
Università degli Studi di Napoli “Federico II”

Scuola Politecnica e delle Scienze di Base

Dottorato di Ricerca in Ingegneria Informatica ed Automatica

Ciclo XXVIII

May 2016

Tesi di Dottorato

Automated GUI Testing Techniques
for Android Applications

Tutori:
Prof. Anna Rita Fasolino
Prof. Porfirio Tramontana

Candidato: Amatucci Nicola

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Università degli Studi di Napoli Federico Il Open Archive

https://core.ac.uk/display/78395695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Mobile devices are integral parts of our daily lives; a little computer in our pocket

has became a faithful assistant both for work than for amusement. The availability

of mobile applications (commonly referred as apps) has made more and more

useful bringing these devices with us everyday. The number of such applications

in these years has faced a tremendous growth due to the market attractiveness

[106]; according to Forbes1, by 2017 more than 270 billion mobile applications will

be downloaded worldwide. The quality of a mobile application is a major concern

for developers, users and application stores [32]. According to a survey conducted

by SmartBear2 from October to December 2013 nearly 50% of consumers will

delete a mobile app if they encounter a bug. So, testing mobile applications to

prevent the occurrence of software exceptions in production can be considered one

of the key factor influencing its quality together with the market response. As

today, in literature many techniques have been presented aiming at testing mobile

applications. In particular, many of them have been presented in the context of

GUI Testing.

The research activity described in this thesis is focused on proposing novel

techniques and tools in the field of Automated GUI Testing for Mobile Applica-

tions. In particular, the work is targeted to the Android Operating System, that

currently is the dominating operating system in the mobile devices market [54],

although the results can be generalized to other mobile platforms.

1http://blogs-images.forbes.com/niallmccarthy/files/2014/10/Giant-social-apps Forbes.jpg
2https://smartbear.com/news/news-releases/the-state-of-mobile-testing-2014/



Acknowledgements

Non sono bravo a scrivere i ringraziamenti, sono più propenso a farli di persona,

ma ci provo cercando di non lasciar fuori nessuno, perché, diciamo la verità, se

non fosse stato per le tante persone che mi hanno accompagnato in questo viaggio,

probabilmente non sarei qui adesso a scrivere queste parole.

Ringrazio i miei tutor, la professoressa Anna Rita Fasolino ed il professor Por-

firio Tramontana, che, insieme all’ingegner Domenico Amalfitano, qualche anno fa

mi hanno accordato un’enorme fiducia concedendomi il privilegio di far parte di

questo gruppo di ricerca. Senza di loro non sarei qui e non sarei potuto crescere

cos̀ı tanto sia professionalmente che personalmente. Sono stati un punto di rifer-

imento costante in questo percorso, mi hanno guidato ed aiutato e spero di non

aver deluso troppo le loro aspettative e di aver dato loro qualche soddisfazione.

Sono davvero delle persone eccezionali; se non fosse stato per loro non sarei qui e

li ringrazio dal profondo del mio cuore.

Ringrazio tutti i ragazzi che in questi anni hanno frequentato il Laborato-

rio 4.04 e che lo frequentano ancora. Senza di loro, questo periodo non sarebbe

stato cos̀ı bello, allegro e produttivo. Ringrazio tutti quelli che ho conosciuto qui

all’Università di Napoli, professori, ricercatori, dottorandi, collaboratori, person-

ale amministrativo e non, tesisti, studenti e tutte le persone che in questi anni ho

incontrato. Alcuni di loro li ringrazio particolarmente e, forse, non li ringrazierò

mai abbastanza; questo pensiero è dedicato in particolar modo a loro e soprattutto

a quelli che posso chiamare amici.

Voglio ringraziare i miei genitori e mia nonna che mi hanno incoraggiato, sup-

portato, sostenuto e sopportato giorno per giorno e continuano a sostenermi. Gra-

zie mille davvero per tutto quello che avete fatto in questi anni, da quando sono

nato; senza di voi nulla sarebbe stato possibile.

Ringrazio i miei suoceri, i miei cognati e le mie cognate che mi hanno sempre



aiutato e sostenuto in ogni momento bello o brutto e ora fanno parte della mia

famiglia.

Ringrazio tutti gli amici e parenti che, anche se forse in questi ultimi anni ho

trascurato un po’, sono sempre nei miei pensieri e nel mio cuore.

Infine, con tutto il mio cuore, voglio ringraziare mia moglie Liliana, che ho

avuto la fortuna di sposare quasi un anno fa, e che in questi anni mi ha davvero

donato tanto amore e che amo con tutto me stesso; anche nei momenti di difficoltà è

stata sempre accanto a me e lo è ancora oggi, per fortuna. Aspettiamo un bambino

o una bambina (ancora non lo sappiamo) e questo oltre a darmi immensa gioia,

mi dà forza e coraggio di affrontare tutto quello che verrà. Grazie, infinitamente.

Dedico a voi questa tesi, come dedico a voi la mia vita, ogni giorno.

Spero di non aver dimenticato nessuno in questi miei, seppur sintetici, ringrazi-

amenti3.

Grazie a tutti,

Nicola

3Ci tengo a precisare che tutte le persone citate in queste pagina hanno svolto un ruolo
fondamentale nella stesura della tesi, ma che ogni errore o imprecisione è imputabile soltanto a
me



A Liliana, la donna che amo,

al frutto del nostro amore.



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background & Related Work 6

2.1 The Android Operating System . . . . . . . . . . . . . . . . . . . . 6

2.1.1 The Android Framework Architecture . . . . . . . . . . . . . 7

2.1.2 Core Concepts of the Android Platform . . . . . . . . . . . . 9

2.1.2.1 Inter Process Communication (IPC) . . . . . . . . 10

2.1.2.2 Android Activities . . . . . . . . . . . . . . . . . . 11

2.1.2.3 Android User Interface Elements . . . . . . . . . . 14

2.1.2.4 Android Fragments . . . . . . . . . . . . . . . . . . 14

2.1.2.5 Android Services . . . . . . . . . . . . . . . . . . . 16

2.1.2.6 Android Platform Security . . . . . . . . . . . . . . 17

2.1.3 Android Testing Fundamentals . . . . . . . . . . . . . . . . 18

2.1.4 Android Testing Tools . . . . . . . . . . . . . . . . . . . . . 19

2.2 GUI Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 GUI Testing Android Applications . . . . . . . . . . . . . . 23

i



Contents ii

3 Android Ripper 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 AndroidRipper Model . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 AndroidRipper Driver . . . . . . . . . . . . . . . . . . . . . 38

3.2.4 AndroidRipper Test Case . . . . . . . . . . . . . . . . . . . 40

3.2.5 AndroidRipper Service . . . . . . . . . . . . . . . . . . . . . 41

3.2.6 AndroidRipper Master-Slave Interaction . . . . . . . . . . . 42

3.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Subject Application . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3.1 Application Preconditions . . . . . . . . . . . . . . 46

3.3.3.2 Considered Testing Techniques . . . . . . . . . . . 46

3.3.3.3 Testing Environment . . . . . . . . . . . . . . . . . 48

3.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.5 Source Code Coverage Analysis . . . . . . . . . . . . . . . . 51

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Considering Context Events in Event-Based Testing of Mobile

Applications 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Event-Based Testing Techniques for Mobile Apps . . . . . . . . . . 58

4.3 Techniques for Event-Patterns Based Testing . . . . . . . . . . . . . 61

4.4 Implementing Event-Based Testing in the Android Platform . . . . 65

4.5 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



Contents iii

5 AGRippin: a novel search based testing technique for Android

applications 70

5.1 Search Based Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 The AGRippin Tecnique . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.4 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.5 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.6 Combination Technique . . . . . . . . . . . . . . . . . . . . 80

5.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.2 Experiment Environment and Setup . . . . . . . . . . . . . . 82

5.3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . 84

6 Exploiting the saturation effect in automatic random testing of

android applications 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Monkey Fuzz Testing Tools . . . . . . . . . . . . . . . . . . . . . . 92

6.3 The Testing Process . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 The Testing Process Implementation . . . . . . . . . . . . . 95

6.3.1.1 Constants and Variables . . . . . . . . . . . . . . . 98

6.3.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.2 The Testing Infrastructure . . . . . . . . . . . . . . . . . . . 99

6.4 An exploratory study . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Contents iv

6.5.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . 110

6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.4.1 Saturation results . . . . . . . . . . . . . . . . . . . 111

6.5.4.2 Effectiveness results . . . . . . . . . . . . . . . . . 112

6.5.5 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 A parallel and distributed implementation of GUI Ripping Tech-

niques 118

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 A parallel implementation of Android Ripper . . . . . . . . . . . . . 119

7.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.2 Variables & Measures . . . . . . . . . . . . . . . . . . . . . . 123

7.3.2.1 Independent Variables . . . . . . . . . . . . . . . . 123

7.3.2.2 Dependent Variables . . . . . . . . . . . . . . . . . 124

7.3.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.3.1 Objects of the Experiment . . . . . . . . . . . . . . 124

7.3.3.2 Experimental Procedure . . . . . . . . . . . . . . . 125

7.3.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . 125

8 Conclusions & Future Work 129



List of Figures

2.1 Android Framework Architecture . . . . . . . . . . . . . . . . . . . 7

2.2 Activity States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Callback invocation sequences . . . . . . . . . . . . . . . . . . . . . 13

2.4 Android UI Input Controls . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Fragment Adaptability . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Fragment Life cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Android Testing Framework Overview . . . . . . . . . . . . . . . . 19

2.8 Contributions about Android GUI Testing per Year . . . . . . . . . 24

3.1 GUI Testing Automation Mechanisms . . . . . . . . . . . . . . . . . 32

3.2 Overview of Android Ripper . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Package Diagram of Android Ripper . . . . . . . . . . . . . . . . . 37

3.4 Conceptual Model of a GUI Interface . . . . . . . . . . . . . . . . . 37

3.5 AndroidRipper Driver Package . . . . . . . . . . . . . . . . . . . . . 39

3.6 AndroidRipper Test Case Package . . . . . . . . . . . . . . . . . . . 41

3.7 AndroidRipper Service Package . . . . . . . . . . . . . . . . . . . . 42

3.8 AndroidRipper Master-Slave Interaction . . . . . . . . . . . . . . . 43

3.9 Excerpt of the initialized user interface . . . . . . . . . . . . . . . . 45

3.10 GUI Tree inferred by T1 . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 GUI Tree inferred by T4 . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Trend of the LOCs Coverage for Trolly . . . . . . . . . . . . . . . . 54

v



List of Figures vi

5.1 Conceptual Model of a GUI Interface . . . . . . . . . . . . . . . . . 73

5.2 Crossover Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Test-Case Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Effectiveness Trends for AUT5 . . . . . . . . . . . . . . . . . . . . . 86

6.1 Code coverage of two testing runs of an MFT tool . . . . . . . . . . 94

6.2 Overview of the overall testing infrastructure . . . . . . . . . . . . . 101

6.3 Coverage trends of the four testing process variants . . . . . . . . . 104

6.4 Coverage trends obtained by Monkey Tool . . . . . . . . . . . . . . 107

6.5 Two termination points of TP22 execution . . . . . . . . . . . . . . 115

6.6 Cumulative Coverage achieved in the new process variant . . . . . . 117

7.1 AndroidRipper Master/Multi-Slave Implementation . . . . . . . . . 120

7.2 AndroidRipper Master/Multi-Slave Implementation . . . . . . . . . 122



List of Tables

3.1 Considered Testing Techniques . . . . . . . . . . . . . . . . . . . . . 47

3.2 Test Adequacy Values . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Cost Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 GUI Tree Complexity Metrics Values . . . . . . . . . . . . . . . . . 50

4.1 Some Event-Pattern Examples (’+’ means one or more) . . . . . . 62

4.2 Examples of Implementations of Event-Patterns . . . . . . . . . . . 63

4.3 An Example of Mutation of a Test Case by an Event-Pattern . . . . 64

4.4 Characteristics of the Tested Apps . . . . . . . . . . . . . . . . . . 68

4.5 Code Coverage Results . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Test-Case Classification Example . . . . . . . . . . . . . . . . . . . 79

5.2 Android Applications (AUTs) . . . . . . . . . . . . . . . . . . . . . 82

5.3 Configuration Parameters Values . . . . . . . . . . . . . . . . . . . 84

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Testing process variants and results . . . . . . . . . . . . . . . . . . 103

6.2 Characteristics of the Applications Under Test . . . . . . . . . . . . 109

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Termination Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Applications Characteristics . . . . . . . . . . . . . . . . . . . . . . 124

vii



7.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Performance varying nS . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Performance varying nM . . . . . . . . . . . . . . . . . . . . . . . . 128



Abbreviations

• OS: Operating System

• UI: User Interface

• GUI: Graphical User Interface

• SDK: Software Development Kit

• NDK: Native Development Kit

• AUT: Application Under Test

• XML: eXtensible Markup Language

• URI: Uniform Resource Identifier

• IPC: Inter Process Communication

• SMS: Short Message Service

• AUT: Application Under Test

• IDE: Integrated Development Environment

• LOC: Line of Code

• EDS: Event Driven Systems

• MSC: Message Sequence Charts

• EFG: Event Flow Graphs

• UML: Unified Modeling Language

• USB: Universal Serial Bus

• CAAA: Context-Aware Adaptive Application

• FSM: Finite State Machine

• API: Application Programming Interface

i



• MFT: Monkey Fuzz Testing

• JVM: Java Virtual Machine

• ART: Android RunTime

• AIDL: Android Interface Definition Language

• ADT: Android Developer Toolkit

• AVD: Android Virtual Device

• FIFO: First-In-First-Out

• LIFO: Last-In-First-Out



CHAPTER 1

Introduction

1.1 Introduction

Mobile Applications can be considered Event Driven Systems [8]; they are able

to react both to events related to User Interactions both to system events [68],

i.e. events generated by the device hardware platform or by the running environ-

ment. For testing a Mobile Application it is possible to extend and adapt testing

techniques originally designed for Event Driven Systems. Mobile Applications are

mainly based on a Graphical User Interface (GUI) front-end, whose behavior can

further be context-sensitive [120], i.e. they can react to changes in the orientation

of the device, in the user location, in the status of the battery and so on; given

that, the System Testing activity can be performed by generating and executing

sequences of events, that sample the input space of the application [89].

When testing mobile applications, their characteristics and the ones of the

running environment should be taken into account. In fact, differently from appli-

cations deployed on platforms like desktop or client systems, mobile devices and

frameworks can expose the applications to new kinds of bugs [51]. This challenge

has been acknowledged by the researchers that have proposed many techniques

and tools about Mobile Applications Testing. Some important contributions in

the literature are related to testing automation.

1



Chapter 1. Introduction 2

According to Muccini et al. [85] completely automatic techniques supporting

testing should represent a very important value in the development of mobile

applications, since they can be carried out quickly and with saving of human

resources. Unfortunately, Joorabchi et al. [56] on the basis of interviews to 12

senior mobile app developers concluded that manual testing is prevalent for mobile

applications and that GUI testing is challenging to automate. A recent study of

Kochhar et al. [60] based on 627 open source Android projects hosted on GitHub

showed that practices related to testing automation are rarely diffused in Android

testing. In particular, they found that only 14% of the apps they have analyzed

contains executable test cases and only 4% of apps have test cases able to cover

more than 40% of the source code of the applications.

In the mobile domain, Android is the most popular Operating System [54], with

an increasing number of applications available in the Google Play Market; for this

reason along with its open-source nature and the use of the Java programming

language, many of the techniques presented in literature are implemented in the

context of Android Platform.

1.2 Thesis Goal

In this thesis I will present some contributions that try to address the challenges

related to the automation of event-based testing of Mobile Applications. In partic-

ular, due to the reasons already exposed in Section 1.1, I focused on the Android

Operating System.

In a first part of this work I will present the details of the design and the

implementation of a novel automated GUI testing tool where I have implemented

a set of techniques presented in the literature and some original techniques. The

other contributions presented in this thesis are related to the improvement of the



Chapter 1. Introduction 3

performance of such techniques, both in terms of effectiveness and efficiency.

Regarding the effectiveness, I will present two contributions. Firstly I will show

an implementation of the presented techniques intended to exercise the peculiar

features of mobile applications related to non-user events. Furthermore, I will

present an automated technique, based on genetic algorithms, that has been de-

signed and implemented to be used in conjunction with the previously described

techniques. Also, I will present two contributions that aim to increase the effi-

ciency of the automated testing processes. In particular, I will describe a stopping

criterion for evaluating when a Random testing technique achieves an optimal

termination point, that represents a good compromise between effectiveness and

efficiency. Another contribution of this thesis regards the proposal and the im-

plementation of a technique for parallel and distributed execution of automatic

testing process. For each contribution I will present the results of experimentation

carried out on real world applications.

1.3 Thesis Outline

The dissertation is organized as follows.

Chapter 2 provides some backgrounds about the Android Operating System

and the Android Software Development Kit; it also summarizes some related work

about the topic of GUI Testing, focusing in particular on the ones related to

Automated GUI Testing Techniques for Android Applications.

Chapter 3 presents a generic algorithm for automated GUI testing techniques

and describes its implementation in the AndroidRipper tool.

Chapter 4 and Chapter 5 present two contributions aimed at improving the

effectiveness of the techniques described in Chapter 3. In particular, Chapter 4

presents an extended version of the AndroidRipper tool able to exercise context-



Chapter 1. Introduction 4

sensitive applications [120]. Chapter 5 describes AGRippin (that is an acronym for

Android Genetic Ripping) a search based testing technique applicable to Android

applications with the purpose to generate test suites that are both effective in

terms of coverage of the source code and efficient in terms of number of generated

test cases.

Chapter 6 and Chapter 7 present two contributions aimed at incrementing the

efficiency of the techniques described in Chapter 3. In Chapter 6 is addressed the

problem of stopping a random testing process at a cost-effective point. Chapter

7, instead, presents a parallel approach for automated GUI Testing of Android

Applications.

This thesis includes materials from the following research papers, already pub-

lished in peer-reviewed conferences and journals:

Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio Tra-

montana. Considering Context Events in Event-Based Testing of Mobile Applica-

tions. In Software Testing, Verification and Validation Workshops (ICSTW), 2013

IEEE Sixth International Conference on, pages 126–133, March 2013

Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Ugo Gentile,

Gianluca Mele, Roberto Nardone, Valeria Vittorini, and Stefano Marrone. Improv-

ing code coverage in android apps testing by exploiting patterns and automatic test

case generation. In Proceedings of the 2014 international workshop on Long-term

industrial collaboration on software engineering (WISE 2014), 2014

Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio Tra-

montana, Emily Kowalczyk, and Atif Memon. Exploiting the saturation effect

in automatic random testing of android applications. In The Proceedings of the

2nd ACM International Conference on Mobile Software Engineering and Systems

(MOBILESoft 2015), 2015.



Chapter 1. Introduction 5

Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio Tra-

montana. AGRippin: a novel search based testing technique for Android applica-

tions. In The Proceedings of the 3rd International Workshop on Software Devel-

opment Lifecycle for Mobile (DeMobile 2015), 2015.

Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio Tra-

montana. A conceptual framework for the comparison of fully automated gui testing

techniques. In The Proceedings of the Sixth International Workshop on Testing

Techniques for Event BasED Software, 2015.



CHAPTER 2

Background & Related Work

In this chapter I will introduce some details of the Android Operating System and

the Android SDK; then I will report some related work about Event-Based testing

of Android applications, focusing in particular on Automated Testing Techniques

for Android Applications with the purpose of assessing the importance and showing

the state of the art of this research topic.

2.1 The Android Operating System

Android is an open source platform, designed for handset devices like mobile

phones and tablets. The Android Open Source Project is maintained by the Open

Handset Alliance, a group of hardware and electronics manufacturers, software

companies and network operators, lead by Google. It is built on top of the Linux

Kernel and is released under the Apache 2.0 license: everyone can download and

modify Android, but official releases should be approved by Google. From the

point of view of a manufacturer, this represent an enormous advantage, so more

and more devices based on the Android Operating System become available every

day. The increasing spread of such devices has lead during the years to an expo-

nential growth of the number of applications available for the OS. Moreover, by

using the Java language, the Android Studio IDE and the other free development

6



Chapter 2. Background & Related Work 7

tools, a developer can easily write and publish Android Applications.

In the following we are going to detail the Android Framework Architecture and

focus on some development concept that will be useful for better understanding

the testing techniques for such applications.

2.1.1 The Android Framework Architecture

The Android Framework has the layered architecture shown in Fig. 2.1.

Figure 2.1: Android Framework Architecture

At the bottom of the stack there is the Linux Kernel layer, responsible of

providing the core services of the system, i.e. security, memory management, pro-

cess scheduling, networking services, device drivers and so on. This layer abstracts

the hardware layer to the upper levels, allowing the hardware independence of the

Android Framework.

On top of the kernel layer there is theHardware Abstraction Layer (HAL),

that is the standard interface that allows Android applications to be agnostic about

lower-level driver implementations.



Chapter 2. Background & Related Work 8

The Libraries layer offers services that can be exploited by the upper levels,

like multimedia management (Media Framework), font management (FreeType),

data storage (SQLite), embeddable web browser (WebKit), 3D Rendering and so

on. Within this layer there is theAndroid Runtime, featuring the Core Libraries

and the Virtual Machine Implementation. Android version before Android Lol-

lipop (5.0) were equipped with the Dalvik Virtual Machine (DVM); starting from

Android Lollipop, the DVM has been replaced with Android RunTime (ART) as

runtime environment.

Calls made by applications are handled by theApplication Framework layer.

This layer offers reusable components for building Android applications. As an

example the level offers the following components:

• View System: it allows to easily build the GUI of an application.

• Content Provider: it eases the communication and the sharing of data

between applications.

• Resource Manager: it manages the access to resources like strings, images,

xml and so on.

• Notification Manager: it allows an application to send notification to the

user.

• Activity Manager: it handles the life cycle of the applications running and

manages what is rendered on the screen.

• Location Manager: it eases the retrieval of the current location of the

device.

• Package Manager: it allows the management of the applications installed

on the device.



Chapter 2. Background & Related Work 9

The top layer is the Applications layer, which handles all applications that

are installed on the device, some of which are shipped within the Android OS, like

the email client, the telephony application, the contact manager an so on.

2.1.2 Core Concepts of the Android Platform

Android applications can be developed by using the Android Software Develop-

ment Kit (SDK)1 and can be made up by different types of components:

• Activities are components that display a Graphical User Interface (GUI)

on the screen (typically described by a set of XML files) that mobile users

can interact with. They are also responsible for monitoring and reacting to

such interactions.

• Services are components that do not display any GUI Interface, that usu-

ally run in the background and perform long term tasks. Services can be

started as independent task by calling the method startService() or through

application bindings. A bound service is subjected to an application, its life

cycle is bound to that of the application.

• Content Providers can be seen as databases for the applications. Data

can be shared across applications using a standard interface through Content

Providers. To access data, applications must have the needed permissions

and the URI of the Content Provider. Android offers itself a set of Content

Providers for Contacts, Messages and so on.

• Broadcast Receivers listen and handle events related to particular states

of either the system or other applications, like when a new Message has been

received or when the OS has finished its initialization.
1Android applications or libraries can be also developed using the Native Development Kit

(NDK)



Chapter 2. Background & Related Work 10

2.1.2.1 Inter Process Communication (IPC)

IPC mechanisms in Android2 include:

• Intents (along with Bundles) that are the preferred mechanism for asyn-

chronous IPC in Android. An Intent is a message consisting of the data

together with the action to be performed. The data is encapsulated into a

Bundle, that is a key-value data structure where a key is an instance of the

String object and a value is an instance of an object implementing the an-

droid.os.Parcelable interface. The specific operation is univocally identified

by a constant String value. Intents sent directly to a known recipient are

called Explicit Intents ; Implicit Intents, instead, are Intents sent in broad-

cast to all the registered receivers. Intent are commonly used to: start an

Activity; start, stop and bind a Service; query a Content Provider.

• Binders or Messengers (with a Service) that are the preferred mech-

anisms for RPC-style IPC in Android. A Bound Service3 is like a server

which allows clients (as an example, Activities) to bind to the Service and

then send requests and receive responses. If the Service runs in the same

process as the client a Binder should be implemented; a Messager, instead,

is needed when the communication is across different processes.

• Broadcast Receivers that are components of an application that are in-

tended to receive Intents from other applications that own the needed per-

missions.

2http://developer.android.com/training/articles/security-tips.html#IPC
3http://developer.android.com/guide/components/bound-services.html



Chapter 2. Background & Related Work 11

2.1.2.2 Android Activities

An Activity is the component of an Android Application that is intended to show

on the screen an instance of its GUI and is able to react to User Interactions or

System Events. Typically an application is made up of one or more Activities.

Each Activity can be launched both by the User both by the System; the one that

is launched when the application starts is called Main Activity. Only one Activity

at a time can be on the screen; when a new Activity is created the one showing

will be paused and moved by the OS in the Back Stack 4, while the new one is

showed on the screen; when the new Activity is closed (because it terminates its

execution by returning a result or because the user presses the BACK button on

the device) it is removed by the back stack and the previous one is resumed and

showed.

Figure 2.2: Activity States

The diagram in Figure 2.2 illustrates the possible states of an activity during

its lifetime.

• Created: when an Activity is in the Created state, the needed resources

have been allocated.

• Started: an Activity is considered Started if it is in the foreground, i.e. on

4http://developer.android.com/guide/components/tasks-and-back-stack.html



Chapter 2. Background & Related Work 12

the top of the stack of the activities. This Activity is the only one showed to

the user and that can react to user’s interactions; it has the highest priority

to allocate resources and can be killed by the OS only in some extreme

situations that cause the UI to become unresponsive.

• Paused: when an Activity does not occupy user focus (as an example,

when it is hidden by a new Activity or is partially visible or transparent) is

considered Paused ; in this state the Activity is still on the screen, owns an

high priority to allocate resources and is attached to the Window Manager.

The Activity will be killed only when a low amount of the system memory

is available.

• Stopped: when an Activity is in the background, not visible to the user,

but still its state is preserved by the OS, the Activity is in the Stopped state;

it still has a chance to return in the foreground (i.e. in the Started state), but

owning a low priority, when the OS needs to satisfy resource requirements

of higher priority activities it could be killed.

• Terminated: in this state, the resources retained by the Activity are

completely released and the corresponding memory space is freed.

A different callback method is called at the occurrence of a transition between

two of these states:

• onCreate(): is called as soon as the Activity is created; it is typically used

by the programmer to prepare the UI Components.

• onStart(): is called when the Activity is becoming visible to the user.

• onRestart(): is called if the Activity was in the Stopped state, before it is

started again.



Chapter 2. Background & Related Work 13

• onResume(): is called just before the Activity can be used the user.

• onPause(): is called when the Activity is going into the background, but

has not been killed yet.

• onStop(): is called when the Activity is no longer visible to the user; if

the Activity is in the Paused state and it’s going to be killed, this callback

method will not be called.

• onDestroy(): is called before the Activity is destroyed, either because the

activity is finishing or is being destroyed by the system because more re-

sources are needed by Activities whit an higher priority. The programmer

can distinguish between this two scenarios calling the isFinishing() method.

Figure 2.3: Callback invocation sequences

Figure 2.35 shows the order of the callback invocations with respect to the

Activity life cycle.

5http://developer.android.com/reference/android/app/Activity.html



Chapter 2. Background & Related Work 14

2.1.2.3 Android User Interface Elements

User Interfaces in Android are built combining View and ViewGroup objects. A

View is an object capable of drawing something on the screen and of capturing

user interactions; common input controls such as text fields, buttons, labels and

so on are subclasses of View. More View objects can be grouped together into

a ViewGroup, that defines how the contained Views are arranged on the screen;

the various layout models available in the Android Framework are subclasses of

ViewGroup. A ViewGroup is also a subclass of View, so components can be easily

nested using the Composite pattern. User Interfaces and UI Elements are therefore

arranged into a hierarchy of View and ViewGroup objects.

The Android Framework provides some subclasses of View such as Button, that

shows a button that can be clicked by the user to perform an action, EditText, that

implements an editable text field, Spinner:, that shows a list from which the user

can select an item; Figure 2.46 shows how they look like on the screen. Common

used sublcasses of ViewGroup are LinearLayout, RelativeLayout, TableLayout and

so on.

Figure 2.4: Android UI Input Controls

2.1.2.4 Android Fragments

Fragments are components of the Android UI that represent a behavior or a por-

tion of UI in an Activity. They are like modules that can be reused on different

6http://developer.android.com/guide/topics/ui/controls.html



Chapter 2. Background & Related Work 15

Activities and can be adapted accordingly to the screen size of the device. The

Adaptability of a Fragment is better clarified by Figure 2.57 showing a typical ex-

ample of use of Fragments. In this example, a Fragment contains a list of elements

and the other the details about each element. On a larger screen both Fragments

are shown together. On a smaller screen the Fragment containing the list occupies

the whole screen; when an element is selected the other Fragment will be shown;

pressing the BACK button will show the list Fragment again.

Figure 2.5: Fragment Adaptability

A Fragment has its own life cycle, directly affected by the one of the containing

Activity and can be added, removed, replaced, hided or shown while the Activity

is running.

The life cycle of a Fragment is shown in Figure 2.68; as we can easily notice

from the figure, the callback methods are in part similar to the ones of an Activity

and are called in conjunction with those of the containing Activity. Differences

can be found when a Fragment is initialized or destroyed. In particular, when a

Fragment is added to an Activity the following callback are invoked:

• onAttach(): the Fragment obtains a reference to the containing Activity,

but neither the Fragment neither the Activity are fully initialized.

7http://developer.android.com/guide/components/fragments.html
8http://developer.android.com/guide/components/fragments.html



Chapter 2. Background & Related Work 16

Figure 2.6: Fragment Life cycle

• onCreate(): the Fragment is created by the OS.

• onCreateView(): the UI of the Fragment can be initialized; a programmer

should use this method to instantiate the components of the UI.

• onActivityCreated(): the creation of the containing Activity has been

completed; at this point the Fragment can interact with the Activity.

2.1.2.5 Android Services

Performing long-running operations in the thread of the User Interface is discour-

aged by the the official documentation of the Android SDK because it can reduce



Chapter 2. Background & Related Work 17

the responsiveness of the Application. To perform long-running tasks, the Android

Framework provides the Service component. A Service runs in the background and

does not provide direct user interactions; the user can interact with it through an

Activity or another Service. Android Services can be Started or Bound. A

Started Service continues running in the background also if the component that

has initialized it has been terminated; this kind of Service can only be interrupted

by a direct call. When a Service isBound it acts like a server and lives only if there

are connected clients. The Android Framework provides different System Services

such as the Location Service that can be used to obtain information about the

user location, the SMS Service that can be used to manage and send messages,

the Telephony Service that can be used to manage phone calls, the Sensor

Service that handles the communication of the application with the hardware

sensors of the device.

2.1.2.6 Android Platform Security

The Android Operating System handles the problem of security exploiting the

features offered by the Linux Kernel, using an approach similar to sandboxing. An

Android application runs in an instance of a Virtual Machine (Dalvik or ART9),

in a separate process of the Linux Kernel; so, the instance of an application and

the memory it uses are completely isolated. In addition, both system and user

applications run under a distinct system identity (User ID and Group ID), so

applications are separated from each other and from the system ones.

An additional level of security is guaranteed through the permission mechanism

that defines the access policies that grant certain privileges to the application that

requests to execute a defined function of the Android API. Permissions requested

by an Android application in the past versions of the Framework were defined

9https://source.android.com/devices/tech/dalvik/



Chapter 2. Background & Related Work 18

by declaring them in the Manifest of the Application; as an example, Listing 2.1

shows the permission needed by an application to create a Socket. While the user

is installing the application on his device, he is asked to grant all the required

permissions; when the application is executed, it assumes that all the requested

permission are granted.

Listing 2.1: Mainfest Permission Example

<uses-permission android:name="android.permission.INTERNET" />

Android M (Marshmallow, 6.0), the newest version at the time of writing, en-

forces a fine-grained access permission mechanism. Applications targeting Android

M and above need to request their permissions at runtime. Permissions should still

be declared in the Manifest, but the caller object, before accessing functions of the

API that require a permission, should verify through the ActivityCompat object

that the permission has been granted or request it to the user.

2.1.3 Android Testing Fundamentals

Android applications are tested using an extension of the jUnit Framework that

provides the methods to interact with the Activities and GUI Objects of the AUT.

An Android Application is typically composed by a set of Java classes that can

be tested individually in the local JVM if they don’t depend on the Android

Framework Library. On the contrary, if the class under test exploits functions

from the Android Framework Library, test cases should be installed together with

the app on a virtual or a real device.

The Instrumentation Framework is the fundamental component of the Android

Testing Framework and allows to control the life cycle, the state, the GUI and the

running environment of the AUT. Figure 2.7 shows a subset of the classes com-

posing the Android Testing Framework. AndroidTestCase extends directly the



Chapter 2. Background & Related Work 19

Figure 2.7: Android Testing Framework Overview

TestCase class of the jUnit Framework and to be run does not require the ap-

plication to be executed; test cases extending the AndroidTestCase class can test

components that do not need a GUI, like Services and Content Providers. Ac-

tivityInstrumentationTestCase2 allows to perform functional tests of a single

Activity, which can be accessed through the getActivity() method. The Activity

under test is started and finished before and after each test, allowing to observe the

evolution of the state of the GUI during the test execution. ActivityUnitTest-

Case provides an isolated environment for the execution of the Activity, which

will be not connected to the system, that allows to have more control over the test

environment of the Activity. ApplicationTestCase allows the test of the entire

life cycle of the AUT. InstrumentationTestRunner is the class responsible of

running the test cases.

2.1.4 Android Testing Tools

In the following some tools related to the functional testing of Android applications

are briefly described.



Chapter 2. Background & Related Work 20

Monkey10 is a tool that runs on an emulator or a device able to generates

pseudo-random sequences of user events such as clicks, touches, or gestures, as

well as a subset of system-level events. Monkey Testing Tool Library11 is a

copy of the original Android Monkey tool, implemented on top of the Android

Instrumentation for exploiting the random event generator in a test case.

As regards script-based functional testing there are two main frameworks avail-

able in the context of Android Applications. Robotium12 is an extension of the

Android Testing Framework created to ease the writing and understanding of

script-based test cases. Espresso13 is a test framework that allows the creation of

automated script-based functional tests. Espresso features a simple and extensible

API for the automation of the interaction with the GUI of the AUT; a test case

using the Espresso framework behaves as if an actual user is using the app.

Robotium Recorder14 is a Capture/Replay tool for Android Applications

that support script-based functional testing; it generates test cases exploiting the

Robotium Framework.

To support the execution of Android test cases the Android SDK provides

some tools. As an example, monkeyrunner15 that exposes an API for writing

programs that control an Android device or emulator from outside of Android code.

Emma16 is a tool to measure code coverage in the context of Java applications. It

allows to know how much and which parts of the source code have been actually

exercised by the test case.

Finally, Robolectric17 is a unit test framework that rewrites the Android SDK

10http://developer.android.com/tools/help/monkey.html
11https://code.google.com/archive/p/androidmonkey/
12https://github.com/robotiumtech/robotium
13http://developer.android.com/tools/testing-support-library/index.html#Espresso
14http://robotium.com/products/robotium-recorder
15http://developer.android.com/tools/help/monkeyrunner concepts.html
16http://emma.sourceforge.net/
17http://robolectric.org/



Chapter 2. Background & Related Work 21

classes as they are being loaded and making it possible for them to run on a regular

JVM.

2.2 GUI Testing

Mobile applications are GUI-based applications, i.e., apps that have a GUI front-

end. A GUI responds to user events, such as mouse movements or menu selections,

providing a front end to the underlying application code. The GUI interacts with

the underlying code through messages or method calls [75]. A well-known approach

for testing GUI-based applications is through its GUI, by performing sequences of

user input events on GUI widgets. This activity is known in the literature as GUI

testing [76].

A key factor of any GUI testing technique is the test data generation approach.

According to the systematic mapping presented by Banerjee et al. [21], there are

several test data generation techniques usable in GUI testing, such as Capture/Re-

play, Model-based and Random testing. Other less popular methods are symbolic

execution, formal methods, or statistical analysis.

Capture/Replay techniques record user interactions and convert them into test

scripts that are able to automatically replay the interactions between user and

application [49]. These techniques are usually exploited to perform regression

testing and are very popular in several fields, such as Web application and desktop

application testing [35].

Model Based techniques propose a different approach for test data generation,

since they rely on a model of the GUI to generate test cases. According to Banerjee

et al. [21], most common GUI models exploited for GUI testing are event flow

graphs (EFG) and finite state machines (FSM). Usually these models have to be

abstracted from the subject application, by executing resource-intensive activities.



Chapter 2. Background & Related Work 22

In order to support the execution of this activity, several techniques and tools

have been proposed in the literature. Memon et al. [73] present GUI Ripping, a

dynamic process in which the GUI of the software is automatically traversed by

opening all its windows and extracting all their widgets (GUI objects), properties,

and values. The information gathered through this process can be exploited for

generating test cases. In a later work, Memon et al. [74] redefined GUI Ripping as

a technology that takes as input an executing GUI-based application and produces,

as output, its workflow model(s). The technique has been implemented by Memon

et al. in a tool within the GUI Testing frAmewoRk (GUITAR) [43], [74], [90]; the

tool is not only able to reverse engineer the GUI of the application, but is also

capable of automatically generating and executing test cases. Ana Paiva et al.

[94] proposed a process that mixes manual with automatic exploration to reverse

engineer structural and behavioral formal models of a GUI application. The goal

is to diminish the effort required to construct the model and mapping information

needed in a model-based GUI testing process. Analogously, Mesbah et al. [77]

present a Web crawling technique that automatically detects and exercises all the

elements of the Web application front-end that are capable of changing the state of

the UI; the product of this crawl-based technique is a state-flow graph model that is

composed by the states of the UI encountered during the crawling and the possible

transitions between them. This model can be exploited for comprehending the

AUT or for automatic generation of test cases of the AUT. Griebe et al. [42] present

a model-based approach for testing context-aware mobile applications, based on a

context-enriched UML Activity Diagram system model defined at design-time.

Another well-known approach of test data generation is Random testing. Ac-

cording to Hamlet [45] it is the simplest technique to select test cases. They are

chosen at random from the input domain based on some distributions. Random

testing is very popular in several fields, such as hardware testing, protocol testing,



Chapter 2. Background & Related Work 23

etc. In the field of GUI based applications, there has also been a growing interest

in Random testing tools, also known as Monkey tools, that are used to perform

crash testing of software applications. A monkey tool is able to test a program

by sending it unstructured random input [78], implementing a kind of fuzz testing.

Fuzz testing has shown its potential in assessing the robustness of software, while

at the same time not requiring much effort for implementation.

2.2.1 GUI Testing Android Applications

As regards GUI Testing in the context of Android Applications, an extensive

Systematic-Mapping-like search [101] [95] has been performed to find previous

work on GUI Testing of Android Applications. In the first place, the ACM18,

IEEE19 and Scopus20 digital libraries have been considered and searched using the

generic query android testing that produced 4192 entries. The result has been

filtered by defining simple exclusion and inclusion criteria; in detail have been

considered, articles, without duplicates, written using English language, related

to Engineering and Computer Science, classified as Paper or Journal Article or

Book Chapter, that in the abstract contained references to the presentation of one

or more testing techniques for Android applications. Finally, to not compromise

the quality of the search, each paper has been manually examined and filtered the

ones related to Automated GUI Testing Techniques in the context of Android Ap-

plications. At the end of the whole process a list of 39 papers has been obtained.

Figure 2.8 shows the distribution among the years of the selected papers, under-

lining how the interest in the Android GUI Testing techniques has grown over the

last years (until November 2015).

In the following the contributions described in the selected papers are briefly

18http://dl.acm.org/
19http://ieeexplore.ieee.org/
20http://www.scopus.com/



Chapter 2. Background & Related Work 24

Figure 2.8: Contributions about Android GUI Testing per Year

summarized, excluding the contributions discussed in this thesis; they are ordered

by the year of publication.

Liu et al. [66] propose Adaptive Random Testing (ART) a process based on

an adaption of the FSCS-ART technique proposed by Chen et al. [26], [25] for

testing of mobile applications. The sequences of events are randomly generated

considering both GUI events and context events even if they are not actually

handled by the application under test. The approach is implemented within the

tool MobileTest.

Chang et al [24] present a platform independent approach to capture test vi-

sually and produce test script that uses images to specify which GUI components

to interact with and what visual feedback to be observed.

Takala et al. [107] propose a set of tools for test modeling, design, generation

and debugging, that use a Labeled State Transition Machine, belonging to the

family of Finite State Machine models.

Hu et al. [52] present an approach based on the Monkey tool21 that generates

21http://developer.android.com/tools/help/monkey.html



Chapter 2. Background & Related Work 25

and sends a predefined number of random events to the application by means of

the Monkey tool, in order to find different kinds of bugs in Android applications.

Amalfitano et al. [9] propose a technique based on a crawler that automatically

builds a model of the GUI of the AUT; this model can be exploited to obtain test

cases that can be automatically executed.

Nguyen et al. [91], describe a technique that combines model-based and com-

binatorial testing approaches that is based on a Finite State Machine model of the

app; the technique is implemented in a tool called M[agi]C.

Zheng et al. [124] describe a method that combines static analysis and dynamic

analysis to reveal UI-based trigger conditions. The dynamic analysis is used to

enforce the execution along the suspicious path obtained from static analysis of

the source code of the application.

Mirzaei et al. [82] propose a technique that exploits a symbolic execution

technique implemented in the context of Java applications to generate test inputs

for Android applications.

Anand et al. [14] present a fully automatic and general approach based on

concolic testing, implemented in a tool called ACTEve.

Amalfitano et al. [12] [10] propose an automated technique that test an android

application through its GUI: the GUI of an AUT is explored automatically with

the aim of exercising it in a systematic manner.

Zhang et al [122] present a technique with the aim of finding invalid thread

access errors in multithread Android applications.

Kaasila et al. [57] describe an online platform for executing UI tests on different

physical devices based on a Capture/Replay technique. Test cases are manually

recorded by the tester, then the test is uploaded to the platform that runs the

test cases on a set of physical Android devices and reports the results back to the

developer.



Chapter 2. Background & Related Work 26

Gomez et al. [41] present RERAN, a technique and a tool for recording and

replaying user interactions on the basis of information captured by examining the

low-level event stream of an Android application.

Jensen et al. [55] propose a testing process that combine concolic execution

and model-based techniques, implemented in a tool called Collider.

Rastogi et al [97] present AppsPlayground an automated dynamic security

analysis of Android applications; it integrates the implementation of different tech-

niques to come up with an effective analysis environment able to evaluate Android

applications.

Yan et al. [117] propose an approach for testing for resource leaks in Android

applications. Test case generation is based on a GUI Model obtained by combin-

ing the one built by means of AndroidRipper [9] and the information extracted

manually from the source code. The approach is implemented in a tool called

LeakDroid.

MacHiry et al. [68] present a random testing approach based on a observe-

select-execute cycle implemented in the Dynodroid toolset. The authors present

three different random techniques: Frequency, Uniform Random and Biased Ran-

dom. The Frequency technique selects an event that has been selected least fre-

quently by it so far. The Uniform Random technique selects an event uniformly at

random. The Biased Random technique randomly selects an event also by taking

into account the contexts the events belong to.

Azim et al. [17] propose two testing techniques implemented in the A3E tool.

One of the techniques, exploits a static analysis technique that analyze the byte-

code of the AUT in order to infer a model called Static Activity Transition Graph

(SATG); this model is then used to generate test cases. The other technique,

instead, is based on a dynamic analysis technique that automatically explores the

GUI of the AUT by firing event in a depth-first manner and is able to infer a



Chapter 2. Background & Related Work 27

Dynamic Activity Transition Graph, (DATG) model of the AUT.

Choi et al. [27] present two testing techniques that use machine learning to

to generate user events sequences, based on the Extended Deterministic Labeled

Transition System (ELTS) model of the GUI. Both techniques are based on the

L* algorithm [15]: one is an implementation of this technique, the other is an

improvement of the algorithm aimed at minimizing the number of the restarts of

the application. These techniques are implemented in a tool called SwiftHand.

Yang et al. [118] propose a grey-box testing technique implemented in a tool

called ORBIT. In a first phase, a model of the UI of the AUT is obtained via

static analysis of its source code. Then, based on the inferred model, an auto-

mated exploration is performed by a crawler implementing two distinct strategies,

respectively called Depth First Standard (DFS) and Crawling With Backtrack.

Liu et al. [65] describe an approach to capture user interactions and to generate

test scripts for the replay phase; their approach supports assertions that can be

used to catch errors in the execution of the generated test cases. They have

implemented their approach in a tool called Android Capture and Replay testing

Tool (ACRT).

Ying-Dar Lin et al. [63] present Smart Phone Automated GUI (SPAG) a Cap-

ture/Replay tool that runs on device, is based on an image processing techniques

and dynamically changes the timing between events to adapt to the workload of

the device; they present also an improved version called SPAG-C [64] that reduces

the time of the testing process and increases the usability compared to the previous

version.

Li et al. [62] propose a technique that exploits app executions recorded by the

users (i.e testers) to spot during the replay phase certain stop points (i.e. points

where the user stops for choosing next actions) and use them to guide a systematic

exploration of the UI of the AUT. The systematic exploration is carried out by



Chapter 2. Background & Related Work 28

using techniques presented in literature both Random [52] and DFS [17] [118].

Zaeem et al. [121] propose a framework able to generate both test sequences and

the corresponding assertions using an extensible library of oracles; the framework

exploits a Finite State Machine model of the AUT and is implemented in a tool

called QUANTUM.

Mahmood et al. [69] present a technique that automatically extracts from

the code of the application two models, e.g., the Interface Model and the call

Graph Model; these models are exploited for generating test cases by means of

evolutionary techniques. The results of test case executions are then evaluated

using a fitness function that rewards code coverage and uniqueness of the covered

paths. The technique is implemented by the EvoDroid tool.

Van der Merwe et al. [110] present JPF-Android, a model checking tool for

Android applications that allows them to be verified on Java PathFinder (JPF);

the application is executed on a model of the Android software stack; the user and

system input events are simulated for driving the application execution.

Wang et al. [112] propose a technique implemented in a tool called Droid-

Crawler, that is that is very similar to the one presented by Amalfitano et al. in

[10]. It performs an automatic exploration of the AUT using a depth-first strategy

and infers a GUI Tree model of the GUI.

Hu et al. [53] describe an uniform random technique and a model-based tech-

nique that are able to automatically generate sequences of relevant events for the

AUT. These techniques are implemented in a tool called AppDoctor. This tool

also features a Capture/Replay technique.

Maya et al. [70] propose a technique for identifying data races in Android

Application that is based on the systematic exploration of the UI of the tested

application. The technique is implemented in the DROIDRACER tool.

Amalfitano et al. [6] propose a process to improve the effectiveness of test cases



Chapter 2. Background & Related Work 29

generated by the GUI Ripping technique presented in [10] using the model-based

technique described by Marrone et al. in [72] [40].

Hao et al. [47] present a framework, called PUMA, that can be exploited

for implementing several testing techniques by using a scripting language. In

the paper the authors implement a pseudo-random testing technique for testing

Android applications.

Mirzaei et al. [81] present a framework for automated testing of Android ap-

plications that automatically extracts models of the behavior and interface of an

application and combine model-based testing with symbolic execution to system-

atically generate test cases.

Amalfitano et al. [11] propose a testing approach based on the GUI Ripping

process [74]; the approach is based on three separate steps of Ripping, Generation

and Execution. In the Ripping step, the GUI of the application is traversed and

a FSM model of the GUI is constructed. The Generation step uses the generated

model and a test adequacy criteria to obtain test cases, each modeled as a sequence

of GUI events. In the Execution step test cases are replayed.

Espada et al. [99] propose a formal definition of a state machine that models

the expected user interaction with the mobile application and a method to employ

the model checker SPIN [50] to produce a set of test cases that generate traces for

runtime verification tools. They implemented modeling and test generation phases

in a tool chain called DRAGONFLY.

Morgado et al. [84] present an approach implemented in the iMPAcT tool

that reverse engineers a mobile application in order to identify the UI Patterns of

the AUT and test if they are correctly implemented. The process is based on an

uniform random event generation technique.

Zhauniarovich et al. [123] present a random testing technique relying on the

Monkey tool. The technique is implemented in the BBoxTester framework.



Chapter 2. Background & Related Work 30

Wen et al. [114] propose a process based on the parallel execution of distributed

testing nodes, coordinated by a centralized controller. The AUT is analyzed dy-

namically and test cases are generated by the nodes. The process is implemented

in a tool called Parallel Android Testing System (PATS).



CHAPTER 3

Android Ripper

In this chapter the AndroidRipper tool is described; it is based on the GUI Ripping

technique and is able to automatically explore Android applications by exercising

their GUI, to generate executable test cases, to abstract models of the GUI and

to report the amount of source code covered by the generated test cases.

3.1 Introduction

Mobile applications are Event-Driven systems that can respond both to user-

generated events (e.g. touch) and events generated by the system (e.g. generated

by the sensors). The automatic testing processes for Event-Driven Software can

be basically divided into two distinct phases:

• Test Case Generation: in this phase test cases are produced as sequences

of one or more events.

• Test Case Execution: in this phase test cases are executed automatically

i.e. the sequence of events that compose each test case is fired on the appli-

cation under test.

Rothermel et al. [18] claim that there are two possible ways to combine these

steps, summarized in Figure 3.1:

31



Chapter 3. Android Ripper 32

Figure 3.1: GUI Testing Automation Mechanisms

• Offline test cases generation: the two phases are separated and sequen-

tial; for example, in the model-based testing process, tests are generated from

a model and subsequently executed; the same applies to techniques based on

Capture/Replay, Symbolic Execution and so on.

• Online test cases generation: the two phases are not separated, but the

sequences of events are extracted during the generation phase and then exe-

cuted while the application is running, until a specific termination condition

is verified.

In a study conducted by Amalfitano et al. [7] on automated testing techniques,

the authors distinguish between Random testing techniques [88] and Active Learn-

ing testing techniques [96] [27]. Random testing techniques generate and execute

pseudo-random sequences of events on the AUT [78]. Active Learning Testing

Techniques combine Model Learning and GUI Testing Techniques [27]; these tech-

niques are based on the learning of a model of the GUI of the AUT by which

they generate sequences of events. The authors also show that there is a certain

similarity in the way these techniques operate. In particular, they are based on

the exploration of the application: iteratively they plan and trigger sequences of

events on the GUI of the AUT until a termination criterion is not satisfied. These



Chapter 3. Android Ripper 33

common characteristics were collected and summarized in Algorithm 1.

Algorithm 1 Unified Online Testing Algorithm
Require: TerminationCriterion, ExplorationStrategy, AbstractionStrategy, ExtractionCrite-

rion, SchedulingStrategy

1: if (ExplorationStrategy == ActiveLearning) then

2: AppModel← initializeAppModel(AbstractionStrategy);

3: stopCondition← EvaluateStopCondition(TerminationCriterion);

4: while (!stopCondition) do

5: fireableEvents[]← ExtractEvents(ExtractionCriterion)

6: eventsSequence← ScheduleEvents(fireableEvents[], SchedulingStrategy);

7: RunEvents(eventsSequence);

8: if (ExplorationStrategy == ActiveLearning) then

9: AppModel← RefineAppModel(AbstractionStrategy);

10: stopCondition← EvaluateStopCondition(TerminationCriterion);

The algorithm requires as input five parameters that characterize a particular

technique implementation:

• TerminationCriterion: defines the conditions for the termination of the

process;

• ExplorationStrategy: specifies the type of the online technique, namely

ActiveLearning or Random;

• AbstractionStrategy: defines the technique to analyze and describe the

current status of the GUI of the AUT;

• ExtractionCriterion defines the criterion for the selection of the events

that can be fired on the GUI of the AUT;

• SchedulingStrategy: specifies the strategy to define the next event to be

triggered between the possible ones.

As for the functions called in the considered algorithm:



Chapter 3. Android Ripper 34

• initializeAppModel: if the algorithm belongs to the category of Active

Learning testing techniques, this function initializes the model of the GUI

of the AUT;

• EvaluateStopCondition: this function evaluates the TerminationCrite-

rion

• ExtractEvents: using the ExtractionCriterion this function extracts the

set of events that are fireable on the current GUI;

• PlanEvents: this function chooses the next sequence of events to be exe-

cuted by using the SchedulingStrategy

• RunEvents: this function executes the chosen sequence of events;

• RefineAppModel: if the algorithm belongs to the category of Active Learn-

ing testing techniques, this function updates the model of the GUI of the

AUT by abstracting its current status.

3.2 System Architecture

This section presents the system architecture of Android Ripper. Android Ripper

implements Algorithm 1, presented in the previous section. It is developed in Java

and it is based on a Master-Slave model. In the following, before diving into the

details of the implementation of Android Ripper, an overview about its high-level

components is given, describing what they do and how they work together.

3.2.1 Overview

Android Ripper is a tool for GUI testing of Android applications that is able to

implement Online GUI Testing techniques (see Section 3.1). It is composed by



Chapter 3. Android Ripper 35

three high-level components. Figure 3.2 shows the main components of Android

Ripper and how they communicate.

Figure 3.2: Overview of Android Ripper

Figure 3.2 shows that the AndroidRipper Service and AndroidRipper Test Case

components are deployed on a virtual or real device running Android, while the

AndroidRipper Driver runs in a Java Virtual Machine (JVM).

The AndroidRipper Service component is an Android Service (see Sub-

section 2.1.2.5) running in background on the target device that is responsible to

mediate the communication among the AndroidRipper Driver and the AndroidRip-

per Test Case and to run operations that require specific permissions. The raison

d’etre of this component resides in the Android Permissions Mechanism (see Sub-

section 2.1.2.6). It, in fact, solves the problem to create and use a TCP/IP Socket

and to call other APIs of the Android Framework that need an explicit permis-

sion to be used without modifying the AUT. The TCP/IP connection is needed

to communicate with the AndroidRipper Driver component; these messages are

forwarded to the AndroidRipper Test Case via IPC.



Chapter 3. Android Ripper 36

The AndroidRipper Test Case component is an ActivityInstrumentation-

TestCase2 jUnit test case (see Subsection 2.1.3) for the AUT that is responsible

to execute events on the AUT and to abstract a description of its GUI. It exploits

the Robotium Library1 to interact with the AUT and the AndroidRipper Service

to communicate with the AndroidRipper Driver by exploiting Android IPC Mech-

anism2.

The AndroidRipper Driver component drives the execution of the testing

process. It implements the main business logic of the tool and coordinates all the

other components. The methods of AndroidRipper Driver implement the functions

listed in Algorithm 1; they rely on the AndroidRipper Test Case for the execution

of the scheduled events on the AUT and the retrieval of a description of its GUI.

Finally, the AndroidRipper Installer tool has been implemented to build

and install AndroidRipper Service, AndroidRipper Test Case and the AUT on the

target device; this tool exploits Android SDK Tools3 and Apache Ant4.

Figure 3.3 shows an overview of the packages of Android Ripper; these packages

are further described in detail in the following section.

3.2.2 AndroidRipper Model

The GUIs of the application in Android Ripper are abstracted according to the

conceptual model shown in Figure 5.1.

According to this model, the GUI is composed of instances called GUI Inter-

faces ; a GUI Interface is composed of a set of visual items called Widgets ; each

Widget is defined by a Type and some Properties with their Names and Values.

Examples of Widget properties are the position on the screen, the identifier and

1https://github.com/robotiumtech/robotium
2http://developer.android.com/guide/components/bound-services.html
3http://developer.android.com/tools/help/index.html
4http://ant.apache.org/



Chapter 3. Android Ripper 37

JVM

Driver

Model

Device

Android Ripper Service

Android Ripper Test Case

Termination Criterion

Extraction Criterion

Abstraction StrategyScheduling Strategy

Figure 3.3: Package Diagram of Android Ripper

Figure 3.4: Conceptual Model of a GUI Interface



Chapter 3. Android Ripper 38

so on. Event Handlers are methods that can be defined in the context of a GUI

Interface or directly in the context of a Widget and that are executed in response

to the occurrence of an Event. Events may be User Events if they are triggered by

a user interaction on the GUI (e.g. the tap on a button), or System Events if they

are triggered by the execution environment (e.g. a pausing of the application). An

Event may have zero or more Parameters ; each Parameter is identified by a Name

and a Value. As an example, parameters of a tap event are the coordinates of the

point of the GUI Interface where the tap is performed by the user. An Action

is composed by an Event and one or more User Inputs and is able to trigger a

Transition between two GUI Interface instances (not necessarily different between

them). An User Input consists of the modification of a Value of a property (e.g.

the insertion of a text in a editable text field) that does not cause the execution

of any event handler (elsewhere it is modeled as an Action).

On the basis of these definitions, a Test Case t is a sequence of pairs {G, A},

where A is an Action that can be performed on the GUI Interface G and that may

generate the GUI Interface of the next pair of the sequence. The first pair starts

from the Home interface of the app G0. A Test Case can be also defined as t =

(G0, A0, ... Gm, Am), where G0 is the Home interface. A set of such sequences is

a Test-Suite.

3.2.3 AndroidRipper Driver

Figure 3.5 shows an overview of the main components of the Driver package.

The classes in the package implement Algorithm 1. The ActiveLearning-

Driver class implements an Active Learning version of the unified algorithm,

while the RandomDriver class implements a Random version; both extend the

AbstractDriver abstract class that contains the common methods.

The driver component depends on realizations of the ExtractionCriterion, Schedul-



Chapter 3. Android Ripper 39

<<Interface>>

SchedulingStrategy

<<Interface>>

ExtractionCriterion

+testingProcessDriver()

+evaluateStopCondition()

+extractEvents()

+planEvents()

+runEvents()

AbstractDriver

<<Interface>>

TerminationCriterion

+testingProcessDriver()

+initializeAppModel()

+refineAppModel()

ActiveLearningDriver

+testingProcessDriver()

RandomDriver

RelevantEventsExtractionCriterion

PredefinedEventsExtractionCriterion

RandomSchedulingStrategy

DepthFirstSchedulingStrategy

BreadthFirstSchedulingStrategy

ModelCoverageTerminationCriterion

MaxIterationsTerminationCriterion

<<Interface>>

AbstractionStrategy

SWAbstractionStrategy

MAVAbstractionStrategy ModelTAVAbstractionStrategy

AppModel

Figure 3.5: AndroidRipper Driver Package

ingStrategy, TerminationCriterion and AbstractionStrategy interfaces, that are re-

lated to the parameters required by Algorithm 1. The implementation features a

library of classes implementing such interfaces.

A class implementing the ExtractionCriterion interface extracts the events

that the technique can fire on the GUI of the AUT by exploiting the Model; in the

library two implementations of this interface are proposed: the PredefinedEvent-

sExtractionCriterion class that filters only a subset of predefined types of events

and the RelevantEventsExtractionCriterion class that extracts relevant events only,

e.g. events that can be actually handled by the app in its current state [68].

A realization of the SchedulingStrategy interface implements an algorithm

for choosing the sequence of events that will be fired; three strategies are im-

plemented in the library: the RandomSchedulingStrategy, that chooses the next

event sequence in a pseudo-random manner and BreadthSchedulingStrategy and the

DepthSchedulingStrategy that respectively schedule events using First-In-First-Out

(FIFO) and Last-In-First-Out (LIFO) strategies.



Chapter 3. Android Ripper 40

A TerminationCriterion determines the approach used to stop the main loop

of the algorithm; the library features two implementations: theModelCoverageTer-

minationCriterion that terminates the process when no new events sequences can

be generated on the learned model and the MaxIterationsTerminationCriterion

that takes into account the number of iterations.

Finally, a class implementing the AbstractionStrategy interface determines

the strategy implemented by a technique for abstracting the model of the GUI;

the implementation features the SWAbstractionStrategy class that considers the

set of widgets composing the GUI and the values assumed by its attributes. This

class is further specialized in: TAVAbstractionStrategy that considers only the type

attribute of the widgets andMAVAbstractionStrategy that considers also the values

of others attributes of the widgets.

3.2.4 AndroidRipper Test Case

The main classes contained in the AndroidRipper Test Case package are shown in

Figure 3.6.

The RipperTestCase class extends ActivityInstrumentationTestCase2 (see

Subsection 2.1.3); it is connected via IPC to the AndroidRipper Service and

through its interfaces can send and receive messages to the AndroidRipper Driver.

The (unique) test method testApplication() does nothing else than initialize the

Robot, the Extraction and the Automation components and wait to be termi-

nated by a command of the AndroidRipper Driver. Each time a command from

the AndroidRipper Driver is received, the RipperTestCase handles it by calling the

related component.

The Automation class is used when the RipperTestCase is requested to per-

form an event or fill an input field on the GUI of the AUT; the Extractor class,

instead, is exploited to obtain the description of the current status of the GUI



Chapter 3. Android Ripper 41

android.test.ActivityInstrumentationTestCase2

+setUp()

+tearDown()

+testApplication()

RipperTestCase

+extract() : ActivityDescription

+getRobot() : Robot

+Extractor(r : Robot)

Extractor +fireEvent(e : Event)

+setInput(i : Input)

+sleep(timeMillis : Long)

+getRobot() : Robot

+Automation(r : Robot)

Automation

+performEventOnView(v : View)

+performSystemEvent(e : EventType)

+getWidgets() : ArrayList<View>

+findWidgetById() : View

+findWidgetByName() : View

<<Interface>>

Robot

RobotiumRobot com.robotium.solo.Solo

1

1

1

Figure 3.6: AndroidRipper Test Case Package

of the AUT. Both classes make use of the methods of an implementation of the

Robot interface that is responsible of interacting with the GUI of the AUT and

the running environment; our implementation exploits the functions offered by the

Robotium Library5.

3.2.5 AndroidRipper Service

Figure 3.7 shows the classes belonging to the AndroidRipper Service package.

This Android Service acts as a proxy between Driver and AndroidRipper Test

Case. The AndroidRipperSocketServer class implements a TCP/IP server

that listens for remote requests from the Driver. On the other side, the Service

exposes the IAndroidRipperServiceCallback and IAndroidRipperService

5https://github.com/robotiumtech/robotium



Chapter 3. Android Ripper 42

-handler : Handler

-serverSocket : ServerSocket

-socket : Socket

+RipperSocketServer(h : Handler)

+startServer()

+stopServer()

+notifyMessageReceived(message : Message)

+notifyDisconnection()

+send(message : Message)

AndroidRipperSocketServer

-callbackList : RemoteCallbackList<IAndroidRipperServiceCallback>

-handler : Handler

+send(message : Message)

+register(c : IAndroidRipperServiceCallback)

+unregister(c : IAndroidRipperServiceCallback)

+broadcast(message : Message)

AndroidRipperService

java.lang.Thread

+AndroidRipperServiceStub(service : AndroidRipperService)

+send(message : Message)

+register(c : IAndroidRipperServiceCallback)

+unregister(c : IAndroidRipperServiceCallback)

AndroidRipperServiceStub

IAndroidRipperService.Stub

+send(message : Map)

+register(callback : IAnrdoidRipperServiceCallback)

+unregister(callback : IAnrdoidRipperServiceCallback)

<<Interface>>

IAndroidRipperService

+receive(message : Map)

<<Interface>>

IAndroidRipperServiceCallback

1

11

Figure 3.7: AndroidRipper Service Package

remote interfaces that allow the AndroidRipper Test Case to be bound to the

service for receiving requests and sending responses; these interfaces are defined

using AIDL6.

3.2.6 AndroidRipper Master-Slave Interaction

Figure 3.8 shows the interaction between AndroidRipper Driver (Master) and An-

droidRipper Test Case (Slave).

AndroidRipper Driver implements the functions of Algorithm 1. To interact

with the AUT this component exploits the AndroidRipper Test Case. When the

Driver wants to update the AppModel, it asks for a complete description of the

current GUI status of the AUT to AndroidRipper Test Case that calls the function

6http://developer.android.com/guide/components/aidl.html



Chapter 3. Android Ripper 43

Android Ripper Driver Android Ripper Test Case

initializeAppModel

describeGUI

Statup Application

EvaluateStopCondition

ExtractEvents

ScheduleEvents

RunEvent

Fill Inputs

Fire Event

describeGUI

RefineAppModel

(ExplorationStrategy == ActiveLearning)

stopCondition

(ExplorationStrategy == ActiveLearning)

true

false

true

false

false

true

Figure 3.8: AndroidRipper Master-Slave Interaction



Chapter 3. Android Ripper 44

describeGUI() that returns the requested description. To execute an Action (see

Subsection 3.2.2) on the AUT the Driver invokes the AndroidRipper Test Case

that simulates User Inputs composing the Action by calling the method fillInputs()

and fires the related User Event by executing the method fireEvent(); after the

execution a description of the status of the GUI is returned to the Driver.

3.3 Case Study

3.3.1 Subject Application

The application selected as subject of the case study is Trolly7. Trolly is a simple

and intuitive open source shopping manager application published on Google Play

having more than 5 thousand of downloads. Trolly provides features for handling

a list of shopping items. Each item can be created, added into the list, edited,

deleted and changed in state. A shopping item can assume one of the following

three states:

• IN-LIST : when the user has to buy it;

• IN-TROLLEY : when it has been already bought by the user;

• OFF-LIST : when it has been deleted from the list, but is still stored into

the local database.

The Trolly source code is made of 19 classes, 3 packages, 64 methods and a total

of 364 executable Java LOCs. The data persistence is guaranteed by a local SQLite

database. Moreover, the application has a single activity class implementing the

GUI. As shown in Figure 3.9 the GUI offers three widgets the user can interact

with: an Add an item TextEdit, an Add Button and a List of items.

7https://play.google.com/store/apps/details?id=caldwell.ben.trolly



Chapter 3. Android Ripper 45

Figure 3.9: Excerpt of the initialized user interface

The user can fill the TextEdit with the name of the item he would like to buy,

then he taps on the Button to add this item into the List. The new added item

will be in the IN-LIST state. The remaining features provided by Trolly can be

reached through the device menu or by means of the context menu that appears

when a long tap event is fired on one of the items. Trolly provides two kinds of

views. In the default mode view the OFF-LIST items are hidden, whereas in the

adding mode view they are shown in the items list and have the dark grey color.

The IN-LIST items are always rendered as green in the list. Moreover, Trolly

offers two further functionality. The first one, called reset list, deletes all the items

from the local database. The second one is an Autofill features that helps the

user when he adds a new item by listing the names of the items stored into the

database.

3.3.2 Metrics

The performance of a testing technique is evaluated in this experiment by mea-

suring both the reached test adequacy and the cost for its execution.

The test adequacy is measured in terms of LOCs coverage that is the number

of lines of the source code of the subject application that are executed by a testing

technique. The LOCs Coverage % is the ratio between the LOCs coverage and

the number of statements of the subject application, measured in percentage. The



Chapter 3. Android Ripper 46

cost for the execution of each technique is evaluated in terms of the number of

fired events (# of Fired Events). Moreover, to evaluate how much the choice of

the parameters may influence the GUI model produced by Active Learning testing

techniques, the complexity of the inferred GUI tree models has been measured.

The considered Active Learning techniques reconstruct a model called GUI Tree

where the nodes represent instances of the user interfaces in the Android applica-

tion, while edges describe event-based transitions between interfaces [12]. Specific

metrics are evaluated on these models, such as the number of nodes (# of Nodes),

the number of edges (# of Edges), the number of leaves (# of Leaves) and the

maximum depth of the GUI tree (Depth).

3.3.3 Experiment Setup

3.3.3.1 Application Preconditions

The Trolly application is initialized with two items in the List every time it is

launched. Moreover, both the items are in the IN − LIST state. Figure 3.9

shows an excerpt of the Trolly user interface that is initialized with the described

precondition where the Bread and Milk items are in the shopping list and are in

the IN − LIST state.

3.3.3.2 Considered Testing Techniques

Both Active Learning and Random techniques are considered in the experiment.

The Active Learning techniques feature a combination of the following values for

the parameters of Algorithm 1:

• ExtractionCriterion: RelevantEventsExtractionCriterion (RE in the fol-

lowing)



Chapter 3. Android Ripper 47

Table 3.1: Considered Testing Techniques

ExtractionCriterion TerminationCriterion AbstractionStrategy SchedulingStrategy

T1 RE MC MAV BF

T2 RE MC MAV DF

T3 RE MC TAV BF

T4 RE MC TAV DF

T5 RE MI - R

• TerminationCriterion: ModelCoverageTerminationCriterion (MC in the

following)

• AbstractionStrategy: TAVAbstractionStrategy (TAV in the following),

MAVAbstractionStrategy (MAV in the following)

• SchedulingStrategy: DepthFirstSchedulingStrategy (BF in the following),

BreadthFirstSchedulingStrategy (DF in the following)

While the considered Random technique features:

• ExtractionCriterion: RelevantEventsExtractionCriterion (RE in the fol-

lowing)

• TerminationCriterion: MaxIterationsTerminationCriterion (MI in the fol-

lowing), limited to 1000 iterations

• SchedulingStrategy: RandomSchedulingStrategy (R in the following)

The ExplorationStrategy parameter is implemented respectively in the Active-

LearningDriver and RandomDriver classes.

In detail, the considered techniques are reported in Table 3.1, where each com-

bination is labeled as Tx.



Chapter 3. Android Ripper 48

3.3.3.3 Testing Environment

AndroidRipper was executed on a set of PCs, each one equipped with a Windows 7

operating system, 64 bit Intel I5 processor at 3GHz, and 4 GBytes of RAM. Trolly

was executed and tested on the Android Virtual Device (AVD) provided by the

Android Developer Toolkit (ADT). The AVD was configured for emulating a device

having 512 MByte of RAM, a 64 MByte SD Card, and an Android Gingerbread

(2.3.3) installed on it. Moreover, Trolly was instrumented through the Emma8

tool for measuring the code coverage.

3.3.4 Results

Table 3.2, Table 3.3 and Table 3.4 report the results obtained from the execution

of each testing technique.

As for the performances, Table 3.2 shows the reached testing adequacy values

(in terms of LOCs coverage and LOCs percentage) whereas Table 3.3 the costs in

terms of number of fired events. Regarding the reconstructed models, Table 3.4

reports the complexity metrics values evaluated for the GUI Tree models that were

inferred by the six active learning testing techniques. As data show, the choice of

the parameters strongly influences the results of the testing techniques. As for the

performances, all the testing techniques reached different values of LOCs Coverage

and only two couples of techniques fired the same number of events.

None of the techniques covered all the source code and they did not reach

the 100% of LOCs Coverage %. The highest coverage percentage (294.4/364) was

obtained by the Random technique T5, while the lowest (220.6/364) was obtained

by the technique T2.

By fixing both the SchedulingStrategy, the effect of the AbstractionStrategy on

8http://emma.sourceforge.net/



Chapter 3. Android Ripper 49

Table 3.2: Test Adequacy Values

Testing

Technique

LOCs

Coverage

LOCs

Coverage %

T1 223.3 (223.3 / 364) = 61%

T2 220.6 (220.6 / 364) = 61%

T3 268.3 (268.3 / 364) = 74%

T4 270.3 (270.3 / 364) = 74%

T5 294.4 (294.4 / 364) = 81%

Table 3.3: Cost Values

Testing Technique
# of Fired

Events

T1 58

T2 58

T3 289

T4 244

T5 1000

the performances of the Active Learning testing techniques can be observed. Ac-

tive Learning techniques implementing a MAV strategy reached higher testing

adequacy values than the ones based on TAV . The coverage of T3 (74%) over-

came the one of T1, and the coverage of T4 (74%) was higher than T2. On the

contrary, techniques that reached lowest levels of testing adequacy were cheaper,

since they fired less events. In effect, the ones based on TAV needed to trigger

58 events, while more than 250 events were sent by the techniques based on the

MAV strategy.

Conversely, the SchedulingStrategy does not have a fundamental influence on

the performances of the Active Learning techniques. Indeed, techniques based on



Chapter 3. Android Ripper 50

Table 3.4: GUI Tree Complexity Metrics Values

Testing

Technique
# of Nodes # of Edges Depth # of Leaves

T1 59 58 5 51

T2 59 58 7 51

T3 290 289 11 255

T4 245 244 16 215

the same AbstractionStrategy obtain very similar results as the SchedulingStrategy

varies. As an example, T1 covered only 3 lines of code more than T2, and they

fired the same number of events. Analogously, T2 covered two LOCs less than T4.

Regarding the T5 technique, it is the better technique in terms of test adequacy

since it is able to cover more code than any of the other considered techniques, but

it needs more than double than the number of events triggered by the two MAV

based techniques and more than 10 times the number of events triggered by the

two TAV based techniques.

As for the complexity sizes of the GUI Tree models inferred by the techniques,

they are fundamentally affected only by the adopted AbstractionStrategy. Tech-

niques T1 and T2, implementing the TAV strategy obtained GUI trees less com-

plex than the ones inferred by T3 and T4 that are both based on the MAV . The

SchedulingStrategy does not always influence the complexity of the models.

Techniques T1 and T2 learned GUI trees having the same number of nodes,

edges and leaves, but T2 inferred a deeper GUI tree. Figure 3.10 and Figure 3.11

show the models that were learned by the T1 and T2 respectively. Eventually,

technique T4 obtained a deeper GUI tree than the one inferred by T3, but with a

lower number of nodes, edges and leaves.



Chapter 3. Android Ripper 51

Figure 3.10: GUI Tree inferred by T1

Figure 3.11: GUI Tree inferred by T4

3.3.5 Source Code Coverage Analysis

After this quantitative analysis, a detailed analysis was performed to examine the

portions of code that were covered or not by the different techniques.

A static analysis of the code revealed that the application has no dead code.

The code that is not covered by any of the techniques is due to the chosen precon-

ditions. For example, the portion of code related to the creation of new database

tables is never executed since the database already exists and the application does

not provide features for database elimination. Moreover, there is a portion of code

that is executable only if the application is executed starting from a specific entry

point (via an Intent message with a specific parameter). Since in the experimenta-

tion any exploration is started by directly opening the GUI of the application, this

portion of code cannot be executed. On the other hand, the limitations related to

the selection of random input strings in the SchedulingStrategy do not cause loss

of coverage in this application.



Chapter 3. Android Ripper 52

The Active Learning techniques based on the AbstractionStrategy TAV and

MAV are not able to cover more than 20 LOCs that are covered by the Random

technique T5. These lines are related to functions executed on items that are in

the IN-TROLLEY or in the OFF-LIST states. They are not executed since TAV

and MAV consider equivalent two GUI instances containing a list with the same

number of items, without considering the colors of the items. For this reason, only

the first GUI instance showing a list with items that are in these two states is

deeply explored by firing events executable on it.

Moreover, the Active Learning techniques based on theMAV AbstractionStrat-

egy (i.e. T3 and T4) covered more than 40 LOCs more than the corresponding

techniques based on TAV . In particular, the code related to the Add and to the

Autofill functions is not covered by techniques based on TAV . The reason is that

the GUI instance obtained after the insertion of a value in the text field is con-

sidered equivalent to the previous one by the TAV strategy that does not take

into account the value written in the text field. The techniques based on MAV ,

instead, continue the exploration of this GUI Instance by clicking the Add button

(causing the execution of the Add function) and by inserting a value in the text

field (causing the call of the Autofill function).

The coverage reached by the Active Learning techniques based on the BF

scheduling strategy (e.g. T1 and T3) differs of few lines with respect to the coverage

reached with the DF strategy (e.g. T2 and T4 respectively). The differences in

coverage between these two strategies are only due to the different order in the

triggering of the events and to the different depth of the generated GUI trees. In

example, code related to the state change from IN − TROLLEY to IN − LIST

is covered only by the T4 technique, while code related to the state change from

OFF − LIST to IN − LIST is covered only by the T3 technique. Moreover, the

AbstractionStrategy TAV is not able to distinguish between two different dialogs



Chapter 3. Android Ripper 53

related to the Clear List and to the Reset List functions. For this reason, the

T1 exploration technique covers only the code related to the first operation while

the T3 technique covers only the code related to the second operation due to the

different order of execution of the events.

3.4 Conclusions

In this chapter AndroidRipper is presented as a possible implementation of the

generic algorithm Algorithm 1. Using AndroidRipper, an experiment on a real

Android application was carried out obtaining some interesting aspects to improve

both the effectiveness and the efficiency of the presented testing techniques.

In particular, the presented RelevantEventsExtractionCriterion implementa-

tion only extracts events related to user’s interactions, while an Android applica-

tion can be also sensitive to system and hardware-related events. In Chapter 4 a

technique that generates automatically some of these events in Android Ripper is

presented.

Moreover, Active Learning techniques try to limit the size of the generated

AppModel and to avoid the repetition of already executed sequences of events. On

the other side, Random techniques that can generate redundant and longer se-

quences of events may reach an higher effectiveness but are generally more costly

than Active Learning techniques. In Chapter 5 a Genetic Algorithm implementa-

tion is presented; this technique aims to increase the effectiveness of a test suite

with respect to the one obtained by Active Learning techniques by introducing

randomness in the sequences of events composing the test cases, while it tries to

reduce the effort needed with respect of completely random techniques, .

As regards the cost of Random techniques, in Figure 3.12 is reported the trend

of the LOCs Coverage obtained by executing the Random technique T5 on the



Chapter 3. Android Ripper 54

Figure 3.12: Trend of the LOCs Coverage for Trolly

Trolly application for increasing numbers of iterations of Algorithm 1.

In the case study, the Random technique was arbitrarily terminated after 1000

iterations, but the code coverage does not grow after the 600th iteration. So, 600

iterations could be a more efficient termination point. But, there is no guarantee

that continuing the testing process none of the previously uncovered LOCs will

be covered. In Chapter 6 is presented a criterion that addresses the problem of

stopping a Random testing process at a cost-effective point, where test adequacy

is maximized and no testing effort is wasted.

Finally, as regards the time needed for the execution of the testing techniques,

for T1 and T2 that are based on the TAVAbstractionStrategy this time is about

1 hour, for T3 and T4 that are based on the MAVAbstractionStrategy is about

14 hours and for the Random technique T5 is about 30 hours. In Chapter 7 a

parallel implementation of Algorithm 1 is presented with the aim of increasing the



Chapter 3. Android Ripper 55

efficiency, reducing the execution time needed.



CHAPTER 4

Considering Context Events in Event-Based

Testing of Mobile Applications

This chapter is focused on the problem of testing a mobile applications taking into

account the context and context-related events. To this aim I describe:

• possible strategies of event-based testing that take into account contextual

events;

• how event-patterns could be used in three scenario-based mobile testing ap-

proaches;

• some technological solutions for implementing the proposed scenario-based

testing techniques in the Android platform;

• an example of using one of the proposed techniques for testing real Android

apps.

The work described in this Chapter has been done in collaboration with the

REvERSE Research Group1.

1http://reverse.dieti.unina.it/

56



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 57

4.1 Introduction

Some specific characteristics of handled devices must be carefully considered when

testing mobile applications. They include heterogeneity of hardware configurations

of mobile devices, scarceness of resources of the hardware platform, and variability

of their running conditions.

Heterogeneity of mobile device platforms (that come equipped with diverse

hardware sensors, screen displays, processors and so on) implies the need for ex-

pensive cross-platform development and testing [61]. The scarceness of resources

of the hardware platform requires specific testing activities designed to reveal fail-

ures in the application behavior due to resource availability (such as battery charge

level, available RAM, wireless network bandwidth and so on). The variability of

running conditions of a mobile app depends on the possibility of using it in variable

contexts, where a context represents the overall environment that the app is able

to perceive. More precisely, Abowd et al. [1] define a context as: “any information

that can be used to characterize the situation of an entity. An entity is a person,

place, or object that is including the user and applications themselves”.

When a mobile application has been designed to be aware of the computing

context in which it runs and to adapt and react according to it, it belongs to the

category of context-aware applications [20]. These apps may be notified of any

change to their context by means of events.

Context awareness of mobile apps yields several new challenges for mobile app

testing too, since an app should be tested in any environment and under any

contextual input [85]. However, a considerable part of mobile app testing literature

omits to consider the context-awareness issue [9], rather focuses on specific mobile

problems such as testing in variable network conditions [102], security testing [36],

performance testing [59], or GUI testing [12][52]. Another part addresses context-



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 58

aware testing issues [39][66][100][109][113] proposing solutions to the problem of

context modeling and deriving test cases based on the proposed models.

4.2 Event-Based Testing Techniques for Mobile

Apps

In event-based testing of event-driven systems (EDS), the behavior of the system

is checked with input consisting of specific event sequences [23].

Mobile apps are event-driven systems, too, but, differently from other tradi-

tional event-driven software systems, like Desktop or Web applications, they are

able to sense and react to a wide set of events besides user ones. Mobile devices

are equipped indeed with a wide variety of hardware sensors that are able to sense

the context in which the device stays and to notify context changes to the running

app by means of events.

Therefore, since the user can be considered as a part of the context of an app

[1], in event-based testing the application behavior should be checked in response

to several types of context event, such as:

• user events produced through the GUI;

• events coming from the external environment and sensed by device sensors

(such as temperature, pressure, GPS, geomagnetic field sensor and so on);

• events generated by the device hardware platform (such as battery and other

external peripheral port, like USB, headphone, network receiver/sender and

so on);

• events typical of mobile phones (such as the arrival of a phone call or a SMS

message);



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 59

• events like the receiving of an e-mail or a social network notification, that

are related to the fact that modern mobile phones are more and more “con-

nected”.

It is important to remark that not all the mobile apps are designed to react to

GUI events. As an example, Muccini et al. [85] distinguish between MobileApps,

that are mobile applications reacting to all contextual events (both GUI and non-

GUI ones) to generate context-based outputs, and Apps4Mobile that react only

to GUI events, like traditional applications that have been rewritten to run on

mobile devices.

Mobile Applications belonging to the Apps4Mobile category may be effectively

tested by using testing techniques designed for testing traditional applications, (like

GUI based testing for desktop or Web applications [119]). MobileApps, instead,

require event-based testing techniques that properly consider all types of context-

related events. This testing activity may be very expensive due to the large number

of possible contexts, event classes and combinations of events and contexts to be

considered.

Effective strategies for test case generation should be used to define the se-

quences of events of mixed types. To this aim, both “simple” strategies not

requiring any specific knowledge about the app under test, and more “system-

atic” approaches based on such knowledge are usable. As an example, simple

approaches may define event sequences just trying to achieve the coverage of each

class of contextual events with a fair policy. This technique may help to discover

unacceptable behaviors of the app (like crashes or freezes) that are often reported

in bug reports of mobile apps and appear when the app is impulsively solicited by

contextual events like the ones notifying connection/disconnection of a plug (USB,

headphone and so on), an incoming phone call, the GPS signal loss (for instance

when the device enters a tunnel), and similar ones.



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 60

Other systematic test generation strategies may require the coverage of specific

event sequences representing specific usage scenarios of the application.

Scenarios are software specifications defining relevant ways of exercising an ap-

plication by sequences of events. They may be described by different formalisms,

like MSC (Message Sequence Charts), State-Transitions systems, Event-Flow-

Graphs (EFG), UML sequence diagrams and so on. There are several scenario-

based testing approaches presented in the literature. As an example, in a work

by Malik et al. [71] scenarios are derived from Event-B model [2] of the sys-

tem under test (where an Event-B is a formalism for modeling the behavior of

event-based systems as a state transition system) and transformed into executable

JUnit test cases thanks to Java language implementation templates. Garzon et al.

[39] presented an approach based on the DEVS formalism [111] (a discrete event

system specification) to model scenario-specific event-patterns. Starting from the

model, it is possible to produce automatically several event sequences that repre-

sent valid sensor-related traces of a given scenario by means of an event generator

application. This model-based approach facilitates and speeds up the generation

of sensor-based data for context-aware applications testing. Wang et al. [113]

present a technique for detecting faults in Context-Aware Adaptive Applications

(CAAAs) by defining a formal, Finite State Model of Adaptation (A-FSM) and

then analyzing the model for finding adaptation faults. The A-FSM model rep-

resents the execution of a CAAA by explicitly connecting context updates with

adaptations of the application and helps to isolate adaptation faults caused by

erroneous rule predicates and asynchronous context updates.

In scenario-based testing, suitable techniques for obtaining scenarios are needed.

An interesting approach may be based on “event-patterns”, a representation of pe-

culiar event sequences that abstract meaningful test scenarios. An event-pattern

may involve one or more contextual entities and possibly trigger a faulty behavior



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 61

of the application. These patterns may be defined manually or on the basis of

bug report analysis. Event-patterns are often used for rapid testing of embedded

systems, too [108].

In the following section, possible approaches for using event-patterns for testing

mobile applications are analyzed.

4.3 Techniques for Event-Patterns Based Test-

ing

An event-pattern can be defined as a notable sequence of contextual events that

may be used to exercise the application. It may be specified by a name, a textual

description and the corresponding event sequence that must include one or more

events. The sequence can be defined by appropriate regular expressions specifying

optional, mandatory, iterative events and so on.

As an example, Table 4.1 lists some event-patterns that have been manually

defined after a preliminary analysis conducted on the bug reports of open source

applications available on public repositories like GitHub2 and GoogleCode3. An

event-pattern may be included in other event sequences, or used in isolation to

test an app.

For automating test execution, each event-pattern can be associated with a

test class that exposes and executes methods able to trigger the defined sequence

events. As an example, Table 4.2 reports the method to be executed for three

patterns defined using the Java language.

Once an event-pattern repository is available, it will be possible to generate

test cases either manually or by semi-automatic approaches. In the following, three

2https://github.com
3http://code.google.com



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 62

Table 4.1: Some Event-Pattern Examples (’+’ means one or more)

Event-Pattern Name Event-Pattern Description. Event-Pattern Specification

LRGPS
Loss and successive recovery of GPS

signal while walking.

(locationChange)+,

GPSLoss,

GPSRecovered,

(locationChange)+

NI Network Instability. (NetworkEnabled, NetworkDisabled)+

EGSW

The user Enables the GPS provider

through the settings menu and starts

a Walk.

openSettings,

GPSOn,

(locationChange)+

SIE

Arrival of a phone call when the

device is in Stand-by. Then the

call ends before the user accepts it.

standBy,

IncomingPhoneCall,

phoneCallEnds

UP
USB plugging in after any other

event except the event itself.

USBUnplugged,

USBPlugged

MSVC

Magnetic Sensor value changed

after any other event except the

event itself.

magneticSensorValueStatic,

magneticSensorValueChange

IPC
Incoming of a phone call after any

other event except the event itself.
ˆIncomingPhoneCall, IncomingPhoneCall

examples of testing techniques that exploit the event-patterns for testing a mobile

app.

Manual technique (T1): A tester manually uses event-patterns to define

scenario-based test cases that include one or more instances of event-patterns.

The tester can add the needed assertions manually, or test cases can just check the

occurrence of crashes. As an example, let suppose that the tester wants to test the

app behavior in the following scenario. The user activates the GPS provider in the

settings menu of the application, and begins to cross the path that goes from point

A to point B through N points. At point X of the navigation, the application loses

the GPS signal and recovers it at the point Y. This scenario includes instances

of two event-patterns, EGSW and LRGPS respectively. The tester can reuse the



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 63

Table 4.2: Examples of Implementations of Event-Patterns
Pattern Pattern Class Signature Execute Public Method

EGSW

public class EGWS {

...

public void execute(Point A, Point B, ArrayList<Point>Route);

private void OpenSettings();

private void EnableGPS();

private void Navigate(Point A, Point B, ArrayList<Point>Route);

...

}

public void execute (Point A, Point B, ArrayList<Point>Route){

OpenSettings();

EnableGPS();

Navigate(A,B,route);

}

LRGPS

public class LRGPS {

...

public void execute(Point A, Point Y, Point B, ArrayList<Point>Route);

private void GPSLocationChange(Point X);

private void GPSLoss();

private void GPSRRecovered();

private void Navigate(Point A, Point B, ArrayList<Point>Route);

...

}

public void execute (Point X, Point Y,Point B, ArrayList Route) {

GPSLocationChange(X);

GPSLoss();

GPSRRecovered();

GPSLocationChange(Y);

Navigate(Y+1,B,Route);

}

SIE

public Class SIE {

...

public void execute();

private void deviceGoesInStandBy();

private void incomingPhoneCall();

private void phoneCallEnds();

...

}

public void execute() {

deviceGoesInStandBy();

incomingPhoneCall();

phoneCallEnds();

}

code of these patterns to write the corresponding scenario test. Listing 4.1 shows

a possible implementation of the scenario test reusing the pattern code.

Listing 4.1: Scenario Test Case

public void testScenario00038() {

EGSW.execute(A,X-1,routeAX);

LRGPS.execute(X,Y,B,routeYB);

}

Mutation-based technique (T2): Event-patterns are used to modify exist-

ing test cases, by applying mutation techniques that add event-pattern sequences

inside already existing test cases (defined either manually, by Capture & Replay

techniques or automatically). As an example, the tester may want to prove the

absence of crashes in an application scenario where, after any user event, the device

goes in stand-by and a phone call comes (pattern SIE). An approach that could be



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 64

used for mutating the test cases is the one proposed by Barbosa et al. [22] for GUI

testing where test cases made by sequences of events are altered automatically by

introducing mutations in order to generate behaviors corresponding to errors that

users typically make. In this case, the tester may automatically modify existing

JUnit test cases, obtained using an Android GUI Ripper [12] [13] [9], by applying

the event-pattern SIE, as it is shown in Table 4.3.

Table 4.3: An Example of Mutation of a Test Case by an Event-Pattern

Test Case before mutation Mutated test case

public void testTrace00004() {

fireEvent (16908315, 16, ”OK”, ”button”, ”click”);

fireEvent (2131099651, 6, ””,”button”, ”click”);

fireEvent (0, ””, ”null”, ”openMenu”);

}

public void testTrace00004 EP SIE() {

fireEvent (16908315, 16,”OK”, ”button”, ”click”);

SIE.execute();

fireEvent (2131099651,6, ””, ”button”, ”click”);

SIE.execute();

fireEvent (0, ””,”null”, ”openMenu”);

SIE.execute();

}

Exploration-based technique (T3): Event-patterns are used during an au-

tomatic black-box testing processes that is based on dynamic analysis of the mobile

application. In this case, an app exploration technique, like the one reported in

Algorithm 1 in Chapter 3, may be used to define test cases and execute them at

the same time.

Although the proposed techniques are applicable to any mobile applications,

their feasibility is preliminary assessed in the context of Android mobile applica-

tions. In particular, to implement the proposed techniques two main technological

problems related to the Android platform have to be solved, that are:

a) defining a solution for dynamically recognizing the context event classes which

the app is able to sense and react at a given time;

b) defining techniques for triggering the context events.



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 65

The proposed solutions are presented in the following section.

4.4 Implementing Event-Based Testing in the An-

droid Platform

As anticipated in Section 2.1, Android Applications are Event Driven System

written in Java that run within an instance of a virtual machine. To solve the

problem of dynamic recognition of the context event classes which the application

is able to sense and react, different solutions can be adopted. Indeed, the set

of context events that the application is able to sense and react to includes two

distinct subsets. The former subset includes events that can be sensed by listeners

and managed by the relative handlers defined by the running component itself.

This set can be deduced by Java Reflection techniques, since Android applications

usually dynamically declare listeners at run-time and code static analysis would

not suffice. The latter subset includes events that may be managed by other app

components and notified by means of Intent Messages. This set can be obtained

by means of static analysis of the Android Manifest XML file of the application by

searching for intent-filter tags reporting the set of Intent Messages to which any

component of the application is sensible.

For triggering the context events, different techniques are developed.

A first solution exploits the APIs provided by the java.lang.reflection package,

a set of classes designed for dynamic querying of Java class instances. Using these

APIs is possible to directly access and execute event handlers methods related to

event listeners instantiated at a given time. This technique can be adopted to

trigger any event having a registered event listener, such as GUI events.

As to the problem of raising sensor-related context events, a solution that fires

fake events instead of real sensor events is adopted. To this aim, the Android Sensor



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 66

Framework classes included in the android.hardware package (that is responsible

for sensor management in Android) are replaced with an ad hoc modified version

of this package that includes classes for generating fake events. This solution

disables the sensibility of the app to real sensor events at all. A similar solution is

implemented in the OpenIntents SensorSimulator project 4, too.

As to the emulation of location changes of the device the APIs of the Loca-

tionManager class provided by Android is exploited. This class allows the system

location services to be accessed. The services are used to obtain periodic updates

of the geographical location of the device, or to fire an Intent Message when the

device enters in the proximity of a given geographical location. To emulate such

notification events the addTestProvider() method of the LocationManager class is

used; this method creates a mock location provider that programmatically emu-

lates location changes.

The techniques presented above can be used to implement testing tools sup-

porting the execution of the techniques shown in Section 4.3. In particular, they

are implemented to develop a tool that implements the T3 technique.

4.5 A Case Study

An exploratory case study is conducted, with the purpose of assessing how the

effectiveness of an event-based testing technique varies when context events, not

only GUI events, are taken into account. In particular, an implementation of the

automatic testing technique T3 proposed in Section 4.3 is analyzed.

For this aim, some real-world Android applications were considered and each

of them was tested by the an implementation of the T3 technique. The first time,

the planning strategy was configured to perform systematically only user events.

4https://github.com/openintents/sensorsimulator



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 67

The second time, patterns each one including a different type of context event was

executed. Lastly, the testing effectiveness, in terms of code coverage, achieved by

each of the two executions was compared.

To perform this experiment the Android Ripper tool presented in Chapter 3

has been exploited. In the first experiment, the Android Ripper was configured

to trigger only user events; the second time another version of Android Ripper,

called Extended Ripper, was used. The Extended Ripper is based on Algorithm

1 and features an extended ExtractionCriterion able to extract fireable context-

related events and a customized RunEvents operation that is able to execute the

extracted events such as location changes, enabling/disabling of GPS, changes

in orientation, acceleration changes, reception of SMS messages and phone calls,

shooting of photos with the camera. Both versions of Android Ripper are able to

systematically explore the app under test by searching for crashes, to measure the

obtained code coverage and to automatically generate jUnit test cases reproducing

the explored executions.

In the case study five real Android applications were tested. They belong to

the category of Mobile Apps and used context data of different types. They are

all published on Google Play5 and their source code is freely available. Table 4.4

reports a brief description of their features.

Each app was exercised from the same starting context both by the Android

Ripper and by the enhanced version of Android Ripper. The resulting code cover-

age in terms of lines of code (LOCs) and methods has been measured: Table 4.5

shows the coverage values obtained.

5https://play.google.com/store
6https://play.google.com/store/apps/details?id=net.pierrox.mcompass
7https://play.google.com/store/apps/details?id=net.androgames.level
8https://play.google.com/store/apps/details?id=name.bagi.levente.pedometer
9https://play.google.com/store/apps/details?id=edu.nyu.cs.omnidroid.app

10https://play.google.com/store/apps/details?id=org.wordpress.android



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 68

Table 4.4: Characteristics of the Tested Apps

Application Description

Marine Compass6
App showing a virtual marine compass providing the correct north

direction on the basis of the data provided by the orientation sensor

Bubble Level7
App transforming the device in a virtual spirit level on the basis of the

data obtained by the orientation sensor and by the accelerometer

Pedometer8
App showing a set of statistics regarding the walking of a person on

the basis of accelerometer data

Omnidroid9
App for managing of personal actions and tasks that takes into

account received/sent SMS messages and phone calls.

Wordpress for Android10

Client for managing Wordpress blogs, that can interact with the

camera for the insertion of photos in a blog and with the GPS for the

insertion of localization data

Table 4.5: Code Coverage Results

App
LOC Coverage Method Coverage

Android Ripper Extended Ripper Android Ripper Extended Ripper

MarineCompass 435 (92%) 463 (97%) 25 (86%) 27 (93%)

Bubble Level 371 (60%) 464 (75%) 75 (65%) 85 (74%)

Pedometer 528 (66%) 544 (67%) 160 (71%) 161 (72%)

Omnidroid 3409 (56%) 3480 (57%) 789 (58%) 813 (60%)

Wordpress 4505 (45%) 4599 (46%) 779 (53%) 784 (53%)

As the data show, the LOC code coverage achieved by the Extended Ripper

grew of about 5% for Marine Compass and 15% for Bubble Level with respect to

the Android Ripper one; the method coverage, instead, increased of 7% and 9%

respectively. This difference could be attributed to the fact that a relevant part of

app code implementing context event handling was covered just by the Extended

Ripper.

As regards the Pedometer app, the Extended Ripper reached just a slight

increase in coverage with respect to the Android Ripper (about 1% additional

LOC and method coverage). This datum depended on the presence of just one



Chapter 4. Considering Context Events in Event-Based Testing of Mobile Applications 69

context-related event handler in the app code, the one responsible for managing

the acceleration change event.

For Omnidroid and Wordpress for Android the Extended Ripper reached a

slightly higher coverage with respect to the one obtained using Android Ripper

(just 1% more LOC coverage). In particular, in Omnidroid the Extended Ripper

covered also the event handlers related to the management of incoming phone calls

and SMS messages, while in Wordpress it covered the code related to the camera,

as well as the location change event.

These results show that event-based testing effectiveness actually is improved

thanks to the considered comprehensive set of context events. The more the app

uses data from the context, the more the improvement becomes relevant. This

datum preliminarily showed the utility of the proposed techniques.



CHAPTER 5

AGRippin: a novel search based testing

technique for Android applications

In this chapter I present AGRippin (that is an acronym for Android Genetic

Ripping) a search based testing technique applicable to Android applications with

the purpose to generate test suites that are both effective in terms of coverage of the

source code and efficient in terms of number of generated test cases. The proposed

technique is based on the combination of genetic and hill climbing algorithms.

A case study involving five open source Android applications is carried out to

demonstrate that the technique is more effective than an Hill Climbing technique

based on the systematic exploration of the GUI events executable on an Android

application. The work described in this chapter is done in collaboration with the

REvERSE Research Group1.

5.1 Search Based Testing

Search Based Software Testing [3] is a specialization of Search Based Software En-

gineering (SBSE) [48] [31] related to the application of metaheuristic techniques

to the problem of automatic generation of test cases optimizing the fault finding

1http://reverse.dieti.unina.it/

70



Chapter 5. AGRippin: a novel search based testing technique for Android applications 71

or the code coverage with a reasonable effort. A survey by Ali et al. [4] shows

that there is a great interest in the research community for the application of

metaheuristics techniques to problems related to automatic test case generation.

In particular, in the set of metaheuristics algorithms, genetic algorithms are often

used [4]. Genetic algorithms try to imitate the natural process of evolution: a pop-

ulation of candidate solutions, called chromosomes (i.e. test cases) is evolved using

search operators such as selection, crossover, and mutation, gradually improving

the fitness value of the individuals, until an optimal solution has been found or

the search is stopped after a fixed time or a fixed number of evolutions.

At the time of writing, only a single contribution related to the application

of Search Based techniques to mobile application GUI testing can be found in

literature. Mahmood et al. [69] present a search based technique supported by

the EvoDroid tool for evolutionary testing of Android applications. EvoDroid

automatically extracts two static models of the application under test, i.e. the

Interface Model and the Call Graph Model and generates evolutionary tests on

the basis of these models.

5.2 The AGRippin Tecnique

According to the terminology of genetic algorithms, the solution proposed by the

algorithm is, at each iteration, an evolved test suite that is composed of a popula-

tion of chromosomes corresponding to test cases. Each chromosome is composed of

genes corresponding to basic interactions with the application under test (AUT).

The effectiveness η of a test suite T can be defined as the fraction of lines of

source code (LOCs in the following) of the AUT covered by at least one of the test

cases composing the test suite generated by the algorithm. It can be evaluated by

the following formula:



Chapter 5. AGRippin: a novel search based testing technique for Android applications 72

η(T ) = 100 ∗ |
∪

t∈T
Cov(t)|

|LOC|

where t ∈ T is a test case included in the test suite T , Cov(t) is the set of lines

of code that is covered by the test case t and LOC is the set of lines of code of the

AUT.

The efficiency ϵ of a test suite T can be defined as the ratio between its effec-

tiveness and the number of generated test cases:

ϵ(T ) = η(T )
|T |

The AGRippin technique adopts a constraint of genetic algorithms for which

the size of the population is constant at each iteration and is equal to the size

of the initial population. Due to this constraint, the test suite generated by the

algorithm having the maximum effectiveness is also the one having the maximum

efficiency.

In the next subsection are described the characteristics of the technique in

terms of chromosome representation, metrics for fitness evaluation, techniques for

crossover, mutation, selection, and combination with a hill climbing technique.

5.2.1 Representation

The test suites generated by the technique are composed of test cases that are

sequences of interactions with the GUI of the AUT. The application GUIs are

abstracted according to the conceptual model described in Subsection 3.2.2, shown

in Figure 5.1.

5.2.2 Crossover

The crossover operator exploited in the implementation is a Single-Point Crossover.

Given two Test-Cases t1 and t2, the operator randomly chooses two pairs {Gi, Ai} ∈

t1 and {Gj, Aj} ∈ t2 and operates the crossover operation as shown in Figure 5.2.



Chapter 5. AGRippin: a novel search based testing technique for Android applications 73

Figure 5.1: Conceptual Model of a GUI Interface

Figure 5.2: Crossover Example



Chapter 5. AGRippin: a novel search based testing technique for Android applications 74

A problem of this crossover operator is that it may generate sequences that

do not correspond to executable test cases. If the generated test cases cannot be

executed, they have to be discarded and the crossover operator has to be repeated

until it generates a pair of executable test cases. In order to reduce the occurrence

of such non-executable test cases, a technique is proposed to candidate pairs of

test cases and cut points for which the crossover operator should be applicable,

based of two heuristic criteria of equivalence between GUI interfaces and between

actions. The two heuristic criteria of equivalence are defined in the following ways:

EC1 Two GUI interfaces are considered equivalent if they include the same set of

widgets and they define the same set of event handlers.

EC2 Two actions are considered equivalent if they are associated to the same user

actions and the same event.

Let’s consider two test cases t1 = (G0, ..., Gi, Ai, ...) and t2 = (G0, ..., Gj, Aj, ...)

having the same starting GUI interface G0. The pairs (Gi, Ai) and (Gj, Aj) are a

candidate crossover point for our heuristic technique if they satisfy all these four

criteria:

C1 the two GUI interfaces Gi and Gj are equivalent according to the EC1

criterion;

C2 the two actions Ai and Aj are not equivalent according to the EC2 criterion;

C3 the subsequence of t1 which precedes the GUI interface Gi and the subse-

quence of t2 which precedes the GUI interface Gj are not composed of a

sequence of GUI interfaces and actions that are all respectively equivalent

(according to the two criteria EC1 and EC2), and they are not both empty;

C4 the subsequence of t1 which follows the action Ai and the subsequence of t2

which follows the action Aj are not composed of a sequence of GUI interfaces



Chapter 5. AGRippin: a novel search based testing technique for Android applications 75

and actions that are all respectively equivalent (according to the two criteria

EC1 and EC2), and they are not both empty.

It’s interesting to note that the first criterion avoids to select crossover points

for which the action Aj is not applicable to the GUI interface Gi or the action

Ai is not applicable to the GUI interface Gj. The other three criteria avoids the

selection of crossover points that generate two test cases that are too similar or

identical to the original ones.

As an example, let’s observe the crossover example in Figure 5.2, in which

equivalent GUI interfaces are labeled with the same label. We can verify that

the selected crossover point (corresponding to the pairs (G2, A2) and (G2, A6))

is the unique one that satisfies all the four criteria (the pairs (G0, A0) and (G0,

A4) satisfy the first two and the fourth criterion but they do not satisfy the third

criterion because they are both preceded by an empty sequence).

The crossover points are randomly chosen in the set of the ones that satisfy

these criteria. The test cases t1 and t2 are not removed from the test suite after the

execution of the crossover operator, in concordance with the techniques proposed

in the steady state genetic algorithms [98] (for example the Genitor one proposed

by Whitley [116]). These techniques cause an increase in the population size that

is restored to its initial size by the selection operator that is presented in the

following. The crossover operator may be executed multiple times in the same

iteration of the algorithm. We define the crossover ratio as the ratio between the

number of test cases generated by the crossover at each iteration and the number

of test cases of the initial solution.

5.2.3 Mutation

The mutation operator proposed in this technique modifies the Actions by mu-

tating the values of the User Inputs or the Event Parameters values. In each



Chapter 5. AGRippin: a novel search based testing technique for Android applications 76

mutation, the value of a single parameter of the action is changed to a new value

belonging to a static set of equivalence classes according to the parameter type.

As an example, the value of an editable text field may be set to a random string,

a number or a correct email address while the location parameter of a GPS event

may be set to coordinates values over or under the equator. The new test obtained

after a mutation could not be executable if the GUI interface reached after the

execution of the mutated action is not equivalent to the one reached by the original

action. In this case, we consider that the new mutated test case terminates with

the mutated action and the new test case is shorter than the original one.

The mutation operator randomly selects the test case and the action to be

mutated in all the test suite. Mutated test cases are added to the test suite and

the original ones are not removed. The mutation ratio is defined as the ratio

between the number of test cases generated by the mutation operator and the

number of test cases of the initial solution.

5.2.4 Fitness Evaluation

Two distinct Fitness measures are defined: the Global Fitness (that is the effec-

tiveness η of the generated test suite and is measured in terms of the code coverage

reached by the test cases of the test suite as described above in this section), and

a Local Fitness expressing the degree of diversity of a single test case with respect

to the set of the test cases of the test suite.

The Local Fitness measures ranks the individuals in terms of their potential

contribution to the Global Fitness of the solution and of their diversity. To this

aim, a rank measure that is able to order all the test cases of the test suite is

proposed. The Local Fitness measure is composed of two components named F1

and F2. The first component F1 may assume the following three values, in order

of decreasing rank:



Chapter 5. AGRippin: a novel search based testing technique for Android applications 77

• L1, if the test case covers one or more lines that are not covered by any other

test case;

• L2, if the test case has a coverage set that (i) includes only lines of code that

are covered by at least another test case of the test suite but that (ii) is not

included in the set of lines covered by any other test case of the current test

suite;

• L3, if the test case has a coverage set that is included in the coverage set of

at least another test case of the solution.

As regards the set of test cases having the same coverage set, the algorithm

conventionally assigns a L2 value to one test case (randomly selected) of the set

and the L3 value to all the other test cases of the set. Intuitively, test cases having

a L1 value are the ones that should be preserved to avoid a sure loss of effectiveness,

whereas test cases having a L3 value are the better candidates to be filtered out

by the selection operator.

The second component F2 of the Local Fitness represents a weighted measure

of code coverage and is defined by the following formula:

F2(t) =
∑

l∈Cov(t)w(l)

where:

• Cov(t) is the set of lines of code that are covered by the test case t

• w(l) represents the relative weight of the coverage of the line l. It is defined

as:

w(l) = 1∑
u∈T

c(u)

where c(u) ∈ {0, 1}. It is 0 if l ̸∈ Cov(u), 1 elsewhere.



Chapter 5. AGRippin: a novel search based testing technique for Android applications 78

Figure 5.3: Test-Case Fitness Evaluation

F2 gives a measure of the relative importance of the coverage provided by a test

cases in the context of a test suite because the coverage of lines that are covered

by few test cases has a higher weight than the coverage of lines covered by many

test cases. F2 is used to order test cases having the same F1 values.

As an example, let’s consider the test suite shown in Figure 5.3 in which there

is an AUT composed of 10 LOCs labeled as {l1, ..., l10} and a Test Suite T =

{TC1, ..., TC6}. The coverage of each test case is depicted in Figure 5.3 where

black boxes corresponds to covered lines whereas white boxes corresponds to un-

covered lines.

In order to evaluate the Local Fitness F1(TC1) = L1 and F1(TC4) = L1 have

been assigned because they are respectively the unique test cases covering the line

l1 and the two lines l8 and l9. The values of F1(TC2) and F1(TC3) are instead

set to L3 because their coverage sets are respectively included in the ones of TC1

and TC5. The F1 value of the remaining test cases (i.e. TC5 and TC6) is set to

L2. In order to evaluate the F2 values for each test case, the weights w of each

line l have to be evaluated. For example, the weight of line l1 is 1 because it is

covered exactly by one test case, whereas w(l2) =
1
4
because the line l2 is covered

by four test cases and so on. The Fitness Function of the test case TC1 is then

equal to:



Chapter 5. AGRippin: a novel search based testing technique for Android applications 79

F2(TC1) = w(l1)+w(l2)+w(l4)+w(l5)+w(l6)+w(l7) =
1
1
+ 1

4
+ 1

3
+ 1

5
+ 1

5
+ 1

4
= 2.23

The F2 values for each test case are reported in Table 5.1. In this table the

test cases are ordered for decreasing values of F1 and, for test cases with the same

F1 value, for decreasing values of F2. The RANK column expresses the ordering

position between all the test cases of the test suite.

RANK t F1 F2

1 TC4 L1 2.98

2 TC1 L1 2.23

3 TC5 L2 1.23

4 TC6 L2 0.91

5 TC2 L3 0.98

6 TC3 L3 0.65

Table 5.1: Test-Case Classification Example

5.2.5 Selection

The selection operator restores the size of the test suite to its initial value (cor-

responding to the size of the initial test suite) by deleting the test cases having

the worst values of Local Fitness in concordance with the rank selection operator

firstly proposed by Baker [19].

The fraction of test cases that are selected for deletion at each iteration is

named turnover ratio and it is the sum of the crossover ratio and of the mutation

ratio. As an example, if the crossover ratio is 1/3, then the test cases TC2 and

TC3 shown in Table 5.1 have to be deleted.



Chapter 5. AGRippin: a novel search based testing technique for Android applications 80

5.2.6 Combination Technique

By means of the application of the crossover and of the mutation operator GUI

interfaces that are not equivalent to any of the already visited ones may be dis-

covered. These new GUI interfaces contains different sets of widgets and event

handlers with respect to the other ones. This represents a positive achievement in

terms of global fitness because new code corresponding to the execution of these

event handlers may be executed.

In the AGRippin technique is proposed a combination of the genetic technique

with an Active Learning technique that will be started only when a new GUI

interface is discovered. This technique aims at the systematic generation of new

test cases including at least an event of each new discovered GUI interface and

is very similar to the one we have proposed in the past [12]. This technique can

be seen as a Hill Climbing technique because it selects at each iteration the most

promising sequences, i.e. the ones in which at least a new line, corresponding to a

new event handler call is covered. In order to restore the size of the test suite to

its initial value, a re-execution of the selection operator has to be carried out after

each execution of the Active Learning technique.

The adoption of hybrid algorithms combining genetic and hill climbing algo-

rithms have been already presented in literature, with good results [86] and some

criticism. We adopted this solution for two reasons: (1) because our specific im-

plementation of the mutation operator is not able to generate new events but only

to mutate their parameters and (2) to accelerate the process of exploring the inter-

actions related to portions of the application that are discovered but not explored

by crossover and mutation operators.



Chapter 5. AGRippin: a novel search based testing technique for Android applications 81

5.3 Case Study

This section reports the results of some case studies that carried out with the aim

to assess the effectiveness of the proposed search based testing technique. The

technique was implemented in the context of Android applications and is applied

to five open-source Android applications.

The test suites generated by the technique are compared with the ones gener-

ated by the Android Ripper Tool [12] that was developed in the past. It realizes a

Model Learning technique for the exploration of the GUI of Android applications.

Since the Android Ripper explores at each iteration the GUIs of an Android appli-

cation by executing an event that have never been executed before, this technique

can be considered as a kind of Hill Climbing technique because an increment in

code coverage is surely expected by the execution of each new event.

The purpose of the experimentation is to provide an answer for the following

research question:

RQ: Are the test suites generated by the proposed technique more effective

than the ones generated by the considered Hill Climbing technique?

The effectiveness of the generated test suites is measured (in percentage) as

the fraction of lines of code of the AUT that are covered at least once by at least

a test case of the test suite T:

η(T ) = 100 ∗ |
∪

t∈T
Cov(t)|

|LOC|

5.3.1 Subjects

Five real-world open source Android Applications have been selected for the study;

they are all published and freely available on the Google Play market. Some details

about these application are reported in Table 5.2. They are all medium sized



Chapter 5. AGRippin: a novel search based testing technique for Android applications 82

applications, with a number of LOCs varying from 2308 lines (AUT1) to 6770

lines (AUT3).

Table 5.2: Android Applications (AUTs)
Application Description Link LOCs Activities

AUT1 AardDict 1.4.1 A dictionary application https://github.com/aarddict/android 2308 7

AUT2 TomDroid 0.7.1 A manager for notes https://code.launchpad.net/tomdroid 4167 10

AUT3 OmniDroid 0.2.1 A manager for device automated tasks and actions https://code.google.com/p/omnidroid/ 6770 16

AUT4 AlarmClock 1.7 An alarm clock https://code.google.com/p/kraigsandroid/ 2320 5

AUT5 BookWorm 1.0.18 A manager for book collections https://code.google.com/p/and-bookworm/ 3190 10

Application preconditions can affect the effectiveness of the generated test cases

[12]. For the purpose of this experimentation, the same set of preconditions were

chosen for each application and used in all the experiments with both the tech-

niques (as an example, for AUT1 the same dictionary in the SD card before the

execution of each test case has been preloaded).

5.3.2 Experiment Environment and Setup

The experimentation was carried out by using two tools: the Android Ripper tool

and the AGRippin tool.

The Android Ripper tool2 [12] was used to systematically explore the GUIs of

Android applications with a breadth-first strategy. Each branch of the exploration

carried out by the Android Ripper tool is terminated when a GUI interface is found

that is equivalent (in the sense that it has the same widgets and event handlers) to

a previously visited one. The Android Ripper tool produces a test suite composed

of test cases corresponding to the explored execution paths.

The Android Ripper tool is composed of two main components. The Driver

component is responsible for the execution of the exploration algorithm and for the

generation of the resulting test cases in form of Android JUnit test cases exploiting

2https://github.com/reverse-unina/AndroidRipper



Chapter 5. AGRippin: a novel search based testing technique for Android applications 83

the Robotium library3. The Device component is deployed and executed in the

context of an Android emulator and is able to execute actions on the AUT, to

extract the obtained GUI interfaces and to send their description to the Driver

component via the Android Debug Bridge (ADB)4 utility. The code coverage was

measured by means of the Emma utility5 included in the Android SDK.

The AGRippin tool was realized on top of the Android Ripper tool by imple-

menting an AGR component responsible of the execution of the proposed tech-

nique. The AGR component interacts with both the components of the Android

Ripper tool.

The experimentation was carried out on 6 different Intel I5 PCs with a clock

frequency of 3.0GHz, 4GB of RAM and Windows 7 64bit operating system. On

these machines we installed an Android Virtual Device 6 (AVD) emulating the An-

droid Gingerbread 2.3.3 operating system, with 512MB of RAM and an emulated

64MB SD Card.

The experimentation was started by carrying out an exploration of each AUT

by means of the Android Ripper tool that generated a test suite. These test suites

were considered as a result of an Hill Climbing exploration because the Ripper

strategy consists of the selection, at each step, of the most promising action, i.e.

of an action that has not been previously executed. The test suite generated by

the Android Ripper tool has been used, too, as the initial solution of the search

based testing technique.

The AGRippin technique was configured in our experimentation by fixing the

parameters shown in Table 5.3. The Crossover ratio and theMutation ratio respec-

tively represent the fraction of the test cases of a test suite that are involved in a

3https://code.google.com/p/robotium/
4http://developer.android.com/tools/help/adb.html
5http://emma.sourceforge.net/
6https://developer.android.com/tools/devices/index.html



Chapter 5. AGRippin: a novel search based testing technique for Android applications 84

crossover or in a mutation at a given iteration. In accordance with the suggestions

of Mitchell et al. [83] we set a higher value for the Crossover ratio with respect

to the Mutation ratio. The Number of Iterations represents the termination con-

dition of our algorithm in terms of the number of performed iterations. We fixed

an arbitrary value of 30 in this experimentation. In order to take into account the

randomness of our search based testing technique, the AGRippin technique was

executed six times with six different seeds for any AUT.

Parameter Value

Crossover ratio 20%

Mutation ratio 5%

Number of Iterations 30

Table 5.3: Configuration Parameters Values

5.3.3 Results and Discussions

Table 5.4 reports the results obtained by the execution of our experimentation on

the five AUTs.

The first column of the table reports the effectiveness η(T0) of the test suite

T0 generated by the Hill Climbing (HC) technique implemented by the Android

Ripper tool. The columns labeled µ(η(T )) and σ(η(T )) respectively report the

average and the standard deviation of the effectiveness η of the test suites T

generated by the AGRippin technique (abbreviated in AGR in Table 5.4) in six

different executions featuring different random seeds. The fourth column of the

table reports the maximum number of new interfaces discovered by AGRippin

that were not discovered by HC. The fifth column reports the number of test cases

composing both the test suites generated by HC and AGRippin. Finally, the last

two columns respectively report the HC execution time and the average execution



Chapter 5. AGRippin: a novel search based testing technique for Android applications 85

Table 5.4: Experimental Results

HC AGR
Execution Time

(hours)

η(T0) µ(η(T )) σ(η(T ))
New

Interf.
|T | HC AGR

AUT1 43.07% 67.10% 0.26% 1 51 3.5 22

AUT2 28.08% 32.61% 2.45% 0 51 2.5 30

AUT3 51.58% 58.31% 2.28% 0 162 6 55

AUT4 66.90% 68.00% 1.21% 0 68 2.8 20

AUT5 40.34% 47.22% 0.45% 1 50 3.2 23

time of AGRippin (after 30 iterations), measured on the same machines.

The results in this table show that for all the considered AUTs the AGRip-

pin technique is able to provide an increase in coverage with respect to the Hill

Climbing technique that varies from 1% (for AUT4) to 24% (for AUT1), so can be

concluded that the proposed RQ has a positive answer. As regards the execution

time, the average time needed to execute 30 iterations with AGRippin varies from

6 to 12 times the amount of time needed to execute HC. The values of standard de-

viation σ(T ) show that the effectiveness of AGRippin depends on the randomness

in a remarkable way. Can be hypothesized that the execution of a larger number

of parallel sessions can provide improvements in the effectiveness of the AGRippin

technique without increasing the execution time.

In order to show an example of the dependence of the effectiveness on the

number of iterations, Figure 5.4 reports the effectiveness trends observed for the

Bookworm application (AUT5). The figure shows the trends of the coverage of the

test suites obtained by six different executions (with six different random seeds)

of the AGRippin technique (named AGR1, AGR2, AGR3, AGR4, AGR5, AGR6



Chapter 5. AGRippin: a novel search based testing technique for Android applications 86

in figure) as the number of iterations increases. The dashed line shown in figure

represents the coverage percentage provided by the test suite generated by the

HC technique. Each execution of AGRippin constantly reaches higher values of

effectiveness than HC. In the Bookworm application, a new interface has been

discovered by each AGRippin execution and in these cases a large portion of new

code have been systematically been explored by the Hill Climbing technique. Its

effect can be noted by observing the rapid rising in the effectiveness that occurs

once for each AGRippin execution. The values of effectiveness after 30 iterations

are slightly different between them. On the basis of this phenomenon can be

hypothesized that the execution of a larger number of iterations may provide better

results and a reduced dependency on randomness. Similar considerations can be

done for all the other AUTs.

Figure 5.4: Effectiveness Trends for AUT5

In order to provide more details about the capability of the AGRippin technique

to cover new portions of code, the differences in coverage between the executions

of the HC and AGRippin techniques was examined in details. Improvements in

coverage due to the Crossover operator, to the Mutation operator and to the

Combination technique were recognized.

As regards the improvements due to the crossover operator, in some cases the

mixing of two different test cases produced new execution sequences that are able



Chapter 5. AGRippin: a novel search based testing technique for Android applications 87

to show different behaviors of the AUT. As an example, for AUT2 the crossover

operator generates a new test case executing the backup functionality after the

changing of its settings causing the execution of a different backup scenario. An-

other example of new code revealed by a crossover operator is, in AUT5, the one

related to the sequential execution of the insertion of a book in the book list fol-

lowed by the visualization of this book list. In the test suite generated by HC, the

visualization was executed only with an empty book list whereas AGRippin were

able to visualize book lists that are not empty.

As regards the improvements in effectiveness due to the mutation operator,

two exemplar cases are reported in the following. An AUT1 functionality is the

search in a vocabulary of a string included in an input text field. Whereas the HC

technique only provided a random text to this input field, the mutation operator

implemented in AGRippin generated a new test case with an input text value

belonging to the equivalence class of the English words. This mutation caused the

execution of a portion of code related to the retrieval of the word in the dictionary

and to the visualization of a new interface showing the list including one or more

search results. Another example is the one found in AUT4, where the insertion of

an input value belonging to the negative numbers equivalence class in a specific

text field caused the execution of a portion of code executing a validating check

that was not tested by HC.

Finally, the combination technique was applied in two cases regarding the new

interfaces discovered in AUT1 and AUT5 (corresponding to two of the cases de-

scribed above). In these cases the application of the HC technique on these new

interfaces caused a great improvement in code coverage (about 5% of improvement

in both the cases).



CHAPTER 6

Exploiting the saturation effect in automatic

random testing of android applications

In this chapter I describe a possible solution to the problem of stopping a Ran-

dom testing process at a cost-effective point, where test adequacy is maximized

and no testing effort is wasted. A fully automatic Monkey Fuzz Testing (MFT)

process that is able to find this point by exploiting the saturation effect and the

predictability property of random testing techniques is presented. The validity of

the approach in finding saturation points is then shown by an experiment where

18 real Android applications are tested. The work described in this chapter is done

in collaboration with the REvERSE Research Group1.

6.1 Introduction

Random testing is a black-box software testing technique where programs are

tested by generating random, independent inputs. Nevertheless in the past random

testing was considered less promising than systematic testing techniques [87], many

other works in literature empirically demonstrated their effectiveness in many dif-

ferent contexts [92], [46], [44], [115], [28]. Arcuri et al. [16] addressed random

testing from a theoretical point of view by proposing a mathematical model for

1http://reverse.dieti.unina.it/

88



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 89

describing the effectiveness of random testing and comparing it against partition

testing. Moreover they presented some novel theoretical results regarding effec-

tiveness, scalability and predictability of random testing. This work focused on

testing techniques that randomly choose input values from the input domain, while

our work focuses on techniques that choose events from the event domain.

Over the last several decades, variants of random testing have gained popular-

ity in automated quality assurance testing for both conventional software applica-

tions as well as graphical user interface (GUI) frontends. These random testing

techniques have several benefits over other testing methods: they are fully au-

tomatic, inexpensive, relatively easy to use, and surprisingly effective at finding

bugs [34][37][103]. For example, Miller et al. [80] used random testing to reveal

a wealth of command-line faults within Unix utilities; similarly, Miller et al. [79]

used random testing to reveal faults in 10 out of 135 command-line utilities and

22 out of 30 GUI-based utilities within MacOS applicationsṪhe general validity

and importance of random testing has been further evaluated and supported in a

seminal work by Duran & Ntafos amongst others [34][37][103].

The growing use of random testing is particularly evident in the mobile app

realm, where many platforms and developers have adopted Monkey Fuzz Testing

(MFT), a technique that sends random button presses and mouse events to an

app2.

Although tools for MFT are growing in availability and popularity, there are

still open issues regarding their general use. One particular issue is how a tester

may determine when the testing process should be stopped. For example, MFT

tools are commonly used to implement simple testing processes where the tool is

run on an old, slow computer of the testing lab and a tester periodically checks its

progress [93]. Although this approach is reasonable, it is difficult for the tester to

2e.g., see monkeyfuzz.codeplex.com and developer.android.com/tools/help/monkey.html



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 90

know when the testing process has reached a point where no further code coverage

or fault detection can be achieved. As a result, the tester has no other option

but to make an educated guess regarding two choices: stop testing or allow the

process to run until some later termination criteria are met. The first choice may

stop the program prematurely resulting in untested code, and the latter may stop

the process later than needed and result in wasted time and computing resources.

Both cases are non-optimal and rely on some expertise of the tester to use a proper

termination criterion and point.

Many testers let the test process run until a certain amount of time has elapsed

without the process discovering new faults. While this solution is functional, it is

hardly optimal.

Several studies in literature studied the predictability of the performance of

random testing techniques. Ciupa et al. [29] [30] explored the predictability of

random testing in terms of fault detection capability in the context of object-

oriented programs written in Eiffel. More recently, Furia et al. [38] have searched

for a law able to relate the number of executed random test cases and the number

of found faults and failures in Eiffel and Java applications. Sherman et al. [104]

exploited the existence of a saturation effect occurring when the increase in cover-

age over a window of test runs (of a given size) is less than a fixed threshold and

used this effect to define new adequacy criteria in concurrency testing.

In this chapter, a testing process is presented that tries to relieve responsibility

from the tester by automatically determining a termination point based on the

exploitation of the saturation effect, a well-known phenomena where the rate of

convergence of a test case towards a specific test adequacy criterion decreases as

the amount of test execution increases [67]. The result is that the testing process

may stop finding faults in the program under test. The point at which no more

progress is made towards achieving a test adequacy criterion is called Saturation



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 91

Point and it is also the optimal termination point for the program during random

testing.

Determining the saturation point of a program can be elusive and is dependent

on the preconditions of the app and the configuration settings of the tool chosen

by the tester. For instance, in the Android platform the capacity of a GUI Ripper

to discover faults and to cover the app source code sensibly depends on several

preconditions including the types of events fired on the GUI, the timing between

consecutive events, or input values provided to the input fields of the GUI [11].

Such choices are dependent on both the tester and the MFT tool the tester chooses

to use. Therefore, in order to automatically determine a saturation point of the

program, a specific preconditions of the app and a configuration of the tool are

provided as an input, until the saturation effect is detected.

More specifically, the saturation point is determined by a process based on

the simultaneous execution of several random testing sessions. By exploiting the

predictability property of random testing shown by Arcuri et al. [16], the difference

in code coverage between the active sessions is periodically assessed and the testing

process is stopped when this difference is below a chosen critical threshold.

The fully automatic technique is implemented by means of an infrastructure

including a MFT tool targeting the Android platform and a simulation environ-

ment to run each test. To validate the implemented approach, 18 Android apps

have been selected from the Google Play Store and tested each with the testing

infrastructure. The study showed that the termination points of all processes were

also saturation points.



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 92

6.2 Monkey Fuzz Testing Tools

Monkey Fuzz Testing tools were first developed as a method of stress testing for

both conventional software applications and those applications with a GUI front-

end. They perform such activity by sending sequences of random keyboard or

mouse events to the subject applications, with the aim of discovering crashes or

other inconsistencies in the behavior of the applications.

MFT tools for mobile applications differ slightly from those for desktop GUI-

based applications because they can be configured to send both user and system

events.

Traditionally, both mobile and desktop MFT tools offer options which can

be configured to implement different behaviors. E.g., it is often possible to set

the delay between consecutive triggered events, the types of events to fire (such as

click, tap, or other), how often an event gets triggered, the number of events to fire

and so on. Before testing an application, test engineers are required to configure

such options and choose the preconditions of the application under test, that is the

state of the application under test before the test run. Once the tool is configured,

it starts generating random events and sending them to the AUT that will reach

a new state S. The process stops when a termination criterion is satisfied. This

behavior can be described by Algorithm 1 presented in Chapter 3.

The TerminationCriterion parameter may be based on aspects of the process,

such as the number of events that have been fired or the amount of time spent test-

ing, or it may be based on some adequacy measurement that determines whether

sufficient testing has been executed. For instance, when using the statement cov-

erage criterion as an adequacy measurement, the testing process can be stopped if

all the statements have been executed, or the percentage of executed statements

is greater than a given threshold [125].



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 93

The choice of the TerminationCriterion is always a relevant problem with au-

tomatic testing processes, since it is able to affect their effectiveness and cost. This

stop condition is even more important with random testing techniques, which are

notoriously affected by problems of reliability and efficiency. The reliability prob-

lems of random testing depend on the randomness of this technique: if the same

tool is launched multiple times, even from the same initial preconditions, the test-

ing results may sensibly differ, due to the randomness of the sequence of events

sent to the application.

On the other hand, the inefficiency problems of random testing depend on

the risk of wasting excessive testing effort in trying to achieve non-reachable test

adequacy levels. It is well-known indeed that, any testing method is affected by

a Saturation Effect, that is the tendency of the method of limiting its ability to

expose faults in a program under test [58]. After reaching this limit, continuing

testing the same method may cause significant waste of testing efforts. This limit is

also called a Saturation Point in the literature and several authors tried to exploit

it to define a termination point of testing [104].

These two problems are well illustrated by Fig. 6.1, which reports the code

coverage percentage (as the number of sent events grows) of an example application

that was achieved by two different testing runs of the same MFT tool. In each

run the same tool configuration are used and the application is started from the

same application preconditions, but used different seeds for generating different

sequences of random events.

As the figure shows, there is an initial unreliability zone (instability phase) of

the process (between 0 and about 3,000 events) where the testing runs achieve

different and floating coverage results. The code coverage achieved by the former

run (represented by the continuous line in the figure) is indeed initially lower than

the latter’s ones (represented by the dashed lines), but there is a trend inversion



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 94

after about 500 events. On the other hand, after about 4,700 fired events, the

coverage degrees of the two runs seems to converge and to reach a zone showing a

possible saturation effect.

This code coverage trend yields to an important consequence. If the tester

stopped the tool after less than 4,000 events, the test adequacy would be different

depending on the considered run. Vice-versa, after firing more than 4,000 events,

the coverage results of different testing runs tend to be similar and independent of

chance. However, if the tester continues and fires more than 4,700 events, they will

do nothing but waste both time and computing resources due to the saturation

effect. Ideally, a tester would be able to identify the number of events large enough

to overcome this instability zone and small enough to avoid entering the inefficiency

zone. The tester could then stop the process at a point that represents an optimal

trade-off between effectiveness and cost. Since beyond this point there is no an

improvement of the testing adequacy, one could consider this point the saturation

point of the application according to the definition given by Sherman et al. [104].

Figure 6.1: Code coverage of two testing runs of an MFT tool



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 95

6.3 The Testing Process

In this section, is presented a testing process based on MFT techniques that auto-

matically stops at a potential saturation point of the process, defined as the point

in testing where additional fired events result in no improvement in test adequacy.

In order to reach this objective, our implementation utilizes a pool of random

testing sessions. All sessions in the pool are given the same initial conditions, but

are fed a different seed and sequence of consecutive random events to fire on the

AUT. Exploiting the predictability property of random testing shown by Arcuri

and Briand [16], one can accurately infer that there is a point P of this process

where the difference in code coverage achieved by all sessions is equal to zero. This

point of least difference may represent a saturation point of testing, indicating that

all sessions reached the same test adequacy. On the basis of this property, such

a point can be the optimal termination point for testing technique for the AUT.

Of course, this calculated difference is dependent of the chosen pool of test ses-

sions. The smaller the number of considered sessions, the greater the probability

their code coverage be coincident at a premature saturation point. Vice-versa,

the greater the number of sessions, the greater the likelihood they converge at

an authentic saturation point. In the sub-sections that follow, the test process

implementation is presented in greater detail.

6.3.1 The Testing Process Implementation

The testing process description requires the following definitions:

• AUT: it is the application under test.

• AUTPr: it is the set of AUT preconditions.



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 96

• MFT: it is a Monkey Fuzz Testing tool configured according to the MFTSet

settings.

• Si: it is a testing Session of the MFT tool that sends a sequence of consec-

utive random events to the AUT.

• S = {S1, . . . , Sk}: it is a set of k > 1 testing sessions Si. All the sessions

start from the same initial state of the AUT but have different seeds.

• SST: it is the Set of executable STatements composing the source code of

the AUT.

• SCS(Si, n): it is the Set of Covered Statements of the application under

test, after n events fired in Si.

• CSP(Si, n) it is the Covered Statements Percentage achieved by the session

Si after n random fired events. It is expressed by the following formula:

CSP(Si, n) =
| SCS(Si, n) |
| SST |

× 100 (6.1)

• CSSC(S, n): it is the Cumulative Set of Statements Covered by the testing

sessions belonging to S after n fired events. It is defined by equation (6.2):

CSSC(S, n) =
k∪

i=1

(SCS(Si, n)) (6.2)

• CCSP(S, n): it is the Cumulative Coverage Statement Percentage reached

by the testing sessions belonging to S after n fired events. It is defined by

equation (6.3):

CCSP(S, n) =
| CSSC(S, n) |
| SST |

× 100 (6.3)



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 97

• TerCond(S, n): It is a predicate that is true after n events, if each session of

S reached a statement coverage percentage that is equal to the cumulative

one. In other words the predicate is true when all the sessions have actually

covered the same statements of the AUT. It is evaluated by means of equation

(6.4).

TerCond(S, n) = TRUE ⇐⇒

CSP(Si, n) == CCSP(S, n) ∀ Si ∈ S
(6.4)

• TerP(TP): it is theTerminationPoint of the testing process TP representing

the minimum number of events at which the termination condition is verified.

• TerL(TP): it is the Termination Level indicating the cumulative coverage

statement percentage reached by the testing process TP up to TerP.

Algorithm 2 Testing Process Algorithm
1: procedure TestingProcessExecution(AUT, AUTPr, MFT, MFTSet, k)

2: S[]← initSessions(AUT,AUTPr, k);

3: terCon← FALSE;

4: samplingStep← STEP;

5: fe← 0;

6: while (!terCon) do

7: fireNextEvent(AUT,MFT,MFTSet, S[]);

8: fe++;

9: if (fe == samplingStep) then

10: SCS[]← evalCov(S[]);

11: CSSC← evalCCov(SCS[]);

12: terCon← evalTerCon(CSSC,SCS[]);

13: samplingStep← samplingStep+ STEP;

14: stopSessions(S[]);

15: terP ← fe;

16: terL← evalPercCov(AUT,CSSC)

The Testing Process TP is a quintuple (AUT, AUTPr, MFT, MFTSet, k).

The process is iterative and requires the periodic monitoring of the statement



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 98

coverage percentages of k random sessions with a predefined sampling step. It is

described by the pseudo code in Fig. 2. At each iteration, each session Si had

fired a number fe of events. The algorithm relies on the variables and method’s

invocations described below.

6.3.1.1 Constants and Variables

• terCon: it is a boolean variable assuming the value of the TerCond() predi-

cate.

• samplingStep: it is an integer variable > 0, representing the sampling step,

i.e., the number of fired events after which the termination condition will be

evaluated.

• STEP : it is a integer constant > 0 defining the sampling period of the algo-

rithm.

• fe: it is an integer variable representing the number of events that have been

fired by all the sessions at a given iteration of the algorithm.

• k : it is an integer representing the number of testing sessions executed by

the testing process.

• S[] : it is an array of k testing sessions.

• SCS[] : it is an array of statement sets. The ith element of this array repre-

sents the set of statements that have been covered by the ith random testing

session after fe fired events.

• CSSC : it is the set of statements that have been covered by all the sessions

after fe fired events.

• terP : it is an integer variable related to the termination point.



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 99

• terL: it is a double variable representing the value of the termination level.

6.3.1.2 Methods

• initSessions(AUT, AUTPr, k): it launches the execution of k instances of

the AUT from the same preconditions AUTPr, and starts k testing sessions

belonging to the array S[].

• fireNextEvent(AUT, MFT, MFTSet, S[]): in each testing session of S[], the

MFT sends a random event to the AUT according to its settings MFTSet.

• evalCov(S[]): it evaluates the set of statements that are covered by each

session of S[].

• evalCCov(SCS[]): it evaluates the cumulative set of statements SCS[] that

have been covered by all the testing sessions.

• evalTerCon(CSSC,SCS[]): it computes the covered statement percentage

reached by each testing session and the cumulative coverage percentage.

Then, it evaluates the predicate described by equation (6.4).

• stopSessions(S[]): it stops the execution of the testing sessions belonging to

S[].

• evalPercCov(AUT,CSSC): it evaluates the cumulative coverage statement

percentage of AUT statements at the end of the process execution.

6.3.2 The Testing Infrastructure

The developed software infrastructure used to execute our testing process is now

presented. This implementation targets the Android mobile platform.



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 100

The infrastructure includes two types of components, namely Testing Process

Coordinator and Testing Session Executor. The former component is responsible

for starting, ending, and managing the results of the testing sessions’ execution.

The latter component is in charge of running the random testing sessions on the

emulated Android platforms and collecting data resulting from them. At run

time, just a single instance of Testing Process Coordinator is needed, while many

instances of the Testing Session Executor component can potentially be deployed

and run on different nodes of a distributed architecture. Fig. 6.2 shows an example

infrastructure, including two Testing Session Executor components.

Each Testing Session Executor component includes three software modules:

Android Emulator, Driver and Loader. The Driver component implements the

specific MFT technique and iteratively sends the next random user event to the

GUI of the subject application. The Android Emulator provides the emulated

execution platform and consists of the Android Virtual Device (AVD) provided

by the Android SDK3. The instrumented Application Under Test is run on the

AVD under the control of a Robot component that actually fires the event on the

current GUI and scrapes it.

The AUT is instrumented by the EMMA Library4 in order to generate Code

Coverage Files. The Loader module fetches these files from the AVD and pro-

vides them to the Coverage Repository that is deployed on the Testing Process

Coordinator component of the architecture. EMMA is an open-source toolkit for

measuring and reporting Java code coverage. It supports coverage types such as

class, method, line and basic block. Moreover, EMMA can detect when a single

source code line is partially covered, which can happen when the source code has

branches that are not exercised by the tests5. Referring to the algorithm in Fig. 2

3https://developer.android.com/sdk/index.html
4http://emma.sourceforge.net/index.html
5http://emma.sourceforge.net/faq.html#q.fractional.examples



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 101

the i− th element of SCS[] is actually the EMMA run-time coverage data (which

basic blocks have been executed) that are stored in files having .ec extensions. To

obtain the CSSC the merge feature provided by EMMA was exploited.

As to the Process Coordinator component, it includes an Engine module that

launches the testing sessions on the different Testing Session Executor components,

gets their coverage results, and periodically assesses the termination condition. To

evaluate the termination condition, it runs Emma scripts to compute the code

coverage percentages reached both by the sessions and their union. It then executes

scripts to evaluate whether the termination condition has been reached. While the

termination condition is not true, the Engine commands the Driver to send further

random events, otherwise it stops all running sessions.

Figure 6.2: Overview of the overall testing infrastructure



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 102

This architecture was implemented using Java technologies as well as features

provided by the Android Debug Bridge (ADB)6.

Since the implementation of Driver and Robot modules depend on the MFT

technique involved in the process, two versions of the Driver module were devel-

oped; they implement the fuzz testing technique used by the AndroidRipper tool

[11] and the one exploited by the Android Monkey tool7, respectively. The first

version of the Driver directly delegates the Robot component to interact with the

AUT by means of the APIs provided by the Android Instrumentation library8.

Specifically, the Robot exploits the Robotium library9 both to fire events on the

AUT and to get an instance of its GUI at run-time. The second version of the

Driver was implemented using the AndroidMonkey library10. It is a copy of the

original Android Monkey Tool and is a library made for testing and analysis pur-

poses. In this version, the Driver component runs test scripts that invoke the

Robot, which in turn runs JUnit test cases and exploits the designated library to

send event(s) to the AUT.

6.4 An exploratory study

This section presents a preliminary case study which assesses the feasibility of the

proposed testing process and its capability of reaching the saturation effect. To

this aim, the proposed testing process and infrastructure was used to test a real

Android application named SimplyDo. This is a medium sized app (1,281 LOC)

that provides a simple shopping and TODO list manager for Android. During

the process, the MFT technique implemented by the AndroidRipper tool was ex-

6http://developer.android.com/tools/help/adb.html
7http://developer.android.com/tools/help/monkey.html
8http://developer.android.com/tools/testing/testing android.html#Instrumentation
9http://code.google.com/p/robotium/

10https://code.google.com/p/androidmonkey/



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 103

ploited. In its basic configuration, this tool is able to fire events on GUI widgets

having at least one event handler registered for the event with a delay of 1000ms

between consecutive events.

In the first phase of the study, the process was performed multiple times. Each

time the same AVD configuration but either different preconditions for the subject

app or different MFT tool configurations were used. More specifically, two different

tool configurations, C1 and C2, and two different app preconditions, P1 and P2

were defined. C1 and C2 are defined as follows:

• C1: Given a GUI with a ListView widget, Android Ripper fires ’click’ events

only on the first three items of the list.

• C2: Given a GUI with a ListView widget, Android Ripper fires ’click’ events

on all of the list items.

Similarly, the two preconditions, P1 and P2, are defined as:

• P1: SimplyDo has been installed on the device, but has never been launched.

• P2: SimplyDo has been launched, and contains two TODO lists and one

item in the first TODOs list.

Table 6.1 reports the four combinations of tool settings and app preconditions

considered for each process run.

Table 6.1: Testing process variants and results

TP MFTSet AUTPr TerL TerP

TP11 C1 P1 76.56% 4,000

TP12 C1 P2 76.32% 3,800

TP21 C2 P1 85.1% 4,700

TP22 C2 P2 84.63% 4,300



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 104

For each variant, k = 12 testing sessions in parallel were run, where each

session was executed on a different PC. The automatically obtained TerP and

TerL values for each variant are reported in Table 6.1. In order to obtain a more

complete view of the trend of each process, up to 10,000 events for each session

were ran to observe coverage even after the application had reached its termination

point. Figure 6.3 illustrates the obtained statement coverage percentage trends for

each of the variants.

Figure 6.3: Coverage trends of the four testing process variants

The obtained trends seem to suggest that all processes reached the saturation

effect. To confirm this datum, both the code coverage reports produced by the

Java Code Coverage Tool EMMA and the part of the code of the application left



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 105

out by the sessions was manually analyzed. The aim of the analysis was to decipher

whether the resulting uncovered code was in fact reachable. If so, it would seem

that the termination points were not all saturation points. On the other hand, if

the uncovered code was found to be unreachable, could be concluded that every

termination point of the process was also its saturation point and the hypotheses

would still hold.

At the end of the analysis, can be observed that in fact all the uncovered

statements could never be exercised by the testing processes due to the following

reasons:

• MFT tool configuration. Some code was not reachable given the MFT

tool configurations. For example, because AndroidRipper was not configured

to fill in the EditText widgets with null values, the related NullPointerEx-

ception handling code could not be covered. Moreover, since AndroidRipper

did not use the keyboard device to fill the EditText widgets, the related

onEditorAction handlers were actually unreachable. Eventually, the C1 set-

tings used in TP11 and TP12 were able to fire events only on the first three

items of any menu list, and then the code associated with the other menu

items could never be triggered.

• AVD configuration. Some parts of the source code of the application could

never be executed due to the settings of the AVD. For example, the code that

should be executed when the device does not include the SD card was not

reachable because the AVD used in the testing environment was equipped

with an emulated SD card.

• AUT preconditions. Another set of statements were not reachable on the

basis of the AUT preconditions. For example, in the process variants TP12

and TP22 that launched the app from the P2 precondition, three LOCs ex-



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 106

ecuting CREATE TABLE SQL queries were never exercised. These queries

are executable only when the app is first launched after the installation.

• Unreachable code of the AUT. The remaining uncovered statements

were unreachable, because there was no control flow path to it from the

rest of the program [33]. As an example, can be found classes and methods

included in the source code but never used by the rest of the program.

As a result, all reachable code of the AUT was covered by the testing processes,

and therefore, saturation was always reached at a termination point of the process.

To further confirm the results, whether the choice of k = 12 sessions composing

the process had influenced the obtained results was analyzed. To this aim, the

coverage data and evaluated the termination points proposed by processes made

of k=2, 3, 4 and 8 sessions were post-processed. The 12 testing sessions were

permuted without repetitions obtaining 66 simulations of testing processes made

by k = 2 testing sessions, 220 testing processes made by k = 3 testing sessions,

495 testing processes made by k = 4 testing sessions and 495 testing processes

made by k = 8 testing sessions. The termination levels obtained were always the

same for testing processes composed of k > 2 sessions, and conclude that k = 12

sessions is an adequate choice to obtain reliable process results.

Lastly, in order to assess whether the process is able to reach the saturation

independently of the exploited MFT technique, another testing process was per-

formed involving the same application but a different MFT technique implemented

by Monkey Tool. It fires events belonging to different classes of User Events and

System Events chosen at random on the basis of a given adjust percentage. User

events includes touchscreen events that are fired on randomly chosen points of the

screen irrespective of the actual presence of a UI widget in that point. A sin-

gle testing process was executed made by twelve random testing sessions, starting



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 107

from the initial P2 state of the AUT and configured the tool with its default adjust

percentages. Moreover, the delay between consecutive events was set at 100ms.

Figure 6.4: Coverage trends obtained by Monkey Tool

Figure 6.4 reports the Statement Coverage Percentage trend achieved by the

process, where TerP = 5 × 107 and TerL = 75.57%. The manual analysis of

the code statements left uncovered by the process confirms the uncovered code

is in fact unreachable due to the same motivations listed above. This result,

therefore, further confirms that the proposed process reached the saturation effect

independently from the considered MFT technique, even if this effect was reached

after many more events than the former process (after about 5× 107 events rather

than about 4, 000 events).

6.5 Experimentation

To extend the validity of the results achieved by the exploratory study, an ex-

periment was conducted aimed at answering the two Research Questions reported

below.



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 108

R.Q.1: Is the proposed testing process able to reach the Saturation

at the termination point?

R.Q.2: Which are the main factors able to affect the effectiveness of

the proposed testing process at the termination point?

These research questions were addressed in the context of Android mobile ap-

plications, using the MFT technique implemented by AndroidRipper.

6.5.1 Subjects

For this experiment 18 open source Android applications have been selected, pub-

lished on the Google Play store, belonging to different Google Play categories and

having different source code complexity, expressed in terms of number of state-

ments. Table 6.2 reports for each application an identifier (AUT ID), its name,

Google Play Category (GPC) and the number of source code statements given by

| SST |. As data show the AUTs belonged to 12 different GPCs and their size

varied from 184 to 3860 LOCs.

6.5.2 Metrics

To assess the Saturation effect at the termination point of the process the residual

percentage of code statements left uncovered by the testing process until the ter-

mination point has been measured. If the Saturation is reached then this residual

quantity is zero, or approximately equal to zero.

To evaluate this residual percentage, the following sets and metrics were used:

• UnS(TP ): it is the Unreachable Statements set, UnS(TP ) ⊆ SST of the

AUT , made of all the AUT statements that are unreachable by the process

TP .



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 109

Table 6.2: Characteristics of the Applications Under Test

AUT ID AUT Name GPC —SST—

AUT1 AardDict Book 2,097

AUT2 AndroidLevel Tools 623

AUT3 BatteryCircle Tools 249

AUT4 BatteryDog Tools 463

AUT5 Bites Lifestyle 967

AUT6 Fillup Transportation 3,807

AUT7 JustSit Lifestyle 273

AUT8 ManPages Productivity 292

AUT9 MunchLife Entertainment 184

AUT10 NotificationPlus Productivity 283

AUT11 Pedometer Health 809

AUT12 QuickSettings Productivity 2,841

AUT13 Taksman Tools 226

AUT14 TicTacToe Brain 493

AUT15 TippyTipper Finance 999

AUT16 Tomdroid Productivity 3,860

AUT17 Trolly Shopping 364

AUT18 WorldClock Travel 1,149



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 110

• ReSRS(TP, TerP ): it is the Residual Set of Reachable Statements by TP

at the termination point. It represents the set of statements that are poten-

tially reachable by TP but have not been covered by it until TerP . This set

is given by the following difference:

SST − CSSC(TP, TerP )− UnS(TP ). (6.5)

• RePRS(TP, TerP ): it is theResidual Percentage of Reachable Statements.

It is given by equation (6.6)

RePRS(TP, TerP ) =
| ReSRS(TP, TerP ) |

| SST |
× 100 (6.6)

If RePRS(TP, TerP ) = 0 all the reachable code of the application that is

actually covered by TP, so the process reached the saturation.

6.5.3 Experimental Procedure

The processes was configured to test each subject application. Each process in-

cluded k = 12 sessions and the same AndroidRipper configuration to test all the

AUTs. AndroidRipper was configured for sending events on the GUI widgets hav-

ing at least a registered listener and for emulating the pressure both of the back

button and of the openMenu one of the mobile device. The delay between two

consecutive events was set to 500 ms and AndroidRipper was configured for filling

in the EditText widgets with random numeric values. Moreover, for each AUT

a specific initial precondition was defined and the same AVD configuration has

been used in each process execution: the emulated devices were all equipped with

Android Gingerbread (2.3.3) and have 512 MByte of RAM and 64 MByte of mem-

ory on emulated SD Card. The processes were executed by exploiting the testing



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 111

infrastructure that was configured to run on 13 different PCs running Windows 7

64 Bit Operative System equipped with an Intel I5 3GHz processor and 4GB of

RAM.

To answer the first research question, at the end of each process the RePRS

values was measured. To measure this metric the UnS(TP ) was evaluated set by

means of a manual analysis of the statements uncovered by each TP. To answer

the second research question, the effectiveness of the process at the termination

point was assessed by evaluating its Termination Level TerL. Moreover, for the

motivations that did not allow the complete coverage of the source code statements

were analyzed. This research was made by manual analysis too.

To be confident about the results of the manual analysis, they were performed

by two different teams of software engineers (each one including a Ph.D. student

and a graduate student), and then the obtained results were validated by a third

team including two researchers in software engineering.

6.5.4 Results

Table 6.3 reports for each AUT the termination level TerL and the residual per-

centage of reachable statements RePRS achieved by the performed testing pro-

cesses.

6.5.4.1 Saturation results

As the data show, 15 times out of 18 the residual percentage of reachable state-

ments was 0%. In the remaining three cases, this percentage was negligible, being

lower then 0.5%. As to AUT3, the RePRS was 0.40%, indicating that a single

line of code over 249 of its SST was potentially reachable, but it was not actually

reached. As to AUT4, the residual percentage of reachable statements was 0.42%

due to only two potentially executable but not actually executed statements over



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 112

Table 6.3: Experimental Results

AUT ID TerL RePRS AUT ID TerL RePRS

AUT1 71.14% 0% AUT10 41.24% 0%

AUT2 62.68% 0% AUT11 74.75% 0%

AUT3 92.89% 0.40% AUT12 48.50% 0%

AUT4 81.60% 0.42% AUT13 92.79% 0%

AUT5 57.88% 0% AUT14 99.64% 0.17%

AUT6 84.03% 0% AUT15 87.86% 0%

AUT7 70.92% 0% AUT16 69.96% 0%

AUT8 77.53% 0% AUT17 80.88% 0%

AUT9 98.86% 0% AUT18 97.37% 0%

463. In regards to AUT14, the residual percentage of reachable statements was

even smaller, 0.17%, with only 0.8 potentially executable statements that were not

covered during the process.

On the basis of these results R.Q. 1 could be answered and can be concluded

that the proposed testing process was able to reach the Saturation at the termi-

nation point in all the considered cases.

6.5.4.2 Effectiveness results

The uncovered code of the AUTs was analyzed in detail with the aim of under-

standing why this code was not reached during the process. The motivations

reported below were found.

(1) Part of the code was not reached depending on the initial state of the ap-

plications under test. This motivation was true for two applications, namely Bites

and FillUp. Since the considered preconditions set them in a state successive to

the first AUT execution on the device, then the statements of some SQL queries

needed to configure the supporting databases was actually unreachable. This code

can be indeed executed only when these applications are launched for the first time



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 113

after their installation on the device.

(2) Part of the code was not reached depending on the configuration of the device

exploited in the testing processes. This motivation was verified for 8 applications

out of 18. Code statements were found that could be executed only if the apps were

installed on specific devices, i.e., the ones belonging to the Motorola and eInk Nook

families. Some other statements were unreachable because they can be executed

only on Android O.S. platforms different from the 2.3.3 version. Other statements

were made unreachable by the hardware limitations of the device emulator, i.e.,

the absence of sensors, WiMAX connectivity, Bluetooth and a physic LED and the

impossibility of changing the connection status (Wi-Fi on/off, 3g on/off). Part of

the source code was unreachable because some specific apps, like GMail, were not

present on the device emulator. Eventually, some statements could not be reached

because they can be triggered only when the device does not present an SD card,

while the emulator was equipped with an SD.

(3) Part of the code was not reached depending on both the settings and the

limitations of the MFT tool. This motivation was verified for 11 applications out

of 18. The MFT tool was configured to fill in the editText widgets with random

integer values. As a consequence, some statements whose execution requires spe-

cific user input values (such as, a valid e-mail address or valid URLs) could never

be covered. Parts of the statements were actually unreachable, given the limita-

tions of the MFT tool that is not able to fire all the types of event handled by the

subject apps. As an example, AndroidRipper is not able to emulate the pressure of

some device buttons (such as Volume Up, Volume Down and Search), to interact

with the device Trackball, to fire specific events like the gesture ones, to emulate

the changes of the values read by sensors, to send Intents, to interact with some

widgets like Preferences and WebViews.

(4) Part of the code was not reached because it is actually unreachable code of



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 114

the AUT. This motivation was verified for all the considered applications. Some

apps presented activities declared in the AndroidManifest.xml but never opened,

menus defined but never enabled, or classes that are never instantiated. In an

application, there was a fraction of source code related to the creation of XML

files that could never be executed since the AUT lacked of the permits for writing

on the SD Card. In some applications, there were parts of code related to the

interaction with external services that are not actually available.

In conclusion the motivations that emerged from this analysis coincided with

the same ones revealed by the exploratory study, so R.Q. 2 could be answered by

claiming that the main factors affecting the effectiveness of the proposed testing

processes were (1) the preconditions of the AUT, (2) the configurations of the testing

platform, (3) the limitations and the configuration of the MFT technique, and (4)

the existence of unreachable statements in the source code of the AUT.

6.5.5 Lessons learned

At the end of the experiment, some lessons about the proposed testing process can

be learned. A first lesson regards its termination criterion. According to it, in the

experiment the termination points were reached when each session composing the

process reached the same code coverage as the cumulative one. This stop condition

allowed the process to reach the saturation effect. Analyzing the experimental data

further, an alternative stop condition can be derived. The data suggested indeed

that the process could be stopped, without loss of code coverage, as soon as the

coverage of one of the sessions reached the cumulative one. As an example, Fig.

(6.5) shows a zoom in the code coverage trends achieved by the testing process

TP22 presented in Section 6.4 and highlights two possible termination points TerP

and TerP ∗, where the second point is obtained by using the new termination

condition TerCond∗ expressed by equation (6.7):



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 115

TerCond∗(S, n) = true ⇐⇒

∃ Si ∈ S | CSP (Si, n) == CCSP (TP, n)
(6.7)

To validate this intuition, the new Termination points and levels that could be

achieved by the new termination condition for each AUT were evaluated. Table

6.4 shows the obtained results. The termination levels obtained using the new

termination condition were the same as the ones reported in Table 6.3. As the data

show, the new termination condition significantly reduces the number of events

needed to reach the same test adequacy as the one achieved at the saturation point,

and the reduction rate varies between 24.48% and 93.58%. This new criterion

may be successfully used to improve the efficiency of the process, leaving its test

adequacy unchanged.

Figure 6.5: Two termination points of TP22 execution

A second lesson can be learned from the exploratory study is that the proposed

process is able to reach different Saturation Levels, depending on the preconditions

of the AUT and the settings of the MFT technique. This lesson suggests to us a



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 116

Table 6.4: Termination Points

AUT ID TerP ∗ TerP AUT ID TerP ∗ TerP

AUT1 300 4000 AUT10 100 500

AUT2 100 700 AUT11 2300 4600

AUT3 100 500 AUT12 15200 30700

AUT4 100 800 AUT13 300 800

AUT5 7400 9800 AUT14 10300 20100

AUT6 53400 95600 AUT15 500 7200

AUT7 1900 5300 AUT16 98200 147800

AUT8 500 7800 AUT17 200 600

AUT9 300 700 AUT18 1400 3600

new variant of the testing process that iteratively selects different app-tool con-

figurations until the saturation effect is detected. As an example, the tester may

create a set of app- and tool- configurations. The new process iteratively picks a

configuration and runs the MFT tool until the saturation point. The process ends

when the set of app- and tool- configurations is exhausted. This new process may

achieve better test adequacy results than the former one. Fig. (6.6) shows the

cumulative coverage trend obtained by the new testing process where were con-

secutively ran the four testing variants TP12, TP11, TP22 and TP21 described in

Section 6.4. However, further experiments should be performed in order to assess

the validity of these two process variants.



Chapter 6. Exploiting the saturation effect in automatic random testing of android applications 117

Figure 6.6: Cumulative Coverage achieved in the new process variant



CHAPTER 7

A parallel and distributed implementation of

GUI Ripping Techniques

In this chapter I present a parallel approach for automated GUI Testing of Android

Applications; the approach is based on the generic algorithm described in Chapter

3 and is implemented exploiting the Android Ripper tool.

7.1 Introduction

Testing applications that can assume a large set of possible GUI states may need

a large number of test cases and a large amount of testing time. Contributions

in the literature about automated GUI Testing of Android applications rarely

address the problem of the efficiency of the process; their primary focus is often

the effectiveness of the process or the mitigation of the manual effort. In Chapter

3 the experimentation carried out on Android Ripper needed many hours to be

completed. This time can grow due to the size and complexity of the GUI and the

number of user events to trigger [90].

To address the problem of the efficiency of the testing process presented in

Chapter 3, in this Chapter a parallel and distributed approach is presented. In

literature there are some contributions that propose a process to execute test cases

simultaneously. Hu et al. [52] propose a technique focused on the parallel execution

118



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 119

of the Monkey tool in a distributed environment. Nguyen et al. [90] present

GUITAR, a tool implementing an automated testing process that can distribute

test cases to a cluster to slave nodes. Amalfitano et al. [5] propose a process to

determine an optimal termination point for Random techniques that exploits the

parallel execution of twelve testing sessions. Wen et al. [114], instead, propose

PATS (Parallel Android Testing System), a parallel GUI testing platform which

performs GUI testing based on a master-slave model; not only it executes GUI

events on the AUT, but it analyzes the GUI dynamically under the cooperation

of the master and the slaves.

7.2 A parallel implementation of Android Rip-

per

Algorithm 1 described in Chapter 3 is a generic algorithm; it has been implemented

in the Android Ripper tool that is based on a Master-Slave model. To distribute

the process among many Slave nodes different needs should be addressed both for

Active Learning and Random techniques.

As regards Random techniques, a Slave node executes sequences of pseudo-

random events where a new event is scheduled starting from the status of the

GUI of the AUT reached by performing all the previous sequence of events. In

this scenario, Random techniques can be parallelized by executing simultaneously

different instances of the RandomDriver (see Subsection 3.2.3), one for each Slave

node. Our implementation of such solution is a multi-threaded version of the

RandomDriver.

For Active Learning techniques, instead, a Slave node executes a predefined

sequence of events and may update the AppModel at the end of its execution.

In this case, a sequence of events should be assigned at one Slave node only and



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 120

Slave PC

Master PC

<<component>>

Android Ripper Driver

AVD

<<component>>

Android Ripper Test Case

Slave PC

AVD

<<component>>

Android Ripper Test Case

AVD

<<component>>

Android Ripper Test Case

Figure 7.1: AndroidRipper Master/Multi-Slave Implementation

the AppModel should always be updated coherently. To this matter the imple-

mentation of RefineAppModel and RunEvents methods have been modified. The

RunEvents method has been implemented to control different Slave nodes at a

time and, after the execution of a sequence of events, the RefineAppModel is run.

This method modifies the AppModel and this modification should be done in mu-

tual exclusion. So, a semaphore has been implemented to control the access to

this shared resource.

Figure 7.1 show an high-level architecture of the system.

Slave nodes are meant to be distributed among different PCs and one PC can

run one or more Slave nodes at a time. The communication between the Driver

and a Slave node is implemented by exploiting a JSON/RPC-based protocol over

a TCP/IP connection.

Figure 7.2 exemplifies the interaction between a Driver component, that act

as a Master node, and two AndroidRipper Test Case components, that act as



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 121

Slave nodes. The names of the methods are coherent with the ones used for the

generic algorithm.

The figure shows how, after that the sequences of events are scheduled (sched-

uleEvents()), two different sequences of events are executed in parallel (fireEvents());

the Figure evidences that the refine() method of the AppModel is executed in a

critical region.

7.3 Case Study

In this section a case study is described where a comparison is made between

the original Master/Slave and the proposed Master/Multi-Slave approaches. The

experimental results are obtained by the execution of an Active Learning technique

and are analyzed in detail. The exploited Active Learning technique features the

following configuration:

• TerminationCriterion: ModelCoverageTerminationCriterion

• ExtractionCriterion: RelevantEventsExtractionCriterion

• AbstractionStrategy: TAVAbstractionStrategy

• SchedulingStrategy: BreadthSchedulingStrategy

7.3.1 Research Questions

The case study is aimed at comparing the effectiveness and the efficiency of the

proposed Master/Multi-Slave approach with respect to the original Master/Slave

one. In detail, the case study want to address the following research questions:

• RQ1: Is the effectiveness of the considered technique influenced by the par-

allel implementation?



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 122

critical

loop

par

[stopCondition == false]

critical

Android Ripper Test Case (2)

AppModel

Android Ripper Test Case (1)Android Ripper Driver

15: evaluateStopCondition()

14: refine()

13.1: GUIDescription

13: describeGUI()

12.1: ACK

12: fireEvents()

11: refine()

10.1: GUIDescription

10: describeGUI()

9.1: ACK

5.1:

9: fireEvents()

8: ScheduleEvents()

7.1: fireableEvents[]

7: extractEvents()

6: evaluateStopCondition()

4:

5: refine()

3: initializeAppModel

2.1: GUIDescription

2: describeGUI()

1: startupApplication()

Figure 7.2: AndroidRipper Master/Multi-Slave Implementation



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 123

• RQ2: How the quantity and the distribution of Slave nodes on different

machines influence the effectiveness of the parallel implementation of the

considered technique?

• RQ3: Is the efficiency of the Active Learning technique influenced by the

parallel implementation?

• RQ4: How the quantity and the distribution of Slave nodes on different

machines influence the efficiency of the parallel implementation of the con-

sidered technique?

7.3.2 Variables & Measures

In this Subsection the variables of the experiment are described: the independent

variables, i.e. the variables that are changed or manipulated during the experi-

ment, and the dependent variables, i.e. the values that depend from the variation

of the independent variables.

7.3.2.1 Independent Variables

Given that more than one Slave node can be deployed on different virtual devices

running on a single Machine, nS is defined as the number of Slave nodes and nM

as the number of Machines where the Slave nodes are allocated. The independent

variable of the experiment is the Configuration that is a couple (nM ,nS). In the

experiment the following values for this variable are used: {(1,1); (2,1); (1,2);

(2,2); (6,1); (6,2)}, where the configuration (1,1) corresponds to the non-parallel

Master/Slave implementation of the Active Learning technique.



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 124

7.3.2.2 Dependent Variables

The dependent variables of the experiment are related to effectiveness and effi-

ciency. To measure the effectiveness for the testing techniques the LOCs Cov-

erage Percentage (COV%) is evaluated; COV% is the percentage of lines of

the source code of the application covered during the testing process. To measure

the efficiency of the testing technique the Testing Process Execution Time

(tTOT ) is measured; tTOT is expressed in hours and minutes (hh:mm) and includes

the Start-up time of each Slave node and the time to execute each sequence of

events generated during the process. Configurations with more than two Slave

nodes on the same Machine are not considered due to resource limits of the Ma-

chines.

7.3.3 Experiment Setup

7.3.3.1 Objects of the Experiment

As objects of the experiment a sample of 3 open source Android apps were selected

from the Google Play market. Table 7.1 describes the selected applications and for

each app reports its Identifier, a short Description, and software structural metrics

related to its source code.

Table 7.1: Applications Characteristics

ID Application Description # Classes # Activ. # Methods
# Event

handlers
# LOCs

AUT1 TicTacToe 1.0 Simple game 13 1 47 16 493

AUT2 TippyTipper 1.2 Tip calculator app 42 6 225 70 999

AUT3 Tomdroid 0.7.1 Note-taking app 133 10 707 117 3860

The metrics include: total number of classes, number of Activity classes (i.e.

classes extending the Activity class provided by the Android framework and that



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 125

are responsible for implementing the GUIs of the application), number of methods,

number of event handlers (i.e. methods responsible for managing the events sent

to the app) and the number of lines of code (LOCs) of the app.

7.3.3.2 Experimental Procedure

In order to execute the experiment, the following three steps were performed.

• Set-up of a testing environment. The parallel testing techniques was

implemented in Android Ripper. The Driver component was deployed on a

single PC and we configured 6 PCs to run Slave nodes; both the Master and

the Slave PCs are on the same network infrastructure, featuring a fixed net-

work configuration. On each Slave PC two Android Virtual Devices (AVDs)

were prepared to emulate devices having 512 MByte of RAM, a 64 MByte

SD Card, and an Android Gingerbread (2.3.3) operating system.

• Execution of the testing techniques. Using the testing infrastructure all

the 3 applications were tested. Since the application preconditions could af-

fect the results of executing a testing technique, each app was set in the same

pre-conditions before running each testing session. The testing techniques

ran until they reached their termination point.

• Data Collection. After the termination of each testing process all the

needed measures were performed by exploiting the raw data stored on the

Driver PC. As regards the LOCs Coverage Percentage (COV%) the

code coverage reports produced by Emma were collected. The Testing Pro-

cess Execution Time (tTOT ) was directly measured by the Driver.

7.3.4 Results & Discussion

Table 7.2 reports the results obtained for the experiment.



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 126

Table 7.2: Experiment Results

(nM ,nS)

(1,1) (1,2) (2,1) (2,2) (6,1) (6,2)

AUT1
COV% 19 19 19 19 19 19

tTOT 00:19 00:13 00:11 00:08 00:07 00:04

AUT2
COV% 58 58 58 58 58 58

tTOT 01:02 00:45 00:43 00:32 00:19 00:14

AUT3
COV% 32 32 32 32 32 32

tTOT 02:29 01:45 01:11 00:49 00:33 00:20

Looking at the collected data RQ1 can be answered as follows: the effectiveness

of the considered technique is not influenced by the parallel implementation. So,

to answer to RQ2 : the quantity and the distribution of Slave nodes on different

machines do not influence the effectiveness of the parallel implementation of the

considered technique.

As regards RQ3 : the efficiency of the Active Learning technique is influenced

by the parallel implementation. This implies that the quantity and the distribution

of Slave nodes on different machines do influence the effectiveness of the parallel

implementation of the considered technique. To answer RQ4 two questions need

to be answered:

• RQ4.1: How the number of Slave nodes (nS) running on a single Machine

influences the efficiency of the parallel GUI testing process?

• RQ4.2: How the number of Machines (nM) running the same number of

Slave nodes influences the efficiency of the parallel GUI testing process?

Table 7.3 shows an index of the speed-up of the technique related to the number

of Slave nodes (nS) running on each Machine; this index is evaluated as the inverse



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 127

Table 7.3: Performance varying nS

(nM ,nS)

(1,2)
(1,1)

(2,2)
(2,1)

(6,2)
(6,1)

AUT1 1.46 1.38 1.75

AUT2 1.38 1.34 1.36

AUT3 1.42 1.45 1.65

AVERAGE 1.42 1.39 1.59

AVERAGE = 1.46

of the ratio of the tTOT measured for configurations featuring the same nM but

different nS.

It was expected that the speed-up grows at least linearly with respect to the

number of Slave nodes running on the same Machine; instead in average the speed-

up is only of 1.46 in correspondence of a doubling of the number of Slave nodes.

So, referring to RQ4.1, can be stated that the tTOT does not linearly decrease with

respect to the number of Slave nodes (nS) running on each Machine.

Table 7.4 shows an index of the speed-up of the technique related to the number

of Machines (nM) running the same number of Slave nodes; this index is evaluated

as the inverse of the ratio of the tTOT measured for configurations featuring the

same nS but different nM .

It was expected that the speed-up grows at least linearly with respect to the

number of Machines running the same number of Slave nodes; on the contrary,

when using two Machines in average the speed-up is only of 1.74 instead of the

optimal value of 2; using six Machine the increase was in average 3.70. So, answer-

ing to RQ4.2, can be stated that the tTOT does not linearly decrease with respect

to the number of Machines (nM) running the same number of Slave nodes.

From this case study some intuitions can be elicited. In general, when the



Chapter 7. A parallel and distributed implementation of GUI Ripping Techniques 128

Table 7.4: Performance varying nM

(nM ,nS)

(2,1)
(1,1)

(2,2)
(1,2)

(6,1)
(1,1)

(6,2)
(1,2)

AUT1 1.73 1.63 2.71 3.25

AUT2 1.44 1.41 3.26 3.21

AUT3 2.10 2.14 4.52 5.25

AVERAGE 1.76 1.72 3.50 3.90

AVERAGE = 1.74 AVERAGE = 3.70

number of Slave nodes is increased, independently from the number of Machines

involved, the presence of delays caused both by the communication between the

Slave nodes and the Driver and by the synchronization of the Slave nodes guided

by the Driver, may reduce the optimal efficiency of the parallel technique. In

particular, when deploying more than one Slave node on the same Machine the

time needed to execute the testing process is probably influenced also by the

presence of shared resources between the nodes like memory, CPU, disk, files and

so on.

When comparing the results obtained by executing the process on more than

one Machine, a speed-up of 174% was obtained when using two Machines; using six

machines, instead, produced a speed-up of 370%, that is farther from the optimal

value with respect of the result obtained by using two Machines. This may mean

that when the number of Machines is increased the delay due to the communication

and the synchronization weights more and more on the efficiency of the process.

However, the parallelism has sped-up the testing process.



CHAPTER 8

Conclusions & Future Work

In this thesis a set of completely automated techniques supporting the testing

of Android applications is presented, with the aim of reducing the manual effort

needed by human testers. Firstly, the details of the design and the implementa-

tion of a novel automated GUI testing tool, called Android Ripper 1, are presented.

Then four contributions related to the improvement of the performance of the tech-

niques implemented in the tool are described. In detail the techniques presented

are:

• a technique able to exercise context-sensitive applications [120];

• a search based testing technique applicable to Android applications with the

purpose to generate test suites that are both effective in terms of coverage

of the source code and efficient in terms of number of generated test cases;

• a technique to address the problem of stopping a random testing process at

a cost-effective point;

• a parallel approach for automated GUI Testing of Android Applications.

Using the Android Ripper tool some experiments and case studies have been

carried out to assess the validity of each approach. The results obtained witness

1https://github.com/reverse-unina/AndroidRipper

129



Chapter 8. Conclusions & Future Work 130

the effectiveness and the efficiency of the presented automated testing techniques.

To further assess the usefulness and the benefits of the contributions of this

thesis, in the future, a case study experiment can be imagined involving testers

performing real testing activities. Also, some future contributions could regard the

proposal of hybrid techniques that include features both of Random and Active

Learning techniques with the aim of obtaining technique that are both effective

and efficient.

As regards the ideas presented in Chapter 4 where an extended version of An-

droid Ripper able to effectively test context-sensitive applications is presented,

some future works can be addressed. In the future an event-patterns repository

can be build by analyzing a large corpus of bug reports related to mobile apps and

to implement tools supporting the automatic injection of event patterns in exist-

ing test cases. As regards technological aspects of Android applications, events

causing the interaction between different components of the same application or

different applications can be considered, by adding to the Extended Ripper new

features supporting Intent Messages generation and execution. Finally, wider ex-

perimentation can be addressed in order to assess the effectiveness of the proposed

techniques also in terms of fault-detection.

One of the objectives of the future experimentation involving the AGRippin

approach, presented in Chapter 5 will be the tuning of the algorithm parameters

values (such as the crossover ratio, the mutation ratio, the number of iterations

and the test suite size) and the evaluation of their influence on the effectiveness of

the generated test suites and on the number of iterations needed to reach this level

of effectiveness. As regards the crossover and mutation ratio, a technique can be

implemented based on adaptive variations (as the one proposed by Srinivas and

Ptnaik in [105]) in order to reduce the probability that the generated test suites

maintain the same coverage for many consecutive iterations, as experienced in



Chapter 8. Conclusions & Future Work 131

some of the case studies. As regards the number of iterations, longer experiments

can be carried out in order to evaluate if some phenomena of convergence of the

coverage to a global maximum may be observed. Finally, a variant of the technique

can be tested that increases the test suite size when new test cases are generated

by the Hill Climbing technique in order to avoid the loss of important test cases

due to the selection operator.

In the future, the experimentation of the approach presented in Chapter 6, that

addresses the problem of finding an optimal termination point for MFT tools,

can be improved in order to extend the validity of the proposed technique. In

particular, the approach can be exploited for testing a wider number of AUTs by

means of other MFT tools even for different mobile operating systems and in other

contexts, such as web or desktop applications.

As regards the parallel implementation of Android Ripper presented in Chapter

7, it can be modified to be deployed on a Cloud environment. Using a Cloud

environment with a huge number of nodes, a wider experimentation can also be

performed.



Bibliography

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles.

Towards a better understanding of context and context-awareness. In Pro-

ceedings of the 1st International Symposium on Handheld and Ubiquitous

Computing, HUC ’99, pages 304–307, London, UK, UK, 1999. Springer-

Verlag.

[2] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cam-

bridge University Press, New York, NY, USA, 1st edition, 2010.

[3] W. Afzal, R. Torkar, and R. Feldt. A systematic review of search-based

testing for non-functional system properties. Inf. Softw. Technol., 51(6):957–

976, June 2009.

[4] S. Ali, L. Briand, H. Hemmati, and R. Panesar-Walawege. A systematic

review of the application and empirical investigation of search-based test

case generation. Software Engineering, IEEE Transactions on, 36(6):742–

762, Nov 2010.

[5] D. Amalfitano, N. Amatucci, A. Fasolino, P. Tramontana, E. Kowalczyk,

and A. Memon. Exploiting the saturation effect in automatic random test-

ing of android applications. In Mobile Software Engineering and Systems

(MOBILESoft), 2015 2nd ACM International Conference on, pages 33–43,

May 2015.

132



Bibliography 133

[6] D. Amalfitano, N. Amatucci, A. R. Fasolino, U. Gentile, G. Mele, R. Nar-

done, V. Vittorini, and S. Marrone. Improving code coverage in android

apps testing by exploiting patterns and automatic test case generation. In

Proceedings of the 2014 International Workshop on Long-term Industrial

Collaboration on Software Engineering, WISE ’14, pages 29–34, New York,

NY, USA, 2014. ACM.

[7] D. Amalfitano, N. Amatucci, A. R. Fasolino, and P. Tramontana. A concep-

tual framework for the comparison of fully automated gui testing techniques.

In 2015 30th IEEE/ACM International Conference on Automated Software

Engineering Workshop (ASEW), pages 50–57, Nov 2015.

[8] D. Amalfitano, A. Fasolino, and P. Tramontana. A gui crawling-based tech-

nique for android mobile application testing. In Software Testing, Verifica-

tion and Validation Workshops (ICSTW), 2011 IEEE Fourth International

Conference on, pages 252–261, March 2011.

[9] D. Amalfitano, A. Fasolino, and P. Tramontana. A gui crawling-based tech-

nique for android mobile application testing. In Software Testing, Verifica-

tion and Validation Workshops (ICSTW), 2011 IEEE Fourth International

Conference on, pages 252–261, March 2011.

[10] D. Amalfitano, A. Fasolino, P. Tramontana, S. De Carmine, and G. Im-

parato. A toolset for gui testing of android applications. In Software Mainte-

nance (ICSM), 2012 28th IEEE International Conference on, pages 650–653,

Sept 2012.

[11] D. Amalfitano, A. Fasolino, P. Tramontana, B. Ta, and A. Memon. Mo-

biguitar: Automated model-based testing of mobile apps. Software, IEEE,

32(5):53–59, Sept 2015.



Bibliography 134

[12] D. Amalfitano, A. R. Fasolino, S. D. Carmine, A. Memon, and P. Tramon-

tana. Using gui ripping for automated testing of android applications. In

ASE ’12: Proceedings of the 27th IEEE international conference on Auto-

mated software engineering, Washington, DC, USA, 2012. IEEE Computer

Society.

[13] D. Amalfitano, A. R. Fasolino, P. Tramontana, and B. Robbins. Testing an-

droid mobile applications: Challenges, strategies, and approaches. Advances

in Computers, 89:1–52, 2013.

[14] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic testing

of smartphone apps. In Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering, FSE ’12, pages

59:1–59:11, New York, NY, USA, 2012. ACM.

[15] D. Angluin. Learning regular sets from queries and counterexamples. Inf.

Comput., 75(2):87–106, Nov. 1987.

[16] A. Arcuri, M. Iqbal, and L. Briand. Random testing: Theoretical results

and practical implications. Software Engineering, IEEE Transactions on,

38(2):258–277, March 2012.

[17] T. Azim and I. Neamtiu. Targeted and depth-first exploration for systematic

testing of android apps. SIGPLAN Not., 48(10):641–660, Oct. 2013.

[18] G. Bae, G. Rothermel, and D. H. Bae. On the relative strengths of model-

based and dynamic event extraction-based gui testing techniques: An em-

pirical study. In Software Reliability Engineering (ISSRE), 2012 IEEE 23rd

International Symposium on, pages 181–190, Nov 2012.



Bibliography 135

[19] J. E. Baker. Adaptive selection methods for genetic algorithms. In Pro-

ceedings of the 1st International Conference on Genetic Algorithms, pages

101–111, Hillsdale, NJ, USA, 1985. L. Erlbaum Associates Inc.

[20] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context&#45;aware

systems. Int. J. Ad Hoc Ubiquitous Comput., 2(4):263–277, June 2007.

[21] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon. Graphical user inter-

face (gui) testing: Systematic mapping and repository. Inf. Softw. Technol.,

55(10):1679–1694, Oct. 2013.

[22] A. Barbosa, A. C. Paiva, and J. C. Campos. Test case generation from

mutated task models. In Proceedings of the 3rd ACM SIGCHI Symposium

on Engineering Interactive Computing Systems, EICS ’11, pages 175–184,

New York, NY, USA, 2011. ACM.

[23] F. Belli, M. Beyazit, and A. Memon. Testing is an event-centric activity. In

Proceedings of the 2012 IEEE Sixth International Conference on Software

Security and Reliability Companion, SERE-C ’12, pages 198–206, Washing-

ton, DC, USA, 2012. IEEE Computer Society.

[24] T.-H. Chang, T. Yeh, and R. C. Miller. Gui testing using computer vision.

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’10, pages 1535–1544, New York, NY, USA, 2010. ACM.

[25] T. Chen, F. Kuo, R. Merkel, and T. Tse. Adaptive random testing: The art

of test case diversity. JSS, 83(1):60–66, 2010.

[26] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing. In Pro-

ceedings of the 9th Asian Computing Science Conference on Advances in

Computer Science: Dedicated to Jean-Louis Lassez on the Occasion of His



Bibliography 136

5th Cycle Birthday, ASIAN’04, pages 320–329, Berlin, Heidelberg, 2004.

Springer-Verlag.

[27] W. Choi, G. Necula, and K. Sen. Guided gui testing of android apps with

minimal restart and approximate learning. SIGPLAN Not., 48(10):623–640,

Oct. 2013.

[28] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental assessment of

random testing for object-oriented software. In Proceedings of the 2007 In-

ternational Symposium on Software Testing and Analysis, ISSTA ’07, pages

84–94, New York, NY, USA, 2007. ACM.

[29] I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer. On the pre-

dictability of random tests for object-oriented software. In Software Testing,

Verification, and Validation, 2008 1st International Conference on, pages

72–81, April 2008.

[30] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and B. Meyer. On the number

and nature of faults found by random testing. Softw. Test., Verif. Reliab.,

21(1):3–28, 2011.

[31] J. Clarke, J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,

B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Reformu-

lating software engineering as a search problem. Software, IEE Proceedings

-, 150(3):161–175, June 2003.

[32] L. Corral and I. Fronza. Better code for better apps: A study on source

code quality and market success of android applications. In Mobile Software

Engineering and Systems (MOBILESoft), 2015 2nd ACM International Con-

ference on, pages 22–32, May 2015.



Bibliography 137

[33] S. K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for

code compaction. ACM Trans. Program. Lang. Syst., 22(2):378–415, Mar.

2000.

[34] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE

Trans. Softw. Eng., 10(4):438–444, July 1984.

[35] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II. Leveraging user-

session data to support web application testing. IEEE Trans. Softw. Eng.,

31(3):187–202, Mar. 2005.

[36] W. Enck, M. Ongtang, and P. McDaniel. Understanding android security.

Security Privacy, IEEE, 7(1):50–57, Jan 2009.

[37] J. E. Forrester and B. P. Miller. An empirical study of the robustness of

windows nt applications using random testing. In Proceedings of the 4th

Conference on USENIX Windows Systems Symposium - Volume 4, WSS’00,

pages 6–6, Berkeley, CA, USA, 2000. USENIX Association.

[38] C. A. Furia, B. Meyer, M. Oriol, A. Tikhomirov, and Y. Wei. The search

for the laws of automatic random testing. In Proceedings of the 28th Annual

ACM Symposium on Applied Computing, SAC ’13, pages 1211–1216, New

York, NY, USA, 2013. ACM.

[39] S. R. Garzon and D. Hritsevskyy. Model-based generation of scenario-specific

event sequences for the simulation of recurrent user behavior within context-

aware applications (wip). In Proceedings of the 2012 Symposium on Theory of

Modeling and Simulation - DEVS Integrative M&S Symposium, TMS/DEVS

’12, pages 29:1–29:6, San Diego, CA, USA, 2012. Society for Computer Sim-

ulation International.



Bibliography 138

[40] U. Gentile, S. Marrone, G. Mele, R. Nardone, and A. Peron. Test specifi-

cation patterns for automatic generation of test sequences. In F. Lang and

F. Flammini, editors, Formal Methods for Industrial Critical Systems, vol-

ume 8718 of Lecture Notes in Computer Science, pages 170–184. Springer

International Publishing, 2014.

[41] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing- and touch-

sensitive record and replay for android. In Software Engineering (ICSE),

2013 35th International Conference on, pages 72–81, May 2013.

[42] T. Griebe and V. Gruhn. A model-based approach to test automation for

context-aware mobile applications. In Proceedings of the 29th Annual ACM

Symposium on Applied Computing, SAC ’14, pages 420–427, New York, NY,

USA, 2014. ACM.

[43] D. Hackner and A. M. Memon. Test case generator for GUITAR. In ICSE

’08: Research Demonstration Track: International Conference on Software

Engineering, Washington, DC, USA, 2008. IEEE Computer Society.

[44] D. Hamlet. When only random testing will do. In Proceedings of the 1st

International Workshop on Random Testing, RT ’06, pages 1–9, New York,

NY, USA, 2006. ACM.

[45] R. Hamlet. Random testing. In Encyclopedia of Software Engineering, pages

970–978. Wiley, 1994.

[46] R. Hamlet. Random Testing. John Wiley & Sons, Inc., 2002.

[47] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. Puma: Pro-

grammable ui-automation for large-scale dynamic analysis of mobile apps.



Bibliography 139

In Proceedings of the 12th Annual International Conference on Mobile Sys-

tems, Applications, and Services, MobiSys ’14, pages 204–217, New York,

NY, USA, 2014. ACM.

[48] M. Harman, U. Ph, and B. F. Jones. Search-based software engineering.

Information and Software Technology, 43:833–839, 2001.

[49] J. H. Hicinbothom and W. W. Zachary. A tool for automatically generat-

ing transcripts of human-computer interaction. Proceedings of the Human

Factors and Ergonomics Society Annual Meeting, 37(15):1042, 1993.

[50] G. Holzmann. Spin Model Checker, the: Primer and Reference Manual.

Addison-Wesley Professional, first edition, 2003.

[51] C. Hu and I. Neamtiu. Automating gui testing for android applications. In

Proceedings of the 6th International Workshop on Automation of Software

Test, AST ’11, pages 77–83, New York, NY, USA, 2011. ACM.

[52] C. Hu and I. Neamtiu. Automating gui testing for android applications. In

Proceedings of the 6th International Workshop on Automation of Software

Test, AST ’11, pages 77–83, New York, NY, USA, 2011. ACM.

[53] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, effectively detecting

mobile app bugs with appdoctor. In Proceedings of the Ninth European

Conference on Computer Systems, EuroSys ’14, pages 18:1–18:15, New York,

NY, USA, 2014. ACM.

[54] IDC. Smartphone os market share, 2015 q2, 2015.

[55] C. S. Jensen, M. R. Prasad, and A. Møller. Automated testing with targeted

event sequence generation. In Proceedings of the 2013 International Sym-



Bibliography 140

posium on Software Testing and Analysis, ISSTA 2013, pages 67–77, New

York, NY, USA, 2013. ACM.

[56] M. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile app

development. In Empirical Software Engineering and Measurement, 2013

ACM / IEEE International Symposium on, pages 15–24, Oct 2013.

[57] J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala. Testdroid: Automated

remote ui testing on android. In Proceedings of the 11th International Con-

ference on Mobile and Ubiquitous Multimedia, MUM ’12, pages 28:1–28:4,

New York, NY, USA, 2012. ACM.

[58] P. Kapur, H. Pham, A. Gupta, and P. Jha. Testing-coverage and testing-

domain models. In Software Reliability Assessment with OR Applications,

Springer Series in Reliability Engineering, pages 131–170. Springer London,

2011.

[59] H. Kim, B. Choi, and W. Wong. Performance testing of mobile applica-

tions at the unit test level. In Secure Software Integration and Reliability

Improvement, 2009. SSIRI 2009. Third IEEE International Conference on,

pages 171–180, July 2009.

[60] P. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo. Under-

standing the test automation culture of app developers. In Software Testing,

Verification and Validation (ICST), 2015 IEEE 8th International Conference

on, pages 1–10, April 2015.

[61] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi. Characterizing failures in

mobile oses: A case study with android and symbian. In Software Reliability

Engineering (ISSRE), 2010 IEEE 21st International Symposium on, pages

249–258, Nov 2010.



Bibliography 141

[62] X. Li, Y. Jiang, Y. Liu, C. Xu, X. Ma, and J. Lu. User guided automation

for testing mobile apps. In Software Engineering Conference (APSEC), 2014

21st Asia-Pacific, volume 1, pages 27–34, Dec 2014.

[63] Y.-D. Lin, E. T. H. Chu, S.-C. Yu, and Y.-C. Lai. Improving the accuracy of

automated gui testing for embedded systems. IEEE Software, 31(1):39–45,

Jan 2014.

[64] Y. D. Lin, J. F. Rojas, E. T. H. Chu, and Y. C. Lai. On the accuracy,

efficiency, and reusability of automated test oracles for android devices. IEEE

Transactions on Software Engineering, 40(10):957–970, Oct 2014.

[65] C.-H. Liu, C.-Y. Lu, S.-J. Cheng, K.-Y. Chang, Y.-C. Hsiao, and W.-M. Chu.

Capture-replay testing for android applications. In Computer, Consumer and

Control (IS3C), 2014 International Symposium on, pages 1129–1132, June

2014.

[66] Z. Liu, X. Gao, and X. Long. Adaptive random testing of mobile application.

In Computer Engineering and Technology (ICCET), 2010 2nd International

Conference on, volume 2, pages V2–297–V2–301, April 2010.

[67] M. R. Lyu, editor. Handbook of Software Reliability Engineering. McGraw-

Hill, Inc., Hightstown, NJ, USA, 1996.

[68] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation

system for android apps. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2013, pages 224–234, New

York, NY, USA, 2013. ACM.

[69] R. Mahmood, N. Mirzaei, and S. Malek. Evodroid: Segmented evolutionary

testing of android apps. In Proceedings of the 22Nd ACM SIGSOFT In-



Bibliography 142

ternational Symposium on Foundations of Software Engineering, FSE 2014,

pages 599–609, New York, NY, USA, 2014. ACM.

[70] P. Maiya, A. Kanade, and R. Majumdar. Race detection for android appli-

cations. SIGPLAN Not., 49(6):316–325, June 2014.

[71] Q. Malik, J. Lilius, and L. Laibinis. Scenario-based test case generation using

event-b models. In Advances in System Testing and Validation Lifecycle,

2009. VALID ’09. First International Conference on, pages 31–37, Sept 2009.

[72] S. Marrone, F. Flammini, N. Mazzocca, R. Nardone, and V. Vittorini. To-

wards model-driven v&v assessment of railway control systems. International

Journal on Software Tools for Technology Transfer, 16(6):669–683, 2014.

[73] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: Reverse engineering

of graphical user interfaces for testing. In Proceedings of the 10th Working

Conference on Reverse Engineering, WCRE ’03, pages 260–, Washington,

DC, USA, 2003. IEEE Computer Society.

[74] A. Memon, I. Banerjee, B. Nguyen, and B. Robbins. The first decade of gui

ripping: Extensions, applications, and broader impacts. In Proceedings of

the 20th Working Conference on Reverse Engineering (WCRE). IEEE Press,

2013.

[75] A. M. Memon. Gui testing: Pitfalls and process. Computer, 35(8):87–88,

Aug. 2002.

[76] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a goal-driven approach

to generate test cases for guis. In Proceedings of the 21st International Con-

ference on Software Engineering, ICSE ’99, pages 257–266, New York, NY,

USA, 1999. ACM.



Bibliography 143

[77] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling ajax-based web

applications through dynamic analysis of user interface state changes. ACM

Trans. Web, 6(1):3:1–3:30, Mar. 2012.

[78] B. P. Miller, G. Cooksey, and F. Moore. An empirical study of the robustness

of macos applications using random testing. In Proceedings of the 1st In-

ternational Workshop on Random Testing, RT ’06, pages 46–54, New York,

NY, USA, 2006. ACM.

[79] B. P. Miller, G. Cooksey, and F. Moore. An empirical study of the robustness

of macos applications using random testing. In Proceedings of the 1st In-

ternational Workshop on Random Testing, RT ’06, pages 46–54, New York,

NY, USA, 2006. ACM.

[80] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability

of unix utilities. Communications of the ACM, 33(12):32–44, 1990.

[81] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek. Sig-droid: Automated

system input generation for android applications. In Software Reliability

Engineering (ISSRE), 2015 IEEE 26th International Symposium on, pages

461–471, Nov 2015.

[82] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood. Test-

ing android apps through symbolic execution. SIGSOFT Softw. Eng. Notes,

37(6):1–5, Nov. 2012.

[83] M. Mitchell, S. Forrest, and J. H. Holland. The royal road for genetic algo-

rithms: Fitness landscapes and ga performance. In Proceedings of the First

European Conference on Artificial Life, pages 245–254. MIT Press, 1991.

[84] I. C. Morgado and A. C. R. Paiva. The impact tool: Testing ui patterns on



Bibliography 144

mobile applications. In Automated Software Engineering (ASE), 2015 30th

IEEE/ACM International Conference on, pages 876–881, Nov 2015.

[85] H. Muccini, A. Di Francesco, and P. Esposito. Software testing of mobile

applications: Challenges and future research directions. In Automation of

Software Test (AST), 2012 7th International Workshop on, pages 29–35,

June 2012.

[86] H. Mühlenbein. How Genetic Algorithms Really Work: Mutation and Hill-

climbing. In PPSN, pages 15–26, 1992.

[87] G. J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York,

NY, USA, 1979.

[88] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley &

Sons, 2004.

[89] B. Nguyen and A. Memon. An observe-model-exercise #x002a; paradigm to

test event-driven systems with undetermined input spaces. Software Engi-

neering, IEEE Transactions on, 40(3):216–234, March 2014.

[90] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon. Guitar: an innova-

tive tool for automated testing of gui-driven software. Automated Software

Engineering, 21(1):65–105, 2013.

[91] C. D. Nguyen, A. Marchetto, and P. Tonella. Combining model-based and

combinatorial testing for effective test case generation. In Proceedings of

the 2012 International Symposium on Software Testing and Analysis, ISSTA

2012, pages 100–110, New York, NY, USA, 2012. ACM.

[92] S. C. Ntafos. On comparisons of random, partition, and proportional parti-

tion testing. IEEE Trans. Softw. Eng., 27(10):949–960, Oct. 2001.



Bibliography 145

[93] N. Nyman. Using monkey test tools. Software Testing & Quality Engineering

Magazine, pages 18–21, 2000.

[94] A. Paiva, J. Faria, and P. Mendes. Reverse engineered formal models for gui

testing. In S. Leue and P. Merino, editors, Formal Methods for Industrial

Critical Systems, volume 4916 of Lecture Notes in Computer Science, pages

218–233. Springer Berlin Heidelberg, 2008.

[95] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping

studies in software engineering. In Proceedings of the 12th International Con-

ference on Evaluation and Assessment in Software Engineering, EASE’08,

pages 68–77, Swinton, UK, UK, 2008. British Computer Society.

[96] H. Raffelt, M. Merten, B. Steffen, and T. Margaria. Dynamic testing via

automata learning. International Journal on Software Tools for Technology

Transfer, 11(4):307–324, 2009.

[97] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: Automatic security

analysis of smartphone applications. In Proceedings of the Third ACM Con-

ference on Data and Application Security and Privacy, CODASPY ’13, pages

209–220, New York, NY, USA, 2013. ACM.

[98] G. J. E. Rawlins, editor. Proceedings of the First Workshop on Founda-

tions of Genetic Algorithms. Bloomington Campus, Indiana, USA, July 15-

18 1990. Morgan Kaufmann, 1991.

[99] A. Rosario Espada, M. del Mar Gallardo, A. Salmerón, and P. Merino. Using

Model Checking to Generate Test Cases for Android Applications. ArXiv

e-prints, Apr. 2015.

[100] M. Sama, D. S. Rosenblum, Z. Wang, and S. Elbaum. Model-based fault

detection in context-aware adaptive applications. In Proceedings of the 16th



Bibliography 146

ACM SIGSOFT International Symposium on Foundations of Software Engi-

neering, SIGSOFT ’08/FSE-16, pages 261–271, New York, NY, USA, 2008.

ACM.

[101] S. Sampath, R. Bryce, and A. Memon. A uniform representation of hybrid

criteria for regression testing. IEEE Transactions on Software Engineering,

99(PrePrints):1, 2013.

[102] I. Satoh. Personal Wireless Communications: IFIP-TC6 8th International

Conference, PWC 2003, Venice, Italy, September 23-25, 2003. Proceedings,

chapter Testing Mobile Wireless Applications, pages 75–89. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2003.

[103] K. Sen. Effective random testing of concurrent programs. In Proceedings

of the Twenty-second IEEE/ACM International Conference on Automated

Software Engineering, ASE ’07, pages 323–332, New York, NY, USA, 2007.

ACM.

[104] E. Sherman, M. B. Dwyer, and S. Elbaum. Saturation-based testing of con-

current programs. In Proceedings of the the 7th Joint Meeting of the Euro-

pean Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, ESEC/FSE ’09, pages 53–62,

New York, NY, USA, 2009. ACM.

[105] M. Srinivas and L. Patnaik. Adaptive probabilities of crossover and mutation

in genetic algorithms. Systems, Man and Cybernetics, IEEE Transactions

on, 24(4):656–667, Apr 1994.

[106] Statista. Number of apps available in leading app stores as of july 2015,

2015.



Bibliography 147

[107] T. Takala, M. Katara, and J. Harty. Experiences of system-level model-based

gui testing of an android application. In Software Testing, Verification and

Validation (ICST), 2011 IEEE Fourth International Conference on, pages

377–386, March 2011.

[108] W.-T. Tsai, L. Yu, F. Zhu, and R. Paul. Rapid embedded system testing

using verification patterns. Software, IEEE, 22(4):68–75, July 2005.

[109] T. Tse and S. Yau. Testing context-sensitive middleware-based software

applications. In Computer Software and Applications Conference, 2004.

COMPSAC 2004. Proceedings of the 28th Annual International, pages 458–

466 vol.1, Sept 2004.

[110] H. van der Merwe, B. van der Merwe, and W. Visser. Execution and property

specifications for jpf-android. SIGSOFT Softw. Eng. Notes, 39(1):1–5, Feb.

2014.

[111] G. A. Wainer. Discrete-Event Modeling and Simulation: A Practitioner’s

Approach. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2009.

[112] P. Wang, B. Liang, W. You, J. Li, and W. Shi. Automatic android gui

traversal with high coverage. In Proceedings of the 2014 Fourth International

Conference on Communication Systems and Network Technologies, CSNT

’14, pages 1161–1166, Washington, DC, USA, 2014. IEEE Computer Society.

[113] Z. Wang, S. Elbaum, and D. S. Rosenblum. Automated generation of

context-aware tests. In Proceedings of the 29th International Conference

on Software Engineering, ICSE ’07, pages 406–415, Washington, DC, USA,

2007. IEEE Computer Society.

[114] H.-L. Wen, C.-H. Lin, T.-H. Hsieh, and C.-Z. Yang. Pats: A parallel gui test-

ing framework for android applications. In Computer Software and Appli-



Bibliography 148

cations Conference (COMPSAC), 2015 IEEE 39th Annual, volume 2, pages

210–215, July 2015.

[115] E. J. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE

Trans. Softw. Eng., 17(7):703–711, July 1991.

[116] D. Whitley and K. Kauth. GENITOR: A different genetic algorithm. In Pro-

ceedings of the 1988 Rocky Mountain Conference on Artificial Intelligence,

pages 118–130, 1988.

[117] D. Yan, S. Yang, and A. Rountev. Systematic testing for resource leaks

in Android applications. In IEEE International Symposium on Software

Reliability Engineering, pages 411–420, 2013.

[118] W. Yang, M. R. Prasad, and T. Xie. Fundamental Approaches to Software

Engineering: 16th International Conference, FASE 2013, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS

2013, Rome, Italy, March 16-24, 2013. Proceedings, chapter A Grey-Box

Approach for Automated GUI-Model Generation of Mobile Applications,

pages 250–265. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[119] X. Yuan, M. B. Cohen, and A. M. Memon. Gui interaction testing: In-

corporating event context. IEEE Transactions on Software Engineering,

37(4):559–574, 2011.

[120] O. Yurur, C. Liu, Z. Sheng, V. Leung, W. Moreno, and K. Leung. Context-

awareness for mobile sensing: A survey and future directions. Communica-

tions Surveys Tutorials, IEEE, PP(99):1–1, 2014.

[121] R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation of

oracles for testing user-interaction features of mobile apps. In Software Test-



Bibliography 149

ing, Verification and Validation (ICST), 2014 IEEE Seventh International

Conference on, pages 183–192, March 2014.

[122] S. Zhang, H. Lü, and M. D. Ernst. Finding errors in multithreaded gui ap-

plications. In Proceedings of the 2012 International Symposium on Software

Testing and Analysis, ISSTA 2012, pages 243–253, New York, NY, USA,

2012. ACM.

[123] Y. Zhauniarovich, A. Philippov, O. Gadyatskaya, B. Crispo, and F. Mas-

sacci. Towards black box testing of android apps. In Availability, Reliability

and Security (ARES), 2015 10th International Conference on, pages 501–

510, Aug 2015.

[124] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou. Smartdroid:

An automatic system for revealing ui-based trigger conditions in android

applications. In Proceedings of the Second ACM Workshop on Security and

Privacy in Smartphones and Mobile Devices, SPSM ’12, pages 93–104, New

York, NY, USA, 2012. ACM.

[125] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and

adequacy. ACM Comput. Surv., 29(4):366–427, Dec. 1997.


