
thesis for the degree of doctor of philosophy

Securing the Next Generation Web

Benjamin Eriksson

index.php login.php admin.php admin.php#users

view_users.php

link log in

add user

click

username
link

1

5

2 3
4

Department of Computer Science & Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2022

Securing the Next Generation Web
Benjamin Eriksson

© Benjamin Eriksson, 2022

ISBN 978-91-7905-680-3
Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5146
ISSN 0346-718X

Technical report no 220D
Department of Computer Science & Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Gothenburg, Sweden, 2022

ii

Securing the Next Generation Web
Benjamin Eriksson

Department of Computer Science & Engineering
Chalmers University of Technology

Abstract

With the ever-increasing digitalization of society, the need for secure systems
is growing. While some security features, like HTTPS, are popular, securing web
applications, and the clients we use to interact with them remains di�cult.

To secure web applications we focus on both the client-side and server-side. For
the client-side, mainly web browsers, we analyze how new security features might
solve a problem but introduce new ones. We show this by performing a system-
atic analysis of the new Content Security Policy (CSP) directive navigate-to. In
our research, we �nd that it does introduce new vulnerabilities, to which we rec-
ommend countermeasures. We also create AutoNav, a tool capable of automatically
suggesting navigation policies for this directive. Finding server-side vulnerabilities
in a black-box setting where there is no access to the source code is challenging.
To improve this, we develop novel black-box methods for automatically �nding vul-
nerabilities. We accomplish this by identifying key challenges in web scanning and
combining the best of previous methods. Additionally, we leverage SMT solvers to
further improve the coverage and vulnerability detection rate of scanners.

In addition to browsers, browser extensions also play an important role in the
web ecosystem. These small programs, e.g. AdBlockers and password managers,
have powerful APIs and access to sensitive user data like browsing history. By
systematically analyzing the extension ecosystem we �nd new static and dynamic
methods for detecting both malicious and vulnerable extensions. In addition, we
develop a method for detecting malicious extensions solely based on the meta-data
of downloads over time.

We analyze new attack vectors introduced by Google’s new vehicle OS, Android
Automotive. This is based on Android with the addition of vehicle APIs. Our analy-
sis results in new attacks pertaining to safety, privacy, and availability. Furthermore,
we create AutoTame, which is designed to analyze third-party apps for vehicles for
the vulnerabilities we found.

Keywords: Web Application Security, Vulnerabilities, Content Security Policy, Web
application scanning, Browser extensions, Input validation, Android Automotive.

iii

List of publications

This thesis is based on the following publications, each presented in a separate
chapter. Papers A [7], B [5], D [6], F [4] are published at peer-reviewed conferences
while Paper C [8] and Paper E [11] are under submission.

Paper A “AutoNav: Evaluation and Automatization of Web Navigation Policies”
Benjamin Eriksson, Andrei Sabelfeld
WWW 2020.

Paper B “Black Widow: Blackbox Data-driven Web Scanning”
Benjamin Eriksson, Giancarlo Pellegrino, Andrei Sabelfeld
S&P 2021.

Paper C “Black Ostrich: Web Application Scanning with String Solvers”
Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Ruem-
mer, Andrei Sabelfeld
Manuscript.

Paper D “Hardening the Security Analysis of Browser Extensions”
Benjamin Eriksson, Pablo Picazo-Sanchez, Andrei Sabelfeld
SAC 2022.

Paper E “No Signal Left to Chance: Driving Browser Extension Analysis by Down-
load Patterns”
Pablo Picazo-Sanchez, Benjamin Eriksson, Andrei Sabelfeld
Manuscript.

Paper F “On the Road with Third-Party Apps: Security Analysis of an In-Vehicle
App Platform“
Benjamin Eriksson, Jonas Groth, Andrei Sabelfeld
VEHITS 2019.

v

Securing the Next Generation Web

vi

Acknowledgments

Sometimes it is hard to grasp how many wonderful people have been there for me.
Particularly, my supervisor Andrei for being fun, caring, inspiring and awesome!
You are always inspiring me and pushing me to try new things, be it traveling across
to world for internships, taking on new challenges at work or biking to new cities.
A huge thank you to all my amazing colleagues at Chalmers. You all make com-
ing to work, or joining over Zoom, both fun and inspiring! Especially to my PhD
buddy Alexander for being there for me since day one, always helping me when
I’m lost, whether it is academic, technical, or personal, thank you for being there!
Thanks to Iulia for all the fun and insightful discussions, teaching me things outside
my bubble. A big thanks to both Mohammad and Ivan for interesting discussions
about tradecraft in “Language-Based Security”. I also want to thank Christoph from
Mozilla for an amazing internship, super fun summer, and great supervision. On
the personal side, I owe a lot to Jonas for pushing me in the right direction, giving
me the courage to pursue a PhD, and helping me co-author my �rst paper! I would
also like to thank my family for their support and Klas motivating and inspiring my
academic pursuits. A special thanks to Agustin, Alejandro, Ann-so�e, Anton and
Matti for our amazing trips to Verdansk. Finally, a big thank you to my wife, best
friend, and love of my life, Ann-so�e. Thank you for your immense support during
this journey, for motivating me to work and for motivating me to do things outside
of work.

May 31st, 2022

vii

Contents

Abstract iii

List of publications v

Acknowledgments vii

Overview

I Introduction 3
I.1 Attackers . 4
I.2 Web applications . 5

I.2.1 Client-side . 5
I.2.2 Server-side . 7

I.3 Browser extensions . 10
I.4 Embedded Systems . 12

II Thesis structure 15

III Statement of contributions 17
A AutoNav: Evaluation and Automatization of Web Navigation Policies 17
B Black Widow: Blackbox Data-driven Web Scanning 18
C Black Ostrich: Web Application Scanning with String Solvers 18
D Hardening the Security Analysis of Browser Extensions 19
E No Signal Left to Chance: Driving Browser Extension Analysis by

Download Patterns . 20
F On the Road with Third-Party Apps: Security Analysis of an In-

Vehicle App Platform . 21

Bibliography 23

Client-side and Server-side Web Security

A AutoNav: Evaluation and Automatization ofWebNavigation Policies 27
A.1 Introduction . 27

A.1.1 Motivation . 27
A.1.2 Research questions . 29
A.1.3 Contributions . 30

A.2 Background . 31
A.2.1 Threat model . 31
A.2.2 CSP . 32
A.2.3 Origin policy . 33
A.2.4 Navigation . 33

ix

Securing the Next Generation Web

A.2.5 Navigate-to directive . 34
A.3 Vulnerabilities . 34

A.3.1 Methodology . 34
A.3.2 Speci�cation . 35
A.3.3 Implementation . 38

A.4 Countermeasures . 40
A.4.1 Speci�cation . 40
A.4.2 Implementation . 41

A.5 AutoNav . 42
A.5.1 Inference . 42
A.5.2 Policy generation . 42
A.5.3 Crawling . 44
A.5.4 Limitations . 45

A.6 Empirical Study . 45
A.6.1 Policy tradeo�s . 45
A.6.2 Coverage . 47

A.7 Related work . 47
A.8 Conclusion . 48
Bibliography . 51

B Black Widow: Blackbox Data-driven Web Scanning 55
B.1 Introduction . 55
B.2 Challenges . 58

B.2.1 Navigation Modeling . 58
B.2.2 Traversing . 59
B.2.3 Inter-state Dependencies . 60

B.3 Approach . 61
B.3.1 Navigation Modeling . 63
B.3.2 Traversal . 65
B.3.3 Inter-state Dependencies . 66
B.3.4 Dynamic XSS detection . 66

B.4 Evaluation . 67
B.4.1 Implementation . 67
B.4.2 Experimental Setup . 68
B.4.3 Code Coverage Results . 70
B.4.4 Code Injection Results . 73
B.4.5 Takeaways . 73

B.5 Analysis of Results . 73
B.5.1 Coverage Analysis . 74
B.5.2 False positives and Clustering 75
B.5.3 What We Find . 76
B.5.4 Case Studies . 77
B.5.5 Features Attribution . 79
B.5.6 Missed by Us . 80
B.5.7 Vulnerability Exploitability 81
B.5.8 Coordinated Disclosure . 82

x

Contents

B.6 Related Work . 82
B.7 Conclusion . 83
Bibliography . 85
Appendix . 89
B.I Scanner con�guration . 89

B.I.1 Arachni . 89
B.I.2 Black Widow . 89
B.I.3 Enemy of the State . 89
B.I.4 jÄk . 89
B.I.5 Skip�sh . 89
B.I.6 w3af . 90
B.I.7 Wget . 90
B.I.8 ZAP . 90

C Black Ostrich: Web Application Scanning with String Solvers 91
C.1 Introduction . 91
C.2 Validation-aware Scanning . 96

C.2.1 Overview . 96
C.2.2 Motivating Example . 96
C.2.3 Scanning . 97

C.3 String Solving for Scanning . 98
C.3.1 Overview of Ostrich . 98
C.3.2 Translation of Validation Constraints 99
C.3.3 ECMAScript Regular Expressions 99
C.3.4 Previous Results for ECMAScript Regexes 101
C.3.5 From ECMAScript Regexes to Automata 101

C.4 From 2AFASMT to NFA . 105
C.5 Coverage and Vulnerability Study 108

C.5.1 Gather Data . 108
C.5.2 Testbed . 109
C.5.3 Implementation . 109
C.5.4 Comparison of Ostrich and ExpoSE 110

C.6 Results . 110
C.6.1 Black-box Scanning . 111
C.6.2 Analysis . 112
C.6.3 Results of Black Ostrich vs. ExpoSE 113

C.7 Patterns in Open-Source Applications 114
C.8 Related Work . 115
C.9 Conclusions . 116
Bibliography . 119
Appendix . 123
C.I The Built-in Email Validation of HTML5 123
C.II Case Study: Finding Vulnerable Email Regexes 123

C.II.1 Vulnerable Patterns . 124
C.II.2 Strong Patterns vs MDN . 125
C.II.3 Vulnerabilities When Sharing Code 125

xi

Securing the Next Generation Web

C.II.4 Summary . 125
C.III Details of Section C.3 . 126
C.IV Partial Translation from ECMAScript Regexes to Textbook Regexes 130
C.V Example Input for Ostrich (Section C.5.3.2) 132
C.VI Testbed Code . 132
C.VII Client-side form validation . 133
C.VIIIExpoSE JavaScript Template . 133
C.IX Algorithm for validation-aware scanning 133

Browser Extensions

D Hardening the Security Analysis of Browser Extensions 137
D.1 Introduction . 137
D.2 Background . 140
D.3 Threat Model . 141

D.3.1 Shared Resources . 141
D.3.2 Message Passing . 142

D.4 Methodology . 142
D.4.1 Identifying entry points . 143
D.4.2 Combining Static and Dynamic Analysis 144

D.5 Discovering Attacks and Vulnerabilities 145
D.5.1 Novel Attacks by Malicious Extensions 145
D.5.2 Malicious Extensions in the Wild 146
D.5.3 Vulnerable Extensions in the Wild 148

D.6 New Tabs Case Study . 150
D.7 Countermeasures . 152
D.8 Discussion . 153

D.8.1 Static analysis . 153
D.8.2 Dynamic analysis . 154
D.8.3 Manual Analysis . 154
D.8.4 Cross-browser . 154

D.9 Related Work . 155
D.10 Conclusions . 156
Bibliography . 159

E No Signal Left to Chance: Driving Browser Extension Analysis by
Download Patterns 163
E.1 Introduction . 163
E.2 Preliminaries . 166

E.2.1 Browser Extensions’ Security & Privacy 166
E.2.2 Time-Series Analysis . 166
E.2.3 De�nitions . 167
E.2.4 Threat Model . 167

E.3 Scrutinizing the Web Store . 167
E.3.1 Data Gathering . 169
E.3.2 Security Analysis . 170

xii

Contents

E.3.3 Time-Series Analysis . 174
E.3.4 Discovering . 175

E.4 Results . 176
E.4.1 Data Gathering . 176
E.4.2 Security Analysis . 177
E.4.3 Time-Series Analysis . 180

E.5 Use Case: Search Hijacking Wallpapers 182
E.5.1 Wallpapers Discovering . 183

E.6 Discussion . 185
E.7 Related Work . 187
E.8 Conclusions . 189
Bibliography . 191
Appendix . 197
E.I Dataset Distribution . 197
E.II Source Code . 198
E.III Clusters . 199

Embedded Systems

F On theRoadwithThird-PartyApps: SecurityAnalysis of an In-Vehicle
App Platform 203
F.1 INTRODUCTION . 203
F.2 BACKGROUND . 207

F.2.1 Experimental Setup . 208
F.2.2 Automatic analysis of Android apps 208
F.2.3 Android Automotive . 208
F.2.4 Android’s Permission model 208
F.2.5 Covert channels . 209

F.3 ATTACKS . 209
F.3.1 Disturbance . 209
F.3.2 Availability . 210
F.3.3 Privacy . 211

F.4 COUNTERMEASURES . 212
F.4.1 Permission . 212
F.4.2 API control . 213
F.4.3 System . 213
F.4.4 Code analysis . 214

F.5 SPOTIFY CASE STUDY . 215
F.5.1 Permissions . 215
F.5.2 Vulnerability detection . 216
F.5.3 AutoTame . 216
F.5.4 Information �ow analysis 216
F.5.5 Summary . 217

F.6 RELATED WORK . 217
F.7 CONCLUSIONS . 218
Bibliography . 221

xiii

Securing the Next Generation Web

Appendix . 225
F.I Attacks and severity score . 225

xiv

Overview

I
Introduction

As we are becoming more reliant on digital services the importance of ensuring
the services we use are secure is growing. Viewing your medical journals online,
banking, and even streaming music and video all rely on secure and e�cient soft-
ware. As more services are being digitalized the related privacy concerns are also
growing. But the complex software ecosystems we use, such as the Web, browser
extensions, and Android, are di�cult to analyze and secure.

Our research e�orts can be divided into three parts, the Web, browser exten-
sions, and embedded systems. The Web includes both the client-side, usually a web
browser, and the server-side, which is the application on the server. On the client-
side the goal is to protect the client from being tricked into executing scripts on the
behalf of an attacker in Cross-Site Scripting (XSS) attacks. To mitigate this, modern
browsers implement Content Security Policy (CSP). While e�ective against XSS, it
has only recently added a draft for a policy against navigation attacks. Navigation at-
tacks allow an attacker to redirect users from legitimate websites to malicious ones.
The problem is that this is a powerful policy that could introduce new unforeseen se-
curity problems. Improving server-side security is another challenge that requires
us to �nd security bugs in web applications. Here the big challenge is to develop
scanners capable of interacting with web applications and automatically detecting
their vulnerabilities. This is challenging as it requires crawling complex work�ows
in dynamic and state-sensitive applications. In addition, it also requires scanners to
submit correct data, including emails, zip codes, or phone numbers, to cover larger
portions of web applications.

Browser extensions are small programs that are executed inside the user’s web
browser. As these have access to powerful APIs, for example for reading users’ pri-
vate data, modifying websites, and monitoring network tra�c, it is important to
ensure these are not malicious. Furthermore, they can also be vulnerable, opening
up for attacks from websites or other extensions. While Google claims to perform
vetting of extensions, it is unknown exactly what they do, and sometimes both ma-
licious and vulnerable extensions are missed. Solving the problem of detecting both
vulnerable and malicious extensions is an important step to improve the security of
browser extensions.

Finally, for embedded systems, we observe that these systems are becoming more
complex and many want to support third-party apps. Similar to browser extensions,
this requires rigorous vetting before apps should be allowed to run. As Google is

3

Securing the Next Generation Web

working on their in-car infotainment OS Android Automotive, we expect more cars
to support third-party apps.

The goals of this thesis are to:

1. Improve client-side security by analyzing the new navigation policy (Paper
A [7]). Design novel methods for automatically analyzing web applications to
detect and mitigate web vulnerabilities (Paper B [5] and Paper C [8]).

2. Expand the threat model and develop new methods to analyze and detect both
malicious and vulnerable extensions (Paper D [6] and Paper E [11]).

3. Systematically analyze Android Automotive and develop methods to detect
malicious apps in order to improve security in embedded systems (Paper F [4]).

I.1 A�ackers

The web is a complex ecosystem that allows attackers to use a multitude of di�erent
attack vectors. To e�ciently protect against these attackers it is crucial to under-
stand their capabilities. The security literature [12] divides the attackers into four
classes of attackers, injection, gadget, web, and network attackers. In this thesis we
also include the extension attacker.

Injection The injection attacker is the classic web application user. They can in-
teract with the application to perform available actions, for example, comment on
images, make their posts, leave reviews, etc. By carefully choosing which actions
to perform, the attacker might be able to inject their JavaScript code into the web
application. As the attacker is not part of the website, this is considered a Cross-Site
Scripting (XSS) attack.

Gadget A gadget is a third-party code that is willingly being included on a website.
Common examples are analytic scripts and frameworks, such as jQuery. A gadget
attacker is an attacker that can change the gadget code, thus being able to attack
multiple websites at the same time. Consider if mail.com includes the script ev
il.com/analytics.js then a gadget attacker would try to attack mail.com by
changing the analytics.js code.

Web The unique capability of the web attacker is that they can host their website
on the web. The attacker-controlled website can be used to redirect users to malware
or force users to send requests to other websites.

The attacker-controlled website evil.com can force a user to initiate a request
to mail.com. If the user is already authenticated with mail.com then the attacker
could potentially forge a request to delete all the user’s emails on mail.com. This is
known as a Cross-site request forgery (CSRF) attack.

Extension Extension attackers have the capability to run code inside browser ex-
tensions used by the browser. These small program can use powerful APIs to read
privacy-sensitive data like history and cookies, as well as, interact with network
tra�c. They can also read and modify the content of any webpage the user visits.

4

mail.com
evil.com/analytics.js
evil.com/analytics.js
mail.com
analytics.js
evil.com
mail.com
mail.com
mail.com

I. Introduction

For example, if a user visits mail.com the extension can read all the email con-
tent the user access. Or when using a search engine, the extension can use network
APIs to ex�ltrate the queries to third-party analytics engines.

Network While the network attacker is out-of-scope for this thesis it is still worth
mentioning for a holistic understanding of the ecosystem. The �nal and strongest
attacker is a network attacker. There are two types of network attackers, passive and
active. A passive network attacker is capable of listening to all the tra�c between the
user and the website, while an active network attacker can also modify the tra�c.

With this capability, the attacker can record passwords being sent to the website
for later account takeovers. In the case of a bank application, an active network
attacker would be able to change the recipient bank account of a transaction while
it is being sent to the website.

I.2 Web applications

Any website you visit on the web can be considered a web application. When you
visit the website your web browser will send a request to the web application, which
will be handled by the application code running on the web server. Once handled,
the web application will respond with a complete web page.

For a secure web, it is important to improve the security of both the web browsers
and web applications, as well as, the interaction between them. The following sec-
tions will cover the both the security problems on the client and server-side and our
contributions to improving the security.

I.2.1 Client-side

The challenge with client-side security is mainly ensuring that a web attacker is
not able to trick the client, commonly a web browser like Chrome or Firefox, to
interact with another website in an unsafe manner. We can use the CIA triad to
de�ne security as protecting the con�dentiality, integrity, and availability of services
online. For example, using JavaScript evil.com can use fetch to read data from
other URLs. Here it is important that the browser ensures that the website can not
read your emails from another website, such as mail.com.

The most notorious client-side attack on the web is XSS. In this attack, evil
.com can execute JavaScript on mail.com. This is accomplished by injecting data
that contains HTML, for example: <script>alert(1)</script>. While any of
the attackers in Section I.1 can launch this attack, the injection attacker and the web
attacker are the most common. If the web application on main.com is programmed
incorrectly, it might output this data as HTML code. In this case, it would result
in the JavaScript being executed and a popup being shown to the user. A more
malicious attacker could leverage this JavaScript execution to steal passwords and
other credentials.

Finally, navigation attacks is a newer type of client-side attack. In a navigation
attack, users on mail.com could be redirected away to a malicious website like ev

5

mail.com
evil.com
mail.com
evil.com
evil.com
mail.com
main.com
mail.com
evil.com
evil.com
evil.com

Securing the Next Generation Web

il.com. This happened on Equifax in 2017 when its users were redirected to sites
containing malware [1].

Background. There are di�erent methods to help mitigate these problems. The
most fundamental security feature is Same-Origin Policy (SOP). SOP isolates di�er-
ent origins, where an origin is de�ned as a triplet of protocol (e.g. HTTP), host (e.g.
evil.com), and port (e.g. 80). This means that evil.com and mail.com are di�erent
origins and, as such, attempts to fetch data from each other should be blocked by
the browser. There are some exceptions to this rule, for example, evil.com could
load images and scripts from mail.com.

However, SOP is not enough to stop XSS as this attack is technically executed
inside the same origin. Although it is best to �x the problem in the code on the
server-side, as we will explain in Section I.2.2, the browser can also help by using
Content Security Policy (CSP) [16]. CSP is a mechanism for websites to de�ne secu-
rity policies that the browser will enforce. For example, websites can de�ne a policy
to only allow loading JavaScript from mail.com. Crucial for XSS is that CSP can be
used to block all inline JavaScript, which is the main attack vector for XSS.

To mitigate navigation attacks the draft for CSP Level 3 [15] includes a new direc-
tive, navigate-to. By using this new directive, Equifax could de�ne the following
policy to only allow navigations to their domain.

1 navigate-to: equifax.com

But while this seems like a nice solution to battle navigation attacks, it might simul-
taneously introduce new problems.

Figure I.1: Generated policies for ebay.com. The nodes with outwards pointing ar-
rows are the �ve pages that we crawled. All the other nodes correspond
to a possible navigation. The color indicates which part of the policy
covers the navigation.

6

evil.com
evil.com
evil.com
evil.com
evil.com
mail.com
evil.com
mail.com
mail.com
ebay.com

I. Introduction

Contribution. In paper A [7] we research this new navigation policy to test both
if it introduces new vulnerabilities and what the performance impact on the web is.
We discover that it e�ciently protects against navigation attacks but also introduces
new methods to probe users for private data. In particular, the web attacker from
Section I.1 can abuse this policy to gain information about the user visiting their
website. To help the adaptation of this new policy we develop AutoNav in Paper
A [7]. AutoNav is an open-source tool developers can use to scan their websites for
outgoing navigations, mostly hyperlinks, and then get suggested navigation poli-
cies. In Figure I.1, we show a graphical representation of a navigation policy gener-
ated by AutoNav for ebay.com.

I.2.2 Server-side

The challenge with server-side security, is to ensure that there are no security
vulnerabilities in the web application, as opposed to the browser, which was the
focus of client-side security.

From the developer’s perspective, this means writing code without bugs that
attackers can exploit. However, writing bug-free code is hard, as is evident by the
billions of credentials that have been stolen over the years due to poor security [9].

Many possible vulnerabilities can be present in web applications. OWASP’s top
10 list [14] is a collection of the most critical web application vulnerabilities, with
vulnerabilities ranging from injection attacks to authentication miscon�guration
and XSS.

XSS vulnerabilities are caused by a web application re�ecting user input as HTML
code. Consider a forum where users, more formally an injection attacker (Sec-
tion I.1), can post messages. If a user post hello and this is directly added
to the HTML code produced by the application then the browser will interpret the
 tag as HTML. This becomes more nefarious if the user posts a message con-
taining <script> tags, as this allows them to execute JavaScript as the application.
Using JavaScript attackers can steal cookies and other valuable information.

What makes XSS hard to detect in practice is that it is hard to know when the
data should be escaped for HTML. If the data is read from a database it can be hard
to determine for a developer if a malicious user could control that data. This makes
�nding the vulnerabilities the major challenge in mitigating XSS attacks.

To automatically �nd these vulnerabilities, web scanners can be used. These
scanner try to interact with a web application with the goal of detecting a vulner-
ability. However, crawling a modern web application presents many challenges.
Modern web applications have complicated work�ows where combinations of links,
form submissions, and JavaScript actions are required, as shown in the Figure I.2.

7

ebay.com

Securing the Next Generation Web

index.php login.php admin.php admin.php#users

view_users.php

link log in

add user

click

username
link

1

5

2 3
4

Figure I.2: Example of a web application where anyone can see the list of users
and the admin can add new users. The dashed red line represents the
inter-state dependency. Green lines are HTML5 and orange symbolises
JavaScript. The dotted blue lines between edges would be added by our
scanner to track its path. The sequence numbers shown the necessary
order to �nd the inter-state dependency.

Additionally, the state of the web application is also important. For example, a
prerequisite for adding a product review could be to add a product. In this case, the
scanner would need to be able to add products before being able to test the security
of the review functionality.

An orthogonal challenge all scanners face is solving input validation. It is com-
mon practice for web applications to validate the user’s input. Common validations
include ensuring phone numbers contain the correct number of digits, emails follow-
ing the email format, correct formats for ZIP code, etc. A very useful and common
attribute is “pattern”. This attribute allows developers to specify regular expressions
that are used as validation. For example, the pattern .+@.+\.com will match “any
text” followed by an at-sign followed by “any text” and then �nally “.com”. This can
be used to validate email addresses ending in “.com”. However, generating input
data that match these patterns is not trivial. And if the scanner is not able to pro-
vide valid inputs, they might not be able to fully explore the application and thus
potentially miss vulnerabilities.

Background. Protecting against XSS is, in theory, simple. By converting the HTML
tag characters < and > with the escaped values < and >, a large portion of XSS
is solved. Depending on the precise context, other characters might need escaping
too, for example, quotes (") can be escaped as ". In the code below we see two
examples where user input, $name, and $url, are re�ected without any escaping. In
these cases, an attacker could exploit this to gain JavaScript execution.

1 SERVER-SIDE CODE => GENERATED HTML
2

3 Hello $name => Hello <script>alert(1)</script>
4 link => link

As it is easy to miss escaping data, it is also important to have methods to help
�nd these vulnerabilities. One such method is to use automatic scanners. Automatic
scanning can be divided into two categories: white-box and black-box. White-box
analysis can be used if application artifacts, such as source code, models, and code

8

I. Introduction

annotations, are available. In this case, the scanner can analyze these artifacts to
uncover vulnerabilities. When these artifacts are not available, which is the standard
case for penetration testing, black-box scanning can be utilized instead.

Black-box scanning dynamically interacts with the application, similar to how
a user would. The scanner probes the application in di�erent ways while analyzing
the responses from the application for vulnerable patterns. For example, a black-
box scanner can post <script>alert(1)</script> to a forum and analyze the
response for a JavaScript alert message. If this is detected it would support the hy-
pothesis that the forum has an XSS vulnerability. Previous research in the �eld of
black-box scanners focused on one problem at a time. For example, the Jaek scanner
focused on exploring JavaScript events [10]. The Enemy-of-the-state instead put the
focus on modelling the state of the web applications [3]. And while these solutions
made great strides in web scanning, scanners are still facing large challenges when
scanning modern web applications.

Contribution. To improve the detection of vulnerabilities in web applications we
explore new methods for interacting and crawling modern web application.

In Paper B [5], we present Black Widow where we combine the strengths of pre-
vious scanners while minimizing their weaknesses, in combination with novel de-
tection methods for XSS vulnerabilities. This allows us to follow the complex paths
in Figure I.2. We show that this increases the overall coverage of scanned web ap-
plications compared with previous scanners. And it allows us to �nd vulnerabilities
in modern web applications.

As Black Widow, and all previous scanners, are unable to solve client-side val-
idation patterns, we present Black Ostrich in Paper C [8]. Here we design a novel
method for improving web scanners by leveraging string-based constraint solving,
based on satis�ability modulo theories (SMT). Using this we shown that we can gen-
erate more valid input data than previous scanners, as well as data containing XSS
payloads. For example, speci�c patterns like .*France, which requires the input
to end with “France”. This is something our scanner solves but all other fail on. In
Figure I.3 we show the general approach to extend any web scanner with a SMT
solver.

9

Securing the Next Generation Web

Figure I.3: Our general web scanner system architecture including both extended
scanner and SMT solver. In Black Ostrich we combine the Black Widow
scanner and Ostrich solver.

I.3 Browser extensions

The challenge with browser extensions is both detecting and ensuring that they
are neither malicious nor vulnerable. Browser extensions live somewhere between
the client-side (web browser) and server-side (web application). They are small pro-
grams that run inside the web browser with the power to interact with websites and
network tra�c on the user’s behalf. For example, extensions might modify the aes-
thetics and accessibility of websites by changing colors and fonts. Extensions can
also be password managers that can remember and generate passwords for users.
There are also many popular extensions for blocking online advertisements and
improving privacy by limiting network requests to some services. However, with
these powerful capabilities, extensions can, and historically has, acted maliciously
by stealing user information and modifying websites to inject more advertisements.
Not only are malicious extensions a problem but so are vulnerable extensions. As
these programs have powerful APIs, and store privacy-sensitive user data, ensuring
that they are safe from attacks from web sites and extensions is important.

Analyzing extensions is not easy as there are many challenges for both static
and dynamic approaches. Extension code can be mini�ed or even obfuscated, mak-
ing static analysis challenging. In addition, extensions can rely on code from remote
servers, making static analysis impossible. While dynamic analysis can overcome
this to some extent, here we are instead faced with “time bombs”. During our re-
search, we found multiple extensions that would wait between 30 minutes and �ve
days before starting their malicious behavior.

Background. The main distributor of extensions is the Google Web Store. While
Google is security vetting extensions before allowing them in the store there are still
some that are able to slip through.

10

I. Introduction

Table I.1: Summary of the attacks versus the ecosystem presented in this Paper D.

Attack Subattack Attacker Victim In wild

Password Chrome auto�ll Extension Extension/User/Web page Novel
Virtual keyboard Extension Extension/User/Web page Novel

Tra�c Extension User 4,410

Inter-extension

Collusion Extension User Benign
History poisoning Extension/Web page Extension 1,349
Code execution Extension/Web page Extension 1,349
Fingerprint Extension User 10,785

Previous research in the �eld have also tried to improve the detection of both
malicious and vulnerable extensions. To detect privacy leaks and other types of
information stealing extensions, Mystique [2] uses taint analysis by modifying the
V8 engine of Chromium. Moreover, there are also methods for detecting vulnerable
extensions. Somé [13] used a combination of manual and static analysis to detect
code execution vulnerabilities in extensions. While these methods are powerful they
still focus on a narrow part of the problem that needs to be expanded to cover more
types of attacks, vulnerabilities and detection methods.

Contribution. While previous methods focused mainly on code analysis to detect
speci�c cases of malicious or vulnerable extensions, we want to extend the threat
model to contain both malicious and vulnerable extensions. Therefore, in Paper
D [6] we harden the security analysis of web extensions by extending the threat
model. We also systematically analyze the extension ecosystem and map the possi-
ble interactions between the three agents: users, websites, and extensions. Based on
the systematical analysis we combine both static and dynamic analysis to analyze a
set of over 130,000 extensions. As a result, we �nd thousands of both vulnerable and
malicious extensions. Our systematic analysis also led us to develop a novel active
password stealing attack. We summarize these �ndings in Table I.1.

To combat the shortcomings of static and dynamic code analysis, we propose
a novel method in Paper E [11] that can �nd malicious extensions without any
source code analysis. Instead, our method analyzes the changes in downloads on
the Chrome Store over multiple months. We show that these “download patterns”
can be used to detect similarities between extensions, including maliciousness. Fig-
ure I.4(a) illustrates a cluster of 155 extensions that follow a similar pattern. In this
case 154 of those extensions had similar code and were malicious. Conversely, we
can also cluster similar but benign extensions, as shown in Figure I.4(b). While it
is hard to determine exactly why clusters of extensions follow similar patterns, we
believe it can be related to malicious developers paying for fake downloads to make
extensions seem more popular. We have also seen extensions being used as part of
other malware campaigns.

11

Securing the Next Generation Web

0 25 50 75
Days in the WebStore

0

10000

N
um

be
r o

f D
ow

nl
oa

ds Extensions = 155

(a) Malicious TabHD extensions

0 50 100 150
Days in the WebStore

20000

40000

60000

N
um

be
r o

f D
ow

nl
oa

ds Extensions = 16

(b) Benign FreeAddon extensions

Figure I.4: Download patterns for one malicious clusters and one benign.

I.4 Embedded Systems

The challenge with embedded systems is that as they become more complex and
allow for third-party code to run, they too need to ensure client-side security. A great
example of such a system is Android. Android is a popular operating system for mo-
bile phones. While Android is mainly developed by Google, it also allows third-party
developers to create and distribute apps on the Google Play store. By allowing third-
party apps users can quickly create and share their favorite apps without having to
wait for the �rst-party company to develop them.

The downside with third-party apps is that it is hard to ensure that the apps are
not malicious or simply poorly implemented and vulnerable.

Background. Google is currently developing a new version of Android, named
Android Automotive, which will run in the infotainment systems of cars. Android
Automotive provides an excellent chance to research the security implications of
porting a relatively secure platform, Android on phone, to work in a new ecosys-
tem of embedded systems in cars. Similar to Android, Android Automotive uses a
permission model. This forces apps to de�ne which permission they want to use
before being installed. For example, permission to use the camera or read the user’s
location. The interesting thing with Android Automotive is all the potential new
vehicle-speci�c APIs and permissions. While these might be enough for normal
Android, the move to the vehicle domains requires a new thorough analysis of the
security assumptions.

Contribution. In Paper F [4] we analyze new automotive permission model and
its APIs. We found three categories of attacks, disturbance, availability, and privacy.
Disturbance attacks are a novel vector since it targets a new asset, the attention
of the driver. Android was not designed with this in mind since it is not critical
what the user focuses on. To counter this we develop AutoTame, a set of static
analysis methods that can detect Android Automotive apps using dangerous APIs.
We also present availability attacks that can crash the navigation in the infotainment

12

I. Introduction

system. Here we also suggest OS-level mitigations. �nally, In our research, we found
permission-less ex�ltration methods using the default music player. We also found
new methods for acquiring sensitive information. In our case study of the Android
Automotive Spotify app our improved information �ow analysis can detect implicit
leaks based on location, as shown in Figure F.3.

acu.a this.y

abi2

Location

abi2.d

q()

j()

addAction
null

Figure I.5: The publicly observable addAction function is implicitly dependent on
the private location information.

13

Securing the Next Generation Web

14

II
Thesis structure

This thesis comprises a collection of six papers. The �rst three (A,B,C) are related
to client-side and server-side web security. The next two (D,E) focuses on browser
extensions and the �nal one (F) targets embedded systems.

Part 1

Paper A AutoNav: Evaluation and Automatization of Web Navigation Poli-
cies This paper performs a �rst investigation of the new navigate-to
CSP directive. We systematically analyze the potential vulnerabilities in-
troduced by navigate-to with respect to the full web ecosystem.

Paper B Black Widow: Blackbox Data-driven Web Scanning In this paper we
explore methods for improving the state-of-the-art in web application vul-
nerability scanning. We analyze the main challenges black-box scanners
face in terms of vulnerability detection and code coverage.

Paper C BlackOstrich: WebApplication Scanningwith String Solvers In this
paper we continue to e�ort to improve web scanners from Paper B but here
focus on the orthogonal problem of solving input validation. We present
challenges and solutions to both extracting input validation methods and
solving highly complex regular expressions in the form of input validation
patterns.

Part 2

Paper D Hardening the Security Analysis of Browser Extensions In this pa-
per we explore the web browser extension security ecosystem and threat
model. We research new static and dynamic methods for analysis and de-
tection of both malicious and vulnerable extensions.

Paper E No Signal Left to Chance: Driving Browser Extension Analysis by
Download Patterns From the challenges faced in the code analysis in
Paper D, we explore new meta-data analysis methods in this paper. We
explore the use of machine learning algorithms to cluster extensions with

15

Securing the Next Generation Web

similar meta-data and test if these clusters can be correlation to malicious
behavior in the extension.

Part 3

Paper F On the Road with Third-Party Apps: Security Analysis of an In-
Vehicle App Platform This paper aims to uncover new security vulner-
abilities and attack vectors from the porting of Android to the vehicle-
speci�c Android Automotive. We systematically investigate the attack
surface of locally running third-party apps in vehicles.

16

III
Statement of contributions

This chapter lists the abstracts of the individual chapters and outlines the per-
sonal contributions for each.

A AutoNav: Evaluation and Automatization of Web

Navigation Policies

Benjamin Eriksson, Andrei Sabelfeld

Undesired navigation in browsers powers a signi�cant class of attacks on web
applications. In a move to mitigate risks associated with undesired navigation, the
security community has proposed a standard that gives control to web pages to re-
strict navigation. The standard draft introduces a new navigate-to directive of
the Content Security Policy (CSP). The directive is currently being implemented by
mainstream browsers. This paper is a �rst evaluation of navigate-to, focusing on
security, performance, and automatization of navigation policies. We present new
vulnerabilities introduced by the directive into the web ecosystem, opening up for
attacks such as probing to detect if users are logged in to other websites or have
active shopping carts, bypassing third-party cookie blocking, ex�ltrating secrets, as
well as leaking browsing history. Unfortunately, the directive triggers vulnerabil-
ities even in websites that do not use the directive in their policies. We identify
both speci�cation- and implementation-level vulnerabilities and propose counter-
measures to mitigate both. To aid developers in con�guring navigation policies,
we develop and implement AutoNav, an automated black-box mechanism to infer
navigation policies. AutoNav leverages the bene�ts of origin-wide policies in order
to improve security without degrading performance. We evaluate the viability of
navigate-to and AutoNav by an empirical study on Alexa’s top 10,000 websites.

Statement of contributions This was a collaboration with Andrei Sabelfeld. Ben-
jamin was responsible for analyzing the potential vulnerabilities, designing and im-
plementing AutoNav, and performing the evaluation.

Appeared in: Proceedings of the Web Conference (WWW), 2020.

17

Securing the Next Generation Web

B Black Widow: Blackbox Data-driven Web Scan-

ning

Benjamin Eriksson, Giancarlo Pellegrino, Andrei Sabelfeld

Modern web applications are an integral part of our digital lives. As we put
more trust in web applications, the need for security increases. At the same time,
detecting vulnerabilities in web applications has become increasingly hard, due to
the complexity, dynamism, and reliance on third-party components. Blackbox vul-
nerability scanning is especially challenging because (i) for deep penetration of web
applications scanners need to exercise such browsing behavior as user interaction
and asynchrony, and (ii) for detection of nontrivial injection attacks, such as stored
cross-site scripting (XSS), scanners need to discover inter-page data dependencies.

This paper illuminates key challenges for crawling and scanning the modern
web. Based on these challenges we identify three core pillars for deep crawling and
scanning: navigation modeling, traversing, and tracking inter-state dependencies.
While prior e�orts are largely limited to the separate pillars, we suggest an approach
that leverages all three. We develop Black Widow, a blackbox data-driven approach
to web crawling and scanning. We demonstrate the e�ectiveness of the crawling by
code coverage improvements ranging from 63% to 280% compared to other crawlers
across all applications. Further, we demonstrate the e�ectiveness of the web vulner-
ability scanning by featuring no false positives and �nding more cross-site script-
ing vulnerabilities than previous methods. In older applications, used in previous
research, we �nd vulnerabilities that the other methods miss. We also �nd new
vulnerabilities in production software, including HotCRP, osCommerce, PrestaShop
and WordPress.

Statement of contributions This paper was written in collaboration with Gian-
carlo Pellegrino and Andrei Sabelfeld. Benjamin was responsible for developing the
new scanning method, designing and implementing the method in Black Widow
and performing the evaluation.

Appeared in: Proceeding of the IEEE Symposium on Security & Privacy (IEEE S&P),
2021.

C Black Ostrich: Web Application Scanning with String

Solvers

Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Ruemmer, Andrei
Sabelfeld

Securing web applications remains a pressing challenge. Unfortunately, the state
of the art in web crawling and security scanning still falls short of deep crawling. A
major roadblock is the crawlers’ limited ability to pass input validation checks when
web applications require data of a certain format, such as email, phone number, or
zip code. This paper develops Black Ostrich, a principled approach to deep web

18

III. Statement of contributions

crawling and scanning. The key idea is to augment web crawling, based on the Black
Widow tool, with string constraint solving to dynamically infer suitable inputs from
regular expression patterns in web applications, and thereby pass input validation
checks. To enable this use of constraint solvers, we develop new automata-based
techniques to handle complex real-world regular expressions, including support for
the relevant features of ECMA JavaScript regular expressions, and implement those
methods in the Ostrich solver. We evaluate Black Ostrich on a set of 8 821 unique
validation patterns gathered from over 21 667 978 forms from a combination of the
July 2021 Common Crawl and Tranco top 100K. For these forms and reconstructions
of input elements corresponding to the patterns, we demonstrate that Black Ostrich
achieves a 99% coverage of the form validations compared to an average of 36% for
the state-of-the-art scanners, while also yielding a 45% increase for vulnerability
detection. We further show that our approach can boost coverage by evaluating it
on three open-source applications. Our empirical studies include a study of email
validation patterns, simultaneously demonstrating that our regular expression en-
coding is practical, where we �nd that many (213/825) of the patterns are susceptible
to trivial XSS injection attacks.

Statement of contributions Benjamin was responsbile for developing the general
approach to extend scanners to communicate with SMT solvers and in particular
extending Black Widow to communicate with Black Ostrich. In addition, Benjamin
created the testbed for evaluating scanners abaility to solve client-side veri�cation,
including crawling Tranco for patterns. Finally, Benjamin analyzed open-source
projects from GitHub and evaluated the scanners on them.

Appeared in: Manuscript

D Hardening the Security Analysis of Browser Ex-

tensions

Benjamin Eriksson, Pablo Picazo-Sanchez, Andrei Sabelfeld

Browser extensions boost the browsing experience by a range of features from
automatic translation and grammar correction to password management, ad block-
ing, and remote desktops. Yet the power of extensions poses signi�cant privacy and
security challenges because extensions can be malicious and/or vulnerable. We ob-
serve that there are gaps in the previous work on analyzing the security of browser
extensions and present a systematic study of attack entry points in the browser
extension ecosystem. Our study reveals novel password stealing, tra�c stealing,
and inter-extension attacks. Based on a combination of static and dynamic analy-
sis we show how to discover extension attacks, both known and novel ones, and
study their prevalence in the wild. We show that 1 349 extensions are vulnerable to
inter-extension attacks leading to XSS. Our empirical study uncovers a remarkable
cluster of “New Tab” extensions where 4 410 extensions perform tra�c stealing at-
tacks. We suggest several avenues for the countermeasures against the uncovered

19

Securing the Next Generation Web

attacks, ranging from re�ning the permission model to mitigating the attacks by
declarations in manifest �les.

Statement of contributions Benjamin was responsbile for analyzing the exten-
sion ecosystem to unify the threat model for both malicious and vulnerable exten-
sions. Benjamin also implemented static and dynamic methods for detecting Collu-
sion, history poisoning and code execution attacks. Finally, Benjamin designed the
new password stealer attack.

Appeared in: ACM Symposium On Applied Computing (SAC), April 2022.

E No Signal Le� to Chance: Driving Browser Exten-

sion Analysis by Download Pa�erns

Pablo Picazo-Sanchez, Benjamin Eriksson, Andrei Sabelfeld

Browser extensions are popular small applications that allow users to enrich
their browsing experience. Yet browser extensions pose security concerns because
they can leak user data and maliciously act on behalf of the user. Because mali-
cious behavior can manifest dynamically, detecting malicious extensions remains a
challenge for the research community, browser vendors, and web application de-
velopers. This paper identi�es download patterns as a useful signal for analyzing
browser extensions. We leverage machine learning for clustering extensions based
on their download patterns, con�rming at a large scale that many extensions follow
strikingly similar download patterns. Our key insight is that the download pattern
signal can be used for identifying malicious extensions. To this end, we present
a novel technique to detect malicious extensions based on the public number of
downloads in the Chrome Web Store. This technique fruitfully combines machine
learning with security analysis, showing that the download patterns signal can be
used to both directly spot malicious extensions and as input to subsequent analysis
of suspicious extensions. We demonstrate the bene�ts of our approach on a dataset
from a daily crawl of the Web Store over 6 months to track the number of down-
loads. We �nd 135 clusters and identify 61 of them to have at least 80% malicious
extensions. We train our classi�er and run it on a test set of 1,212 currently active
extensions in the Web Store successfully detects 326 extensions as malicious solely
based on downloads. Driven by the download pattern signal, our code similarity
analysis further reveals 6,579 malicious extensions.

Statement of contributions Benjamin design the dynamic scanning method for
detecing query stealing extensions, which was used as ground truth for the machine
learning. Benjamin also contributed to analyzing and verifying the results. Finally,
Benjamin was responsible for the comparison with other methods for detecing ma-
licious extensions.

Appeared in: Manuscript

20

III. Statement of contributions

F On the Road with Third-Party Apps: Security Anal-

ysis of an In-Vehicle App Platform

Benjamin Eriksson, Jonas Groth, Andrei Sabelfeld

Digitalization has revolutionized the automotive industry. Modern cars are equipped
with powerful Internet-connected infotainment systems, comparable to tablets and
smartphones. Recently, several car manufacturers have announced the upcoming
possibility to install third-party apps onto these infotainment systems. The prospect
of running third-party code on a device that is integrated into a safety critical in-
vehicle system raises serious concerns for safety, security, and user privacy. This
paper investigates these concerns of in-vehicle apps. We focus on apps for the An-
droid Automotive operating system which several car manufacturers have opted
to use. While the architecture inherits much from regular Android, we scrutinize
the adequateness of its security mechanisms with respect to the in-vehicle setting,
particularly a�ecting road safety and user privacy. We investigate the attack surface
and vulnerabilities for third-party in-vehicle apps. We analyze and suggest enhance-
ments to such traditional Android mechanisms as app permissions and API control.
Further, we investigate operating system support and how static and dynamic anal-
ysis can aid automatic vetting of in-vehicle apps. We develop AutoTame, a tool for
vehicle-speci�c code analysis. We report on a case study of the countermeasures
with a Spotify app using emulators and physical test beds from Volvo Cars.

Statement of contributions This paper was in collaboration with Jonas Groth and
Andrei Sabelfeld. Benjamin was responsible for �nding and evaluating the attacks,
designing the countermeasures and creating AutoTame.

Appeared in: Proceedings of the International Conference on Vehicle Technology and
Intelligent Transport Systems (VEHITS), 2019.

21

Securing the Next Generation Web

22

Bibliography

[1] ars Technica. Equifax website borked again, this time to redirect to
fake �ash update, 2017. https://arstechnica.com/information-
technology/2017/10/equifax-website-hacked-again-this-time-
to-redirect-to-fake-flash-update/.

[2] Q. Chen and A. Kapravelos. Mystique: Uncovering information leakage from
browser extensions. In CCS, page 1687–1700, 2018.

[3] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the state: A state-
aware black-box web vulnerability scanner. In USENIX Security Symposium 12,
pages 523–538, 2012.

[4] B. Eriksson, J. Groth, and A. Sabelfeld. On the Road with Third-Party Apps:
Security Analysis of an In-Vehicle App Platform. In International Conference on
Vehicle Technology and Intelligent Transport Systems (VEHITS), 2019.

[5] B. Eriksson, G. Pellegrino, and A. Sabelfeld. Black Widow: Blackbox Data-driven
Web Scanning. In IEEE Symposium on Security and Privacy (S&P), 2021.

[6] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld. Hardening the Security Anal-
ysis of Browser Extensions. In SAC, 2022.

[7] B. Eriksson and A. Sabelfeld. AutoNav: Evaluation and Automatization of Web
Navigation Policies. In Web Conference (WWW), 2020.

[8] B. Eriksson, A. Stjerna, R. D. Masellis, P. Ruemmer, and A. Sabelfeld. Black
Ostrich: Web Application Scanning with String Solvers. In Manuscript, 2022.

[9] Information is beautiful. World’s biggest data breaches & hacks, 2020.

[10] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow. jÄk: Using Dynamic
Analysis to Crawl and Test Modern Web Applications. In International Sympo-
sium on Recent Advances in Intrusion Detection, pages 295–316. Springer, 2015.

[11] P. Picazo-Sanchez, B. Eriksson, and A. Sabelfeld. No Signal Left to Chance:
Driving Browser Extension Analysis by Download Patterns. InManuscript, 2022.

[12] P. D. Ryck, L. Desmet, F. Piessens, and M. Johns. Primer on Client-Side Web
Security. Springer, 2014.

[13] D. F. Somé. Empoweb: Empowering web applications with browser extensions.
In S&P, pages 227–245, 2019.

[14] The OWASP Foundation. Owasp top 10 - 2017, 2017.

[15] M. West. Content security policy level 3, 2018.

[16] M. West, A. Barth, and D. Veditz. Content security policy level 2, 2016.

23

https://arstechnica.com/information-technology/2017/10/equifax-website-hacked-again-this-time-to-redirect-to-fake-flash-update/
https://arstechnica.com/information-technology/2017/10/equifax-website-hacked-again-this-time-to-redirect-to-fake-flash-update/
https://arstechnica.com/information-technology/2017/10/equifax-website-hacked-again-this-time-to-redirect-to-fake-flash-update/

Securing the Next Generation Web

24

Client-side and Server-side Web Security

A
AutoNav: Evaluation and Automatization

of Web Navigation Policies

Abstract. Undesired navigation in browsers powers a signi�cant class of at-
tacks on web applications. In a move to mitigate risks associated with unde-
sired navigation, the security community has proposed a standard that gives
control to web pages to restrict navigation. The standard draft introduces a
new navigate-to directive of the Content Security Policy (CSP). The direc-
tive is currently being implemented by mainstream browsers. This paper is a
�rst evaluation of navigate-to, focusing on security, performance, and au-
tomatization of navigation policies. We present new vulnerabilities introduced
by the directive into the web ecosystem, opening up for attacks such as prob-
ing to detect if users are logged in to other websites or have active shopping
carts, bypassing third-party cookie blocking, ex�ltrating secrets, as well as leak-
ing browsing history. Unfortunately, the directive triggers vulnerabilities even
in websites that do not use the directive in their policies. We identify both
speci�cation- and implementation-level vulnerabilities and propose counter-
measures to mitigate both. To aid developers in con�guring navigation policies,
we develop and implement AutoNav, an automated black-box mechanism to in-
fer navigation policies. AutoNav leverages the bene�ts of origin-wide policies
in order to improve security without degrading performance. We evaluate the
viability of navigate-to and AutoNav by an empirical study on Alexa’s top
10,000 websites.

A.1 Introduction

As the power of the web platform grows, attackers increasingly target client-side
vulnerabilities [3, 9, 12, 16, 18, 37, 39, 43, 50, 56, 57]. Exploiting these vulnerabili-
ties is e�ective because clients manipulate highly sensitive information, like login
credentials, banking, health, and location data, on behalf of the user.

A.1.1 Motivation

One of the bigger classes of client-side security vulnerabilities on today’s web is
cross-site scripting (XSS) [45]. An XSS vulnerability gives an attacker the power to

27

Securing the Next Generation Web

execute JavaScript code on another website. This can be used to steal user creden-
tials, change the behavior of the application or render the website unusable. A com-
mon approach to mitigate this problem is to let servers send extra security policies
along with each HTTP response. The web browser will then enforce these policies,
for example, by restricting which scripts to allow on the webpage. These security
policies have been de�ned by the web security community as part ofContent Security
Policy (CSP) [63].

Navigation a�acks The current CSP standard (level 2 [63]) does not address at-
tacks via navigation. Attackers can thus freely redirect users to malicious or inap-
propriate websites. This type of attack can a�ect the con�dentiality, integrity and
availability of the attacked website. For con�dentiality, an attacker with injection
capabilities can inject the following script to leak the secret cookie.

1 <script>
2 window.location = "http://evil.com/?c="+document.cookie;
3 </script>
4

When the script is executed the user will be sent to http://evil.com, along with
their cookies, potentially allowing the attacker to take over their account. In addition
to only stealing the cookie, the attacker could launch a phishing attack by designing
http://evil.com to look like the attacked website. Here the user could be asked to
supply more con�dential information or be forced to download malicious software.
The availability of the website is also compromised as every user visiting the page
containing the injected script will be sent away. Note that while CSP can block
scripts, an attacker could also force the user to perform a navigation by using meta
tags as shown below. While not valid HTML, modern browsers will follow meta
redirects in the HTML body.

1 <meta http-equiv="refresh"
2 content="0;URL=’http://evil.com/’" />
3

The navigate-to directive To mitigate these problems the World Wide Web Con-
sortium (W3C) has drafted a standard for the new CSP directive navigate-to [61].
This directive has already been implemented in Chrome [36] and Firefox [28]. A
common motivation for the directive is to increase the security on websites, as well
as, give advertising platforms better control over navigations in ads [40]. We il-
lustrate this in two example scenarios: HTML/JavaScript injection and malicious
advertisement.

HTML/JavaScript injection Understanding the space of navigation links on a
website can improve security thanks to navigate-to. By limiting the possible nav-
igations, attackers will not be able to redirect users. A real-world example of where
this policy would have helped is a vulnerability on blockchain.info [27]. Attack-
ers were able to inject HTML and JavaScript into the search function on the page.
This meant that a URL similar to blockchain.info/?search=<code>, which ap-
pears to point to blockchain.info, could redirect the user to another website. This
is known as a re�ective XSS vulnerability [48], as the code in the URL is re�ected

28

http://evil.com
http://evil.com
blockchain.info
blockchain.info/?search=<code>
blockchain.info

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

onto the page. Although blockchain.info used CSP to mitigate XSS, it was still
possible to inject HTML code that forces a redirect. With the new directive, the fol-
lowing CSP policy can mitigate this type of attack. This policy blocks any navigation
attempt to anything but self, i.e. blockchain.info.

1 navigate-to ’self’
2

Malicious advertisement Advertisement platform providers bene�t from ensur-
ing that users who click on their ads end up on the correct page. This is espe-
cially important if the pages where the ads are served are sensitive to inappro-
priate material, e.g. websites for kids, governments, or highly respected �nan-
cial websites. Using the new directive, advertisers would be able to block navi-
gations leading to incorrect ads. The policy is required because even if the tar-
get site for the ad is correct when the ad is bought, the website can at a later
stage be hacked or miscon�gured. Google Ads could, for example, serve the fol-
lowing policy with an ad from shoes.com. This would only allow navigation to
https://shoes.com, blocking both the HTTP version, as well as, possible deep-
links to apps like app://shoes.com. The unsafe-allow-redirects keyword al-
lows for any number of server-side redirections before reaching shoes.com.

1 navigate-to https://shoes.com ’unsafe-allow-redirects’
2

A.1.2 Research questions

The standardization [35, 61] and implementation [28, 36] e�orts for
navigate-to are well underway. The time is critical to ask questions on the se-
curity, performance, and adoptability of the proposed directive, before its adoption
starts on the web. (Our analysis at the time of the writing con�rms that the landing
pages of Alexa’s top 10,000 domains are yet to contain navigate-to CSP headers).
By pursuing these questions, our goal is to deepen understanding of navigation poli-
cies and their impact, contribute to the emergence of the new standard, and to utilize
our �ndings for settling the ongoing discussions by the community [29].

Security While there seems to be much to gain from a navigation policy, what is
the impact on the security of the entire web ecosystem? For a fully-�edged security
evaluation, we seek to uncover both new vulnerabilities and amplifying e�ects of
known vulnerabilities. Our methodology is thus to investigate possibilities of ex-
ploiting the directive by a comprehensive range of attackers de�ned in the security
literature [39]: injection [5], gadget [6], web [2] and passive network [25] attackers.
Even though these attackers share some capabilities, they each have unique abilities,
e.g. reading network tra�c or hosting websites, and as such require individual anal-
ysis. This brings us to the questions of security: Does the new policy “break the web”?
Does the new policy introduce security vulnerabilities? How can they be mitigated and
by whom?

29

blockchain.info
blockchain.info
shoes.com
https://shoes.com
app://shoes.com
shoes.com

Securing the Next Generation Web

Automatization Once the new directive is secured, how can we aid its adoption?
CSP has been notoriously hard to adopt, introducing insecure policies or broken
websites [56, 57]. To help developers use the new directive, and increase both us-
ability and adoptability, we investigate the possibility of automatically generating
navigation policies. Hence, the question: Can automatic mechanisms be used to help
generate the new policy?

Performance In contrast to CSP directives like script-src, intended to whitelist
scripts that can be loaded by a webpage, the navigate-to directive will whitelist
possible navigations. This results in already lengthy response headers becoming
even larger, further increasing the overhead of security headers. This brings us to
the question of performance: What are e�cient methods for delivering the new policy?

A.1.3 Contributions

This paper is a �rst systematic evaluation of navigate-to. Our goal is to both ini-
tiate research on navigation security and to a�ect the emerging standards for navi-
gation policies. We examine the security implications, e�ciency, and the possibility
of automatic generation of the new navigate-to policy.

Security The intricate connections between policies together with the growing
complexity of the web results in new mechanisms becoming more challenging to
incorporate into the ecosystem. This motivates the need to analyze multiple types
of attackers, as well as, reexamining existing mechanisms in combination with new
ones. We follow a methodology of examining the e�ects of navigate-to on a com-
prehensive range of attackers: injection [5], gadget [6], web [2] and passive net-
work [25] attackers. By scrutinizing the full attack surface of the new directive, with
respect to di�erent types of attackers, we identify speci�cation- and implementation-
level vulnerabilities that can be exploited (Section A.3). The vulnerabilities allow
attackers to probe other websites to detect if users are logged in or have active
shopping carts, bypass blocking mechanisms of third-party cookies, leak browsing
history, and open up new methods for ex�ltration. This demonstrates that the direc-
tive “breaks the web” in the sense of introducing vulnerabilities even in otherwise
secure websites that do not use the directive in their policies. We present mitigations
to security problems, both for web and policy developers (Section A.4).

Automatization Looking ahead when the proposed mitigations are in place, our
goal is to aid in the adoption of navigate-to. We develop AutoNav, an automatic
mechanism for navigation policy inference (Section A.5). AutoNav crawls websites
and generates navigate-to policies. The goal of this mechanism is to simplify the
deployment of the new directive by helping web developers and security engineers
to �nd �tting policies for their websites. To further improve security, AutoNav can
also generate origin-wide policies for the new origin policy delivery mechanism
that is currently being drafted [59]. This improves security by applying the policy
to the entire origin, covering pages that are easy to forget, like error pages. We
implement and evaluate the mechanism by an empirical study (Section A.6). In our
experiments, we craw 100 pages per domain for 10,000 domains. Based on a subset

30

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

of 80 pages, AutoNav generates a policy for the remaining 20 pages. For 42% of
websites, AutoNav generated a policy which fully covered the 20 pages, and at 59%
19 out the 20 pages were covered. Further investigation into the category of websites
shows that shopping websites and adult websites are the easiest to cover.

Performance To evaluate the performance impact of the policy we perform an
empirical study (Section A.6). Based on 10,000 crawled domains from Alexa’s top
10,000, the policy will result in an overhead of 215 bytes for each HTTP response.
We create simpli�cation strategies to �nd a balance between security, performance
and maintainability. These simpli�cations convert complicated policies with multi-
ple subdomains to more manageable policies by using wildcards. For example, in-
stead of including all language-speci�c subdomains from Wikipedia navigate-to

*.wikipedia.com would be enough. Our simpli�cation algorithm decreased the
overhead by between 40% and 47%. Furthermore, we show that the use of an origin
policy would result in an overhead of 1904 bytes in total, as opposed to per HTTP
response. This is further decreased to 1004 bytes by using our simpli�cation algo-
rithm. A 900 byte reduction might not seem like much, but it can have a big impact
on larger websites [21].

A.2 Background

Setting the background, we present the threat model in terms of relevant attack-
ers. We describe CSP and how it relates to the origin policy. Finally, we explain
navigation methods and how they are treated in the navigate-to directive.

A.2.1 Threat model

The main goal of the navigate-to directive is to give web developers control over
where users can navigate from their website. The assets that need protecting include
con�dentiality, integrity and availability. Previous research has already shown how
con�dential information, such as cookies, can be ex�ltrated using navigation [65].
While the new directive is a step in the right direction to address data ex�ltration,
Zalewski [65] points out that control over navigation is not necessarily enough.
Attackers could, for example, inject HTML or JavaScript that change documents
from private to public on a website like Dropbox. Forced navigation can also be
used for phishing attacks by redirecting users to a similar-looking, but attacker-
controlled, website.

Modern web browsers support many di�erent methods for navigation, e.g. by
clicking on a link, submitting a form, etc. These navigation methods, and the sub-
set that the navigate-to directive is intended to apply to, are explained in Sec-
tions A.2.4 and A.2.5.

As mentioned above, we are interested in a comprehensive security evaluation
of the impact of the directive on the entire web ecosystem. Hence, our threat model
includes four types of attackers from the security literature [39]: injection, gadget,
web and network attackers. In practice there is some overlap between the classes,

31

Securing the Next Generation Web

for example, an attacker with web attacker capabilities will usually also have injec-
tion attacker capabilities. However, the best mitigation strategy might be di�erent
depending on which speci�c class we need to defend against. Therefore it is impor-
tant to study each distinct class of attacker.

Injection a�acker The injection attacker [5] is able to inject content into a website.
A typical example is a user who can post content on a forum. If the user’s post
contains JavaScript then that code could be executed by other users on the site, in
this scenario, with the goal to force a navigation.

Gadget a�acker The gadget attacker [6] is similar but more powerful as they are
allowed to host code, or gadgets, on other websites. A notable example is JQuery
which is a JavaScript snippet that is used by many websites. Since JavaScript do not
support any isolation, these gadgets run with the same capabilities as other scripts
on the website. A malicious gadget could ex�ltrate information from the website it
is integrated to, modify content on pages or even navigate the user away from the
website.

Web a�acker The web attacker [2] is able to host and con�gure a full website.
This is especially important for advertisers who want to ensure that the landing
page does not redirect to anything other than what was speci�ed in the ad.

Passive network a�acker A passive network attacker [25] can listen in on all the
tra�c sent from and to a client but can not decrypt HTTPS. If the tra�c is not
encrypted, the attacker can read passwords and session cookies being sent to the
server.

Note that navigate-to is not designed to handle network attacks. Yet we pay
attention to network attackers in our e�ort to analyze the impact of the directive on
the entire web ecosystem.

A.2.2 CSP

CSP is intended to mitigate cross-site scripting (XSS) and other code injection at-
tacks. The current version of CSP, level 2, is supported by all major web browsers [26].
Level 3, which includes the new navigate-to directive, is being discussed and
drafted [61].

CSP protects the users by specifying which resources and scripts are allowed
on a page. The web server sends the CSP policies each time a user requests a
page. These policies are then enforced by the browser to, among other things,
block XSS. The policy below will only allow scripts to be loaded from the current
origin, still blocking any injected inline scripts. In addition, the reporting header
Content-Security-Policy-Report-Only [33] can be used to report policy viola-
tions without enforcing them. These reports are sent as POST requests to the server.
They can also be detected using SecurityPolicyViolationEvent in JavaScript.

1 Content-Security-Policy: script-src ’self’
2

32

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

A.2.3 Origin policy

Today, CSP headers are sent with every HTTP(S) response, which is a concern for
both safety and performance [50]. For security, it is easy to forget the policy on spe-
cial pages, like error pages [59]. It also harms performance because servers need to
repeat the same policy for each response, even if the policy should apply to all. To ad-
dress this, speci�cations are being drafted [59], implemented [60], and evaluated [50]
to enable origin-wide policies, known as origin policies [59] or origin manifests [50].
Using an origin policy, the server only needs to include once which policies should
apply to the whole origin.

A.2.4 Navigation

Navigations can be performed in many di�erent ways by browsers, e.g. by click-
ing on a link, submitting a form or running JavaScript. Navigation methods can
be split into two di�erent categories, user-initiated or document-initiated. While
navigation is de�ned in the Fetch [52] and HTML [4] standards, the exact methods
available depend on the web browser implementation. We make an e�ort to sum-
marize the most common methods in Table A.1. The Automatic column shows if the
navigation method can be performed automatically. This is true for all JavaScript
function and, in case JavaScript is allowed, <a> and <form> tags. It is worth noting
that while a web page cannot read a user’s browsing history, it can initiate navi-
gation to go back or forward in the browser history. There are many .location
functions in JavaScript that can navigate, e.g. window, document, parent, etc. They
all use the Location object de�ned in the HTML standard [4]. Some functions, like
window.navigate, only works in Internet Explorer [11]. The last column speci�es
which methods navgiate-to a�ects.

Table A.1: Navigation methods together with initiator and possibility to automati-
cally navigate.

Method Initiator Automatic A�ected
<a> tag Document With JavaScript X
<form> tag Document With JavaScript X
<meta> tag Document Yes X
<iframe> tag [51] Document Yes X
window.open [53] Document Yes X

*.location [4] Document Yes X
window.navigate [11] Document Yes X
Typing the URL User No
History buttons User & Document Yes
Home button User No

33

Securing the Next Generation Web

A.2.5 Navigate-to directive

The navigate-to directive gives developers the power to control the navigations a
document can initiate. Document initiated navigations are discussed in Section A.2.4.
This directive makes it harder for attackers to inject code to redirect users from legit-
imate websites. For example, if an attacker manages to inject links on disney.com
then Disney’s reputation is at stake if links lead to inappropriate websites. To tackle
this, Disney could add the following to their CSP policy:

1 navigate-to *.disney.com *.thewaltdisneycompany.com
2

This would instruct the browser to only accept navigations to subdomains of disney
.com and thewaltdisneycompany.com, and block all navigations to other websites.
The standard also introduces the new keyword
unsafe-allow-redirects, which allows any redirects as long as the �nal desti-
nation is allowed by the policy. It is deemed less safe since it does not have full
control over all the sites in the redirect chain. However, it is still better than nothing
in terms of limiting navigations.

The navigate-to directive is currently being standardized by W3C [61] and
implemented in Chrome [36] and Firefox [28]. It is available in the current version
of Chrome (version 77.0.3865), and other Chromium-based browsers like Edge and
Brave, behind a �ag that enables experimental features. It is also available in Firefox
Nightly (Version 71.0a1) behind a �ag [28].

A.3 Vulnerabilities

This section presents vulnerabilities and security concerns related to the navigate-to
policy. These vulnerabilities are not navigation attacks, but rather vulnerabilities
that become possible due to navigate-to. Except for the last vulnerability in Sec-
tion A.3.3.3, where we rather want to show that a small improvement to navigate-to
can solve an existing problem. The policy introduces new methods for acquiring
privacy-sensitive information, circumvention of security mechanism and data ex�l-
tration. All the attacks described in this section have been tested in practice. While
some of the vulnerabilities, like the data ex�ltration, relies on the existence of other
vulnerabilities, like content injection, the navigate-to adds a new layer to the at-
tacks. This possibility of combining attacks shows the importance of reexamining
existing ones when introducing new mechanisms.

A.3.1 Methodology

To systematically �nd vulnerabilities we distinguish vulnerabilities relating to the
speci�cation of the navigate-to directive and vulnerabilities related to its imple-
mentation. For each category, we divide the investigation of vulnerabilities pertain-
ing to con�dentiality, integrity and availability, in accordance with the CIA triad. We
draw on our threat model and examine vulnerabilities with respect to injection, web,

34

disney.com
disney.com
disney.com
thewaltdisneycompany.com

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

gadget, and passive network attackers. Finally, we analyze how the directive can be
used to circumvent modern countermeasures, such as third-party cookie blocking.

The presentation of the vulnerabilities is ordered by our estimate of their im-
pact, from high to low. Table A.2 lists the vulnerabilities we discover together with
their corresponding attacker model. Interesting to note is that resource probing and
Google Search pro�ling can be exploited to attack websites that themselves do not
use the navigate-to directive. This results in previously security websites becom-
ing insecure.

Table A.2: The uncovered vulnerabilities together with corresponding attacker
model.

Vulnerability / Attacker Injection Web Gadget Passive network
Resource probing X
Google Search pro�ling X
Third-party cookie bypass X
History sni�ng X
Data ex�ltration X X
Ads leaking data X

A.3.2 Specification

The following vulnerabilities are present in the speci�cation. This means that any
browser following the speci�cation correctly will be vulnerable.

evil.com a.io/secret/ a.io/login/

Unauthenticated

Figure A.1: A user visiting evil.com will be navigated to a.io/secret/. If they
are not logged in, they are further redirected to a.io/login/.

A.3.2.1 Resource probing

In cases where web applications redirect based on sensitive resources, these re-
sources could be probed. For example, probing for the existence of Dropbox �les.
The probing attacks in this section are deterministic, as opposed to other attacks
that rely on timings [55]. The attacks are also general and could potentially be used
on any website, not solely on advertiser platforms such as the attack presented by
Venkatadri et al. [54].

A malicious website, i.e. a web attacker, can navigate a user to
dropbox.com/preview/wallet.txt to detect if a user has a �le named wallet.txt.
If no such �le exists then the user is redirected to
dropbox.com/home/wallet.txt, making it possible to craft a policy which blocks
/preview/ but not the redirection to /home/, like the following. Note here that

35

evil.com
a.io/secret/
a.io/login/

Securing the Next Generation Web

we only use path-sensitivity to block /preview/. If we are redirected, then path-
sensitivity is no longer available and we only have to allow dropbox.com. The main
di�erence compared to previous work on CSP redirections [23] is that we only need
path-sensitivity for the �rst request, not the redirects.

1 navigate-to ’unsafe-allow-redirects’ https://www.dropbox.com/not_preview/;
2

By utilising invisible iframes multiple �les can be checked in parallel, without the
user being navigated away from the malicious website.

One speci�c application of resource probing that has been researched before
is login detection. Previous methods [20, 32] relies on third-party cookies, which
can be blocked by the user or by the proposed default SameSite policy [62]. In-
stead, note that a navigation to facebook.com/settings/ will redirect the user to
the login page, facebook.com/login.php, if they are not authenticated, similar to
Figure A.1. By allowing only one of these URLs in the policy, the attacker can dif-
ferentiate between a successful navigation and a blocked one. This feature makes
our method more powerful and general.

We have also found that on some E-commerce websites it is possible to detect if a
customer has anything in their shopping cart. This is because navigating directly to
the shopping cart or checkout page sometimes redirects the user depending on the
content of the cart. PrestaShop, which is an E-commerce platform used on hundreds
of thousands of websites [8], does exactly this. By visiting example.com/en/order
a user will be redirected to example.com/en/cart, assuming example.com uses
PrestaShop.

Some of the probing attacks can leak more data if they are done in an active fash-
ion. The PrestaShop attack can be improved to, in theory, enumerate the full cart.
This is due to a Cross-Site Request Forgery (CSRF) [47] vulnerability in PrestaShop,
currently being disclosed, which allows an attacker to add and remove items. Using
this method an attacker can repeatedly remove items and then check if the cart is
empty.

These are only a few examples we have found where redirects are based on sen-
sitive data. We believe that many more such redirects currently exists on the web.
Furthermore, navigations can bypass lax SameSite cookies, making the attack pos-
sible on sites where previous CSRF attacks were not possible.

A.3.2.2 Google Search pro�ling

Google Search relies on personalized search [19], meaning that the results of a search
query are based on the users’ previous interactions with Google. A recent study [24]
shows that users are put into so-called “�lter bubbles” by Google, resulting in vary-
ing result when searching for political terms such as “gun control” or “immigration”.
A web attacker can craft a malicious website which uses the navigate-to directive
together with Google’s I’m feeling lucky function to extract top results from visi-
tors. This type of extraction attack is called cross-site search and has previously
been successfully mounted against Gmail and other websites [17]. The main di�er-
ence is that previous methods have relied on timing, whereas our method is fully
deterministic. Castelluccia et al. [10] were also able to infer sensitive information

36

example.com/en/order
example.com/en/cart
example.com

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

about users based on Google Searches. However, their approach required network
attacker capabilities and assumed the tra�c was unencrypted, which is not the case
anymore. Our attack can be mounted by anyone with the capability to set up a
website.

The attacker can then use these top results from Google to infer these �lter bub-
bles. Using the URL https://www.google.com/search?q=QUERY&btnI, Google
will automatically redirect the user the top result for term “QUERY”. Therefore
the I’m feeling lucky function acts as an open redirector, which is something both
OWASP [46] and Google [34] themselves warn about. It is well known that Google
has this problem but so far they choose to accept the risk [1]. However, navigate-to
adds a new dimension to the problem as it enables attackers to infer data about users.

To exploit this the attacker can specify a report-only policy that only allows goog
le.com, as shown below. The redirect will violate the policy and the browser will du-
tifully report which domain was in violation to the malicious website. The attacker
can iteratively update the query to get more results. Assuming searching for “news”
would return news.com, then the next query would be “news -site:news.com”, which
excludes news.com and perhaps returns reports.com instead. Another attack vec-
tor would be other search engines using this approach to directly copy personalized
search results from Google, similar to what Bing did [41].

1 Content-Security-Policy-Report-Only: navigate-to ’unsafe-allow-redirects’
google.com

2

A.3.2.3 Third-party cookie bypass

A cookie is a piece of data that websites can save locally on users’ machines. [31]
Depending on how the cookie is acquired, it will either be considered a �rst-party
cookie or a third-party cookie. A navigation will result in �rst-party cookies while
image request and similar results in third-party cookies.

Third-party cookies are useful for advertisers [14] as it allows them to use small
tracking pixels [15] for tracking users. Modern browsers allow users to block third-
party cookies or do it by default [42].

Previous work has demonstrated how Cookie Synchronization [7, 38] can be
used by ad platforms to e�ectively break the same-origin policy. Privacy-aware
users can mitigate this by blocking third-party cookies altogether. However, the
navigate-to directive introduces a new method for advertisers to circumvent this
by using navigations. As it requires control over the CSP headers, web attackers are
the main threat. Figure A.2 shows a user visiting a.io, then being forcibly navigated
to track.com and acquiring a �rst-party cookie. Using the following policy, the
redirection will be blocked, making the attack unnoticeable to the user.

1 navigate-to ’unsafe-allow-redirects’
2

37

https://www.google.com/search?q=QUERY&btnI
google.com
google.com
news.com
news.com
reports.com
a.io
track.com

Securing the Next Generation Web

a.io track.com

User b.io

Figure A.2: When a user visits a.io or b.io, they can force the user to obtain �rst-
party cookies from track.com.

A.3.3 Implementation

The following vulnerabilities are due to implementation decisions. We focus on
Chrome’s [36] and Firefox’s [28] implementations of navigate-to,

A.3.3.1 History sni�ng

The navigate-to policy can, in some cases, be exploited by a web attacker with a
malicious website to probe which websites a user has visited. The attack uses the
fact that websites using HSTS force the browser to remember and upgrade insecure
connections. Previous methods exploiting this have relied on timing attacks which
are now mitigated [64].

Using navigate-to, a malicious website can make a POST request to another
site which uses HSTS but is not preloaded. If the site redirects based on the POST
data then the attacker might be able to detect if a user has visited the site before. This
is possible because if the user has visited the site before it will result in an internal
redirect (HTTP 307), which keeps the POST data. Otherwise, the server will redirect
(HTTP 301/302), which drops the POST data. If the server speci�cally performs a
307 redirect then the attack will not work. By crafting a CSP that does not allow
the redirect, the attacker can di�erentiate between the two cases, denoted X and Y
in Figure A.3. This is, for example, possible using the login function on the popular
social media website VK.

https://target.com

https://target.com

307

301
http://target.com

X

Y

Figure A.3: If target.com uses HSTS, and the user has visited the site before, then
the browser will automatically upgrade the connection to HTTPS using
a 307 redirect instead of a server side 301.

A.3.3.2 Data ex�ltration and communication

Previous research has shown that data ex�ltration is possible in the face of CSP [49].
The usage of forms and links to ex�ltrate data has also been studied [65]. However,
the navigate-to policy introduces an improved method for ex�ltration, and two-
way communication, based on JavaScript together with navigation. This works in

38

a.io
b.io
track.com
target.com

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

Chrome, but not Firefox, as Chrome does not unload the page for navigate-to
violations.

Consider a website using connect-src ’none’ and frame-src ’none’ to limit
external loads as much as possible. The connect-src directive protects against
some ex�ltration methods including XHR, fetch and <a ping>, while frame-src
will block ex�ltration to iframes. Assume the website uses unsafe-allow-redirects
followed by a list of allowed URLs. Note here that we show that unsafe has impli-
cations beyond the scope of restricting navigation. An attacker capable of injecting
JavaScript, i.e. either an injection or gadget attacker, can now use window.location,
as shown in the listing below, to ex�ltrate arbitrary data. Each navigation request
will ex�ltrate data, then be blocked by the policy, as the attacker can choose a web-
site outside the CSP whitelist. Furthermore, by adding a SecurityPolicyViolation
event listener the attacker can inspect the blocked URI in the violation. To send a re-
sponse, evil.com would redirect the request to a subdomain like <msg>.evil.com.

1 function exfiltrate (data) {
2 window.location = "http://evil.com/?d=" + data;
3 }
4

The main di�erence between not using navigate-to and using the policy described
is that by blocking the navigations, the control is returned to the attacker, allowing
for further stealth ex�ltration and communication.

A.3.3.3 Ads leaking data

We have found that ads served over HTTPS can still leak the �nal landing page to
a passive network attacker if an ad in the redirection chain is unencrypted. While
network-level eavesdropping is outside of CSP’s threat model, the navigate-to
directive presents a great opportunity to �x this problem. The problem stems from
the fact that when a user clicks on an ad they can be channeled through multiple
tracking websites. Listing A.1 shows a chain where the user is redirected to three
di�erent websites before the landing page. We performed a small empirical study
using the same dataset as in Section A.6. We extracted all iframes and compared
their source URL to a list of known advertisement platforms, e.g. DoubleClick. If
the URL matched we followed it and recorded the redirects. This resulted in 24650
unique ads, of which 26.7% have a website between the advertisement platform and
the landing page. This highlights the need for advertisement platforms to consider
potential redirects from tracking websites and further motivates the need for the
navigate-to directive.

1 https://www.googleadservices.com/...
2 http://www.kqzyfj.com/...
3 http://cj.dotomi.com/...
4 http://www.emjcd.com/...
5 https://<landing page>/...
6

Listing A.1: Example of an ad chain containing three di�erent unencrypted
domains between the encrypted ad platform and landing page.

39

Securing the Next Generation Web

As can be seen in Listing A.1, both the �rst and last websites use HTTPS but
there exist sites between that are unencrypted. This is very hard for a user to detect
as both the ad and the landing page seems secure. The problem with having HTTP
in the chain is that an eavesdropper can follow the request and �nd the landing page.
Our empirical experiments show 10.6% of the ads follow this pattern. As ads become
more personal this becomes a privacy concern. Advertisements related to economic
status or speci�c diseases might be leaked without the user’s knowledge.

A.4 Countermeasures

This section presents countermeasures to the vulnerabilities in A.3. The counter-
measures cover the speci�cation, mitigations for web developers, as well as, imple-
mentation improvements in web browsers. Similarly to the vulnerabilities in Sec-
tion A.3 we distinguish speci�cation- and implementation-level countermeasures.

A.4.1 Specification

A.4.1.1 Resource probing

Previous login detection methods have forced web developers to rewrite their appli-
cations to avoid special types of redirections. As mentioned in [13], Google added an
extra regex check to make sure the redirection did not lead to resources that could
be loaded cross-origin, e.g. “jpg”, “js” and “ico”.

The navigate-to policy circumvents this by being able to block and report dif-
ferent paths in the URL, i.e. it is possible to block
example.com/settings/ and allow example.com/login/. If /settings/ redi-
rects to /login/ for unauthenticated users, then the CSP report log can be inspected
to discern between authenticated and unauthenticated users.

To �x this, path precision could be removed from the policy. If an origin as a
whole can not be trusted, it seems to add little security to trust certain paths on
the origin. Since these vulnerabilities a�ect websites that do not use navigate-to,
we also present countermeasures web developers can implement. We recommend
avoiding redirection based on secrets. Instead, by showing an error page or render-
ing the login form on the same page the website is guaranteed to not leak any data, as
there will be no redirections. If redirection is necessary, encoding paths in GET pa-
rameters, e.g. from example.com/files/ to example.com/?path=/files/, also
mitigates the problem.

A.4.1.2 Google Search pro�ling

For vulnerabilities like Google Search pro�ling, as presented in Section A.3.2.2, the
key countermeasure is to avoid open redirects [46]. One possible way for Google
to accomplish this without removing the I’m feeling lucky function is to use a CSRF
token [47].

40

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

A.4.1.3 Third-party cookie bypass

The navigation path through the redirection chain can depend on the user’s cookies.
For this reason, it is not possible to block cookies while checking if the navigation is
allowed. Instead, we suggest that cookies attained during the check are temporarily
sandboxed and then removed if the navigation is blocked.

A.4.2 Implementation

A.4.2.1 History sni�ng

Privacy problems related to HTTP Strict Transport Security (HSTS) [22] has been
researched before [44]. However, they focused on tracking mechanisms similar to
cookies but harder to remove.

The solution is to ensure that an attacker can not di�erentiate between the paths
in Figure A.3. Again, it becomes the web developers responsibility to either use an
internal redirect or not redirect on post data.

A.4.2.2 Data ex�ltration

What makes this attack extra powerful is its ability to regain execution control after
the navigation fails. It is not speci�ed what should happen when the navigate-to
policy blocks a navigation attempt. Currently, Chrome seems to simulate a 204
response [58], resulting in the continuation of the script, and the possibility to
ex�ltrate more data. Firefox, on the other hand, uses a full-page error that un-
loads the original document. By using this strategy the script will stop execut-
ing, blocking further ex�ltration. The attack can also be mitigated by avoiding
unsafe-allow-redirects, as this will block the ex�ltration during the pre-navigation
check.

A.4.2.3 Ads leaking data

The navigate-to directive could block redirect chains which contain HTTP web-
sites. Currently, the policy navigate-to https: allows navigation to any website
using HTTPS. However, combined with
unsafe-allow-redirects HTTP is allowed in the chain, as long as the landing
page is HTTPS. One solution is to add a value
unsafe-allow-https-redirects which would only allow redirection by HTTPS.
A more general solution is to split the policy into navigate-to and navigate-by,
where the latter would apply as long as the request is redirected. When no redirect
is received, the landing page is checked against the navigate-to policy. By using
this method, the following policy would allow any HTTPS redirections which lead
to https://example.com.

1 navigate-to https://example.com
2 navigate-by https:
3

41

https://example.com

Securing the Next Generation Web

A.5 AutoNav

We present AutoNav, an automatic mechanism to aid web developers in inferring
policies for their websites. The mechanism crawls the website and creates a map
of where pages can navigate. This mapping is used to generate and simplify the
policies. AutoNav can generate both per-page policies, where each page on a website
gets its own policy, and origin-wide policies [59].

A.5.1 Inference

We use a key-value map from the crawler to infer the policies. The page is used as a
key, and a list of all possible navigations from the page is used as a value. Listing A.2
shows an example.

1 {
2 "example.com/a.html": [facebook.com, google.com],
3 "example.com/b.html": [twitter.com, google.com]
4 }
5

Listing A.2: Example of a key-value map generate from crawling two pages on
example.com

Using the key-value map, AutoNav can generate separate policies for each page
on the website. This is shown in Listing A.3. AutoNav can also generate an origin-
wide policy based on the union of all the URLs, as shown in Listing A.4. These
policies are then simpli�ed, using the method described in Section A.5.2, to reduce
the size and improve maintainability.

1 {
2 "a.html": "navigate-to facebook.com google.com",
3 "b.html": "navigate-to twitter.com google.com"
4 }
5

Listing A.3: Per-page policies generated from Listing A.2.

1 {
2 "*": "navigate-to facebook.com twitter.com google.com"
3 }
4

Listing A.4: Origin-wide policy generated from Listing A.2.

A.5.2 Policy generation

The navigation policy is a whitelist of URLs that the user is allowed to navigate to. In
the most secure setting, the policy should contain the full URLs to each allowed tar-
get. While secure, this creates big and hard to maintain lists of URLs requiring much
bandwidth. Take Wikipedia for example, their policy could consist of all subdomains
like en.wikipedia.org, es.wikipedia.org, etc. for each language. A more com-
pact policy is

42

example.com

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

*.wikipedia.org. This simpli�cation results in both less data being transmitted
and a more maintainable policy, however, it does decrease security as it also allows
evil.wikipedia.org.

AutoNav supplies developers with best-e�ort policies that aim to help them
harden their websites. Using our parameterized simpli�cation algorithm, develop-
ers get a slider style method for �nding a trade-o� between maintainability, perfor-
mance and security. The simpli�cation algorithm looks for evidence that all subdo-
mains are trusted. The two sources used are the number of URLs that point to the
subdomains (denoted t1) and the number of subdomains that are pointed to (denoted
t2). The motivation for t2 is that even if multiple links are found to a.example.com
it does not imply that b.example.com should be allowed. Similarly, t1 is moti-
vated by the notion that the more URLs that point to *.example.com, the more
it can be trusted. Figure A.4 shows the tree representation of 10 URLs pointing to
example.com and its subdomains. ui in the �gure represents one URL, e.g. u7 points
to a resource on test.b.www.example.com. Furthermore, the �gure also includes
tuples of the threshold values (t1, t2). Figure A.5 shows the tree after simpli�cation
using a threshold of (2,2). Using this method the policy will only contain 3 entries
instead of 7 entries.

example.com

wwwu1, u2

dcba

test

u3

u6 u8

u7

u4, u5 u9, u10

(8,1)

(1,1) (0,0)(0,0)

(7,4)

(0,0)

(0,0)

Figure A.4: Tree representation of 10 URLs collected from example.com and its
subdomains. The tuples corresponds to the (t1, t2) thresholds.

Figure A.6 shows the result from crawling �ve pages on ebay.com and generat-
ing a policy. The crawler was only supplied with the start page and then found the
other four using the crawling algorithm from Section A.5.3. The �ve pages crawled
are shown in the middle of the �gure in grey with integer labels. The arrows from
these nodes indicate that a possible navigation was found between two nodes. The
colors correspond to which part of the policy covers the navigation. As shown,
*.ebay.com covers a lot of the subdomains, thus they all share the same color. Us-
ing the �gure, an origin policy could be generated by taking the union of all the
colors.

This method of generating policies guarantees that the functionality of the web-
site will remain intact. This is because, if a domain is in the list of possible naviga-
tions, then it will be included in the policy. Similar to other policies, the generated
policy would need to be recalculated if the website was updated to include new pos-
sible navigations. For security, the method guarantees that if a domain is not in the

43

a.example.com
b.example.com
*.example.com
example.com
ebay.com

Securing the Next Generation Web

list, then it will not be added to the policy. However, subdomains of domains in the
list can be added to the policy.

example.com

wwwu1, u2

*u3

u6,...,u10

Figure A.5: Result of applying the simpli�cation algorithm, using a tresh-
old of (2,2), to the tree in Figure A.4. Resulting in the fol-
lowing policy, navigate-to example.com www.example.com

*.www.example.com.

Figure A.6: Generated policies for ebay.com. The nodes with outwards pointing
arrows are the �ve pages that we crawled. All the other nodes corre-
spond to a possible navigation. The color indicates which part of the
policy covers the navigation.

A.5.3 Crawling

Our implementation of AutoNav uses selenium with a Chrome instance to crawl the
pages on a website. By only supplying AutoNav with the �rst URL it will automati-
cally collect and crawl new URLs that it �nds. When a URL from the same website is
found it is added to a set of unvisited URLs, from which the next URL is picked. For

44

ebay.com

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

each page on a domain, all the JavaScript is executed, then the URLs from links and
forms are saved. When the crawling session is over, the inference method described
in Section A.5.1 is used to generate the policy.

A.5.4 Limitations

We did not take special care to crawl behind the login. However, it is trivial for a site
owner to add a session cookie to the crawler. The more pages AutoNav can crawl
the more the policy will cover. Crawling too few pages will result in an incomplete
yet secure policy. The policy is secure because AutoNav will never add a domain to
the policy that has not been seen.

We use static links to infer the policies, which will miss possible redirections.
While not a security concern, we would produce more precise policies if each link
was followed dynamically and the redirections recorded.

User-agent sni�ng is a common problem for crawling studies. Since the Au-
toNav is designed for developers we think they can manually add entries such as
languages.mysite.org and use the AutoNav to detect everything else.

A.6 Empirical Study

This section presents an empirical study to evaluate the performance impact of the
new directive, as well as, how di�erent delivery methods and simpli�cations can
reduce the impact. Next, we evaluate AutoNav in how well automatically generated
policies based on a subset of the website cover the full website.

To test how the new navigate-to policy will function on common websites we
utilize AutoNav in a crawling experiment. For calculating the performance impact
in Section A.6.1, we use Alexa’s top 10,000 websites. For evaluating AutoNav itself
we use Alexa’s top 14,000, ensuring we have 10,000 domains which all have more
than 100 pages each.

A.6.1 Policy tradeo�s

This section presents the performance tradeo�s between per-page and origin-wide
policies together with the delivery methods of HTTP headers and origin policy.

The costs in Table A.3 are based on a user visiting n pages on a website, thus
the cost of HTTP headers need aggregation over all pages, i.e.

∑
i≤n. The cost of

sending a single CSP policy depends on the number of URLs it contains. We de�ned
the cost of the policy based on the set of URLs, i.e. |Ui |, Ui being the set of URLs on
page i. Further, we can de�ne a set of all URLs as the union of the sets of URLs on
each page as

⋃
j≤nUj , with corresponding

Empirical performance Based on the 10,000 crawled domains, a per-page policy,
without any simpli�cations, would increase the header size with 215 bytes, per re-
sponse. A more maintainable origin-wide policy results in a size increase to 1904
bytes. This cost can be decreased by using the origin policy for delivery, in which
case the user only downloads the policy once. Note, as shown in Table A.3, that an

45

Securing the Next Generation Web

origin policy outperforms a per-page policy after only 9 responses. While per-page
policies might seem better, they are di�cult to use since they require knowledge
about the content on each page. As such, some website, e.g. Facebook, use origin-
wide policies, motivating the need for an origin policy delivery method.

In addition to the comparison between per-page and origin policy, we also evalu-
ated the cost bene�ts of using our policy simpli�cation algorithm. Using maximum
simpli�cations, i.e. t1 = 1, t2 = 1, the average size of the origin wide policy de-
creases from 1904 to 1004 bytes, a decrease of 47%. Similarly, the per-page policy
decreases from 215 bytes to 129 bytes, which is a 40% decrease. For some websites,
the bene�t of simpli�cation is much greater. In particular, this is the case when web-
sites allow navigation to numerous subdomains. For example, spravker.ru would
require a 20438 byte origin policy without simpli�cation, but only 61 bytes after
simpli�cation. The big di�erence stems from the fact that spravker.ru have 954
subdomains.

Table A.3: Empirical costs for di�erent policy models.

HTTP Origin Policy
Per-page

∑
i≤n

215 -

Origin-wide
∑
i≤n

1904 1904

We also performed a more in-depth analysis of three websites, ebay.com, wiki
pedia.org and stackexchange.com, to see how the threshold a�ect performance.
Fixing t1 to 0, we only focus on the number of subdomains when deciding if wild-
cards should be used. Figure A.7 shows these domains as solid lines, together with
the corresponding costs for their origin policies. As can be noted, after the t2 thresh-
old reaches 280 subdomains Wikipedia can no longer use the wildcard and the policy
quickly increases in size. By increasing t1 to 1000, more URLs are required before
simpli�cations can take place. As can be seen in the dashed lines in Figure A.7,
the crawled data from Wikipedia did not contain enough URLs to the same domain
for a simpli�cation. This would be the desired behavior if Wikipedia required high
assurance before introducing wildcards.

46

ebay.com
wikipedia.org
wikipedia.org
stackexchange.com

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

0 100 200 300 400
0

2,000

4,000

t2 threshold

Po
lic

y
siz

e
(B

)
Wikipedia (t1 = 0)
Wikipedia (t1 = 1000)
Ebay (t1 = 0)
Ebay (t1 = 1000)
Stackexchange (t1 = 0)
Stackexchange (t1 = 1000)

Figure A.7: Cost of origin policy for di�erent domains and simpli�cation thresh-
olds. The y-axis shows policy size in bytes and the x-axis shows the t2
threshold. The legend shows the t1 threshold

A.6.2 Coverage

While full coverage may be desirable, the goal of AutoNav is to help even if the
coverage is not complete, by providing a useful baseline policy for developers to
build on.

Our coverage was generated similarly to the method used in CSPAutoGen [37].
We generate the policy based on a training set of 80% of the pages on a domain and
then test how well they match the other 20%. We de�ne U as the set of URLs in
the training set. For the n pages in the validation set, we check if URLs on the page
are covered, i.e. pi ⊆ U , where pi is the set of all the URLs on page pi . Finally the
coverage of a website is calculated as: c = |{pi :pi⊆U }|n

Using this formula, c is calculated for all the websites that were crawled. In total
42% of all the websites were fully covered and for 59% of the websites 95% or more
were covered. Note that these results come from only crawling 100 pages, deeper
crawls can greatly increase this coverage.

A.7 Related work

Automatic methods for generating CSP policies have been studied before [12, 16, 18,
37]. deDacota by Doupe et al. [12] performs static analysis of ASP.NET code in order
to separate JavaScript code from data. After the JavaScript has been separated into
�les, a CSP policy was generated for the �le. AutoCSP by Fazzini et al. [16] takes a
similar approach by analysing server-side code, PHP in this case. However, AutoCSP
uses dynamic taint tracking instead of static analysis, allowing it to create policies

47

Securing the Next Generation Web

for inline JavaScript events and CSS code. While both AutoCSP and deDacota were
successful, they required access to the source code of the application. In contrast,
AutoNav uses a black-box approach which removes the need for the source code.
Furthermore, the aforementioned methods focus on JavaScript and CSS, while our
focus is on navigation and URLs. In addition, static analysis of source code will miss
many URLs since modern web applications, like WordPress, store content in the
database and not in the code.

In addition, research has been done on generating policies without access to the
source code. Golubovic’s autoCSP [18] method utilizes a reverse proxy and the re-
port function in CSP to run an application in learning mode. In this mode, the tool
externalizes inline code and generates policies for the scripts that should be allowed.
A drawback is that autoCSP requires manual navigation through the application to
ensure all scripts are triggered. While this works well for scripts, it becomes chal-
lenging when all possible links need to be navigated. A similar approach based on
the report function in CSP was utilized by King’s Firefox extension Laboratory [30].
Laboratory is impressive as it enables users to record and generate CSP policies in
real-time while visiting a website. Starting with a strict policy, it gradually weak-
ens it as violation reports are received. While this method could be extended to
include navigations, it would require the user to initiate all possible navigations on
each page. Instead of relying on the reporting functionality, our method uses a com-
bination of static and dynamic analysis to record the navigations a document can
initiate. By doing this we avoid the problem of having to initiate all navigations to
generate a report. We also improve on the manual aspect of traversing a website by
implementing an automatic crawler, as suggested by Golubovic, in future works.

CSPAutoGen Pan et al. [37] is also intended to automatize CSP generation. CSPAu-
toGen uses a crawler to analyze websites and try to infer which scripts should be
allowed. Similar scripts are also generalized into abstract syntax trees, based on
how many similar scripts are found. Once a policy has been inferred, CSPAutoGen
functions as a proxy between the client and the server. This enables CSPAutoGen
to rewrite requests and responses in real-time, without needing any CSP con�gu-
rations on the website. This is a great feature when a server needs to be secured
without any direct modi�cation. While a similar approach could be used for URLs
and navigation, our goal is to generate CSP policies that can be used by the server
directly.

In addition to policy generation, we bene�t from origin-wide policies [59]. Simi-
larly to the work on evaluating general origin-wide policies by Van Acker et al. [50],
our results also indicate that an origin-wide policy provides additional security with-
out degrading performance.

A.8 Conclusion

Security We have performed a security analysis of the emerging CSP directive
navigate-to. Our �ndings show that the current speci�cation and implemen-
tations introduce new vulnerabilities. The vulnerabilities include methods for re-
source probing, login detection, circumventing blockage of third-party cookies, as

48

A. AutoNav: Evaluation and Automatization of Web Navigation Policies

well as, history enumeration. To mitigate these problems we propose countermea-
sures to both the speci�cation and implementation of the directive. We demonstrate
that the directive triggers vulnerabilities even in websites that do not use the direc-
tive in their policies. Thus, we also propose countermeasures web developers can
make to their applications in order to mitigate the possibilities of being exploited.

Automatization We have evaluated the possibility of automatically generating
policies to help developers adopt the policy, we created AutoNav. AutoNav uses a
black-box approach to crawl websites and generate CSP policies that can be directly
applied to the website. Our results show that in total 42% of all the websites were
fully covered and for 59% of the websites 95% or more were covered. We further
simplify the process by identifying categories of websites which the policy better
�ts. Our research shows that shopping and adult websites are best covered. These
websites have a high incentive to keep the users on their site, with the exception of
linking to sponsors or partners, which AutoNav’s policies cover.

Performance To analyze the performance of navigate-to we have conducted an
empirical study of Alexa’s top 10,000 websites. For each website, we have crawled
100 pages and based on theses generated policies. We show that on average this
directive would increase the header size by 215 bytes per request. However, using
our simpli�cation algorithm we produce more maintainable policies which were
also 40% smaller on average. Our results indicate that using an origin policy would
require a one time cost of 1904 bytes, or 1004 using simpli�cations, as opposed to
215 bytes per request. Thus we show that the performance hit from the increased
security can be e�ciently mitigated by adopting an origin policy with suitable sim-
pli�cations.

Coordinated disclosure We are in the process of disclosing the discovered vulner-
abilities to the a�ected vendors, including Google where both Chrome’s implemen-
tation of navigate-to directive and the Google Search website are a�ected. Based
on our recommendations Firefox chose to harden their implementation against ex-
�ltration attacks, as explained in Section A.4.2.2.

Acknowledgements Thanks are due to Mike West, Christoph Kerschbaumer, and
Daniel Hausknecht for helpful discussions on the topic of navigate-to. This work
was partly funded by the Swedish Foundation for Strategic Research (SSF) and the
Swedish Research Council (VR).

49

Securing the Next Generation Web

50

Bibliography

[1] F. Aboukhadijeh. Is google an open redirector?, 2011.

[2] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. Towards a formal foun-
dation of web security. In Computer Security Foundations Symposium (CSF),
pages 290–304. IEEE, 2010.

[3] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan. {NAVEX}: Precise
and scalable exploit generation for dynamic web applications. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 377–392, 2018.

[4] Apple, Google, Mozilla, Microsoft. Html living standard, 2019.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site request
forgery. In Proceedings of the 15th ACM conference on Computer and communi-
cations security, pages 75–88. ACM, 2008.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame communication in
browsers. Commun. ACM, 52(6):83–91, 2009.

[7] M. A. Bashir, S. Arshad, W. Robertson, and C. Wilson. Tracing information
�ows between ad exchanges using retargeted ads. In 25th {USENIX} Security
Symposium ({USENIX} Security 16), pages 481–496, 2016.

[8] BuiltWith Pty Ltd. Prestashop usage statistics, 2018.

[9] S. Calzavara, A. Rabitti, and M. Bugliesi. Semantics-based analysis of content
security policy deployment. ACM Trans. Web, 12(2), Jan. 2018.

[10] C. Castelluccia, E. De Cristofaro, and D. Perito. Private information disclosure
from web searches. In International Symposium on Privacy Enhancing Technolo-
gies Symposium, pages 38–55. Springer, 2010.

[11] Dottoro. navigate method (window), 2019.

[12] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and G. Vigna.
dedacota: toward preventing server-side xss via automatic code and data sep-
aration. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, CCS ’13, pages 1205–1216, New York, NY, USA, 2013.
ACM.

[13] A. Elsobky. Novel techniques for user deanonymization attacks, 2016.

[14] S. Englehardt and A. Narayanan. Online tracking: A 1-million-site measure-
ment and analysis. In Proceedings of the 2016 ACM SIGSAC conference on com-
puter and communications security, pages 1388–1401. ACM, 2016.

[15] Facebook Inc. Use facebook pixel, 2018.

51

Securing the Next Generation Web

[16] M. Fazzini, P. Saxena, and A. Orso. Autocsp: Automatically retro�tting csp
to web applications. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 1, pages 336–346, May 2015.

[17] N. Gelernter and A. Herzberg. Cross-site search attacks. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 1394–1405. ACM, 2015.

[18] N. Golubovic. autocsp - csp-injecting reverse http proxy, 2013.

[19] Google Inc. Personalized search for everyone, 2009.

[20] G. G. Gulyás, D. F. Somé, N. Bielova, and C. Castelluccia. To extend or not
to extend: on the uniqueness of browser extensions and web logins. CoRR,
abs/1808.07359, 2018.

[21] S. Helme. Optimising twitter’s csp header, Jan 2018.

[22] J. Hodges, C. Jackson, and A. Barth. Http strict transport security (hsts). RFC
6797, RFC Editor, November 2012.

[23] E. Homakov. Using content-security-policy for evil, Jan 2014.

[24] D. Inc. Measuring the "�lter bubble": How google is in�uencing what you click,
2018.

[25] C. Jackson and A. Barth. Forcehttps: protecting high-security web sites from
network attacks. In Proceedings of the 17th international conference on World
Wide Web, pages 525–534. ACM, 2008.

[26] J. Karahalis. Content security policy (csp), 2018.

[27] K. Karlsson. 179426 re�ected xss on blockchain.info, 2017.

[28] C. Kerschbaumer. 1529068 - implement csp ’navigate-to’ directive, February
2018.

[29] A. King. Allow navigation to only whitelisted urls via navigate-to 125, 2016.

[30] A. King. april/laboratory, 2018.

[31] D. Kristol and L. Montulli. Http state management mechanism. RFC 2965, RFC
Editor, October 2000.

[32] R. Linus. Your social media �ngerprint, 2017.

[33] J. Medley. Content-security-policy-report-only, 2018.

[34] J. Morrison. Open redirect urls: Is your site being abused?, 2009.

[35] A. Paicu. CSP ’navigate-to’ directive: Consensus & Standardization, 2018.

[36] A. Paicu. Implement the ’navigation-to’ directive, 2018.

52

Bibliography

[37] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou. Cspautogen: Black-box en-
forcement of content security policy upon real-world websites. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 653–665, New York, NY, USA, 2016. ACM.

[38] P. Papadopoulos, N. Kourtellis, and E. Markatos. Cookie synchronization: Ev-
erything you always wanted to know but were afraid to ask. In TheWorldWide
Web Conference, pages 1432–1442. ACM, 2019.

[39] P. D. Ryck, L. Desmet, F. Piessens, and M. Johns. Primer on Client-Side Web
Security. Springer, 2014.

[40] G. B. Security. Communication with google’s blink security team, November
2018.

[41] R. Singel. Google catches bing copying; microsoft says ’so what?, February
2011.

[42] N. Statt. Advertisers are furious with apple for new tracking restrictions in
safari 11, 2017.

[43] M. Ste�ens, C. Rossow, M. Johns, and B. Stock. Don’t trust the locals: Investi-
gating the prevalence of persistent client-side cross-site scripting in the wild.
In NDSS, 2019.

[44] M. Stockley. Anatomy of a browser dilemma - how hsts supercookies make
you choose between privacy or security, 2015.

[45] The OWASP Foundation. Owasp top 10 - 2017, 2017.

[46] The OWASP Foundation. Unvalidated redirects and forwards cheat sheet, 2017.

[47] The OWASP Foundation. Cross-site request forgery (csrf), 2018.

[48] The OWASP Foundation. Cross-site scripting (xss), 2018.

[49] S. Van Acker, D. Hausknecht, and A. Sabelfeld. Data ex�ltration in the face
of csp. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 853–864. ACM, 2016.

[50] S. Van Acker, D. Hausknecht, and A. Sabelfeld. Raising the bar: Evaluating
origin-wide security manifests. In Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, San Juan, PR, USA, December
03-07, 2018, pages 342–354, 2018.

[51] A. van Kesteren. Fetch standard, February 2018.

[52] A. van Kesteren. Fetch living standard, 2019.

[53] M. Vasigh. Window.open(), 2018.

53

Securing the Next Generation Web

[54] G. Venkatadri, A. Andreou, Y. Liu, A. Mislove, K. P. Gummadi, P. Loiseau, and
O. Goga. Privacy risks with facebook’s pii-based targeting: Auditing a data
broker’s advertising interface. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 89–107, May 2018.

[55] T. Watanabe, E. Shioji, M. Akiyama, K. Sasaoka, T. Yagi, and T. Mori. User
blocking considered harmful? an attacker-controllable side channel to identify
social accounts. In 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 323–337. IEEE, 2018.

[56] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc. Csp is dead, long live
csp! on the insecurity of whitelists and the future of content security policy.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1376–1387. ACM, 2016.

[57] M. Weissbacher, T. Lauinger, and W. Robertson. Why is csp failing? trends and
challenges in csp adoption. In International Workshop on Recent Advances in
Intrusion Detection, pages 212–233. Springer, 2014.

[58] M. West. Allow navigation to only whitelisted urls via navigate-to 125, 2016.

[59] M. West. Origin policy, 2017.

[60] M. West. Origin policy, 2017.

[61] M. West. Content security policy level 3, 2018.

[62] M. West. Incrementally better cookies, May 2019.

[63] M. West, A. Barth, and D. Veditz. Content security policy level 2, 2016.

[64] Yan (bcrypt). @bcrypt - advanced browser �ngerprinting - toorcon 2015,
November 2015.

[65] M. Zalewski. Postcards from the post-xss world, 2011.

54

B
Black Widow: Blackbox Data-driven Web

Scanning

Abstract. Modern web applications are an integral part of our digital lives. As
we put more trust in web applications, the need for security increases. At the
same time, detecting vulnerabilities in web applications has become increas-
ingly hard, due to the complexity, dynamism, and reliance on third-party com-
ponents. Blackbox vulnerability scanning is especially challenging because (i)
for deep penetration of web applications scanners need to exercise such brows-
ing behavior as user interaction and asynchrony, and (ii) for detection of non-
trivial injection attacks, such as stored cross-site scripting (XSS), scanners need
to discover inter-page data dependencies.
This paper illuminates key challenges for crawling and scanning the modern
web. Based on these challenges we identify three core pillars for deep crawl-
ing and scanning: navigation modeling, traversing, and tracking inter-state
dependencies. While prior e�orts are largely limited to the separate pillars,
we suggest an approach that leverages all three. We develop Black Widow, a
blackbox data-driven approach to web crawling and scanning. We demonstrate
the e�ectiveness of the crawling by code coverage improvements ranging from
63% to 280% compared to other crawlers across all applications. Further, we
demonstrate the e�ectiveness of the web vulnerability scanning by featuring
no false positives and �nding more cross-site scripting vulnerabilities than pre-
vious methods. In older applications, used in previous research, we �nd vul-
nerabilities that the other methods miss. We also �nd new vulnerabilities in
production software, including HotCRP, osCommerce, PrestaShop and Word-
Press.

B.1 Introduction

Ensuring the security of web applications is of paramount importance for our mod-
ern society. The dynamic nature of web applications, together with a plethora of dif-
ferent languages and frameworks, makes it particularly challenging for existing ap-
proaches to provide su�cient coverage of the existing threats. Even the web’s main
players, Google and Facebook, are prone to vulnerabilities, regularly discovered by
security researchers. In 2019 alone, Google’s bug bounty paid $6.5 million [16] and

55

Securing the Next Generation Web

Facebook $2.2 million [12], both continuing the ever-increasing trend. Cross-Site
Scripting (XSS) attacks, injecting malicious scripts in vulnerable web pages, repre-
sent the lion’s share of web insecurities. Despite mitigations by the current security
practices, XSS remains a prevalent class of attacks on the web [38]. Google rewards
millions of dollars for XSS vulnerability reports yearly [21], and XSS is presently the
most rewarded bug on both HackerOne [20] and Bugcrowd [5]. This motivates the
focus of this paper on detecting vulnerabilities in web applications, with particular
emphasis on XSS.

Blackbox web scanning. When such artifacts as the source code, models describ-
ing the application behaviors, and code annotations are available, the tester can use
whitebox techniques that look for vulnerable code patterns in the code or vulnera-
ble behaviors in the models. Unfortunately, these artifacts are often unavailable in
practice, rendering whitebox approaches ine�ective in such cases.

The focus of this work is on blackbox vulnerability detection. In contrast to
whitebox approaches, blackbox detection techniques rely on no prior knowledge
about the behaviors of web applications. This is the standard for security penetra-
tion testing, which is a common method for �nding security vulnerabilities [31].
Instead, they acquire such knowledge by interacting with running instances of web
applications with crawlers. Crawlers are a crucial component of blackbox scanners
that explore the attack surface of web applications by visiting webpages to discover
URLs, HTML form �elds, and other input �elds. If a crawler fails to cover the at-
tack surface su�ciently, then vulnerabilities may remain undetected, leaving web
applications exposed to attacks.

Unfortunately, having crawlers able to discover in-depth behaviors of web ap-
plications is not su�cient to detect vulnerabilities. The detection of vulnerabilities
often requires the generation of tests that can interact with the web application in
non-trivial ways. For example, the detection of stored cross-site scripting vulner-
abilities (stored XSS), a notoriously hard class of vulnerabilities [38], requires the
ability to reason about the subtle dependencies between the control and data �ows
of web application to identify the page with input �elds to inject the malicious XSS
payload, and then the page that will re�ect the injected payload.

Challenges. Over the past decade, the research community has proposed di�erent
approaches to increase the coverage of the attack surface of web applications. As
JavaScript has rendered webpages dynamic and more complex, new ideas were pro-
posed to incorporate these dynamic behaviors to ensure a correct exploration of the
page behaviors (jÄk [30]) and the asynchronous HTTP requests (CrawlJAX [4, 26]).
Similarly, other approaches proposed to tackle the complexity of the server-side pro-
gram by reverse engineering (LigRE [10] and KameleonFuzz [11]) or inferring the
state (Enemy of the State [8]) of the server, and then using the learned model to
drive a crawler.

Unfortunately, despite the recent e�orts, existing approaches do not o�er suf-
�cient coverage of the attack surface. To tackle this challenge, we start from two
observations. First, while prior work provided solutions to individual challenges,
leveraging their carefully designed combination has the potential to signi�cantly
improve the state of the art of modern web application scanning. Second, existing

56

B. Black Widow: Blackbox Data-driven Web Scanning

solutions focus mostly on handling control �ows of web applications, falling short
of taking into account intertwined dependencies between control and data �ows.
Consider, for example, the dependency between a page to add new users and the
page to show existing users, where the former changes the state of the latter. Being
able to extract and use such an inter-page dependency will allow scanners to explore
new behaviors and detect more sophisticated XSS vulnerabilities.

Contributions. This paper presents Black Widow, a novel blackbox web application
scanning technique that identi�es and builds on three pillars: navigation modeling,
traversing, and tracking inter-state dependencies.

Given a URL, our scanner creates a navigation model of the web application
with a novel JavaScript dynamic analysis-based crawler able to explore both the
static structure of webpages, i.e., anchors, forms, and frames, as well as discover
and �re JavaScript events such as mouse clicks. Also, our scanner further annotates
the model to capture the sequence of steps required to reach a given page, enabling
the crawler to retrace its steps. When visiting a webpage, our scanner enriches
our model with data �ow information using a black-box, end-to-end, dynamic taint
tracking technique. Here, our scanner identi�es input �elds, i.e., taint source, and
then probe them with unique strings, i.e., taint values. Later, the scanner checks
when the strings re-surface in the HTML document, i.e., sinks. Tracking these taints
allows us to understand the dependencies between di�erent pages.

We implement our approach as a scanner on top of a modern browser with
a state-of-the-art JavaScript engine. To empirically evaluate it, both in terms of
coverage and vulnerability detection, we test it on two sets of web applications
and compare the results with other scanners. The �rst set of web applications are
older well-known applications that have been used for vulnerability testing before,
e.g. WackoPicko and SCARF. The second set contains new production applications
such as CMS platforms including WordPress and E-commerce platforms including
PrestaShop and osCommerce. From this, we see that our approach improves code
coverage by between 63% and 280% compared to other scanners across all applica-
tions. Across all web applications, our approach improves code coverage by between
6% and 62%, compared to the sum of all other scanners. In addition, our approach
�nds more XSS vulnerabilities in older applications, i.e. phpBB, SCARF, Vanilla and
WackoPicko, that have been used in previous research. Finally, we also �nd multi-
ple new vulnerabilities across production software including HotCRP, osCommerce,
PrestaShop and WordPress.

Finally, while most scanners produce false positives, Black Widow is free of false
positives on the tested applications thanks to its dynamic veri�cation of code injec-
tions.

In summary, the paper o�ers the following contributions.

• We identify unsolved challenges for scanners in modern web applications and
present them in Section B.2.

• We present our novel approaches for �nding XSS vulnerabilities using inter-state
dependency analysis and crawling complex work�ows in Section C.2.

57

Securing the Next Generation Web

• We implement and share the source code of Black Widow1

• We perform a comparative evaluation of Black Widow on 10 popular web appli-
cations against 7 web application scanners.

• We present our evaluation in Section B.4 showing that our approach �nds 25
vulnerabilities, of which 6 are previously unknown in HotCRP, osCommerce,
PrestaShop and WordPress. Additionally, we �nd more vulnerabilities in older
applications compared to other scanners. We also improve code coverage on av-
erage by 23%.

• We analyze the results and explain the important features required by web scan-
ners in Section B.5.

B.2 Challenges

Existing web application scanners su�er from a number of shortcomings a�ecting
their ability to cope with the complexity of modern web applications [3, 9]. We
observe that state-of-the-art scanners tend to focus on separate challenges to im-
prove their e�ectiveness. For example, jÄk focuses on JavaScript events, Enemy of
the State on application states, LigRE on reverse engineering and CrawlJAX on net-
work requests. However, to successfully scan applications our insight is that these
challenges must be solved simultaneously. This section focuses on these shortcom-
ings and extracts the key challenges to achieve high code coverage and e�ective
vulnerability detection.

High code coverage is crucial for �nding any type of vulnerability as the scanner
must be able to reach the code to test it. For vulnerability detection, we focus on
stored XSS as it is known to be di�cult to detect and a category of vulnerabilities
poorly covered by existing scanners [3, 9]. Here the server stores and uses at a later
time untrusted inputs in server operations, without doing proper validation of the
inputs or sanitization of output.

A web application scanner tasked with the detection of subtle vulnerabilities like
stored XSS faces three major challenges. First, the scanner needs to model the var-
ious states forming a web application, the connections and dependencies between
states (Section B.2.1). Second, the identi�cation of these dependencies requires the
scanner to be able to traverse the complex work�ows in applications (Section B.2.2).
Finally, the scanner needs to track subtle dependencies between states of the web
application (Section B.2.3).

B.2.1 Navigation Modeling

Modern web applications are dynamic applications with an abundance of JavaScript
code, client-side events and server-side statefulness. Modeling the scanner’s inter-
action with both server-side and client-side code is complicated and challenging.
Network requests can change the state of the server while clicking a button can
result in changes to the DOM, which in turn generates new links or �elds. These

1Our implementation is available online on https://www.cse.chalmers.se/research/group/s
ecurity/black-widow/

58

https://www.cse.chalmers.se/research/group/security/black-widow/
https://www.cse.chalmers.se/research/group/security/black-widow/

B. Black Widow: Blackbox Data-driven Web Scanning

orthogonal problems must all be handled by the scanner to achieve high coverage
and improved detection rate of vulnerabilities. Consider the �ow in an example web
application in Figure B.1. The scanner must be able to model links, forms, events and
the interaction between them. Additionally, to enable work�ow traversal, it must
also model the path taken through the application. Finally, the model must support
inter-state dependencies as shown by the dashed line in the �gure.

The state-of-the-art consists of di�erent approaches to navigation modeling. En-
emy of the State uses a state machine and a directed graph to infer the server-side
state. However, the navigation model lacks information about client-side events. In
contrast, jÄk used a graph with lists inside nodes, to represent JavaScript events.
CrawlJAX moved the focus to model JavaScript network requests. While these two
model client-side, they miss other important navigation methods such as form sub-
missions.

A navigation model should allow the scanner to e�ciently and exhaustively scan
a web application. Without correct modeling, the scanner will miss important re-
sources or spend too much time revisiting the same or similar resources. To achieve
this, the model must cover a multitude of methods for interaction with the applica-
tion, including GET and POST requests, JavaScript events, HTML form and iframes.

In addition, the model should be able to accommodate dependencies. Client-
side navigations, such as clicking a button, might depend on previous events. For
example, the user might have to hover the menu before being able to click the button.
Similarly, installation wizards can require a set of forms to be submitted in sequence.

With a solution to the modeling challenge, the next challenge is how the scanner
should use this model, i.e. how should it traverse the model.

B.2.2 Traversing

To improve code coverage and vulnerability detection, the crawler component of
the scanner must be able to traverse the application. In particular, the challenge
of reproducing work�ows is crucial for both coverage and vulnerability detection.
The challenges of handling complex work�ows include deciding in which order ac-
tions should be performed and when to perform possibly state-changing actions,
e.g. submitting forms. Also, the work�ows must be modeled at a higher level than
network requests as simply replaying requests can result in incorrect parameter val-
ues, especially for context-dependent value such as a comment ID. In Figure B.1, we
can observe a work�ow requiring a combination of normal link navigation, form
submission and event interaction. Also, note that the forms can contain security
nonces to protect against CSRF attacks. A side e�ect of this is that the scanner can
not replay the request and just change the payload, but has to reload the page and
resubmit the form.

The current state-of-the-art focuses largely on navigation and exploration but
misses out on global work�ows. Both CrawlJAX and jÄk focused on exploring
client-side events. By exploring the events in a depth-�rst fashion, jÄk can �nd se-
quences of events that could be exploited. However, these sequences do not extend
across multiple pages, which will miss out on �ows. Enemy of the State takes the
opposite approach and ignores traversing client-side events and instead focuses on

59

Securing the Next Generation Web

traversing server-side states. To traverse, they use a combination of picking links
from the previous response and a heuristic method to traverse edges that are the
least likely to result in a state change, e.g. by avoiding form submission until nec-
essary. To change state they sometimes need to replay the request from the start.
Replaying requests may not be su�cient as a form used to post comments might
contain a submission ID or view-state information that changes for each request.
Due to the challenge of reproducing these �ows, their approach assumes the power
to reset the full application when needed, preventing the approach from being used
on live applications.

We note that no scanner handles combinations of events and classic page nav-
igations. Both jÄk and CrawlJAX traverse with a focus on client-side state while
Enemy of the State focus on links and forms for interaction. Simply combining the
two approaches of jÄk and Enemy of the State is not trivial as their approaches are
tailored to their goals. Enemy of the State uses links on pages to determine state
changes, which are not necessarily generated by events.

Keeping the scanner authenticated is also a challenge. Some scanners require
user-supplied patterns to detect authentication [28, 34, 36]. jÄk authenticates once
and then assumes the state is kept, while CrawlJAX ignores it altogether. Enemy of
the State can re-authenticate if they correctly detect the state change when logging
out. Once again it is hard to �nd consensus on how to handle authentication.

In addition to coverage, traversing is important for the fuzzing part of the scan-
ner. Simply exporting all requests to a standalone fuzzer is problematic as it results
in loss of context. As such, the scanner must place the application in an appropriate
state before fuzzing. Here some scanners take the rather extreme approach of try-
ing to reset the entire web application before fuzzing each parameter [8, 10, 11]. jÄk
creates a special attacker module that loads a URL and then executes the necessary
events. This shows that in order to fuzz the application in a correct setting, without
requiring a full restart of the application, the scanner must be able to traverse and
attack both server-side and client-side components.

Solving both modeling and traversing should enable the scanner to crawl the
application with improved coverage, allowing it to �nd more parameters to test. The
�nal challenge, particularly with respect to stored XSS, is mapping the dependencies
between di�erent states in the application.

B.2.3 Inter-state Dependencies

It is evident that agreeing on a model that �ts both client-side and server-side is
hard, yet important. In addition, neither of the previous approaches are capable of
modeling inter-state dependencies or general work�ows. While Enemy of the State
model states, they miss the complex work�ows and the inter-state dependencies.
The model jÄk uses can detect work�ows on pages but fails to scale for the full
application.

A key challenge faced by scanners is how to accurately and precisely model how
user inputs a�ect web applications. As an example, consider the web application
work�ow in Figure B.1 capturing an administrator registering a new user. In this
work�ow, the administrator starts from the index page (i.e., index.php) and navi-

60

B. Black Widow: Blackbox Data-driven Web Scanning

gates to the login page (i.e., login.php). Then, the administrator submits the pass-
word and lands on the administrator dashboard (i.e., admin.php). From the dash-
board, the administrator reaches the user management page (i.e., admin.php#users),
and submits the form to register a new user. Then, the web application stores the
new user data in the database, and, as a result of that, the data of the new user is
shown when visiting the page of existing users (i.e., view_users.php). Such a work-
�ow shows two intricate dependencies between two states of the web application:
First, an action of admin.php#users can cause a transition of view_users.php,
and second, the form data submitted to admin.php#users is re�ected in the new
state of admin.php#users.

To detect if the input �elds of the form data are vulnerable to, e.g., cross-site
scripting (XSS), a scanner needs to inject payloads in the form of admin.php#users
and then reach view_users.php to verify whether the injection was successful. Un-
fortunately, existing web scanners are not aware of these inter-state dependencies,
and after injecting payloads, they can hardly identify the page where and whether
the injection is re�ected.

index.php login.php admin.php admin.php#users

view_users.php

link log in

add user

click

username
link

1

5

2 3
4

Figure B.1: Example of a web application where anyone can see the list of users
and the admin can add new users. The dashed red line represents the
inter-state dependency. Green lines are HTML5 and orange symbolises
JavaScript. The dotted blue lines between edges would be added by our
scanner to track its path. The sequence numbers shown the necessary
order to �nd the inter-state dependency.

B.3 Approach

Motivated by the challenges in Section B.2, this section presents our approach to web
application scanning. The three key ingredients of our approach are edge-driven
navigation with path-augmentation, complex work�ow traversal, and �ne-grained
inter-state dependency tracking. We explain how we connect these three parts in
Figure C.11. In addition to the three main pillars, we also include a section about
the dynamic XSS detection used in Black Widow and motivate why false positives
are improbable.

Figure C.11 takes a single target URL as an input. We start by creating an empty
node, allowing us to create an initial edge between the empty node and the node

61

Securing the Next Generation Web

containing the input URL. The main loop picks an unvisited edge from the naviga-
tion graph and then traverses it, executing the necessary work�ows as shown in
Figure B.3. In Figure B.3, we use the fact that each edge knows the previous edge.
The isSafe function in Figure B.3 checks if the type of action, e.g. JavaScript event
or form submission, is safe. We consider a type to be safe if it is a GET request,
more about this in Section B.3.2. Once the safe edge is found we navigate the chain
of actions. Following this navigation, the scanner is ready to parse the page. First,
we inspect the page for inter-state dependency tokens and add the necessary depen-
dency edges, as shown in Figure B.4. Each tokenwill contain a taint value, explained
more in Section B.3.3, a source edge and a sink edge. If a source and sink are found,
our scanner will fuzz the source and check the sink. Afterward, we extract any new
possible navigation resources and add them to the graph. Next, we fuzz any possible
parameters in the edge and then inject a taint token. The order is important as we
want the token to overwrite any stored fuzzing value. Finally, the edge is marked as
visited and the loop repeats.

The goal of this combination is to improve both vulnerability detection and code
coverage. The three parts of the approach support each other to achieve this. A
strong model that handles di�erent navigation methods and supports augmentation
with path and dependency information will enable a richer interaction with the ap-
plication. Based on the model we can build a strong crawler component that can
handle complex work�ow which combines requests and client-side events. Finally,
by tracking inter-state dependencies we can improve detection of stored vulnerabil-
ities.

Data: Target url
Global: tokens // Used in Algorithm 3

Graph navigation; // Augmented navigation graph

navigation.addNode(empty);
navigation.addNode(url);
navigation.addEdge(empty, url);
while unvisited edge e in navigation do

traverse(e); // See Algorithm 2

inspectTokens(e, navigation); // See Algorithm 3

resources = extract({urls, forms, events, iframes});
for resource in resources do

navigation.addNode(resource)
navigation.addEdge(e.targetNode, resource)

end
attack(e);
injectTokens(e);
mark e as visited;

end

Figure B.2: Scanner algorithm

62

B. Black Widow: Blackbox Data-driven Web Scanning

Function traverse(e: edge)
workflow = []; // List of edges

currentEdge = e;
while prevEdge = currentEdge.previous do

workflow.prepend(currentEdge);
if isSafe(currentEdge.type) then

break;
end
currentEdge = prevEdge

end
navigate(workflow);

end

Figure B.3: Traversal algorithm

Function inspectTokens(e: edge, g: graph)
for token in tokens do

if pageSource(e) contains token.value then
token.sink = e;
g.dependency(token.source, token.sink);
attack(token.source, token.sink);

end

end

end
Function injectTokens(e: edge)

for parameter in e do
token.value = generateToken();
token.source = e;
tokens.append(token);
inject token in parameter;

end

end

Figure B.4: Inter-state dependency algorithms

B.3.1 Navigation Modeling

Our approach is model-based in the sense that it creates, maintains, and uses a model
of the web application to drive the exploration and detection of vulnerabilities. Our
model covers both server-side and client-side aspects of the application. The model
tracks server-side inter-state dependencies and work�ows. In addition, it directly
captures elements of the client-side program of the web application, i.e., HTML and
the state of the JavaScript program.

63

Securing the Next Generation Web

Model Construction Our model is created and updated at run-time while scan-
ning the web application. Starting from an initial URL, our scanner retrieves the
�rst webpage and the referenced resources. While executing the loaded JavaScript,
it extracts the registered JavaScript events and adds them to our model. Firing an
event may result in changing the internal state of the JavaScript program, or re-
trieving a new page. Our model captures all these aspects and it keeps track of the
sequence of �red events when revisiting the web application, e.g., for the detection
of vulnerabilities.

Accordingly, we represent web applications with a labeled directed graph, where
each node is a state of the client-side program and edges are the action (e.g., click)
to move from one state to another one. The state of our model contains both the
state of the page, i.e., the URL of the page, and the state of the JavaScript program,
i.e., the JavaScript event that triggered the execution. Then, we use labeled edges for
state transitions. Our model supports four types of actions, i.e., GET requests, form
submission, iframes and JavaScript events. While form submissions normally result
in GET or POST requests, we need a higher-level model for the traversing method
explained in Section B.3.2. We consider iframes as actions because we need to model
the inter-document communication between the iframe and the parent, e.g �ring an
event in the parent might a�ect the iframe. By simply considering the iframe source
as a separate URL, scanners will miss this interaction. Finally, we annotate each
edge with the previous edge visited when crawling the web application, as shown
in Figure B.1. Such an annotation will allow the crawler to reconstruct the paths
within the web application, useful information for achieving deeper crawling and
when visiting the web application for testing.

Extraction of Actions The correct creation of the model requires the ability to
extract the set of possible actions from a web page. Our approach uses dynamic
analysis approach, where we load a page and execute it in a modi�ed browser en-
vironment, and then we observe the execution of the page, monitoring for calls to
browser APIs to register JavaScript events and modi�cation of the DOM tree to in-
sert tags such as forms and anchors.
Event Registration Hooking Before loading a page we inject JavaScript which allows
us to wrap functions such as addEventListener and detect DOM objects with event
handlers. We accomplish this by leveraging the JavaScript libraries developed for the
jÄk scanner [30]. While lightweight and easy to use, in-browser instrumentation is
relatively fragile. A more robust approach could be directly modifying the JavaScript
engine or source-to-source compile the code for better analysis.
DOM Modi�cation To detect updates to the page we rescan the page whenever we
execute an event. This allows us to detect dynamically added items.

Infinite Crawls When visiting a webpage, crawlers can enter in an in�nite loop
where they can perform the same operation endlessly. Consider the problem of
crawling an online calendar. When a crawler clicks on theView next week button, the
new page may have a di�erent URL and content. The new page will container again
the button View next week, triggering an in�nite loop. An e�ective strategy to avoid
in�nite crawls is to de�ne (i) a set of heuristics that determine when two pages or

64

B. Black Widow: Blackbox Data-driven Web Scanning

two actions are similar, and (ii) a hard limit to the maximum number of “similar” ac-
tions performed by the crawler. In our approach, we de�ne two pages to be similar if
they share the same URL except for the query string and the fragments. For example,
https://example.domain/path/?x=1 and https://example.domain/path/?x=2
are similar whereas https://example.domain/?x=1 is di�erent from this URL
with another path https://example.domain/path/?x=2. The hard limit is a con-
�guration parameter of our approach.

B.3.2 Traversal

To traverse the navigation model we pick unvisited edges from the graph in the
order they were added, akin to breadth-�rst search. This allows the scanner to gain
an overview of the application before diving into speci�c components. The edges
are weighted with a positive bias towards form submission, which enables this type
of deep-dive when forms are detected.

To handle the challenge of session management, we pay extra attention to forms
containing password �elds, as this symbolizes an opportunity to authenticate. Not
only does this enable the scanner to re-authenticate but it also helps when the ap-
plication generates a login form due to incorrect session tokens. Another bene�t is
a more robust approach to complicated login �ows, such as double login to reach
the administrator page—we observed such work�ow in phpBB, one of the web ap-
plications that we evaluated.

The main challenge to overcome is that areas of a web application might require
the user to complete a speci�c sequence of actions. This could, for example, be to
review a comment after submitting it or submit a sequence of forms in a con�gu-
ration wizard. It is also common for client-side code to require chaining, e.g. hover
a menu before seeing all the links or click a button to dynamically generate a new
form.

We devise a mechanism to handle navigation dependencies by modeling the
work�ows in the application. Whenever we need to follow an edge in the navi-
gation graph, we �rst check if the previous edge is considered safe. Here we de�ne
safe to be an edge which represents a GET request, similar to the HTTP RFC [14].
If the edge is safe, we execute it immediately. Otherwise, we recursively inspect the
previous edge until a safe edge is found, as shown in Figure B.3. Note that the �rst
edge added to the navigation graph is always a GET request, which ensures a base
case. Once the safe edge is found, we execute the full work�ow of edges leading up
to the desired edge. Although the RFC de�nes GET requests to be idempotent, de-
velopers can still implement state-changing functions on GET requests. Therefore,
considering GET requests as safe is a performance trade-o�. This could be deacti-
vated by a parameter in Black Widow, causing the scanner to traverse back to the
beginning.

Using Figure B.1 as an example if the crawler needed to submit a form on the page
admin.php#users then it would �rst have to load login.php and then submit that
form, followed by executing a JavaScript event to dynamically add the user form.

We chose to only chain actions to the previous GET request, as they are deemed
safe. Chaining from the start is possible, but it would be slow in practice.

65

Securing the Next Generation Web

B.3.3 Inter-state Dependencies

One of the innovative aspects of our approach is to identify and map the ways user
inputs are connected to the states of a web application. We achieve that by using
a dynamic, end-to-end taint tracking while visiting the web application. Whenever
our scanner identi�es an input �eld, i.e., a source, it will submit a unique token. After
that, the scanner will look for the token when visiting other webpages, i.e., sinks.

Tokens To map source and sinks, we use string tokens. We designed tokens to
avoid triggering �ltering functions or data validation checks. At the same time, we
need tokens with a su�ciently high entropy to not be mistaken for other strings
in the application. Accordingly, we generate tokens as pseudo-random strings of
eight lowercase characters e.g. frcvwwzm. This is what generateToken() does
in Figure B.4. This could potentially be improved by making the tokens context-
sensitive, e.g. by generating numeric tokens or emails. However, if the input is
validated to only accept numbers, for example, then XSS is not possible.

Sources and Sinks The point in the application where the token is injected de�nes
the source. More speci�cally, the source is de�ned as a tuple containing the edge in
the navigation graph and the exact parameter where the token was injected. The
resource in the web application where the token reappears de�nes the sink. All the
sinks matching a certain source will be added to a set which in turn is connected to
the source. Similar to the sources, each sink is technically an edge since they carry
more context than a resource node. Since each source can be connected to multiple
sinks, the scanner needs to check each sink for vulnerabilities whenever a payload
is injected into a source.

In our example in Figure B.1, we have one source and one connected sink. The
source is the username parameter in the form on the management page and the
sink is the view users page. If more parameters, e.g. email or signature, were also
re�ected then these would create new dependency edges in the graph.

B.3.4 Dynamic XSS detection

After a payload has been sent, the scanner must be able to detect if the payload
code is executed. Black Widow uses a �ne-grained dynamic detection mechanism,
making false positives very improbable. We achieve this by injecting our JavaScript
function xss(ID) on every page. This function adds ID to an array that our scanner
can read. Every payload generated by Black Widow will try to call this function
with a random ID, e.g. <script>xss(71942203)</script> Finally, by inspecting
the array we can detect exactly which payloads resulted in code execution.

For this to result in a false positive, the web application would have to actively
listen for a payload, extract the ID, and then run our injected xss(ID) function with
a correct ID.

66

B. Black Widow: Blackbox Data-driven Web Scanning

B.4 Evaluation

In this section, we present the evaluation of our approach and the results from our
experiments. In the next section, we perform an in-depth analysis of the factors
behind the results.

To evaluate the e�ectiveness of our approach we implement it in our scanner
Black Widow and compare it with 7 other scanners on a set of 10 di�erent web
applications. We want to compare both the crawling capabilities and vulnerabil-
ity detection capabilities of the scanners. We present the implementation details in
Section B.4.1. The details of the experimental setup are presented in Section B.4.2.
To measure the crawling capabilities of the scanners we record the code coverage
on each of application. The code coverage results are presented in Section B.4.3.
For the vulnerability detection capabilities, we collect the reports from each scan-
ner. We present both the reported vulnerabilities and the manually veri�ed ones in
Section B.4.4.

Table B.1: Lines of code (LoC) executed on the server. Each column represents the
comparison between Black Widow and another crawler. The cells con-
tain three numbers: unique LoC covered by Black Widow (A \ B), LoC
covered by both crawlers (A∩B) and unique LoC covered by the other
crawler (B \A). The numbers in bold highlight which crawler has the
best coverage.

Crawler Arachni Enemy jÄk Skip�sh w3af Wget ZAP
A \B A∩B B \A A \B A∩B B \A A \B A∩B B \A A \B A∩B B \A A \B A∩B B \A A \B A∩B B \A A \B A∩B B \A

Drupal 35 146 22 870 757 6 365 51 651 20 519 25 198 32 818 5 846 29 873 28 143 937 32 213 25 803 725 32 981 25 035 498 15 610 42 406 2 591
HotCRP 2 416 16 076 948 16 573 1 919 0 6 771 11 721 271 11 295 7 197 31 3 217 15 275 768 16 345 2 147 3 16 001 2 491 24
Joomla 14 573 29 263 1 390 33 335 10 501 621 24 728 19 108 1 079 33 254 10 582 328 12 533 31 303 1 255 33 975 9 861 576 7 655 36 181 1 659
osCommerce 3 919 6 722 172 9 626 1 015 15 4 171 6 470 507 4 964 5 677 110 5 601 5 040 661 6 070 4 571 103 6 722 3 919 209
phpBB 2 822 5 178 492 2 963 5 037 337 3 150 4 850 348 4 643 3 357 72 4 312 3 688 79 4 431 3 569 21 4 247 3 753 65
PrestaShop 105 974 75 924 65 650 157 095 24 803 3 332 155 579 26 319 58 138 732 43 166 1 018 156 513 25 385 3 053 148 868 33 030 118 141 032 40 866 110
SCARF 189 433 12 270 352 5 342 280 2 464 158 5 404 218 6 520 102 2 340 282 2
Vanilla 5 381 9 908 491 6 032 9 257 185 3 122 12 167 536 8 285 7 004 577 8 202 7 087 171 8 976 6 313 18 8 396 6 893 145
WackoPicko 202 566 2 58 710 9 463 305 0 274 494 14 111 657 9 495 273 0 379 389 2
WordPress 8 871 45 345 1 615 35 092 19 124 256 18 572 35 644 579 7 307 46 909 5 114 26 785 27 431 640 37 073 17 143 73 25 732 28 484 781

B.4.1 Implementation

Our prototype implementation follows the approach presented above in Section C.2.
It exercises full dynamic execution capabilities to handle such dynamic features of
modern applications like AJAX and dynamic code execution, e.g. eval. To achieve
this we use Python and Selenium to control a mainstream web browser (Chrome).
This gives us access to a state-of-the-art JavaScript engine. In addition, by using a
mainstream browser we can be more certain that the web application is rendered as
intended.

We leverage the JavaScript libraries developed for the jÄk scanner [30]. These
libraries are executed before loading the page. This allows us to wrap functions such
as addEventListener and detect DOM objects with event handlers.

67

Securing the Next Generation Web

B.4.2 Experimental Setup

In this section, we present the con�guration and methodology of our experiments.

Code Coverage To evaluate the coverage of the scanners we chose to compare the
lines of code that were executed on the server during the session. This is di�erent
from previous studies [8, 30], which relied on requested URLs to determine coverage.
While comparing URLs is easier, as it does not require the web server to run in
debug mode, deriving coverage from it becomes harder. URLs can contain random
parameter data, like CSRF tokens, that are updated throughout the scan. In this
case, the parameter data has a low impact on the true coverage. Conversely, the
di�erence in coverage between main.php?page=news and main.php?page=login
can be large. By focusing on the execution of lines of code we get a more precise
understanding of the coverage.

Calculating the total number of lines of code accurately in an application is a
di�cult task. This is especially the case in languages like PHP where code can be
dynamically generated server-side. Even if possible, it would not give a good mea-
sure for comparison as much of the code could be unreachable. This is typically the
case for applications that have installation code, which is not used after completing
it.

Instead of analyzing the fraction of code executed in the web application, we
compare the number of lines of code executed by the scanners. This gives a relative
measure of performance between the scanners. It also allows us to determine exactly
which lines are found by multiple scanners and which lines are uniquely executed.

To evaluate the code coverage we used the Xdebug [33] module in PHP. This
module returns detailed data on the lines of code that are executed in the application.
Each request to the application results in a separate list of lines of code executed for
the speci�c request.

Vulnerabilities In addition to code coverage, we also evaluate how good the scan-
ners are at �nding vulnerabilities. This includes how many vulnerabilities they can
�nd and how many false positives they generate. While there are many vulnerability
types, our study focuses on both re�ected and stored XSS.

To evaluate the vulnerability detection capabilities of the scanners, we collect
and process all the vulnerabilities they report. First, we manually analyze if the
vulnerabilities can be reproduced or if they should be considered false positives.
Second, we cluster similar vulnerability reports into a set of unique vulnerabilities to
make a fair comparison between the di�erent reporting mechanisms in the scanners.
We do this because some applications, e.g. SCARF, can generate an in�nite number
of vulnerabilities by dynamically adding new input �elds. These should be clustered
together. Classifying the uniqueness of vulnerabilities is no easy task. What we aim
to achieve is a clustering in which each injection corresponds to a unique line of
code on the server. That is, if a form has multiple �elds that are all stored using the
same SQL query then all these should count as one injection. The rationale is that
it would only require the developer to change one line in the server code. Similarly,
for re�ected injections, we cluster parameters of the same request together. We

68

B. Black Widow: Blackbox Data-driven Web Scanning

manually inspect the web application source code for each reported true-positive
vulnerability to determine if they should be clustered.

Scanners We compare our scanner Black Widow with both Wget [27] for code
coverage reference and 6 state-of-the-art open-source web vulnerability scanners
from both academia and the web security community: Arachni [36], Enemy of the
State [8], jÄk [30], Skip�sh [42], w3af [34] and ZAP [28]. We use Enemy of the State
and jÄk as they are state-of-the-art academic blackbox scanners. Skip�sh, Wget and
w3af are included as they serve as good benchmarks when comparing with previ-
ous studies [8, 30]. Arachni and ZAP are both modern open-source scanners that
have been used in more recent studies [19]. Including a pure crawler with JavaScript
capabilities, such as CrawlJAX [26], could serve as a good coverage reference. How-
ever, in this paper we focus on coverage compared to other vulnerability scanners.
We still include Wget for comparison with previous studies. While it would be inter-
esting to compare our results with commercial scanners, e.g. Burp Scanner [32], the
closed source nature of these tools would make any type of feature attribute hard.

We con�gure the scanners with the correct credentials for the web application.
When this is not possible we change the default credentials of the application to
match the scanner’s default values. Since the scanners have di�erent capabilities,
we try to con�gure them with as similar con�gurations as possible. This entails
activating crawling components, both static and dynamic, and all detection of all
types of XSS vulnerabilities.

Comparing the time performance between scanners is non-trivial to do fairly as
they are written in di�erent languages and some are sequential while others run in
parallel. Also, we need to run some older ones in VMs for compatibility reasons. To
avoid in�nite scans, we limit each scanner to run for a maximum of eight hours.

69

Securing the Next Generation Web

os
Co

m
m

er
ce

E
n
e
m
y

H
ot

CR
P

E
n
e
m
y

H
ot

CR
P

W
g
e
t

H
ot

CR
P

Z
A
P

Pr
es

ta
Sh

op
j
Ä
k

SC
A

RF
W
g
e
t

Pr
es

ta
Sh

op
E
n
e
m
y

Pr
es

ta
Sh

op
w
3
a
f

Pr
es

ta
Sh

op
W
g
e
t

Pr
es

ta
Sh

op
Z
A
P

Pr
es

ta
Sh

op
S
k
i
p
f
i
s
h

Jo
om

la
W
g
e
t

Jo
om

la
S
k
i
p
f
i
s
h

Jo
om

la
E
n
e
m
y

SC
A

RF
S
k
i
p
f
i
s
h

W
or

dP
re

ss
W
g
e
t

W
ac

ko
Pi

ck
o

W
g
e
t

W
or

dP
re

ss
E
n
e
m
y

SC
A

RF
w
3
a
f

H
ot

CR
P

S
k
i
p
f
i
s
h

W
ac

ko
Pi

ck
o

j
Ä
k

os
Co

m
m

er
ce

Z
A
P

Va
ni

lla
W
g
e
t

D
ru

pa
l

A
r
a
c
h
n
i

ph
pB

B
S
k
i
p
f
i
s
h

os
Co

m
m

er
ce

W
g
e
t

D
ru

pa
l

W
g
e
t

ph
pB

B
W
g
e
t

SC
A

RF
j
Ä
k

SC
A

RF
Z
A
P

D
ru

pa
l

w
3
a
f

Va
ni

lla
Z
A
P

Jo
om

la
j
Ä
k

ph
pB

B
w
3
a
f

Va
ni

lla
w
3
a
f

ph
pB

B
Z
A
P

D
ru

pa
l

S
k
i
p
f
i
s
h

W
ac

ko
Pi

ck
o

Z
A
P

Va
ni

lla
S
k
i
p
f
i
s
h

W
or

dP
re

ss
w
3
a
f

W
or

dP
re

ss
Z
A
P

os
Co

m
m

er
ce

S
k
i
p
f
i
s
h

os
Co

m
m

er
ce

w
3
a
f

SC
A

RF
E
n
e
m
y

Va
ni

lla
E
n
e
m
y

os
Co

m
m

er
ce

A
r
a
c
h
n
i

H
ot

CR
P

j
Ä
k

ph
pB

B
j
Ä
k

W
ac

ko
Pi

ck
o

S
k
i
p
f
i
s
h

os
Co

m
m

er
ce

j
Ä
k

W
or

dP
re

ss
j
Ä
k

ph
pB

B
E
n
e
m
y

Va
ni

lla
A
r
a
c
h
n
i

D
ru

pa
l

j
Ä
k

Jo
om

la
A
r
a
c
h
n
i

SC
A

RF
A
r
a
c
h
n
i

ph
pB

B
A
r
a
c
h
n
i

W
ac

ko
Pi

ck
o

A
r
a
c
h
n
i

Jo
om

la
w
3
a
f

D
ru

pa
l

Z
A
P

Va
ni

lla
j
Ä
k

Pr
es

ta
Sh

op
A
r
a
c
h
n
i

Jo
om

la
Z
A
P

W
ac

ko
Pi

ck
o

w
3
a
f

W
or

dP
re

ss
A
r
a
c
h
n
i

H
ot

CR
P

w
3
a
f

H
ot

CR
P

A
r
a
c
h
n
i

W
ac

ko
Pi

ck
o

E
n
e
m
y

W
or

dP
re

ss
S
k
i
p
f
i
s
h

D
ru

pa
l

E
n
e
m
y

0%

20%

40%

60%

80%

100%

Our Scanner

Common

Other scanner

Figure B.5: Each bar compares our scanner to one other scanner on a web appli-
cation. The bars show three fractions: unique lines we �nd, lines both
�nd and lines uniquely found by the other scanner.

Web Applications To ensure that the scanners can handle di�erent types of web
applications we test them on 10 di�erent applications. The applications range from
reference applications that have been used in previous studies to newer production-
grade applications. Each application runs in a VM that we can reset between runs
to improve consistency.

We divide the applications into two di�erent sets. Reference applications with
known vulnerabilities: phpBB (2.0.23), SCARF (2007), Vanilla (2.0.17.10) and Wack-
oPicko (2018); and modern production-grade applications: Drupal (8.6.15), HotCRP
(2.102), Joomla (3.9.6), osCommerce (2.3.4.1), PrestaShop (1.7.5.1) and WordPress
(5.1).

B.4.3 Code Coverage Results

This section presents the code coverage in each web application by all of the crawlers.
Table B.1 shows the number of unique lines of code that were executed on the server.
Black Widow has the highest coverage on 9 out of the 10 web applications.

Using Wget as a baseline Table B.1 illustrates that Black Widow increases the
coverage by almost 500% in SCARF. Similarly with modern production software,
like PrestaShop, we can see an increase of 256% in coverage compared to Wget.
Even when comparing to state-of-the-art crawlers like jÄk and Enemy of the State
we have more than 100% increase on SCARF and 320% on modern applications like
PrestaShop. There is, however, a case where Enemy of the State has the highest
coverage on Drupal. This case is discussed in more detail in Section B.5.1.

70

B. Black Widow: Blackbox Data-driven Web Scanning

Table B.2: Unique lines our scanner �nds (A\U) compared to the union of all other
scanners (U).

Application Our scanner Other scanners Improvement
A \U U |A \U |/ |U |

Drupal 4 378 80 213 +5.5%
HotCRP 1 597 18 326 +8.7%
Joomla 5 134 42 443 +12.1%
osCommerce 2 624 9 216 +28.5%
phpBB 2 743 5 877 +46.7%
PrestaShop 95 139 153 452 +62.0%
SCARF 176 464 +37.9%
Vanilla 2 626 14 234 +18.4%
WackoPicko 50 742 +6.7%
WordPress 3 591 58 131 +6.2%

While it would be bene�cial to know how far we are from perfect coverage,
we avoid calculating a ground truth on the total number of lines of code for the
applications as it is di�cult to do in a meaningful way. Simply aggregating the
number of lines in the source code will misrepresent dynamic code, e.g. eval, and
count dead code, e.g. installation code.

We also compare Black Widow to the combined e�orts of the other scanners to
better understand how we improve the state-of-the-art. Table B.2 has three columns
containing the number of lines of code that Black Widow �nds which none of the
others �nd, the combined coverage of the others and �nally our improvement in
coverage. In large applications, like PrestaShop, Black Widow was able to �nd 53 266
lines of code that none of the others found. For smaller applications, like phpBB, we
see an improvement of up to 46.7% compared to the current state-of-the-art.

To get a better understanding of which parts of the application the scanners are
exploring, we further compare the overlap in the lines of code between the scanners.
In Table B.3 we present the number of unique lines of code Black Widow �nd com-
pared to another crawler. The improvement is calculated as the number of unique
lines we �nd divided by the total number of lines the other crawlers �nd.

We plot the comparison for all scanners on all platforms in Figure B.5. In this
�gure, each bar represents the fraction of lines of code attributed to each crawler.
At the bottom is the fraction found only by the other crawlers, in the middle the
lines found by both and on top are the results found by Black Widow. The bars
are sorted by the di�erence of unique lines found by Black Widow and the other
crawlers. Black Widow �nds the highest number of unique lines of code in all cases
except the rightmost, in which Enemy of the State performed better on Drupal. The
exact number can be found in Table B.1.

71

Securing the Next Generation Web

Table B.3: Comparison of unique lines of code found by our scanner (A\B) and the
other scanners (B \A). Improvement is new lines found by our scanner
divided by the other’s total.

Crawler Our scanner Other scanners Other’s total Improvement
A \B B \A B |A \B|/ |B|

Arachni 179 477 71 489 283 664 +63.3%
Enemy 267 372 25 268 149 548 +178.8%
jÄk 242 066 9 216 158 802 +152.4%
Skip�sh 239 064 8 206 160 794 +148.7%
w3af 249 881 7 328 149 099 +167.6%
Wget 289 698 1 405 103 359 +280.3%
ZAP 226 088 5 560 171 124 +132.1%

Table B.4: Number of reported XSS injections by the scanners and the classi�cation
of the injection as either re�ected or stored.

Crawler Arachni Enemy jÄk Skip�sh w3af Widow ZAP
Type R S R S R S R S R S R S R S
Drupal - - - - - - - - - - - - - -
HotCRP - - - - - - - - - - 1 - - -
Joomla - - 8 - - - - - - - - - - -
osCommerce - - - - - - - - - - 1 1 9 -
phpBB - - - - - - - - - - - 32 - -
PrestaShop - - - - - - - - - - 2 - - -
SCARF 31 - - - - - - - 1 - 3 5 - -
Vanilla 2 - - - - - - - - - 1 2 - -
WackoPicko 3 1 2 1 13 - 1 1 1 - 3 2 - -
WordPress - - - - - - - - - - 1 1 - -

Table B.5: Number of unique and correct XSS injections by the scanners and the
classi�cation of the injection as either re�ected or stored.

Crawler Arachni Enemy jÄk Skip�sh w3af Widow ZAP
Type R S R S R S R S R S R S R S
Drupal - - - - - - - - - - - - - -
HotCRP - - - - - - - - - - 1 - - -
Joomla - - - - - - - - - - - - - -
osCommerce - - - - - - - - - - 1 1 - -
phpBB - - - - - - - - - - - 3 - -
PrestaShop - - - - - - - - - - 1 - - -
SCARF 3 - - - - - - - 1 - 3 5 - -
Vanilla - - - - - - - - - - 1 2 - -
WackoPicko 3 1 2 1 1 - 1 - 1 - 3 2 - -
WordPress - - - - - - - - - - 1 1 - -

72

B. Black Widow: Blackbox Data-driven Web Scanning

B.4.4 Code Injection Results

This section presents the results from the vulnerabilities the di�erent scanners �nd.
To be consistent with the terminology used in previous works [8, 30], we de�ne
an XSS vulnerability to be any injected JavaScript code that results in execution.
While accepting JavaScript from users is risky in general, some applications, like
Wordpress, have features which require executing user supplied JavaScript. In Sec-
tion B.5.7 we discuss the impact and exploitability of the vulnerabilities our scanner
�nds.

In Table B.4 we list all the XSS vulnerabilities found by the scanners on all the
applications. The table contains the number of self-reported vulnerabilities. After
removing the false positives and clustering similar injections, as explained in Sec-
tion B.4.2, we get the new results in Table B.5. The results from Table B.5 show
that Black Widow outperforms the other scanners on both the reference applica-
tions and the modern applications. In total, Black Widow �nds 25 unique vulner-
abilities, which is more than 3 times as many as the second-best scanner. Of these
25, 6 are previously unknown vulnerabilities in modern applications. We consider
the remaining 19 vulnerabilities to be known for the following reasons. First, all
WackoPicko vulnerabilities are implanted by the authors and they are all known by
design. Second, SCARF has been researched thoroughly and vulnerabilities may be
already known. We conservatively assumed the eight vulnerabilities to be known.
Third, the vulnerabilities on phpBB and Vanilla were �xed in their newest versions.

It is important to note we did not miss any vulnerability that the others found.
However, there were cases where both Black Widow and other scanners found the
same vulnerability but by injecting di�erent parameters. We explore these cases
more in Section B.5.6. Furthermore, Black Widow is the only scanner that �nds
vulnerabilities in the modern web applications.

B.4.5 Takeaways

We have shown that our scanner can outperform the other scanners in terms of both
code coverage and vulnerability detection. Figure B.5 and Table B.1 show that we
outperform the other scanners in 69 out of 70 cases. Additionally, Table B.2 and
Table B.3 show we improve code coverage by between 63% and 280% compared to
the other scanners and by between 6% and 62%, compared to the sum of all other
scanners. We also improve vulnerability detection, as can be seen in Table B.4 and
Table B.5. Not only do we match the other scanners but we also �nd new vulnera-
bilities in production applications.

In the next section, we will analyze these results closer and conclude which fea-
tures allowed us to improve coverage and vulnerability detection. We also discuss
what other scanners did better than us.

B.5 Analysis of Results

The results from the previous section show that the code coverage of our scanner
outperforms the other ones. Furthermore, we �nd more code injections and in par-

73

Securing the Next Generation Web

ticular more stored XSS. In this section, we analyze the factors which led to our
advantage. We also analyze where and why the other scanners performed worse.

Since we have access to the executed lines of code we can closely analyze the
path of the scanner through the application. We utilize this to analyze when the
scanners miss injectable parameters, what values they submit, when they fail to
access parts of the application and how they handle sessions.

We start by presenting interesting cases from the code coverage evaluation in
Section B.5.1, followed by an analysis of the reported vulnerabilities from all scan-
ners in Section B.5.2. In Section B.5.3, we discuss the injections our scanner �nds and
compare it with what the others �nd. In Section B.5.4, we perform two case stud-
ies of vulnerabilities that only our scanner �nds and which requires both work�ow
traversal and dependency analysis. Finally, in Section B.5.5, we extract the crucial
features for �nding injections based on all vulnerabilities that were found.

B.5.1 Coverage Analysis

As presented in Section B.4.3, Black Widow improved code coverage, compared to
the aggregated result of all the other scanners, ranged from 5.5% on Drupal to 62%
on PrestaShop. Comparing the code coverage to each scanner, Black Widow’s im-
provement ranged from 63.3% against Arachni to 280% against Wget. In this section,
we analyze the factors pertaining to code coverage by inspecting the performance of
the di�erent scanners. To better understand our performance we divide the analysis
into two categories. We look at both cases where we have low coverage compared
to the other scanners and cases where we have high relative coverage.

Low coverage As shown in Figure B.5, Enemy of the State is the only scanner that
outperforms Black Widow and this is speci�cally on Drupal. Enemy of the State high
coverage on Drupal is because it keeps the authenticated session state by avoiding
logging out. The reason Black Widow lost the state too early was two-fold. First,
we use a heuristic algorithm, as explained in Section B.3.2 to select the next edge
and unfortunately the logout edge was picked early. Second, due to the structure of
Drupal, our scanner did not manage to re-authenticate. In particular, this is because,
in contrast to many other applications, Drupal does not present the user with a login
form when they try to perform an unauthorized operation. To isolate the reason for
the lower code coverage, we temporarily blacklist the Drupal logout function in our
scanner. This resulted in our scanner producing similar coverage to Enemy of the
State, ensuring the factor behind the discrepancy is session handling.

Skip�sh performs very well on WordPress, which seems surprising since it is
a modern application that makes heavy use of JavaScript. However, WordPress de-
grades gracefully without JavaScript, allowing scanners to �nd multiple pages with-
out using JavaScript. Focusing on static pages can generate a large coverage but, as
is evident from the detected vulnerabilities, does not imply high vulnerability detec-
tion.

High coverage Enemy of the State also performs worse against Black Widow on
osCommerce and HotCRP. This is because Enemy of the State is seemingly entering
an in�nite loop, using 100% CPU without generating any requests. This could be due

74

B. Black Widow: Blackbox Data-driven Web Scanning

to an implementation error or because the state inference becomes too complicated
in these applications.

Although Black Widow performs well against Wget, Wget still �nds some unique
lines, which can seem surprising as it has previously been used as a reference tool [8,
30]. Based on the traces and source code, we see that most of the unique lines of
code Wget �nds are due to state di�erences, e.g. visiting the same page Black Widow
�nds but while being unauthenticated.

B.5.2 False positives and Clustering

To better understand the reason behind the false positives, and be transparent about
our clustering, we analyze the vulnerabilities reported in Table B.4. For each scanner
with false positives, we re�ect on the reasons behind the incorrect classi�cation and
what improvements are required. We do not include w3af in the list as it did not
produce any false positives or required any clustering.

a) Arachni reports two re�ected XSS vulnerabilities in Vanilla. The injection
point was a Cloud�are cookie used on the online support forum for the Vanilla web
application. The cookie is never used in the application and we were unable to re-
produce the injection. In addition, Arachni �nds 31 XSS injections on SCARF. Many
of these are incorrect because Arachni reuses payloads. For example, by injecting
into the title of the page, all successive injection will be label as vulnerable.

b) Enemy of the State claims the discovery of 8 re�ected XSS vulnerabilities
on Joomla. However, after manual analysis, none of these result in code execution.
The problem is that Enemy of the State interprets the re�ected payload as an exe-
cuted payload. It injects, eval(print "[random]"), into a search �eld and then
detects that "[random]" is re�ected. It incorrectly assumes this is because eval
and print were executed. For this reason, we consider Enemy of the State to �nd 0
vulnerabilities on Joomla.

c) jÄk reports 13 vulnerabilities on WackoPicko. These 13 reports were dif-
ferent payloads used to attack the search parameter. After applying our clustering
method, we consider jÄk to �nd one unique vulnerability.

d) Black Widow �nds 32 stored vulnerabilities on phpBB. Most of these pa-
rameters are from the con�guration panel and are all used in the same database
query. Therefore, only 3 can be considered unique. Two parameters on PrestaShop
are used in the same request, thus only one is considered unique. Black Widow did
not produce any false positives thanks to our dynamic detection method explained
in Section B.3.4

e) Skip�sh claims the detection of a stored XSS in WackoPicko in the image
data parameter when uploading an image. However, the injected JavaScript could
not be executed. Interesting to note is that Skip�sh was able to inject JavaScript into
the guestbook but was not able to detect it.

f) ZAP claims to �nd 9 re�ected XSS injection on osCommerce. They are all
variations of injecting javascript:alert(1) into the parameter of a link. Since
it was just part of a parameter and not a full URL, the JavaScript code will never
execute. Thus, all 9 injections were false positives.

75

Securing the Next Generation Web

B.5.3 What We Find

In this section, we present the XSS injections our scanner �nds in the di�erent ap-
plications. We also extract the important features which made it possible to �nd
them.

HotCRP: Reflected XSS in bulk user upload The admin can upload a �le with
users to add them in bulk. The name of the �le is then re�ected on the upload page.
To �nd this, the scanner must be able to follow a complex work�ow that makes
heavy use of JavaScript, as well as handle �le parameters. It is worth noting that the
�lename is escaped on other pages in HotCRP but missed in this case.

osCommerce; Stored and reflected XSS Admins can change the tax classes in
osCommerce and two parameters are not correctly �ltered, resulting in stored XSS
vulnerabilities. The main challenge to �nd this vulnerability was to �nd the injection
point as this required us to interact with a navigation bar that made heavy use of
JavaScript.

We also found three vulnerable parameters on the review page. These parame-
ters were part of a form and their types were radio and hidden. This highlights that
we still inject all parameters, even if they are not intended to be changed.

phpBB; Multiple Stored XSS in admin backend Admins can change multiple
di�erent application settings on the con�guration page, such as �ooding interval for
posts and max avatar �le size. On a separate page, they can also change the rank
of the admin to a custom title. In total, this results in 32 vulnerable parameters that
can be clustered to 3 unique ones. These require inter-state dependency analysis
to solve. Once a setting is changed, the admin is met with a “Successful update”
message, which does not re�ect the injection. Thus, the dependency must be found
to allow for successful fuzzing.

PrestaShop; Reflected XSS in admin dashboard The admin dashboard allows
the admin to specify a date range for showing statistics. Two parameters in this
form are not correctly �ltered and result in a re�ected XSS. Finding these requires
a combination of modeling JavaScript events and handling work�ows. To �nd this
form the scanner must �rst click on a button on the dashboard.

SCARF; Stored XSS in comments There are many vulnerabilities in SCARF, most
are quite easy to �nd. Instead of mentioning all, we focus on one that requires com-
plex work�ows, inter-state dependencies and was only found by us. The message
�eld in the comment section of conference papers is vulnerable. What makes it hard
to �nd is the traversing and needed before posting the comment and the inter-state
dependency analysis needed to �nd the re�ection. The scanner must �rst create a
user, then create a conference, after which it can upload a paper that can be com-
mented on.

Vanilla; Stored and reflected XSS The language tag for the RSS feed is vulner-
able and only re�ected in the feed. Note that the feed is served as HTML, allowing
JavaScript to execute. There is also a stored vulnerability in the comment section
which can be executed by saving a comment as a draft and then viewing it. Both of

76

B. Black Widow: Blackbox Data-driven Web Scanning

these require inter-state dependency analysis to �nd the connecting between lan-
guage settings and RSS feeds, as well as posting comments and viewing drafts.

Black Widow also found a re�ected XSS title parameter in the con�guration
panel that was vulnerable. Finding this mainly required and modeling JavaScript
and forms.

WackoPicko; Multi-step stored XSS We found all the known XSS vulnerabili-
ties [7], except the one requiring �ash as we consider it out-of-scope. We also found
a non-listed XSS vulnerability in the re�ection of a SQL error. Most notably we were
able to detect the multi-step XSS vulnerability that no other scanner could. This was
thanks to both inter-state dependency tracking and handling work�ows. We discuss
this in more detail in the case study in Section B.5.4.1.

WordPress; Stored and reflected XSS The admin can search for nearby events
using the admin dashboard. The problem is that the search query is re�ected, through
AJAX, for the text-to-speech functionality. Finding this requires modeling of both
JavaScript events, network requests and forms.

Our scanner also found that by posting comments from the admin panel JavaScript
is allowed to run on posts. For this, the scanner must handle the work�ows needed
to post the comments and the inter-state dependency analysis needed to later �nd
the comment on a post.

B.5.4 Case Studies

In this section, we present two in-depth case studies of vulnerabilities that highlights
how and why our approach �nds vulnerabilities the other scanners do not. We base
our analysis on server-side traces, containing the executed lines of code, generated
from the scanner sessions. By manually analyzing the source code of an application
we can determine the exact lines of code that need to be executed for an injection
to be successful.

The cases we use are the comment section in WackoPicko and the con�guration
panel in phpBB. As we have shown, Black Widow can �nd vulnerabilities in more
complex modern web applications. Nevertheless, these cases allow us to limit the
number of factors when comparing our approach with the other scanners. Since
WackoPicko and phpBB have been used in previous studies [8, 30] they also serve
as a level playing �eld for all scanners.

B.5.4.1 Comments on WackoPicko

WackoPicko has a previously unsolved multistep XSS vulnerability that no other
scanner has been able to �nd. The di�cultly of �nding and exploiting is the need
for correctly reproducing a speci�c work�ow. After submitting a comment via a
form the user needs to review the comment. While reviewing, the user can choose
to either delete the comment or add it. If, however, the user decided to visit an-
other page, before adding or deleting, then the review form will be removed and the
user will have to resubmit the comment before reviewing it again. Thus, the steps
that must be taken are: Find an image to comment on (view.php#50, i.e. line 50

77

Securing the Next Generation Web

Table B.6: Steps to recreate the vulnerability in WackoPicko. The columns contain
the �le name and line of code for each step.

Crawler view.php#50 preview_comment.php#54 view.php#53 Exploit
Arachni X X X
Enemy X X X
jÄk
Skip�sh X
w3af X
Widow X X X X
ZAP

in view.php), Post a comment (preview_comment.php#54), Accept the comment
while reviewing (view.php#53) In Table B.6 we note that two scanners are able to
�nd the input but not exploit it.

Both Enemy of the State and Arachni managed to post a comment but neither
could exploit the vulnerability. Enemy of the State was able to post a comment con-
taining an empty string but the fuzzing was unsuccessful. Arguably, Arachni made
it a bit further since it was able to inject an XSS payload. However, the payload was
not detected and reported. Enemy of the State’s shortcoming is that it fuzzes the
forms independently while Arachni’s shortcoming is that it forgets it’s own injec-
tion.

jÄk and ZAP had problems �nding the �rst step, i.e. viewing the pictures, be-
cause the login form breaks the HTML standard by putting a form inside a table [41].
We avoid this by using a modern browser to parse the web page. This allows Black
Widow to view the web page as the developer intended, assuming they tested it in
a modern browser

Both w3af and Skip�sh were able to �nd the pictures but not able to post the
comment. w3af because it could not model the textarea in the form. Skip�sh,
on the other hand, does not have this problem. We believe that Skip�sh logged
out after seeing the picture but before posting the comment. The data shows that
Skip�sh does not try to log in multiple times. In comparison, we correctly handle
the textarea allowing us to post comments. At the same time, we also try to log
in multiple times if presented with a login form. This mitigates losing the session
forever at an early stage.

To solve this challenge Black Widow needs to combine the modeling of form
elements, handle work�ows and use inter-state dependency analysis to correctly
inject and detect the vulnerability.

B.5.4.2 Con�guration on phpBB

The con�guration panel on phpBB has multiple code injection possibilities. To �nd
these the crawler must overcome two challenges. First, to reach the admin panel
requires two logins, the �rst to authenticate as a user and then again, with the
same credentials, to authenticate as an administrator. Second, the injected param-

78

B. Black Widow: Blackbox Data-driven Web Scanning

Table B.7: Steps to recreate the vulnerability in phpBB. The columns contain the
�le name and line of code for each step.

Crawler admin/
index.php#28

admin_
board.php#34

admin_
board.php#74

admin_
board.php#34 Exploit

Arachni
Enemy
jÄk
Skip�sh
w3af
Widow X X X X X
ZAP

eter is not re�ected on the same page. To detect this injection inter-state depen-
dency analysis is required. The steps needed to �nd the vulnerability is, log in as
admin (admin/index.php#28), �nd the vulnerable form (admin_board.php#34),
successfully update the database (admin_board.php#74) �nd the re�ection of the
input (admin_board.php#34).

As shown in Table B.7, none of the other scanners managed to access the con�g-
uration panel. This is because phpBB requires a double login. Arachni, jÄk, Skip�sh,
w3afand ZAP all require user-supplied credentials together with parameters before
running. Based on the traces they do not try these credentials on the admin login
form, only the �rst login form. Enemy of the State, on the other hand, tries the stan-
dard username and password scanner1. This was enough to log in but it did not
manage to log in as an admin.

Our scanner solves the double login by being consistent with the values we sub-
mit. This allows us to both authenticate as a user and then also as an admin when
presented with the login prompt. After submitting the form in con�guration panel
with our taint tokens and later revisiting it, we detect the inter-state dependency
and can fuzz the source and sink.

B.5.5 Features A�ribution

In this section, we identify and attribute the key features that contributed to �nding
the vulnerabilities in the web applications.

In particular, we try to determine the impact of our modeling, traversing and
inter-state dependency analysis techniques. Below are the de�nitions we use in
Table B.8.

Modeling Modeling is considered to contribute if a combination of HTML forms
and JavaScript events were used to �nd the code injection.

Traversal Work�ow traversal contributes if the point of injection depends on a
previous state. This could, for example, be a form submission, a click of a button or
some other DOM interaction.

79

Securing the Next Generation Web

Table B.8: For each of the vulnerabilities we note contributing features, i.e. mod-
eling, work�ow reproduction or inter-state dependency (ISD) analysis.
We also present if they were uniquely detected by Black Widow.

Id Application Description Model Work�ow ISD Unique
1 HotCRP User upload X X X
2 osCommerce Review rating X
3 osCommerce Tax class X
4 phpBB Admin ranks X X
5 phpBB Con�guration X X
6 phpBB Site name X X
7 PrestaShop Date X X X
8 SCARF Add session X X X
9 SCARF Comment X X X
10 SCARF Conference name
11 SCARF Edit paper X X X
12 SCARF Edit session
13 SCARF Delete comment X X X
14 SCARF General options
15 SCARF User options X
16 Vanilla Comment draft X X
17 Vanilla Locale X X
18 Vanilla Title banner X X
19 WackoPicko Comment
20 WackoPicko Multi-step X X X
21 WackoPicko Picture
22 WackoPicko Search
23 WackoPicko SQL error
24 WordPress Comment X X X
25 WordPress Nearby event X X X X

Inter-state dependency A code injection is de�ned to need inter-state depen-
dency analysis if the point of re�ection is di�erent from the point of injection.

Table B.8 shows the 25 unique code injections from the evaluation. Of these,
modeling contributed to 4, work�ow traversal contributed to 9, and inter-state de-
pendency analysis contributed to 13. In total, at least one of them was a contributor
in 16 unique injections. The remaining 9 were usually simpler. Four of them were
from WackoPicko where the results of injection were directly re�ected. SCARF had 3
directly re�ected injections and osCommerce had 2. It is clear, especially for unique
vulnerabilities, that modeling, work�ow traversal and inter-state dependency anal-
ysis plays an important role in detecting stored XSS vulnerabilities.

B.5.6 Missed by Us

Out of the 25 unique injections found by all scanners, we also �nd all 25. There
was, however, an instance where Arachni found a vulnerability by injecting a dif-
ferent parameter than we did. This does not constitute a unique vulnerability due
to our clustering, which we explain in Section B.4.4. On SCARF, input elements can

80

B. Black Widow: Blackbox Data-driven Web Scanning

be dynamically generated by adding more users. The input names will simply be
1_name, 2_name, etc. Arachni managed to add multiple users by randomizing email
addresses. Since our crawler is focused on consistency, we do not generate valid
random email addresses and could therefore not add more than one user.

The drawback, as we have discussed is that is it easier to lose the state if too
much randomness is used. A possible solution to this could be to keep two sets
of default values and always test both when possible. There is still the risk that
using multiple users can result in mixing up the state between them. It would also
introduce a performance penalty as multiple submissions for each form would be
required.

The w3af scanner was able to �nd a re�ected version of a vulnerable parameter
that we considered to be stored. In this particular case on SCARF, it was possible
to get a direct re�ection by submitting the same password and retype password in
the user settings. This is what w3af did. Our scanner injected unique values into
each �eld, resulting in an error without re�ection, however, the �elds were still
stored. Inter-state dependency analysis was used to detect these stored values when
revisiting the user settings.

Further possible improvements include updating our method for determining
safe requests and more robust function hooking. A machine learning approach,
such as Mitch [6], could be used to determine if a request can be considered safe.
The function hooking could be done by modifying the JavaScript engine instead of
instrumenting JavaScript code.

B.5.7 Vulnerability Exploitability

For the six new vulnerabilities, we further investigate the impact and exploitability.
While all of these vulnerabilities were found using an admin account in the web
application, the attacker does not necessarily need to be an admin. In fact, XSS
payloads executed as the admin gives a higher impact as the JavaScript runs with
admin privileges. What the attacker needs to do is usually to convince the admin
to click on a link or visit a malicious website, i.e. the attacker does not require any
admin privileges. Although, there might be an XSS vulnerability in the code, i.e.
user input being re�ected, there are orthogonal mitigations such as CSRF tokens
and CSP that can decrease the exploitability.

To exploit the HotCRP vulnerability the attacker would have to guess a CSRF
token, which is considered di�cult. Similarly, PrestaShop has a persistent secret
in the URL which would have to be known by the attacker. One of the WordPress
vulnerabilities was a self-XSS, meaning the admin would need to be convinced to,
in this case, input our payload string, while the other one required a CSRF token.
Finally, osCommerce required no CSRF tokens making it both high impact and easy
to exploit.

81

Securing the Next Generation Web

B.5.8 Coordinated Disclosure

We have reported the vulnerabilities to the a�ected vendors, following the best prac-
tices of coordinated disclosure [15]. Speci�cally, we reported a total of six vulnera-
bilities to HotCRP, osCommerce, PrestaShop and WordPress.

So far our reports have resulted in HotCRP patching their vulnerability [24]. A
parallel disclosure for the same vulnerability was reported to PrestaShop and is now
tracked as CVE-2020-5271 [1]. Due to the di�culty of exploitation, WordPress did
not consider them vulnerabilities. However, the nearby event vulnerability is �xed
in the latest version. We have not received any con�rmation from osCommerce yet.

B.6 Related Work

This section discusses related work. Automatic vulnerability scanning has been a
popular topic due to its complexity and practical usefulness. This paper focuses
on blackbox scanning, which requires no access to the application’s source code or
any other input from developers. We have evaluated our approach with respect to
both community-developed open-source tools [28, 34, 36] and academic blackbox
scanners [8, 30]. There are also earlier works on vulnerability detection and scan-
ning [2, 10, 11, 17, 23, 35]. While we focus on blackbox testing, there is also progress
on whitebox security testing [13, 18, 22, 25, 39].

As previous evaluations [3, 9, 29, 37, 40] show, detecting stored XSS is hard. A
common notion is that it is not the exact payload that is the problem for scanners but
rather crawling deep enough to �nd the injections, as well as, model the application
to �nd the re�ections. Similar to our �ndings, Parvez et al. [29] note that while some
scanners were able to post comments to pictures in WackoPicko, something which
requires multiple actions in sequence, none of them was able to inject a payload.

We now discuss work that addresses server-side state, client-side state, and track-
ing data dependencies.

Server-side state Enemy of the State [8] focuses on inferring the state of the server
by using a heuristic method to compare how requests result in di�erent links on
pages. Black Widow instead takes the approach of analyzing the navigation meth-
ods to infer some state information. For example, if the previous edge in the naviga-
tion graph was a form submission then we would have to resubmit this form before
continuing. This allows us to execute sequences of actions without fully inferring
the server-side state.

One reason many of the other scanners pay little attention to server-side state
is to prioritize performance from concurrent requests. Skip�sh [42] is noteworthy
for its high performance in terms of requests per second. One method they use to
achieve this is making concurrent requests. Concurrent requests can be useful in a
stateless environment since the requests will not interfere with each other. ZAP [28],
w3af [34] and Arachni [36] take the same approach as Skip�sh and use concurrent
requests in favor of better state control. Since our traversing method relies on exe-
cuting a sequence of possibly state-changing action we need to ensure that no other

82

B. Black Widow: Blackbox Data-driven Web Scanning

state-changing requests are sent concurrently. For this reason, our approach only
performs actions in serial.

Client-side state jÄk considers client-side events to improve exploration. The sup-
port for events is however limited, leaving out such events as form submission.
While other scanners like Enemy of the State, w3af, and ZAP execute JavaScript,
they do not model the events. This limits their ability to explore the client-side
state. As modern applications make heavy use of JavaScript, Black Widow o�ers
fully-�edged support of client-side events. In contrast to jÄk, Black Widow mod-
els client-side events like any other navigation method. This means that we do not
have to execute the events in any particular order which allows us to chain them
with other navigations such as form submissions.

Tracking data dependencies Tracking payloads is an important part of detecting
stored XSS vulnerabilities. Some scanners, including Arachni, use a session-based ID
in each payload. Since the ID is based on the session this can lead to false positives as
payloads are reused for di�erent parameters. jÄk and Enemy of the State use unique
IDs for their payload but forgets them on new pages. w3af uses unique payloads and
remembers them across pages. ZAP uses a combination in which a unique ID is sent
together with a generic payload but in separate requests. This works if both the
ID and payload are stored on a page. In addition to using unique IDs for all our
payloads, Black Widow incorporates the inter-state dependencies in the application
to ensure that we can fuzz the correct input and output across di�erent pages.

LigRE [10], and its successor KameleonFuzz [11] use a blackbox approach to
reverse engineering the application and apply a genetic algorithm to modify the
payloads. While they also use tainting inside the payloads to track them, we use
plaintext tokens to avoid �lters destroying the taints. While Black Widow works on
live applications, KameleonFuzz requires the ability to reset the application. Unfor-
tunately, neither LigRE nor KameleonFuzz are open-source, which has hindered us
from their experimental evaluation.

B.7 Conclusion

We have put a spotlight on key challenges for crawling and scanning the modern
web. Based on these challenges, we have identi�ed three core pillars for deep crawl-
ing and scanning: navigation modeling, traversing, and tracking inter-state depen-
dencies. We have presented Black Widow, a novel approach to blackbox web appli-
cation scanning that leverages these pillars by developing and combining augmented
navigation graphs, work�ow traversal, and inter-state data dependency analysis. To
evaluate our approach, we have implemented it and tested it on 10 di�erent web ap-
plications and against 7 other web application scanners. Our approach results in
code coverage improvements ranging from 63% to 280% compared to other scanners
across all tested applications. Across all tested web applications, our approach im-
proved code coverage by between 6% and 62%, compared to the sum of all other scan-
ners. When deployed to scan for cross-site scripting vulnerabilities, our approach
has featured no false positives while uncovering more vulnerabilities than the other

83

Securing the Next Generation Web

scanners, both in the reference applications, i.e. phpBB, SCARF, Vanilla and Wack-
oPicko, and in production software, including HotCRP, osCommerce, PrestaShop
and WordPress.

Acknowledgment

We would like to thank Sebastian Lekies for inspiring discussions on the challenges
of web scanning. We would also like to thank Nick Nikiforakis and the reviewers for
their valuable feedback. This work was partially supported by the Swedish Founda-
tion for Strategic Research (SSF) and the Swedish Research Council (VR).

84

Bibliography

[1] CVE-2020-5271. Available from MITRE, CVE-ID CVE-2020-5271., Apr. 20 2020.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Saner: Composing static and dynamic analysis to validate sanitiza-
tion in web applications. In 2008 IEEE Symposium on Security and Privacy (sp
2008), pages 387–401. IEEE, 2008.

[3] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Automated
black-box web application vulnerability testing. In 2010 IEEE Symposium on
Security and Privacy, pages 332–345. IEEE, 2010.

[4] C.-P. Bezemer, A. Mesbah, and A. van Deursen. Automated security testing
of web widget interactions. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 81–90. ACM, 2009.

[5] Bugcrowd. The State of Crowdsourced Security in 2019. https://www.bugc
rowd.com/, 2020.

[6] S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and G. Tolomei. Mitch: A machine
learning approach to the black-box detection of csrf vulnerabilities. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P), pages 528–543.
IEEE, 2019.

[7] A. Doupé. Wackopicko, 2018.

[8] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the state: A state-
aware black-box web vulnerability scanner. In USENIX Security Symposium 12,
pages 523–538, 2012.

[9] A. Doupé, M. Cova, and G. Vigna. Why johnny can’t pentest: An analysis
of black-box web vulnerability scanners. In International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, pages 111–131.
Springer, 2010.

[10] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. Ligre: Reverse-engineering of
control and data �ow models for black-box xss detection. In 2013 20th Working
Conference on Reverse Engineering (WCRE), pages 252–261. IEEE, 2013.

[11] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. Kameleonfuzz: evolutionary
fuzzing for black-box xss detection. In Proceedings of the 4th ACM conference
on Data and application security and privacy, pages 37–48, 2014.

[12] Facebook. A Look Back at 2019 Bug Bounty Highlights. https:
//www.facebook.com/notes/facebook-bug-bounty/a-look-back-
at-2019-bug-bounty-highlights/3231769013503969/, 2020.

85

https://www.bugcrowd.com/
https://www.bugcrowd.com/
https://www.facebook.com/notes/facebook-bug-bounty/a-look-back-at-2019-bug-bounty-highlights/3231769013503969/
https://www.facebook.com/notes/facebook-bug-bounty/a-look-back-at-2019-bug-bounty-highlights/3231769013503969/
https://www.facebook.com/notes/facebook-bug-bounty/a-look-back-at-2019-bug-bounty-highlights/3231769013503969/

Securing the Next Generation Web

[13] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward automated detec-
tion of logic vulnerabilities in web applications. InUSENIX Security Symposium,
volume 58, 2010.

[14] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. RFC 7231, RFC Editor, June 2014.

[15] Google. Project zero: Vulnerability disclosure faq, 2019.

[16] Google. Vulnerability Reward Program: 2019 Year in Review.
https://security.googleblog.com/2020/01/vulnerability-reward-
program-2019-year.html, 2020.

[17] W. G. Halfond, S. R. Choudhary, and A. Orso. Penetration testing with im-
proved input vector identi�cation. In 2009 International Conference on Software
Testing Veri�cation and Validation, pages 346–355. IEEE, 2009.

[18] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing web
application code by static analysis and runtime protection. In Proceedings of
the 13th international conference on World Wide Web, pages 40–52, 2004.

[19] S. Idrissi, N. Berbiche, F. Guerouate, and M. Shibi. Performance evalu-
ation of web application security scanners for prevention and protection
against vulnerabilities. International Journal of Applied Engineering Research,
12(21):11068–11076, 2017.

[20] InfoSecurity. XSS is Most Rewarding Bug Bounty as CSRF is Re-
vived. https://www.infosecurity-magazine.com/news/xss-bug-boun
ty-csrf-1-1-1-1/, 2019.

[21] S. Innovation. Google Awards $1.2 Million in Bounties Just for XSS
Bugs. https://blog.securityinnovation.com/google-awards-1.2-mi
llion-in-bounties-just-for-xss-bugs, 2016.

[22] N. Jovanovic, C. Kruegel, and E. Kirda. Static analysis for detecting taint-style
vulnerabilities in web applications. Journal of Computer Security, 18(5):861–
907, 2010.

[23] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat: a web vulnerability
scanner. In Proceedings of the 15th international conference on World Wide Web,
pages 247–256, 2006.

[24] E. Kohler. Correct missing quoting reported by Benjamin Eriksson at
Chalmers. https://github.com/kohler/hotcrp/commit/81b7ffee2c5b
d465c82acf139cc064daacca845c, 2020.

[25] X. Li, W. Yan, and Y. Xue. Sentinel: securing database from logic �aws in
web applications. In Proceedings of the second ACM conference on Data and
Application Security and Privacy, pages 25–36, 2012.

86

https://security.googleblog.com/2020/01/vulnerability-reward-program-2019-year.html
https://security.googleblog.com/2020/01/vulnerability-reward-program-2019-year.html
https://www.infosecurity-magazine.com/news/xss-bug-bounty-csrf-1-1-1-1/
https://www.infosecurity-magazine.com/news/xss-bug-bounty-csrf-1-1-1-1/
https://blog.securityinnovation.com/google-awards-1.2-million-in-bounties-just-for-xss-bugs
https://blog.securityinnovation.com/google-awards-1.2-million-in-bounties-just-for-xss-bugs
https://github.com/kohler/hotcrp/commit/81b7ffee2c5bd465c82acf139cc064daacca845c
https://github.com/kohler/hotcrp/commit/81b7ffee2c5bd465c82acf139cc064daacca845c

Bibliography

[26] A. Mesbah, E. Bozdag, and A. Van Deursen. Crawling ajax by inferring user
interface state changes. In 2008 Eighth International Conference on Web Engi-
neering, pages 122–134. IEEE, 2008.

[27] H. Nikšić. Wget - gnnu project, 2019.

[28] OWASP. Owasp zed attack proxy (zap), 2020.

[29] M. Parvez, P. Zavarsky, and N. Khoury. Analysis of e�ectiveness of black-box
web application scanners in detection of stored sql injection and stored xss
vulnerabilities. In 2015 10th International Conference for Internet Technology
and Secured Transactions (ICITST), pages 186–191. IEEE, 2015.

[30] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow. jÄk: Using Dynamic
Analysis to Crawl and Test Modern Web Applications. In International Sympo-
sium on Recent Advances in Intrusion Detection, pages 295–316. Springer, 2015.

[31] A. Petukhov and D. Kozlov. Detecting security vulnerabilities in web applica-
tions using dynamic analysis with penetration testing. Computing Systems Lab,
Department of Computer Science, Moscow State University, pages 1–120, 2008.

[32] PortSwigger. Burp Scanner - PortSwigger. https://portswigger.net/burp
/documentation/scanner, 2020.

[33] D. Rethans. Xdebug - debugger ad pro�ler tool for php, 2019.

[34] A. Riancho. w3af - open source web application security scanner, 2007.

[35] T. S. Rocha and E. Souto. Etssdetector: A tool to automatically detect cross-site
scripting vulnerabilities. In 2014 IEEE 13th International Symposium on Network
Computing and Applications, pages 306–309, Aug 2014.

[36] Sarosys LLC. Framework - arachni - web application security scanner frame-
work, 2019.

[37] L. Suto. Analyzing the accuracy and time costs of web application security
scanners. San Francisco, February, 2010.

[38] The OWASP Foundation. Owasp top 10 - 2017, 2017. https://www.owasp.
org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf.

[39] A. Vernotte, F. Dadeau, F. Lebeau, B. Legeard, F. Peureux, and F. Piat. E�cient
detection of multi-step cross-site scripting vulnerabilities. In A. Prakash and
R. Shyamasundar, editors, Information Systems Security, pages 358–377, Cham,
2014. Springer International Publishing.

[40] M. Vieira, N. Antunes, and H. Madeira. Using web security scanners to detect
vulnerabilities in web services. In 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, pages 566–571. IEEE, 2009.

[41] WHATWG. Html standard, 2019.

[42] M. Zalewski. Skip�sh, 2015.

87

https://portswigger.net/burp/documentation/scanner
https://portswigger.net/burp/documentation/scanner
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

Securing the Next Generation Web

88

Appendix

B.I Scanner configuration

B.I.1 Arachni

The following command was used to run Arachni.
1 arachni [url] --check=xss* --browser-cluster-pool-size=1 --plugin?autologin:url

=[loginUrl],parameters="[userField]=[username]&[passField]=[password]",
check="[logout string]}

B.I.2 Black Widow

The following command was used to run Black Widow.
1 python3 crawl.py [url]

B.I.3 Enemy of the State

First we changed the username and password in the web application to scanner1
then we ran the following command.

1 jython crawler2.py [url]

B.I.4 jÄk

We updated the example.py �le with the URL and user data.
1 url = [url]
2 user = User("[sessionName]", 0, url, login_data = {"[userField]": "[username]",

"[passField]": "[password]"}, session="ABC")

B.I.5 Skipfish

The following command was used to run Skip�sh.
1 skipfish -uv -o [output]
2 --auth-form [loginUrl]
3 --auth-user-field [userField]
4 --auth-pass-field [passField]
5 --auth-user [username]
6 --auth-pass [password]
7 --auth-verify-url [verifyUrl]
8 [url]

89

Securing the Next Generation Web

B.I.6 w3af

For w3af we used the following settings, generic and xss for the audit plugin,web_spider
for crawl plugin and generic (with all credentials) for the auth plugin.

B.I.7 Wget

The following command was used to run Wget.
1 wget -rp -w 0 waitretry=0 -nd --delete-after --execute robots=off [url]

B.I.8 ZAP

For ZAP we used the automated scan with both traditional spider and ajax spider.
In the Scan Progress window we deactivated everything that was not XSS. Similar
to Enemy of the State, we changed the credentials in the web application to the
scanner’s default, i.e. ZAP.

90

C
Black Ostrich: Web Application Scanning

with String Solvers

Abstract. Securing web applications remains a pressing challenge. Unfortu-
nately, the state of the art in web crawling and security scanning still falls short
of deep crawling. A major roadblock is the crawlers’ limited ability to pass in-
put validation checks when web applications require data of a certain format,
such as email, phone number, or zip code. This paper develops Black Ostrich,
a principled approach to deep web crawling and scanning. The key idea is to
augment web crawling, based on the Black Widow tool, with string constraint
solving to dynamically infer suitable inputs from regular expression patterns
in web applications, and thereby pass input validation checks. To enable this
use of constraint solvers, we develop new automata-based techniques to han-
dle complex real-world regular expressions, including support for the relevant
features of ECMA JavaScript regular expressions, and implement those meth-
ods in the Ostrich solver. We evaluate Black Ostrich on a set of 8 821 unique
validation patterns gathered from over 21 667 978 forms from a combination of
the July 2021 Common Crawl and Tranco top 100K. For these forms and recon-
structions of input elements corresponding to the patterns, we demonstrate
that Black Ostrich achieves a 99% coverage of the form validations compared
to an average of 36% for the state-of-the-art scanners, while also yielding a 45%
increase for vulnerability detection. We further show that our approach can
boost coverage by evaluating it on three open-source applications. Our empiri-
cal studies include a study of email validation patterns, simultaneously demon-
strating that our regular expression encoding is practical, where we �nd that
many (213/825) of the patterns are susceptible to trivial XSS injection attacks.

C.1 Introduction

As the modern digitalized society increasingly relies on web applications, secur-
ing them remains an important challenge Web security scanners like Arachniand
ZAPplay an important role, focusing on crawling and scanning for vulnerabilities.
Recent e�orts by the research community have focused on moving away from tra-
ditional static crawling techniques based on link discovery and URL traversal. As
JavaScript enables increasingly dynamic and complex web pages, new approaches

91

Securing the Next Generation Web

incorporate dynamic behaviors as in jÄk [39] and asynchronous HTTP requests as
in CrawlJAX [6, 37]. Other approaches address the complexity of the server-side
application by reverse engineering, as in LigRE [16] and KameleonFuzz [17], or in-
ferring the state of the server as in Enemy of the State [15] to use the learned model
for driving a crawler. Black Widow [18] demonstrates how to fruitfully combine
navigation modeling, traversing, and tracking inter-state dependencies for black-
box web application scanning.

Web scanning challenges. While this progress is encouraging, unfortunately, the
state of the art in web crawling and security scanning still falls short of deep crawl-
ing. A major roadblock is the crawlers’ limited ability to pass input validation checks
when web applications require data of a certain format, such as email, phone num-
ber, or zip code.

Understanding what type of data to send is crucial for exploring more of the
application but also for generating valid payloads. Consider the pattern .*@.*\.[a-z

]{2,3} for emails, which allows anything followed by an @-sign followed by anything
followed by a period followed by two or three lowercase letters. This expression
will match a valid email address, but also invalid, potentiality malicious, ones, like
<script>alert(1)</script>@mail.com. For a scanner to �nd this vulnerability it needs
to be able to generate a payload that also matches the pattern. To do so using brute
force is slow or practically impossible, and to use a library of prepared payloads
(as many scanners do) is intractable since some sites use specialized validation. For
example, we did not �nd any scanner with payloads matching the real-world pattern
.*France.

Black Ostrich to the rescue. This paper proposes Black Ostrich, a principled ap-
proach to deep web crawling and scanning. The key idea is to leverage string-based
constraint solving, based on satis�ability modulo theories (SMT) [14], to infer suit-
able input from the analysis of forms in web applications, including both input
types, such as email and URL, and support for regular expression (or regex) pat-
terns, thereby automatically passing input validation checks. While SMT is heavier
than simply picking inputs from a library, we can instead be e�cient in the number
of network requests needed. SMT has been extensively used for web security for ap-
plications like �nding SQL injections [31], analyzing and testing JavaScript [42], and
detecting server-side parameter tampering [8]. However, these approaches largely
focus on detecting vulnerabilities rather than the depth of web crawling. To the best
of our knowledge, Black Ostrich is the �rst to leverage SMT technology for deep web
crawling. As such, it requires addressing several research challenges.

SMT challenges. Several SMT solvers have been recently extended to string con-
straints, motivated by applications in security such as symbolic execution of string
processing programs. This includes di�erent versions of Z3 [13], Z3-str/2/3/4 [46],
S3/p/# [44], CVC4 [35], Norn [1], Sloth [26], and Ostrich [10]. Yet the constraints in
web scanning di�er from the ones in typical veri�cation. The main challenge is to
handle real-world regular expression constraints, which can be extremely complex in
web applications. Regular expressions used for input validation can be thousands of
characters long, and frequently use extensions like anchors or look-arounds. From

92

C. Black Ostrich: Web Application Scanning with String Solvers

our experiments we �nd a 500 using look-arounds and 4044 using anchors. The
longest pattern we �nd is a stunning 29 059 characters.

Although SMT solvers for strings can handle textbook regular expressions [27],
up to now no SMT solver directly supports the much richer language of real-world
regular expressions [25].

Encoding the semantics of a modern regular expression engine into constraints
for an SMT solver is highly non-trivial. To our knowledge, the only such translation
was presented by Loring et al. [36] in the scope of symbolic execution by the ExpoSE
tool. The requirements in web crawling are largely orthogonal, however, to the ones
in symbolic execution: while Loring et al. [36] focus on correct handling of matching,
back-references, and greediness, their support of the very commonly used feature
of look-arounds is only partial (we provide a detailed comparison in Section C.3.4),
and our experiments show that the SMT-LIB encoding in ExpoSE turns out to be a
less natural match for the intricate regexes on the web (Section C.6.3).

Validation-aware crawling and fuzzing. When a crawler is faced with a form it
must decide on what data it should submit. The type of data expected by the server
might be numeric or a string. In addition to data type, other constraints can be put
on the data, for example, the value needs to be a valid email or URL. Validation of
such constraints can happen both client-side, within the browser, or server-side. To
make progress in crawling, it is necessary to pass server-side checks, since the pro-
vided input will otherwise be rejected by the web application. Traditional scanners,
therefore, source the required input data from a library with a diverse set of strings,
hoping that one will pass the validation constraints. This is a problem as the ap-
proach is noisy, ine�cient, and in the worst-case ine�ective, since web applications
can have arbitrarily complicated input validation.

Complementary to the traditional techniques, Black Ostrich applies a dynamic
approach that takes all available information on the expected input data into ac-
count and systematically constructs input data through constraint solving. The �rst
di�culty is the fact that server-side validation constraints are not visible, and can
only be guessed by the crawler. Fortunately, modern HTML features come to our
rescue: HTML5 provides several attributes for client-side input validation (Table C.5
in Section C.VII), including a new attribute called patterns. Patterns are regular ex-
pressions, as speci�ed by the ECMA JavaScript standard [25]), that user input must
match before the form can be submitted, and are today widely used in web applica-
tions.

Black Ostrich thus focuses on passing client-side validation constraints, with the
assumption that successful inputs are likely to also satisfy server-side constraints.
The presence of a vulnerable (e.g. XSS-accepting) pattern on a web page is by itself
not a vulnerability, as web applications might enforce stricter server-side checks.
Yet there is no natural reason for a web page to use di�erent constraints for client-
side and server-side checks, which is why Black Ostrich also uses string solving to
produce payloads matching the patterns.

For JavaScript, we can dynamically extract regex tests on our inputs and update
the inputs accordingly before submission. This works well for custom regex-based
JavaScript validations. Many popular validation libraries, including jQuery Validate,

93

Securing the Next Generation Web

also rely on regex to validate prede�ned types such as email, meaning we can extract
and solve it. However, JavaScript can use other methods for validation outside our
coverage. That being said, due to the ease of use of HMTL5 patterns, we expect
them to become increasingly common in the future, as they are indeed designed to
replace JavaScript validation.

SMT solving. Black Ostrich dynamically generates input data for web pages both
for exploring and fuzzing web pages. For this purpose, we de�ne a translation of the
HTML5 validation constraints (Table C.5 in Section C.VII) to logical SMT formulas,
which can then be processed by an SMT solver to construct data that will pass all
constraints, or show that no such data exists. Depending on the phase of scanning,
the validation constraints can be complemented by constraints that ensure unique-
ness of the input data, to discover dependencies in web applications, or by con-
straints that request the inclusion of payloads like <script>alert(1)</script>
in the input.

Our starting point is the SMT solver Ostrich [10], an automata-based string
solver for deciding the satis�ability of constraints in a rich language, including reg-
ular expressions, equations, and string functions including replace-all and letter-
to-letter transduction. Prior to our work, and in line with other SMT solvers, Os-
trich could only process regexes in SMT-LIB notation, and did not support EC-
MAScript [25] features such as anchors or look-arounds. This paper extends Os-
trich with a native parser for ECMAScript regexes and proposes two new methods
to handle ECMAScript regexes (including all features but back-references, see Sec-
tion C.3.3) in an SMT solver: a lightweight, but partial translation from ECMAScript
regexes to standard regexes, and a complete approach that works by translating
ECMAScript regexes to two-way alternating automata. Completing the pipeline,
we also present a new technique to simulate two-way alternating �nite automata
by non-deterministic �nite automata that enables e�cient implementation inside
solvers.

Evaluation. We demonstrate that Black Ostrich boosts both code coverage and
vulnerability detection, compared to state-of-the-art crawlers/scanners including
Arachni, Enemy of the State, jÄk, ZAP, and Black Widow. For ethical reasons, we
create a testbed, based on real-world forms, for the evaluation instead of directly
running the scanners on real websites. Even for just coverage, running a scanner
without the attack module can cause damage to the website in the form of forum
posts, product reviews, purchases, etc.

To test Black Ostrich in a realistic environment without interfering with real
websites, we harvest both forms and, separately, input validation patterns from the
July 2021 Common Crawl archive consisting of 3.15 billion web pages [11]. Due to
resource constraints, for forms, we sample uniformly from the 64 000 archive parts
of the same archive, collecting forms from 8 266 577 URLs, in total 21 667 978 forms.
To also capture validations used on popular websites, we combine this with a crawl
of Tranco [34] top 100K.

Using the combined data from Common Crawl and Tranco we extract 881 329
HTML5 patterns which after de-duplication results in 9 805 patterns, all being used
in the wild. After removing broken and invalid patterns we have a total of 8 821.

94

C. Black Ostrich: Web Application Scanning with String Solvers

We create a testbed of mock websites using these patterns both on the client-side
and server-side and evaluate the coverage for the state-of-the-art web crawlers. Our
scanner shows a signi�cant improvement by being able to solve 99% of the patterns
compared to an average of 36% for the other scanners.

For vulnerability detection, we use the same testbed and include an input re�ec-
tion if the server-side check is passed, resulting in an XSS vulnerability. The results
show an increase of 45% for vulnerability detection compared to the other scanners.
We �nd 828 vulnerable patterns compared to an average of 336 vulnerable patterns
for the other scanners.

Open-source so�ware. We explore the use of patterns in open-source web appli-
cations from GitHub. We download over 900 projects under the web applications
topic and analyze their use of patterns. We perform a case study analysis on three
applications that uses both client-side and server-side validation. In this study, we
do a head-to-head comparison of all the scanners and show that we can increase
coverage by passing input validation.

Email pa�ern study. We report on an empirical study of 825 email patterns ex-
tracted from the Common Crawl dataset of real-world web pages. Following the
intuition that validation patterns are often shared between front-end and back-ends
we discover that reusing client-side patterns on the server-side would then cause at
least 502 of the 825 collected patterns to accept a trivial XSS attack with an embedded
<script> tag. Furthermore, we show that at least 213 of the patterns would accept
the same attack string even under the stronger semantics of the HTML5 pattern

attribute. These experiments illustrate how our regular expression semantics en-
coding is versatile and e�cient enough to handle complex real-world regular ex-
pressions for practical applications.

The contributions of the paper are:

• We develop a novel platform for validation-aware web crawling and scanning
(Section C.2).

• We propose a new version of two-way alternating �nite-state automata, 2AFASMT
(Section C.3), and a simple yet e�cient simulation of 2AFASMT using standard
non-deterministic �nite-state automata (Section C.4).

• Based on 2AFASMT , we de�ne a new translation from regular expressions to NFA
that provides complete coverage of the ECMAScript regex features, with exception
of back-references. This translation enables us to extend the open-source solver
Ostrich with native support for ECMA regular expressions (Section C.3).

• We evaluate the coverage and vulnerability detection (Section D.4), showing that
our scanner solves 99% of the patterns compared to the average of 36% for the
other scanners, a 175% improvement. We improve the detection of vulnerable
patterns by 45% (Section E.4).

• We investigate the usage of HTML patterns in open-source web applications and
demonstrate increased coverage thanks to string solving. (Section C.7).

• We present a case study of email validation patterns, pointing out common vul-
nerabilities and inconsistencies related to email patterns on the web (Section C.II).

95

Securing the Next Generation Web

C.2 Validation-aware Scanning

To improve the coverage and vulnerability detection rate of scanners we propose a
design in which the scanner consults a string solver before submitting inputs. The
string solver is used to generate strings matching the pattern, allowing the scanner
to submit the correct data type and thus, potentially, improving coverage. The solver
can also be used to generate data matching both the pattern and an attack payload.
For example, solving both the email pattern .*@.*\.[a-z]{2,3}, and the classic XSS
payload <script>alert(1)</script> results in the following solution <script>

alert(1)</script>@0.aa.

Scanner

CrawlerValidation
Controller

WWW

SMT

Solver

1©2©

Payload
Generator

<input pattern=".*@.*\..*" ...>

Witness
Controller

ECMA
Encoder

<script>
alert(9876)
</script>

.*@.*\..*
<script>alert(9876)</script>@0.0

10©
<script>alert(9876)</script>@0.0

3© 9©4©

5© 6©
7©8©

Figure C.1: The system architecture including both extended scanner and SMT
solver.

C.2.1 Overview

Figure C.1 demonstrates how to extend a scanner to interact with an SMT solver.
The two main components are pattern-extraction and hooking form submissions to
generate valid input data. For a given target page, our extended scanner extracts
all forms and analyzes the input validations. If a regex-based validation is found it
communicates the regex to the string solver and submits the result. In the attack
phase, the attack payload is added as an additional constraint to the solver, ensuring
that the �nal payload is valid. We include more detailed steps in Section C.IX.

C.2.2 Motivating Example

In this section, we walk through an example where patterns are used. The scanner’s
crawler component requests a page as shown by 1© in Figure C.1. We mark the
crawler as dashed in the �gure to highlight that this can be any o�-the-shelf crawler.
The page it crawls could, for example, validate emails using the pattern .*@.*\..*.
In step 2© the crawler sends the response, including any patterns, to the validation
controller. It extracts all the patterns from the web page. This also includes dynamic
interaction with the page to extract regex use in JavaScript. Before the scanner
submits this form it needs to pick a witness �rst, which is done by calling the witness
controller in step 3©. The witness controller decides what type of data to send, e.g.,

96

C. Black Ostrich: Web Application Scanning with String Solvers

a username, unique data token, XSS payload, other payload, etc. It looks up the
elements it needs to submit in the validation controller in step 4©. The validation
controller returns the pattern, i.e. .*@.*\..*. The next step depends on if the scanner
is in the crawl phase or attack phase.

Crawl Phase. The witness controller sends the pattern directly to the SMT in step
6©. Inside the SMT the ECMA encoder transforms the HTML5 pattern to an SMT-
LIB compliant pattern and sends it to the solver in step 7©. The solver �nds a string
matching the pattern, e.g., 0@0.0. It returns the solution to the witness controller, step
8©, which returns it to the crawler, step 9©, where it is submitted to the application,
step 10©.

A�ack Phase. The witness controller calls the o�-the-shelf payload generator to
get a payload in step 5©. The payload generator chooses a payload based on the
target vulnerability. For XSS, this is usually a string like <script>alert(1)</script

>. In step 6©, the witness controller sends both the input element pattern and the
payload to the SMT. Both are encoded and sent to the solver in step 7©. The solver
generates a valid solution to the pattern that also contains the desired payload and
sends it back in 8©. The solution <script>alert(1)</script>@0.0 matches the pattern
and contains the payload. Finally, the witness controller sends it to the crawler, step
9©, which submits it to the web page in step 10©.

C.2.3 Scanning

To �nd vulnerabilities in a web application the scanner must be able to: explore the
application in a meaningful way, i.e. crawling, and methodically attack the applica-
tion to �nd vulnerabilities.

Crawling. Classic crawling by statically parsing HTML works well for static pages
but lacks many features required for scanning modern applications.

JavaScript is used by almost all web applications today. Using JavaScript, de-
velopers can add more interaction to the application, for example, by dynamically
adding HTML elements like links when users press a button. The jÄk [39] scan-
ner was the �rst scanner to not only execute JavaScript but also to model possible
events, such as button presses.

In addition to handling dynamic client-side interactions, a scanner must also
consider the dynamic server-side code. The server-side code, which is not accessible
to the scanner in a black-box model, is responsible for the interactions with the
database. This includes tasks like authentication, posting comments, updating user
pro�les, etc. This is important to handle as some actions, e.g., adding a comment
can result in new parts of the application to explore. The Enemy of the State [15]
scanner made strides in this area by inferring the server-side state of the scanner
and thus being able to model how di�erent actions a�ected the application.

While our general method of combing a scanner and string solver works for any
scanner, we choose to utilize the Black Widow [18] scanner in this paper. Black
Widow combines multiple methods to handle the aforementioned challenges. We

97

Securing the Next Generation Web

improve on this scanner by adding features that allow Black Widow to interpret and
solve input validation patterns.

To �nd the client-side validation patterns we instrument the scanner to extract
the pattern attributes from any form input element it �nds. The patterns are added
to the navigation graph together with the other attributes of the input element, like
type and name.

Whenever the scanner needs to pick a value for an input element, it will look up
the pattern for the element in the navigation graph. If a pattern is found, the SMT
solver is called in real-time to �nd a string matching it.

Fuzzing. The most reliable method for detecting XSS is executing JavaScript and
searching for the expected runtime behavior of the payload, for example showing a
pop-up with the text “XSS”. To further minimize false positives the payloads must
be unique to each input parameter as stored payloads might be re�ected in multiple
places.

The Black Widow scanner uses unique payloads and dynamic injection detection
already minimizing the false positives. However, the payload is limited to unique
numeric ids. That is, the payloads have the following format <script>xss(123456)</

script>, where 123456 will be changed for each payload. As some validation mecha-
nisms might reject numbers, we extend Black Widow to also handle alphabetic ids.

The generated payloads should also match any validation patterns. Recall the
real-world pattern .*France from our dataset. Here the payload must end with France.
To generate a payload, the payload generator will use an XSS payload with a unique
id, e.g. <script>xss(123)</script>. The string solver then tries to create a string with
this payload that match the pattern. Using the pattern above, a possible solution is
<script>xss(123)</script>France While our focus is on XSS, the same method can be
used to generate SQLi payloads matching the same pattern, e.g. ’DROP TABLE;--France

C.3 String Solving for Scanning

This section introduces the SMT component of Black Ostrich in more detail, namely,
the dashed box labeled as “SMT” in Figure C.1. Black Ostrich builds on the existing
open-source string solver Ostrich [10] but extends it for security scanning.

C.3.1 Overview of Ostrich

Ostrich, the “Solver” in Figure C.1, is an automata-based SMT solver specialized for
string constraints. Such constraints take the form of regular expression member-
ship assertions, and assignments of string functions (including concatenation, and
all functions that can be represented as a �nite-state transducer) to variables. In
addition to the string operations, Ostrich has all the standard features of an SMT
solver, for instance, handling of Boolean structures as well as support for other the-
ories like integers and arrays. Given a set of assignments and assertions, Ostrich
�nds a model, that is, assignments of concrete strings to variables, or reports that
the given formulas are inconsistent.

98

C. Black Ostrich: Web Application Scanning with String Solvers

The whole solver is modular. Custom functions and assertions can be easily
added and indeed one of the contributions of this paper is the extension of Ostrich
with ECMA-style regular expression, which is covered in Section C.3.3. Before going
into that, we complete the high-level overview of the SMT module by providing the
translation step necessary when interfacing with web applications, that is, steps 6
and 7 in Figure C.1.

C.3.2 Translation of Validation Constraints

For scanning and fuzzing, Black Ostrich has to generate input data satisfying HTML5
form validation constraints that are speci�ed by a web application. We focus on the
attributes described in Table C.5 in Section C.VII; some further form types are less
relevant from a security point of view, and they are not considered here. Our general
approach is to generate data for the individual input �elds of a web page one by one,
which is possible because HTML5 cannot express constraints relating multiple �elds
so that the �elds are independent.

The type of a �eld speci�es the general form of data that is expected and de-
termines how exactly data generation works. For �elds with numerical input types,
we can directly compute suitable input, and no constraint solving is necessary. In
particular, if the input type is number, data has to be an integer or fractional num-
ber in decimal notation, possibly subject to side-conditions min, max, and step. We
can directly compute a suitable input number as follows: (i) if min is present, this
speci�ed minimum value is chosen; (ii) otherwise, if max is present, then the biggest
multiple of the step size is chosen that does not exceed max, namely max{n · step |
n ∈ Z,n ·step ≤ max}; (iii) if neither min nor max is speci�ed, the number 0 is taken.
The types color, range, date, datetime-local, month, time, and week can be
handled similarly.

For �elds f of other types (e.g., text), an SMT formula φf [w] that represents
all attributes that input w for f has to satisfy is constructed. This formula is sent
to the SMT component, which will then check whether input data exists that �ts
the input �eld. The formula has the shape φf = φtype ∧φlen ∧φpat, and consists
of a pre-de�ned regular expression constraint φtype = (w ∈ Ltype) that is speci�c to
the �eld type, a numeric constraint φlen = (|w| ∈ [l,u]) that captures the attributes
minlength and maxlength (if present), and the HTML5 pattern constraint φpat =
(w ∈ Lpat) discussed in the next section. The type-speci�c language Ltype de�nes
all inputs that are well-formed according to the HTML standard [45]; for instance,
for an input �eld of type email, we can choose the language given in Listing 1.

C.3.3 ECMAScript Regular Expressions

The pattern attribute enables web developers to specify further constraints on tex-
tual input using ECMAScript regular expressions [25]. Such regular expressions
o�er several features not present in traditional, textbook regular expressions: (i)
anchors ^,$ that check for the beginning or end of a string; (ii) look-aheads and
look-behinds, which constrain accepted strings without consuming any characters;

99

Securing the Next Generation Web

(iii) capture groups and back-references to the contents of those groups; (iv) greedy
and lazy matching.

Back-references (iii) are conceptually di�cult to handle, since they enable the
de�nition of context-sensitive languages, and immediately lead to undecidability [36].
In our experiments we observed, however, that back-references are only used very
infrequently within patterns; they only occur in 26 out of the unique 9 805 patterns.
Compare this to look-arounds that are used 500 times and anchors that are 4044
times. Greediness (iv) of matching is not relevant for HTML patterns, as it only
matters for extraction or replacement of sub-strings. We, therefore, focus on (i) and
(ii).

Example 1. A regular expression commonly used as pattern for passwords is [45]:

^(?=.*\d)(?=.*[a-z])(?=.*[A-Z])(?!.*\s).*$

The assertions (?=...) are positive look-aheads, and mandate that a password has
to contain at least one digit, one lower-case letter, and one upper-case letter. The
negative look-ahead (?!...) forbids whitespace characters.

As a second real-world example, among the patterns considered in Section C.5.1,
we observed the following regular expression describing email addresses:

^(?=.{1,64}@)(([a-zA-Z0-9!#$%&’*+-/=?^_‘{|}~]+
(.[a-zA-Z0-9!#$%&’*+-/=?^_‘{|}~]+)*)|(’.+’))@
([^-@][a-zA-Z0-9-]{1,62}.)+[a-zA-Z]{1,63}$

The look-ahead is in this case used to restrict the local-part to at most 64 characters.

Definitions. For ease of presentation, we adopt a mathematical notation and ignore
further technicalities like Unicode alphabet, character classes, and the di�erent es-
caping conventions. Let Σ = {σ1, . . . ,σn} be a �nite set of symbols and Σ∗ the set of
(�nite-length) strings obtained by concatenating symbols in Σ. The set of textbook
regexes R is inductively de�ned as follows [27]:

r ::= ∅ | ε | σ | r∗ | r | r1 ·r2 | r1 + r2

where σ ∈ Σ, r is the complement of r, ∗ is the Kleene star operator and · and + are
the usual concatenation and alternation operators, respectively. It is also practical
to de�ne the following syntactic shortcuts:

1. r1 ∩ r2 ::= r1 + r2 and

2. with slight notational abuse, Σ ::= σ1 + . . .+ σn.

It is well-known that �nite-state automata and regular expressions are equiv-
alent, in the sense that they can express the same set of languages. Reasoning on
them, namely checking, e.g., emptiness or inclusion, can therefore be performed
using automata techniques.

On the other hand, the set of “augmented” regexesR include the features (i) and
(ii) but they lack complementation, and they are inductively de�ned as follows:

ρ ::= ∅ | ε | σ | ρ∗ | ρ1 ·ρ1 | ρ1 + ρ1 |
(>ρ) | (≥ρ) | (<ρ) | (≤ρ) | ^ | $

100

C. Black Ostrich: Web Application Scanning with String Solvers

where (> ρ) and (≥ ρ) are the positive and negative look-ahead operators, which
check if ρ matches, resp., does not match, the su�x of the string, without consum-
ing any symbols. (<ρ) and (≤ρ) are the positive and negative look-behind operators,
which, analogously to the previous ones, check if ρ matches in the part of the string
that has already been analyzed. Lastly, anchors ^ and $ are true only at the begin-
ning, resp., end of the string. We refer to Appendix C.III for the formal de�nition of
the language L(ρ) ⊆ Σ∗ described by a regex ρ.

C.3.4 Previous Results for ECMAScript Regexes

Loring et al. [36] present a symbolic execution tool for JavaScript, ExpoSE, which
is able to handle also ECMAScript-compatible regular expressions excluding look-
behinds. Since [36] have the goal of supporting full ECMAScript regexes, for which
the language emptiness problem is undecidable, they apply an abstraction re�ne-
ment loop. Initially, ECMAScript regexes are translated to SMT-LIB regular expres-
sions (aka textbook regular expressions), which are supported by many SMT solvers;
this translation is over-approximate, so that the resulting constraints might have so-
lutions even though the original regex described an empty language. Such spurious
solutions are eliminated using a re�nement loop.

We can note, however, that the proposed translation from ECMAScript regexes
to SMT-LIB regexes in [36] does not yield correct over-approximate constraints in
many cases involving look-arounds. In particular the interaction of alternation and
look-aheads, or of repetition (Kleene star) and look-aheads, is not correctly mod-
elled, leading to an incorrect encoding of regular expressions like ((> a∗ ·x) ·a)∗ ·x.
This regex is equivalent to a∗ ·x, but the translation de�ned in [36] interprets the
regex as de�ning the language {x}. We conjecture that this issue is inherent in the
strategy of directly translating ECMAScript regexes to SMT-LIB constraints, since
a correct translation needs to handle the unboundedly many look-aheads (> a∗ ·x)
caused by the outer Kleene star, and thus some notion of quanti�cation.

C.3.5 From ECMAScript Regexes to Automata

We propose a two-layered approach to correctly handle ECMAScript regexes, imple-
mented in Ostrich. Ostrich �rst attempts to translate ECMAScript regexes directly
to SMT-LIB regexes (Appendix C.IV). This translation is semantics-preserving, and
only causes a linear increase in size; but it is partial, and does not apply, among oth-
ers, to the regex ((>a∗ ·x)·a)∗ ·x. Although the translation is partial, however, it still
achieves high coverage of the 8 821 HTML patterns we collected. When the partial
translation fails, Ostrich applies a complete approach for translating ECMAScript
regexes to non-deterministic �nite-state automata (NFA, used both in singular and
plural); this translation can handle all features of ECMAScript regexes, with the ex-
ception of back-references. We �rst present a novel translation from ECMAScript
regexes to two-way alternating automata (2AFA) [33], and translate 2AFA to NFA
in Section C.4.

101

Securing the Next Generation Web

s1i
sf ,2si

ε

ε

sf ,1

Σ

∀
. . .

Aρ

Figure C.2: Schematic representation of automaton construction recursive step for
♦ρ, where ♦ ∈ {>,<,≥,≤}.

Automaton construction. Our automata [33] are machines that read input words.
They are two-way in that they can move on the input both left-to-right and right-to-
left, and alternating, meaning that they can take both existential (∃) and universal
(∀) transitions. An ∃-transition corresponds to the transitions in a standard NFA:
from some state, the automaton can transition to one out of multiple possible succes-
sor states. For the automaton to accept the word, it is enough if one such execution
is successful. Conversely, ∀-transitions fork the execution to a set of paths that
should all be successful. For both kinds of transitions, the automaton also speci�es
if it is moving forward or backward. It is well known that 2AFA has the same ex-
pressive power as standard NFA, although being exponentially more succinct, and
indeed the former can be simulated by the latter [7, 22, 29]. These algorithms, how-
ever, besides having exponential complexity, are also quite intricate and have never
been implemented in the context of SMT solvers, to the best of our knowledge. We,
therefore, introduce a new version of 2AFA, which we call 2AFASMT with the fol-
lowing features: (i) their semantics is closer to the semantics of ECMAScript regex,
thus enabling a more direct representation of those and (ii) they allow for a simple
and practically e�cient translation to NFA. The main di�erence between traditional
2AFA and 2AFASMT is on the way transitions are speci�ed. The former reads the
character they are currently analyzing and then moves either forward or backward
positioning themselves on the respective character, while the latter sits in-between
characters, and they can either read the preceding one and move backward, or the
succeeding one and move forward. This is obtained by having two di�erent kind of
transitions, the backward δ< transitions and the forward δ> ones.

De�nition C.1 (2AFASMT). A two-way alternating automaton is a tuple
(Σ,S, s0,F<,F>,δ

>
∃,δ

<
∃,δ

>
∀,δ

<
∀, ε∃, ε∀) where:

1. Σ is an alphabet of symbols;

2. S is a �nite set of states;

3. s0 ∈ S is an initial state;

4. F<,F> ⊆ S are disjoint sets of �nal states;

5. δ>∃,δ
<
∃ : S ×Σ 99K ℘(S) are the partial existential transition functions;

102

C. Black Ostrich: Web Application Scanning with String Solvers

6. δ>∀,δ
<
∀ : S ×Σ 99K ℘(S) are the partial universal transition functions;

7. ε∃ : S 99K ℘(S) is the partial ε-existential transition function;

8. ε∀ : S 99K ℘(S) is the partial ε-universal transition function.

and ℘(S) is the powerset of S . We require that for every s ∈ S,σ ∈ Σ one of the δ or
ε transitions is de�ned.

Next, we de�ne the semantics of an automaton, namely the set of words it ac-
cepts.

De�nition C.2 (2AFASMT run). Let w = w0w1 . . .wn be a word in Σ∗ of length
`(w) = n+1, A be 2AFASMT and i ∈ N. A run π of A on w is a �nite sequence of el-
ements in ℘(S×N), called con�gurations, and it is de�ned inductively: π0 := {(s0,0)}
and for any πj with j ∈ N we build (one of the possible successor con�gurations)
πj+1 as follows. Pick (s, i) ∈ πj , then: πj+1 := πj \ {(s, i)} ∪ T where T is one of the
following:

1. {(s′ , i +1)} if i < `(w) and s′ ∈ δ>∃(s,w(i));

2. {(s′ , i − 1)} if i > 0 and s′ ∈ δ<∃(s,w(i − 1));

3. {(s′1, i +1), . . . , (s′n, i +1)} if i < `(w) and δ>∀(s,w(i)) = {s
′
1, . . . , s

′
n};

4. {(s′1, i − 1), . . . , (s′n, i − 1)} if i > 0 and δ<∀(s,w(i)) = {s
′
1, . . . , s

′
n};

5. {(s′ , i)} if s′ ∈ ε∃(s);

6. {(s′1, i), . . . , (s′n, i)} if ε∀(s) = {s′1, . . . , s′n}.

We say that automaton A accepts w if there exists a run π of A over w in which
the last con�guration is accepting, that is: for each (s, i) we have either s ∈ F< and
i = 0 or s ∈ F> and i = `(w). Intuitively, a pair (state, index) (s, i) means that the
automaton is in state s and in-between the i − 1-th and i-th characters of w. Being
alternating, we might have more than one pair at any moment, as the automaton is
scanning multiple parts of the word at the same time. We start from initial state s0 at
the beginning of the word (index 0) and at each step a pair is picked and a transition
is performed: if such transition is existential, then the current state is updated with
one of the successor states; if it is universal, all the successor states are added to
the current run. Also the index is updated depending on if the transition is moving
backward < or forward >.

Translation of augmented regexes. The procedure we propose recursively con-
structs a 2AFA Aρ for each augmented regex ρ ∈ R. Compared to similar construc-
tions in the literature [27], ours adds cases for handling look-arounds and anchors.
We notice that the latter can be seen as shortcuts: it is indeed easy to prove that ^
is equivalent to (≤Σ) and $ is equivalent to (≥Σ). We discuss the main cases of the
translation in this section and refer the reader to Appendix C.III for further details.

103

Securing the Next Generation Web

s9s8
ε

sf ,1

Σ

∀

si
ε

ε

ε

s2

s3

s1

s4

s5

ε

ε

ε

ε

a

b

ε
s10 s11

ab

s6 s7

sf ,2

ε

A(a+b)∗

Ab·a

ε

Figure C.3: Graphical representation of the automaton for the regex (a+b)∗·(<b·a).
Unless marked with ∀, transitions are existential.

Example 2. Consider the regex (a+ b)∗ ·(<a·b). The regex is translated to the au-
tomaton in Figure C.3, and illustrates the translation of concatenation, the + opera-
tor, and a look-behind. When running on w = abbbab, a successful execution sees
the sub-automaton A(a+b)∗ matching the whole word and ending in state s8. From
there, the execution forks: one path directly accepts while the other goes through
sub-automaton Aa·b which starts scanning backward. It �rst reads b and then a,
(which indeed matches (<a·b)) thus ending up in the sink accepting state sf1 . Since
both paths are in a �nal state, word w is accepted.

Intuitively, the automaton translation works as follows (see Appendix C.III for
more details and �gures). The atomic cases of ε, σ accept after seeing ε or σ , re-
spectively. Automaton for ∅ never accepts. The automaton for alternation forks
the execution with ∃-transition into two paths, each attempting to match a subex-
pression. Automaton for concatenation connects with an ε-transition the automata
for the subexpression and concerning the Kleene star, an initial ∃-transition forks
the execution two paths, one directly accepts, the other matches repetitions of ρ by
adding an ε-cycle from the �nal state to the initial state of (sub-)automaton for ρ. The
novel case of lookahead (>ρ) builds the automata schematized in Figure C.2, where
the dashed box is the automaton for ρ, double-circled states are �nal (more pre-
cisely, sf ,1 ∈ F< and sf ,2 ∈ f>) and the outgoing transitions from si are ∀-transitions
(recursively, the �nal state sf ,2 will be possibly expanded into an automaton that
recognizes the remaining part of the regex). Notice the initial ∀-transition which
forks the execution in two paths that should both accept. When a look-behind is
encountered, the same idea holds, but the automaton inside the dashed box scans
the word backward, hence the necessity of a two-way automaton. We reverse the
regex inside the look-behind, hinging on the fact that scanning the reverse of a word
w backward from end to start is equivalent to scan w forward from the beginning.

104

C. Black Ostrich: Web Application Scanning with String Solvers

Lastly, the negated look-arounds are handled by complementing the resulting au-
tomata [21].

Theorem 1. Let ρ ∈ R, and Aρ be the two-way alternating automaton constructed
from ρ. Automaton Aρ accepts a word w ∈ Σ∗ if and only if w ∈ L(ρ).

We refer the reader to Appendix C.III for the proof. We also remark that:

Lemma C.1. Building Aρ for ρ ∈ R takes linear time in the size of ρ.

<latexit sha1_base64="cIk2SKzfampe/hqYhbEgsDoAZxw=">AAACSXicbVDLSsNAFJ20Pmp9VV26CdaCG0tSiroSwY1LBVsLNZTJ9LYdnUzCzI1aQv/Brf6SX+BnuBNXTmIQ23ph4HDuHc7DjwTX6DjvVqG4sLi0XFopr66tb2xWtrbbOowVgxYLRag6PtUguIQWchTQiRTQwBdw49+fp/ubB1Cah/IaxxF4AR1KPuCMoqHa+7p3ul/uVapO3cnGngduDqokn8velnV42w9ZHIBEJqjWXdeJ0EuoQs4ETMq3sYaIsns6hK6BkgagvSSzO7Frhunbg1CZJ9HO2L8/EhpoPQ58cxlQHOnZXUr+7mpTUjg48RIuoxhBsh+lQSxsDO00vN3nChiKsQGUKW7M2mxEFWVoKipP6Qjug0kjYdKV8IhPqZr370Ws0c0sTaW+dr0kjZf6SAt2Z+ucB+1G3T2qN68a1bNmXnWJ7JI9ckBcckzOyAW5JC3CyB15Ji/k1XqzPqxP6+vntGDlf3bI1BSK36V6sd8=</latexit>�>
<latexit sha1_base64="cIk2SKzfampe/hqYhbEgsDoAZxw=">AAACSXicbVDLSsNAFJ20Pmp9VV26CdaCG0tSiroSwY1LBVsLNZTJ9LYdnUzCzI1aQv/Brf6SX+BnuBNXTmIQ23ph4HDuHc7DjwTX6DjvVqG4sLi0XFopr66tb2xWtrbbOowVgxYLRag6PtUguIQWchTQiRTQwBdw49+fp/ubB1Cah/IaxxF4AR1KPuCMoqHa+7p3ul/uVapO3cnGngduDqokn8velnV42w9ZHIBEJqjWXdeJ0EuoQs4ETMq3sYaIsns6hK6BkgagvSSzO7Frhunbg1CZJ9HO2L8/EhpoPQ58cxlQHOnZXUr+7mpTUjg48RIuoxhBsh+lQSxsDO00vN3nChiKsQGUKW7M2mxEFWVoKipP6Qjug0kjYdKV8IhPqZr370Ws0c0sTaW+dr0kjZf6SAt2Z+ucB+1G3T2qN68a1bNmXnWJ7JI9ckBcckzOyAW5JC3CyB15Ji/k1XqzPqxP6+vntGDlf3bI1BSK36V6sd8=</latexit>�>

<latexit sha1_base64="fgR+hl9nN6Kr/yWt9eb6hkQ1zYE=">AAACUHicbVBNS8NAEJ3Urxq/9egl2ApeLEkR9Vjw4lHB2kIbymY71cXNJu5O1BL6O7zqX/LmP/Gmm1rFqgPLPt7M8N68KJXCkO+/OqWZ2bn5hfKiu7S8srq2vrF5aZJMc2zyRCa6HTGDUihskiCJ7VQjiyOJrejmpOi37lAbkagLGqYYxuxKiYHgjCwVVrt3TGNqhExUtbde8Wv+uLy/IJiACkzqrLfh7Hf7Cc9iVMQlM6YT+CmFOdMkuMSR280MpozfsCvsWKhYjCbMx65H3q5l+t4g0fYp8sbsz42cxcYM48hOxoyuze9eQX73dqekaHAc5kKlGaHin0qDTHqUeEUGXl9o5CSHFjCuhTXr8WumGSeblDulI0WE9hqFo47Ce3oo1MJ/JzJDwdjS1NUXQZgX5xU+XBtw8DvOv+CyXgsOawfn9UrjYBJ1GbZhB/YggCNowCmcQRM43MIjPMGz8+K8Oe8l53P064ctmKqS+wE8drSr</latexit>�
<latexit sha1_base64="fgR+hl9nN6Kr/yWt9eb6hkQ1zYE=">AAACUHicbVBNS8NAEJ3Urxq/9egl2ApeLEkR9Vjw4lHB2kIbymY71cXNJu5O1BL6O7zqX/LmP/Gmm1rFqgPLPt7M8N68KJXCkO+/OqWZ2bn5hfKiu7S8srq2vrF5aZJMc2zyRCa6HTGDUihskiCJ7VQjiyOJrejmpOi37lAbkagLGqYYxuxKiYHgjCwVVrt3TGNqhExUtbde8Wv+uLy/IJiACkzqrLfh7Hf7Cc9iVMQlM6YT+CmFOdMkuMSR280MpozfsCvsWKhYjCbMx65H3q5l+t4g0fYp8sbsz42cxcYM48hOxoyuze9eQX73dqekaHAc5kKlGaHin0qDTHqUeEUGXl9o5CSHFjCuhTXr8WumGSeblDulI0WE9hqFo47Ce3oo1MJ/JzJDwdjS1NUXQZgX5xU+XBtw8DvOv+CyXgsOawfn9UrjYBJ1GbZhB/YggCNowCmcQRM43MIjPMGz8+K8Oe8l53P064ctmKqS+wE8drSr</latexit>�

Figure C.4: An example of a run of a S-2AFASMT on the left and the corresponding
run of the simulating NFA on the right.

C.4 From 2AFASMT to NFA

We now de�ne a translation from 2AFASMT to a standard non-deterministic �nite-
state automaton (NFA). An NFA is an automaton where the transition function is
non-deterministic and always moves left-to-right, but which might also have ε-
transitions. More precisely, a NFA is a tuple (Σ,Q,q0,Qf ,δ,ε) where q0 ∈ Q is the
initial state,Qf ⊆Q the set of �nal states and δ :Q×Σ 99K ℘(Q) and ε :Q 99K ℘(Q)
are non-deterministic transitions. The semantics of NFA is de�ned similarly to that
of 2AFASMT . A run π of an NFA over a word w is �nite sequence of con�gurations
Q ×N de�ned inductively: π0 = (q0,0) and for any πj = (q, i) with j ∈ N we have
(one of the possible successors) πj+1 = (q′ , i′) if and only if either (i) q′ ∈ ε(q) and
i = i′ ; or (ii) i < `(w), q′ ∈ δ(q,w(i)) and i′ = i +1.

Our translation to NFA requires a further assumption about the considered
2AFASMT : we say that a 2AFASMT A is non-cycling if, for every word w, the set
of (accepting or non-accepting) runs according to Def. C.2 on w is �nite. Existing
methods for transforming non-cycling 2AFA into an NFA [7, 22, 29] are inspired
by the original Shepherdson’s construction [43] for eliminating the bidirectionality,
and on the powerset construction for removing the universal transitions. Here we
propose a translation which is also inspired by previous results and eliminates bidi-
rectonality and universal alternation with a one-step powerset construction, which
is intuitive yet e�cient in practice. Such a construction works only for non-cycling
2AFASMT , which is indeed the case of our 2AFASMT built from the augmented regex
in Section C.3.

The intuition behind our approach is to categorize states based on the direction,
left-to-right> or right-to-left<, from which they can be reached and on the direction

105

Securing the Next Generation Web

they can be left. We denote the former with a superscript and the latter with a
subscript. For example, a state belonging to set S>< means that it can be reached
only with a left-to-right transition (> in the superscript) and can be left with a right-
to-left transitions (< in the subscript). Such a categorization is required to de�ne the
simulating NFA.

De�nition C.3 (S-2AFASMT). A simpli�ed 2AFASMT , denoted S-2AFASMT , is a
tuple (Σ,S>> ,S

<
< ,S

>
< ,S

<
> ,S

>, s>,F
>,δ>∃,δ

<
∃,δ

>
∀,δ

<
∀):

1. the set of states S>> ,S<< ,S>< ,S<> ,S>, {s>} are pairwise disjoint, and we denote
with S their union;

2. s> is the initial state, which does not have incoming transitions and has only
left-to-right outgoing transitions;

3. S> is the set of sink states that only have incoming left-to-right transitions,
namely for each s ∈ S>, q ∈ S , σ ∈ Σ and ∗ ∈ {∃,∀} we have that: s < δ<∗ (q,σ)
and δ<∗ (s,σ) and δ>∗ (s,σ) are unde�ned;

4. F> = S> are �nal states;

5. for each state s ∈ S>> , q ∈ S , σ ∈ Σ and ∗ ∈ {∃,∀} we have that: s < δ<∗ (q,σ)
and δ<∗ (s,σ) is unde�ned. Analogous de�nitions hold for S>< ,S<> ,S<< .

6. The transition functions are as in De�nition C.1.

We notice that any 2AFASMT can be transformed into a S-2AFASMT , and refer
to Appendix C.III for the procedure.

Next, we show how to build a NFA (with ε transitions) that is equivalent to a
S-2AFASMT . Intuitively, states of the NFA are subset of states of the S-2AFASMT ,
which we call macro-states henceforth, and transitions are de�ned by suitably con-
sidering each category of states. The left hand-side of Figure C.4 pictures a run of a
S-2AFASMT on word w = σ1σ2σ3σ4 where automaton states are in-between char-
acters, on the dashed vertical lines. Starting from the state s>, the automaton reads
three characters moving right (s2, s3 ∈ S>>) and lands in state s4 ∈ S>< ; then it moves
backward on s5 ∈ S<< and ends up in s6 ∈ S<> , and then �nally moves forward to the
end of the word accepting in s8 ∈ S>. The simulating NFA scans instead the word
left-to-right only once, essentially guessing at each step the possible (forward and
backward) computations of the S-2AFASMT , as depicted on the right hand-side of
Figure C.4. Dashed circles represent the macro-states of the NFA.

De�nition C.4 (Simulating NFA). Let (Σ, S>> , S<< , S>< , S<> , S>, s>, F>, δ>∃, δ
<
∃, δ

>
∀,

δ<∀) be a S-2AFASMT . The equivalent NFA is: (Σ,℘(S), {s>}, {F | F ⊆ F>},δ,ε) where
the following restrictions holds. For every Q,Q′ ∈ ℘(S), we have Q′ ∈ ε(Q) if and
only if either:

1. Q′ =Q∪ {s} and s ∈ S<> or

2. Q′ =Q \ {s} and s ∈ S>< .

106

C. Black Ostrich: Web Application Scanning with String Solvers

Also, for each Q,Q′ ∈ ℘(S) and σ ∈ Σ, we have Q′ ∈ δ(Q,σ) if and only if the
conjunction of the following holds:

1. Q∩F> = ∅ and Q∩ S>< = ∅;

2. Q′ ∩ {s>} = ∅ and Q′ ∩ S<> = ∅;

3. right-successors: for all s ∈ Q, if s ∈ S>> ∪ S<> ∪ {s>}, then Q′ ∩ δ>∃(s,σ) , ∅ or
δ>∀(s,σ) ⊆Q

′ ;

4. left-successors: for all s′ ∈ Q′ , if s′ ∈ S<< ∪ S>< , then we have δ<∃(s
′ ,σ)∩Q , ∅

or δ<∀(s
′ ,σ) ⊆Q;

5. right-predecessors: for all s ∈ Q, if s ∈ S<> ∪ S<< , then there exists s′ ∈ Q′ such
that s ∈ δ<∃(s

′ ,σ) or s ∈ δ<∀(s
′ ,σ) ⊆Q;

6. left-predecessors: for all s′ ∈ Q′ , if s′ ∈ S>< ∪ S>> ∪ F>, then there is s ∈ Q such
that s′ ∈ δ>∃(s,σ) or s′ ∈ δ>∀(s,σ) ⊆Q

′ .

The conditions on the transition functions follow from the shape of the S-2AFASMT
runs. For example, referring to Figure C.4, we have that states in S<> , such as s6, can
“appear” in a macro-state, Q2 in this case, thanks to ε transitions as dictated by the
�rst bullet in De�nition C.4 (analogously, S>< , such as s4, can disappear). However,
if they appear, then a state they come from should exist from the right (case (5)) as
well as one where they go to, again to the right (case (3)). Similar conditions hold for
S>< states, while for S>> and S<< states we simply require the existence of successor(s)
and a predecessor on the right or on the left, respectively.

Theorem 2. For any word w on Σ, w is accepted by a non-cycling S-2AFASMT i� w
is accepted by its simulating NFA.

Proof. “⇐” Fix a word w, and let π = ((Q0,0), (Q1, i1), (Q2, i2), . . . , (Qn, `(w)))
be the accepting run of the simulating NFA. Let P = {(s, i) | (Qi , i) ∈ π and s ∈ Qi}
be the set of 2AFASMT state/index pairs occurring in the run. Consider then the
graph G = (P ,R) with:

R =
{((s, i), (t, i +1)) | t ∈ δ>∃(s,w(i))∪ δ

>
∀(s,w(i))} ∪

{((s, i), (t, i − 1)) | t ∈ δ<∃(s,w(i − 1))∪ δ
<
∀(s,w(i − 1))}

(C.1)

G is acyclic, because the considered S-2AFASMT is non-cycling. We prove that,
for every (s, i) ∈ P , there is an accepting S-2AFASMT run π on w with the initial
con�guration π0 = {(s, i)}; this is proven by well-founded induction on the length
of the longest path in G starting from (s, i). If (s, i) has no outgoing edges, then
i = `(w) and s must be accepting, and π = ({(s, i)}) is an accepting run.

Assume then that (s, i) has outgoing edges, and suppose the �rst case of (C.1)
applies and s ∈ S>>∪S<>∪{s>} (the second case is similar). By Def. C.4, there is an s′ ∈
δ>∃(s,wi) such that (s′ , i +1) ∈ P , or (s′ , i +1) ∈ P for all s′ ∈ δ>∀(s,wi). In both cases,
by induction for each such s′ an accepting run with initial con�guration {(s′ , i +1)}
exists, which can be combined and extended to obtain an accepting run with initial
state {(s, i)}.

107

Securing the Next Generation Web

“⇒” Proven in a similar way, this time by considering the graph G generated by
an accepting S-2AFASMT run on w and showing that at each step of a run, the set
of states composing the run are included in macro-statesQ of an NFA run onw. �

C.5 Coverage and Vulnerability Study

We evaluate our approach by performing a large-scale scan of patterns used on the
web. We explain how we gather the patterns in Section C.5.1. We add these patterns
to a testbed on which we can compare our approach with other state-of-the-art scan-
ners. Details about the testbed can be found in Section C.5.2. Design choices for the
implementation of Black Ostrich are presented in Section C.5.3.

C.5.1 Gather Data

To compare our method with other scanners we create a testbed to test both the
crawling capabilities of scanners and their payload generation capabilities. We do
this by extracting forms using HTML5 patterns from real-world websites.

To �nd real-world client-side validation, we use data from the Common Crawl
data set [11] of websites. The Common Crawl data set is a public collection of
HTML documents found while crawling the public web. From Common Crawl we
extract all archives of the July 2021 index collection (CC-MAIN-2021-31), contain-
ing 3,15 billion pages or 360 TiB uncompressed content. The process took about
two weeks. To avoid over-collecting, we deduplicate incoming validation patterns
per archive (.warc) �le, meaning that e.g. recurring input validation patterns in
a page header are only reported once per archive. This strategy is based on an as-
sumption that pattern duplication exhibits locality with repeated patterns occurring
within the same archive. For each page crawled we extract all the HTML patterns
and create a database along with some of their contexts such as other attributes of
the element and the URL at which they were initially crawled.

In addition to Common Crawl, we also crawl the top 100K domains from Tranco [34]
to include patterns from popular websites. For each domain, we pick �ve random
links and search all pages for forms with HTML5 patterns.

In total, we extract 9 805 unique patterns. We further remove any patterns that
cause a syntax error in either Node, Firefox, or PHP. Inconsistent patterns, where a
solution is accepted in JavaScript but not PHP or vice versa, and patterns reported
as unsatis�able by both Black Ostrich and ExpoSE are also removed. This results in
8 821 valid patterns that we use for the testbed, and share publicly [3].

The most common pattern by far is for checking email addresses. This is in-
teresting as type="email" already supports similar validation. Other popular ones
are the semantically equivalent patterns [0-9]* and \d*. Usually corresponding in-
put elements for quantities. In general, the complexity spans from simple and short
to long and complex. The average length of the patterns is 39 characters but there
are 453 longer than 100 characters and the longest pattern is 29 059. There are also
500 patterns using look-arounds and 4044 patterns using anchors.

108

C. Black Ostrich: Web Application Scanning with String Solvers

C.5.2 Testbed

To avoid attacking live websites we recreate the same input elements in a testbed.
Using the real-world patterns we design this testbed with one page per unique pat-
tern. Each page in the testbed consists of a form with a single input element con-
taining a pattern from the database. We also include the most common name and
type for each pattern as some scanners use this information to decide what value to
send. A template of the testbed page used for each pattern is shown in Section C.VI
in Section C.VI.

The same pattern is also checked server-side to ensure scanners do not simply
ignore the client-side check. We also check the input type validation for email and
URL server-side. We show this server-side code in Section C.VI in Section C.VI. Note
that HTML5 patterns match on the entire string and not just part of it. Therefore we
surround the pattern with /^(?: and $), as explained in the HTML5 standard [45]. If
the scanner sends a valid input the server will re�ect this input, allowing for XSS,
which should be detected by the scanners. Finally, we run each scanner on the
testbed and record both if it passes the pattern, and if it reports the XSS vulnerability.

C.5.3 Implementation

In this section, we present the implementation details for our validation-aware scan-
ner. We implement our approach [3] by synergizing and improving the open-source
web application scanner Black Widow [18] and solver Ostrich [10]. Section C.5.3.1
presents the modi�cations to the scanner, and Section C.5.3.2 presents the modi�-
cations to the solver.

C.5.3.1 Scanner module.

We make two major modi�cations, one to the data extraction and one to the witness
selection.

We update the navigation model in the crawler component to allow for modeling
of the new pattern attributes. During the crawling phase, we save all the patterns the
scanner �nds together with their respective input elements. To dynamically detect
regex-based JavaScript validation we proxy the test method of the window.RegExp
object. Then we input unique tokens on all input �elds and save any regex where
test is applied on our input.

Once the scanner is ready to submit a value to a form we retrieve the correspond-
ing pattern from the navigation model and send it to the solver, which generates a
matching value for the pattern. When the scanner is in attack mode then the payload
is also sent to the solver as an additional constraint.

C.5.3.2 Solver module.

As SMT solver in Black Ostrich, we apply an extended version of the open-source
solver Ostrich. The di�erence to the standard version of Ostrich is the handling
of ECMA regular expressions (Section C.3 and Section C.4). This functionality was
integrated by extending the Ostrich SMT-LIB interface [5], adding a new function

109

Securing the Next Generation Web

re.from_ecma2020 that converts a string to a regular expression. The translation
of 2AFASMT to NFA is implemented through the expansion in Def. C.4; as an opti-
mization, our implementation only generates reachable NFA states to mitigate the
possible exponential growth caused by the expansion.

C.5.4 Comparison of Ostrich and ExpoSE

Loring et al. [36] present ExpoSE, a symbolic execution tool for JavaScript. While
ExpoSE is not a string solver, it contains one that could potentially be combined with
a web scanner. To compare, we run both ExpoSE and Ostrich on all valid patterns
and record their coverage and execution time. Since ExpoSE uses symbolic execution
we need to create a small JavaScript �le with the pattern. The exact JavaScript �le is
in Section C.VIII. To avoid getting stuck on any particular pattern we use a timeout
of ten seconds.

Arac
hni

Blac
k Ostr

ich

Blac
k Widow

Enem
y jÄk

ZAP

Prev
ious Combined

0

2,000

4,000

6,000

8,000

3,391

8,778

3,891

2,665

1,196

4,638

5,425

3,391

8,778

3,891

2,665

1,196

4,638

#P
at

te
rn

s

Figure C.5: Number of patterns passed by scanners.

C.6 Results

In this section, we present the results of our empirical study. Section C.6.1 presents
the results from our testbed. Finally, In Section C.6.2 we analyze the results and
present qualitative insights into the results.

110

C. Black Ostrich: Web Application Scanning with String Solvers

C.6.1 Black-box Scanning

We divide the testbed results into pattern coverage and XSS vulnerability detection.

C.6.1.1 Coverage.

In total our scanner solves 8 778 patterns out of the total 8821, resulting in a coverage
of 99%. In comparison, the other scanners have an average coverage of 36%, ranging
from jÄk solving 1 196 patterns (14%) to ZAP solving 4 638 patterns (53%).

The coverage results are presented in Figure C.5, which shows that our method
can pass many more patterns compared to the combined e�orts of previous ap-
proaches. An example of a group of patterns only we �nd are patterns tightly bound
in length, like \d{16}.

To compare the coverage between scanners we create a heatmap, shown in Ta-
ble C.1, where each cell contains the number of patterns that the scanner on the row
�nds compared to the scanner on the column. For example, on the Arachnirow in
the Black Ostrich column, we see that Arachni solves 8 patterns that Black Ostrich
misses. Conversely, the Black Ostrich row and Arachni column show that Black
Ostrich solves 5 395 patterns that Arachni misses. In this sense, neither of those
scanners is strictly better than another at solving patterns.

We also see that the no scanner performs strictly better than another scanner
in terms of coverage, as all zeroes lie on the diagonal. The Black Ostrich column of
the heatmap highlights that our scanner is unable to solve some patterns that other
scanners can handle. These cases are explored further in Section C.6.2.

Arac
hni

Blac
k Ostr

ich

Blac
k Widow

Enem
y jÄk

ZAP

Prev
ious Combined

0

200

400

600

800

529

863

532

625

541

741

821

529

863

532

625

541

741

#P
at

te
rn

s

Figure C.6: Number of vulnerable patterns found by scanners.

111

Securing the Next Generation Web

C.6.1.2 Vulnerabilities.

Figure C.6 shows how many patterns the scanner reports are XSS vulnerable. As
the data shows, our method outperforms the other scanners in terms of how well
it can submit payloads that match the pattern. Compared to the average of the
other scanners we improve vulnerability detection by 45%. The patterns passed by
other scanners are usually simpler, like .{7,}, which allows any payload that is at
least seven characters long. This explains the plateau at around 535 in Figure C.6.
We analyze in more detail why Enemy of the State and ZAP can break this plateau
in Section C.6.2. In short, they are more lenient about what constitutes proof of
XSS. This results in many false positives. Our approach outperforms the others in
cases with stricter formatting requirements. A simple example is email patterns that
require the at-sign and period, like .+@.+[.].+. Or requirements of speci�c strings,
like “France” in the pattern .*France.

As can be seen on the Black Ostrich row in the heatmap in Table C.2, our scan-
ner has a strong matchup against all the other scanners when comparing found
vulnerabilities. Interesting to note is a total of 98 vulnerabilities we miss, that other
scanners �nd. We discuss these cases, and additional cases we miss, more closely in
the analysis in Section C.6.2

C.6.2 Analysis

In this section, we explore some interesting parts of the results. We split the analysis
into phenomena regarding the coverage, in Section C.6.2.1, and vulnerabilities, in
Section C.6.2.2.

C.6.2.1 Coverage.

To better understand what can be improved we analyze the cases we miss that other
scanners �nd. We also explore the patterns no scanner solves to detect any false
negatives.

What we miss. As Table C.1 shows, there are cases where other scanners solve pat-
terns that we are not able to solve. In total there are 15 cases where another scanner
solves a pattern that we do not. These are complex patterns that have relatively
easy solutions. A scanner-related problem is a pattern where the �rst solution is the
DEL character (0x7F), which can not be typed into the text �eld by our scanner. To
improve coverage in these cases we need to ensure the solutions are printable and
improve the underlying scanner to handle submission of unprintable values.

C.6.2.2 Vulnerabilities.

Notable for the vulnerability results is that Enemy of the State and ZAP �nd more
vulnerabilities compared to the other scanners. We also explain why jÄk has worse
coverage performance yet similar vulnerability performance compared to the other
scanners.

112

C. Black Ostrich: Web Application Scanning with String Solvers

Table C.1: Unique coverage found between scanners

Arachni Black Ostrich Black Widow Enemy JÄk ZAP
Arachni 0 8 962 1,625 2,201 641

Black Ostrich 5,395 0 4,889 6,121 7,584 4,151
Black Widow 1,462 2 0 1,449 2,774 184

Enemy 899 8 223 0 1,506 64
JÄk 6 2 79 37 0 19
ZAP 1,888 11 931 2,037 3,461 0

Compared to Enemy of the State and ZAP. Both Enemy of the State and ZAP
perform better than the other scanners we test. The reason for this is not that they
use advanced string solving, but rather a di�erent proof of XSS. This allows them to
use shorter payloads. For example, for the pattern .{0,20}, which allows a maximum
of 20 characters, a normal XSS payload, e.g. <script>alert(1)</script>, is too long at
25 characters. In comparison, Enemy of the State uses the 19 characters long string ’

’;!--"<Ocy1>=&{()} and ZAP uses javascript:alert(1). We see these as false positives
and therefore do not accept this in Black Ostrich. However, we still add support for
detecting tag-injections, making it easy for developers to enable it.

jÄk’s coverage and vulnerability detection. jÄk’s performance is interesting as
the coverage is signi�cantly worse compared to the other scanners, yet the number
of found vulnerabilities is on par with the others. This is because jÄk only sends
attack payloads to the form. As such, jÄk’s coverage will match the vulnerabilities
they �nd plus any pattern accepting empty strings. This di�ers from scanners that
also try benign values for the input elements.

C.6.3 Results of Black Ostrich vs. ExpoSE

From the 9 805 patterns, we remove broken, invalid and unsatis�able patterns to
arrive at a total of 8 821. Our experiment shows that Black Ostrich can solve 8 820
while ExpoSE solves 7 189, an improvement of 23%. This is slightly better than the
testbed results as it does not impose the extra constraint of printable characters.
Comparing the time performance, Black Ostrich takes on average 1.35 seconds and
ExpoSE takes 4.11. Also important to note is that ExpoSE time-outs on 158 patterns
while Black Ostrich only time-outs on 1 pattern.

One example of where ExpoSE fails, but Black Ostrich does not, is a large group
of 358 patterns using look-arounds; one such pattern is the recommended regex for
passwords shown in Example 1. In general, the patterns ExpoSE fail on are also
longer, with an average length of 62 characters compared to 26 for solved patterns.
Similarly for patterns that timeout, the average length is 156 vs. 30 for patterns
solved in time.

113

Securing the Next Generation Web

Table C.2: Unique vulnerabilities found between scanners

Arachni Black Ostrich Black Widow Enemy JÄk ZAP
Arachni 0 15 101 86 113 59

Black Ostrich 349 0 341 280 330 206
Black Widow 104 10 0 49 97 12

Enemy 182 42 142 0 152 16
JÄk 125 8 106 68 0 28
ZAP 271 84 221 132 228 0

C.7 Pa�erns in Open-Source Applications

To further explore the prevalence of patterns in the wild we perform a study on the
usage of patterns in open-source GitHub projects. We download the 978 best match-
ing projects from GitHub’s “web-application” topic [23]. Note that many projects
here are not strictly web applications, but also projects such as Arachni, which is a
web application scanner. Searching for " pattern=" we extract 195 �les from 72
projects. We manually analyze these �les to determine if they are HTML patterns,
as this is not always the case. For example, we found non-HMTL patterns in SVG
�les. We also remove projects that are lacking enough information to run locally,
for example, projects missing database schemas. After �ltering, we acquire three
usable projects with HTML patterns. We run these and inspect them manually in
the browser to ensure the patterns are used.

ALEX. The ALEX project is a great example of a web application that validates the
pattern both on the client-side and server-side. To create a new project in ALEX a
URL is required, and the URL must match ^https?://.*?.

Similar to previous studies [39] we compare the number of URLs the scanner
visits, excluding URLs to static �les. We also ignore query parameters in the URL
and collapse the ID number in the path. For example, the projects/1/users and
projects/2/users execute similar code, but for di�erent projects.

The results show that Black Ostrich can �nd 25 di�erent path-level URLs while
Black Widow only found nine, resulting in a 178% increase in URL-level coverage.
Furthermore, Black Ostrich found all the nine Black Widow found. Neither Arachni,
Enemy of the State, jÄknor ZAPmanaged to pass the login, resulting in just one
URL. The authentication is extra di�cult as it uses a cross-domain token service to
manage authentication and not simple cookies. The login form is also dynamically
generated making it impossible to specify credentials to these scanners.

By source code analysis, we determine that being able to solve the pattern needed
to create projects is the key factor to achieve higher crawling coverage in this case.

Helping Hands. The main challenge in this web application is registering a user.
The registration form uses patterns to validate phone numbers, among other things.
Here we do not provide credentials to test their ability to register.

114

projects/1/users
projects/2/users

C. Black Ostrich: Web Application Scanning with String Solvers

In this case, all scanners except Enemy of the State found the registration form.
From here, only Black Ostrich was able to correctly solve all the patterns needed for
registration and authentication.

Opera DNS UI. This application uses many challenging patterns in its forms relat-
ing to DNS records, like a pattern1 for IPv4 addresses. As these are checked server-
side too, only a valid IP address will be accepted in this case. As Enemy of the State
does not support basic access authentication it could not log in. It would still fail to
submit the form as the submission is triggered by JavaScript. The other scanners
can log in and �nd the form. As the form’s method is post, jÄkdoes not interact with
it. Both ZAPand Arachnimanages to submit, but not valid data, and thus rejected by
the server. Only Black Ostrich can submit a valid record.

C.8 Related Work

SMT. String constraints solvers have �ourished in recent years [2]. The two main
paradigms for solving string constraints are SMT and constraint programming. Many
SMT solvers have decision procedures for handling string constraints among which:
Z3 [13], Z3-str/2/3/4 [46], S3/p/# [44]; CVC4 [35], Norn [1], Sloth [26], and Os-
trich [10]. They rely on automata-based techniques or algebraic results for strings
or reduce the problem to other well-known theories, such as integers or bit-vectors.
We believe our solver is the �rst to directly handle ECMAScript regular expressions.
A comparison with the symbolic execution tool ExpoSE, which includes support for
ECMAScript regexes, is provided in Section C.3.4.

2AFA. The equivalence between two-way and one-way automata has been origi-
nally proven by Rabin, but a most modern straightforward proof is given by Shep-
herdson in [43]. Alternation has been introduced only later, in the seminal work in
the ’70s [9]. Since then, the study of the combination of the two has been scattered,
and we refer to [30] for a thorough survey. Although a �rst proof of equivalence
between 2AFA and NFA appeared in [33], Birget [7] is the �rst to provide a com-
prehensive study of di�erent kinds of �nite automata, as well as a translation from
(non-cycling) 2AFA to NFA which is done in several steps and make uses of ho-
momorphisms between alphabets. More recent translations appear in [22], which
also works for cycling 2AFA. The above are theoretical construction, usually ori-
ented to complexity theory, and to the best of our knowledge they have not been
implemented in practice.

Web scanning. Web scanning is a research topic actively being explored. The rea-
son behind this is that there are still many open challenges in web scanning, both
for improving crawling and for improving vulnerability detection. In this study, we
compare our implementation with other state-of-the-art scanners [15, 38, 39, 41].
Outside of our empirical study, there are also many other scanners [4, 16, 17, 20, 24,
28, 40] that made signi�cant improvements in the �eld. A related study by Fonseca

1((25[0-5]|(2[0-4]|10,1[0-9])0,1[0-9]))̇3,3(25[0-5]|(2[0-4]|10,1[0-9])0,1[0-9])

115

Securing the Next Generation Web

et al. [19] shows that many security patches in web applications update vulnerable
regexes, further motivating the need for validation-aware web scanning.

While the goal of improving vulnerability detection has been common for pre-
vious approaches, the areas of scanning they improve vary. For example, jÄk [39],
Enemy of the State [15], LigRE [16], and Black Widow [18] focuses mainly on im-
proving the crawling aspect of scanning, while using common payloads and fuzzing
techniques. jÄk improved crawling by modeling JavaScript events in a novel way
leading to deeper crawls and a higher detection rate of vulnerabilities. Enemy of the
State achieved similar improvements by instead inferring the server-side state, thus
being able to handle more complex work�ows. Black Widow improves crawling
by combining key features from previous methods, including navigation modeling,
traversing, and inter-state dependency analysis. Although we build our scanner on
top of Black Widow, neither of these approaches covers the orthogonal aspect of
handling the validation patterns supplied by web applications.

In addition to improving crawling, the attack phase can also be improved to
achieve better vulnerability detection rates. Both KameleonFuzz [17] and sqlmap [20]
are examples of scanners that focus more on payload selection and fuzzing tech-
niques to improve detection rate. KameleonFuzzdynamically mutates the XSS pay-
loads based on the re�ected value to iteratively update the payload until an attack
is successful. While this has the potential of solving patterns, it is probabilistic and
likely fails on very speci�c patterns. For example, one pattern only we could exploit,
was .*France. Finding inputs with this speci�c string using mutations seems highly
unlikely. While we focused on XSS in this study, solving patterns is important for
�nding other vulnerabilities such as SQL injections too. sqlmap does not consider
patterns when fuzzing, instead, they rely on a large table with payloads that use
di�erent escaping techniques. This too would fail on the vulnerable “France” ex-
ample. To overcome this our scanner, Black Ostrich, also uses SMT to generate the
payloads. This means that we can combine common attack payloads, like <script>

alert(1)</script> with patterns like .*France to generate success attack inputs like
<script>alert(1)</script>France.

C.9 Conclusions

We have presented Black Ostrich, a principled approach that leverages string-based
constraint solving for deep crawling. We improve state-of-the-art string solving by
extending the open-source solver Ostrich with native support for ECMA regular ex-
pressions. To handle the commonly occurring anchors and look-arounds in patterns
on the web, we propose a new version of two-way alternating �nite-state automata,
named 2AFASMT . Leveraging the observation that front-end HTML5 pattern at-
tributes and input types mirror the back-end validation of a web application, we
illustrate how to integrate patterns like emails, zip codes, phone numbers, and max-
imum lengths into scanning and fuzzing. With our dynamic regex extraction, we
can also handle regex-based JavaScript validation, used in popular libraries such as
jQuery Validate. This increases our coverage of web applications, as we can bypass
form validation while still generating inputs containing XSS injections, tokens for

116

C. Black Ostrich: Web Application Scanning with String Solvers

taint tracking, or other side constraints required by the scanner. Our evaluation
on 8 821 patterns extracted from popular websites demonstrates that Black Ostrich
yields a 175% improvement in coverage and a 45% improvement in vulnerability
detection compared to the average of the other scanners. We analyze the use of
patterns in open-source web applications from GitHub. We perform a case study
on three of the projects and showcase improved coverage speci�cally thanks to our
string solving capabilities. Finally, we have used our implementation of the ECMA
Regular Expression standard of JavaScript to analyze a condensed set of harvested
email validation patterns. This served the dual purpose of illustrating the correct-
ness of our implementation, as we were able to �nd matching strings for the vast
majority of the analyzes regular expressions, as well as showing that 26% of email
validation patterns would be vulnerable to XSS injections without further sanitiza-
tion. We also illustrated a signi�cant diversity among the commonly used patterns,
suggesting that many website authors indeed hand-craft email validating patterns.

117

Securing the Next Generation Web

118

Bibliography

[1] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer, and J. Sten-
man. Norn: An SMT solver for string constraints. In D. Kroening and C. S.
Pasareanu, editors, Computer Aided Veri�cation - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume
9206 of Lecture Notes in Computer Science, pages 462–469. Springer, 2015.

[2] R. Amadini. A survey on string constraint solving. CoRR, abs/2002.02376, 2020.

[3] Anonymous, authors of this paper. Data and code used in this study. Will be
released upon publication. Submitted in HotCRP as additional material.

[4] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Saner: Composing static and dynamic analysis to validate sanitiza-
tion in web applications. In 2008 IEEE Symposium on Security and Privacy (sp
2008), pages 387–401. IEEE, 2008.

[5] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6.
Technical report, Department of Computer Science, The University of Iowa,
2017. Available at www.SMT-LIB.org.

[6] C.-P. Bezemer, A. Mesbah, and A. van Deursen. Automated security testing
of web widget interactions. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 81–90. ACM, 2009.

[7] J. Birget. State-complexity of �nite-state devices, state compressibility and in-
compressibility. Math. Syst. Theory, 26(3):237–269, 1993.

[8] P. Bisht, T. L. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. N. Venkatakrishnan.
Notamper: automatic blackbox detection of parameter tampering opportuni-
ties in web applications. In CCS, pages 607–618. ACM, 2010.

[9] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981.

[10] T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu. Decision procedures
for path feasibility of string-manipulating programs with complex operations.
Proc. ACM Program. Lang., 3(POPL):49:1–49:30, 2019.

[11] Common Crawl Foundation. Common Crawl. https://commoncrawl.org.

[12] M. Contributors. Html: Hypertext markup language. entry <input
type="email">, 2021.

119

https://commoncrawl.org

Securing the Next Generation Web

[13] L. M. de Moura and N. Bjørner. Z3: an e�cient SMT solver. In Tools and Al-
gorithms for the Construction and Analysis of Systems, 14th International Con-
ference, TACAS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, pages 337–340, 2008.

[14] L. M. de Moura and N. Bjørner. Satis�ability modulo theories: introduction
and applications. Commun. ACM, 54(9):69–77, 2011.

[15] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the state: A state-
aware black-box web vulnerability scanner. In USENIX Security Symposium 12,
pages 523–538, 2012.

[16] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. Ligre: Reverse-engineering of
control and data �ow models for black-box xss detection. In 2013 20th Working
Conference on Reverse Engineering (WCRE), pages 252–261. IEEE, 2013.

[17] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. Kameleonfuzz: evolutionary
fuzzing for black-box xss detection. In Proceedings of the 4th ACM conference
on Data and application security and privacy, pages 37–48, 2014.

[18] B. Eriksson, G. Pellegrino, and A. Sabelfeld. Black Widow: Blackbox Data-
driven Web Scanning. In S&P, 2021.

[19] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira. Analysis of �eld data on web
security vulnerabilities. IEEE Transactions on Dependable and Secure Comput-
ing, 11(2):89–100, 2014.

[20] B. D. A. G. and M. Stampar. sqlmap, 2021.

[21] V. Ge�ert, C. A. Kapoutsis, and M. Zakzok. Complement for two-way alternat-
ing automata. Acta Informatica, 58(5):463–495, 2021.

[22] V. Ge�ert and A. Okhotin. Transforming two-way alternating �nite automata
to one-way nondeterministic automata. In E. Csuhaj-Varjú, M. Dietzfelbinger,
and Z. Ésik, editors, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proc.,
Part I, volume 8634 of Lecture Notes in Computer Science, pages 291–302.
Springer, 2014.

[23] GitHub. web-application · GitHub Topics. https://github.com/topics/we
b-application.

[24] W. G. Halfond, S. R. Choudhary, and A. Orso. Penetration testing with im-
proved input vector identi�cation. In 2009 International Conference on Software
Testing Veri�cation and Validation, pages 346–355. IEEE, 2009.

[25] J. Harband and K. Smith. ECMASscript 2020 language speci�cation, 11th edi-
tion, 2020. https://262.ecma-international.org/11.0/.

120

https://github.com/topics/web-application
https://github.com/topics/web-application
https://262.ecma-international.org/11.0/

Bibliography

[26] L. Holík, P. Janku, A. W. Lin, P. Rümmer, and T. Vojnar. String constraints with
concatenation and transducers solved e�ciently. Proc. ACM Program. Lang.,
2(POPL):4:1–4:32, 2018.

[27] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata the-
ory, languages, and computation, 3rd Edition. Pearson international edition.
Addison-Wesley, 2007.

[28] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat: a web vulnerability
scanner. In Proceedings of the 15th international conference on World Wide Web,
pages 247–256, 2006.

[29] C. A. Kapoutsis. Removing bidirectionality from nondeterministic �nite au-
tomata. In J. Jedrzejowicz and A. Szepietowski, editors, MFCS 2005, Gdansk,
Poland, volume 3618 of Lecture Notes in Computer Science, pages 544–555.
Springer, 2005.

[30] C. A. Kapoutsis and M. Zakzok. Alternation in two-way �nite automata. Theor.
Comput. Sci., 870:75–102, 2021.

[31] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: A
Solver for String Constraints. In ISSTA. ACM, 2009.

[32] D. J. C. Klensin. Application Techniques for Checking and Transformation of
Names. RFC 3696, Feb. 2004.

[33] R. E. Ladner, R. J. Lipton, and L. J. Stockmeyer. Alternating pushdown and stack
automata. SIAM Journal on Computing, 13(1):135–155, 1984.

[34] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and
W. Joosen. Tranco: A research-oriented top sites ranking hardened against
manipulation. In Proceedings of the 26th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2019, 2019. List available at https://tranco-
list.eu/list/N5QW.

[35] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A DPLL(T) theory
solver for a theory of strings and regular expressions. In CAV, pages 646–662,
2014.

[36] B. Loring, D. Mitchell, and J. Kinder. Sound regular expression semantics for
dynamic symbolic execution of JavaScript. In K. S. McKinley and K. Fisher,
editors, Proc. of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, pages 425–438. ACM, 2019.

[37] A. Mesbah, E. Bozdag, and A. Van Deursen. Crawling ajax by inferring user
interface state changes. In 2008 Eighth International Conference on Web Engi-
neering, pages 122–134. IEEE, 2008.

[38] OWASP. Owasp zed attack proxy (zap), 2020.

121

https://tranco-list.eu/list/N5QW
https://tranco-list.eu/list/N5QW

Securing the Next Generation Web

[39] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow. jÄk: Using Dynamic
Analysis to Crawl and Test Modern Web Applications. In International Sympo-
sium on Recent Advances in Intrusion Detection, pages 295–316. Springer, 2015.

[40] T. S. Rocha and E. Souto. Etssdetector: A tool to automatically detect cross-site
scripting vulnerabilities. In 2014 IEEE 13th International Symposium on Network
Computing and Applications, pages 306–309, Aug 2014.

[41] Sarosys LLC. Framework - arachni - web application security scanner frame-
work, 2019.

[42] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A Symbolic
Execution Framework for JavaScript. In S&P, 2010.

[43] J. C. Shepherdson. The reduction of two-way automata to one-way automata.
IBM J. Res. Dev., 3(2):198–200, 1959.

[44] M. Trinh, D. Chu, and J. Ja�ar. S3: A symbolic string solver for vulnerability
detection in web applications. In CCS, pages 1232–1243, 2014.

[45] W3C. Html 5.2, 2021. https://www.w3.org/TR/2021/SPSD-html52-
20210128/.

[46] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a Z3-based string solver for web
application analysis. In ESEC/SIGSOFT FSE, pages 114–124, 2013.

122

https://www.w3.org/TR/2021/SPSD-html52-20210128/
https://www.w3.org/TR/2021/SPSD-html52-20210128/

Appendix

C.I The Built-in Email Validation of HTML5

1 [a-zA-Z0-9.!#$%&’*+\/=?^_‘{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])
?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*

Listing C.1: The MDN regex for validating email addresses. It should be equivalent
to the validation implemented by browser vendors for the email input
type. [12]

C.II Case Study: Finding Vulnerable Email Regexes

In this section we illustrate the viability of our implementation of ECMA regexes in
a string solver by applying it to the analysis of regexes found in the wild.

Browsers implementing the HTML5 input type also implement syntactic email
validation equivalent to the regex in Listing 1, henceforth referred to as MDN [12].
This validation under-approximates the permissive requirements of the IETF inter-
net standards summarized in RFC3696, disallowing some technically valid email ad-
dresses [32]. This is no doubt based on a pragmatic assumption that most people do
not have addresses like the (technically valid) "<script>alert(1)</script>"@example.

com.
Users of the email input type can add additional validation using the pattern

attribute if they have further requirements. It is also possible for a web designer
to forego the built-in validation by not using the email input type, and supplying a
pattern attribute with their validation logic.

This section investigates how real-world regexes used to validate email address
inputs relate to the built-in validation of web browsers. We also investigate the
security implications of sharing regexes for validation between the front-end and
back-end of a web application without modi�cation. This has implications on se-
curity, as the semantics of the pattern attribute are di�erent from the ones of most
regex engines.

In particular, we ask these three research questions: (i) How many validation
regexes would accept an XSS attack string rejected by MDN? (ii) How many vali-
dation expressions impose stricter constraints than MDN, rejecting some string ac-
cepted by it? (iii) If the pattern validation regex is reused for validation in a back-end,
how often would this let through an XSS attack string?

We investigate these questions on a collection of 825 unique email-validating
regexes. We obtain this collection by de-duplicating the signi�cantly larger set of
869 347 patterns collected in Section C.5.1. We further �lter out patterns where the
name or id attributes of the input element contained the string “email”. This means
that the data set contains both validation patterns used in addition to MDN and pat-
terns used instead of it. Finally, we remove 2 patterns that use anchors incorrectly,
leaving us with a total of 825.

123

Securing the Next Generation Web

Attack
string

Tested
Regex.*<script>.*

MDN

Figure C.7: A Venn diagram showing the relationship between the string sought
in Section C.II.1, MDN, and the set of strings accepted by the pattern
being experimented on. Note that no string containing a <script> tag is
accepted by MDN! Sizes have no meaning.

MDN
Tested

Strong

Regex

Figure C.8: A Venn diagram showing the relationship between the string sought in
Section C.II.2 and MDN. Here we seek some string that is rejected by
the pattern but accepted by MDN. Sizes have no meaning.

Table C.3 summarizes the results of all three investigations. Note that the accep-
tance of an email address containing a <script> tag is neither necessarily in violation
of the IETF standards nor is it a guaranteed vulnerability in the application.

We conduct two experiments to illustrate that custom email validation regexes
are simultaneously both weak and strong compared to the baseline MDN, in the
sense that they simultaneously both allow an XSS attack string rejected by MDN
and reject some input that is accepted by MDN. For an illustration of these concepts,
please see Figure C.7 and Figure C.8 respectively.

C.II.1 Vulnerable Pa�erns

To �nd potential sources of vulnerabilities not permitted by MDN, we instruct Os-
trich to �nd a string s for each regex ρ out of the 825 collected ones such that
s matches ρ, contains a <script> tag, and does not match MDN. For an illustration,
see the Venn diagram in Figure C.7. This illustrates that we can �nd at least one
meaningfully di�erent string that would pass the validation expression but not the
built-in validation of web browsers. This has interesting implications under the
assumption that a regex used for validation in the front-end of a web application
would have a high probability of being reused for the corresponding validation in
the back-end. The extended implications of this hypothesis are further investigated
in Section C.II.3.

This experiment �nds 215 potentially vulnerable regexes (satis�able). 572 regexes
are either fully subsumed by MDN, i.e., equivalent or strictly weaker, or will not al-
low a <script> tag. The remaining 38 regexes trigger syntax errors during parsing in
Ostrich and had to be discarded from the study. All matching strings are validated
against the RegExp class in NodeJS 15.14.0, and all but 2 are found to match, meaning

124

F. Black Ostrich: Web Application Scanning with String Solvers

that our translation of the ECMA semantics as described in Section C.3 is precise for
the most part and leaving us with a total of 213 vulnerable regexes.

C.II.2 Strong Pa�erns vs MDN

We also want to investigate if the patterns used are enforcing meaningfully stronger
constraints on their inputs than MDN in the sense of further restricting the inputs
of the form �eld. To do this, we invoke Ostrich on each regex ρ to �nd a string
not matching ρ but matching MDN. An illustration can be seen in Figure C.8. This
experiment yields a larger number of matching strings: 745, suggesting that these
constraints are either typically used to narrow the set of allowed inputs or based on
under-approximating expressions like .+@.+\..+. The occurrence of negative look-
aheads to eliminate free email hosts further supports the �rst part of the hypothesis,
suggesting that the author intended to block these, a typical semantic validation not
captured by the built-in syntactic email validation. One of the generated strings
contained the domain “me.com”, from a regex meant to block email addresses from
common free email hosts. All the other examples include exclamation points, am-
persands, single quotes, pluses, or slashes, which are allowed before the @-sign by
MDN but commonly disallowed by custom validation expressions whether by omis-
sion or on purpose. Note that these are examples found by Ostrich and that it does
not imply that these patterns all represent the same constraints.

C.II.3 Vulnerabilities When Sharing Code

For HTML5 forms the semantics of the pattern attribute state that the regex must
match the full input. This is not the case for most regex engines used in back-ends,
where it is su�cient to only match a substring. If the same regex is used for valida-
tion both at the front-end and at the back-end this would mean that the validation
in the back-end is potentially weaker than the one in the front-end. Speci�cally, this
would be the case for regexes without anchors matching the beginning and end of
the string.

To verify how common the use of such regexes is, we execute an experiment
where we expand regexes not containing anchors (^$) with catch-all expressions (.∗
), in an opposite fashion to the logic of Section C.5.2. As the semantics of regexes
are rather complicated, we expand them naively by simply replacing any expression
beginning and ending with the expansion, if they did not contain either anchor,
allowing post-solving validation to �ag the edge cases where the regexes were more
complicated. In other words, .+@.+ would become .∗.+@.+.∗. We could �nd an
attack for 531 of the modi�ed regexes, and could verify actual vulnerability for 502
of them; an increase of 289 from the 213 vulnerable ones we found in Section C.II.1.

C.II.4 Summary

Email-validating HTML5 patterns are diverse. It is common for them to be both
weak compared to the built-in validation, and to re�ne the built-in validation with
additional constraints, as can be seen in Table C.3. While the latter case is hardly a

125

Securing the Next Generation Web

In pattern In back-end
Accepts <script> 213 502
Rejects MDN-valid input 745 n/a

Table C.3: Comparison of crawled email validation patterns to the built-in HTML5
validation.

cause for concern for the security of the application, the use of redundant validation
expressions is also suggestive of code reuse. If that would be the case, di�erences
in semantics between the HTML pattern attribute and all common regex engines
would make the validation at the back-end weaker than the one at the front-end.
This implies that security vulnerabilities will be present in many web applications
if the strings are reused unsanitized.

Finally, these experiments illustrate that our encoding of the ECMA regex se-
mantics is both versatile and performant enough to solve both substring matching
and (non-) intersection for real-world regexes, many of them highly complex and all
of them harvested from real websites. Only 38 (unable to parse) plus two (semanti-
cally invalid) out of the 825 regexes are untranslatable into our encoding.

C.III Details of Section C.3

We de�ne the semantics of augmented regular expressions recursively, in the style
of semantics for temporal logic:

De�nition C.5 (Augmented regex semantics). Let w = w0w1 . . .wn be a string in
Σ∗ of length `(w) = n + 1, and let w(i, j) be the segment of the string starting at i
and ending at j (excluded). If j > `(w), then w(i, j) = w(i, `(w)) and for every j ≤ i
we have w(i, j) = ε, i.e., the empty string. Moreover, we denote with w(i) the i-th
symbol of w, which is unde�ned if i ≥ `(w). We say that w is accepted by ρ ∈ R,
and write w ∈ L(ρ) i� w, (0, `(w)) |= ρ holds, which is inductively de�ned on the
structure of ρ as follows:

• w, (i, j) |= ∅;

• w, (i, j) |= ε i� i = j;

• w, (i, j) |= σ i� j = i +1 and j ≤ `(w) and w(i) = σ ;

• w, (i, j) |= ρ∗ i� i = j or there exist indexes k0, . . . , km such that i = k0 ≤ k1 ≤
. . . ≤ km = j and w, (kl , kl+1) |= ρ for each l ∈ {0, . . . ,m− 1};

• w, (i, j) |= ρ1·ρ2 i� there exists i ≤ k ≤ j such that w, (i,k) |= ρ1 and w, (k, j) |=
ρ2;

• w, (i, j) |= ρ1 + ρ2 i� w, (i, j) |= ρ1 or w, (i, j) |= ρ2;

• w, (i, j) |= (>ρ) i� i = j and there exists i ≤ k ≤ `(w) such that w, (i,k) |= ρ;

• w, (i, j) |= (≥ρ) i� i = j and for all i ≤ k ≤ `(w) we have w, (i,k) 6|= ρ;

126

F. Black Ostrich: Web Application Scanning with String Solvers

• w, (i, j) |= (<ρ) i� i = j and there exists 0 ≤ k ≤ i such that w, (k, i) |= ρ;

• w, (i, j) |= (≤ρ) i� i = j and for all 0 ≤ k ≤ i we have w, (k, i) 6|= ρ;

• w, (i, j) |= ^ i� i = j = 0;

• w, (i, j) |= $ i� i = j = `(w).

si sf
ε

si sf si sf
σ

Figure C.9: Schematic representation of automaton construction recursive steps for
the atomic cases: ε, ∅ and σ ∈ Σ.

s1i

s2i

si sf

s1f

s2f

ε

ε

ε

ε

. . .

. . .

Aρ1

Aρ2

si s2i
sfs1f

ε

Aρ1

.

Aρ2

s1i
sfs1fsi

ε
ε

ε

ε

Aρ

. . .

Figure C.10: Schematic representation of automaton construction recursive steps
for for: ρ1 + ρ2, ρ1 ·ρ2 and ρ∗.

1: Input: A regex ρ ∈ R
2: Output: a regex ρ′ ∈ R
3: procedure trfm(ρ)
4: case ρ of
5: a | ε | ∅: return ρ
6: ρ∗: return trfm(ρ)∗
7: ρ1 ·ρ2: return trfm(ρ1)·trfm(ρ2)
8: ρ1 + ρ2: return trfm(ρ1) + trfm(ρ2)
9: (>ρ): return (>trfm(ρ))

10: (≥ρ): return (≥trfm(ρ))
11: (<ρ): return (<rev(ρ))

127

Securing the Next Generation Web

12: (≤ρ): return (≤rev(ρ))
13: ^: return (≤Σ+)
14: $: return (≥Σ+)
15: end case
16: end procedure

We now describe in detail the procedure for generating the 2AFASMT .
Given ρ ∈ R, we �rst transform the input in “normal form” (in linear time in the

size of ρ) by calling trfm(ρ): this intuitively replaces anchors ^ and $ with ≤Σ and
≡≥Σ respectively and it reverses subexpressions inside look-behinds.

Then, the automaton is build from the bottom up by calling aut on trfm(ρ),
which works recursively on the structure of the formula. The subroutine atomi-
cAut returns an automaton as in Figure C.9, while starAut, altAut, concAut
or lookAut return automata as in the Figure C.10 and C.2 where sji and sjf are the
initial and �nal state of the automaton returned by the recursive call on ρj . The rou-
tine neg takes an automaton and returns its complement in polynomial time, e.g.,
by following the technique in [21].

1: Input: A regex ρ ∈ R
2: Output: 2AFASMT Aρ
3: procedure aut(♦,ρ)
4: case ρ of
5: a | ε | ∅: return atomicAut(♦,ρ) . Transitions are δ< if ♦ is <, δ>

otherwise
6: ρ∗: return starAut(aut(♦,ρ))
7: ρ1 ·ρ2: return concAut(aut(♦,ρ1), aut(♦,ρ2))
8: ρ1 + ρ2: return altAut(aut(♦,ρ1), aut(♦,ρ2))
9: (>ρ): return lookAut(aut(>,ρ))

10: (≥ρ): return lookAut(neg(aut(>,ρ)))
11: (<ρ): return lookAut(aut(<,ρ))
12: (≤ρ): return lookAut(neg(aut(<,ρ)))
13: end case
14: end procedure

Proof. [Proof of Theorem 1] The proof is modular and the main part requires to
prove the following statement: for each w, i, j and ρ, w, (i, j) |= ρ i� aut(>,ρ)
has an accepting run on w starting from position i in w and aut(<,rev(ρ)) has
an accepting run on w starting from position j . From the semantics of regexes,
w, (i, j) |= (< ρ) i� i = j and there exists 0 ≤ k ≤ i such that w, (k, i) |= ρ. The au-
tomaton lookAut(aut(<,rev(ρ))) is as in Figure C.2 where Aρ is the (backward)
automaton for ρ. Since the �rst transition is a ε∀, the run expands into two pairs
{(s1i , i), (sf ,2, i)}. The pair (sf ,2, i) accepts i� i = j , namely there is nothing left to read
to the right: indeed, by de�nition of 2AFASMT , any symbol σ read from sf ,2 leads
to a non-accepting sink state (which we do not explicitly show in the �gures for the
sake of readability). Let us now consider the upper path: by inductive hypothesis,
Aρ (without the Σ-loop on sf ,1) accepts i� w, (k, i) |= ρ for some 0 ≤ k ≤ i. This
means that the run will eventually reach sf ,1 before, or at, index 0. Since sf ,1 is now

128

F. Black Ostrich: Web Application Scanning with String Solvers

∅ ∅−→ ∅ ε ∅−→ ε σ ∅−→ σ

ρ ∅−→ r

ρ∗ ∅−→ r∗

ρ F−→ r ρ′ F
′
−−→ r′ r < F, l < F′

ρ ·ρ′ F ∪F
′

−−−−→ r·r′
ρ F−→ r ρ′ F

′
−−→ r′

ρ+ ρ′ F ∪F
′

−−−−→ r+ r′

ρ ·Σ∗ F−→ r ρ′ F
′
−−→ r′

(>ρ)·ρ′ F ∪F
′ ∪ {r}−−−−−−−−→ r∩ r′

ρ ·Σ∗ ∅−→ r ρ′ F−→ r′

(≥ρ)·ρ′ F ∪ {r}−−−−−→ r∩ r′

ρ F−→ r Σ∗ ·ρ′ F
′
−−→ r′

ρ ·(<ρ′) F ∪F′ ∪ {l}−−−−−−−−→ r∩ r′
ρ F−→ r Σ∗ ·ρ′ ∅−→ r′

ρ ·(≤ρ′) F ∪ {l}−−−−→ r∩ r′

ρ F−→ r

ρ ·^ F ∪ {l}−−−−→ r ∩ ε
ρ F−→ r

$·ρ F ∪ {r}−−−−−→ r ∩ ε

Table C.4: Rules translating ECMA regexes to textbook regexes

a sink accepting state thanks to the Σ-loop, the run from (si,1, i) accepts i� there
exists 0 ≤ k ≤ i such that w, (k, i) |= ρ. An analogous argument holds for aut(>,ρ).

�

From 2AFASMT to S-2AFASMT . We transform the former into the latter by per-
forming the following steps. First, we multiply the states: for each s of the 2AFASMT ,
which in general has > and < both incoming and outgoing transitions, we have four
states of the S-2AFASMT for each pairwise combinations of those (S> and s> in S-
2AFASMT are generated from the initial and sink states of the 2AFASMT). Such
states are connected with ε∃ transitions and therefore the original semantics is pre-
served. In the second step we remove the ε transitions by exploiting bidirectionality.
Indeed, we can simulate a ε∃ transition from, e.g., state s to s′ by: adding a special
state s′′ ; having > transitions from s to s′′ for every symbol σ ∈ Σ and then having
< transitions from s′′ to s′ again for every symbol. This easily generalizes to set of
states and ε∀ transitions as well, but special care is needed at the end of the word
where > are not allowed. To handle those cases, we actually introduce special mark-
ers at the beginning and end of the words, which we do not explicitly include here
for the sake of readability. Lastly, the S-2AFASMT only accepts at the end of the
word, as it only has F> state, and this can be obtained by moving to an F> accepting
state from former accepting states F< by means of δ>∃ transitions.

129

Securing the Next Generation Web

C.IV Partial Translation from ECMAScript Regexes

to Textbook Regexes

This section introduces our partial, semantics-preserving translation of ECMAScript
regexes SMT-LIB (or textbook) regexes (Section C.3.5). Our translation is de�ned in
terms of translation statements ρ F−→ r, which express that the ECMA regex ρ is
equivalent to the textbook regex r, modulo side-e�ects F. The set F marks cases
in which the e�ect of ρ can extend beyond the beginning or end of a string due to
look-arounds or anchors.

De�nition C.6. A translation statement ρ F−→ r is valid if:

1. L(ρ) = L(r);

2. F ⊆ {l, r};

3. if l < F, then for all w ∈ Σ∗ it holds that L(wρ) = L(wr);

4. if r < F, then for all w ∈ Σ∗ it holds that L(ρw) = L(rw).

Because not all ECMA regexes can be translated straightforwardly to textbook
regexes, we introduce a set of rules for deriving translation statements (Table C.4). A
rule allows the derivation of the statement in the conclusion (below the bar) assum-
ing some set of premises (above the bar). As a convention, we assume that all rules
are applied modulo the associativity of concatenation. For the complete translation
of an expression, a derivation tree can be constructed in which each leaf is closed
through an axiom, viz., a rule with no premises.

The �rst three rules in the table are axioms and they describe the translation
of atoms ∅,ε,σ . The next three rules capture the Kleene star, concatenation, and
alternation, and recursively translate the sub-expressions �rst. The rule for con-
catenation has the side condition that the left-hand side ρ must not contain look-
aheads or anchors whose e�ect might extend to the right (r < F), and e�ects of the
right-hand side ρ′ must not extend to the left (l < F′). Absent those side conditions,
compositional translation of ρ ·ρ′ is not possible.

The last three lines in Table C.4 describe the translation of look-arounds and
anchors. For look-ahead (>ρ)·ρ′ , the sub-expressions can be translated separately,
and the results conjoined, and similarly for the other versions of look-around. An-
chors imply the absence of leading or trailing characters, and can also be translated
to intersection.

Example 3. We illustrate the rules by translating the expression (>Σ∗a)(≥Σ∗b)Σ∗,
describing strings that contain at least one a but no b. The resulting regex is the
intersection (Σ∗aΣ∗)∩Σ∗bΣ∗ ∩Σ∗.

...

Σ∗aΣ∗ ∅−→ Σ∗aΣ∗

...

Σ∗bΣ∗ ∅−→ Σ∗bΣ∗
Σ
∅−→ Σ

Σ∗
∅−→ Σ∗

(≥Σ∗b)Σ∗ r−→ Σ∗bΣ∗ ∩Σ∗

(>Σ∗a)(≥Σ∗b)Σ∗ r−→ (Σ∗aΣ∗)∩Σ∗bΣ∗ ∩Σ∗

130

F. Black Ostrich: Web Application Scanning with String Solvers

Lemma C.2 (Soundness of translation). The root of a closed derivation tree using
rules from Table C.4 is a valid statement.

Proof. To prove soundness of the rules in Table C.4, we need to show that each of
the rules in the table preserves the validity of translation statements: if the state-
ments above the bar are valid, then the statement below the bar is valid. This is
straightforward for most of the rules.

As an example, we consider the rule for concatenation,

ρ F−→ r ρ′ F
′
−−→ r′ r < F, l < F′

ρ ·ρ′ F ∪F
′

−−−−→ r·r′

Assume that all statements in the premise are valid, and r < F, l < F′ . There are two
directions to be shown for L(ρ ·ρ′) = L(r·r′):

“⊆”: Assume w ∈ L(ρ ·ρ′), which by de�nition means that w(0, k) ∈ L(ρ) and
w(k,`(w)) ∈ L(ρ′) for some k with 0 ≤ k ≤ `(w). Write u = w(0, k) and v =
w(k,`(w)). We need to show that u ∈ L(r) and v ∈ L(r′). For this, observe that also
w = uv ∈ L(ρv) and w = uv ∈ L(uρ′). Because r < F, l < F′ , we have L(ρv) = L(rv)
and L(uρ) = L(ur′), and therefore u ∈ L(r) and v ∈ L(r′). This �nally implies that
w = uv ∈ L(r·r′).

“⊇”: Assume w ∈ L(r·r′), which directly implies that w can be split into w = uv
such that u ∈ L(r) and v ∈ L(r′). Choose k such that u = w(0, k) and v = w(k,`(w)).
By assumption, we again have uv ∈ L(rv) = L(ρv) and uv ∈ L(ur′) = L(uρ′), and
therefore also (uv)(0, k) ∈ L(ρ) and (uv)(k,`(w)) ∈ L(ρ′). In combination, this im-
plies w ∈ L(ρ ·ρ′). �

Approximation. In practice, we apply the translation rules in Table C.4 greedily
but might have to resort to over-approximation when regexes are encountered that
cannot be translated precisely. Problematic sub-expressions of a regex can in such
cases be rewritten by removing look-arounds or anchors with function rem :R→ R
recursively de�ned as follows:

rem(ρ) = ρ for ρ ∈ {∅, ε,σ }
rem(ρ∗) = rem(ρ)∗

rem(ρ1�ρ2) = rem(ρ1)� rem(ρ) for � ∈ {·,+}
rem(Oρ) = ε for O ∈ {>,≥,<,≤}
rem(ρ) = ε for ρ ∈ {^,$}

We remark that rem(ρ) semantically over-approximates ρ:

Lemma C.3. Let ρ ∈ R, then L(ρ) ⊆ L(rem(ρ)).

Proof. By induction on the structure of ρ. Case of atom is trivial. Case of ρ∗: by
IH, L(ρ) ⊆ L(rem(ρ)), therefore (L(ρ))∗ = L(ρ∗) ⊆ (L(rem(ρ)))∗ = L(rem(ρ)∗). Case
of ρ = ρ1 + ρ2: by IH, L(ρi) ⊆ L(rem(ρi)) for i ∈ {1,2}. It follows that L(ρ1 + ρ2) =
L(ρ1) ∪ L(ρ2) ⊆ L(rem(ρ1 + ρ2)) = L(rem(ρ1)) ∪ L(rem(ρ2)). Case of ρ = ρ1 · ρ2
analogous to the previous case with · instead of ∪.

For the case of Oρ, we notice from the semantics that since i = j , L(Oρ) is either
∅ or {ε}, and in both cases the hypothesis holds. Concerning the anchors, we have

131

Securing the Next Generation Web

L(^) = L($) = L(rem(^)) = L(rem($)) = L(ε) = {ε}. � To avoid incorrect solutions
due to approximation, we verify that constructed strings are indeed accepted by the
original ECMA regex.

C.V Example Input for Ostrich (Section C.5.3.2)

The following SMT-LIB script will ask an SMT solver to construct a string w of length
at most 30 that satis�es the email regular expression from the introduction, while
also including the payload string <script>alert(1)</script>:

1 (declare−const w String)
2 (assert (str.in−re w (re.from_ecma2020
3 ’.∗@.∗\.[a−z]{2,3}’)))
4 (assert (str.contains w

5 "<script>alert(1)</script>"))

6 (assert (<= (str.len w) 30))

7 (check−sat)
8 (get−model)

C.VI Testbed Code

We show our design of the testbed’s client-side code in Section C.VI and the server-
side in Section C.VI.

1 <html>

2 <body>

3 <form action="PATTERN_HASH.php" method="GET">

4 <input pattern="PATTERN" type="MODE_TYPE" name="MODE_NAME"

>

5

6 <input type="submit" name="submit">

7 </form>

Listing C.2: Client-side code for each pattern. PATTERN_HASH is replace with the
hash of the pattern and PATTERN is replaced by the actual pattern.

1 // Check type pattern for email and URL
2 // ...
3 // Check pattern
4 if(preg_match("/^(?:PATTERN$)$/u", SCANNER_INPUT)) {

5 // Reflect for XSS
6 echo $_GET[’text_input_field’];

7 // log successful solve
8 } else {

9 // log failed solve

132

F. Black Ostrich: Web Application Scanning with String Solvers

10 echo "Failed to match";

11 }

Listing C.3: Server-side code. PATTERN is replaced by the actual pattern.

C.VII Client-side form validation

Table C.5 contains a list of validation attributes in HTML5.

General attributes
type The type of the input, most relevant are: color, date,

datetime-local, email, month, number, password,
range, tel, text, time, url, week.

required Field is non-empty
Attributes for string inputs

minlength Minimum length of input string
maxlength Maximum length of input string
pattern A regular expression de�ning the expected textual input.

Attributes for numerical inputs
min Minimum value of a numerical input, which can be of integer or fractional/decimal type
max Maximum value of a numerical input
step Step size of a numerical input: the input value has to be

a multiple of the given (integer or fractional) number

Table C.5: HTML5 client-side form validation constraints

C.VIII ExpoSE JavaScript Template

We use the following code to create JavaScript �les for each pattern. The placeholder
[[PATTERN]] is replaced with the actual pattern. Running ExpoSE will tell us if
Reachable_regex_solved is reachable and thus if the pattern is solvable.

1 var S$ = require(’S$’);

2 var a = S$.symbol(’A’, ’’);

3 var re = new RegExp("^(?:" + [[PATTERN]] + ")$");

4 if (a.match(re)) {

5 throw ’Reachable_regex_solved’;

6 }

C.IX Algorithm for validation-aware scanning

This algorithm shows the crawling phase of the scanner. For the attack phase line
6 is repeated for each payload the scanner uses. We assume a node to be a general
object that can be scanned, like a URL or JavaScript event. For each input element,
we check for a validation constraint, like a pattern attribute, and try to solve it.
For payloads, we can add the payload as the second argument to solveContraint,
instructing it to solve the pattern and include the payload string.

133

Securing the Next Generation Web

Data: Target url
nodes = scanPage(url); while node = nodes.pop() do

if node.type == FORM then
for element in node.elements do

if validationConstraint(element) then
element.value = solveConstraint(element, ””);

end

end

end
nodes += scanNode(node);

end

Figure C.11: Crawling algorithm with pattern solver.

134

Browser Extensions

D
Hardening the Security Analysis of Browser

Extensions

Abstract. Browser extensions boost the browsing experience by a range of
features from automatic translation and grammar correction to password man-
agement, ad blocking, and remote desktops. Yet the power of extensions poses
signi�cant privacy and security challenges because extensions can be malicious
and/or vulnerable. We observe that there are gaps in the previous work on
analyzing the security of browser extensions and present a systematic study
of attack entry points in the browser extension ecosystem. Our study reveals
novel password stealing, tra�c stealing, and inter-extension attacks. Based on
a combination of static and dynamic analysis we show how to discover exten-
sion attacks, both known and novel ones, and study their prevalence in the wild.
We show that 1 349 extensions are vulnerable to inter-extension attacks lead-
ing to XSS. Our empirical study uncovers a remarkable cluster of “New Tab”
extensions where 4 410 extensions perform tra�c stealing attacks. We suggest
several avenues for the countermeasures against the uncovered attacks, ranging
from re�ning the permission model to mitigating the attacks by declarations in
manifest �les.

D.1 Introduction

Modern web browsers allow users to customize and improve their browsing expe-
rience by installing browser extensions. The functionalities of these extensions can
range from modifying the aesthetics of websites to blocking advertisements, adding
accessibility features, or security and privacy features. Using these functionalities
malicious extensions routinely steal information from unknowing users [16, 20] and
thrive on fake content injection like fake ads [21].

Similar to mobile apps, the extensions are mainly installed from app stores, such
as the Chrome Web Store. Google is continuously removing malicious extensions
from the Web Store [21]. Yet, new malicious extensions continue emerging [16, 32].
Although extensions submitted to the Chrome Web Store are subject to analysis
and vetting, the problem with automatically analyzing extensions is that detecting
di�erent threats requires di�erent methods.

137

Securing the Next Generation Web

Table D.1: Summary of the attacks versus the ecosystem presented in this paper.

Attack Subattack Attacker Victim In wild Section

Password Chrome auto�ll Extension Extension/User/Web page Novel Section D.5.1.1
Virtual keyboard Extension Extension/User/Web page Novel Section D.5.1.2

Tra�c Extension User 4 410 Section D.5.2.1

Inter-extension

Collusion Extension User Benign Section D.5.2.2
History poisoning Extension/Web page Extension 1 349 Section D.5.3.1
Code execution Extension/Web page Extension 1 349 Section D.5.3.2
Fingerprint Extension User 10 785 Section D.5.3.3

Threat Model. The power of extensions poses privacy and security challenges.
Extensions can both read sensitive information directly [14, 18] and indirectly by
redirecting network tra�c. For example, a malicious extension can use JavaScript
to read passwords from the DOM or listen to network tra�c. There are further
underexplored classes of attacks where malicious extensions can also attack other
extensions, for example, to steal their internal data, like todo-notes or stored pass-
words.

The challenge is not only to �nd malicious extensions but also vulnerable exten-
sions. For example, an attacker could trick an extension with access to the user’s
cookies to send the cookies to the attacker. Previous work has uncovered several
classes of attacks and vulnerabilities related to browser extensions (discussed in de-
tail in Section D.9). For example, Kapravelos et al. [22] �nd malicious extensions
trying to steal data or modify security headers. Somé [37] discovers code execution
vulnerabilities in extensions through static and manual analysis. In this scenario, a
malicious website attacks a vulnerable extension. Attacking the implementation in
the browser is also possible. For example, Buyukkayhan et al. [7] exploit the lack
of isolation mechanisms that Firefox used to implement in its browser extension
ecosystem.

Yet there are gaps in the previous work when it comes to analyzing the security
of the entire browser extension ecosystem. Our paper is a step towards �lling the
gaps in the security analysis of extensions. We accomplish this by performing a
systematic study of the extension ecosystem, including extensions’ assets, attackers,
and possible interaction methods. The bene�t of our approach is the wider threat
model.
Approach. We propose a systematic approach to hardening the security analysis
of browser extensions. The main thrust of our systematization is a systematic study
of attack entry points in the browser extension ecosystem. This leads us to both
discovering novel attacks and analyzing known ones from a wider attacker model
perspective. We group all the attacks by the actors involved to de�ne the attacker,
victim, attack surface, and target asset. Based on the attack we use a combination of
static and dynamic analysis to detect insecure extensions and in some cases synthe-
size payloads. We download all the 133,365 extensions from the Chrome Web Store
and test our detection mechanism on the extensions. We search for characteristics
of our novel attacks on the web and con�rm their novelty by �nding no evidence of
attackers using them in the wild so far.

138

D. Hardening the Security Analysis of Browser Extensions

Attacks. We present novel vectors that extensions can use to attack both the user
and other extensions. We divide them into three categories: password stealing, traf-
�c stealing, and inter-extension attacks. We summarize these attacks in Table F.1.

Password stealing: We develop a new method for actively stealing passwords,
circumventing Chrome’s protection. Chrome tries to protect against password steal-
ing by not adding the password to the page DOM before a user interacts with the
page. To circumvent this, an extension can change the type of the password �eld to
text and capture a screenshot.

Tra�c stealing: By analyzing extensions from the Web Store, we �nd exten-
sions that are actively stealing search queries by redirecting tra�c.

Inter-extension attacks: We create novel methods for detecting potentially
vulnerable extensions that can be attacked by other extensions. We detect this by
analyzing how inter-extension message passing and poisoning shared resources can
lead to Cross-Site Scripting (XSS). In addition, we show that inter-extension message
passing can also �ngerprint extensions.

Empirical study. Our �ndings show that 4 410 extensions, totaling over 120 000
downloads, are actively stealing search queries from users. We also detect 1 349
extensions being vulnerable to takeover using XSS from malicious extensions. Fur-
thermore, this group of extensions is also vulnerable to history poisoning attacks
leading to XSS while 2 829 are vulnerable to HTML code injection via history poi-
soning. In the latter case, Content Security Policy (CSP) protects them from XSS.
Our new method for �ngerprinting extensions also improves the state-of-the-art by
adding 162 new extensions.

Countermeasures. We propose countermeasures for each class of the aforemen-
tioned attacks. In brief, for the password attacks, we consider that extensions that
want to take screenshots should declare a concrete permission (for example the
screenshot API captureVisibleTab) similar to the need for the desktopCapture per-
mission. For tra�c stealing, Chrome is already in the process of adopting a new ver-
sion of the manifest �le where extensions will have to declare in advance how they
will handle users’ requests [15]. Finally, for the inter-extension attacks, we propose
to either make mandatory the de�nition of the externally_connectable key in the
manifest �le or if not, change the security-by-default option, and if such a key is not
in the manifest, then the extension will not handle any external message.

Contributions. The paper o�ers the following contributions:
1. We present a systematic study of attack entry points in the browser extension

ecosystem in Section D.3.

2. We describe our methodology based on a combination of static and dynamic
analysis to discover attacks in Section D.4.

3. We study the prevalence of attacks in the wild and two novel attacks: pass-
word stealers and inter-extension history poisoning in Section D.5.

4. We perform a detailed case study of the popular “New Tab” extensions in
Section D.6.

139

Securing the Next Generation Web

5. We present countermeasures to the identi�ed problems in Section D.7.

We release our implementation and example extensions1.

D.2 Background

While implementation details di�er between the main browsers (e.g., Firefox and
Chromium-based browsers), the overall architecture for browser extensions is sim-
ilar.

Chrome isolates the execution of browser extensions in di�erent environments
for security reasons [4]. Due to this, message passing is used. We can classify mes-
sage passing, depending on who the sender is, into 1) scripts provided by the web
page; 2) content scripts of the extensions, and; 3) background pages.

If the sender is a web page, it can use the postMessage method to send a mes-
sage to any other script also running in the web page context. Also, web pages
can send direct messages to background pages of extensions by using one-time re-
quests (sendMessage(<ext_id>) from runtime and tabs APIs). Browser extensions
will handle these messages by implementing onMessageExternal.

These event listeners are triggered if and only if the browser extensions de�ne
the externally_connectable key in the manifest �le and explicitly add the web page
in the matches sub-key. Since extensions cannot establish this external communi-
cation by themselves, the only way they have to reply to external messages is in
the body of the event listener by using sendResponse or postMessage, depending on
whether the communication is one-time or long-lived respectively. Using the same
procedure, Chrome allows cross-extension messaging.

If the sender is the content script of an extension, it can send messages to scripts
provided by web pages (or to other content scripts) by using runtime.postMessage
method. It can also send direct messages to the background of the same extension
using one-time requests. The background of the extension will handle messages
coming from the content scripts of the same extension by implementing onMessage
(). Also, content scripts can send external messages to other extensions using the
method explained before, i.e., as if they were scripts coming from web pages.

If the sender is the background, it can use postMessage() to send messages to
the content scripts of the same extension and runtime.sendMessage(<ext_id>) for
cross-extension messaging.

1https://www.cse.chalmers.se/research/group/security/hardening-extensions/

140

https://www.cse.chalmers.se/research/group/security/hardening-extensions/

D. Hardening the Security Analysis of Browser Extensions

runtime.connect
runtime.sendMessage

content_script.js background.js

web_script.js

postMessage

postMessage
tabs.sendMessage

postMessage sendResponse
postMessage

sendMessage (<ext_id>)
connect (<ext_id>)

content_script.js background.js

background.js
sendMessage (<ext_id>)
connect (<ext_id>)

Extension A

Extension B

sendMessage (<ext_id>)
connect (<ext_id>)

sendResponse
postMessage

Figure D.1: Message passing in browser extensions.

In Figure D.1, we include a summary of the message passing in browser exten-
sions. In the �gure, we represent two extensions (Extension A and B) and sim-
plify the methods to send and receive information between isolated worlds (content
scripts, background pages, and web scripts) as explained before.

D.3 Threat Model

We de�ne a vulnerable extension as an extension that can lose control of any of
its con�dential or integrity-sensitive assets to another actor. For example, another
malicious extension can send a message resulting in code execution. On the con-
trary, we say that an extension is malicious when it controls assets from another
actor. For example, a malicious extension could steal the user’s password, which is
an asset. We de�ne both the actors and the assets in the description of the entire
ecosystem in Section D.4.1.

There are two main entry points, which we explore in the following sections,
that attackers can use to exploit browser extensions: 1) shared resources, and; 2)
message passing.

D.3.1 Shared Resources

We consider shared resources to be all the elements that extensions have access to,
e.g., DOM content, history, Web Accessible Resources (WARs), and bookmarks. The
DOM can be used by scripts and extensions to communicate and share data [13].

141

Securing the Next Generation Web

Table D.2: Each row shows which communications are possible based on the IDs
and matches de�ned in the manifest.

∃ externally_connectable Communication
IDs matches Web pages Extensions

1 X – – X ∀
2 X [ID1,. . .,IDn] [URL1,. . .,URLn] [URL1,. . .,URLn] [ID1,. . .,IDn]
3 X [ID1,. . .,IDn] X X [ID1,. . .,IDn]
4 X X [URL1,. . .,URLn] [URL1,. . .,URLn] X
5 X X X X X
6 X ["*"] [URL1,. . .,URLn] [URL1,. . .,URLn] ∀
7 X ["*"] X X ∀

D.3.2 Message Passing

As explained in Section D.2, in message passing, we can distinguish between mes-
sages coming from scripts of the same extension and external ones. For messages
coming from external scripts, we propose a novel and methodological way to extract
from the manifest of the extensions how vulnerable they are.
External message passing. To know to what extent the extensions are vulnerable
due to message passing, we use the optional externally_connectable key. Such
a key can include two optional keys, ids, and matches. The former indicates the
list of extension IDs whose messages are handled, whereas the latter for web pages
instead.

If the externally_connectable key is not de�ned in the manifest (1st row in
Table D.2), all extensions can send messages but webpages cannot. On the con-
trary, if the key is de�ned there can be 6 possible options depending on the values
of the two lists. We include in Table D.2 all the possible cases of (not) de�ning the
externally_connectable key in the manifest. Note that the most secure option is
when the key is de�ned but none of the lists are provided (5th row in Table D.2). By
analyzing the manifest �le of all the extensions, we found that 6,417 extensions de-
�ne externally_connectable key whereas 126,948 do not, meaning there are more
than 100 000 extensions that accept external messages coming from other exten-
sions.
Content scripts message passing. Even though message passing using content
scripts is an attack vector, as recently demonstrated [37], we consider that this is a
particular case of the DOM shared resource entry point. Extensions can react to the
event �red by either web pages or by other extensions when they send a message.

D.4 Methodology

In this section, we explain in detail our method for discovering malicious as well as
potentially vulnerable extensions.

142

D. Hardening the Security Analysis of Browser Extensions

D.4.1 Identifying entry points

To harden the analysis we �rst perform a systematic analysis of the extension ecosys-
tem, including assets, attackers, and interaction methods. We use a top-down ap-
proach and start by analyzing the actors, followed by the di�erent assets they pos-
sess, the attack surface, and �nally the entry points into the extension.

Ecosystem. The browser extension ecosystem allows for rich interaction between
three classes of actors: users, web pages, and extensions.

Security Assets. We de�ne security assets as important assets related to sensitive
information and program control �ow. The main asset of the user in our model is
sensitive information, such as history, cookies, passwords, and the user’s online ac-
tivity. Passwords are also custody of web pages, making them an important asset to
web pages too. Finally, extensions’ assets include both con�dential user-generated
data, like todo-notes and passwords, and control �ow (e.g., code execution). For ex-
ample, an extension stealing sensitive data like users’ history is malicious as it is
reading a con�dential asset (history).

WebStore
AST

manifest

crx

Match
“permissions”: []

U
“optional_permissions”: []

Regex

“externally_connectable”: []

crx
Exploitable

External
Message Event

Listeners

Hash
crx

Vulnerable

Instrument

Payloads

Static Analysis Dynamic Analysis

API calls

Attacker
Model

Monitoring

M
an

ua
l V

er
ifi

ca
tio

n

crx
Malicious

Figure D.2: Static and dynamic analysis combination to determine possible attacks
and detect malicious and potentially vulnerable extensions.

Attack surface. We model the attack surface by close inspection of the interaction
methods available to the actors. For shared resources, we consider DOM content,
history, bookmarks, WARs, and cookies. These could potentially be used to carry
malicious payloads. In Figure D.1 we show the possible message passing interactions
between extensions and web pages that make up the second part of the attack surface
for the two actors. Note that both web pages and extensions can use message passing
but in the inter-extension case the messages can go directly to the high-privileged
background scripts making such vulnerabilities a larger threat compared to attacks
from web pages. We also further re�ne the attack surface dynamically by inspecting
the manifest of the extension. By comparing the manifests of extensions to Table D.2
we can e�ciently �lter out attack vectors.

Entry points. The �nal step is to extract all the entry points from the attack surface
and analyze them. We use a combination of static and dynamic analysis based on
the type of entry points to do this.

143

Securing the Next Generation Web

D.4.2 Combining Static and Dynamic Analysis

We crawled the Web Store in Jan 2020 and downloaded all the 133 365 browser ex-
tensions. To evaluate our approach on as many extensions as possible we include
both old and young extensions. As it can be seen in Figure D.2, to detect both mali-
cious and potentially vulnerable extensions, we split our methodology into i) static,
and; ii) dynamic analysis. Finally, we installed the potentially vulnerable extensions
and con�rmed whether they are exploitable or not.

To improve e�ciency and harden the analysis we combine both static and dy-
namic analysis. By combining them we no longer need to dynamically test all exten-
sions, which would require more resources. In many cases, we can do this without
losing precision, e.g., by statically analyzing the manifest we know if an extension
can manipulate web requests to perform tra�c stealing. If the extension lacks the
permission we can skip the dynamic analysis.

Static Analysis. During the static analysis, we analyze externally_connectable
according to Table D.2. We also parse both permissions and the optional permissions
of the extensions to know what sensitive information the extension has access to.
This takes about 12 hours on a normal workstation.

We use Esprima2, a powerful library to perform lexical (tokenization) and syn-
tactic (parsing) analysis of JavaScript, to generate the Abstract Syntax Tree (AST)
of the JavaScript �les and extract the external message event listener’s code. For
HTML �les, we use regular expressions instead to extract the code.

We �nd 53 177 potentially malicious extensions containing either the API runtime
.connect() or runtime.sendMessage() functions. We also �nd 11 595 extensions
that are susceptible to being abused. That is, they implement event listeners for
external message passing functions, e.g., onMessageExternal().

After, we compute the SHA-256 hash of the event listener functions and group
extensions by their hashes, obtaining 570 di�erent implementations. The use of
cryptographic hashes, as opposed to fuzzy hashes like ssdeep [24], ensures that the
functions are the same. We discuss the implications of this in Section E.6. Then, we
chose one extension from each of the 570 groups and dynamically analyzed them.
Note that since each extension in the group has the same function it does not matter
which one we pick.

Dynamic Analysis. Based on the static analysis we extracted extensions that can
be further tested for dynamic analysis. The dynamic analysis consists of three major
steps: 1) instrumentation; 2) monitoring, and; 3) payload generation. The exact
implementation of these di�er from attack to attack and is explained in more detail
in Section D.5.

In general, the extensions are statically instrumented to log the line numbers
being executed. This is done by inserting fetch instructions on each line, like the fol-
lowing: fetch("http://localhost/inst/’+token()+’/line/’+(line_number)+’"
). For each attack, we also hooked API calls, including the arguments, and ex�ltrate
them by using similar instructions and encodings.

2https://esprima.org

144

https://esprima.org

D. Hardening the Security Analysis of Browser Extensions

To monitor we use a web server that listens to these fetch instructions. Based
on the requests we can determine the trace of the extension’s execution and if any
security and privacy-relevant APIs were executed.

Finally, the last part is generating payloads or instructions to bring the exten-
sion to an interesting state. We used puppeteer [31], which is a tool for controlling
Chrome, to load the extension we wanted to test and any other extensions we de-
veloped to interact with it. From here the instructions depend on the type of attack.
For example, our extension can send inter-extension messages to the other exten-
sion. We can load pre-con�gured chrome pro�les to test history poisoning attacks
or navigate the browser to test tra�c stealing. Dynamically testing one extension
takes around 1 minute, but many can be done in parallel and after the static �ltering
we are only dynamically executing a subset of all extensions.

Manual Veri�cation. When the static or dynamic analysis marks an extension
as either potentially vulnerable or malicious we make sure to manually verify it.
To manually verify a malicious extension we run the original version of the exten-
sion, i.e., without instrumentation code and other modi�cations, in a normal Chrome
browser, not via puppeteer. From there we verify that the same malicious behavior,
for example, tra�c stealing, is still present. Similarly, for vulnerable extensions,
we also use the original extension and load it in Chrome together with a suitable
attacker extension we create.

To avoid manually testing every vulnerable or malicious extension, we cluster
them using DeDup.js [30]. DeDup.js allows us to �nd all extensions that have the
same malicious or vulnerable JavaScript �les. We also check the manifests to ensure
the JavaScript �les are loaded and executed. We discuss the risk of possible false
positives from this approach in the discussion in Section E.6.

D.5 Discovering A�acks and Vulnerabilities

In this section, we present the novel attacks that we designed as well as both the
vulnerable and the malicious extensions we found in the wild. Our novel attacks are
presented in Section D.5.1, the attacks used by malicious extensions are presented in
Section D.5.2, while the vulnerable extensions are in Section D.5.3. We analyze these
attacks and vulnerabilities in Chrome but discuss how they apply to other browsers
in Section D.8.4.

D.5.1 Novel A�acks by Malicious Extensions

In this section, we detail two novel attacks we designed to steal users’ credentials.
As these attacks are designed by us and not discussed in prior works, we did not
expect to �nd any of these in the wild. We did not �nd any extensions using these
attacks, further supporting their novelty.

145

Securing the Next Generation Web

D.5.1.1 Password stealer

A password-stealing extension can attack any actor in the attacker model, i.e., other
extensions, web pages, or users. We have seen previous attacks [42] where exten-
sions inspect the DOM to steal passwords.

In this paper, we present a novel active password-stealing approach where the
extension actively visits di�erent domains to extract the passwords. A novel compo-
nent to this is a bypass of Chrome’s protection against auto�ll-scraping [43]. Note
that this protection is so far only in Chromium-based browsers, i.e., not in Firefox or
Safari yet. The attack still works in Firefox but not in Safari as it requires the user to
click a pop-up before the password is added to the �eld. Chrome protects the user
from auto�ll attacks by waiting for user interaction before adding the password to
the DOM. However, we can edit the underlying password element to bypass the
protection. Our attack changes the type of the password element to text instead
of password. Although the value is still not added to the DOM, the asterisks are
converted into text. Our extension takes a screenshot of the page to ex�ltrate the
image with the password. Note that taking screenshots of the pages only requires
the <all_urls> permission, which is used by over 18 000 extensions, including pop-
ular extensions like Grammarly with over 10 million downloads. Furthermore, no
special screenshot permissions or user interaction are required.

Making the attack stealthy to the user is an orthogonal problem. We use a pop-
under attack which creates a new window under the active one. In this new window,
we load a page and take a screenshot. This approach makes the attack stealthy on
both macOS and Ubuntu. Another approach can be to modify the style of the DOM
to make it harder for the user to see the unmasked password. In addition, the attack
takes less than �ve seconds to steal a password in our tests, with possible variation
due to network speed, making it hard to stop even if the user notices it.

D.5.1.2 Virtual keyboard attack

To increase the security of the user’s credentials, some online services include virtual
keyboards on the screen for the users to avoid directly writing the passwords and
thus protect them from keylogger attacks. For this attack to work, the attacker has to
implement an click event listener using document.onClick. Later on, in an o�ine
analysis, the attacker matches both the coordinates and the screenshot to get not
only the clicked elements but also the order in which they were clicked. This login
system is popular among banks, e.g., ING bank in Spain, France, Australia, BNP
Paribas, and La Banque Postale in France, without the option for the users to use an
alternative.

D.5.2 Malicious Extensions in the Wild

In this section, we present extensions attacking users or other extensions.

146

D. Hardening the Security Analysis of Browser Extensions

D.5.2.1 Tra�c stealing

Extensions have the power to cancel, redirect, modify request and response headers,
and supply authentication. This allows them to implement features like ad-blocking
by matching URLs against deny-lists. The permissions needed to modify ongoing
network requests are webRequest and host_permissions, and webRequestBlocking.
Using these permissions and APIs, an extension can attack the user by intercept-
ing general search queries, for example to Google or Yahoo, redirect these back to
their server, and �nally have their server redirect the user back to a search engine.
Without the user noticing, their search tra�c is stolen.

Results. To detect malicious extensions exploiting this attack, we analyzed
those that interact with network requests. In particular, extensions that used the
webRequestBlocking permission and de�ned a listener for onBeforeRequest were
dynamically analyzed. We clustered extensions based on the SHA-512 hash of the
�le responsible for the tra�c stealing.

Before dynamically executing the extension, we instrumented it to send the list
of �ltered URLs to our control server at runtime. These are the potential URLs
the extension can interact with. We then compared this to a list of domains, plus
query parameters, we wanted to test against. The three domains (www.google.com,
www.yahoo.com, and www.bing.com) were picked based on a short pilot study of
malicious extensions we found, we discuss improvements to this method in Sec-
tion E.6. For each match, we dynamically executed and analyzed the extension. To
detect network requests we use page.setRequestInterception in Puppeteer. Using
this we notice if the extension introduces new requests or redirects.

Example. We found 4 410 extensions abusing this method to steal tra�c from
users. We discuss these in detail in Section D.6.

D.5.2.2 Collusion

Extensions can communicate directly to other extensions by sending messages. The
possibility for message passing depends on the externally_connectable de�nition
(see Table D.2). Malicious extensions can abuse message passing to share permis-
sions, allowing multiple low permission extensions to combine their permissions.
This would allow them to stay under the radar.

Results. To detect collusion we looked for message passing between extensions.
As can be seen in Figure D.1, the sendMessage function takes an extension ID as a
parameter. Therefore, we scanned each extension for extension IDs in their code.

Extension IDs follow a simple pattern, 32 lower case characters. We �rst scanned
each �le using this regular expression in python, re.findall("[a−z]{32}"). This
returns all the strings that could potentially be other extensions. Next, we compared
all the potential extension IDs with the real ones in the dataset we are using. To
further �lter the list we removed the extensions that do not use message passing
APIs. This helps to remove extensions that simply link to other extensions, without
directly messaging them. Based on this, we created our “collusion map” which we
then manually analyzed to understand why the extensions interact with each other.

147

Securing the Next Generation Web

Example. In this paper, we did not �nd any colluding extensions that could
be classi�ed as malicious. However, we did �nd two extensions colluding with each
other to share permissions. The �rst one3 de�nes three permissions while the second
one4 requires no permissions. The second one then asks the �rst one for data.

D.5.3 Vulnerable Extensions in the Wild

In this section, we present the vulnerable extensions we found during our analysis.

D.5.3.1 History poisoning

History poisoning is a novel attack we present which targets extensions working
with users’ browser histories. Malicious extensions, or web pages, can poison the
browser history with code injection payloads. The vulnerable extensions usually
present the user with an overview of their history. This can range from exact his-
tory to most visited or recently closed tabs. By adding HTML code to the title of a
web page, a web attacker can gain content script code execution if the history titles
are not sanitized correctly. The exploitability of this attack depends on the type of
history poisoning necessary. Changing the most visited pages is di�cult for a web
attacker to accomplish. However, adding a single entry to recent history or closed
tabs only requires a redirection.

Results. To detect potentially vulnerable extensions due to this attack, we �rst
extract extensions with the history permission. Once a vulnerability is found we
automatically mark other extensions which share the same �le and use the history
permission. Later, in the dynamic phase, we loaded the history with visits to pages
with HTML and JavaScript payloads in the title. These payloads are explained in
Section D.6. We then loaded the extension and if a payload is executed we conclude
that the extension is vulnerable. Based on the CSP in the manifest, this can either
imply full XSS or be limited to HTML injection.

Example. In Section D.6 we present a detailed analysis of extensions vulnerable
to this attack.

D.5.3.2 Code execution

If an extension uses dynamic code execution functions, such as eval, without safety
precautions it can potentially be abused by other web pages and extensions.

The impact of this attack depends on the context of the code execution. The
highest impact context is the background scripts where, if exploited, an attacker
would gain access to all the APIs the extension has permission to use. The impact in
the DOM context depends on the connection to the background. By executing code
in the DOM context, the attacker gains access to all the APIs available for the content
scripts. For instance, the attacker can make use of the sendMessage function and
impersonate the legitimate content scripts of the extensions, allowing the attacker

3dnclbikcihnpjohihfcmmldgkjnebgnj (version 1.3.6)
4bepofoammpdjhfdibmlghoaljkemineg (version 0.1.4)

148

D. Hardening the Security Analysis of Browser Extensions

to send messages to the background as if she were the content scripts, a�ecting the
con�dentiality, integrity, and availability of the extension.

Results. To detect code execution vulnerabilities, we extracted the code from
the message passing functions in Figure D.1. We did this by analyzing and extracting
listeners like onMessageExternal. From this, we clustered the extensions based on
the SHA-512 hash of the code of these functions. For each cluster, we extracted the
API calls from the listener functions to check if they either execute code dynamically,
e.g., by eval, or interact with shared resources, e.g., local storage. We then checked
these API calls against the permissions that the extension uses. Finally, we analyzed
the clusters with API calls to determine if they can lead to code execution.

To �nd more extensions we search for others containing the same �le, and if
the permissions are correct, we mark them as vulnerable. This could lead to false
positives if another extension has the same �le but does not use it. However, in our
manual testing, we found no such cases.

Example. In this paper, a group of 1 349 extensions was vulnerable to code
execution attacks. We discuss them in-depth in Section D.6

D.5.3.3 Fingerprinting

Knowing which extensions a user has installed can allow both extension and web
page attackers to degrade the privacy of a user. Multiple methods of browser exten-
sion �ngerprinting have been proposed. Sjösten et al. [36] used WARs; Starov et al.
[38] identi�ed extensions by the changes they perform to the DOM; [23] et al. do so
by sending messages and waiting for their response; recently, [25] et al. used CSS
styles. However, extensions with the “management” permission can use the chrome
.management.getAll function to get a list of all installed extensions. We show how
extensions can bypass the “management” permission and get this list. Note that ma-
licious extensions do not require any extra capabilities or permissions to bypass the
permission and perform the attack.

Our technique is based on the externally_connectable property. Recall this al-
lows extensions and web pages to send messages to another extension using inter-
extension messaging. If that property is not in the manifest, by default the target
extension will accept all messages coming from extensions. However, if the prop-
erty is de�ned, then two main properties can be de�ned: matches and ids. Both
are allowed-lists where only the web pages and extensions de�ned can send direct
messages to the target extension.

Results. To detect how many extensions are �ngerprintable due to external
messages, we parsed the manifest �le of all the 133 365 we downloaded as of Jan-
uary 2020. 126,948 extensions do not de�ne the externally_connectable key in the
manifest. Remember that if this key is not in the manifest �le but the extensions im-
plement listeners for external communications, e.g., onMessageExternal, web pages
cannot send direct messages through message passing functions but other exten-
sions can.

From the 126k extensions, we statically check how many of them implement
any of the methods to handle external connections and got a lower bound of 11 595
potentially �ngerprintable extensions. Later, we automatically installed them all—

149

Securing the Next Generation Web

Table D.3: Browser extensions �ngerprinting.

Methodology Browser Extensions
Fingerprintable Non-Fingerprintable

20
19

This paper 10 785 (8.0%) 665
WARs[36] 10 919 (8.1%) 531
WARs [36] ∩ Bloat [38] 10 977 (8.2%) 473
This paper ∩ [36] ∩ [38] 11 147 (8.3%) 303

146 could not be analyzed because the manifest had syntactic errors and the bowser
could not install them—and certi�ed that 10 785 use the sendResponse() function to
send a response back to the sender.

We then coded two �ngerprinting attacks proposed by 1) Sjösten et al. [36],
where extensions are �ngerprintable due to the WARs they publicly expose, and;
2) Starov et al. [38], where extensions are �ngerprintable due to bloat (changes they
automatically perform over the DOM). In Table D.3 we summarized our �ndings and
the combination with prior work in the �eld. Despite being aware of a recently pub-
lished work [23], we could not reproduce the proposed attack being therefore impos-
sible for us to corroborate their �ndings and include them in the �nal result. After
executing the three �ngerprinting attacks (third row of Table D.3), we successfully
�ngerprinted 11 147 extensions (approximately 8.3% of the total extensions) where
303 were not possible to do so with these techniques. The reason for not being pos-
sible to be �ngerprinted is because either they do not send a message back using
the sendResponse()method, they do not de�ne WARs, or they do not automatically
modify the web content provided by the server.

D.6 New Tabs Case Study

Our empirical study has uncovered a remarkable cluster of “New Tab” extensions.
The main characteristic of these extensions is that they override the new tab func-
tionality in the browser. When the user opens a new tab in the browser, this is
replaced by the one the new tab extension created. Such new tabs usually have a
search bar with some arbitrary wallpaper backgrounds. Some extensions also add
widgets like todo-notes, weather reports, email, a list of the most visited sites, and
bookmarks management among others.

Our analysis has �agged many vulnerable and malicious extensions in this cat-
egory, justifying further investigation. In the following section, we analyze them in
more detail.

Tra�c stealing. We found 4 410 extensions, with a combined 176 thousand down-
loads, that steal search queries from users while posing as new tab extensions. There
is a common �le in all these extensions called search-overwrite.js which im-
plements an event listener that is �red just before a web request is sent (chrome.

150

D. Hardening the Security Analysis of Browser Extensions

Table D.4: Distribution of �le versions for search-overwrite.js and domains
used to steal queries.

URL # Extensions SHA[0:3]

s.tablovel.com 1740 026
www.explorenewtab.com 1178 1f8
www.newtabprobe.com 560 191
www.newtabexplore.com 539 513
www.lovelychrometab.com 255 381
www.newtabexplore.com 82 6d9
www.themefornewtab.com 40 c49
www.newtabwallpapers.com 8 7e1
www.newtabwallpapers.com 7 5dc
www.newtabprobe.com 1 732

webRequest.onBeforeRequest.addListener). In such a function, all the extensions
block the ongoing request and redirect it to di�erent URLs, like s.tablovel.com.
We realized that, in addition to stealing queries from popular search engines like
Google, a subset of them, containing 2 588 extensions, also steal queries from other
new tab extensions, e.g., from redirect.lovelytab.com.

Regarding the search-overwrite.js �le, from all the 4 410 extensions, we
computed all the SHA-512 hashes of such a �le in di�erent extensions and found
that there are 10 unique versions. In Table D.4 we show the distribution of the �les
and the URL used to steal the queries. As can be seen, the two most popular versions
of that �le are used by a majority of the extensions.

Code execution. In addition to �nding malicious new tab extensions, we also found
multiple vulnerable ones. In particular, we found that 1 349 extensions were vulner-
able to XSS attacks from other extensions. At the time of download, these extensions
had over 73 million downloads combined, making them quite popular. However, we
do believe many of these downloads were fraudulent and some extensions have lost
many of their downloads since then. This attack depends on three factors: 1) the ex-
tensions allow external messages; 2) the external messages are stored and re�ected
in the extension, and; 3) the CSP in the manifest allows for JavaScript execution. The
problem in these extensions is that data from the localStorage is re�ected unsan-
itized, as is the case for the “Peppa Pig HQ Wallpapers New Tab”5 with over 3 000
downloads. For the 1 349 extensions, all of the above criteria were met. We also
found two other groups of new tab extensions, totaling 2 829 extensions, which met
all but the last criterion. This means that XSS is no longer possible but HTML injec-
tions still are, allowing attackers to inject ads or meta redirects, e�ectively taking
over the new tab extension.

5cikheolhmcgdkmblgmfkgkcg�ddaem (version: 3.2) now removed.

151

s.tablovel.com

Securing the Next Generation Web

History poisoning. A popular function with new tab extensions is showing both
recently and most visited websites. We set up a local server and installed the exten-
sions in the browser. The browser is running a pro�le with multiple poisoned shared
resources, i.e., before running the extension, history data are added to the pro�le.
We found that if we change the <title> tag of a page in the history, we were able
to remotely execute code in the user’s browser.

As an example, we use “Halloween Backgrounds New Tab”6 and the title payload
<script>alert(1)</script>. When the extension reads our web page from the
most visited list of the user, which happens when the user opens a new tab of the
browser or when the user launches the browser, the payload is executed. We found
that the same group of extensions being vulnerable to inter-extension XSS is also
vulnerable to XSS from history poisoning. In total, all 1 349 are vulnerable to XSS
and 2 829 to HTML injection from history poisoning.

Evasion. We discovered that New Tab extensions actively practice evasion mech-
anisms, making their detection challenging for purely dynamic mechanisms. It
turned out that 53 of them share a �le that implements a time bomb logic that waits
�ve days after installation before starting to redirect tra�c.

D.7 Countermeasures

In this section, we brie�y discuss possible countermeasures for the attacks we dis-
covered.

Password stealing. Stopping malicious extensions from stealing passwords is com-
plicated. Many legitimate password manager extensions need the capability to both
read and write passwords to the DOM. Thus, simply blocking access to password
�elds is not viable. To stop the more nefarious type of password-stealing, which
is active password-stealing where no user input is needed, Chrome decided to hide
auto�lled passwords from the DOM until the user interacts with the page, which
our attack bypasses with screenshots.

To protect against extensions screenshotting passwords there are three avenues.
First, warning the users about the screenshot being taken, similarly to what Chrome
does for full desktop screenshots already. A similar approach for screenshots using
chrome.tabs.captureVisibleTab, would clearly show the password being leaked to
the user.

The second approach is for the browser to hide the password before taking the
screenshot. As the browser knows which �eld it inserts the saved password into it
can either obfuscate or fully remove this �eld before taking the screenshot. Then
after the capture is completed, add back the �eld again. The third approach is to cre-
ate a new permission such that extensions that want to use the captureVisibleTab
function should declare in advance such permissions so the user has to speci�cally
approve such privileges.

6jckojlfhehjnlkdoiojpmkjjoojbgfjl (version: 0.1.8.4) now removed.

152

D. Hardening the Security Analysis of Browser Extensions

Tra�c stealing. With the adoption of the new manifest version 3, the permission
webRequestBlockingwill be moved to the chrome.declarativeNetRequestAPI [15].
If extensions would want to block web requests by using the chrome.webRequest
API, they will have to declare that in advance in a set of rules. With this, tra�c
stealing will not be solved but extensions will have to explicitly declare the purpose
in advance, being easier to detect and block by either Google or users.

Inter-extension attacks. In this paper, we conclude that one of the most e�ec-
tive methods to avoid undesired extensions to send messages to others is using the
externally_connectable key in the manifest, similar to what Somé [37] suggested.
We developed a script that automatically inserts externally_connectable into the
manifest of those extensions without it. After, we run the inter-extension attacks
presented in this paper and certi�ed that the extensions were not exploitable any-
more due to external messages.

A common problem in both the extension being vulnerable to inter-extension
XSS and history poisoning attacks was that they did not sanitize user-controlled in-
put. These problems could have been avoided by properly sanitizing content before
presenting it to the user, whether it is todo-notes or an overview of the browser
history. There are many good JavaScript libraries available to sanitize input before
adding it to the DOM, e.g., Both jQuery and DOMPurify.

For XSS speci�cally, strict CSP policies are very e�ective. Chrome already ap-
plies a default strict CSP policy protecting against inline XSS attacks. However, as
we found in this paper, many extensions override this with weaker policies. Mak-
ing it clearer to both the developers and users that weak CSP policies can lead to
the extension and user data being compromised might help raise awareness of this
problem.

D.8 Discussion

In this section, we discuss the limitations of our work and how we try to minimize
both false positives and false negatives. We also discuss deviating results in the
Safari browser.

D.8.1 Static analysis

There are some inherent limitations in using static code analysis. In the case of
JavaScript �les, there are two main aspects to consider: dynamic function execution
and code obfuscation. Dynamically executed code inside an eval() statement would
not be parsed and analyzed correctly. Obfuscated JavaScript code is another well-
known problem. During our manual analysis, we did �nd a heavily obfuscated tra�c
stealing extension that used a base64-encoded string to evade static detection. Thus,
even if we use basic regular expression searches in the code, they can be evaded. To
improve this future static analysis approaches should focus more on deobfuscation
and attempt to decode and decrypt data.

153

Securing the Next Generation Web

Due to dynamic code execution and obfuscation, our analysis may miss poten-
tially malicious extensions resulting in false negatives. However, for the code in the
extension that can be parsed, we ensure that the permissions and APIs we extract
are in the extension’s code.

D.8.2 Dynamic analysis

Before we dynamically executed the extensions, we instrumented them to relay use-
ful information about API calls. However, the instrumentation is done statically,
which inherits similar limitations as mentioned in the static analysis. In the case of
tra�c stealing detection, this means that we would not be able to acquire the exact
�lter list the extensions use. We handled this by dynamically testing the extension
on all the URLs in our target list, which means that we tested everything but at the
cost of worse performance.

For tra�c stealing, we tested extensions against these three URLs that had been
targeted by tra�c stealers, www.google.com, www.yahoo.com, and www.bing.com.
Similarly, by executing the extension multiple times on the same URL we could re-
duce the noise in terms of requests being made, thus lowering false positives. For
example, visiting www.google.com might result in di�erent requests between two
visits. By making multiple visits both with and without the extension we could
determine which requests are introduced by the extensions. Future work includes
testing more URLs than the three we picked. This can lower the false negatives by
potentially �nding more malicious extensions.

D.8.3 Manual Analysis

To further minimize any false positives from the static and dynamic analysis we
test the original extension in a plain Chrome browser. We test one extension from
each cluster of extensions, where the cluster is all the extensions that have the same
vulnerable or malicious JavaScript �le. We also check that the manifests for all the
extensions in the cluster contain the same �le in the manifest to ensure it is not
simply unreachable code.

D.8.4 Cross-browser

For each attack and vulnerability we recreated them in both Firefox and Safari. In
general, they worked similarly in Firefox but failed in Safari. This is because browser
extensions in Safari follow a slightly di�erent model than both Chrome and Firefox.
In Safari, extensions are composed of three main parts [2]: 1) a macOS app; 2) the
browser extension—similar to Chrome and Firefox, and; 3) a native app extension
that mediates between both the macOS app and the browser extension. In addition
to that, the number of permissions available for extensions is limited in comparison
to the other browsers. As a consequence, most of the attacks explained in Section D.5
are not exploitable in Safari but the password stealer.

154

D. Hardening the Security Analysis of Browser Extensions

D.9 Related Work

From the privacy point of view, we di�erentiate among approaches that focus on
how browser extensions handle the (sensitive) information that they have access to
[1, 10, 11, 12, 17, 41], approaches that demonstrate how extensions can be used to
�ngerprint users [23, 36, 38, 39, 40], and approaches that analyze the permissions of
the extensions [4, 6, 7, 8, 9, 19, 28]. From the security point of view, extensions can
be used to execute malicious code [3, 5, 37] and how extensions can cooperate to
execute collusion attacks [33].

Often, these works pursue attacker models and capabilities based on concrete
attacks, e.g., �ngerprinting and information leaking. To complement the depth, our
approach o�ers the breadth of systematically analyzing the attack surface for the
browser extension ecosystem, identifying gaps that lead to discovering new attacks.

Mystique [12] proposes a powerful approach to taint privacy information in
browser extensions by modifying the V8 engine of Chromium. This approach is suit-
able for detecting tra�c stealing attacks, assuming the complexity of V8 does not
break the soundness of taint tracking [44]. In this paper, we used a complementary
technique based on a combination of static and dynamic analysis with clustering of
similar extensions. While Mystique is powerful enough to �nd the tra�c stealers,
the bene�t of our approach is its performance e�ciency and independence of the
browser engine.

We review the literature on the paper’s three main themes: password-stealing,
tra�c stealing, and inter-extension attacks individually.

Password stealing. The security of password managers has been widely evaluated,
resulting in discoveries of security �aws in the auto�ll functionality, being vulnera-
ble to web pages managed by an attacker [26, 27, 35]. In this paper, we demonstrated
how a malicious browser extension can transform the password �eld of the DOM
into text, take a screenshot of the password, and transform it back without the user
noticing.

Tra�c stealing. In 2014, Hulk [22] was one of the �rst papers pointing out that
extensions are sni�ng users’ communication tra�c. The authors analyzed 48 332
extensions and marked 130 as malicious and 4 712 as suspicious. Seven years later,
we realized that this technique is still being used by 4 410 extensions that capture
users’ searches and forward that information to external servers apart from per-
forming the original request. To our surprise, most of these extensions fall into the
“HD Wallpapers New Tab” group where they claim to modify Chrome’s new tab
page.

Inter-extension. Many authors focused on �ngerprinting browser extensions. The
common adversarial model is a web page that attempts to track users using the ex-
tensions they have running in the browser. Probing for WARs [36], detecting the
changes the extensions automatically perform over the DOM [38], using message
passing to know which extension replied to the message [40] or executing timing
attacks [34] are a few examples of how browser extensions can be �ngerprinted. In

155

Securing the Next Generation Web

our paper, apart from considering web pages, we also include browser extensions as
attackers and knowing which extensions the user has without declaring the “man-
agement” permission.

Regarding collusion, very little e�ort has been made in this area in browser ex-
tensions. As far as we know, Saini et al. [33] were the �rst authors who demonstrated
that legitimate extensions can collude to achieve malicious goals and showed how
a malicious extension can miscon�gure the browser or other extensions using mes-
sage passing. Similarly, Buyukkayhan et al. [7] showed how the API that Firefox ex-
poses to extensions, known as Cross Platform Component Object Model (XPCOM),
can be exploitable by other extensions because of a lack of isolation mechanisms,
being only able to be exploited in previous versions of Firefox. In contrast, even
though Chrome isolates the execution of the extensions in di�erent environments,
we demonstrate that browser extensions in Chrome not only can modify others’
con�gurations but also cooperate to achieve a common goal.

Pantelaios et al. [29] investigate 922,684 extensions and �nd 143 malicious ex-
tensions where 64 were still online. From these 143 extensions, they detected that
16 changed the search engine of the user. To do so, they use the users’ feedback
(a combination of rating and comments) and a clustering algorithm to classify and
detect malicious extensions. With our systematic study of attack entry points and a
combination of both static and dynamic analysis, we discover 4 410 that steal search
queries of the user by redirecting them to external servers.

D.10 Conclusions

As a step toward �lling the gap in the security analysis of the browser extension
ecosystem, we have presented a systematic study of attack entry points leading us
to novel methods for password stealing, tra�c stealing, and inter-extension attacks.
Because extensions are highly privileged, it pays o� for the attacker to target vulner-
able extensions, leading to possibilities of ex�ltrating secrets and performing unau-
thorized modi�cation. Combining static and dynamic analysis we have shown how
to discover extension attacks and study their prevalence in the wild. Our �ndings
indicate that 1 349 extensions are vulnerable to cross-extension messaging passing
attacks leading to XSS. We also discovered a remarkable cluster of “New Tab” exten-
sions where 4 410 extensions in this class perform tra�c-stealing attacks. We have
suggested countermeasures for the uncovered attacks.

Coordinated disclosure. Our disclosure report to Google includes not only ma-
licious and vulnerable extensions but also recommendations on mitigating inter-
extension attacks, as well as our �ndings on password and tra�c stealing, which
require browser support for the countermeasures. All of the 4 410 reported tra�c
stealers have now been deleted. We are in contact with Google about the rest, in-
cluding the password stealer which is currently being triaged by their security team.
Acknowledgments. This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the Knut and Alice

156

D. Hardening the Security Analysis of Browser Extensions

Wallenberg Foundation, the Swedish Foundation for Strategic Research (SSF), the
Swedish Research Council (VR), and Facebook.

157

Securing the Next Generation Web

158

Bibliography

[1] A. Aggarwal, B. Viswanath, L. Zhang, S. Kumar, A. Shah, and P. Kumaraguru.
I spy with my little eye: Analysis and detection of spying browser extensions.
In Euro S&P, pages 47–61, 2018.

[2] Apple. Messaging between the app and javascript in a safari web extension.
https://developer.apple.com/documentation/safariservices/saf
ari_web_extensions/messaging_between_the_app_and_javascript_

in_a_safari_web_extension, 2021.

[3] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett. Vetting browser
extensions for security vulnerabilities with VEX. Commun. ACM, 54(9), 2011.

[4] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting browsers from
extension vulnerabilities. In NDSS, 2010.

[5] A. Barua, M. Zulkernine, and K. Weldemariam. Protecting web browser exten-
sions from javascript injection attacks. In ICECCS, pages 188–197, 2013.

[6] L. Bauer, S. Cai, L. Jia, T. Passaro, and Y. Tian. Analyzing the dangers posed by
chrome extensions. In CNS,, pages 184–192, 2014.

[7] A. S. Buyukkayhan, K. Onarlioglu, W. K. Robertson, and E. Kirda. Cross�re:
An analysis of �refox extension-reuse vulnerabilities. In NDSS, 2016.

[8] S. Calzavara, M. Bugliesi, S. Crafa, and E. Ste�nlongo. Fine-grained detection
of privilege escalation attacks on browser extensions. In PLAS, 2015.

[9] N. Carlini, A. P. Felt, and D. Wagner. An evaluation of the google chrome
extension security architecture. In USENIX Sec, pages 97–111, 2012.

[10] W. Chang and S. Chen. Defeat information leakage from browser extensions
via data obfuscation. In ICICS, pages 33–48, 2013.

[11] W. Chang and S. Chen. Extensionguard: Towards runtime browser extension
information leakage detection. In CNS, pages 154–162, 2016.

[12] Q. Chen and A. Kapravelos. Mystique: Uncovering information leakage from
browser extensions. In CCS, page 1687–1700, 2018.

[13] Chrome. Content scripts. https://developer.chrome.com/docs/extens
ions/mv2/content_scripts/, 2019.

[14] Chrome. Chrome extensions permission model. https://developer.chro
me.com/extensions/declare_permissions, 2020.

[15] G. Chrome. Migrating to Manifest V3. https://developer.chrome.com/e
xtensions/migrating_to_manifest_v3, 2020.

159

 https://developer.apple.com/documentation/safariservices/safari_web_extensions/messaging_between_the_app_and_javascript_in_a_safari_web_extension
 https://developer.apple.com/documentation/safariservices/safari_web_extensions/messaging_between_the_app_and_javascript_in_a_safari_web_extension
 https://developer.apple.com/documentation/safariservices/safari_web_extensions/messaging_between_the_app_and_javascript_in_a_safari_web_extension
 https://developer.chrome.com/docs/extensions/mv2/content_scripts/
 https://developer.chrome.com/docs/extensions/mv2/content_scripts/
https://developer.chrome.com/extensions/declare_permissions
https://developer.chrome.com/extensions/declare_permissions
https://developer.chrome.com/extensions/migrating_to_manifest_v3
https://developer.chrome.com/extensions/migrating_to_manifest_v3

Securing the Next Generation Web

[16] Google Pulls 49 Cryptocurrency Wallet Browser Extensions Found Stealing
Private Keys, Apr. 2020. https://news.bitcoin.com/google-cryptocurr
ency-wallet-browser/.

[17] M. Dhawan and V. Ganapathy. Analyzing information �ow in javascript-based
browser extensions. In ACSAC, pages 382–391, 2009.

[18] Firefox. Firefox extensions permission model. https://developer.mozill
a.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/
permissions, 2020.

[19] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Veri�ed security for
browser extensions. In S&P, pages 115–130, 2011.

[20] S. Jadali. DataSpii: The catastrophic data leak via browser exten-
sions. https://securitywithsam.com/2019/07/dataspii-leak-via-br
owser-extensions/, 2019.

[21] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and
K. Thomas. Trends and lessons from three years �ghting malicious extensions.
In USENIX Sec, pages 579–593, 2015.

[22] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson. Hulk:
Eliciting malicious behavior in browser extensions. In USENIX Sec, pages 641–
654, 2014.

[23] S. Karami, P. Ilia, K. Solomos, and J. Polakis. Carnus: Exploring the privacy
threats of browser extension �ngerprinting. In NDSS, 2020.

[24] J. Kornblum. ssdeep - fuzzy hashing program. https://ssdeep-project.gi
thub.io/ssdeep/, 2021.

[25] P. Laperdrix, O. Starov, Q. Chen, A. Kapravelos, and N. Nikiforakis. Finger-
printing in style: Detecting browser extensions via injected style sheets. In
USENIX Sec, 2021.

[26] Z. Li, W. He, D. Akhawe, and D. Song. The emperor’s new password manager:
Security analysis of web-based password managers. In USENIX Sec, 2014.

[27] X. Lin, P. Ilia, and J. Polakis. Fill in the blanks: Empirical analysis of the privacy
threats of browser form auto�ll. In CCS, 2020.

[28] L. Liu, X. Zhang, G. Yan, S. Chen, et al. Chrome extensions: Threat analysis
and countermeasures. In NDSS, 2012.

[29] N. Pantelaios, N. Nikiforakis, and A. Kapravelos. You’ve changed: Detect-
ing malicious browser extensions through their update deltas. In CCS, page
477–491, 2020.

[30] P. Picazo-Sanchez, M. Algehed, and A. Sabelfeld. Dedup.js: Discovering ma-
licious and vulnerable extensions by detecting duplication. In International
Conference on Information Systems Security and Privacy (ICISSP), 2022.

160

https://news.bitcoin.com/google-cryptocurrency-wallet-browser/
https://news.bitcoin.com/google-cryptocurrency-wallet-browser/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/permissions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/permissions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/permissions
https://securitywithsam.com/2019/07/dataspii-leak-via-browser-extensions/
https://securitywithsam.com/2019/07/dataspii-leak-via-browser-extensions/
https://ssdeep-project.github.io/ssdeep/
https://ssdeep-project.github.io/ssdeep/

Bibliography

[31] puppeteer. puppeteer. https://github.com/puppeteer/puppeteer, 2021.

[32] Reuters. Exclusive: Massive spying on users of Google’s Chrome shows new
security weakness. https://www.reuters.com/article/us-alphabet-
google-chrome-exclusive/exclusive-massive-spying-on-users-of-
googles-chrome-shows-new-security-weakness-idUSKBN23P0JO, 2020.

[33] A. Saini, M. S. Gaur, V. Laxmi, and M. Conti. Colluding browser extension
attack on user privacy and its implication for web browsers. Computers &
Security, 63:14 – 28, 2016.

[34] I. Sánchez-Rola, I. Santos, and D. Balzarotti. Extension breakdown: Security
analysis of browsers extension resources control policies. In USENIX Sec, 2017.

[35] D. Silver, S. Jana, D. Boneh, E. Chen, and C. Jackson. Password managers:
Attacks and defenses. In USENIX Sec, pages 449–464, 2014.

[36] A. Sjösten, S. V. Acker, P. Picazo-Sanchez, and A. Sabelfeld. Latex gloves: Pro-
tecting browser extensions from probing and revelation attacks. In NDSS, 2019.

[37] D. F. Somé. Empoweb: Empowering web applications with browser extensions.
In S&P, pages 227–245, 2019.

[38] O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis. Unnecessarily iden-
ti�able: Quantifying the �ngerprintability of browser extensions due to bloat.
In WWW, page 3244–3250, 2019.

[39] O. Starov and N. Nikiforakis. Extended tracking powers: Measuring the privacy
di�usion enabled by browser extensions. In WWW, pages 1481–1490, 2017.

[40] O. Starov and N. Nikiforakis. XHOUND: Quantifying the �ngerprintability of
browser extensions. In S&P, pages 941–956, 2017.

[41] M. Ter Louw, J. S. Lim, and V. N. Venkatakrishnan. Extensible web browser
security. In DIMVA, pages 1–19, 2007.

[42] usmedicalit. Another chrome extension is stealing passwords.
https://www.usmedicalit.com/2018/09/18/another-chrome-
extension-is-stealing-passwords/, 2020.

[43] vabr@chromium.org. Issue 636425: Value of auto�lled input[type="password"]
shows in dom as empty. https://bugs.chromium.org/p/chromium/issue
s/detail?id=636425/, 2016.

[44] M. Xie, J. Fu, J. He, C. Luo, and G. Peng. Jtaint: Finding privacy-leakage in
chrome extensions. In ACISP, pages 563–583, 2020.

161

https://github.com/puppeteer/puppeteer
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.usmedicalit.com/2018/09/18/another-chrome-extension-is-stealing-passwords/
https://www.usmedicalit.com/2018/09/18/another-chrome-extension-is-stealing-passwords/
 https://bugs.chromium.org/p/chromium/issues/detail?id=636425/
 https://bugs.chromium.org/p/chromium/issues/detail?id=636425/

Securing the Next Generation Web

162

E
No Signal Le� to Chance: Driving Browser

Extension Analysis by Download Pa�erns

Abstract. Browser extensions are popular small applications that allow users
to enrich their browsing experience. Yet browser extensions pose security con-
cerns because they can leak user data and maliciously act on behalf of the user.
Because malicious behavior can manifest dynamically, detecting malicious ex-
tensions remains a challenge for the research community, browser vendors, and
web application developers. This paper identi�es download patterns as a use-
ful signal for analyzing browser extensions. We leverage machine learning for
clustering extensions based on their download patterns, con�rming at a large
scale that many extensions follow strikingly similar download patterns. Our
key insight is that the download pattern signal can be used for identifying ma-
licious extensions. To this end, we present a novel technique to detect mali-
cious extensions based on the public number of downloads in the Chrome Web
Store. This technique fruitfully combines machine learning with security anal-
ysis, showing that the download patterns signal can be used to both directly
spot malicious extensions and as input to subsequent analysis of suspicious ex-
tensions. We demonstrate the bene�ts of our approach on a dataset from a daily
crawl of the Web Store over 6 months to track the number of downloads. We
�nd 135 clusters and identify 61 of them to have at least 80% malicious exten-
sions. We train our classi�er and run it on a test set of 1,212 currently active
extensions in the Web Store successfully detects 326 extensions as malicious
solely based on downloads. Driven by the download pattern signal, our code
similarity analysis further reveals 6,579 malicious extensions.

E.1 Introduction

Browser extensions are popular small web applications that users install in mod-
ern browsers to enrich the user experience on the web. Google’s o�cial extension
repository, Chrome Web Store, currently has more than 180,000 extensions between
browser extensions, apps, and themes, with many extensions having millions of
users. Driven by the popularity of Chrome extensions, browser extension ecosys-
tems have been adopted not only by Chromium-based browsers like Opera, Brave,
and Microsoft Edge but also by browsers like Firefox and Safari. The latter browsers

163

Securing the Next Generation Web

draw on the same architecture, allowing developers to easily export their Chrome
extensions. When an extension is installed, the browser typically pops up a message
showing the permissions this new extension requests and, upon user approval, the
extension is then installed and integrated within the browser.

The bene�ts of using browser extensions come at the high price of granting ac-
cess to a vast amount of sensitive information. Not only extensions can get and
interact with all the content of the web pages that users access but also if the exten-
sion de�nes the corresponding permissions, it can run some of the restricted APIs
the browser exposes to extensions and retrieve sensitive information such as cook-
ies, history and even modify the network tra�c without the user knowledge. This
raises serious security and privacy concerns [53, 54, 70].

ChromeWeb Store. Extensions are usually stored in private repositories managed
by vendors, where extensions developers upload them to be freely distributed after-
ward. The most popular browser extensions repository is the Web Store governed
by Google, which banned the possibility of manually installing browser extensions
from other sites di�erent than the Web Store years ago [12].

The Web Store implements a Collaborative Filtering Recommendation System
(CFRS) [25] in such a way that extensions are ranked or featured to make it easier
for users to �nd high-quality content. This ranking is performed by a heuristic that
takes into account ratings from users as well as usage statistics such as the number
of downloads and uninstalls over time.

Inherent to CFRS, attackers have always been trying to promote or demote apps
by automatically modifying ratings and raters [10, 43], or faking the downloads
[8, 18]. Also, the proliferation of crowdsourcing sites like Zeerk, Peopleperhour,
Freelancer, Upwork, and Facebook groups, have helped on this matter [42]. Among
other things, by boosting some apps, developers may get funding from venture cap-
italists when their apps are popular among users [24].

The Web Store implements a set of fraud detection and defense mechanisms so
that attackers cannot alter the ranking that easily [43]. Similar to Android Google
Play, users can only review and rate an extension only if they 1) are logged in the
Web Store, and; 2) install it �rst, being easier for Google to detect fake users trying
to exploit the CFRS. However, this is not the case with downloads. To download and
install extensions, users need a Chromium-based browser, e.g., Chromium, Chrome,
and Brave. Therefore, the number of downloads can be easily altered by automatic
processes, being di�cult to di�erentiate between real users and automatic down-
loads. In this paper, we are particularly interested in how the downloads of the
extensions can be used for grouping browser extensions based on the download
patterns as well as identifying malicious ones based on such patterns.

Extensions’ Downloads. We monitored the number of downloads of browser ex-
tensions over 6 months. We observe that the function de�ning the number of down-
loads is monotonically increasing over time for most extensions. However, there is
a remarkable number of extensions whose downloads: i) do not follow an organic
download pattern, i.e., they are synced with others, following the same pattern; ii)
experience many �uctuations thus not following a monotonic function, and; iii) de-

164

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

viate from the usual growing pattern, i.e., they grow and/or decrease various orders
of magnitude within two or three days. This leads to the insight that the number
of downloads of the extensions can be leveraged as a useful signal for analyzing
browser extensions. Based on these observations, we pose three research questions:

RQ1: Are there extensions that follow similar download patterns?

RQ2: Is there any relationship between download patterns and malicious code?

RQ3: Can we �nd malicious extensions based on their download patterns?

To answer these questions, we crawled the Web Store daily for 171 days and
analyzed the download patterns of over 160,000 extensions. We clustered the exten-
sions with respect to such patterns and found 135 clusters. Later, we analyzed the
security of the extensions that compose these clusters and identify 61 of them to
have at least 80% malicious extensions. Using a supervised learning algorithm, we
trained two classi�ers and evaluated them against 1 212 currently active extensions
in the Web Store. The �rst classi�er predicts which cluster in the training set the
test set extensions are in. Afterward, a threshold is used to mark all extensions in a
cluster as either malicious or benign based on the fraction of malicious extensions
in the cluster. The second classi�er instead directly predicts if an extension is ei-
ther malicious or benign. The �rst classi�er successfully detects 326 and the second
detects 289 extensions as malicious solely based on downloads. Finally, driven by
the download pattern signal our code similarity analysis results in discovering 6,579
malicious extensions.

Contributions. In detail, our contributions are:

1. We describe the methodology we use to retrieve and analyze the data from
the Web Store during 171 days (see Section E.3);

2. We show our results, supporting that RQ1) Extensions follow similar patterns.
RQ2) These patterns can be correlated to maliciousness RQ3) We can �nd new
active malicious extensions based on the download patterns. (see Section E.4);

3. We present a real example of 29 extensions whose downloads are all synced
and hijack the search queries of the users, which leads us to discover 6,579
extra hijacker extensions that remain hidden in the Store (see Section E.5).

We introduce some basic de�nitions for an easy understanding of the paper in
Section E.2, discuss the threats to validity in Section E.6, o�er a summary of the
most relevant related work in Section E.7 and conclude the paper in Section E.8.

Coordinated disclosure. We reported to Google 6,579 the malicious extensions
detected in our empirical study as well as our methodology. The Chrome Web Store
team removed 4,858, while 1,721 are still under investigation.

Artifacts. We open-source our code and data needed to reproduce the results pre-
sented in this paper here: https://www.dropbox.com/sh/clde4ui89qkdc72/AA
CeoirHy9WcASjrV9s1yhEta?dl=0.

165

https://www.dropbox.com/sh/clde4ui89qkdc72/AACeoirHy9WcASjrV9s1yhEta?dl=0
https://www.dropbox.com/sh/clde4ui89qkdc72/AACeoirHy9WcASjrV9s1yhEta?dl=0

Securing the Next Generation Web

E.2 Preliminaries

In this section, we summarize the security and privacy threats that extensions pose,
some basic concepts of time-series, some de�nitions we use in the paper and intro-
duce the threat model.

E.2.1 Browser Extensions’ Security & Privacy

Browser extensions are small applications that can help both developers and users
while developing new web applications or sur�ng the Internet. However, due to the
amount of sensitive information the extensions have access to when they run in the
users’ browser, the security and privacy of such data have been cast doubt on the
adoption of the extensions.

Extensions are composed of two main parts, content scripts, and background
pages. The former are JavaScripts automatically injected in the web pages the ex-
tension de�nes in the manifest �le under the content_scripts key. On the other
hand, background pages are JavaScripts with no direct access to the web content
but with access to a set of restricted and privileged set of APIs the browser exposes,
e.g., network tra�c, cookies, and history. To access these APIs, the extension has to
de�ne in the manifest �le the permissions associated with every API it attempts to
use.

E.2.2 Time-Series Analysis

A time series is a set of data points ordered by time. There are di�erent metrics
to compare two time series, i.e., to get how similar they are, usually based on the
distance among the data points of the series. The most common examples are the Eu-
clidean distance, the Longest Common Subsequence (LCS), and the Dynamic Time
Warping (DTW), being this last one the most common distance used to compare
time-series [17]. In addition to that, Canonical Time Warping (CTW) is a method
based on Dynamic Time Warping (DTW) that aligns time series under rigid regis-
tration of the feature space, not being needed that time series share the same size
nor the same dimension.

Learning in Machine Learning (ML) can be classi�ed into two main families:
supervised and unsupervised. Supervised learning needs labeled data to learn the
mapping function from an input to an output whereas in unsupervised learning
algorithms there is no labeled data and, therefore, they learn patterns from the input
data. Research in both supervised and unsupervised learning algorithms applied to
time series is quite active nowadays.

Clustering is an unsupervised learning technique by which similar data are grouped
with little or no knowledge in advance about the data. Time-series clustering is a
particular case of clustering where the series, a large number of points measured
chronologically, are handled as single objects to extract patterns among them [3].
Examples of algorithms used for time-series clustering are Self-Organizing Map
(SOM) [3], k-means [27], k-shapes [38], and shapelets [67].

166

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

Classi�cation is a supervised learning technique by which an algorithm analyzes
a training dataset and outputs function used for determining the labels of new ex-
amples. Some examples of algorithms for time-series classi�cation are KNeighbors
[56], Support Vector Machines (SVM) [29], Rocket [15], and Minirocket [16].

E.2.3 Definitions

In the following, we explain in detail each one of the key concepts used throughout
this paper.

Downloads. The number of downloads the Web Store publicly exposes for every
extension (e) at time t.

Increment of downloads (∆de). Is the di�erence, in absolute value, of two con-
secutive downloads of an extension e, i.e., ∆de = |ti − ti+1|.

Average of the increment (∆de). Is the arithmetic mean of the increment of the
downloads, i.e., ∆de =

∑n
i=1∆de
n , where i < n and n is the number of measure-

ments per extension.

Average of the average of the increment (∆). Is the arithmetic mean of all the

average of the increment of the downloads of the extensions, i.e., ∆ =
∑e
i=1∆di
n ,

where i <= n, n is the number of extensions and ∆di is the average of the
increment of an extension i.

E.2.4 Threat Model

Extensions can pose many threats to users’ privacy and security. Previous works
have analyzed extensions that inject adware, track and �ngerprint users, takeover
search engines, modify security headers, execute remote code, persuade and steal
user’s search queries [4, 11, 20, 33, 37, 48, 49, 50, 52, 53, 54].

In this work, we focus on a subset of these attacks, namely the search query
stealing attack. This is prominently used by “Wallpaper” extensions user’s search
queries [20]. These extensions override the new tab functionality of the browser
such that when the user opens a new tab, this is replaced by the one the extension
provides. They usually provide a search bar with some arbitrary wallpaper back-
grounds. However, these extensions can redirect search requests containing sensi-
tive queries and redirect them to di�erent URLs (see Table E.5). By focusing on a
subset of all possible attacks, we can more accurately perform the security analysis
that serves as the ground truth for the time-series analysis.

E.3 Scrutinizing the Web Store

A Collaborative Filtering Recommendation System (CFRS) is a system that keeps
track of the users’ preferences to use it afterward to o�er new suggestions to other

167

Securing the Next Generation Web

users [35]. Youtube, Amazon, and Net�ix are examples of applications that imple-
ment CFRSs [45, 64]. This is also the case of the Google Web Store, the online market-
place where browser extensions are freely distributed. The Web Store implements
a CFRS where extensions are ranked based on parameters like ratings from users,
number of downloads and uninstalls over time among others.

Even though the algorithms used by the CFRS are usually unknown, researchers
found attacks against the recommendation system, being pollution attacks the most
common ones [23, 45, 64]. Such attacks consist of generating fake data typically
in form of new users that interact with the system either watching videos, reading
books, and rating or downloading items. By doing so, attackers may promote or
demote items as desired.

Some of the information the Web Store o�ers for each browser extension is the
category it belongs to, the name of the developer, the company, a general description,
some privacy practices, users’ reviews, the number of downloads, the rates that users
give or metadata like the version of the extension, and when it was updated.

In this section, we present the methodology we follow to identify download pat-
terns as a useful signal for analyzing browser extensions. We leverage machine
learning for clustering extensions based on these patterns, con�rming at a large scale
that many extensions follow strikingly similar download patterns (see Section E.4).

We split our methodology into four main tasks (see Figure E.1):

Data Gathering Daily monitoring of the Web Store to extract downloads of all the
browser extensions;

Security Analysis We combine static, manual, and dynamic analysis to mark ma-
licious extensions.

Time-Series Analysis Firstly, group extensions according to the downloads func-
tion they describe (based on ∆de) and look for patterns (clustering phase) and
label them based on the security analysis. Secondly, we implement a learning
algorithm based on the downloads, and;

Discovering We rely on DeDup.js, a recently published framework [39] to discover
extensions shipping the same (malicious) �les detected during our security
analysis.

168

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

 Clustering Classifier

…

Static Manual Labeling

Security Analysis

…Data Gathering

Number of
Downloads

Filter
Extensions

Google Web
Store

Crawling
.crx

Extensions

DTW

Time-Series Analysis

Dynamic

Figure E.1: Systematic methodology to cluster and extensions.

E.3.1 Data Gathering

We observe that Google makes the number of downloads public for most of the
extensions but not for all of them. At the time of writing, there are 10,941 extensions
whose downloads are not shown on the page. Unfortunately, we do not know why
some are hidden. Even though Google hides the downloads for some extensions, we
found out that such a number is still in the source code of each browser extension
but commented under the <PageMap> HTML label, and more concretely it comes as
a text �eld under the <Attribute> label whose attribute name is “user_count” (see
Listing E.1).

1 <!--<PageMap>
2 <DataObject type="document">
3 ...
4 <Attribute name="user_count">
5 6281
6 </Attribute>
7 ...
8 </DataObject>
9 </PageMap>-->

Listing E.1: Number of downloads hidden in the Web Store’s HTML source.

Between March 2021 and Aug 2021, we crawl the Web Store daily, monitoring the
downloads of all the extensions and their version. From all the download patterns
we extract all the extensions whose ∆de is larger than ∆. These are the extensions
whose downloads �uctuate more than the global average in the store.

Dataset Filtering. After the extraction of all the public data of the extensions,
we �ltered the dataset in terms of size (number of extensions) and data information
(number of measurements) allowing us to perform a more accurate security analysis
in Section E.3.2 and better clustering in Section E.3.3. This �ltering process neither
a�ects the results nor the methodology presented in this paper. With more manual
e�ort, in terms of time spent on security analysis and clustering, and increasing
the frequency of the data gathering, we believe this method can be extended to any
group of extensions and attacks.

169

Securing the Next Generation Web

First, we focused on a subset of extensions called wallpapers, i.e., browser ex-
tensions that override the starting page the user previously had and replace it with
a random background image that changes every time the user refreshes the web-
page and a search box in the middle of the screen. We did so because researchers
recently showed that many extensions attempt to steal users’ search queries [20].
Wallpapers can be found in the 11 categories of the Web Store. To get all the wall-
papers, we �ltered out extensions that do not de�ne chrome_url_overrides in their
manifests. Second, we analyzed those extensions with more than 90 measurements
which, given our crawling frequency, corresponds to at least 90 days.

E.3.2 Security Analysis

In accordance with our second research question Is there any relationship between
download patterns and malicious code? we need to perform a security analysis of the
extensions to label them as malicious or benign. Using these security labels we can
search for relationships between clusters and malicious code.

While there are many possible attacks malicious extensions can perform, we
focus on malicious extensions that change the user’s search engine without notice
or steal their queries. This can be accomplished either by redirecting the search
or using analytics. To detect this we develop a fully automatic dynamic analysis
method (see Section E.3.2.1), and verify it using a combination of static and manual
analysis (see Section E.3.2.2).

E.3.2.1 Dynamic Analysis

To detect if an extension steals search queries, we use dynamic analysis to interact
with the extension. The goal of this interaction is to trigger a search if the extension
has a search function.

Challenge. The challenge is that this search function can be implemented in many
di�erent ways. For example, simple HTML forms with a prede�ned action URL for
the search engine could be used. In this case, a simple static analysis would likely be
enough. However, the search bar could instead be a dynamically generated text-�eld
with JavaScript events connected to complex and obfuscated frameworks, making
static analysis more di�cult. Additionally, extension can use iframes or redirect
users to other new tab pages where the search stealing takes place.

The query stealing can also be implemented in di�erent ways. Normally, server-
side redirects are used to send users and their queries to other servers before arriving
at the intended search engine. For example, when searching, the query is sent to ne
wtab.com?query=secret which then redirects it to google.com?query=secret.
Another method frequently used is JavaScript analytic scripts that use XHR to send
the queries to an analytic platform before sending the user to the intended search
engine. Analyzing analytic frameworks statically is also challenging, which is why
we believe the dynamic analysis is better suited.

Orthogonal to the complexity of statically scanning code, extensions can also
implement delays before they start misbehaving. If these delays are implemented
in the extension’s source code it could be detected statically. However, if instead

170

newtab.com?query=secret
newtab.com?query=secret
google.com?query=secret

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

extensions rely on external websites for the new tab features, these servers could
implement the time delay, making it impossible to detect statically.

To tackle these challenges we divide our dynamic analysis into two phases. The
�rst one scans the extensions while keeping track of any search queries being stolen.
Also, it records if the extensions rely on external websites for the functionality. If
the �rst phase does not detect the extension as malicious and it is using a website,
then, in the second phase, we scan the website for a prolonged period. Using a
long enough time span we increase the chances to catch the switch from benign to
malicious behavior.

Phase 1 - Scanning extensions. To detect search query stealing, we use Pup-
peteer1 to control a Chrome instance running with a potentially malicious extension
installed. We build our solution on the dynamic analysis infrastructure developed
by Eriksson et al. [20]. However, our approach to interact with the extensions are
markedly di�erent. Compared to previous approaches that tried to interact with ex-
tensions using honey pages or visiting di�erent websites, our approach is more akin
to web crawling and web vulnerability scanning. Honey pages are good at detecting
how extensions interact with web pages; however, we want to interact with a web
page generated by the extension, i.e., the new tab page.

By using Puppeteer we can mimic how a user would interact with the extension
by clicking on search �elds and typing queries with their keyboards. This is an
important di�erence from using JavaScript to change the values of search �elds as
that might not trigger events and analytic scripts.

In Figure E.2, we give an overview of the algorithm we use to interact with the
extension. As some extensions load their new tab functionality in an iframe we
need to ensure that we check those �rst using the same method. We perform two
core interactions: 1) First clicking on each text input of either type text or search.
Then we type a prede�ned query, i.e., “Secret00133700Query”. This will trigger any
event listeners waiting for a user to type their query; 2) We once again click on each
element but this time simulating pressing enter on the keyboard. This submits the
search query.

1https://github.com/puppeteer/puppeteer

171

https://github.com/puppeteer/puppeteer

Securing the Next Generation Web

Algorithm 1 Dynamically scan extensions for query stealing

1: procedure scan(𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝑞𝑢𝑒𝑟𝑦)
2: 𝑝𝑎𝑔𝑒 ← 𝑙𝑜𝑎𝑑𝑁𝑒𝑤𝑡𝑎𝑏 (𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛)
3: for 𝑓 ∈ 𝑔𝑒𝑡𝐼 𝑓 𝑟𝑎𝑚𝑒𝑠 (𝑝𝑎𝑔𝑒) do
4: for 𝑖 ∈ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠 (𝑓) do
5: Click on 𝑖

6: Type 𝑞𝑢𝑒𝑟𝑦

7: end for
8: for 𝑖 ∈ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠 (𝑓) do
9: Click on 𝑖

10: Press Enter
11: end for
12: end for
13: for 𝑖 ∈ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠 (𝑝𝑎𝑔𝑒) do
14: Click on 𝑖

15: Type 𝑞𝑢𝑒𝑟𝑦

16: end for
17: for 𝑖 ∈ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠 (𝑝𝑎𝑔𝑒) do
18: Click on 𝑖

19: Press Enter
20: end for
21: end procedure

1

Figure E.2: Dynamically scan extensions for query stealing

After the interaction method we check all the network tra�c to detect any re-
quests containing our query. Similar to previous work [47], we also check for trans-
formations on the query, e.g., lowercase, uppercase, BASE64 etc. If we detect the
query in a request to or from a server that is not one of the four major search en-
gines (Google, Yahoo, Bing, and DuckDuckGo), we mark it as malicious.

Phase 2 - Scanning websites As some extensions rely on websites for their new
tab functionality, we also scan these websites in an attempt to detect delayed mali-
cious behavior. For example, a new tab website can start with using Google as the
search engine but after some time start redirecting the search queries.

To �nd websites worth scanning we analyze the results from Phase 1. We extract
all pairs of source and target URLs where the target contains our search query. For
example, when analyzing an extension we found tabhd.com as the source and go
ogle.com/?q=QUERY as the target. In this case, we scanned tabhd.com to test if it
switches from google.com to something else.

For each website we �nd in Phase 1 we pick an extension relying on this website
and scan it repeatedly using the setup in Phase 1. We reload the new tab page every
30 seconds for an hour to detect any changes where search queries are sent. If we
�nd that a website starts redirecting queries after some time, we mark the website
as malicious and all extensions which use the website.

172

tabhd.com
google.com/?q=QUERY
google.com/?q=QUERY
tabhd.com
google.com

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

E.3.2.2 Veri�cation

While it is unlikely that the dynamic analysis results in false positives we still man-
ually test some of the extensions to detect any false negatives. Note that false nega-
tives found in this veri�cation step do not a�ect the �nal results we present, i.e., the
security labels we use in later stages for clustering and classi�cation are based on
the output from the dynamic analysis. The reason for false positives being unlikely
is that our dynamic analysis only marks an extension as malicious if it detects a
request from an unknown server with our query. To better understand the general
limitations of our dynamic analysis and approximate the false negatives we per-
form a manual analysis of extensions marked as benign and use static analysis to
�nd similar ones.

Manual From the set of extensions marked as benign by the dynamic analysis, we
pick a subset to inspect manually. To do so, we open it in Google Chrome and follow
any installation guide the extension needs. We also accept any pop-ups, either modal
windows or window pop-ups that might show up during this process. From there
we locate the search bar if one exists. Using the network tab in developers tools we
note all requests being sent both when typing in the search bar and when submitting
the query. If any unknown server receives our query we mark the extension as
malicious.

Static To increase our coverage, we include static analysis to automatically �nd
similar extensions to the ones we �nd in the manual analysis. We achieve this by
manually creating simple signatures for each new malicious extension we �nd. For
example, Listing E.2 shows a code snippet that could be a signature for a group of
extensions:

1 var url_analytics = ’https://s.example.com’

Listing E.2: Example of code used as a signature to �nd more similar extensions.

Using these signatures we search all manifests, HTML, and JavaScript �les for the
signature. If we �nd a match we mark these as malicious.

173

Securing the Next Generation Web

E.3.3 Time-Series Analysis

0 25 50 75 100 125 150 175
Days in the Web Store

10
3

10
4

#E
xt

en
si

on
s

Figure E.3: Number of days (x-axis) monitoring the extensions (y-axis in log scale).

Ideally, after 171 days of daily monitoring, we should have gathered 171 measure-
ments per extension. However, extensions can be deleted or added, thus a�ecting
the number of downloads collected per extension. We show in Figure E.3 the distri-
bution of how long the extensions in our dataset were online in the Web Store.

0 20 40 60 80
Days in the Web Store

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

(a) Euclidean distance

0 20 40 60 80
Days in the Web Store

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

(b) DTW distance

Figure E.4: DTW vs Euclidean distance applied to extensions downloads time-
series.

Clustering To answer our �rst research question (RQ1): Are there extensions that
follow similar download patterns? We apply state-of-the-art clustering methods. The
results from this clustering will illuminate if there are any clusterable download
patterns.

Given the heterogeneous distribution of the data, i.e., extensions are alive in the
Web Store for di�erent periods, we could not implement classical clustering method-

174

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

ologies based on euclidean distances like DBSCAN or other statistical values such
as mean like K-means. The reason is that to compare two time-series using the
euclidean distance, both series need exactly the same amount of data as well as be-
ing synchronized (see Figure E.4a). Instead, we adopted a well-known technique in
time-series clustering named Dynamic Time Warping (DTW) that solves the afore-
mentioned constraints by computing a discrete matching between the elements of
both series rather than using their time sequence [3] (see Figure E.4b).

In this paper, we follow a so-called Human-in-the-Loop (HitL) methodology [63]
combined with DTW to cluster time-series downloads of browser extensions. To do
so, we deploy an instance of dtadistance library [34] combined with COBRAS-TS
[60], an interactive version of COBRA [13] that allows semi-supervised clustering
of time series. However, this process can be fully automatized without including
any human in the clustering algorithm.

Classification To answer our third research question: Can we �nd malicious exten-
sions based on their download patterns? We create two classi�ers that aim to classify
extensions as malicious solely based on download patterns. The �rst one classi�es
directly based on download patterns while the second cluster similar patterns before
classifying each cluster as malicious or benign. We implement and evaluate an in-
stance of MiniRocket [16]We split our extensions dataset into training and test sets.
To simulate a realistic scenario of our approach, we use all extensions that had been
deleted at the end of the data-gathering phase as the training set and the still-active
ones as our test set.

We implement two di�erent classi�ers, both using MiniRocket. The �rst one
predicts if the extension is malicious based on the download patterns and security
labels from our security analysis. The second predicts which cluster from the train-
ing set the extensions in the test set are closest to. Finally, we compare a threshold t
to the fraction of malicious extensions in the cluster. If t is greater than this fraction
we mark the extension as malicious.

We evaluate our model according to three main metrics: precision, recall, and F1-
Score. Precision measures how many positive predictions are true, i.e., TP/(TP+FP).
Recall measures how many positive classes the model can predict, i.e., TP/(TP+FN).
Finally, F1-Score is the harmonic mean of both recall and precision, i.e., 2(recall ·
precision)/(recall+ precision).

E.3.4 Discovering

Discovering malicious extensions is challenging given the dynamic nature of JavaScript
and the complexity of the browser extensions ecosystem together with the exten-
sion’s use of remote servers for full or partial functionality. In this paper, once we
detect malicious behavior in an extension, we implement two strategies to discover
as many related malicious extensions as possible.

Firstly, we statically analyze the manifest looking for similarities in how exten-
sions de�ne and use the �les they are composed of. With this, we identify the �le
that performs the attack. Secondly, since we are not interested in similarities in the
structure but in the exact �les, we contacted the authors of DeDup.js [39], a frame-

175

Securing the Next Generation Web

work for discovering potentially malicious extensions by leveraging deduplication,
and shared both the source code and the dataset with us. DeDup.js maintains an
updated dataset with the Subresource Integrity (SRI) of all the static content of the
extensions (CSS, fonts, HTML, images, and JavaScript). Thus, when we detect a ma-
licious extension, we isolate its �les and detect which JavaScript �les are responsible
for the malicious behavior, and compute its SRI. Later, we use DeDup.js to discover
how many extensions contain the same malicious �le and automatically certify that
such a �le is used in the same way as the malicious extension we initially detected.

E.4 Results

In this section, we present the results from our data gathering, security, and time-
series analysis. We use these results to answer our research questions.

E.4.1 Data Gathering

10
1

10
0

10
1

10
2

10
3

10
4 10

5

Average of the Increment

Ex
te

ns
io

ns ∆=97.6

Figure E.5: Distribution of the average of the increment of downloads (∆d). The ∆d

of 8,165 extensions is higher than the average (∆).

10
0

10
2

10
4

Average of the Increment

accessibility
blogging

communication
fun

news
photos

productivity
search tools

shopping
sports

web development

C
at

eg
or

y

Figure E.6: Distribution of the average of the increment of downloads group by the
11 categories of the Web Store.

176

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

Alive

22,833

Deleted

1,629

Source Code
1,212

No Source Code
0

Source Code
1,646

No Source Code
413

1,212

<latexit sha1_base64="zKzU0nQ/zvIm+tJPPVnOFTA4Ol4=">AAACKHicbVC7SgNBFJ31bXytWtoMBsUq7FqonQEtLBXMA7PLMju5iYOzD2buSsKyH+IH2Nj4ITYiiqT1R3SSWGj0wMDhnHO5c0+YSqHRcQbW1PTM7Nz8wmJpaXlldc1e36jrJFMcajyRiWqGTIMUMdRQoIRmqoBFoYRGeHMy9Bu3oLRI4kvsp+BHrBuLjuAMjRTYx15i7OF07p2CRBbkHkIP83YRQFFQrwv0R2QiXBSBXXYqzgj0L3G/Sbk6l95dPfY+zwP7xWsnPIsgRi6Z1i3XSdHPmULBJRQlL9OQMn7DutAyNGYRaD8fHVrQHaO0aSdR5sVIR+rPiZxFWvej0CQjhtd60huK/3mtDDtHfi7iNEOI+XhRJ5MUEzpsjbaFAo6ybwjjSpi/Un7NFONoui2ZEtzJk/+S+n7FPai4F265ukvGWCBbZJvsEZcckio5I+ekRji5J0/klbxZD9az9W4NxtEp63tmk/yC9fEF0xmsiw==</latexit>

�de � �

Web Store
159,572

Non-Wallpapers
123,590 Testing Dataset

13,149 2,673 2,059

Training Dataset

Dataset
Filtering

Wallpapers
35,982

<latexit sha1_base64="JBxuQJ4d6Pw02Kv6Xhx7nvJPO8c=">AAACMHicbVDLSsNAFJ34rPFVdelmsK24KkkX6rKgoMsKVoWmhMn0pg5OHszciCXkk9z4KbpRUMStX+G0ZqHVAwOHc87lzj1BKoVGx3mxZmbn5hcWK0v28srq2np1Y/NCJ5ni0OWJTNRVwDRIEUMXBUq4ShWwKJBwGdwcjf3LW1BaJPE5jlLoR2wYi1BwhkbyqycNLzH+eDz3jkEi83MP4Q7zQeFDUVBvCPRHZCpcFLZd9yTU/WrNaToT0L/ELUmNlOj41UdvkPAsghi5ZFr3XCfFfs4UCi6hsL1MQ8r4DRtCz9CYRaD7+eTggjaMMqBhosyLkU7UnxM5i7QeRYFJRgyv9bQ3Fv/zehmGh/1cxGmGEPPvRWEmKSZ03B4dCAUc5cgQxpUwf6X8minG0XRsmxLc6ZP/kotW091vumetWnu3rKNCtskO2SMuOSBtcko6pEs4uSdP5JW8WQ/Ws/VufXxHZ6xyZov8gvX5BTCTqrs=</latexit>90 days

Time-Series Analysis Security Analysis

Figure E.7: Filtering Process. Extensions on every step.

In total, after 171 days of monitoring, we collected download patterns for 159,572
extensions. In Figure E.5, we show the distribution of the average of the increments
of the downloads (∆de) of all the extensions of the Web Store. Interestingly, we can
see that there are many outliers, i.e., extensions whose ∆de is higher than 10, 100,
1,000, or even 10,000 downloads. We marked with a green triangle in Figure E.5 the
average of ∆ of the extensions (around 97.6). Even though we could have analyzed
all the extensions of the Web Store, we restricted ourselves to the 8,165 outliers
extensions whose average of ∆de ≥ 97.6.

In Figure E.6 we split the dataset into the categories the extensions belong to.
We also extracted the last public download the Web Store o�ered per extension and
include in Figure E.11 (Section E.I) the download distribution of extensions split
into categories. Although there are some extensions with millions of downloads, in
general, we can observe that most of the browser extensions have been downloaded
less than a hundred times, with even fewer downloads in some categories, including
“blogging”.

In summary (see Figure E.7), we collect 159k download patterns from the Web
Store. From these, 35k are wallpaper extensions, where 22k are still active, and
13k are deleted. From them, we �rst �ltered extensions with interesting download
patterns, (i.e., ∆de ≥ 97.6), getting 1 629 and 2 673 still-active and deleted wallpapers
respectively. Finally, because of our crawling frequency (once a day), to increase the
useful information of the downloads and thus reduce the false positives, we analyze
the downloads of the extensions that remained in the Web Store longer than 90 days,
resulting in a total of 1 212 and 2 059 alive and deleted extensions. We use these 3,271
wallpaper extensions for security analysis and clustering.

E.4.2 Security Analysis

In this section, we present the results of our automatic security analysis where we
�nd 1,292 malicious extensions. Further, we explore how these malicious extensions
related to the clusters of download patterns and answer our second research ques-
tion: Is there any relationship between download patterns and malicious code?

177

Securing the Next Generation Web

Table E.1: Popular domains used by query stealing extensions.

Domain #Extensions
cse.google.com 146
mc.yandex.ru 134
gundil.com 116
cors-anywhere.herokuapp.com 100
www.google-analytics.com 92
completion.amazon.com 60
s.bingparachute.com 42
addiyos.com 16
the-theme-factory.com 14
chromethemesonline.net 11

Phase 1 - Scanning extensions We dynamically executed and analyzed 2,858 ex-
tensions, which is the number of extensions we had the source code for (see Fig-
ure E.7). For the remaining 413 extensions, we marked them as benign, since we
can not prove they are malicious. It takes approximately 30 seconds to analyze one
extension, and our code runs 8 extensions in parallel, resulting in a total of about 3
hours to analyze all our extensions.

In total, we found 441 malicious extensions stealing search queries during the
�rst phase of our dynamic analysis. They use a combined total of 182 di�erent do-
mains for their query stealing. However, one extension can use multiple domains,
e.g., one extension2 uses search.myway.com for searching while simultaneously
using Google Analytics to log the query.

In Table E.1, we present the ten most used domains. Note that these domains
themselves are not necessarily malicious but are being used by malicious exten-
sions. For example, cse.google.com is not malicious but is commonly used by
spyware [14].

Phase 2 - Scanning websites We analyzed the websites used by non-malicious ex-
tensions from Phase 1. In total, we found three domains that were used by 852 exten-
sions, we present these in Table E.2. We analyzed each for an hour and detected both
www.tabhd.com and www.ultitab.com switch from benignly using Google to mali-
ciously using gundil.com. themes.wallpaperaddons.com was consistently using
Google and was therefore not marked as malicious. From this phase, we marked
851 additional extensions as malicious. In total from both phases, we found 1,292
malicious extensions.

2bcdhacjdengeibbbhmdjodiecaiciehc

178

search.myway.com
cse.google.com
www.tabhd.com
www.ultitab.com
gundil.com
themes.wallpaperaddons.com

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

Table E.2: Domains scanned in Phase 2.

Domain Malicious? #Extensions
www.tabhd.com Yes 667
www.ultitab.com Yes 184
themes.wallpaperaddons.com No 1

0 25 50 75
Days in the WebStore

0

10000

N
um

be
r o

f D
ow

nl
oa

ds Extensions = 155

(a) TabHD extensions

0 25 50 75
Days in the WebStore

0.25

0.50

0.75

1.00

N
um

be
r o

f D
ow

nl
oa

ds 1e6 Extensions = 19

(b) MyWay extensions

Figure E.8: Download patterns for two malicious clusters.

0 50 100 150
Days in the WebStore

20000

40000

60000

N
um

be
r o

f D
ow

nl
oa

ds Extensions = 16

(a) FreeAddon extensions

0 50 100 150
Days in the WebStore

0

25000

50000

75000

N
um

be
r o

f D
ow

nl
oa

ds Extensions = 12

(b) FreeAddon extensions

Figure E.9: Download patterns for two benign clusters.

Verification During our veri�cation, we picked a sample of 100 benign extensions
to manually review. As discussed in Section E.6 we are mainly interested in �nding
false negatives, therefore we only consider benign extensions for manual review.
Most of these were correctly marked as benign, being developed by either FreeAd-

179

Securing the Next Generation Web

Table E.3: Distribution of malicious clusters versus the extensions they are com-
posed of.

Maliciousness #Total0% 0%-50% 50%-80% 80%-100% 100%
#Clusters 52 15 7 6 55 135
#Extensions 902 1130 299 401 539 3,271

don or Choosetab. We did �nd a total of three extensions we incorrectly marked as
benign.

To better understand our limitations we look outside the sample for similar ex-
tensions to the ones we missed. Here we �nd a total of 32 extensions out the 2,858
extensions. The biggest miss was due to a group of 27 extensions using s.tabtur
bo.com to steal the queries.

There was another group of three extensions we failed to correctly mark as ma-
licious due to a limitation of Puppeteer, and possibly a bug in the extension. Upon
loading the extension, it uses the code in Listing E.3 to try to redirect the user to
extension://index.html, on Ubuntu this causes Chrome to prompt the user to
execute an external program. This prompt can not be closed by Puppeteer and at
the same time makes it impossible to interact with the web page.

1 n = document.createElement("meta"),

2 n.httpEquiv = "refresh",

3 n.content = "0;url=extension://index.html",

4 document.getElementsByTagName("head")[0].appendChild(n),

Listing E.3: The extension creates a meta tag which prompts the user an external
program. This prompt blocks our analysis from interacting with the
extension.

Finally, there were two unique extensions with di�erent problems. The �rst one
had two search input forms, but only one malicious, and we only tested the benign
one. The second one had a hidden search input which our dynamic approach failed
to click on. We discuss these cases more in Section E.6.

E.4.3 Time-Series Analysis

Clustering. In this section, we present the results of our clustering and how it re-
lates to our �rst research question (RQ1): Are there extensions that follow similar
download patterns? After clustering the extensions based on their download pat-
terns, as explained in Section E.3.3, we �nd a total of 135 clusters composed of 3,271
extensions, with an average of 24 extensions per cluster and 39 clusters with more
than 10 extensions (see Table E.3). We show four examples of these clusters in Fig-
ures E.8 and E.9 whereas we include more examples in Section E.III.

Note that the cluster in Figure E.8b might seem inactive but a small drop, around
day 30, corresponds to hundred thousands of downloads. Another example is the

180

s.tabturbo.com
s.tabturbo.com
extension://index.html

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

cluster in Figure E.9b, where the extensions are inactive for almost 100 days before
all gaining a lot of downloads simultaneously. These clear patterns con�rm that
there exist extensions that follow similar download patterns.

Malicious Clusters. To answer (RQ2): Is there any relationship between download
patterns and malicious code? We further analyzed the 135 clusters and found that
similar clusters have similar attack patterns. For example, in one cluster with 155
extensions, 124 used tabhd.com to steal queries (see Figure E.8a). Note that we did
not have the source code of 30 out of the remaining 31 extensions in that cluster
and therefore marked those as safe (we give more details in Section E.6). Using an
uno�cial repository [21] we could con�rm that those 30 extensions were also using
tabhd.com. While, in another cluster, 13 out of 19 extensions used search.myway
.com instead (see Figure E.8b). In this case, we miss the code of 5 extensions. Similar
to malicious clusters, Figure E.9a shows two clusters of 16 and 12 extensions being
all benign, being all from FreeAddon.

Based on these results, we can con�rm that there is a relationship between down-
load patterns and malicious code in extension. Furthermore, in addition to a corre-
lation between download patterns and maliciousness we also �nd some cases where
the download pattern correlates directly with the speci�c details of the attack, for
example, the use of tabhd.com as a website.

Classifier In this section, we present the results relating to our �nal research ques-
tion (RQ3): Can we �nd malicious extensions based on their download patterns? First,
we present the result of using the classi�er to predict which cluster an extension
matches then we present the fully automatic solution where security labels, i.e., ma-
licious or benign, are directly predicted.

We train our classi�er on download patterns for 2 059 extensions and use 1 212 as
test. Our classi�er will �rst match each extension in the test set with a cluster from
the training set then, based on a threshold t, determine if the extension is malicious.

Figure E.10 depicts the ROC curve of our classi�er. In it, we see how the thresh-
old t a�ects the recall and precision of our classi�er, achieving the best F1-Score of
0,89 at t = 0.26, with a precision and recall of 0,88 and 0,90. At this threshold, the
classi�er �nds 326 out of the 364 malicious extensions in the test set demonstrat-
ing that we successfully �nd malicious extensions solely based on their download
patterns.

181

tabhd.com
tabhd.com
search.myway.com
search.myway.com
tabhd.com

Securing the Next Generation Web

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Figure E.10: ROC curve of our classi�er. The red circle marks the best F1-Score
(0,89), correctly classifying 326 out of 382 malicious extensions.

Directly predicting labels results in an F-score of 0.89 with a precision of 0.92
and recall of 0.80. This is slightly worse than predicting clusters with the optimal
threshold. We believe this is because the semi-automatic clustering is better than
the fully automatic solution used here, which translates into better security label
classi�cation. Solely predicting labels also fails to capitalize on the fact that there
are cases where download patterns correlate with code or attack similarities.

E.5 Use Case: Search Hijacking Wallpapers

In this section, we perform an in-depth analysis of a group of active malicious ex-
tensions we found using our classi�er. Furthermore, we use code similarity analysis
to extend the number of malicious extensions we �nd, as explained in Section E.3.4.

Using our classi�er, we discovered a cluster of 29 malicious extensions that when
installed, redirect the user to websites whose look & feel are quite similar to the
HTML that other extensions enclosed in the group of wallpapers provide (see Ta-
ble E.4). The purpose of these extensions is to prove a search bar with randomly
generated background images to the user each time she opens a new tab in the
browser.

We further analyze the code and structure of these extensions. Initially, the ex-
tensions seem harmless as they do not ask for any permission nor have they any

182

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

Table E.4: Servers where the 29 extensions redirect users to.

URL #Extensions
https://www.ultitab.com 19
https://www.tabhd.com 10

known harmful �les. In Listing E.6, we include the manifest �le of these 29 exten-
sions, having all of them the same manifest but with di�erent icon (<iconFileName>),
background page ("js/<name>.js") and version (<version>).

However, when we automatically installed them all, we realized that all of them
overwrite the "newtab" property, automatically loading the output.html web page
whose content is <head><script src="js/main.js"></script><head>, i.e., this �les
just loads the main.js �le. Interestingly, such a JavaScript �le just has one line:
document.location=’<url>/<name>’; where <url> is the server URL and <name>
is usually the name of the extension.

When accessing either tabhd.com or ultitab.com, the servers automatically gen-
erate a random name and redirect users to https://<url>/<name> where <name> is
the name of a random wallpaper extension. The content of all the URLs is the same,
i.e., there is a search bar in the center and some links to the privacy policy, settings,
or user agreement.

The key part is the search bar that automatically redirects the search queries
of the user to Google during the �rst 30 minutes. After that, the web server pro-
vides almost the same content but the queries the users introduce in the search bar
are redirected to https://gundil.com/index.html?q=<query> instead. Such a website
looks identical to Google but the �rst 4 entries are always advertisements. We also
certify that this website tracks users by retrieving information such as the IP ad-
dress, browser type, browser version, the pages that users visit, the time and date as
well as the time spent on those pages, unique device identi�ers, and other diagnostic
data.

E.5.1 Wallpapers Discovering

To discover more malicious extensions utilizing the same attack, we statically ana-
lyzed all the wallpapers (i.e., 35,982) stored in the Web Store looking for extensions
that, similar to the analyzed ones: 1) implement chrome.browserAction.onClicked
.addListener() and chrome.runtime.onInstalled.addListener() event listeners
and the chrome.tabs.create() function in them; 2) add the newtab property of the
chrome_url_overrides, and; 3) include any URL in their JavaScripts.

We classi�ed extensions into 38 groups according to the URL they include and
visited each one of the websites as stated in Section E.3.2. The look & feel of all the
38 sites were similar: apart from having some icons to social networks and some
other shortcuts, all of them provide a search input similar to Google and Bing pages.

183

Securing the Next Generation Web

The most used URL by the extensions is https://mytab.me/<alias> where <alias>
is a string that can be found in the app.js �le. As an example, the app.js of the
“Burst Gyro Anime Anime New Tags Hot HD Themes”3 extension is window.app={
domain: ’https://mytab.me’, name: ’anime1−6’}; and the redirection is carried
out in the index.js ((() => {location.href = ‘${app.domain}/${app.name}/‘;})
();), script that is loaded by the HTML �le that overwrites the "newtab" property of
the browser. Hence, redirecting the user to an external server every time she opens
a new tab. In Listings E.4 and E.5 we present the background and content script that
2,554 and 3,637 extensions using https://mytab.me have in common respectively.
The background script of the remaining 1,083 extensions is the same but without
the last chrome.runtime.setUninstallURL() statement.

1 (() => {

2 chrome.browserAction.onClicked.addListener(

3 function() {

4 chrome.tabs.create({

5 url: ‘${app.domain}/${app.name}/‘

6 });

7 });

8 chrome.runtime.onInstalled.addListener(

9 function(details) {

10 if (details.reason == "install") {

11 chrome.tabs.create({});

12 }}

13);

14 chrome.runtime.setUninstallURL(’https://mytab.me/?from=

uninstall’)

15 })();

Listing E.4: Background script of 2,554 sleeping malicious extensions.

1 (() => {

2 location.href = ‘${app.domain}/${app.name}/‘;

3 })();

Listing E.5: Content script of 3,637 sleeping malicious extensions.

We realized that some of the web pages initially use a legitimate search engine
like Google or Bing but after some time (between 1 to 30 minutes) they redirect the
search queries to other search engines (e.g., https://gundil.com/index.html?q=<query>
and https://str-search.com/results.php?q=<query>) similar to what the extensions
we detected by analyzing the downloads, extract personal metadata from users to
�ngerprint them as well as adding custom ads.

In addition to that, a few of them perform a double redirection, i.e., they �rst
redirect the query to an external server and redirect the user later to a legitimate
search engine, being almost unnoticeable to the user. Let us give two examples, one
using Google Chrome and another one using Bing.

3kidpaijejhfcmlceagcmkmcpbfmclh�

184

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

Table E.5: Top 10 of the most used URL by extensions to hijack search from users.

URL #Extensions
https://mytab.me 3,637
https://www.tabhd.com 857
https://www.ultitab.com 216
https://chromethemesonline.net 153
https://www.searchcapitol.com/ 137
https://pimp-up-your-browser.com 127
https://the-theme-factory.com 124
https://epic-chrome-themes.com 121
https://chrome-themes.online 89
https://tab-e-licious.com 86

Cute HD Wallpaper New Tab4 is an extension that replaces the "newtab" by
opening a new website (https://qtab.io/cute81/) and when users introduce a search
query in the input bar, the server �rst redirects the user to another server (ini�n-
itynewtab) that hijack the search query and other information of the user before
�nally redirecting to Google Chrome. Similarly, Breaking News Tab5 extension re-
places the "newtab" web page with another one provided by the extension itself.
The di�erence is that this time the search queries go to another server (searchcapi-
tol.com) that server redirects the user to Bing instead once the query is received.

In Table E.5, we included the Top-10 of most used URLs by extensions to hijack
the search queries after performing the discovering strategies previously explained.
Finally, we automatically installed all the extensions we found and check whether
they indeed open the web pages we found when the user opens a new tab.

As a summary, we analyzed the downloads pattern of browser extensions and
detected 1,292 malicious ones that hijack users’ searches. We combined this method
with Dedup.js to detect similar extensions that were not analyzed because their in-
crement of downloads did not pass the �lter (what we call “sleeping” extensions) and
we found 5,288 extra malicious extensions, totaling 6,579.

E.6 Discussion

Web Store Downloads Granularity In September 2021, Google changed the way
the Web Store shows the information a�ecting the granularity of the number of

4ieclinianmfccihifhicbaofnkhndamd
5jgginkfhlcakpkjfkkbbcnjpeoladhih

185

Securing the Next Generation Web

downloads of the extensions. Numbers are no longer as precise, e.g., the same num-
ber of downloads of the extension used in Listing E.1 is now represented as “5,000+
users”. Although the analysis presented in this paper is based on the precise number
of downloads that Google used to o�er and we crawled for 6 months, we believe that
similar results might still be achievable with the new coarse-grained numbers. More
importantly, if our methodology were deployed by vendors, then precise numbers
of the downloads would be used. They would also be able to implement our system
in real-time and not having to wait for 90 days.

Dynamic analysis While it is unlikely to get false positives using dynamic anal-
ysis, we do �nd cases of false negatives. We identify three main limitations in our
dynamic analysis that result in false negatives. These are 1) installation wizards; 2)
HTML elements blocking the search bar, and; 3) state destruction.

Some extensions use installation wizards where the user can �ll in preferences
and import data before being able to use the extensions. Our dynamic analysis makes
no attempt at solving these wizards in general. Therefore it can fail to reach the
search bar and test it for query stealing. Using our manual and static veri�cation
analysis we identi�ed a group of 27 extensions that used tabturbo.com for stealing
queries. However, due to a multi-step installation wizard, we were not able to reach
the search bar.

Another general limitation is invisibility or obstruction of the search bar. For
example, pricehelpers.com requires the user to click a drop-down menu before
being able to search. However, our dynamic approach does not �nd the drop-down
menu needed for the search. The opposite problem is when extensions use modal
windows to obstruct the search bar, until the user closes the modal window. In many
of the cases, our approach could handle this since many of the modal windows did
not cover the entire search bar. In the case of full obstruction, our method would
fail. An example of search bar obstruction is Naruto New Tab Page Top Wallpapers
Themes6. Interestingly, we input DeDup.js with the �les of this extension and it
detected other 3,637 malicious extensions using mytab.me as an external web server
to steal users’ queries.

Finally, we use a best-e�ort approach to �nd the search bar on the new tab page.
If there are multiple text inputs with di�erent functionalities, our approach will only
test the �rst one. We did �nd one such case where an extension had one search bar
for Gmail where it did not steal the query, and a second search bar for Google where
it did steal the query. In that particular case, we only checked the �rst search bar. To
improve this, the extension, or at least the new tab page, should be analyzed once
per input element.

As with any type of Potentially Unwanted Programs (PUP), the potentially part
could result in false positives. If users truly want a search engine other than the
major ones or if they want their queries to be sent to multiple servers in addition to
their normal search engine. To allow for �exibility, we make it easy to change our
code, or relabel the data later, to add or remove servers considered safe.

6bemmphgeeoaljepca�cneogmlndijbi

186

tabturbo.com
pricehelpers.com

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

Missing Code There were 413 extensions that we were not able to collect the
source code before they were removed from the Web Store. In these cases, we fol-
lowed the presumption of innocence and considered the extensions to be benign.
If we could have analyzed their code, our false positive rate would likely have de-
creased.

Missing A�acks In this paper, we focus on the attack of stealing queries. This
means that we might mark an extension as safe even though it performs other mali-
cious actions, like injecting advertisements on pages. As we already �nd malicious
clusters, that even share code-speci�c parts, as the URLs used, we believe our anal-
ysis is strong enough to �nd malicious clusters. By including more attacks in the
security analysis, we might have found more clusters for other attacks that are now
marked as safe instead.

Code Similarity While code similarity is useful in many cases, it also has limita-
tions. Indeed, there are cases where our pattern analysis is more e�ective. One rea-
son is that benign and malicious extensions can have very similar code. For example,
the safe extension jabbaohcijedbmkbdjldjicnohlcdkdp and the malicious dbkbnddm-
cjkjkclnlpagncoebgfaoile both have a main.js �le where only 4 out of the 391 lines
di�er. The main di�erence here is the URL used by the extension. We can also use
techniques based on hash �les like DeDup.js [39]. Here, main.js does not match but
there are still other JavaScripts, CSSs and images that are exactly the same in both.
There have been multiple earlier cases where malicious authors simply copy benign
code and change a small part to make them malicious7. By focusing on download
patterns we are able to distinguish these as two di�erent clusters.

Another reason is that malicious extensions can have a small footprint by relying
on external websites, i.e., they do not need dangerous permissions or powerful API
calls to steal queries (e.g., [2, 28, 37]). In fact, the previously mentioned malicious
extension (dbkbnddmcjkjkclnlpagncoebgfaoile) does not de�ne a single permission.
This makes them hard to detect by traditional methods.

E.7 Related Work

Attacks against collaborative �ltering recommendation systems have recently at-
tracted much interest to the research community. We can di�erentiate between
white-box [66, 68] and black-box attacks [22, 51, 62]. In white-box attacks, attack-
ers have some knowledge about the recommendation algorithms or how the data
(users/items) are related. This knowledge can be gathered by, for instance, inter-
acting with the system similar to what users can do. On the contrary, in black-box
attacks, attackers do not know anything about the recommendation system or the
implemented algorithms. Examples of real attacks on CFRSs, and more concretely
on Android Google Play have been proven to be successful [10, 42, 43, 44] when
attackers alter the rating and the number of raters.

7https://freeaddon.com/warning-adware-virus-distributors-are-making-fake-
extensions-based-on-freeaddon-sportifytab/

187

https://freeaddon.com/warning-adware-virus-distributors-are-making-fake-extensions-based-on-freeaddon-sportifytab/
https://freeaddon.com/warning-adware-virus-distributors-are-making-fake-extensions-based-on-freeaddon-sportifytab/

Securing the Next Generation Web

Recently, Dou et al. [18] deployed a honeypot in App Market—an alternative
non-o�cial Android store—to track the number of downloads of the apps, catego-
rizing the download fraud problem in mobile App markets. In comparison to our
proposal, we proved that the download fraud problem in browser extensions can be
directly associated with security attacks and showed how the download pattern can
be used to detect malicious extensions.

Browser Extensions In the last years, browser extensions have attracted the in-
terest of the research community. In 2015, Google engineers [28] claimed they
catch 70% of the malicious ones within 5 days whereas some extensions can remain
months or even years without being detected [5].

A few examples of how private researchers in the industry help in detecting
malicious extensions are: maladvertising and cryptocurrency [1, 19]; spyware [46];
phishing [40]; proxy scripts [31]; remote code execution [5], and; ransomware [9,
41, 58].

In academia, among other attacks, researchers demonstrated that extensions suf-
fer from maladvertising [4, 57, 61, 65]; �ngerprinting [32, 33, 48, 49, 52, 53, 54, 55, 59];
JavaScript injection attacks [7, 20, 50], and showed how over-privileged the exten-
sions are [2, 28]. When detecting malicious extensions, researchers usually rely on
static [6, 26, 69] and dynamic analysis [11, 30, 36, 55, 70] whereas only a few authors
included machine learning techniques [2, 28, 37].

ML in Browser Extensions Jagpal et al. [28] were one of the �rst who use machine
learning to detect malicious extensions. In concrete, they used Logistic Regression
(LR) to train a model after extracting API, permissions, DOM operations, and behav-
ioral signal of over 90k extensions monitored during 3 years, obtaining an overall
recall of 96.5% and a precision of 81% for one year.

Aggarwal et al. [2] detect malicious extensions by extracting their API sequence,
and using these sequences to train a Recurrent Neural Network (RNN), achieving
high precision (90.02%) and recall (93.31%) in detecting spying extensions.

Regarding clustering, recently, Pantelaios et al. [37] used DBSCAN to cluster
extensions to detect malicious ones based on their reviews, ratings, and descriptions.
Despite being a common technique for detecting anomalies in the time-series, i.e.,
peaks that should not be there, it is not feasible for clustering them.

Contrarily to previous work, we present a novel methodology to automatically
detect malicious extensions based on the number of downloads and without having
to analyze the source code of the extensions. Similar to previous work, our classi�er
achieves 0.88 and 0.90 values for precision and recall respectively.

Comparison Compared with Eriksson et al. [20], in the over 4,000 extensions they
found, none matches ours. This is expected as their method focuses on detecting
extensions stealing queries by intercepting tra�c from search engines, as opposed
to extensions presenting their own search forms.

Compared with the dataset from Pantelaios et al. [37], they found 143 extensions.
Of these, one appeared in our test set, and we both agreed that it was malicious.
In general, their solution requires many reviews on the extensions, something our
extensions did not have, making a direct comparison challenging.

188

E. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

Finally, we compared it with DeDup.js, a code similarity method [39]. Here we
included JS, HTML and CSS �les. Used the malicious extensions in our training set
and checked the code similarity with each extension in the test set. Since DeDup.js
only calculates the number of �les in common, we need to pick a threshold for the
number of �les needed to be considered “similar”. To be as fair as possible, we tried
all thresholds between 1 and 50 �les, and 1 resulted in the best F-score. The F-score
is 0.47 (compared to our 0.89). In more detail, DeDup.js achieves: 349 (TP) 15 (FN)
781 (FP) 67 (TN), whereas our method achieves: 326 (TP) 38 (FN) 44 (FP) 804 (TN).
As this shows, DeDup.js �nds more malicious extensions than we do but at the cost
of a large number of false positives.

E.8 Conclusions

This paper has put the spotlight on the patterns of browser extension downloads and
suggested an approach of leveraging these patterns as a signal to drive the analysis
of extensions. We collect the download patterns from the Web Store for 6 months
to extract our dataset. Using a semi-supervised clustering algorithm, we derive 135
clusters from the 2,858 extensions to discover that the patterns for the extensions
in the clusters are often strikingly similar, answering positively our �rst research
question: Are there extensions that follow similar download patterns?

We combined static, manual, and dynamic analysis to mark all the 2,858 exten-
sions as malicious or benign, with respect to the attacks in our threat model. Using
these security labels with our clusters we showed that 61 of the 135 contain more
than 80% malicious extensions. This a�rms our second research question: Is there
any relationship between download patterns and malicious code?

We showed that by creating a classi�er trained on download patterns of already
deleted extensions we can �nd the malicious extensions that are still active in the
Web Store, a�rming our last research question: Can we �nd malicious extensions
based on their download patterns?

Finally, driven by the download pattern signal, we leveraged a code-similarity
analysis to �nd a total of 6,579 malicious extensions, uncovering “sleeping” exten-
sions whose download patterns contain too little information.

189

Securing the Next Generation Web

190

Bibliography

[1] Over 20,000,000 of chrome users are victims of fake ad blockers.
https://adguard.com/en/blog/over-20-000-000-of-chrome-users-are-victims-
of-fake-ad-blockers.html, 2021.

[2] A. Aggarwal, B. Viswanath, L. Zhang, S. Kumar, A. Shah, and P. Kumaraguru.
I spy with my little eye: Analysis and detection of spying browser extensions.
In Euro S&P, April 2018.

[3] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah. Time-series clustering – a
decade review. Information Systems, 53:16–38, 2015.

[4] S. Arshad, A. Kharraz, and W. Robertson. Identifying extension-based ad in-
jection via �ne-grained web content provenance. In RAID, 2016.

[5] Backdoored Browser Extensions Hid Malicious Tra�c in Analytics Re-
quests. https://decoded.avast.io/janvojtesek/backdoored-browser-extensions-
hid-malicious-tra�c-in-analytics-requests/, 2021.

[6] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and
M. Winslett. Vetting browser extensions for security vulnerabilities with vex.
Commun. ACM, 54(9), 2011.

[7] A. Barua, M. Zulkernine, and K. Weldemariam. Protecting web browser exten-
sions from javascript injection attacks. In ICECCS, July 2013.

[8] ios developers use “well-known” download bots to manipulate app store rank-
ings. https://www.cultofmac.com/146438/ios-developers-use-well-known-
download-bots-to-manipulate-app-store-rankings-report/.

[9] "Catch-All" chrome extension silently steals your data.
https://blog.barkly.com/catch-all-malicious-google-chrome-extension, 2021.

[10] H. Chen, D. He, S. Zhu, and J. Yang. Toward detecting collusive ranking ma-
nipulation attackers in mobile app markets. In Asia CCS, page 58–70, 2017.

[11] Q. Chen and A. Kapravelos. Mystique: Uncovering information leakage from
browser extensions. In CCS, 2018.

[12] No more silent extension installs. http://blog.chromium.org, 2021.

[13] T. V. Craenendonck, S. Dumančić, and H. Blockeel. COBRA: A fast and simple
method for active clustering with pairwise constraints. In IJCAI, pages 2871–
2877, 2017.

[14] Cse.google.com - Jan 2021 update. , 2021.

191

https://adguard.com/en/blog/over-20-000-000-of-chrome-users-are-victims-of-fake-ad-blockers.html
https://adguard.com/en/blog/over-20-000-000-of-chrome-users-are-victims-of-fake-ad-blockers.html
https://decoded.avast.io/janvojtesek/backdoored-browser-extensions-hid-malicious-traffic-in-analytics-requests/
https://decoded.avast.io/janvojtesek/backdoored-browser-extensions-hid-malicious-traffic-in-analytics-requests/
https://www.cultofmac.com/146438/ios-developers-use-well-known-download-bots-to-manipulate-app-store-rankings-report/
https://www.cultofmac.com/146438/ios-developers-use-well-known-download-bots-to-manipulate-app-store-rankings-report/
https://blog.barkly.com/catch-all-malicious-google-chrome-extension
http://blog.chromium.org/2012/12/no-more-silent-extension-installs.html
https://www.2-spyware.com/remove-cse-google-com.html

Securing the Next Generation Web

[15] A. Dempster, F. Petitjean, and G. I. Webb. Rocket: exceptionally fast and accu-
rate time series classi�cation using random convolutional kernels. DataMining
and Knowledge Discovery, 34(5):1454–1495, 2020.

[16] A. Dempster, D. F. Schmidt, and G. I. Webb. Minirocket: A very fast (almost)
deterministic transform for time series classi�cation. In KDD, page 248–257,
2021.

[17] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and
mining of time series data: Experimental comparison of representations and
distance measures. In VLDB, volume 1, page 1542–1552, Aug. 2008.

[18] Y. Dou, W. Li, Z. Liu, Z. Dong, J. Luo, and S. Y. Philip. Uncovering download
fraud activities in mobile app markets. In ASONAM, pages 671–678, 2019.

[19] Malicious chrome extensions found in chrome web store, form droidclub bot-
net. https://blog.trendmicro.com/trendlabs-security-intelligence/malicious-
chrome-extensions-found-chrome-web-store-form-droidclub-botnet/, 2022.

[20] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld. Hardening the Security Anal-
ysis of Browser Extensions. In SAC, 2022.

[21] ExtPose - Track your browser extension app store performance and get com-
petitive advantage. , 2022.

[22] W. Fan, T. Derr, X. Zhao, Y. Ma, H. Liu, J. Wang, J. Tang, and Q. Li. Attacking
black-box recommendations via copying cross-domain user pro�les. In ICDE,
pages 1583–1594, 2021.

[23] M. Fang, G. Yang, N. Z. Gong, and J. Liu. Poisoning attacks to graph-based
recommender systems. In ACSAC, page 381–392, 2018.

[24] S. Farooqi, A. Feal, T. Lauinger, D. McCoy, Z. Sha�q, and N. Vallina-Rodriguez.
Understanding incentivized mobile app installs on google play store. In IMC,
page 696–709, 2020.

[25] How are items ranked in the store? https://developer.chrome.com/doc
s/webstore/faq/#faq-gen-24, 2022.

[26] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Veri�ed security for
browser extensions. In S&P, May 2011.

[27] X. H., Y. Y., L. X., R. L., N. J., and S. W. Time series k-means: A new k-means
type smooth subspace clustering for time series data. Information Sciences,
367-368:1–13, 2016.

[28] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos, M. Rajab, and
K. Thomas. Trends and lessons from three years �ghting malicious extensions.
In USENIX, 2015.

192

https://blog.trendmicro.com/trendlabs-security-intelligence/malicious-chrome-extensions-found-chrome-web-store-form-droidclub-botnet/
https://blog.trendmicro.com/trendlabs-security-intelligence/malicious-chrome-extensions-found-chrome-web-store-form-droidclub-botnet/
https://extpose.com/
https://developer.chrome.com/docs/webstore/faq/#faq-gen-24
https://developer.chrome.com/docs/webstore/faq/#faq-gen-24

Bibliography

[29] A. Kampouraki, G. Manis, and C. Nikou. Heartbeat time series classi�cation
with support vector machines. IEEE Transactions on Information Technology in
Biomedicine, 13(4):512–518, 2009.

[30] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson. Hulk:
Eliciting malicious behavior in browser extensions. In USENIX, 2014.

[31] Is your browser extension a botnet backdoor.
https://krebsonsecurity.com/2021/03/is-your-browser-extension-a-botnet-
backdoor/, 2021.

[32] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine. Browser �ngerprinting: A
survey. ACM Trans. Web, 14(2), Apr.

[33] P. Laperdrix, O. Starov, Q. Chen, A. Kapravelos, and N. Nikiforakis. Finger-
printing in Style: Detecting Browser Extensions via Injected Style Sheets. In
USENIX, Aug. 2021.

[34] W. Meert, K. Hendrickx, and T. V. Craenendonck. wannesm/dtaidistance v2.0.0,
Aug. 2020.

[35] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre. Collabora-
tive recommendation: A robustness analysis. ACM Trans. Internet Technol.,
4(4):344–377, Nov. 2004.

[36] K. Onarlioglu, M. Battal, W. Robertson, and E. Kirda. Securing legacy �refox
extensions with sentinel. In DIMVA, 2013.

[37] N. Pantelaios, N. Nikiforakis, and A. Kapravelos. You’ve changed: Detect-
ing malicious browser extensions through their update deltas. In CCS, page
477–491, 2020.

[38] J. Paparrizos and L. Gravano. K-shape: E�cient and accurate clustering of time
series. In SIGMOD, page 1855–1870, 2015.

[39] P. Picazo-Sanchez, M. Algehed, and A. Sabelfeld. DeDup.js: Discovering Mali-
cious and Vulnerable Extensions by Detecting Duplication. In ICISSP, 2022.

[40] TA413 Leverages New FriarFox Browser Extension to Tar-
get the Gmail Accounts of Global Tibetan Organizations.
https://www.proofpoint.com/us/blog/threat-insight/ta413-leverages-new-
friarfox-brow ser-extension-target-gmail-accounts-global, 2022.

[41] How dangerous is bad rabbit ransomware and how to avoid it.
https://safebytes.com/dangerous-bad-rabbit-ransomware-avoid/, 2021.

[42] M. Rahman, N. Hernandez, B. Carbunar, and D. H. Chau. Search rank fraud
de-anonymization in online systems. In HT, page 174–182, 2018.

[43] M. Rahman, N. Hernandez, R. Recabarren, S. I. Ahmed, and B. Carbunar. The art
and craft of fraudulent app promotion in google play. In CCS, page 2437–2454,
2019.

193

https://krebsonsecurity.com/2021/03/is-your-browser-extension-a-botnet-backdoor/
https://krebsonsecurity.com/2021/03/is-your-browser-extension-a-botnet-backdoor/
https://www.proofpoint.com/us/blog/threat-insight/ta413-leverages-new-friarfox-browser-extension-target-gmail-accounts-global
https://www.proofpoint.com/us/blog/threat-insight/ta413-leverages-new-friarfox-browser-extension-target-gmail-accounts-global
https://safebytes.com/dangerous-bad-rabbit-ransomware-avoid/

Securing the Next Generation Web

[44] M. Rahman, M. Rahman, B. Carbunar, and D. H. Chau. Fairplay: Fraud and
malware detection in google play. In SDM, pages 99–107, 2016.

[45] S. Rani, M. Kaur, M. Kumar, V. Ravi, U. Ghosh, and J. R. Mohanty. Detection
of shilling attack in recommender system for youtube video statistics using
machine learning techniques. Soft Computing, pages 1–13, 2021.

[46] Exclusive: Massive spying on users of Google’s Chrome shows new security
weakness. https://www.reuters.com/article/us-alphabet-google-chrome-
exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-
security-weakness-idUSKBN23P0JO, 2021.

[47] I. Sanchez-Rola, M. Dell’Amico, D. Balzarotti, P. Vervier, and L. Bilge. Journey to
the center of the cookie ecosystem: Unraveling actors’ roles and relationships.
In S&P, 2021.

[48] I. Sánchez-Rola, I. Santos, and D. Balzarotti. Extension breakdown: Security
analysis of browsers extension resources control policies. In USENIX, 2017.

[49] A. Sjösten, S. V. Acker, P. Picazo-Sanchez, and A. Sabelfeld. Latex gloves: Pro-
tecting browser extensions from probing and revelation attacks. In NDSS, 2019.

[50] D. F. Somé. Empoweb: Empowering web applications with browser extensions.
In S&P, May 2019.

[51] J. Song, Z. Li, Z. Hu, Y. Wu, Z. Li, J. Li, and J. Gao. Poisonrec: An adaptive data
poisoning framework for attacking black-box recommender systems. In ICDE,
pages 157–168, 2020.

[52] K. Soroush, I. Panagiotis, S. Konstantinos, and P. Jason. Carnus: Exploring the
privacy threats of browser extension �ngerprinting. In NDSS, 2020.

[53] O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis. Unnecessarily iden-
ti�able: Quantifying the �ngerprintability of browser extensions due to bloat.
In WWW, 2019.

[54] O. Starov and N. Nikiforakis. Extended tracking powers: Measuring the privacy
di�usion enabled by browser extensions. In WWW, 2017.

[55] O. Starov and N. Nikiforakis. Xhound: Quantifying the �ngerprintability of
browser extensions. In S&P, 2017.

[56] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M. Payne,
R. Yurchak, M. RuÃŸwurm, K. Kolar, and E. Woods. Tslearn, a machine learning
toolkit for time series data. Journal of Machine Learning Research, 21(118):1–6,
2020.

[57] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. Mccoy,
A. Nappa, V. Paxson, P. Pearce, N. Provos, and M. A. Rajab. Ad injection at
scale: Assessing deceptive advertisement modi�cations. In S&P, May 2015.

194

https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO

Bibliography

[58] Malicious chrome extension steals data posted to any website.
https://threatpost.com/malicious-chrome-extension-steals-data-posted-to-
any-website/128680/, 2021.

[59] E. Trickel, O. Starov, A. Kapravelos, N. Nikiforakis, and A. Doupé. Everyone
is di�erent: Client-side diversi�cation for defending against extension �nger-
printing. In USENIX, Aug. 2019.

[60] T. Van Craenendonck, W. Meert, S. Dumančić, and H. Blockeel. COBRAS-TS:
A new approach to semi-supervised clustering of time series. In Discovery
Science, pages 179–193. Springer International Publishing, 2018.

[61] G. Varshney, S. Bagade, and S. Sinha. Malicious browser extensions: A growing
threat: A case study on google chrome: Ongoing work in progress. In ICOIN,
Jan 2018.

[62] C. Wu, D. Lian, Y. Ge, Z. Zhu, E. Chen, and S. Yuan. Fight �re with �re: Towards
robust recommender systems via adversarial poisoning training. In SIGIR, page
1074–1083, 2021.

[63] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He. A survey of human-in-the-
loop for machine learning, 2021.

[64] X. Xing, W. Meng, D. Doozan, A. C. Snoeren, N. Feamster, and W. Lee. Take
this personally: Pollution attacks on personalized services. In USENIX, pages
671–686, Aug. 2013.

[65] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth, R. Perdisci, and W. Lee. Un-
derstanding malvertising through ad-injecting browser extensions. In WWW,
2015.

[66] G. Yang, N. Z. Gong, and Y. Cai. Fake co-visitation injection attacks to recom-
mender systems. In NDSS, 2017.

[67] L. Ye and E. Keogh. Time series shapelets: A new primitive for data mining. In
KDD, page 947–956, 2009.

[68] Y. Zhang, J. Xiao, S. Hao, H. Wang, S. Zhu, and S. Jajodia. Understanding the
manipulation on recommender systems through web injection. IEEE Transac-
tions on Information Forensics and Security, 15:3807–3818, 2020.

[69] B. Zhao and P. Liu. Behavior decomposition: Aspect-level browser extension
clustering and its security implications. In RAID, 2013.

[70] R. Zhao, C. Yue, and Q. Yi. Automatic detection of information leakage vulner-
abilities in browser extensions. In WWW, 2015.

195

https://threatpost.com/malicious-chrome-extension-steals-data-posted-to-any-website/128680/
https://threatpost.com/malicious-chrome-extension-steals-data-posted-to-any-website/128680/

Securing the Next Generation Web

196

Appendix

E.I Dataset Distribution

In Figure E.11, we extracted the last public download the Web Store o�ered per ex-
tension and represented the distribution of the downloads according to the category
they belong to in the Web Store.

10
1

10
3 10

5
10

7

Downloads

accessibility
blogging

communication
fun

news
photos

productivity
search tools

shopping
sports

web development

C
at

eg
or

y

Figure E.11: Distribution of the downloads of the categories the Web Store is com-
posed of.

197

Securing the Next Generation Web

E.II Source Code

In Listing E.6, we include the manifest �le of 29 malicious extensions, having all of
them the same manifest but with di�erent icon (<iconFileName>), background page
("js/<name>.js") and version (<version>).

{

"background": {

"persistent": true,

"scripts": [

"js/<name>.js"

]

},

"browser_action": {},

"chrome_url_overrides": {

"newtab": "output.html"

},

"default_locale": "en",

"description": "__MSG_description__",

"icons": {

"128": "<iconFileName >"

},

"manifest_version": 2,

"name": "__MSG_name__",

"offline_enabled": false,

"update_url": "https://clients2.google.com/service/

update2/crx",

"version": "<version>"

}

Listing E.6: Manifest �le of 1,315 extensions.

198

D. No Signal Left to Chance: Driving Browser Extension Analysis by Download
Patterns

E.III Clusters

In Figure E.12 and Figure E.13 we present more of the benign and malicious clusters
we �nd.

0 50 100 150
Days in the WebStore

10000

20000

30000

40000

50000

60000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 53

0 50 100 150
Days in the WebStore

10000

20000

30000

40000

50000

60000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 16

0 50 100 150
Days in the WebStore

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 12

0 50 100 150
Days in the WebStore

10000

20000

30000

40000

50000

60000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 10

0 50 100 150
Days in the WebStore

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f D
ow

nl
oa

ds

1e6 Extensions = 8

0 50 100 150
Days in the WebStore

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 4

0 10 20 30 40 50 60
Days in the WebStore

0

2000

4000

6000

8000

10000

12000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 3

0 50 100 150
Days in the WebStore

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f D
ow

nl
oa

ds

1e6 Extensions = 5

0 50 100 150
Days in the WebStore

0

5000

10000

15000

20000

25000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 2

0 50 100 150
Days in the WebStore

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 2

0 50 100 150
Days in the WebStore

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 2

0 50 100 150
Days in the WebStore

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 2

Figure E.12: Benign Clusters.

0 20 40 60 80
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 155

0 50 100 150
Days in the WebStore

0

10000

20000

30000

40000

50000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 83

0 50 100 150
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 65

0 25 50 75 100 125
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 55

0 20 40 60 80 100
Days in the WebStore

0

2500

5000

7500

10000

12500

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 42

0 20 40 60 80
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 37

0 50 100 150
Days in the WebStore

0

10000

20000

30000

40000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 24

0 20 40 60 80
Days in the WebStore

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f D
ow

nl
oa

ds

1e6 Extensions = 19

0 50 100 150
Days in the WebStore

0

10000

20000

30000

40000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 12

0 20 40 60
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 11

0 20 40 60 80 100 120
Days in the WebStore

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 10

0 50 100 150
Days in the WebStore

0

10000

20000

30000

40000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 10

Figure E.13: Malicious Clusters.

199

Securing the Next Generation Web

200

Embedded Systems

F
On the Road with Third-Party Apps: Secu-

rity Analysis of an In-Vehicle App Platform

Abstract. Digitalization has revolutionized the automotive industry. Mod-
ern cars are equipped with powerful Internet-connected infotainment systems,
comparable to tablets and smartphones. Recently, several car manufacturers
have announced the upcoming possibility to install third-party apps onto these
infotainment systems. The prospect of running third-party code on a device
that is integrated into a safety critical in-vehicle system raises serious concerns
for safety, security, and user privacy. This paper investigates these concerns of
in-vehicle apps. We focus on apps for the Android Automotive operating sys-
tem which several car manufacturers have opted to use. While the architecture
inherits much from regular Android, we scrutinize the adequateness of its se-
curity mechanisms with respect to the in-vehicle setting, particularly a�ecting
road safety and user privacy. We investigate the attack surface and vulnera-
bilities for third-party in-vehicle apps. We analyze and suggest enhancements
to such traditional Android mechanisms as app permissions and API control.
Further, we investigate operating system support and how static and dynamic
analysis can aid automatic vetting of in-vehicle apps. We develop AutoTame, a
tool for vehicle-speci�c code analysis. We report on a case study of the counter-
measures with a Spotify app using emulators and physical test beds from Volvo
Cars.

F.1 INTRODUCTION

The modern infotainment system, often consisting of a unit with a touchscreen, is
mainly used for helping the driver navigate, listening to music or making phone
calls. In addition to this, many users wish to use their favorite smartphone apps
in their cars. Thus, several car manufacturers, including Volvo, Renault, Nissan
and Mitsubishi [42, 50], have chosen to use a special version of Android for use in
cars, called Android Automotive [19]. Other manufacturers such as Volkswagen [49]
and Mercedes-Benz [31] are instead developing their new in-house infotainment
systems. In contrast to the in-house alternatives, Android Automotive is an open
platform with available information and code. This justi�es our focus on Android
Automotive apps.

203

Securing the Next Generation Web

Android Automotive For the manufacturers, a substantial bene�t of using an op-
erating system based on Android is gained from relying on third-party developers to
provide in-vehicle apps. A multitude of popular apps already exists on the Android
market, which can be naturally converted into Android Automotive apps. Further,
Android Automotive is a stand-alone platform that does not require a connected
smartphone, contrary to its competitors MirrorLink [34], Apple CarPlay [1] and
Android Auto [17].

Safety, security, and privacy challenges While third-party apps boost innova-
tion, they raise serious concerns for safety, security, and user privacy. Indeed, it
is of paramount importance that the platform both safely handles these apps while
driving and also safeguards the user’s privacy-sensitive information against leakage
to third parties. Figure F.1 gives a �avor of real-life safety concerns, by showing a
user comment on a radio app with almost half a million downloads. The user points
out that they had to stop driving when a shockingly loud ad was suddenly played,
adding that ads “shouldn’t attempt to kill you” [51].

Figure F.1: Top comment on a radio app. A user was shocked by the volume of an
ad and had to stop driving.

While the Android Automotive architecture inherits much from regular Android,
a key question is whether its security mechanisms are adequate for in-vehicle apps.
However, compared to the setting of a smartphone, in-vehicle apps have obvious
safety-critical constraints, such as neither being able to tamper with the control
system nor being able to distract the driver. Further, car sensors provide sources of
private information, such as location and speed or sound from the in-vehicle micro-
phone. In fact, voice controls are encouraged for apps in infotainment systems, as to
help keep the driver’s hands on the wheel, opening up for audio snooping on users
by malicious apps. A recent experiment done by GM collected location data and
radio listening habits from its users with the goal of creating targeted radio ads [8].
This clearly highlights the value of user data in vehicles. Similar data could poten-
tially be collected by apps using the radio API to record the current station [15].
Thus, a key question is whether Android’s security mechanisms are adequate for
in-vehicle apps.

Android Permissions Android’s core security mechanism is based on a permission
model [21]. This model forces apps to request permissions before using the system
resources. Sensitive resources such as camera and GPS require the user to explicitly

204

F. On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App
Platform

grant them before the app can use them. In contrast, more benign resources such
as using the Internet or NFC can be granted during installation. However, there
are several limitations of this model with implications for the in-vehicle setting.
From a user’s perspective, these permissions are often hard to understand. Porter
Felt et al. [40] show that less than a �fth of users pay attention to the permissions
when installing an app, and even a smaller fraction understands the implications of
granting them. Understanding the implications of giving permissions is even harder.
There are immediate privacy risks, such as an app having permission to access the
car’s position and the Internet can potentially leak location to any third party. More
advanced attacks would only need access to the vehicle speed. This may not seem
like a privacy issue but by knowing the starting position, likely the user’s home
address, and speed, it is possible to derive the path that the car drives [16].

Analyzing Android Automotive Security To the best of our knowledge, this is
the �rst paper to analyze application-level security on the Android Automotive in-
fotainment system. To assess the security of the Android Automotive app platform,
we need to extend the scope beyond the traditional permissions.

Attack surface For a systematic threat analysis, we need to analyze the attack
surface available to third-party apps. This includes analyzing what e�ects malicious
apps may have on the functions of the car, such as climate control or cruise con-
trol, and on the driver. We demonstrate SoundBlast, representative of disturbance
attacks, where a malicious app can shock the driver by excessive sound volume, for
example, upon reaching high speed. We also demonstrate availability attacks like
Fork bomb and Intent storm which render the infotainment system unusable until it
is rebooted. Further, we explore attacks related to the privacy of sensitive informa-
tion, such as vehicle location and speed, as well as in-vehicle voice sound. We show
how to ex�ltrate location and voice sound information to third parties. In order to
validate the feasibility of the attacks, we demonstrate the attacks in a simulation
environment obtained from Volvo Cars. Based on the attacks, we derive exploitable
vulnerabilities and use the Common Vulnerability Scoring System (CVSS) [13] to
assess their impact.

To address these vulnerabilities, we suggest countermeasures of permissions,
API control, system support, and program analysis.

Permissions We identify several improvements of the permission model. This
includes both introducing missing permissions, such as those, pertaining to the lo-
cation and the sound system in the car, as well as making some permissions more
�ne-grained. For location, there are ways to bypass the location permission by de-
riving the location from IP addresses. At the same time, the location permission
currently allows all or nothing: either sharing highly accurate position information
or not. The former motivates adding missing permissions, while the latter motivates
making permissions more �ne-grained. We argue that for many apps, like Spotify
or weather apps, low-precision in the location, e.g. city-level, su�ces.

API control In contrast to permissions, API control can use more information
when decided to grant an app access to a resource. For example, using high-precision
data could be allowed only once an hour, or during an activity like running. Our
�ndings reveal that apps currently need access to the microphone in order to use

205

Securing the Next Generation Web

voice controls. We deem this as breaking the principle of least privilege [44]. To
address this, we argue for full mediation, so that apps subscribe to voice commands
mediated by the operating system, rather than having access to the microphone.
Similarly, location data can also be mediated to limit the precision and frequency
of location requests, making it possible to adhere to the principle of least privilege.
These scenarios exemplify countermeasures we suggest to improve API controls for
in-vehicle apps.

System We argue for improvements to the operating system in order to protect
against apps using too much of the system’s resources. Malicious apps can cause the
system to become unresponsive or halt, either by recursively creating new processes
or coercing other system processes to use up all the resources. The countermeasures
consist of limiting the number of requests an app can make, limiting the resources
system processes can use, or completely blocking some capabilities for third-party
apps, like creating new processes.

Code analysis While previous methods protect the device from malicious apps,
our vision is to also be able to stop the apps before they make it to the device.
This can be accomplished by analyzing the code in the app store, before the app
is published. This does not only protect against malicious apps but also poorly writ-
ten apps that fail to adhere to security best practices. This could, for example, in-
clude apps not using encryption for data transmissions, which is currently a big
problem [41]. Other problems include vulnerable apps with high privileges being
exploited by malicious apps or colluding malicious apps sharing data over covert
channels. Thus, we investigate how static and dynamic program analysis can be
leveraged to address the vulnerabilities.

We design and develop AutoTame, our own static analysis tool for detecting dan-
gerous use of APIs, including the new automotive APIs. AutoTame is open source
and will be freely available at the time of publication. Further, we explore several
state-of-the-art techniques, based on tools like FlowDroid [3] and We are Family [4].

Threat model The threat model in this paper de�nes the attacker as being able to
install one or more apps, with the victim’s permission, on their infotainment system.
Similar to previous research [45], we assume that the victim is more inclined to
install an app that asks for fewer permissions. This means that, while one app with
access to both Internet and GPS might be considered suspicious, two apps, one with
access to the Internet, the other with access to GPS, would be more acceptable. Such
a model incentivizes apps to collude and share information over covert channels.
Using this model we analyze how much damage can be done by a user mistakenly
installing malicious apps.

Case study An ideal evaluation of our countermeasures would be a large-scale of
apps from an app store, in the style of the studies on Google Play, e.g. [3, 10, 37].
Unfortunately, Android Automotive is at this stage an emerging technology with
no apps yet publicly available for a study of this kind. Nevertheless, we have been
granted access to Infotainment Head Unit emulators and physical test beds from
Volvo Cars allowing us to perform a case study with an in-vehicle app version of
Spotify. We use this infrastructure to evaluate our countermeasures.

206

F. On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App
Platform

Impact At the same time, an early study of Android Automotive security has its
advantages. Because our analysis comes at an early phase of Android Automotive
adoption by car manufacturers, it has higher chances for impact. We have reported
our �ndings to both Volvo Cars that participated in our experiments and Google.
We are in contact with both on closing the vulnerabilities we point out and on ex-
perimenting with the countermeasures.

Contributions The paper o�ers the following contributions:

• We present an attack surface for third-party in-vehicle apps, identifying classes
of disturbance, availability, and privacy attacks (Section F.3).

• We propose countermeasures, based on �ne-grained permissions, API control,
system support, and information �ow (Section F.4).

• We overview prominent representatives of techniques and tools for detecting
security and privacy violations in third-party apps (Section F.4.4).

• We present our own static analysis tool, AutoTame, for detection of dangerous
API usage (Section F.4.4).

• We evaluate the countermeasures on a case study with the in-vehicle app Spo-
tify (Section F.5).

F.2 BACKGROUND

As cars become more connected and their infotainment systems more powerful, peo-
ple expect the car to interact in a seamless way with their other devices. In contrast
to most other personal devices, a software bug in a car can have lethal consequences.
For example, in 2015 Miller and Valasek [33] showed that it was possible to remotely
take over a 2014 Jeep Cherokee by exploiting their infotainment system Uconnect.
More recently, in May 2018, researchers found multiple vulnerabilities in the info-
tainment system and Telematics Control Unit of BMW cars which made it possible
to gain control of the CAN buses in the vehicle [48]. These type of attacks show that
remote take over attacks of connected vehicles is a possibility and a real threat.

Attackers do not necessarily need to take control over the braking or steering
system to endanger or distract the driver. For example, an attacker can make a
malicious infotainment app that disturbs or shocks the driver at a certain speed
level. In order to shock the driver, the app may, for example, play loud music or
rapidly �ash the screen.

In addition to security, privacy is also a concern as cars become more capable
of collecting data about their users. In accordance with the new EU regulation,
GDPR [11], the user has to be informed about how the data is used and agree to their
data being used in the described way. Previous research projects have explored the
possibility to automatically track and analyze how privacy-sensitive information is
leaked from Android apps [43], either deliberately through advertisement networks
or inadvertently through insecure communication means [41].

207

Securing the Next Generation Web

F.2.1 Experimental Setup

With access to Volvo Cars internal testing equipment, both the attacks and coun-
termeasures were tested on their infrastructure. In particular, the code is tested on
Volvo’s Infotainment Head Unit emulators (IHU) emulators and physical test beds.
All of the Android code is developed for Android SDK version 26 and 27, which
corresponds to Android 8.0 and 8.1.

F.2.2 Automatic analysis of Android apps

Automatically analyzing Android apps can be done through two major strategies,
static analysis or dynamic analysis. Static analysis only considers the code while
in dynamic analysis the code is executed and the program’s behavior is analyzed.
Which ever method is chosen, a decision on what to look for in the analysis has to
be made. In this paper, two tracks are evaluated, how privacy-sensitive information
�ows through the app and scanning apps for common vulnerabilities.

F.2.3 Android Automotive

Today, the Android system is o�cially used in all types of devices, from phones
and tablets to watches, TVs and soon cars [18]. Android Automotive is a version of
Android developed speci�cally for use in cars. It is essentially Android with a User
Interface (UI) adapted for cars and a number of car speci�c APIs. The car speci�c
APIs allow for control over vehicle functions, such as the heating, ventilation, and
air conditioning (HVAC), and reading of sensor data, e.g. speed, temperature and
engine RPM [19]. Android Automotive is not be confused with Android Auto which
is already available on the market today. Unlike Android Auto, Automotive is a
completely stand-alone system that is not dependent on a smartphone. In Android
Auto, apps run on the users Android phone which then renders content on a screen
in the car. The apps and the Android system thus runs separated from the car.

F.2.4 Android’s Permission model

The Android operating system controls access to many parts of the system, such as
camera, position and text messages, through permissions. These permissions can
be of one of four types; normal, dangerous, signature or signatureOrSystem. The
�rst two are the most common and can be granted to any third-party app. Normal
permissions give isolated accesses with minimal risk for the system and user, these
are automatically granted by the operating system. Dangerous permissions, on the
other hand, give accesses to private user data and control over the device that may
harm the user. These permissions have to be explicitly granted by the user on a per
application basis. Both Android’s coarse and �ne location permissions are examples
of dangerous permissions, since both supply high precision data. The di�erence be-
tween them is that �ne location has access to the GPS while coarse uses cell towers
and WiFi access points. Finally, there are the signature and signatureOrSystem per-
missions, which requires the app to be pre-installed or cryptographically signed [20].

208

F. On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App
Platform

Table F.1: The attacks are divided into three di�erent categories. Which asset and permissions the attacks a�ects and
requires are listed along with the needed user interaction.

Name Category Asset User interaction Permission Severity
SoundBlast Disturbance Driver’s attention Start app None Mediuma

Fork bomb DoS CPU resources Start app None Medium
Intent storm DoS CPU resources Start app None Medium
Permissionless speed Privacy Current speed Start app None Low
Permissionless ex�ltration Privacy Data Ex�ltration Start app None Low
Covert channel Privacy Data Ex�ltration Start app Channel dependent Low

a The score is subject to the limitation of CVSS3 on lacking support for physical damage and safety risks [9].

F.2.5 Covert channels

A covert channel, as de�ned by Lampson, is a communication channel between two
entities that are not intended for information transfer [25]. In Android, a number of
di�erent covert channels exist that use both hardware attributes and software func-
tions to communicate. Apps can for example communicate by reading and setting
the volume, sending special intents or cause high and low system load [29, 45].

F.3 ATTACKS

This section focuses on the implementation decisions regarding the attacks pre-
sented in Table F.1. The category and asset columns in the table give an understand-
ing of what the attack is targeting. More speci�cally, the asset is what the attack is
trying to take control over. In the case of denial-of-service (DoS) attacks, this is usu-
ally some type of resource. Privacy attacks, on the other hand, try to acquire and
ex�ltrate data such as speed or location. User interaction and permission are used to
judge how easy the attack is to execute. The values are �nally combined to create a
severity score based on the Common Vulnerability Scoring System (CVSS3) [13]. A
shortcoming of CVSS3 is that possible physical damage or safety risks are not con-
sidered in the scoring. Distraction vulnerabilities, like the one exploited by Sound-
Blast, and other automotive vulnerabilities will be underrated. These shortcomings
are currently being revised for CVSS3.1 [9]. The exact vectors and scores for each
attack are presented in Table F.3. Table F.2 present the same attacks together with
suitable countermeasures to mitigate the underlying vulnerabilities.

F.3.1 Disturbance

SoundBlast The SoundBlast attack relies heavily on the AudioManager class in
Android. This class supplies functions which are used to control the volume of di�er-
ent audio streams in Android. Cars also have the more speci�c CarAudioManager,
however, this class requires special permissions. Di�erent audio streams are used
to di�erentiate between volumes, e.g. music volume, ringer volume, alarm volume,
etc. A malicious app can use the permissonless audio API to max the volume and
shock the driver. The attack is further improved by using a ContentObserver to
listen for changes in volume and force the volume to the maximum as soon as it

209

Securing the Next Generation Web

changes. Using the vehicle’s sensors, the attacker can also design the attack to only
active when traveling at high speeds.

Testing the SoundBlast attack shows that it is possible to set any volume on all
the di�erent audio streams in Android, without needing any permissions. In addi-
tion, the attack can also detect changes in volume and max the volume accordingly.
The changes are also detected even if the driver uses the hardware controls on the
IHU or steering wheel. Killing the app is the only way to regain control of the vol-
ume.

F.3.2 Availability

Fork bomb A fork bomb is a program that creates new instances of itself until the
system runs out of resources, either freezing the device or force a reboot. While this
might be acceptable on a phone, in a vehicle setting this is problematic. Since the
IHU usually handles navigation, freezing the device might distract drivers trying to
�x it, or frustrate them by having to stop and reboot.

Forking in Android is not possible by default, resulting in the need for a vul-
nerability to leverage in order to accomplish forking. Unlike previously successful
fork bomb attacks on Android [2], our attack takes an application-level approach
by creating a shell, which in turn has the power to fork itself. Similar to other pro-
gramming languages, Android also supports a version of exec, which can be used
to run external programs. However, this is not enough to create a new process that
can copy itself. By using exec to run sh -s, a new shell is created, which in turn
can execute the fork bomb.

When testing this attack it is able to fully grind both the emulator and test bed
to a halt, requiring a power cycle to regain control. It is thus able to render the
infotainment system unusable until the system is rebooted.

Intent storm The intent storm attack uses Android intents to continuously restart
the app itself. Similar to the fork bomb presented in section F.3.2, the intent storm
attack tries to use up all the CPU resources, making the IHU unusable. The di�er-
ence, however, is that the intent storm does not use the resources itself, but rather
forces another system process, the system_server, to use up all resources. The fast
activity switching required is made possible with threads and intents. As soon as
the app starts, it spins up 8 threads which all ask Android to start its own main ac-
tivity. Using multiple threads increases the pressure on the system_server, making
the device less responsive.

During the tests, the system_server process was forced by the attack to use 100%
of the CPU, making the IHU unusable. In some cases, an error message popped
up on the device prompting the user to either kill or wait for the app. Regardless
of which alternative was picked, the attack would continue without interruption
since a request to restart the app had already been sent. Similar to the fork bomb in
section F.3.2, this would grind the IHU to a halt. However, in some cases, the IHU
would automatically restart after a few minutes.

210

F. On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App
Platform

F.3.3 Privacy

Permissionless speed In Android Automotive, apps have direct access to the cur-
rent speed. However, since speed is privacy sensitive it requires a permission. By
combining other permissionless sensor values, such as the current RPM and gear,
and knowledge about the wheel size, the speed can be derived. The e�ectiveness
of this attack does depend on the sampling frequency of the sensors. The hardware
test beds only contained the IHU and not the full car, meaning that the e�ciency of
the attack is yet to be tested.

Permissionless exfiltraion The Android permission model clearly states that any
app wanting communicate on a network requires Internet permission. However, by
using intents it is possible to force another app with Internet permission to leak the
data. Depending on how the intent is crafted, di�erent apps will handle them, for
example, the web browser will open URLs, music player opens music �les, etc.

While the implementation details di�er depending on which app handles the
intent, the common procedure is to encode the data, split it into chunks and send a
separate intent for each chunk.

While the default web browser can be used, there are better options for ex�l-
trating data. By changing the data type to audio/wav and using the URL http:
//evil.com/music.wav?d=[data], the music player will load the URL instead.
The stealthiness of this method depends on which music player is used. Using the
native Android music player, a small popup with a play button will appear. By re-
turning a malformed wav �le from the server, the music player will show a more
subtle error message.

If a web browser is used, the attacker can have the server redirect the request to
a deep link, giving control back to the ex�ltration app. Not only does this give the
app the ability to leak more data, but it also enables two-way communication with
the attacker’s server, all without using the Internet permission.

In order to test this, a proof-of-concept code was developed that would record
audio for �ve seconds and then upload it using the described method. The code
only needs permission to record audio, but not to use the Internet. Testing this
attack shows that it is possible to send data to the Internet without using the Internet
permission. The attack was successful using Chrome, the standard music player,
video player and image viewer. If the device has not been con�gured with a default
application for opening the type of data, it will ask the user to pick one.

Covert channels Previous work on covert channels in Android have used both
vibration and volume settings to transmit data between colluding apps [45]. While
these are still viable in Android Automotive, there are also additional new interesting
APIs. In particular the new climate control API for temperature. Since the tempera-
ture is represented by a �oating point value, the bandwidth is more than tenfold that
of the volume settings. However, changing the temperature does currently require
a signature permission, making it hard for third-party apps to acquire.

In contrast to previous work on covert channels, which relied on time synchro-
nization, our attack is based on asynchronous messages. This forces the receiver to
send an acknowledgment for each of the received values. While this lowers the bit

211

http://evil.com/music.wav?d=[data]
http://evil.com/music.wav?d=[data]

Securing the Next Generation Web

rate, in contrast to synchronous communication, it greatly increases the reliability
of the communication.

With this implementation, two apps can collude to leak privacy- sensitive infor-
mation to the Internet. One app requests permission to privacy-sensitive informa-
tion but not the Internet and then acts as a sender. The second app requests Internet
permission but not permission to access any sensitive data. The second app can now
receive sensitive information which it does not have permission for and leak it to
the Internet.

F.4 COUNTERMEASURES

The vulnerabilities are very di�erent in nature and, as such, the mitigation tech-
niques di�er. Some vulnerabilities can be mitigated by several di�erent techniques
while others can only be mitigated by one. An overview of the attacks together with
mitigations for the underlying vulnerabilities are presented in Table F.2.

F.4.1 Permission

The current permission model can be improved both by adding new permissions
for unprotected resources, and also by re�ning some very broad permission. The
SoundBlast attack, from Section F.3.1, relies on changing the volume through an API
called AudioManager which does not require any sort of permission. At the same
time, there exists an API called CarAudioManager, which does require a permission.
Cars usually have more advanced sound systems than phones so a di�erent API
with more settings does make sense as does the need for a permission. Still, when
conducting experiments with the emulator the AudioManager is present and usable
by third-party apps, thus allowing an attacker to circumvent the permission required
by CarAudioManager.

In addition to audio, Android allows apps to get the location of the device by us-
ing GPS. This can, for example, be used by apps to give weather information. How-
ever, due to these systems having high precision and allowing for multiple requests
within short time intervals, apps often excessive information.

There are multiple methods for preserving the user’s privacy while still main-
taining an acceptable level of functionality in apps using location [12, 32]. Which
method is optimal is highly dependent on the type of information the app needs. A
simple approach is to truncate location, e�ectively creating a grid of possible loca-
tions. A grid will better protect the privacy of the user, but at the same time degrade
the functionality of some apps [32]. In order to handle apps like �tness trackers,
which requires fast updates and high precision, truncation is not feasible. Fawaz and
Shin [12] argue that in order to preserve privacy, a choice has to be made between
tracking distance and speed, or tracking the path of the exercise. They present a
method for tracking the distance and speed by supplying the exercise tracker with a
synthetic route, that has correct distance and speed but a forged path. Furthermore,
they argue that navigation apps with Internet access, usually used for real-time traf-
�c information, are the hardest to handle since they can potentially leak the location.

212

F. On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App
Platform

This problem could be solved by using state-of- the-art information �ow tracking to
ensure that the location is never leaked.

F.4.2 API control

In some scenarios, permissions are not enough. This is usually the case when access
to a resource can be abused over time. For example, in the current Android model,
apps are allowed to record audio from the microphone at all times, as long as it has
been granted the permission once. This means that a restaurant app that uses voice
commands to �nd close by restaurants, can listen to everything the user says, at
all times. Since voice commands are more prevalent in vehicles, where the user’s
focus is on driving, it is reasonable to believe that more in-vehicle apps will use this
functionality. One solution to this problem is to use a voice mediator, which is a
special service that has access to the microphone and allows for third-party apps to
subscribe to certain keywords. The app would only receive sentences that contain
the keywords it subscribed to, e�ectively removing its capabilities to eavesdrop.
Similar to the voice mediation, the same method can be used for location. By using
a location mediator apps can subscribe to arbitrary precision for location data. The
mediator can also introduce a trade-o� between the refresh rate and precision of the
requests, mitigating real-time tracking.

F.4.3 System

Some problems are best solved at the operating system level. These problems in-
clude resource management, e.g. how much CPU time or memory an app should
be allowed to use. One method of limiting the impact of availability attacks is by
limiting how frequent a resource can be acquired. Android already does this to a
great extent when it comes to memory and CPU usage by third-party apps. How-
ever, some system processes, the system_server process in particular, can use all of
the CPU, e�ectively starving the rest of the system. This lack of rate limiting was
exploited in the intent storm attack in Section F.3.2. While not tested, we speculate
that this vulnerability could either be countered by rate limiting the CPU usage of
the system_server process or limit incoming intents to the system_server.

Similar to CPU limiting, memory usage requires limitations too. When Android
is running low on memory it will start to terminate apps in the background. This
can sometimes result in the termination of apps that the user wants to run in the
background. In the case of vehicles, navigation apps are a good example of apps
that should not be killed of while driving. A possible method for ensuring that the
navigation works while driving is to prohibit Android from terminating important
apps. This protects against both malicious apps using up the memory, and legitimate
memory hungry apps.

Akin to permissions, SELinux policies are policies which limit what the pro-
cesses in an OS can do. These policies play a crucial role in protecting the vehicle’s
subsystems from Android. The policies are also suitable for specifying what an app
is allowed to do. However, not how many times it can do it. As Bratus et al. [5]

213

Securing the Next Generation Web

explains, “SELinux does not provide an easy way to control the use of the fork op-
eration once forking has been allowed in the program’s pro�le”, which shows that
SELinux is not suited to stop attacks like fork bombing. While it might be infeaseable
in many situations, blocking forking altogether could be a solution.

F.4.4 Code analysis

Automatic analysis techniques can be used to scan apps, both before installation and
during runtime, to �nd vulnerabilities and block attacks. In the following sections
tools using these techniques are described in more detail.

Vulnerability detection Both AndroBugs [26] and QARK [27] are tools that can
be used to scan Android apps for known vulnerabilities. QARK is capable of �nding
many common security vulnerabilities in Android apps [22]. QARK can, for exam-
ple, �nd incorrect usage of cryptographic functions, trace intents and detect insecure
broadcasts. In addition, QARK can also generate exploits for some of these vulner-
abilities. While not able to generate exploits, AndroBugs can detect vulnerabilities
based on heuristics in the code. For example, multiple dex �les suggests a master key
vulnerability (CVE-2013-4787) [35]. The tools work well together since AndroBugs
can quickly scan multiple apps with heuristics and then QARK can perform a deeper
analysis of the interesting apps.

AutoTame To scan for dangerous use of the new automotive APIs, we developed a
special tool built on the Soot framework, which can analyze both Java and Android
bytecode. The tool has a list of dangerous APIs, e.g controlling the HVAC system,
change audio volume or spawning shells. Using Soot, our tool decompiles the APK
and analyses each function in the app while testing if it matches any of the ones
in the list. AutoTame performs a full application analysis. The main advantage of
this is that it does not require any entry point analysis. Compared to many other
languages, Android apps do not have a single main function from which execution
starts. Therefore a full analysis ensures that any dangerous use of an API is detected.
However, without knowing the entry points, dead code could be �agged, potentially
leading to false positives. In addition to only detecting if the volume is changed,
AutoTame can also give extra warnings if the volume is set to a high numeric value
or if getStreamMaxVolume is used. If a match is found the app can be removed or
marked as potentially dangerous. The tool was able to �ag the SoundBlast attack,
as well as the fork bomb.

Taint tracking Taint tracking can help detect privacy leaks where sensitive infor-
mation, such as the user’s location, is being sent to a remote server. FlowDroid [3] is
a tool for static taint analysis on Android, that can detect these �ows. The taint anal-
ysis works by tainting private sources of information, such as the user’s location. If
the location is written to a variable, then this variable also becomes tainted. If at a
later time this tainted variable is written to a public sink, e.g an Internet connection,
a leak from a private source to a public sink will be detected.

What makes FlowDroid special is its highly accurate modeling of Android’s life
cycles. This is important as an app can be started in many di�erent ways. In addition

214

F. On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App
Platform

Table F.2: List of all developed attacks and which countermeasure(s) can be used to
mitigate each attack the underlying vulnerabilities.

Attacks / Countermeasures Permissions Location granularity SELinux AutoTame FlowDroid We are Family Rate limit
SoundBlast X X
Fork bomb X X
Intent Storm X
Permissionless speed X X X
Permissionless ex�ltration X X X
Covert channels X X X X

to life cycles, FlowDroid is also able to track callback functions, enabling it to track
leaks via button clicks and other UI events. Important for the car API used in this
paper is that FlowDroid can track dynamically registered callback functions, which
is used to establish the connection to the car.

In order to make FlowDroid fully functional with Android Automotive apps, we
extended the tool with new sources and sinks. Some of the sources added were used
to acquire the car’s manufacturer, model and year. For sinks, we added functions for
writing to the climate control APIs.

Observable flows Taint tracking is not always enough to �nd all privacy leaks.
For this reason, a more powerful tool that can detect observable implicit �ows is
introduced. The We are Family paper by Balliu et al. [4] presents a two-fold hybrid
analysis solution. The �rst stage is a static analysis that transforms the application
and adds monitors. These monitors will aid the dynamic analysis tool in the second
stage to �nd implicit �ows. The added monitors are in this case used to track the
program counter label and analyze the current taint value, making it possible to
detect potential leaks during runtime on the device. The dynamic tool developed
in the paper is an extension of TaintDroid [10]. By using the transformed program
together with TaintDroid, the new tool is able to detect observable implicit �ows,
something TaintDroid was not able to do.

F.5 SPOTIFY CASE STUDY

To test some of the countermeasures, an in-depth case study was performed on the
Spotify app. The motivation behind using Spotify is that it was the only third-party
app available on the emulator and test bed, making it the most realistic app to test.
It was also much larger in size than the proof-of-concept attacks. The larger size
will show how well the methods handle real apps.

F.5.1 Permissions

The �rst analysis that has to be performed is to gather an understanding of the per-
missions the app uses. Spotify needs permission to Internet, Bluetooth and NFC, for
data transfer. Furthermore, it also requires permission to change audio settings, run
at startup, and prevent the device from sleeping. Since Spotify is a music streaming
app that should be able to run in the background, as well as talk to other Bluetooth
devices, these permissions seem innocuous. Shifting focus to the dangerous permis-
sions, Spotify does require permission to read the accounts on the device, contacts

215

Securing the Next Generation Web

stored on the device, the device ID, and information about current calls. It is not
clearly motivated why this information is necessary, and while some connection
between the Spotify user and the device user is reasonable, having access to all con-
tacts seems excessive. Spotify does not ask for the location permission, instead, they
use IP-addresses for location [47]. In addition, Spotify can also record audio and take
pictures, as well as read and write access to the external storage. Taking pictures is
necessary to scan QR-codes and the microphone will be used in Spotify’s driving
mode [46]. Access to external storage is reasonable since it allows for o�ine storage
of music, however, it does include access to other photos and media �les beyond
Spotify’s.

F.5.2 Vulnerability detection

To ensure that the app does not have any known vulnerabilities QARK is used to scan
the app. While QARK didn’t �nd any severe vulnerabilities, it did �nd cases where
a vulnerability could arise, e.g. by using a WebView in an older version of Android
(API ≤ 18). Moreover, it also points out interesting entry-points into the app, one
of them leading to a version of Spotify meant for another automotive system. In
addition, a malicious third-party app can also send intents to Spotify to search and
play arbitrary music, skip songs, or even crash the app. QARK did not �nd any
vulnerabilities relating to the vehicle APIs, motivating the need for further analysis.

F.5.3 AutoTame

Using AutoTame, multiple warnings about both changing the volume and query-
ing for max volume was found. Further manual analysis proved that the maximum
volume was used directly to set the volume, as shown in Figure F.2.

1 int i = this.c.getStreamMaxVolume(0);
2 this.c.setStreamVolume(0, i, 0);
3

Figure F.2: Decompiled code setting volume to max

F.5.4 Information flow analysis

The permissions give an upper bound on what the app is capable of doing. A more
precise understanding of the app is achieved by analyzing it with FlowDroid, using
implicit �ow tracking. Using these settings the information �ow analysis found 13
leaks in the app. One interesting leak was getLastKnownLocation being leaked
into a dynamic receiver registration. As shown in Figure F.3, FlowDroid was able to
track the sensitive location through di�erent assignments, function calls and control
�ows. While this case might be quite benign, as it only leaks one bit, it still shows
the capabilities of the technique.

216

F. On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App
Platform

The analysis also over-approximates some leaks, especially when the informa-
tion being sent is based on information being received. A concrete example of this is
when threads try to communication using sendMessage and obtainMessage. Since
the obtained information could contain sensitive information, it is �agged as a leak.
This could potentially be solved using dynamic information �ow tracking.

acu.a this.y

abi2

Location

abi2.d

q()

j()

addAction
null

Figure F.3: The publicly observable addAction function is implicitly dependent on
the private location information.

F.5.5 Summary

To summarize these �ndings, we see that a more robust and at the same time more
�ne-grained permission model would be bene�cial, as it would allow apps like Spo-
tify to use lower precision location data instead of privacy-invading high precision
data. In addition, vulnerability detection methods succeed in �nding a bug that
could be exploited to terminate Spotify. Finally, static analysis proved successful for
automatically detecting privacy leaks.

F.6 RELATED WORK

Previous security and privacy research on vehicles have to a large extent focused on
low-level problems relating to the internal components. Koscher et al. [24] showed
that with physical access to the CAN bus it is possible to control both the speedome-
ter, horn and in-vehicle displays to distract the driver. Miller and Valasek [33] gained
similar access to the CAN bus, this time remotely. A similar vulnerability found in
an infotainment system used in cars from Volkswagen was also recently discovered
by researchers in the Netherlands [7]. They showed that it was possible to connect
to the car via WiFi to exploit a service running in the infotainment system to gain
remote code execution system. The most recent study on attacks against vehicles
were done by researchers at Tencent Keen Security Lab [48], where they found mul-
tiple vulnerabilities in the infotainment system and Telematics Control Unit of BMW
cars, resulting in control of the CAN buses.

217

Securing the Next Generation Web

A contribution of our paper is to show that even without access to the internal
buses or exploiting low-level vulnerabilities, it is possible to cause distractions and
leak private information.

A more high-level study was done by Mazloom et al. [30] where they conducted
a security analysis of the MirrorLink protocol. MirrorLink allows smartphones to
run apps on the cars infotainment system. Their analysis showed weaknesses in
the MirrorLink protocol which could, amongst other things, allow malicious smart-
phone apps to play unwanted music or interfere with navigation. Mandal et al. [28]
showed that the similar system Android Auto have multiple problems that can be
abused by third-party apps. For example, auto playing audio when launching an app
or showing visual advertisements, both which are against Android Auto’s quality
policy. In our paper, we show similar attacks are possible on Android Automotive,
however, without the requirement of the user’s smartphone, since the malicious app
runs on the infotainment system.

Intents, which is the main component in our ex�ltration attack, are problematic
for many reasons. Khadiranaikar et al. [23] highlighted some of these problems, in-
cluding how malicious apps can both steal information and compromise other apps
using intents. Our paper builds on these ideas to develop new ex�ltration methods
for the Android Automotive platform.

There is a large body of work on Android permissions [14, 38, 39]. As a repre-
sentative example, a study on Android permissions by Porter Felt et al. [37] shows
that many apps are using more permissions that they need, i.e. not adhering to
the principle of least privilege. Other researches [6], also argue for the need of a
more �ne-grained model which can grant access to speci�c functions instead of full
APIs or services. Extensions such as Apex [36] have also been developed in order to
supply end users with a more �ne-grained model, capable of granting permissions
based on user-speci�ed policies. While our focus is on the speci�cs of the in-vehicle
setting, we argue that many apps get access to more data than necessary due to the
coarse granularity of the permission model itself. For example, a weather app or
Spotify app only needs low-precision location, such as city level.

F.7 CONCLUSIONS

To the best of our knowledge, we have presented the �rst study to analyze application-
level security on the Android Automotive infotainment system. Unfortunately, our
analysis shows that in-vehicle Android apps are currently as secure as regular phone
apps. We argue it is insu�cient because in-vehicle apps can a�ect road safety and
to some extent user privacy.

Our study of the attack surface available to third-party apps include driver dis-
turbance, availability, and privacy attacks, for which there is currently no protection
mechanisms in Android Automotive.

Consequently, it is important for car manufacturers that third-party apps are
limited in their abilities to cause a considerable distraction for the driver. Addition-
ally, there are a number of vehicle speci�c APIs, such as access to current gear and
engine RPM, that is a cause for concern when it comes to user privacy.

218

F. On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App
Platform

To address the vulnerabilities that lead to these attacks, we have suggested the
countermeasures of robust and �ne-grained permissions, API control, system sup-
port, and program analysis.

We have designed and developed AutoTame, a tool for detecting dangerous vehicle-
speci�c API usage. We have demonstrated that in-vehicle code analysis can be per-
formed using AndroBugs and QARK, to detect known vulnerabilities, AutoTame
to detect vehicle speci�c vulnerabilities and FlowDroid, with the additional vehicle
speci�c sources and sinks, to detect privacy leaking apps.

We have evaluated the countermeasures with a Spotify app using an infrastruc-
ture of Volvo Cars.

219

Securing the Next Generation Web

220

Bibliography

[1] Apple. Apple carplay, 2014. http://www.apple.com/ios/carplay/.

[2] A. Armando, A. Merlo, M. Migliardi, and L. Verderame. Would you mind fork-
ing this process? a denial of service attack on android (and some countermea-
sures). In IFIP, 2012.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, �ow, �eld, object-
sensitive and lifecycle-aware taint analysis for android apps. SIGPLAN Not.,
49(6):259–269, June 2014.

[4] M. Balliu, D. Schoepe, and A. Sabelfeld. We Are Family: Relating Information-
Flow Trackers. In European Symposium on Research in Computer Security, 2017.

[5] S. Bratus, M. E. Locasto, B. Otto, R. Shapiro, S. W. Smith, and G. Weaver. Beyond
selinux: the case for behavior-based policy and trust languages. 2011.

[6] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and �ne-grained mandatory
access control on android for diverse security and privacy policies. In USENIX
Security Symposium, 2013.

[7] Computest. Research paper: The connected car - ways to get unauthorized
access and potential implications. Technical report, April 2018.

[8] Detroit Free Press. Gm tracked radio listening habits for 3 months: Here’s
why, 2018. https://eu.freep.com/story/money/cars/general-motors
/2018/10/01/gm-radio-listening-habits-advertising/1424294002/.

[9] D. Dugal. List of potential improvements for cvss 3.1, 2018.

[10] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. Taintdroid: An information-�ow tracking system
for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst.,
32(2):5:1–5:29, June 2014.

[11] European Commission. Regulation (eu) 2016/679, 2016.
http://ec.europa.eu/justice/data-protection/reform/files/regu
lation_oj_en.pdf.

[12] K. Fawaz and K. G. Shin. Location privacy protection for smartphone users. In
SIGSAC ’14, 2014.

[13] FIRST.Org Inc. Common vulnerability scoring system v3.0: User guide, 2018.

[14] M. Frank, B. Dong, Porter Felt, and D. Song. Mining permission request pat-
terns from android and facebook applications. In ICDM ’12. IEEE, 2012.

221

http://www.apple.com/ios/carplay/
https://eu.freep.com/story/money/cars/general-motors/2018/10/01/gm-radio-listening-habits-advertising/1424294002/
https://eu.freep.com/story/money/cars/general-motors/2018/10/01/gm-radio-listening-habits-advertising/1424294002/
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf

Securing the Next Generation Web

[15] A. Gampe. Radiotestfragment, 2018. https://android.googlesource.c
om/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864b
d48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google
/android/car/kitchensink/radio/RadioTestFragment.java.

[16] X. Gao, B. Firner, S. Sugrim, V. Kaiser-Pendergrast, Y. Yang, and J. Lindqvist.
Elastic pathing: Your speed is enough to track you. In ubicomp 2014, 2014.

[17] Google Inc. Android auto, 2014. https://www.android.com/auto/.

[18] Google Inc. Android, 2018. https://www.android.com/.

[19] Google Inc. Automotive, 2018. https://source.android.com/devices/a
utomotive/.

[20] Google Inc. permission, 2018. https://developer.android.com/guide/to
pics/manifest/permission-element.html.

[21] Google Inc. Permissions overview, 2018. https://developer.android.co
m/guide/topics/permissions/overview.

[22] F. Ibrar, H. Saleem, S. Castle, and M. Z. Malik. A study of static analysis tools to
detect vulnerabilities of branchless banking applications in developing coun-
tries. In ICTD ’17, 2017.

[23] B. Khadiranaikar, P. Zavarsky, and Y. Malik. Improving android application
security for intent based attacks. In IEMCON 2017, Oct 2017.

[24] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental security
analysis of a modern automobile. In 2010 IEEE Symposium on Security and
Privacy, 5 2010.

[25] B. W. Lampson. A note on the con�nement problem. Commun. ACM,
16(10):613–615, Oct. 1973.

[26] Y.-C. Lin. Androbugs framework, 2018. https://github.com/AndroBugs/A
ndroBugs_Framework.

[27] LinkedIn Corporation. Qark, 2018. https://github.com/linkedin/qark.

[28] A. K. Mandal, A. Cortesi, P. Ferrara, F. Panarotto, and F. Spoto. Vulnerability
analysis of android auto infotainment apps. In CF ’18. ACM, 2018.

[29] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun. Analysis of the commu-
nication between colluding applications on modern smartphones. In ACSAC
’12, 2012.

[30] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy. A security analysis of an
in-vehicle infotainment and app platform. In WOOT, 2016.

222

https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google/android/car/kitchensink/radio/RadioTestFragment.java
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google/android/car/kitchensink/radio/RadioTestFragment.java
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google/android/car/kitchensink/radio/RadioTestFragment.java
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google/android/car/kitchensink/radio/RadioTestFragment.java
https://www.android.com/auto/
https://www.android.com/
https://source.android.com/devices/automotive/
https://source.android.com/devices/automotive/
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/linkedin/qark

Bibliography

[31] Mercedes-Benz. Mercedes-benz user experience: Revolution in the cockpit,
2018. https://www.mercedes-benz.com/en/mercedes-benz/innovat
ion/mbux-mercedes-benz-user-experience-revolution-in-the-
cockpit/.

[32] K. Micinski, P. Phelps, and J. S. Foster. An empirical study of location truncation
on android. Weather, 2:21, 2013.

[33] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehi-
cle. Black Hat USA, 2015, 2015.

[34] MirrorLink. Mirrorlink, 2009. https://mirrorlink.com/.

[35] MITRE. CVE-2013-4787. Available from MITRE, CVE-ID CVE-2013-4787., 2013.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4787.

[36] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permission model
and enforcement with user-de�ned runtime constraints. In ASIACCS ’10, 2010.

[37] Porter Felt, E. Chin, S. Hanna, D. Song, and D. A. Wagner. Android permissions
demysti�ed. In ACM Conference on Computer and Communications Security,
pages 627–638. ACM, 2011.

[38] Porter Felt, S. Egelman, M. Finifter, D. Akhawe, D. Wagner, et al. How to ask
for permission. In HotSec, 2012.

[39] Porter Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission re-
delegation: Attacks and defenses. In USENIX Security Symposium, 2011.

[40] A. Porter Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. A. Wagner. Android
permissions: user attention, comprehension, and behavior. In SOUPS, page 3.
ACM, 2012.

[41] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann,
and P. Gill. Studying tls usage in android apps. In CoNEXT ’17, 2017.

[42] Renault–Nissan Alliance. Renault-nissan-mitsubishi and google join
forces on next-generation infotainment, 2018. https://www.alliance-
2022.com/news/renault-nissan-mitsubishi-and-google-join-
forces-on-next-generation-infotainment/.

[43] I. Reyes, P. Wiesekera, A. Razaghpanah, J. Reardon, N. Vallina-Rodriguez,
S. Egelman, and C. Kreibich. " is our children’s apps learning?" automatically
detecting coppa violations. In ConPro’17, 2017.

[44] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9), 1975.

[45] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and X. Wang. Sound-
comber: A stealthy and context-aware sound trojan for smartphones. In NDSS
’11, 2011.

223

https://www.mercedes-benz.com/en/mercedes-benz/innovation/mbux-mercedes-benz-user-experience-revolution-in-the-cockpit/
https://www.mercedes-benz.com/en/mercedes-benz/innovation/mbux-mercedes-benz-user-experience-revolution-in-the-cockpit/
https://www.mercedes-benz.com/en/mercedes-benz/innovation/mbux-mercedes-benz-user-experience-revolution-in-the-cockpit/
https://mirrorlink.com/
https://www.alliance-2022.com/news/renault-nissan-mitsubishi-and-google-join-forces-on-next-generation-infotainment/
https://www.alliance-2022.com/news/renault-nissan-mitsubishi-and-google-join-forces-on-next-generation-infotainment/
https://www.alliance-2022.com/news/renault-nissan-mitsubishi-and-google-join-forces-on-next-generation-infotainment/

Securing the Next Generation Web

[46] M. Singleton. Spotify is testing a driving mode feature, 2018.
https://www.theverge.com/2017/7/7/15937284/spotify-driving-
mode-feature-testing.

[47] Spotify. Privacy policy, 2018. https://www.spotify.com/us/legal/priva
cy-policy/.

[48] Tencent Keen Security Lab. New vehicle security research by keen-
lab: Experimental security assessment of bmw cars, 2018. https:
//keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-
by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/.

[49] Volkswagen. 2018 passat press kit, 2018. https://media.vw.com/en-us/p
ress-kits/2018-passat-press-kit.

[50] Volvo Car Group. Volvo cars to embed google assistant, google play
store and google maps in next-generation infotainment system, 2018.
https://www.media.volvocars.com/global/en-gb/media/pressrele
ases/228639/volvo-cars-to-embed-google-assistant-google-play-
store-and-google-maps-in-next-generation-infotainme.

[51] C. Warren. Radio fm, 2018. https://play.google.com/store/apps/det
ails?id=com.radio.fmradio&hl=en&reviewId=gp%3AAOqpTOFWacIVZQ-
JHULA86lKu5ZYSNQdIjsM8e6Ph0aj2RWN2aVmoFJFfmJhC91yQEErw6Z0Re3I
0LF6k1V_o_Y.

224

https://www.theverge.com/2017/7/7/15937284/spotify-driving-mode-feature-testing
https://www.theverge.com/2017/7/7/15937284/spotify-driving-mode-feature-testing
https://www.spotify.com/us/legal/privacy-policy/
https://www.spotify.com/us/legal/privacy-policy/
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://media.vw.com/en-us/press-kits/2018-passat-press-kit
https://media.vw.com/en-us/press-kits/2018-passat-press-kit
https://www.media.volvocars.com/global/en-gb/media/pressreleases/228639/volvo-cars-to-embed-google-assistant-google-play-store-and-google-maps-in-next-generation-infotainme
https://www.media.volvocars.com/global/en-gb/media/pressreleases/228639/volvo-cars-to-embed-google-assistant-google-play-store-and-google-maps-in-next-generation-infotainme
https://www.media.volvocars.com/global/en-gb/media/pressreleases/228639/volvo-cars-to-embed-google-assistant-google-play-store-and-google-maps-in-next-generation-infotainme
https://play.google.com/store/apps/details?id=com.radio.fmradio&hl=en&reviewId=gp%3AAOqpTOFWacIVZQ-JHULA86lKu5ZYSNQdIjsM8e6Ph0aj2RWN2aVmoFJFfmJhC91yQEErw6Z0Re3I0LF6k1V_o_Y
https://play.google.com/store/apps/details?id=com.radio.fmradio&hl=en&reviewId=gp%3AAOqpTOFWacIVZQ-JHULA86lKu5ZYSNQdIjsM8e6Ph0aj2RWN2aVmoFJFfmJhC91yQEErw6Z0Re3I0LF6k1V_o_Y
https://play.google.com/store/apps/details?id=com.radio.fmradio&hl=en&reviewId=gp%3AAOqpTOFWacIVZQ-JHULA86lKu5ZYSNQdIjsM8e6Ph0aj2RWN2aVmoFJFfmJhC91yQEErw6Z0Re3I0LF6k1V_o_Y
https://play.google.com/store/apps/details?id=com.radio.fmradio&hl=en&reviewId=gp%3AAOqpTOFWacIVZQ-JHULA86lKu5ZYSNQdIjsM8e6Ph0aj2RWN2aVmoFJFfmJhC91yQEErw6Z0Re3I0LF6k1V_o_Y

Appendix

F.I A�acks and severity score

Table F.3: List of attacks and their severity score, based on CVSS v3.

Name CVSS v3 Vector Score
SoundBlast AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:L 4.4
Fork bomb AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 5.9
Intent storm AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 5.9
Permissionless speed AV:L/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 3.3
Permissionless ex�ltration AV:L/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 3.3
Covert channel AV:L/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 3.3

225

	Abstract
	List of publications
	Acknowledgments
	Overview
	Introduction
	Attackers
	Web applications
	Client-side
	Server-side

	Browser extensions
	Embedded Systems

	Thesis structure
	Statement of contributions
	AutoNav: Evaluation and Automatization of Web Navigation Policies
	Black Widow: Blackbox Data-driven Web Scanning
	Black Ostrich: Web Application Scanning with String Solvers
	Hardening the Security Analysis of Browser Extensions
	No Signal Left to Chance: Driving Browser Extension Analysis by Download Patterns
	On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App Platform

	Bibliography

	Client-side and Server-side Web Security
	AutoNav: Evaluation and Automatization of Web Navigation Policies
	Introduction
	Motivation
	Research questions
	Contributions

	Background
	Threat model
	CSP
	Origin policy
	Navigation
	Navigate-to directive

	Vulnerabilities
	Methodology
	Specification
	Implementation

	Countermeasures
	Specification
	Implementation

	AutoNav
	Inference
	Policy generation
	Crawling
	Limitations

	Empirical Study
	Policy tradeoffs
	Coverage

	Related work
	Conclusion
	Bibliography

	Black Widow: Blackbox Data-driven Web Scanning
	Introduction
	Challenges
	Navigation Modeling
	Traversing
	Inter-state Dependencies

	Approach
	Navigation Modeling
	Traversal
	Inter-state Dependencies
	Dynamic XSS detection

	Evaluation
	Implementation
	Experimental Setup
	Code Coverage Results
	Code Injection Results
	Takeaways

	Analysis of Results
	Coverage Analysis
	False positives and Clustering
	What We Find
	Case Studies
	Features Attribution
	Missed by Us
	Vulnerability Exploitability
	Coordinated Disclosure

	Related Work
	Conclusion
	Bibliography
	Appendix
	Scanner configuration
	Arachni
	Black Widow
	Enemy of the State
	jÄk
	Skipfish
	w3af
	Wget
	ZAP

	Black Ostrich: Web Application Scanning with String Solvers
	Introduction
	Validation-aware Scanning
	Overview
	Motivating Example
	Scanning

	String Solving for Scanning
	Overview of Ostrich
	Translation of Validation Constraints
	ECMAScript Regular Expressions
	Previous Results for ECMAScript Regexes
	From ECMAScript Regexes to Automata

	From 2AFASMT to NFA
	Coverage and Vulnerability Study
	Gather Data
	Testbed
	Implementation
	Comparison of Ostrich and ExpoSE

	Results
	Black-box Scanning
	Analysis
	Results of Black Ostrich vs. ExpoSE

	Patterns in Open-Source Applications
	Related Work
	Conclusions
	Bibliography
	Appendix
	The Built-in Email Validation of HTML5
	Case Study: Finding Vulnerable Email Regexes
	Vulnerable Patterns
	Strong Patterns vs MDN
	Vulnerabilities When Sharing Code
	Summary

	Details of Section C.3
	Partial Translation from ECMAScript Regexes to Textbook Regexes
	Example Input for Ostrich (Section C.5.3.2)
	Testbed Code
	Client-side form validation
	ExpoSE JavaScript Template
	Algorithm for validation-aware scanning

	Browser Extensions
	Hardening the Security Analysis of Browser Extensions
	Introduction
	Background
	Threat Model
	Shared Resources
	Message Passing

	Methodology
	Identifying entry points
	Combining Static and Dynamic Analysis

	Discovering Attacks and Vulnerabilities
	Novel Attacks by Malicious Extensions
	Malicious Extensions in the Wild
	Vulnerable Extensions in the Wild

	New Tabs Case Study
	Countermeasures
	Discussion
	Static analysis
	Dynamic analysis
	Manual Analysis
	Cross-browser

	Related Work
	Conclusions
	Bibliography

	No Signal Left to Chance: Driving Browser Extension Analysis by Download Patterns
	Introduction
	Preliminaries
	Browser Extensions' Security & Privacy
	Time-Series Analysis
	Definitions
	Threat Model

	Scrutinizing the Web Store
	Data Gathering
	Security Analysis
	Time-Series Analysis
	Discovering

	Results
	Data Gathering
	Security Analysis
	Time-Series Analysis

	Use Case: Search Hijacking Wallpapers
	Wallpapers Discovering

	Discussion
	Related Work
	Conclusions
	Bibliography
	Appendix
	Dataset Distribution
	Source Code
	Clusters

	Embedded Systems
	On the Road with Third-Party Apps: Security Analysis of an In-Vehicle App Platform
	Introduction
	Background
	Experimental Setup
	Automatic analysis of Android apps
	Android Automotive
	Android's Permission model
	Covert channels

	Attacks
	Disturbance
	Availability
	Privacy

	Countermeasures
	Permission
	API control
	System
	Code analysis

	Spotify case study
	Permissions
	Vulnerability detection
	AutoTame
	Information flow analysis
	Summary

	Related Work
	Conclusions
	Bibliography
	Appendix
	Attacks and severity score

