz.

External validity: Threats to external validity arise
when the experimental results cannot be generalised. Like
all empirical studies, we are limited in the number of sub-
ject systems to which we can apply our tools and techniques.
Our results will not necessarily generalise beyond the 1,078
apps to which we have applied Sapienz. However, we think

it promising that the technique applies, out of the box, to so
many different apps, none of which have been ‘cherry picked’
(nor in any other way ‘chosen’ by the experimenters them-
selves). It is possible, of course, that the 1,000 most popular
apps, and the F-Droid open-source apps, have peculiar char-
acteristics not shared by other classes of apps, for which the
performance of the three techniques we studied in this paper
may differ. We also only evaluated our approach on a single
version of the Android platform. Although the most widely-
used version, the rapid evolution of the Android system,
means that the performance of three evaluated techniques
may vary as subsequent versions become available.

5. CONCLUSIONS
This paper has introduced a novel multi-objective search-

based software testing technique and tool Sapienz for auto-
mated Android app testing. Sapienz supports multi-level
instrumentation and remains applicable, even when only
app’s APK file (and nothing else) is available. Its evolution-
ary algorithm continuously optimises for coverage, sequence
length and the number of crashes found, seeking to reveal
as many crashes as possible, while minimising the length of
test sequences.

Our evaluation results on open-source apps have shown
that Sapienz outperforms the state-of-the-art technique
Dynodroid and the widely-used tool, Android Monkey, on all
three objectives for almost all subjects. The only exception
is the relatively small (3K-30K lines of code) F-Droid open-
source apps in the benchmark suite, for which Dynodroid
produced shorter fault-revealing test sequences, although it
achieved less coverage and revealed fewer crashes.

We also believe that Sapienz is a practical and useful
testing tool, since it was able to find 558 unique crashes in
the top 1,000 most popular Android apps, 14 of which have
already been confirmed as caused by real faults.
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