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Abstract

To explore the functionality of an app, automated test generators systematically identify and

interact with its user interface (UI) elements. A key challenge is to synthesize inputs which

e�ectively and e�ciently cover app behavior. To do so, a test generator has to choose which

elements to interact with but, which interactions to do on each element and which input values

to type. In summary, to better test apps, a test generator should know the app's language, that

is, the language of its graphical interactions and the language of its textual inputs. In this work,

we show how a test generator can learn the language of apps and how this knowledge is modeled

to create tests.

We demonstrate how to learn the language of the graphical input prior to testing by combin-

ing machine learning and static analysis, and how to re�ne this knowledge during testing using

reinforcement learning. In our experiments, statically learned models resulted in 50% less inef-

fective actions an average increase in test (code) coverage of 19%, while re�ning these through

reinforcement learning resulted in an additional test (code) coverage of up to 20% . We learn the

language of textual inputs, by identifying the semantics of input �elds in the UI and querying

the web for real-world values. In our experiments, real-world values increase test (code) coverage

by ≈10%;

Finally, we show how to use context-free grammars to integrate both languages into a single

representation (UI grammar), giving back control to the user. This representation can then be:

mined from existing tests, associated to the app source code, and used to produce new tests.

82% test cases produced by fuzzing our UI grammar can reach a UI element within the app and

70% of them can reach a speci�c code location.





Zusammenfassung

Automatisierte Testgeneratoren identi�zieren systematisch Elemente der Benutzerober�äche und

interagieren mit ihnen, um die Funktionalität einer App zu erkunden. Eine wichtige Heraus-

forderung besteht darin, Eingaben zu synthetisieren, die das App-Verhalten e�ektiv und e�zient

abdecken. Dazu muss ein Testgenerator auswählen, mit welchen Elementen interagiert werden

soll, welche Interaktionen jedoch für jedes Element ausgeführt werden sollen und welche Eingabe-

werte eingegeben werden sollen. Um Apps besser testen zu können, sollte ein Testgenerator die

Sprache der App kennen, dh die Sprache ihrer gra�schen Interaktionen und die Sprache ihrer

Texteingaben. In dieser Arbeit zeigen wir, wie ein Testgenerator die Sprache von Apps lernen

kann und wie dieses Wissen modelliert wird, um Tests zu erstellen.

Wir zeigen, wie die Sprache der gra�schen Eingabe lernen vor dem Testen durch maschinelles

Lernen und statische Analyse kombiniert und wie dieses Wissen weiter verfeinern beim Testen

Verstärkung Lernen verwenden. In unseren Experimenten führten statisch erlernte Modelle zu

50% weniger ine�ektiven Aktionen, was einer durchschnittlichen Erhöhung der Testabdeckung

(Code) von 19% entspricht, während die Verfeinerung dieser durch verstärkendes Lernen zu

einer zusätzlichen Testabdeckung (Code) von bis zu 20% führte. Wir lernen die Sprache der

Texteingaben, indem wir die Semantik der Eingabefelder in der Benutzerober�äche identi�zieren

und das Web nach realen Werten abfragen. In unseren Experimenten erhöhen reale Werte die

Testabdeckung (Code) um ca. 10%;

Schlieÿlich zeigen wir, wie kontextfreien Grammatiken verwenden beide Sprachen in einer einzigen

Darstellung (UI Grammatik) zu integrieren, wieder die Kontrolle an den Benutzer zu geben.

Diese Darstellung kann dann: aus vorhandenen Tests gewonnen, dem App-Quellcode zugeordnet

und zur Erstellung neuer Tests verwendet werden. 82% Testfälle, die durch Fuzzing unserer

UI-Grammatik erstellt wurden, können ein UI-Element in der App erreichen, und 70% von ihnen

können einen bestimmten Code-Speicherort erreichen.
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Chapter 1

Introduction

Smartphones are part of our daily lives. With over 360 million units sold only in 2019 [1], they

have become indispensable for both private and professional activities, being used by most people

on a daily basis. People use smartphones to perform a wide variety of tasks, from communicating

with others�by audio, video, or text�to navigating through the city or searching for information

online. With 75% of the worldwide market and an active user-base of more than 2 billion monthly

users, Android is the most popular operating system for smartphones [2].

Smartphones are popular because of the many applications (apps) that can be easily down-

loaded and installed. From banking to social networks, there are apps to assist most of our daily

activities. As of August 2019, the o�cial Android app store, Google Play Store, distributes over

2.5 million applications [3]. Although one may assume that the quality of an app is vital to stay

competitive in such a market, recent researches indicate that poorly-tested, error-prone apps still

exist [4, 5].

Testing is a tried method to increase the quality of an app [6]. Ideally, at least functional

testing should be an integral part of an app's development process. Tests can be written and

executed manually, which is laborious, biased, and time-consuming; be written manually and

executed automatically, which retains the test bias and high maintenance cost but signi�cantly

decreases its execution time; or be generated and executed automatically, which is an active

research task.

To manually test apps is unfeasible due to their short release cycles, with some major apps

releasing a new version at least once per week [7]. Maintaining manually written tests in such

quick releases is also a challenge, especially given the lack of operating system support. Each

Android smartphone manufacturer has its own set of hardware features and modi�ed operating

system versions, which frequently require di�erent test scripts [8]. Due to this particular scenario,

in recent years, there was considerable interest in research related to automated test generation

for Android apps [9].

While automated testing itself is not a new research topic, testing Android apps is a particu-

larly challenging task. First, Android apps are di�erent than most other software as they are not

standalone applications. Instead, they behave as plug-ins to the Android framework, i.e., there is

not a single point of entry from which the app execution starts, but instead, they subscribe to the

framework which invokes them. Second, most control-�ow interactions in Android are governed

by speci�c event-based mechanisms such as the Inter-Component Communication [10], which are

1



1. Introduction

handled by the operating system, making them harder to analyze statically. Third, tests must

cover di�erent hardware (e.g., screen sizes, sensors) and multiple �avors of the operating system

to ensure that the app functionality works correctly. Finally, the widespread use of event-driven

framework libraries pose signi�cant obstacles for the systematic generation of test cases [11].

Automated test generators systematically identify and interact with user interface (UI) ele-

ments to explore the functionality of a mobile app (including its errors). One key challenge is to

synthesize inputs which e�ectively and e�ciently cover app behavior. In order to do so, a test

generator must choose the following:

Which UI element to interact with? Most elements visible on a user interface are structur-

ing and do not respond to interactions at all.

How to interact with the UI element? The actionable elements expect speci�c interactions,

such as clicks, swipes, or textual inputs.

Which input values to type? Each input �eld accepts a speci�c set of values or patterns.

These are nontrivial challenges, as a test generator not only has to infer the set of user

interface elements to interact but also which interactions should be done in each element, to the

point of determining which input values have to be typed.

(a) Change log screen from the app 2048 Puzzle
Game1

(b) Map screen from the activity tracking app
AAT2

Figure 1: User interfaces from two apps with di�erent interaction possibilities.

2



1.1. Thesis Statement

Consider, for example, the apps from Figure 1. It is typically easy for humans to identify

active elements since user interfaces follow conventions that humans would learn over time. For

a test generator, though, nothing of this is obvious. In Figure 1a, the labels describing individual

changes might respond to clicks; the list might be swiped horizontally; the �Change Log� title at

the top might be active; and who knows what happens if one swipes across the OK button.

To interact with Figure 1b is challenging, even for humans. What exactly do the individual

icons do? Is there further functionality that is not displayed on the screen? Can the map be

zoomed in? A human could notice that the last line in the white information box (�tourism-

campsite�) is not entirely displayed, which indicates that there is more content on it. Indeed this

text area is scrollable; swiping on it scrolls the text, eventually revealing buttons at the bottom,

which opens up further functionality. A test generator without prior knowledge may click on

random parts of the screen, but randomly generating a series of swipes is unlikely to scroll the

entire text and reach this new functionality.

How do users know how to interact with apps? They learn general patterns based on apps

they previously used. They learn patterns speci�c to an app while using it. They understand

the UI semantics to know which information to enter on the UI. In summary, know the language

of apps, i.e., they know:

� the language of graphical inputs: they know how to generate e�ective sequences of UI

actions, such as clicks and swipes;

� the language of textual inputs: they know how to enter correct input values on textual

�elds.

Similarly, to test apps e�ectively, a test generator must also be able to learn and consume

both languages. It typically represents the language of graphical inputs as a �nite state machine,

associating UI action with UI state transitions. The language of textual inputs, however, typically

comes in the form of regular expressions or context-free grammars [12]. Nevertheless, even if a

test generator uses both languages, it faces a second challenge, speci�c to Android. There

are multiple �avors of the operating system, running on di�erent hardware, which may behave

di�erently. Ideally, all variations should be tested, but even e�cient UI tests may be expensive

to execute. Finally, when a test generator overcomes these challenges, it may still not be able to

reach all�or deep�app functionality on its own. Some functionality may be locked behind gate

UIs [13], which may only be accessible after the user performs complex interactions�sometimes

involving multiple apps�such as registering, con�rm the registration, and re-opening the app

to log in. Thus, it is vital to keep the user in control of the tests by providing it with ways to

adapt, extend, and guide them towards its goals.

1.1 Thesis Statement

We split our approach into three parts: testing, learning, and modeling.

1https://f-droid.org/packages/com.uberspot.a2048/
2https://f-droid.org/de/packages/ch.bailu.aat/

3

https://f-droid.org/packages/com.uberspot.a2048/
https://f-droid.org/de/packages/ch.bailu.aat/
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In testing, we lay the base for our approaches. We aim to construct an automated test

generator that is easy to extend and provides the standard functionality necessary to our learning

and modeling approaches. To be useful in practice, the tool must be able to execute real-world

apps from major app stores, form di�erent categories, and with varied sizes. Moreover, it should

not require any modi�cation to the operating system as such changes are unfeasible to deploy

on a large scale. Finally, the tool must not rely on any static app analysis when generating the

tests, as this would prevent the approach from being directly used on native or web-based apps.

During learning, we aim to learn how to interact with user interfaces on Android apps and

to use this information to aid automated test generation. In this part, we aim to extend our

test generator to learn how to interact with apps, and we use this information when generating

new tests, resulting in increased functionality coverage. We start by learning the language of

graphical inputs, we learn how to determine which widgets to interact with statically, and then

we proceed to re�ne this knowledge dynamically. Finally, we learn the language of textual inputs

by querying the web for real-world inputs.

In modeling, we aim to provide a representation that integrates user interface interactions,

transitions, and textual input values into a single model. This representation can then be easily

read and extended by users according to their needs. It can also be used as a source to produce

new, more e�cient tests. In this part, we aim to model Android tests as a context-free grammar�

a well-known textual-based formalism which the user can easily edit. Moreover, we aim to develop

a suite of tools that use such grammar to derive new tests that cover app functionality more

e�ciently than the original test. The grammar should model possible user interactions, such as

clicks and swipes, transitions between UI states, and textual inputs. To be useful in practice, the

model should use context-free grammar as is, i.e., without introducing any extension. Finally,

the model components should be associated with source code, allowing it to produce tests that

target both UI elements and code segments.

Note that we do not evaluate the functionality reached by a test in this thesis, i.e., we do not

decide if such functionality is critical to the app usage or if it is a side feature. We also do not

reason if the functionality worked according to its requirements or not. We acknowledge that

such decisions are important, but they require the use of oracles, which we leave as a separate

research question.

Finally, the system-speci�c parts of this thesis are centered around Android. We developed

the system-speci�c parts of this thesis for Android because of its availability as an open-source

project, meaning that it is readily available for inspection; and its signi�cant market share.

Other operating systems such as iOS and Windows Phone instead require a great deal of reverse

engineering e�ort for understanding their inner workings. Nevertheless, the approaches which

we present in this work can be applied not only on Android but also on other mobile operating

systems and even in di�erent domains, such as web testing.

1.2 Contributions

This thesis is a step toward improving app quality by enhancing automated test generation

capabilities. We present a set of techniques aiming towards this goal as well as infrastructure
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components that make the app testing itself feasible. In summary, this thesis presents the

following original contributions:

� We design and implement an extensible platform for Android test generation. Our plat-

form's design gives developers and researchers ways to quickly implement and combine

their custom testing strategies, while abstracting all Android speci�cs, such as app setup

or device communication, away. The platform is presented in Chapter 3.

� We introduce the concept of a UI interaction model, which determines how likely a widget

is to react to an action. Our model is statically mined from a crowd of apps and is reused

to test multiple apps. Building a model based on a large crowd of popular apps captures

typical ways of interacting with Android apps. We show how to extend existing test

generators to use knowledge mined from a crowd of apps (interaction model), guiding test

generation towards likely successful UI elements and interactions. The interaction model

and how to use it during automated testing are presented in Chapter 4.

� We introduce test generation as an instance of the multi-armed bandit problem (MAB

problem) and formulate how reinforcement learning, without prior knowledge, can be used

to produce test inputs. To the best of our knowledge, this is the �rst time theMAB problem

is used as a model for test generation. We show how to enhance our reinforcement learning

techniques with statically trained models (interaction model) to initialize pre-approximated

probability distributions into the models. Our use of reinforcement learning to address test

generation as an instance of the MAB problem is presented in Chapter 5.

� We extend Link [14], an input querying approach, to obtain input values that are syntacti-

cally and semantically valid for testing. Our adaptation of Link is presented in Chapter 6.

� We introduce the concept of UI grammars in which we model app UI languages in the

form of a context-free grammar. Additionally, we present how to: automatically mine UI

grammars, test with UI grammars, and leverage the association of grammar elements with

code locations for code guided testing. Our use of UI grammar is presented in Chapter 7.

1.3 Dissertation Outline

This dissertation's goal is to show how information about UI elements acquired statically and

dynamically can be used to guide Android test generation more e�ectively and whether such

tests could be modeled such that even values entered on input �elds could be determined. The

remainder of this thesis is structured in three parts:

In Part I, we explain the general concepts on which our work is based. This includes Android

and GUI testing concepts, such as how Android app user interfaces are structured and existing

commercial tools and research prototypes to test apps (Chapter 2). We explain how environment

fragmentation, as well as operating system restrictions, a�ect automated testing on Android.

Then, in Chapter 3, we present DM-2, our extensible test generation platform, which we used

to implement our techniques. We present each of the components of DM-2 as well as its out-of-

the-box capabilities and main extension points.
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We then proceed to Part II, where we present how we learn the language of apps. Chap-

ter 4 presents the platform-independent probabilistic model (interaction model) to use statically

gathered data to determine during testing which UI elements are more likely to be actionable,

allowing knowledge to be transferred between di�erent apps. We describe each of the components

of our model in detail, including its features and limitations. We also describe how to integrate

our model with di�erent testing tools, including our DM-2 platform.

Afterward, Chapter 5 presents our use of reinforcement learning to, during testing, learn

which UI elements can be interacted with and which type of interaction they are more likely

to support. We frame test generation as an instance of the MAB problem and show how its

traditional techniques perform. Moreover, we also show how such dynamic models can exploit

our static interaction model to reuse previous knowledge when starting a test and to re�ne this

knowledge while testing.

We conclude Part II by determining how to obtain real input values for textual �elds in Chap-

ter 6. We present a technique to query a knowledge base for real-world inputs. We show how

this technique can produce syntactically and semantically valid input values. Moreover, we show

that such inputs signi�cantly aid test generation.

We then move to the modeling part (Part III). In Chapter 7, we introduce the concept of user

interface grammars and show how to mine such grammars from test cases, use them to generate

new test cases, and to exploit the association between source code and user interface elements

to guide test generation towards speci�c functionality.

We �nally conclude our discussion of how to learn the language of apps on Android apps

in Chapter 8.
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GUI Testing on Android
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Chapter 2

Android and UI Testing

In this chapter, we explain the major concepts necessary to understand the techniques and

methods we propose in the remainder of this work. In Section 2.1, we present a brief explanation

about how Android apps work, focusing on how apps can structure their user interface and how

Android handles events. We also highlight the challenges that arise from fragmentation and

present the Android accessibility service, which is the underlying framework mechanism that

enables most Android testing. Finally, in Section 2.2, we present existing techniques to test

Android apps, including commercially used tools and research prototypes.

2.1 Android

Android is a mobile operating system, primarily designed for touch screen devices. It supports

the development of apps, which are installed on devices through app stores. An Android app

is commonly composed of their compiled source code, external resources, such as images, and a

manifest �le.

During installation, the Android OS inspects the app manifest �les and register its content

and capabilities. Moreover, it uncompresses the apps external resources and source code, and

place them prede�ned locations. Concerning source code, Android apps may incorporate multiple

technologies simultaneously. It supports native code (e.g., C libraries), that is, elements directly

compiled into their �nal binary form when the app is built. It also supports interpreted code (e.g.,

JavaScript), which is shipped with the app but only loaded and executed at runtime. Finally, it

supports managed apps, that is, apps built to run on the Android Runtime Environment (ART),

a modi�ed version of the Java Virtual Machine (JVM), which translates the app bytecode into

the device's binary format.

2.1.1 Activities and Intents

While in most development paradigms, the code of a program starts in a single point of entry,

such as the main function on C and Java, the same does not hold for Android apps. They instead

have multiple entry points, allowing the app to start on di�erent locations. For instance, an email

client could start by displaying the received emails when launched without any arguments, but

could directly start in an email composition screen when launched through another app.
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According to the o�cial documentation3, to support multiple entry-points Android apps are

composed of Activities, which are invoked by the operating system. Activities represent the UI

where the app can draw its contents. They are also the system components which receive user

events, that is, which a user can interact with. In general, each app activity represents one

app screen, and, since most apps contain multiple screens, they frequently comprise multiple

activities.

Apps, including the operating system launcher, start other apps�or launch a new screen�by

invoking their activities. Apps do not, however, start an activity by creating an object. They

instead de�ne their intent of doing so and request the operating system to create and transition

to a new activity.

Intent objects4 are binders between two activities and represent the intent of an app to do

something. They can be manually targeted to a speci�c activity, or can be targeted towards

action types, such as edit or insert, and resolved dynamically by the operating system.

2.1.2 UI Structure

Views are a common ancestor to all user interface elements in Android. They represent elements

that draw something the user can see and interact with. Each View object occupies a rectangular

area on the screen and is responsible for its drawing and event handling. Android widgets5, such

as buttons, labels, and images, are subclasses of View.

ViewGroups are particular types of Views, with a di�erent semantic. Di�erently from Views,

ViewGroups are not meant to be interacted with by the user. They are invisible structuring

elements that aggregate Views and other ViewGroups and determines how they should be posi-

tioned on the screen. Android layouts, such as LinearLayout6 and WebView7, are subclasses of

ViewGroup.

Developers can extend both View and ViewGroup interfaces to create their customized wid-

gets or layouts. Moreover, while the semantics behind the ViewGroups interface means it should

be used to create invisible structuring elements, there is no technical limitation that prevents

developers from using views to handle user interactions with the UI.

A developer can de�ne views either from code or by describing a tree of views in one or

more XML layout �les. An Android UI can contain elements de�ned in multiple layout �les,

known as Fragments, which are automatically in�ated when Android renders a window. From a

user perspective, an Android UI is always displayed at runtime as a single tree (view hierarchy)

composed of all Views.

A Fragment represents a behavior or portion of a user interface that can be reused into

multiple app screens. They are modular sections of an Activity, with its life cycle, input handling,

and which can be added or removed at runtime. In all scenarios, whenever a fragment is loaded

into an activity, it is automatically placed under a ViewGroup inside the UI's view hierarchy.

3https://developer.android.com/reference/android/app/Activity
4https://developer.android.com/reference/android/content/Intent
5https://developer.android.com/reference/android/widget
6https://developer.android.com/reference/android/widget/LinearLayout
7https://developer.android.com/reference/android/webkit/WebView
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2.1.3 User Interaction Event handling

On Android, all interactions with an app happen through events. These come in the form of

user interaction events, such as screen touches or button presses, as well as system events, such

as received SMS or incoming calls. In this work, we focus exclusively on user interaction events,

which are forwarded by the OS to the app. Developers can capture the events forwarded by the

OS to the app through the View interface.

According to Android's o�cial documentation, the View interface supports six types of event

listeners8, namely: onClick, onLongClick, onFocusChange, onKey, onTouch and on-

CreateContextMenu. These event handling methods are called by the Android framework

when the respective action occurs on that object. For example, when a View, such as a Button,

is clicked, Android invokes the onClickEvent method on the respective object. Moreover,

some special events, where the user does not directly interact with the device, are forwarded to

the currently focused View. An example of such special events are key pressed on an external

keyboard.

While any View can capture and process events, this is not always the case in real scenarios.

Many UI elements are used to display information and are not expected to respond to interactions.

TextViews, for example, typically display information and seldom have events attached. Similarly,

layouts are used to structure information and, in theory, should not be interacted with.

Android natively allows developers to capture its current UI state for testing using its native

UiAutomation9 service. One can think of the UiAutomation as a special type of accessibility

service that does not monitor an app's life cycle but provides an API to inspect the UI content

and to simulate user actions.

The UiAutomation, however, possesses only a limited amount of information about the screen

elements. Being a special type of accessibility service, the UIAutomation does not have access to

the app's inner workings. The goal of an accessibility service is to aid a user in using apps. For

an accessibility service, it is not necessary to know, for example, which types of interaction (event

handlers) a View support. The user who is consuming the accessibility service is responsible for

understanding the app UI and interacting accordingly.

Because of this limitation, the UIAutomation knows only the current View hierarchy, and,

for each View, it provides only content (textual and graphical) and state (visible, enabled, and

interact-able) information. The associations between UI elements and their implemented event

handlers are not available without modifying the Android framework or analyzing the source

code of the app. This limitation presents a considerable challenge for e�ciently testing apps as

the test generator should replace the user and determine how to interact with the app based on

the current UI contents.

2.1.4 Accessibility Service

Automated test generation and accessibility share several characteristics. Accessibility service

is the mechanism provided by the Android framework to assist users with disabilities in using

their devices. It enables the development of services (hence accessibility app) that run in the

8https://developer.android.com/guide/topics/ui/ui-events
9https://developer.android.com/reference/android/app/UiAutomation
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background and are noti�ed by the operating system when speci�c events occur, such as when a

UI transition occurs, or a new widget has focus. In addition to monitoring events, the accessibility

service can be used to determine the content of a screen and interact with any element on it.

From an accessibility perspective: to use an app, an accessibility app must identify the device

screen's content and perform the interaction chosen by the user. Similarly, from an automated

test generation perspective: to test an app, a test generator must identify the device screen's

content and perform the interaction chosen by its internal algorithm.

While test generators do not actively connect to the accessibility service, most rely, at some

level, on Android's native UiAutomation [15], which itself is a wrapper around the accessibility

service.

2.1.5 Fragmentation

Fragmentation is a phenomenon that refers to the availability of di�erent versions of the system.

It occurs either in the device or in the operating system and, as shown by recent research [16],

causes signi�cant compatibility issues for apps. Device fragmentation means that there are sev-

eral di�erent devices with diverse technical speci�cations, produced by di�erent manufacturers.

While this characteristic allowed Android to be used on cheaper devices, with lower hardware

speci�cations, as well as on �agship phones, using cutting-edge hardware, it created an uneven

environment where app behavior may change depending on the used environment.

Operating system fragmentation means that an Android device executes one of the 17 major

open source releases of the operating system or any modi�ed version of them. Also, although

all Android devices share a common code-base, manufacturers develop their customizations to

di�erentiate themselves from their competitors. Such modi�cations vary from customized appli-

cation launcher and screen transition animations to optimized modules for battery and memory

management. Besides manufacturers, Android has community-supported forks of the operating

system, such as Cyanogen [17] and LineageOS [18], which also have their customizations.

Ideally, a test should be able to run in as many devices and operating system versions as

possible, mitigating the work on a developer. Thus, it should operate on a higher level of

abstraction�states and widgets instead of coordinates due to di�erent screen sizes, for example�

and relying on mandatory Android features, such as the accessibility service, instead of on custom

operating system instrumentation.

2.2 Existing Techniques to Test Android Apps

There are already various techniques available to test Android apps. While tests may run on the

development computer, such as unit tests, in this work, we focus exclusively on UI tests, which

require an Android device or emulator to be executed. UI testing is the process of inspecting

the app by interacting with its graphical user interface to ensure that users do not encounter

unexpected results or have a poor experience. Some of these are industry tools, shipped or

not with the operating system; others have been proposed in academic research papers. In this

section, we present conventional approaches used to test Android apps. We show that these

techniques are either limited in the scenarios that they can be used or that they can be enhanced
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by knowledge about how to interact with Android apps. We split this section according to the

degree of automation provided by the tools into manually written and automatically generated

tests.

2.2.1 Manually Written Tests

Manually written tests allow testing speci�c app behavior or functionality. They are similar to

unit tests; however, they run on Android devices and emulators instead of using the developer's

local virtual machine. Such tests are mainly used to unit test functionality, which is either

device-dependent or that cannot be easily mocked on regular unit tests.

Espresso [19] is Google's recommended framework to write Android UI tests. While it can

be used for black-box testing, many of its functionality can only be e�ectively used when the

source code is available. The main advantage of Espresso is its native UI synchronization mech-

anism. Before interacting with the app, Espresso automatically waits until the app stabilizes

by monitoring its message queue, the list of asynchronous tasks being executed, and by checking

that resources are idle. This native synchronization mechanism increases the test reproducibility.

UI Automator [15] is Google's framework to write cross-app functional UI testing. It relies

on a mix between Android's internal automation engine and accessibility service to interact with

UI elements. Di�erently from Espresso, UI Automator does not require an app's source

code or internal implementation details. Moreover, it is unable to determine when the app's user

interface has stabilized, as Espresso does, leaving the developer responsible for this veri�cation.

MonkeyRunner [20] is a Google API to write Android tests. It does not rely on source code

and can be used for black-box testing. Under-the-hood,MonkeyRunner uses UI Automator

to interact with the app but provides a user-friendly API for developers. It can interact with an

app by issuing keystrokes to screen coordinates. It also allows developers to control some of the

device functions such as sleep, wake, reboot, and take a screenshot However, it does not know

the user interface elements and can only interact with them through their coordinates. For more

e�cient testing, it should be combined with other techniques that detect the UI elements on the

screen.

Robotium [21] is a popular open-source framework for writing gray-box UI tests for Android.

Its main advantages are to allow the developer to manipulate the app's life cycle during testing,

such as to create an activity and immediately terminate it; and to start a test in any app activity,

without following the typical app work�ow.

Appium [22] is a popular cross-platform testing framework which also supports Android.

Similar to MonkeyRunner, it does not require the app source code to be available. Moreover,

it also relies on UI Automator to interact with an app and provides the developers with a more

user-friendly API. While it does not o�er new features over MonkeyRunner, Appium's main

advantage is to provide a single interface so that the same test can be executed, for example, on

Android and iOS versions of the same app.

Robolectric [23] takes a di�erent approach to Android testing. It is an open-source frame-

work for running Android tests outside of the Android emulator and on top of the local Java

Virtual Machine (JVM). In this approach, a developer uses shadow classes that simulate their

Android counterparts' behavior and override the calls to them through re�ection. Robolectric
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goal is to speed up testing on Android apps signi�cantly; however, only testing the app on mock

classes may not fully re�ect the behavior of the operating system. Thus, Robolectric should

not be used alone, but alongside another testing approach.

Instead of relying on test scripts, Reram [24] follows a record and replay approach to repre-

sent complicated non-discrete gestures, such as those frequently used in games. Reram monitors

the input event bu�er from the device (/dev/input/event*) while the app is used. It then can

be used to replay the same events, at the same time interval, when re-testing the app. Similarly,

Valera [25, 26] also works through recording and replaying app traces. However, it can replay

not only user actions but also system events such as sensor data and network responses.

Finally, Puma [27] is a framework that encapsulates testing abstractions and exposes them

to the developer through its event-driven scripting language. It splits the test logic from the

app interaction, allowing the same test to be used in di�erent platforms. Moreover, by isolating

the app interaction mechanism from the app testing logic, PUMA automatically propagates any

improvements in the app interaction mechanics to all tests.

Tools that require the developer to write tests manually have several limitations. First, such

tests can only test speci�c functionality in speci�c ways. While it is theoretically possible to

write distinct tests to cover all existing paths in a program, such a test suite is laborious and

expansive to develop and maintain. A second issue with manually written tests is bias. These

tests inherit the bias of the developers that wrote them and are seldom reliable tests to evaluate

an app's robustness or security [28]. One last issue with manually written tests is that most

approaches in this category rely either on available source code (white or gray-box testing) or on

stable user identi�ers, both of which are not always available. The main advantage of manually

written tests is the existence of an oracle (the test developer), which can validate, for each UI

state action, if the app has behaved correctly.

2.2.2 Automatically Generated Tests

Automated test generation in mobile apps is an active research �eld with, according to a 2018

survey [9], more than 100 publications in the past nine years. Test input generation techniques are

commonly classi�ed into three categories [29]: random, model-based, and exploratory, according

to their strategy to interact with the app.

2.2.2.1 Random strategies

Random strategies generate inputs at random to explore an app's behavior. Many tools are

implementing this kind of strategy, often used to test the robustness of apps. Monkey [30] is

the most frequently used tool implementing random testing. It is Google's automated random

testing tool, which is a part of the Android software development kit. It generates user events such

as clicks, touches, or gestures, using a basic random strategy, and system-level events. It is often

used to stress-test applications and can generate reports if the app under test crashes or receives

non-handled exceptions. Dynodroid [31] also applies random testing, but in a slightly more

e�cient way than Monkey by taking the context into account when selecting an input. It can also

generate system events. To do so, it requires instrumenting the Android framework. It checks

which system events are relevant for the app under test by monitoring when the app registers
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listeners within the Android framework. BBoxTester [32] generates explicitly invalid data as

inputs to an app to check its error handling capabilities. Dagger [33] uses MonkeyRunner

to randomly interact with the app while tracking provenance relationships and observing the

app interactions with the operating system and uses this information to identify malicious apps.

DroidMate [34] is a fully automatic GUI execution generator. It works on devices and emulators

out of the box, with no root access or modi�cations to the OS, and can be easily extended, being

the tool used as a base for our experiments.

While random approaches are widely used and are useful for testing the robustness of an app,

they have a few limitations. They can seldom reach actions which require speci�c sequences of

events, such as login in into an app, and they do not know how to interact with UI elements,

resulting in several ine�ective actions.

2.2.2.2 Model-based strategies

Another category of exploration strategies is model-based strategies. They extract and use a

model of the app under test to systematically generate inputs.

Some tools extract the app model dynamically, that is, during app execution. One of the

earliest examples of this approach is AndroidRipper [35]�and its follow up work MobiGU-

ITAR [36]�which uses a user-interface driven ripper to systematically traverse the app's user

interface, dynamically building a state transition model of the app. Another very similar tool

is DroidBot [37]. However, while both tools build similar app models, DroidBot, works

entirely without app instrumentation, making it particularly useful to examine malware, as ma-

licious apps often validate themselves before triggering malicious behaviors. Another approach

to extract app models is taken by SwiftHand [38]. Instead of learning the app model in a

single run, it follows an interactive approach. It �rst learns an initial model of the app during

testing. It then consumes this model to generate inputs, execute them and uses their results to

re�ne the initial model. One last dynamic approach to extract a model for testing is taken by

iMPAcT [39]. Instead of extracting a model of the app itself, iMPAcT focuses on each app

screen. It then compares each screen against its catalog of patterns and uses them to determine

how to test the UI better.

Some tools rely exclusively on static analysis to extract the model of an app. Among such

tools is A3E Targeted [40]. It uses a static data �ow analysis to build an activity transition

graph that captures possible transitions among activities. It then systematically explores the

graph, directing the exploration to cover all activities, especially those deep within the app, and

would be di�cult to reach during regular use. TrimDroid [41] also extracts models of the app

statically. It extracts an interface model, containing widgets and events for each Activity, and

an activity transition model, determining the relationships between activities. It then uses these

models to reduce the number of combinatorics needed to test the app UI.

Finally, some tools rely on both dynamic and static analysis to extract an app model. OR-

BIT [42], for example, uses static analysis to determine the set of events supported by each app

activity. Then, it reverse-engineers a model of the app by systematically exercising these events.

Similarly, SmartDroid [43] exploits static analysis to generate activities and function call graphs

to identify paths that should be explored. One of the newest Android test generator, Stoat [44],

15



2. Android and UI Testing

also employs both static and dynamic analysis to reverse-engineer a stochastic model of the app's

GUI. It then iteratively mutate and re�ne the stochastic model using an adapted version of Gibbs

sampling, guiding test generation towards model and code coverage.

While model-based approaches are a signi�cant part of the available testing techniques, they

also have limitations. Model-based techniques that rely on static analysis produce inherently

incomplete models, as some app behaviors can only be seen dynamically. Moreover, they can

be challenging to apply on industry-size apps, as they frequently combine di�erent technologies,

such as Java, JavaScript, and C code, within the same app. Model-based techniques that do

not rely on static analysis face similar challenges as random testing techniques as they perform

several ine�ective actions during exploration.

2.2.2.3 Exploratory Strategies

The third main category of automated testing techniques is exploratory strategies. Tools in this

category employ a wide variety of techniques to guide test generation towards speci�c targets or

increasing code coverage.

Some approaches use symbolic execution or concolic testing. AppAudit [45] uses them

to guide test generation towards speci�c targets to prune false positives from static analysis.

IntelliDroid [46] uses them to generate feasible event sequences that trigger malicious app

behavior. Finally, ACTEve [47] uses them to trigger as much app behavior as possible.

Similarly, other techniques are also used with di�erent goals. EvoDroid [48] and Sapienz [49]

use search-based algorithms�evolutionary or combined with random fuzzing�to improve test

coverage. CuriousDroid [50] and FraudDroid [51] decompose the application UI on-the-�y,

creating context-based models tailored to the current user layout. While CuriousDroid is

focused on extracting dynamic sandboxes, FraudDroid guides the exploration towards poten-

tially fraudulent ads. A3E Depth-First [40] uses the same static activity transition graphs as

A3E Targeted. However, it explores activities and UI elements in a depth-�rst manner, travers-

ing the app slower, but more systematically than A3E Targeted. Similarly, CrashScope [52]

also builds a transition graph and explores the app in a depth-�rst manner. It employs a more

advanced textual input generator with the goal of not only �nding crashes but also ensuring the

reproducibility of its test cases.

Exploratory testing techniques have similar limitations to model-based ones. When using

static analysis, they rely on an inherently incomplete app model. They also face challenges

over complex apps, which use multiple technologies, or whose code is mostly executed on a

server instead of the device (web apps). When not relying on static analysis, exploratory tech-

niques perform several ine�ective actions, similar to random strategies. Finally, when faced with

unknown states or with multiple equally good alternatives, exploratory strategies by default

fall-back to a random selection.
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Chapter 3

A Platform for Android Test
Generation

This chapter is taken, directly or with minor modi�cations, from our 2018 ASE paper

DroidMate-2: A Platform for Android Test Generation [53] and from our 2019 ICST pa-

per Why Does this App Need this Data? Automatic Tightening of Resource Access [54]. My

contribution in these works is as follows: (I) original idea of an extensible testing platform;

(II) idea and development of the exploration strategies; (III) idea and development of the

monitoring proxy; (IV) original idea of extensible model features; (V) partial evaluation.

Test generation is a continually evolving subject�as testing techniques improve, so does the

complexity of the apps being tested, leading to a never-ending demand for more advanced test-

ing techniques to cover app behavior as e�ectively and e�ciently as possible. While literature

presents a large variety of test generators, most tools have one of the following limitations: they

rely on operating system customizations for more advanced test generation algorithms [55, 46],

or are tightly coupled to a single testing strategy [35, 56], or do not have an underlying app

model to allow tests to be re-executed on di�erent con�gurations [30, 20].

The test generation techniques we present later in this work require a test generator that

can be easily extended and where di�erent testing strategies can be combined. Moreover, to be

able to learn how to use apps and to reapply this knowledge on di�erent apps, the test strategies

must operate on abstractions that could be transferred between apps. Finally, to address the

challenges of fragmentation, the tool should rely only on core Android components, allowing it

to run on di�erent Android versions on devices from di�erent manufacturers. Thus, we designed

DM-2, an extensible test generation platform whose details are present in this chapter.

DM-2 is based on the DroidMate project and inherits its main bene�ts. It can run on

any Android version between 6 (API 23) and 9 (API 28) on physical devices and emulators

without root privileges or operating system customization. DM-2 nevertheless goes far beyond

the functionality provided by DroidMate. While DroidMate was a test input generator with

API monitoring capabilities, DM-2 o�ers easy to use mechanics for developers to implement

systematic testing strategies, which can be used individually or combined with others. These
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strategies are built on top of an internal app model that re-identi�es widgets and states during

testing, even on di�erent devices and con�gurations. Finally, DM-2 comes with embedded

mechanisms for coverage analysis, crash detection, and test reproducibility.

DM-2 is a distributed system, running partially on the Android device and partially on

the host computer. Its architecture comprises three major components, as illustrated by the

black frames in Figure 2 and a monitoring proxy (dashed frame). In the remainder of this

chapter, we present each of these components. We start by presenting the ones on the host side.

In Section 3.1, we present the app model, which abstracts all Android related information. We

then present which exploration strategies and interaction types are shipped with DM-2 and how

developers can create their Section 3.2 (exploration engine).

We then proceed to explain the automation engine (Section 3.3), which handles all commu-

nication with a device and translates the high-level interactions used in the automation engine

into accessibility events that can be processed by Android. We then proceed to the device side

components by presenting the monitoring proxy in Section 3.4, which can intercept and modify

calls between the operating system and the app under test. Finally, we present a proof-of-

concept evaluation (Section 3.6) comparing DM-2 out-of-the-box against other state-of-the-art

test generators, DM-2's limitations (Section 3.7), and we conclude this chapter in Section 3.9.

Exploration Engine

Monitoring Proxy

App Under Test

Strategies

Custom

Automation
Engine

Selectors

Custom

App Model

Custom
Model

Features
Custom

Device Host

Figure 2: DM-2's conceptual architecture, with elements distributed among the device and
the host computer. In green are highlighting the places where the developer can add custom
implementations.

3.1 App Model

During exploration, DM-2 builds an internal representation of the app under test composed of

widgets, UI states, and transitions. Each UI state encompasses a set of UI elements, some of
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which are actionable, meaning that the user can, for example, tick, click, or long-click them.

This interaction may transition the model into another state.

We designed our app model according to the following guidelines:

Element identi�cation: It should identify conceptually identical states, i.e., slight di�erences

in the rendering like the highlighting of previously interacted elements should not be in-

terpreted as a di�erent state. Moreover, widgets should be re-identi�able, even in distinct

states.

Abstraction: Its elements should be abstract from the device and operating system in which

the test is executed; that is, it should re-identify the same UI elements and state should

when executing the app on di�erent devices.

Extensibility: It should be easily extensible, supporting di�erent de�nitions of UI states and

widgets.

3.1.1 Modeling Widgets

Android does not provide a unique identi�er for widgets. The closest information it has is

a resource ID, which is speci�ed by the developer. Nevertheless, the resource ID is not only

optional and seldom used, but also, can be reused in the same state. Our model, thus, requires

a metric to identify widgets. From the Android accessibility service, we obtain 22 properties,

listed in Table 1, and we calculate:

visible regions: the widget areas not covered by a child widget, i.e., bounds minus the area

covered by its visible children;

visual content: the UI content (screenshot) of the widget, cropped by its visible regions;

fallback ID: the widget position on the UI hierarchy tree produced by the accessibility service,

calculated using the parent ID and the index from the current element and all its ancestors

until the UI hierarchy root.

Table 1: Widgets properties which can be extracted from the Android Accessibility service

internal id text hint text content description

class name parent ID index package name

is input �eld is password resource ID input type

checkable bounds visible checked

clickable enabled focuseable focused

scrollable long-clickable

These properties can be clustered into stateless (underlined) and stateful (others). Stateless

properties characterize the widget itself, such as their name, textual content, and resource ID.

Stateful properties are used to determine how the widget is con�gured at the moment, i.e.,

enabled, visible, focused. We exploit this distinction to identify a widget as a pair:

(idw, cfgw)
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where idw (widget identi�er) is a set of stateless properties and cfgw (widget con�guration)

is a set of stateful properties. We make this distinction to allow widgets to be re-identi�ed

independently of their current con�guration and to be re-identi�ed between di�erent devices.

We use the con�guration identi�er only to distinguish between di�erent instances of the same

widget; thus, it su�ces to de�ne cfgw as:

cfgw =
{

focuseable, focused, scrollable,

long-clickable, checkable, checked,

text, visible bounds, visual content
}

Di�erently from the con�guration identi�er, we cannot use a single de�nition for all types

of widgets. To describe a label, for example, it su�ces to use its textual content; however, the

same information cannot identify an input �eld�as the textual content changes with each typed

letter�or an image which has no textual content. We, thus produce a idw according to the

following de�nition:

idw =



hint text, content desc., or resource ID if is input �eld

hint text, text, and content desc. if has textual content

resource ID if has resource ID

class name, package name, and fallback ID otherwise

3.1.2 Modeling States

Similarly to widgets, Android does not provide any reliable way to identify UI states. While

one may consider each activity as a state, Android supports a single-activity multiple-fragment

architecture, where the developer loads at runtime di�erent fragments in the same activity. Our

model, thus, requires a metric to identify UI states.

We opted to de�ne app states from a user perspective based on the widgets available on the

screen and their current con�guration. To be resilient against external sources, we ignore elements

that do not belong to the app under test, such as advertisement containers and other apps

launched through intents10 when determining a UI state. Finally, analogously to the widgets,

our app model should be able to distinguish between di�erent UI states and between di�erent

con�gurations of the same state. We, thus, de�ne a UI state as a pair:

(ids, cfgs)

where ids (state identi�er) is the set of idw from the relevant widgets on the screen, i.e., those

that have no children or have a textual content or are actionable; and cfgs (state con�guration)

is a set of idw and cfgw from all widgets. Our state identi�er allows states to be re-identi�ed

independently of their current con�guration, as well as to be re-identi�ed between di�erent

devices.

10We �lter external widgets based on their package name.
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3.1.3 Extending the Model

While DM-2 provides an out of the box app model with a metric to identify UI states and

widgets, such a heuristic may not be suitable for all apps. To support such a scenario, DM-2's

app model was designed to be highly extensible. We cluster DM-2's app model extensions into

three categories: properties, ID computation, and ad-hoc features.

Properties. DM-2 uses all properties available in the Android accessibility service, and, as

per our guidelines, it does not rely on any device-speci�c information. While this makes DM-

2 usable as a general testing tool, when targeting speci�c devices or operating system versions,

more information may be available. Moreover, the existing widget or state properties can be used

to produce more information, such as textual content for image widgets and semantic topics for

UI states. For such scenarios, DM-2 allows its internal widget and state de�nition to be replaced

by one written by the developed.

ID Computation. The unique and con�guration identi�ers from both widget and states from

DM-2 aims to provide a balance between specialization, that is, distinguishing each minor UI

change as a new widget or state, and generalization, i.e., combining multiple widgets and states

into a single one. Such a metric may not be suitable for all scenarios; thus, it is possible to

change how DM-2 computes both identi�ers easily. For example, on scenarios that rely on

textual language content to guide testing, it may be useful to disregard elements without a

textual content while determining the state identi�er.

Ad-Hoc Features. It is possible to plug-in observers (hence model features) to monitor changes

onDM-2's app model without extending the app model itself. Such observers are faster and easier

to implement than model extensions and should be used if there are no changes in properties

or ID computation. Model features can be used asynchronously, to gather data which can be

used for later analysis, or synchronously, computing additional information which can be used

by strategies and selectors to determine the next interaction step. DM-2 comes out-of-the-box

with model features to track statement coverage, inspect which activities and APIs are triggered,

and report which actions and widgets crashed the app during the test.

3.2 Exploration Engine

The exploration engine is responsible for determining how to interact with the app. It consumes

the UI states and widgets from the app model and uses the automation engine to send commands

to the device.

DroidMate explored apps through an exploration loop. In this loop, before each action, it

obtained the current UI state of the app. It then determined which widgets could be interacted

with and randomly choose one. This approach is similar to the one used by most other test

generators [35, 37]; however, it is hard to extend. Moreover, it assumes that a single exploration

algorithm can handle all UI states, leading complex implementations which are di�cult to develop

and maintain.

We designed DM-2's exploration engine to mitigate such issues. We established the following

guidelines for DM-2:

Extensibility It should be easy for developers to create their test algorithms.

21



3. A Platform for Android Test Generation

Reuse Each test algorithm should be reusable�partially or in full�by other test generators.

Ready-to-Use It should be capable of handling the most common scenarios out-of-the-box.

DM-2 extends DroidMate's exploration loop mechanics with a pool of strategies and selec-

tors. Strategies model how to interact with the current UI state and selectors determine which

strategy to use. DM-2's modi�ed exploration loop is illustrated in Figure 3. Except for the

device, all components in this �gure belong to DM-2. For each action, DM-2 chooses, from its

selector pool, which strategy should be used. It then asks the chosen strategy to interact with

the app. When a strategy issues a terminate action, the exploration loop stops. This two-tier

mechanism allows di�erent testing algorithms to be used in di�erent UI states. Moreover, it

allows the same algorithm to used in di�erent test generators, providing better extensibility and

reuse.

App Model

Strategy 2Strategy 1

Strategy N…

Selector 2Selector 1

Selector 4Selector 3

Selector 5…

Reads current state

InteractSelect

ConsumeConsu
me

Select
Device

Figure 3: Determining how to interact with an app in DM-2's exploration loop

3.2.1 Interacting With The App

DM-2 models app interactions through strategies. Based on the current state of the app model, a

strategy decides which exploration actions should be issued next. An interaction with an app can

simple, such as click on coordinates (x, y), or complex, such as close the app, enable the device

wi-�, Bluetooth and restart the app from its initial screen. Formally, strategies are map functions

s(c)→ I which receive the current UI state (c) and produce a list of exploration actions (I ).

To abstract all device-speci�c information and mitigate fragmentation-related issues, strate-

gies do not interact directly with the device. Instead, they obtain the current UI state from the

app model and produce exploration actions that are processed through the automation engine.

While DM-2 allows developers to create their testing strategies, it also comes with a set of

strategies to handle common scenarios. Out-of-the-box it comes with the following strategies:

Reset App This strategy resets the phone back to a known state and starts the app to tet.

It �rst ensures that the wi-� connection on the device is enabled. This step is necessary

because most apps rely on an active Internet connection to work correctly. It then closes

any open application on the device and puts it back on its home screen. Finally, it opens

the app menu, locates the launcher icon associated with the app, clicks on it, and, if the

app starts with an open keyboard, closes it. Limitation: This strategy assumes that each
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app has a single launcher activity on the menu. While Android supports multiple launchers

for a single app, we have not observed such behavior often during development.

Terminate Test This strategy denotes the end of a test. It ensures that all asynchronous model

features are up-to-date and closes the app.

Press Back Press the back button of the device. This strategy can be used to return to the

app when another app is displayed without having to restart the whole app. Such an app

change happens, for example, when the test generator interacts with an advertisement,

triggers a share or send email functionality.

Biased-Random Exploration This strategy randomly selects a UI element from the current

screen, among those who have been least explored and click, long-click, or swipe on it.

We count how often each app widget was actioned through a model feature to determine

the least explored. We compute how many times each widget has been interacted in the

current UI state and select those least interacted with. We then �lter these widgets based

on the number of times they have interacted over all states in the test. If this �lter returns

more than one widget, we randomly chose one.

Random Exploration This strategy simulates the behavior of Monkey [30]. It randomly

clicks on the coordinate of any UI element on the screen, disregarding if the widget can be

interacted with or not.

Allow/Deny Permission These strategies automatically identify if the current UI state is a

runtime permission dialog and clicks on the accept or reject button.

PlayBack This strategy selects the interactions from a previously recorded test and attempts

to replay it. If the action interacted with a widget (e.g., click, long click), it attempts to

re-execute it if the same widget is available on the current state. If the action interacted

with the state (e.g., back) it only re-execute it if the app is in the same state.

3.2.2 Choosing Strategies

While strategies model how to interact with the app, selectors model which strategy to choose.

They can be used to select new UI elements to interact with, to restart the app when it reaches

a state that does not belong to the app, attempt to close a randomly displayed advertisement

pop-up, or terminate an exploration after a speci�ed time or number of actions. Selectors make

it easy for developers to reuse strategies on di�erent scenarios, and to handle exceptional cases

e�ciently, e.g., if the current state is login, then invoke the custom login strategy.

Di�erently from traditional test generators, DM-2 does not assume that a simple algorithm

will su�ce to handle possible app interactions. Instead, it uses a set of criteria (pool) to determine

the best strategy to handle each UI state. Formally, a selector is de�ned as a pair
(
p, f(c)→ s

)
where p is its priority and f(c) is a mapping function f from a model context c (e.g., the current

state or the action trace) to an exploration strategy s. For each selector in its pool, DM-2

calculates if the selection criteria is ful�lled f(c) 6= ∅ and choses the one with higher priority p.
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DM-2 is shipped out-of-the-box with a set of selectors. In Table 2 we present the each of the

selectors, as well as their description and which strategy Section 3.2.1 they trigger.

Table 2: Selectors shipped with DM-2

Selector Triggers Description and usage scenario

Time-Based
Terminate

Terminate
Test

Terminate the exploration after a speci�c amount of time (e.g.
explore the app for 30 minutes). This selector should be used
when running a test for a �xed time.

Action-Based
Terminate

Terminate
Test

Terminate the exploration a speci�c number of actions (e.g.
explore the app for 500 actions). This selector should be used
when running a test for a �xed number of actions, for example,
when comparing di�erent testing approaches.

Initial Reset Reset App Start the app to test. This selector is only triggered in the
�rst test action. After the initial action all app resets should
be handled through other selectors.

Reset on Crash Reset App Restart the app, if there is an application not responding
(ANR) dialog on the screen. This selector ensures that, even
if the app crashed, the DM-2 will attempt to restart it to
continue the exploration until a selector terminates the test.

Reset on
Intervals

Reset App Reset the app after a prede�ned number of actions (e.g.
restart the app every 100 actions). This selector allows the
exploration to try new app branches from its initial screen.

Randomly
Press Back

Press Back When active, this selector randomly�with a user-de�ned
probability�presses the back button of the device (e.g. press
back with 5% probability).

Handle Google
Advertisement

Press Back When active, this selector handles advertisements from
Google's advertisement library (identi�ed by the package
com.android.vending). If the widgets in the current state be-
long to the Google's advertisement library, press back to close
the ad.

Allow
Permission

Allow
Permission

Press allow on all runtime permission dialogs displayed during
the test.

Deny
Permission

Deny
Permission

Press deny on all runtime permission dialogs displayed during
the test.

Explore
Randomly

Random
Exploration

Performs a random action (similar to Monkey).

Default
Explore

Biased-
Random
Exploration

Performs a random action using the biased-random action.

3.3 Automation Engine

The Automation Engine acts as a bridge between the exploration strategies and the app under

test. It abstracts and manages all Android-related communication using a synchronous protocol

based on actions and responses. It runs simultaneously on the device (server) and the host side

(client).

Strategies send lists of exploration actions, such as click login button or type �123� on password

�eld, to the Automation Engine client, which forwards them to its server-side instance and halts
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the test while this action is processed. The Automation Engine server translates exploration

actions into accessibility events or API calls, to emulate human activity. To click login button,

for example, it identi�es the widget which represents the login button and sends a click event to

a coordinate inside the button's visible region. Similarly, to type �123� on password �eld, it �rst

identi�es the respective widget on the screen, clicks on it to activate the keyboard, enters the

text, and closes the keyboard.

Before issuing a response to the Automation Engine client, the Automation Engine server

must wait until the app stabilizes, that is, until it �nishes performing the previous action and has

at least one element from the app to interact with. This synchronization is a natural bottleneck

of most Android test generators that allow for state-aware UI actions. However, it is necessary

to correctly emulate a user's behavior, who has to wait until a new screen is loaded or animation

is complete to continue using the app.

The time to execute an action varies according to the functionality being performed � ticking

a checkbox is faster than clicking a login button � and external factors, such as network speed

and server availability. The Automation Engine copes with varying load times as follows: �rst,

it waits for the device to be idle, that is, ready to receive and handle commands again. It then

waits until at least one UI element can be interacted with. It discards any UI elements displayed

only during this transition period, e.g., progress bars, as they do not provide any explorable

behavior.

Once the app stabilizes, the Automation Engine server issues a response containing the

structural (screen dump) and visual (screenshot) state of the device to the Automation Engine

client, which noti�es the app model for an update, and the Exploration Engine to wait for the

next action.

3.4 Monitoring Proxy

The Monitoring Proxy is a payload deployed to the device in order to work as a proxy between

the app and OS, as shown in Figure 4. It monitors and user-de�ned resources and intercepts

API invocations without changing the app code.

OS

Expected API call

Actual API call

Monitoring
Proxy

Forwarded API call

App

Figure 4: Interaction between the app and the operating system through DM-2's monitoring
proxy

Besides monitoring API calls, Monitoring Proxy can be used to manipulate their behavior.

It allows developers to write their custom code to handle each API invocation, forwarding it

or not to the operating system. When enabled, DM-2's Monitoring Proxy comes with three

con�gurable security policies for each Android API: monitor, deny, or mock.
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Monitor When using this policy, the Monitoring Proxy logs each API call, but does not ma-

nipulate its behavior. It logs the stack trace before the API call, the received parameters

(if any) before forwarding the API to the operating system. It then logs the APIs return

value, if any.

Deny When this policy is active, Monitoring Proxy prevents the app from accessing the con�g-

ured APIs. Whenever the API is invoked, Monitoring Proxy intercepts the call and does

not forward the API call to the operating system, raising a SecurityException instead.

Mock Similarly to the Deny policy, this policy also prevents the app from accessing the con-

�gured APIs. However, after intercepting the API call, this policy does not trigger an

exception. Instead, it attempts to return a mocked value to the app. By default, it returns

Java's standard initialization values for primitive types, such as 0 for integers and empties

for strings.

To intercept method calls without requiring the app or operating system modi�cation, Moni-

toring Proxy relies on Arthook [57], a callee-site in-memory rewriting technique to inject method

hooks into an app. While the technique itself can be applied to any system, its implementation

relies on Thumb-2 type instructions from ARM processors; thus, Monitoring Proxy can only be

used on physical devices or emulators with the ARM processor architecture.

3.5 Obtaining Code Coverage

The goal of testing is to �nd existing bugs; therefore, an automated test generator should ideally

be evaluated regarding the bugs it can �nd. However, except for specially curated datasets [58,

59], it is not possible to know how many�and which�bugs exist in an app.

To avoid such a problem, test generators measure how much app functionality they can

test [29]. While it is also not possible to know how much functionality exists in an app, test

generators approximate the amount of functionality in an app by their lines of code [60], and

such a metric is a good predictor for fault detection [61].

Since DM-2's goal is to allow developers to write, combine, and compare di�erent test-

ing techniques, DM-2 is shipped out-of-the-box with an embedded code coverage measurement

mechanism.

DM-2 instruments the app's binary �le (apk) to track statement coverage. It uses Apk-

Tool [62] and Soot [63] to repack app and inject coverage tracking statements in its compiled

Java code. The statement coverage tracked by DM-2 is relative only to the Java part of the app

code, which is present within the app binary. DM-2 is unable to monitor native and JavaScript

portions of apps, as well as dynamically loaded statements or external app components, such as

a web server.

3.6 Evaluation

While DM-2 is designed to be an extensible test generation platform, it can also be used out-

of-the-box as a test generator. In the remainder of this work, we use this DM-2 con�guration
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as the baseline for comparing our techniques, as it provides the same performance baseline. We,

thus, conducted a set of experiments on how e�cient and e�ective DM-2 is. In particular, we

aim to evaluate: does DM-2 covers app behavior e�ciently?

3.6.1 Experimental Setup

We comparedDM-2 againstDroidBot, which presents similar functionality and has been shown

to outperform most current test generators [64] and Monkey, the standard test generator from

Android. We have not compared against other tools as they either:

� require a speci�c (and old) Android version [35, 36]

� require OS modi�cations [47, 46]

� were outperformed by Monkey or DroidBot [29]

As an evaluation metric, we used statement coverage, which has been extensively used to

determine the e�ectiveness of testing tools and is regarded as a good predictor for fault detec-

tion [61]. To obtain code coverage, we instrumented the apps using DM-2 tracking statements.

Finally, we used the testing tools to execute each app for 1 hour on a real Google Nexus 5X

device, and we repeated the experiments ten times per app to mitigate noise.

3.6.2 Dataset

We evaluated all tools on 12 di�erent apps, randomly chosen from [53], shown in Table 3. More

information regarding each app, including its category and number of downloads, is available in

Appendix A.

Table 3: Set of benchmark apps to evaluate DM-2

App Source Stmts

Alogblog F-Droid 428
KeePassDroid (2.0.6.4) F-Droid 43
BART Runner (2.2.6) F-Droid 8125
Jamendo (1.0.4) F-Droid 9347
DroidWeight (1.3.3) F-Droid 4279
Pizza Cost (1.05-9) F-Droid 1240
Munch (0.44) F-Droid 7173
Mirrored (0.2.9) F-Droid 2475
World Weather (1.2.4) Play Store 4116
SyncMyPix (0.16) Play Store 10084
Der Die Das (16.04.2016) Play Store 3225
wikiHow (2.7.3) Play Store 3703

3.6.3 Results

Figure 5 shows the average code coverage obtained by the testing tools on our dataset. After 1

hour, DM-2 achieves an average coverage of 49% while DroidBot reaches 41% and Monkey

28%.

27



3. A Platform for Android Test Generation

DM-2 not only obtains more code coverage than DroidBot and Monkey, but also does

it faster. After 1 minute of testing, DM-2 achieves 34% code coverage, DroidBot 26% and

Monkey 21%. After 5 minutes, all tools achieve 85% of their maximum coverage�42%, 35%,

and 25%, respectively.

Figure 5: Average coverage over time between DM-2, DroidBot and Monkey for the test
dataset.

Considering individual apps, DM-2 achieves more coverage than the other tools on six apps

(50%), draws with DroidBot on 1 (SyncMyPix), and withMonkey on 1 (Pizza Cost). Droid-

Bot achieves more coverage in 2 apps (KeePassDroid and DroidWeight), andMonkey achieves

more coverage in 2 apps (Jamendo and Der Die Das).

Our results indicate that concrete strategies are superior to purely random events for the

tested app set. Even though Monkey implements more input types (e.g., swipe and pinch)

than the other tools, it has the worst overall coverage. This is particularly true for apps that

have �deeper functionality�, requiring the user to navigate through a few screens until it can

access certain features.

DroidBot and DM-2, both, try to explore di�erent UI elements systematically. DroidBot

applies a depth-�rst strategy; meanwhile, DM-2 used its Biased-Random approach. This fact,

together with the better performance of DM-2 (2s instead of 3-4s per action), leads to faster

and more e�cient explorations.

Out-of-the-box, DM-2 achieves 8% more coverage than DroidBot and 21% more than

Monkey after 1 hour. After 1 minute DM-2 already outperforms DroidBot by 8% and

Monkey by 13%.

Monkey and DroidBot, however, outperformed DM-2 on two apps each, and we manually

inspected what caused this behavior. Both apps where Monkey outperformed the other tools,
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as exempli�ed by the coverage from the Der Die Das app shown in Figure 6, used the same search

bar to trigger di�erent functionality. DM-2 and DroidBot attempt to prioritize behavior that

has not yet been covered and, thus, avoided interacting multiple times, which the search bar,

leading to worse results.

Figure 6: Coverage over time between DM-2, DroidBot and Monkey for app Der Die Das

The apps in which DroidBot outperformed the other tools had context-sensitive behavior

that was better addressed by DroidBot's depth-�rst-search approach. DroidWeight, whose

exploration is shown in Figure 7, requires the current weight to be de�ned before calculating the

body mass statistics. DM-2's biased-random approach was unable to interact with the app in

the correct order.

Figure 7: Coverage over time between DM-2, DroidBot and Monkey for app DroidWeight
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These outliers highlight one of the main motivations behind DM-2's development. While

DM-2's approach worked well on most apps; di�erent strategies better tested some apps. DM-2

allows developers to easily create their testing strategies and combine them with others to test

their target apps better.

3.6.4 Threats to Validity

Regarding external validity, we cannot ensure that our results generalize to all apps and testing

tools, due to the size of our dataset. To mitigate this threat, our benchmark apps were taken

from previous research, which sampled from a variety of sources, commercial (Google Play Store)

and open-source (F-Droid); and from a variety of di�erent categories. For further con�dence in

external validity, more evaluations against other tools and on larger test sets are necessary.

Regarding internal validity, we only instrumented Java byte code to measure the coverage

and, therefore, not measured the coverage of other parts of the app code, such as web content and

native code. While there is a strong correlation between �nding faults and the code coverage of a

test suite, the use of a curated repository of bugs could provide more accurate results regarding

our techniques.

3.7 Limitations

While DM-2 is a platform that allows the creation of test generators, it cannot test all types

of Android apps. DM-2 relies on Android UI Automator, and thus inherits its limitations.

UI Automator uses the accessibility API to interact with apps; thus, it cannot interact with

all apps. Apps that do not support accessibility, such as games or those which directly draw

objects on the screen, cannot be tested. Apps, or widgets, which disable the standard Android

accessibility mechanism for security, i.e., banking, are also invisible to UI Automator and,

thus, to DM-2. One could mitigate this limitation by combining the inputs of UI Automator

with those obtained through image processing techniques [65, 66]. Nevertheless, even images are

unavailable for secure screens, such as those from banking, which would remain invisible.

DM-2 also ships out-of-the-box with semi-random exploration strategies. Thus, it is unlikely

to reach app functionality that relies on complex inputs, such as a username and password, or

human intelligence, such as ordering a product. It can, however, be extended with exploration

strategies that handle complex inputs by, for example, exploiting natural language [67]. DM-2's

default random-biased strategy will also not work with apps that reuse the same UI element

to trigger multiple functionalities. This scenario occurs mostly with apps that reuse the same

search bar (input �eld) and trigger di�erent functionality depending on the content of the input.

This situation happened in our experiments and was illustrated in Figure 6.

Concerning performance, DM-2 is limited by both its UI stabilization heuristic and the app

speed itself. Therefore, it cannot issue events as fast as tools without UI synchronization, such

as Android Monkey. After interacting with the app, DM-2 waits for its UI to stabilize and

only then fetches its contents and decides on the next action. If an action relies on external

resources, due to a slow Internet connection, for example, DM-2 will wait, while Monkey

will create random interactions using coordinates. Our experiments show that DM-2 heuristics
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outperformed Monkey when measuring code coverage. Nevertheless, apps whose UI stabilize

quickly and where most of the UI is actionable, such as calculators, would be tested faster by

Monkey.

Finally, the code coverage mechanism used by DM-2 relies on Soot [63] and APKTool [62],

which work by reverse-engineering the app source code and the compiled Android APK �le. As

of May 2020, both tools were not fully compatible with the latest format changes from Android

10, and many new app versions could not be instrumented. However, this issue should be solved

when these tools are updated to support the latest Android version.

3.8 Related Work

As a test generator, DM-2 is loosely related to the approaches we presented in Section 2.2. The

closest work to DM-2 is PUMA [27], a programmable framework whose goal is to abstract the

app execution logic from the app analysis one. DM-2's approach and goal, however, signi�-

cantly di�er from PUMA's. We presented DM-2 as a platform for Android test generation as

it stands in between being a test generator and being a framework to build new tools. DM-2

follows a framework-oriented design, where it works as a fully functioning template application,

and the development of new test tools consist of inheriting and plugging new customized ob-

jects. Therefore, di�erently from PUMA, DM-2 can be used out-of-the-box as a test generator.

Moreover, while PUMA required developers to write their analysis tools in its programming lan-

guage (PUMAScript), creating a DM-2 extension requires developers to implement only their

custom behavior by inheriting the respective interface with any Java Virtual Machine compatible

language.

Random testing approaches produce random sequences of events to interact with the app.

DM-2 is closely related to random approaches concerning its out-of-the-box exploration strategy,

as it also produces random sequences of inputs. Compared to tools such as DroidMate [34],

from which it was forked, DynoDroid [31], and Monkey [30], DM-2 not only o�ers more

functionality�e.g., test reproducibility and code coverage�but also outperforms them due to

its more accurate app modeling.

Model-based testing approaches infer models from applications using static or dynamic anal-

ysis and use them to generate test cases. AndroidRipper [35], A3E [40], CuriousDroid [50], and

Droidbot [37] produces an on-the-�y dynamic model of the app while testing. ORBIT [42] and

SmartDroid [43] follows a similar approach but uses static analysis to optimize the testing time.

DM-2's internal app modeling is inspired by these earlier model-based approaches, specially An-

droidRipper and DroidBot [37]. Similarly to these works, DM-2 learns a model of the app

during testing and consumes it to generate inputs. However, it employs a heuristic to better

re-identify states and widgets during exploration. Moreover, while o�ering similar features to

model-based test generators, DM-2's architecture decouples the exploration strategy from the

app model, allowing developers to easily change their exploration strategy to consume the model

or even replace the model itself for one tailored to its needs.

Systematic testing approaches interact with the app with speci�c goals. Approaches such as

EvoDroid [48] and Sapienz [49] combine evolutionary algorithms with random fuzzing to improve

test coverage, while ACTEve [47] and IntelliDroid [46] attempt to trigger speci�c behaviors
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through symbolic execution. While out-of-the-box DM-2 does not systematically explore an

app, its extensive architecture makes it straightforward to support such approaches, develop new

ones, or even use them simultaneously while testing a new app.

Finally, besides the performance bene�ts as presented in Section 3.6, DM-2 o�ers additional

features like reproducibility (record and replay), extensible architecture, and a more robust app

model.

3.9 Lessons Learned

This chapter closes the Part I of this thesis, GUI testing on Android. In this chapter, we presented

DM-2, our platform for Android test generation. DM-2 abstracts all interactions between the

test and device, allowing the developers to focus on developing their testing strategies. Moreover,

it introduces the concepts of strategy and selector pools, allowing multiple testing algorithms to

be combined and activated according to the current app state. Our experiments showed that

out-of-the-box, DM-2 achieves more code coverage than other state-of-the-art tools. Finally, we

reuse DM-2 throughout the remainder of this work. We reuse it out-of-the-box as a baseline,

and we implement the techniques we propose as DM-2 extensions.

Reproducibility: To facilitate the reproducibility of experiments, the tools and dataset used

in the evaluation are available online:

https://github.com/uds-se/droidmate
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Chapter 4

Learning Actionable Widgets

This chapter is taken, directly or with minor modi�cations, from our 2018 MobileSoft paper

Guiding App Testing with Mined Interaction Models [68]. My contribution in this work is as

follows: (I) original idea of an mining an interaction model from a crowd of apps and using it

for testing; (II) idea and development of the exploration strategy; (III) idea and development

of the �tness boost; (IV) partial evaluation.

To interact with apps, test generators must synthesize inputs to cover behavior as e�ectively

and e�ciently as possible. However, apps are developed to be used from a visual perspective,

i.e., a user interacts with an app by visually inspecting its UI. This presents a challenge to test

generators as most elements on a user interface are not visible to the user, but instead used to

structure how other elements are displayed.

It is typically straightforward for any user with minimal experience of mobile apps to identify

which elements on the screen they can interact with. As a simple example, consider the app screen

shown in Figure 8a, showing the change log in the popular Android app 2048 Puzzle Game11. On

this screen, one may scroll through changelog by swiping up and down, and eventually, dismiss it

pressing OK. A user does not even need to know the UI semantics to know which widgets it can

interact with. When faced with the same app screen, but in an unknown language (Figure 8b),

humans still quickly identify that the app is more likely to react if they interact with the button,

instead of the labels.

For a test generator, though, nothing of this is obvious. The individual changes may be

de�ned as clickable; the list is scrollable, but in what direction, the �Change Log� title at the

top might be long-clickable, and who knows what happens if one swipes across the OK button.

From the standpoint of a test generator, all of these interactions are equally likely to cover some

additional app behavior. Consequently, each of the 20 elements shown is equally likely to be

clicked, but only one (the OK button) will make progress�95% of the interactions will not lead

to progress.

In principle, we may be able to query and analyze the application for active elements. How-

ever, user interfaces may be composed at runtime, and not even use standard UI elements: The

11https://f-droid.org/packages/com.uberspot.a2048/
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(a) Change log screen from the app 2048 Puzzle
Game in English

(b) Change log screen from the app 2048 Puzzle
Game in Hawaiian

Figure 8: User interfaces from two apps with di�erent interaction possibilities.

2048 change log shown in Figure 9 is actually web content, which may tie in JavaScript functions

for further interaction both with the Web and the app, posing severe problems for analysis. In

all generality, determining whether and how an app responds to an interaction is an instance of

the halting problem.

Humans do not require knowledge about an app's inner workings to interact with it. They

instead learn over time conventions followed by user interfaces. Such conventions may depend

exclusively on the widget�buttons are always likely to be clickable�or may depend on where

the widget is placed�labels are not clickable unless they are shown inside a list. They may

even be imperceptible to the user�clicking on the rectangular area beneath a circular image still

works.

In this chapter, we hence follow a simple yet e�ective approach. We direct test generation

towards UI elements that are most likely to be reactive. To determine the association between

elements and interactions, we statically learn a UI interaction model from a crowd of apps. When

a UI element is found during app testing, the UI interaction model predicts how likely that UI

element is to react to an action (have an event attached). These probabilities can then guide UI

exploration towards those UI elements and interactions with the highest probabilities of success.

As an example, reconsider the 2048 screen in Figure 9. Here, we �nd that the individual

changelog entries are labels, which are unlikely to respond to clicks, whereas the OK button is a
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button, which typically does respond to clicks. Traditional GUI testing (top) randomly distributes

generated events across all visible UI elements, leaving only a 5% chance to click on the single

active OK button. Our approach (bottom) learns from existing apps which UI elements typically

accept interactions (and if so, which ones) into a UI interaction model. Using this model for

guidance, UI elements that likely are active (such as OK) are hit much more frequently, resulting

in overall faster exploration and testing. Guiding the previously random exploration towards the

(likely) button and away from the (unlikely) labels, we can increase the chances of clicking the

OK button eightfold, or to 40%. Such guidance can be applied whenever the test generator has

to choose from multiple elements; as we show in this chapter, this increases both the e�ectiveness

and e�ciency of testing.

Figure 9: Guiding Test Generation with Mined Interaction Models

We organize the remainder of this chapter according to our contributions. We �rst introduce

how to mine a UI interaction model, which captures the normal behavior of UIs in Android

apps (Section 4.1). We then show, in Section 4.2, how to consume such knowledge to guide

test generation towards UI elements and interactions most likely to trigger app behavior. To

demonstrate how the UI interaction model is abstract and can be attached to arbitrary test

generation approaches, we extend two state-of-the-art testing tools: DM-2 and DroidBot.
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In Section 4.3, we present the experiments we performed to evaluate how e�cient and ef-

fective it is to leverage mined interaction models, with results showing that our crowd-based

approach improves the coverage of explorations by an average of 20%. After discussing limita-

tions (Section 4.4) and related work (Section 4.5), Section 4.6 concludes the chapter.

4.1 Mining UI interaction models

Traditional model-based approaches (e.g., [36, 43]) extract a speci�c model for each app to test.

Humans, however, do not learn how to interact with a new app from scratch. They instead reuse

knowledge from other apps they previously used.

We propose to use a similar approach to test apps. Instead of analyzing the app under test

or blindly interacting with its UI, we propose the use of a universal interaction model to predict

how likely each element on a UI is of reacting to an interaction. We build such a UI interaction

model using machine learning to automatically learn common UI behavior patterns from a crowd

of apps. The strength of this approach is that the model is only learned once and can be reused

with di�erent apps and testing tools, even if the app itself does not support analysis.

We aim to identify di�erent types of UI elements (e.g., Button, TextField, Layout, etc.) and

if they respond to any type of event (e.g., Click, Long-Click, Scroll, etc.). Our goal is to extract

su�cient information to represent how developers implement interactions with users by using

a crowd of apps. Our approach to generating the UI interaction model takes four steps, as

illustrated in Figure 10, each of which we detail in the remainder of this section.

UI Interaction
Model

App Store

UI Dataset
Preprocessing

Model
Learning

UI Mining

…App
Collection

Figure 10: Model generation overview

4.1.1 App Collection

We start by collecting apps available in app stores. In particular, we downloaded 200 apps from

the Google Play Store, the o�cial market for Android apps. We opted for apps in the Google

Play Store due to their widespread usage among users. While a random selection of apps is

necessary to train a statistically representative model of app behavior throughout the whole app

store, we opted to create a model that represents widely used apps.
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Many apps in Play Store are small apps with few downloads available in a minimal amount

of devices, while a few, such as Facebook, YouTube, and Instagram, are installed on over 50%

of the devices [69]. Therefore, we randomly selected apps among the top 10 in each of the 32

categories, excluding games, as in [34]12.

We rely on the existence of design guidelines [70, 71, 72] and on the notion that apps tend to

follow standard design practices [73] to ensure that a model trained from such apps e�ectively

generalizes to other apps on the Play Store.

4.1.2 UI Mining

After collecting the 200 apps, our next step is to statically analyze each app to extract their

widgets and associated code. Since we selected commercial apps, we cannot directly access their

source code to determine which event handlers are associated with each widget. We, therefore,

analyzed the apps' binaries (apk �les) using the static analysis tool Backstage [74]. For each

widget, we extracted the following features: UI type, parent element, children elements, text, and

event handler.

Note that some of the extracted features may not have a value (parent or children). Addition-

ally, static analysis cannot guarantee that all widgets and event handlers in the app are mapped.

For example, some widgets are created with dynamically loaded content. Our approach, however,

does not rely on precisely identifying all possible widgets and their associated event handlers,

needing instead only su�cient elements to enable the machine learning algorithm to identify

patterns.

From the 200 apps, Backstage identi�ed 119,397 unique widgets and 6 di�erent types of

event listeners on our dataset, namely: onClick, onLong Click, onTextChanged, onScroll,

onItemTouch and onKeyPress. It associated 9% of the widgets in our dataset with one of these

events, that is, interacting with such widget triggers some app behavior. This again highlights

the challenge faced by dynamic exploration testing tools that randomly interact with UI elements

and the bene�ts of using a UI interaction model. Test generators perform many useless actions,

wasting computation time and decreasing their e�cacy because many widgets remain unexplored.

Finally, Backstage mapped 93% of the widgets to onClick events, as shown in Figure 11.

We, therefore, cannot obtain enough data statically to accurately predict which type of event

handler is associated with each widget. Therefore we convert our event handler feature from the

event type into a boolean indicating if the widget is associated with an event or not.

4.1.3 UI Data Processing

Before learning a model from the mined UI data, we need to preprocess the raw UI information

extracted by Backstage. We perform two tasks:

UI Type Re�nement: In Android, developers can specialize the standard UI elements (e.g.,

Button, TextView) into subclasses. For example, Facebook provides a custom TextView

named FbTextView. Initially, the dataset contained 2,837 di�erent types of UI elements.

However, many of them are speci�c to a small set of apps from the same company.

12Google Play Store lists 32 non-game categories at the time of writing.
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Figure 11: Distribution of event listeners in our dataset

In this task, we map custom widget types to the standard types provided by Android.

We �rst compile a list of native types from the dataset using the package name as a

�lter. Widgets belonging to Android-related packages (com.android.*, android.*), are

considered as Android native.

We then map the custom widget types to native ones by computing string similarity dis-

tance (i.e., Levenshtein Distance) [75]. We do not evaluate if the custom components are

subclasses of the native Android ones because some companies opt to inherit their controls

directly from the root View class, instead of from a specialized Android version. In such

situations, however, the name of the components is still similar. The FbTextView type, for

example, is correctly re�ned to TextView using the string similarity metric, with a class

inheritance analysis it would inherit from View. After re�nement, the dataset contains

108 distinct types of UI elements. Figure 12 shows the distribution of the top 10 most

frequent widgets in our dataset. We can observe that LinearLayout, mostly structural, and

TextView, mostly passive, are the most used widgets across apps.

Event Propagation: For each UI element in the dataset that lacks an attached event, we assign

the event of its parent widget if it exists. This propagation emulates the Android OS event

handling mechanism. When a UI element receives an event, the OS passes the event to the

child elements for processing. To facilitate user interaction, developers sometimes associate

events with structuring elements (such as layouts), instead of with the children elements

(such as images or labels). After this step, the dataset contains ∼11% of widgets with an

attached event.

4.1.4 Model Learning

Our last step to mine a UI interaction model is to train a probabilistic model using the dataset

apps. We used the existence of an event as the target feature to train our classi�er and used the

remaining features as independent variables to learn.
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Our dataset is inherently unbalanced, i.e., the majority of widgets lack events. This is due

to incompleteness of the static analysis and because the apps create a large number of widgets

dynamically. The dataset contains a 1:9 ratio of widgets with and without event, as previously

shown in Figure 12. For example, 93.65% of LinearLayouts lack events attached. On the

contrary, 32.53% of Buttons have an event. Intuitively, almost all buttons should have an event

handler attached. However, layouts can be dynamically composed by other layouts in Android

UIs. Dynamically composed UIs cannot be resolved statically without over-approximation. This

is the rationale for having a reduced number of buttons with events.

To mitigate the e�ects of having an unbalanced dataset and avoid over-�tting, we select a

spread subsample of the data to train the model. In particular, we train the model with the same

number of instances with and without an event (1:1 ratio), that is, we select all 10,938 widgets

with an associated event, and a random subset of 10,938 widgets without an associated event.

We then used a Random Forest [76] classi�er to produce a model with determines if widgets

are associated or not with an event handler (UI interaction model). A Random Forest classi�er

consists of multiple independent tree-based learners, which classify an instance by bagging the

results of the individual classi�ers. We opted for the Random Forest approach for our classi�er

because it is fast, provides good accuracy results in general, and can deal with unbalanced

and missing data. In a preliminary exploratory phase, we experimented with di�erent machine

learning classi�ers, including SVMs, rule-based, and tree-based models [77], but a Random Forest

outperformed them.

4.2 Guiding Test Generation with UI Interaction Models

The UI interaction model predicts if a widget is likely associated with an event listener or not.

In this section, we explain how to use this information to guide the input generation towards

those widgets with higher chances of reacting to UI interactions.

Our UI interaction model could be used to classify all widgets on a screen as True (has event)
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and False (no event), and one could �lter only the widgets likely to have an event as candidates

for interaction. By doing so, however, the test generator would be restricted by the model,

instead of guided, and some actions may never be performed. Such a scenario can arise because

the model is built on top of approximated data (static analysis) or because some apps may have

slightly di�erent ways of interacting. We instead use, for each widget, the class membership

probability for the True (has event) class as �tness. We do not use the classi�cation result per

se but use how con�dent the classi�er is that the widget belongs to the class.

In the introductory example of the Change Log screen in the 2048 app (Figure 9), the UI

contains 20 UI elements (1 DialogBox, 7 Layouts, 11 Labels, and 1 Button). However, only one

element, the OK button, is attached to an event listener. The remaining 19 elements structure

or display information. With a random input generation approach, each UI element has a 5%

selection probability, which results in a 95% chance of selecting a useless element.

According to the model, the Dialog has a probability of 2.2% to be associated with an event,

whereas the OK Button has a probability of 90%, as illustrated in Table 4.

Table 4: Fitness for UI elements at 2048's Change Log screen

Dialog Layout ... Layout Label ... Label Button
1 1 ... 7 1 ... 11 OK

Fitness 0.022 0.063 0.083 0.027 0.068 0.900

Sum 2.250

4.2.1 Fitness Proportionate Selection

We use a �tness proportionate selection approach from genetic algorithms to select UI elements

considering their �tness values and thus to bias explorations in favor of relevant UI elements.

The �tness proportionate selection algorithm randomly selects an element (pi) with proba-

bility proportional to its �tness (fi) in relation to the overall �tness of the population. That is,

pi = fi/
∑N

j=1 fj, where N is the number of actionable UI elements in the screen under analysis. In

the 2048 app example, the OK button has a selection probability of 40%: pOK = 0.900/2.250 = 40%

.

This method simulates a roulette wheel with sectors of size proportional to pi. Selecting an

element is equivalent to choosing a point randomly on the wheel and locating its sector.

We execute the traditional version of the �tness selection algorithm n times and pick the most

frequently selected individual. This allows us to con�gure how likely widgets with low-�tness are

expected to be selected. By selecting a lower value of n, we increase the probability of choosing

a low-�tness widget, and by selecting a larger n, the widgets with higher �tness are more likely

to be selected13. We experimentally de�ned n = 10.

The pie charts in the introduction of this chapter (Figure 9) illustrate the di�erence between

the random and the �tness-biased random selection mechanisms when exploring the Change Log

screen. We can observe that the selection probabilities change between the random and �tness-

13The selection probability of the �tness-proportionate selection is not kept for n > 1. Instead, the probability
is calculated by a multinomial distribution, as demonstrated by [78].
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biased random approaches. In the biased approach, the OK button possesses a 40% selection

probability, despite representing only 5% of the screen elements.

4.2.2 Fitness Boost

The model's predictive power is not perfect (i.e., precision and recall are inferior to 1.0). More-

over, developers may associate event handlers to widgets in ways not captured by the model.

To maximize the coverage of tested functionality, we boost the �tness value of unexplored UI

elements.

The idea behind this boost is to give these widgets a higher chance of being explored at least

once. Before performing each action, the �tness value of each unexplored element is increased by

100%. Once the widget is explored, it no longer receives the boost and retains its original �tness

value. Following this approach, the exploration initially prioritizes the �best� elements (according

to the model). Then, once it explored these widgets, it increases the chance of interacting with

�worse� elements once. Once all elements have been explored at least once, the �tness boost no

longer applies, and only the model values are used.

Consider the scenario presented in Figure 9. Assume that the UI interaction model returns

the following �tness values for the elements on the screen: button = 4, each label = 0.3, each

layout = 0.37, and dialog = 0.1. The �tness boost then works as follows:

1. The scenario starts with all widgets receiving the �tness boost because they have not yet

been interacted with. There is a 40% probability of interacting with the OK button, a 33%

probability of interacting with a label, a 26% probability of interacting with a layout and

1% chance of interacting with the dialog.

2. If, as the �rst action, we interact with the OK button, it will no longer be boosted. For the

next action, the �tness of the widgets change to button = 4, each label = 0.6, each layout

= 0.74, and dialog = 0.2, since all elements but the button are boosted. This results in

41% chance of interacting with a label, 32% chance of interacting with a layout, 1% chance

of interacting with the dialog and only a 25% chance of interacting with the button.

3. If we click on the button again, the �tness and probabilities do not change, as the button

already did not receive a boost.

4. If, as the next action, we interact with a label, only that label will not be boosted, again

changing the �tness of the widgets on the screen. For the next action, the �tness of the

widgets change to button = 4, clicked label = 0.3, each other label = 0.6, each layout

= 0.74, and dialog = 0.2. This results in a 40% chance of interacting with a label, a

33% chance of interacting with a layout, a 1% chance of interacting with the dialog, and

only a 26% chance of interacting with the button. Slightly increasing the probabilities

of interacting with a layout or again with the button, while decreasing the probability of

interacting with a label.

The probabilities of interacting with the elements on the screen are, thus, adjusted after each

action, until all elements on the screen have been interacted with. At this point, the �tness boost

no longer plays any role in the exploration, and the original probabilities of the model apply.
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4.3 Evaluation

The UI interaction model aims to be a general model of how likely widgets are to react to UI

events. We, thus, conducted a set of experiments to measure its e�ectiveness and bene�ts. In

the remainder of this section, we present our experimental setup, dataset, and answers to the

following research questions:

RQ1 (Model Representativity and Generalization). Is the UI interaction model rep-

resentative of normal app behavior? (Section 4.3.3)

RQ2 (Model Accuracy In Practice). Does the UI interaction model (learned statically)

e�ectively predict events dynamically? (Section 4.3.4)

RQ3 (E�ectiveness of the Approach). Is the crowd-based dynamic exploration more ef-

fective than the random and model-based explorations? (Section 4.3.5)

4.3.1 Experimental Setup

To demonstrate that the model can be used alongside di�erent testing tools, we extended both

DM-2 [34] and DroidBot [37] with our mined UI interaction model. DM-2 implements a

pseudo-random GUI exploration strategy, while DroidBot follows a model-based exploration

strategy. We chose these tools because their source code is publicly available online, and they can

test apps without having access to the apps' source code. The tools represent two well-adopted

approaches (i.e., random and model-based) to test Android apps. Along this section, we refer to

our extended versions of the tools as Droidmate-M and Droidbot-M.

We executed our experiments on four types of devices: Nexus 5X, Nexus 9, Nexus 6 and

Pixel C, all running Android 7.1 (API 25). To prevent inconsistencies coming from di�erent

device behaviors, all tests of the same app are performed in the same device model.

4.3.2 Benchmark Apps

We selected 17 apps from [29]for our tests according to the limitations of the test generators

used in the experiments. For a varied and representative sample, our selection includes apps

from Google Play Store and F-droid14. We selected apps that span over di�erent categories

and have di�erent sizes. The use of open-source apps allows us to identify limitations in static

analysis. In contrast, the use of commercial apps aims to illustrate that our approach improves

tests even when no source code is available.

Table 5 summarizes the set of benchmark apps. It provides for each app its source, number

of statements, widgets, and events. We used through DM-2 code coverage instrumentation and

the Backstage tool to obtain this information. More information regarding each app, including

its category and number of downloads, is available in Appendix B.

14F-Droid is an open-source repository of Android apps. https://f-droid.org
15These apps crashed when being evaluated with Backstage.
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Table 5: Set of benchmark apps

App Source #Stmts Widgets Events

Alogblog15 F-Droid 428 - -
KeePassDroid (2.0.6.4) F-Droid 43 169 0
Munch (0.44) F-Droid 8084 387 0
BART Runner (2.2.6) F-Droid 8125 170 5
Jamendo (1.0.4)15 F-Droid 9347 - -
2048 (2.06) F-Droid 168 3 1
DroidWeight (1.3.3) F-Droid 4279 63 22
Pizza Cost (1.05-9)15 F-Droid 1240 - -
Mirrored (0.2.9) F-Droid 2475 29 0
Easy xkcd (5.3.9) F-Droid 13768 265 6
Dialer2 (2.90) F-Droid 2005 55 19
PasswordMaker (1.1.11) F-Droid 4378 177 30
Tomdroid (0.4.1) F-Droid 2727 21 0
World Weather (1.2.4) Play Store 4116 205 0
SyncMyPix (0.16) Play Store 10084 81 15
Der Die Das (16.04.2016) Play Store 3225 69 0
wikiHow (2.7.3) Play Store 3703 183 7

4.3.3 RQ1: Model Representativity and Generalization

The UI interaction model predicts if widgets have an event handler attached. The higher the

accuracy of the model, the more e�ective the succeeding dynamic exploration. In this experiment,

we study the prediction accuracy of the inferred UI interaction model. We aim to discover if the

model is representative of the �normal� behavior of apps.

For this purpose, we assess the model using 10-fold cross-validation on the training dataset

(cf. Section 4.1), and we consider the values returned by Backstage as ground truth. Note that

we do not use the actual classi�cation results for test generation, relying instead on the class

membership probability. Both concepts are, however, related. This self-test allows us to verify

whether and how much the model is representative of app behavior.

Figure 13 shows the performance of the UI interaction model using 10-fold cross-validation

with the training set. The confusion matrix quanti�es the number of correctly and incorrectly

classi�ed instances for each class. The overall precision (the percentage of classes predicted to

have event handlers that do have event handlers) is 68%. In contrast, the overall recall (the

percentage of classes with event handlers that are correctly predicted as such) is 75%. The

precision and recall for predicting the True class (widgets having an event) are 68% and 75%,

respectively. Whereas for predicting the False class (absence of event), precision and recall are

72% and 65%, respectively.

Classi�ed as
Input True False Total Precision = 68%

True TP = 8212 FN = 2726 10938 Recall = 75%

False FP = 3858 TN = 7080 10938 Accuracy = 70%

Total 12070 9806 21876 Speci�city = 65%

Figure 13: Confusion matrix for presence (True) and absence (False) of event handlers using
10-fold cross-validation with the training set.

Alongside this experiment, we evaluated how the model would behave using the whole origi-

nal dataset, without performing the spread sub-sampling to create a balanced dataset (cf. Sec-
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tion 4.1). In this case, the model presented both precision and recall superior to 90%. However,

this is due to the 9:1 ratio of widgets without and with an event in the dataset. The result-

ing classi�er classi�ed all widgets as without event, resulting in a 0% recall for the False class.

Balancing the dataset avoids biased results.

The UI interaction model, statically mined from a crowd of apps, has a precision of 68%

and a recall of 75% when predicting if unseen widgets are associated with an event handler.

4.3.4 RQ2: Model Accuracy In Practice

The UI interaction model is obtained by statically analyzing a crowd of apps. One of the well-

known limitations of static analysis tools is that they can infer behaviors that never happen

during execution. Besides, the inferred knowledge can be incomplete, as not all behaviors can

be statically determined. We aim to investigate if the statically mined UI interaction model

represents dynamic app behavior.

For this purpose, we evaluate the model's performance at runtime; that is, we investigate if

the behavior captured by the model statically represents the behavior of apps dynamically at

runtime.

To measure the prediction success dynamically, we compute the number of e�ective actions

in the tests. We consider as e�ective actions the app interactions that produce a reaction in

the app. In other words, the actions that interact with widgets which have an event listener

attached.

Since the code of some apps is unavailable, apps have several thousands of widgets and

methods. Each execution trace contains hundreds of actions; it is infeasible to assess each

action manually. For this reason, we use a heuristic to compute the number of e�ective actions

automatically. Intuitively, if after an action, there is a reaction in the app, then a change will

happen on the app screen. Thus, we consider an action as e�ective if the screenshots before and

after the action are di�erent.

We measure the similarity between screenshots using an image processing approach similar

to [79]. First, we remove the top part of the images corresponding with the device `status

bar', as it contains widgets such as the clock and battery level, which could evolve during the

execution, thus producing false positives. We then perform an image subtraction for each pair

of consecutive screenshots. If both screenshots are identical, we conclude that the action did not

produce any reaction in the app�i.e., the action is ine�ective. We are aware that this measure

is an approximation. For example, an action could activate a process in the background without

notifying the user. Nevertheless, we expect this situation to happen rarely. One of the most basic

principles of UI design is providing feedback to users about the system state [80]. We performed

a reduced manual evaluation with the subject apps, and concluded that screenshot similarity is

a suitable approach to identifying e�ective and ine�ective actions.

DM-2 provides the feature to capture screenshots after each action. Therefore, we use only

DM-2 to perform this experiment. We run DM-2 and Droidmate-M to test the 17 benchmark

apps. We set the tools to execute 500 actions (i.e., events) with each app. To reduce the impact
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of noise, for each app, we repeat the execution ten times and compute the average percentage of

ine�ective actions.

The guided exploration signi�cantly reduces the number of ine�ective actions in 13 out of

17 apps. As shown in Fig.14, the number of ine�ective actions signi�cantly varies among apps,

since it depends on the app's design. On average, DM-2 performs 29.04% of ine�ective actions

while Droidmate-M 14.80%. Overall, the guided exploration reduces approximately by half

the percentage of ine�ective actions. The reduction factor ranges from 8% to 80%, depending

on the app.
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Figure 14: Comparison of ine�ective actions in DM-2 between Random and Guided exploration

Nevertheless, there are three apps (Syncmypix, Dialer2, and PasswordMaker) where the

random exploration executed fewer ine�ective actions. After manual inspection of the source

codes, we observed that in these apps, almost all elements displayed on the screen respond to

interactions. Thus, virtually any random interaction is e�ective. Since the guided exploration

gives a boost to unexplored elements, it attempted to interact with all widgets and, thus, executed

more ine�ective actions.

In conclusion, the e�ectiveness of our approach will highly depend on the app's design. On

the one hand, if all elements in the UI respond to interactions, a random approach will perform

well because every input will a�ect the app. On the other hand, if the UI contains many widgets

but few event listeners, then the guided approach will lead to more successful explorations.

On average, explorations guided by our UI interaction model reduces the number of

ine�ective actions by 50%, with reduction factors of 8% up to 80%.
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4.3.5 RQ3: E�ectiveness of the Approach

Our last experiment aims to quantify the e�ectiveness of the crowd-based approach compared

with state-of-the-art testing approaches concerning how much functionality can be tested.

We compare the performance of the tools DM-2 and DroidBot against their extended

versions that use our model�i.e., Droidmate-M and Droidbot-M. Furthermore, we compare

them with Monkey [30], the most popular tool to test Android apps. It generates random UI

events (e..g, clicks, touches) to stress apps, without considering the UI of the apps. Although

Monkey implements the most basic strategy, previous research has shown it to outperform other

sophisticated techniques [29].

We select code coverage as a metric to evaluate and compare testing strategies, as previous

research has demonstrated that it is a good predictor for the test quality [61]. Similar to [29],

we compute statement coverage. We use DM-2's native instrumentation mechanism to obtain

code coverage without having access to the source code. For DroidBot, we port the code from

DM-2's instrumentation into DroidBot to log each statement in the app bytecode.

We run the �ve tools (DM-2, Droidmate-M, DroidBot, Droidbot-M, and Monkey)

with the 17 apps in our benchmark. We execute each app for 25 minutes, where our previous

experiments (Section 3.6) showed that all tools already reached over 95% of their coverage.

Moreover, to reduce the impact of noise, we executed each app ten times and obtained the

average coverage over time.

Guided exploration is more e�ective than the original random and model-based explorations

in DM-2 and DroidBot. Figure 15 reports the coverage that each tool achieved with the

benchmark apps.

Figure 15: Coverage comparison of guided and random explorations over the benchmark apps

Note that with DroidBot, the apps PasswordMaker and Tomdroid crashed during execu-
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tion, and DM-2 stopped. Thus, the results reported in Figure 15 for DroidBot and Droidbot-

M exclude those two apps.

While the median coverage of DM-2 is 43.03%, Droidmate-M reaches 51.38%. Thus,

there is a coverage percentage increase of 19.41%. The percentage increase is computed as:

%increase = (p2− p1)/p1 ∗ 100, where p1 and p2 are the two percentages to compare.

DroidBot obtains a coverage percentage increase of 55.30% when using the guided strategy.

From a median coverage of 29.87%, it goes up to 46.39%. This experiment demonstrates that

guided exploration improves the performance of random explorations.

Also, Monkey obtained a median coverage of 37.2%. First, we can observe that both DM-

2 and Droidmate-M outperform the median coverage of Monkey, reinforcing our previous

results (Section 3.6) with a slightly larger dataset. Second, with the larger dataset, Monkey

performs better than DroidBot. Nevertheless, when using the guided strategy, Droidbot-M

outperforms Monkey and also DM-2.

The state of the art tools DM-2 and DroidBot experience a coverage percentage increase

of 19.41% and 43.03% on average when using the guided strategy across all apps.

Figure 16: Average coverage over time in DM-2 with guided and random explorations in the app
2048

We then inspected the individual apps. We �rst observed four apps (Aalogblog, KeePassDroid,

2048, and Tomdroid) where all random and guided explorations obtain the same coverage. Since

the two di�erent testing methods achieve the same statement coverage, it indicates that no more

coverage can be achieved without more advanced testing techniques. We manually checked if,

with manual exploration, it is possible to achieve higher coverage. There are login screens in which

the testing tools fail to pass, and swipe actions which the testing tools failed to execute. Moreover,

for scenarios where both tools reached the same coverage, as exempli�ed by the coverage evolution

of the 2048 app using DM-2 and Droidmate-M in Figure 16, we can observe that the guided

exploration reaches its peak coverage faster.
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Figure 17: Average coverage over time in DM-2 with guided and random explorations in the app
DroidWeight

We further explored three cases. First, we show a case where the random exploration outper-

forms the guided exploration and two cases where the guided explorations win. Figure 17 shows

the coverage evolution in the DroidWeight app, where the random exploration outperforms the

guided one. We can observe that random exploration was consistently better throughout the

whole exploration. However, while the coverage's curve of random exploration has �attened for

approximately 10 minutes, the guided exploration was able to explore new widgets. Finally, both

strategies converge.

In the Jamendo app (Figure 18), both explorations start with the same coverage, because

most widgets in the initial UI possess an event handler. After reaching a screen where some

widgets lack an event handler, the guided exploration increased coverage faster than the random

one.

As we have previously discussed, the performance of the approach highly depends on the

design of the apps. Figure 19 reports the coverage evolution during the exploration of DM-2 and

Droidmate-M. The graph shows the average coverage across all benchmark apps over ten runs.

We can observe that guided exploration speeds up testing; more code is covered faster. After 10

minutes of exploration, the guided exploration has already obtained a coverage increase of 9.9%

compared to the random exploration. This becomes especially relevant in mobile ecosystems,

where time is a critical success factor. App updates are frequent [81]; by reducing testing time,

release cycles can be accelerated.

The guided exploration speeds-up testing.

Also, our experiments have demonstrated the applicability of our model. We have applied

the model into two di�erent testing tools (DM-2 and DroidBot), which are implemented with

di�erent programming languages (i.e., Kotlin and Python), and follow di�erent testing strategies.
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Figure 18: Average coverage over time in DM-2 with guided and random explorations in the app
Jamendo

Figure 19: Average coverage evolution in DM-2 with guided and random explorations over the
benchmark apps for 25 minutes

The extensions of these tools to incorporate the guided-strategy comprise ∼100 LOC and took

around 3 hours of work in each app.

This increase in e�ectiveness comes at a price: One must �rst mine a universal model, as

described in this chapter. Even though this model can be reused repeatedly (unless the essential

behavior of Android widgets changes over time), one may ask whether this e�ort is necessary. In

particular, one may ask whether it would not be better to mine a speci�c model from one applica-

tion in order to generate tests for it. Unfortunately, such an app-speci�c model is not as useful as
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it may seem, due to the limitations of static analysis. As an example, consider the DroidWeight

app from our benchmark�an app in which DM-2 (i.e., random exploration) performed better

than Droidmate-M, which indicates that the crowd-based model did not accurately represent

this app. We statically extracted the widgets and events from the DroidWeight app only and

trained a random forest classi�er, similar to the crowd-based model. In other words, we applied

our approach without leveraging the crowd of apps.

To measure the e�ectiveness of the approach, we executed Droidmate-M with the crowd-

based and the single-app models and compared the number of e�ective actions and achieved

coverage. We follow the same procedure described in Section 4.3.4 and 4.3.5; similar to the

previous experiments, we execute 500 actions and ten runs.

When using a single-app model, the amount of ine�ective actions drops from 7.05% to 3.23%,

i.e., a reduction factor of 55%. The reduction of ine�ective actions, however, does not translate

into improved coverage. The crowd-based model achieved a code coverage of 52.93%, while

the single-app model achieved only 34.00%. The limitations of the static analysis explain this

di�erence. Widgets that are created dynamically or whose event handler cannot be statically

determined, are classi�ed by the model as absence of event with almost 100% probability. Thus,

those widgets are seldom actioned during exploration. In particular, the crowd-based model

executed 211 unique widgets during exploration, while the single-app model actioned 58.

A model generated from a single app can e�ectively avoid ine�ective actions. However, it

may be biased due to limitations of static analysis and, thus, achieve less code coverage.

4.3.6 Threats to Validity

Regarding external validity, our experiments have demonstrated evidence that the guided ex-

ploration using crowd knowledge signi�cantly improves the testing performance of state of the

art tools (DM-2, DroidBot), with a set of benchmark apps. However, we cannot ensure that

the results generalize to all apps and testing tools. To mitigate this threat, we selected a varied

sample of apps from di�erent sources, including commercial and open-source apps, with di�erent

sizes and categories. We applied the approach to two testing tools that implement di�erent

exploration strategies and use di�erent programming languages.

The proposed approach is implemented on the Android platform because it is currently the

most widespread mobile OS (having +88% of market share [2]). Nevertheless, our conceptual

foundations could be applied to other mobile platforms (e.g., iOS) and domains (such as web

applications). To gain con�dence in external validity, more evaluations are needed on other

platforms and tools.

Regarding construct validity, we use a static analysis tool, Backstage, to extract UI in-

formation from apps. This information is then used to learn the UI interaction model. The

extracted information is incomplete due to the inherent limitations of static analysis (illustrated

in Section 4.3) and to the tool's limitations. For example, there is a growing tendency in using

third-party annotation libraries to implement event handlers. The annotation libraries aim to

simplify and speed-up development. Currently, Backstage only considers the standard event
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declaration mechanisms provided by Android. The more complete the model, the more e�ective

will be the resulting dynamic explorations. Learning a model from a crowd of apps, instead of

a single app, mitigates this threat. The model can be completed with information coming from

several apps.

Regarding internal validity, in order to evaluate our approach with both commercial and

open-source apps, we performed bytecode instrumentation. Moreover, we measured only the

coverage of Java code, which belongs to the application. More precise measurements can be

obtained using source code instead of bytecode for instrumentation and by measuring coverage

on Javascript, dynamic, and native code.

4.4 Limitations

Our experiments showed the bene�ts of learning and consuming an interaction model to test apps.

Nevertheless, our implementation and approach would not work for all apps. Our implementation

inherits all limitations from DM-2, which we previously discussed in Section 3.7.

Additionally, our model assumes that apps have similar interaction patterns. We showed

in RQ3 4.3.5 that this assumption does not hold for all apps. If an app does not follow the

same patterns as those used during training, the interaction model may have an adverse e�ect,

resulting in a more ine�cient test.

Our interaction model also does not model UI semantics. A human not only relies on struc-

tural UI patterns to interact with the app but also on the semantic of its UI elements. For

example, it distinguishes between an image that denotes an action, such as a trash bin for delete

or a magni�er for search, from a decorative one, such as a logo, even if both follow the same

structural pattern. We attempted to remove this limitation by using commercial image semantic

extractions tools. Namely: Microsoft Cognitive Services16 and Google Reverse Image Search

through its Custom Search API17. These tools, however, failed to provide adequate semantics,

as shown in Figure 20. How to extract semantics from arbitrary images is still an open problem.

4.5 Related Work

This section summarizes the most relevant works related to this research.

In Section 2.2, we presented existing test generation approaches, which are loosely related to

our work. Closest to the approach we presented in this chapter is iMPAcT [39], which identi�es

the UI patterns used in each app screen and compare them to an internal catalog of patterns

to determine how to interact with the app. Similar to iMPAcT, we also learn how to interact

with an app based on a catalog of patterns. However, we do not determine which patterns to

implement and how to interact with them. Instead, we rely on patterns learned by a classi�er

trained on a dataset mined from a crowd of apps. Nevertheless, in general, most test generators

can bene�t from knowledge about how to interact with di�erent UI elements. Such information

can be used to prioritize UI elements that are more likely to trigger app behavior or to guide the

exploration towards the desired path.

16https://azure.microsoft.com/en-us/services/cognitive-services.
17https://developers.google.com/custom-search/v1/overview.
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Figure 20: Attempt to retrieve image semantics from commercial tools

Random testing approaches, such as Monkey [30], Dynodroid [31], and DM-2 [34] create

random sequences chains of events to explore an app. Our approach di�ers from the traditional

random test generators by giving preference to UI elements that have a higher probability of

reacting to an event. It can be used alongside semi-random algorithms, such as Dynodroid's

prioritization of least-explored widgets. Nevertheless, in a scenario where all UI elements have

the same probability of containing an event, the approach behaves equally to a purely random.

Model-based testing tools infer models from applications using static, dynamic, or a hybrid

analysis and use them to generate test cases. GUIRipper [35] and MOBIGuitar [36] dynami-

cally traverse an app's GUI and create a state machine model that it later uses to generate test

inputs. ORBIT [42] follows an approach similar to GUIRipper and MOBIGuittar but uses

static analysis to reduce the number of GUI elements to test. SmartDroid [43] also exploits

static analysis to generate activities and function call graphs to identify paths that should be

explored. SwiftHand [38] uses machine learning to create a model of the app and consumes

this model to generate inputs to visit unexplored app states. A3E [40], CuriousDroid [50],

and Droidbot [37] dynamically generate �nite-state models that capture transitions among

activities to guide the exploration. Our approach di�ers from these approaches by generating a

universal model from a multitude of apps that can be reused among apps and testing tools. With

this di�erence, we can overcome two common setbacks of model-based approaches. First, we can

interact with apps that dynamically load content�and, thus, cannot be thoroughly analyzed

statically. Second, we avoid the costs of executing the static analysis for each app under test,

which is a time-consuming task.

Systematic testing approaches employ various algorithms to test applications exhaustively

or generate tests that trigger speci�c behaviors. EvoDroid [48] and Sapienz [49] use search-

based algorithms�evolutionary or combined with random fuzzing�to improve test coverage.

ACTEve [47] and IntelliDroid [46] apply concolic testing to generate feasible event sequences

for Android apps to trigger speci�c behaviors. Our approach is not tailored to explore apps
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completely or to trigger speci�c behaviors. Targeting speci�c behaviors mostly demand static

analysis to identify the path of the app's execution �ow, which must be followed. Testing a real

app completely frequently demands prohibitory long testing times. Our approach instead focuses

on reducing the number of ine�ective actions performed during testing, therefore reducing the

overall test duration or allowing more functionality to be explored. This translates into improving

the coverage of the explorations and speeding-up testing.

4.6 Lessons Learned

This chapter presented the �rst of our approaches to learning the language of apps. More

speci�cally, it presented an approach to determine which UI element to interact with by guiding

app testing towards UI elements that are most likely to be reactive.

It presented our approach to statically learn a UI interaction model, from a multitude of

apps, which captures associations between UI elements and interactions. Test generators can

consume the UI interaction model during dynamic explorations to predict UI elements with

higher probabilities of success.

We applied the approach into two existing state of the art testing tools: DM-2 and Droid-

Bot. Our experimental evaluations demonstrated the applicability and e�cacy of our approach.

The proposed guided exploration reduces the number of ine�ective actions on the order of 50%

and experiences an improvement in code coverage of up to 43%.

Our approach is orthogonal and complementary to current dynamic analysis and UI-exercising

approaches. The UI model can be plugged into existing tools to improve e�ectiveness. The

extension of the state of the art tools used in our evaluation only takes ∼100 LOC.

This work opens new research directions that we would like to tackle in the future:

Event type prediction. While our approach demonstrates the bene�ts of identifying which

widgets are more likely to possess an attached event handler, it did not determine which

event should happen. This topic is addressed in our next chapter.

Hybrid and adaptive models. In Section 4.3.5, we illustrated the bene�ts and limitations of

using a single-app model. Crowd knowledge could be combined with app speci�c knowledge

or could be �ne-tuned (adapt) during testing. In the next chapter, we explore hybrid

models combining our crowd knowledge that combine crowd knowledge with app speci�c

information.

Semantic data. Another further improvement is to enhance the model with textual and graph-

ical semantics. Static analysis also provides texts and images. Without knowledge of the

underlying app code, a user can recognize that a UI element with text "Click here" or with

a "+"' icon should react to an onClick event.

Usability testing. Finally, we focused on improving test generation; however, the approach

could be applied for usability testing. Interaction models can detect bad designs that do

not follow the norm, leading to bad user experiences.
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Reproducibility: To facilitate the reproducibility of experiments, the tools and dataset used

in the evaluation are available online:

Droidmate-M and dataset: https://github.com/uds-se

Droidbot-M: https://github.com/natanielrj/droidbot
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Chapter 5

Learning Widget Interactions

This chapter is taken, directly or with minor modi�cations, from our 2019 ISSTA paper

Learning User Interface Interactions [82]. My contribution in this work is as follows: (I) orig-

inal idea of using reinforcement learning to learn app interactions; (II) original idea of using

a statically mined UI model as previous knowledge; (III) idea and development of the �tness

proportionate selection hybrid; (IV) partial evaluation.

Automated test generators systematically identify and interact with user interface elements to

explore the functionality of a mobile app. One key challenge is to synthesize inputs which

e�ectively and e�ciently cover app behavior. In the previous chapter (Chapter 4), we explained

how to learn interaction patterns from multiple apps and how to reuse them when testing a new

app. This allowed us to generate more e�cient tests by inferring which user interface elements

should be interacted with. In many cases, however, it is not enough for a test generator to

determine which element to interact with, but also how to interact with it.

As an example, consider Figure 21, showing a screenshot of the Android AAT activity tracking

app. Already for humans, interacting with this screen can be quite a challenge�what exactly

do the individual icons do? The text area in the white information box (�tourismcampsite�) is

scrollable; swiping on it scrolls the text, eventually revealing buttons at the bottom, which opens

up further functionality. A test generator may click on random parts of the screen without prior

knowledge, but randomly generating a series of swipes is unlikely to scroll the entire text.

Recent research attempts to emulate such knowledge for test generators by gathering knowl-

edge from other apps and transferring this knowledge to new apps. Our crowd-model (Chapter 4)

mined associations between UI elements and their interactions from popular apps and can learn,

for instance, that buttons typically accept interactions Additionally, dynamic techniques, such as

Korogulu's [83], learn these actions from dynamic executions and again apply a pre-approximated

probability distribution mined from several apps. A limitation of both these approaches is that

they are strongly biased towards the distribution initially mined. They work well if the app

under test is similar to those used to train the model, but fail if it is dissimilar. Consider the the

�tourismcampsite� widget to be swiped in Figure 21�a �layout� object:
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Figure 21: Map screen from the activity tracking app AAT app. The UI elements can be
interacted with in di�erent ways: Whereas the icons would react to clicking on them, the white
information box (�tourismcampsite�) must be swiped from bottom to top to have new UI elements
at the bottom of the text scroll in.

� If the model is trained from apps that do not associate a swipe event with layout objects,

test generators using the model would not swipe it, missing UI elements at the bottom.

� If the model is trained to swipe on layout elements, the test generator would also needlessly

swipe on the top and right menu layouts, even if they do not react to swipes.

What is needed is a technique that automatically adapts the model to the app at hand, using

a preconceived notion of likely interactions, while gradually including less likely actions if the

former do not succeed.

To this end, we approach test generation as an instance of the multi-(or N-) armed bandit

problem [84] (MAB problem). In this probability theory problem, a �nite set of resources (actions)

has to be distributed among competing alternatives (UI elements) to increase its reward (test

quality). We use reinforcement learning to address test generation from this perspective and to

systematically and gradually adjust our test generation strategy towards the application under

test.

We organize the remained of this chapter according to our contributions. After introducing

the multi-armed bandit problem and the techniques traditionally used to address it (Section 5.1),

we introduce test generation as an instance of the MAB problem (Section 5.2), formulating two

strategies for reinforcement learning without prior knowledge. We then show, in Section 5.3, how
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to enhance our reinforcement learning models with statically trained models�such as our previ-

ous UI interaction model from Section 4.1�to demonstrate how to integrate pre-approximated

probability distributions with a dynamically adjusted model.

In Section 5.4, we evaluate both strategies and show that reinforcement learning can be

used to test apps more e�ectively. Compared to a statically gathered crowd-model, the average

coverage increases by more than 18%. We also show that reinforcement learning without a priori

knowledge outperformed those with a priori knowledge by up to 8%, showing a clear advantage

of the MAB problem approach over pre-mined models. As the last evaluation, we show that

reinforcement learning, added to a statically mined model, improves its coverage by an average

of 20%. After discussing limitations (Section 5.5) and related work (Section 5.6), Section 5.7

concludes the chapter.

5.1 The Multi-Armed Bandit Problem

Our premise in this work is that users learn not only how to test apps and reuse this knowledge

when interacting with a new app. Instead, they actively adapt their behavior while testing a new

app. That is, they learn how to interact with an app.

We approach test generation as an instance of theMAB problem [85]. This probability theory

problem is illustrated as follows: given a set of competing slot machines (also known as one-armed

bandits) to play, a player must decide which one to pull. Each machine has a di�erent probability

of generating a reward, and the player has no information about these probabilities. After each

play, the player must decide if it will continue playing the same machine or change to another.

After pulling an arm, it receives a reward based on the machine's probability distribution. By

iteratively playing one machine at a time and observing the associated reward, the player can

focus on the most rewarding machines, albeit with no knowledge about the actual probability

distributions.

A MAB problem is formally equivalent to a one-state Markov decision process [86]. It can

be de�ned as a tuple (A,R) where A is a set of N ∈ N+ possible actions, one for each arm, and

R(r|a) an unknown probability distribution of rewards. At each time step t the agent selects

an action at ∈ A and the environment generates a reward rt ∼ R(·, a). The agent's goal is to

maximize the cumulative reward
∑T

t=1 rt. If the reward of the MAB problem is either 1 or 0, it

is called a binary multi-armed bandit or Bernoulli (multi-armed) bandit [87].

The MAB problem has been addressed with reinforcement learning techniques, such as ε-

greedy [88] and Thompson sampling [89], with good results [90, 91].

The ε-Greedy strategy, illustrated in Figure 22, considers a pre-de�ned threshold ε � in the

interval (0, 1) � to determine if it will explore new elements or exploit its current knowledge. For

each action, this approach has a probability ε of randomly pulling an arm (exploration) and a

probability of 1− ε of pulling the arm with the highest potential reward (exploitation).

Thompson Sampling�also known as posterior sampling or probability matching [92]�selects

an arm by randomly sampling an estimate from each arm's posterior distribution and selecting

the arm with the best sample. For Bernoulli bandits, i.e., those with a binary reward, this

posterior distribution is a beta-distribution (B) with parameters α and β. It starts with an
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Figure 22: Overview of the ε-Greedy approach.
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Figure 23: Three B-distributions changing over time

independent prior belief over each arm's mean reward (α = 1 and β = 1, as B(1, 1) is uniform

distribution on (0, 1)), as illustrated in Figure 23a.

It then pulls an arm and updates the distribution parameters according to the reward. If

the pull was successful (r = 1), alpha is increased by 1, and if it was not successful (r = 0), β

is increased by 1. The distribution becomes more concentrated as α + β grows, as illustrated

in Figure 23b and Figure 23c. The arms with higher mean rewards have a higher probability

of their estimate being the best one and, therefore, are played more frequently (exploitation).

Arms with a low mean reward, however, are not removed, but they are selected with a smaller

frequency (exploration).
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5.2 Testing With Reinforcement Learning

When testing an app, a test generator is presented with UI states containing multiple elements.

It must choose not only which widget to interact with but also which type of interaction to

perform. Each type of interaction on each UI element has its probability of improving testing.

Our goal is to learn how to interact with an app dynamically, that is, to identify which UI

elements should be triggered and which kind of interaction should be used, reducing the number

of ine�ective actions performed.

We model this problem as an instance of the MAB problem, in which the test generator

action (resource) has to be allocated between widgets and action types (competing alternatives)

to improve the tested behavior (reward). Based on our model, we implement two traditional

reinforcement learning strategies to address it: ε-Greedy and Thompson Sampling.

5.2.1 Model De�nition

The MAB problem is constituted of three major components: arms, probabilities and, reward.

Arms. The standard MAB problem de�nition supports only one type of action per arm. For

test generation, we need multiple types of actions per arm, with independent probability

distributions. Thus, we model each competing arm as a pair (w, a), where w is a widget,

and a is an action type supported by the test generator. We denote as A the set of all

interaction types supported by the test generator and as a state S the set of UI elements

available on the app screen at a speci�c time. To pull an arm is equivalent to act a speci�ed

in the (w, a) pair on the widget w.

Probabilities. Based on our arm de�nition, we denote the probability of each action triggering

an app response as P (a|w) = p, where p is the probability of the widget w reacting to the

action a. To consider an independent probability for each UI element in the app would not

allow knowledge to be transferred between UI elements, as the result of each action would

be valid for a single widget. We, thus, cluster widgets into classes C(w) and assign the

probability to these classes instead of to individual widgets, that is, P (a|w) ≡ P (a|C(w)).

Based on the work from [68] we de�ned the widget classes as tuples C(w) = (tw, pw, c1w, c2w).

Where tw is its class type, pw is its parents class type and c1w and c2w are the class type

of its �rst and second children.

Rewards. We determine our reward r as either 1 or 0, according to visual changes in the app.

r =

1, if app's UI changed after executing a

0, otherwise

We consider actions that trigger a visual change in the app as e�ective and those that

do not as ine�ective. Thus, while maximizing the overall reward, we aim to minimize the

number of ine�ective actions.

We opted to measure visual changes on the app UI to determine the action e�ectiveness

not to restrict our approach to any speci�c apps or environment. We, therefore, consider

an action e�ective if the screens before and after acting are di�erent.

61



5. Learning Widget Interactions

Our heuristic relies on design principles [80] that dictate there should always be a visual

noti�cation to the user after a reaction in the app. While this is an approximation, as an

action could, for example, start a process in the background without notifying the user,

actions that do not trigger UI changes are frequently classi�ed as possible misbehaviors [79].

5.2.2 ε-Greedy Strategy

We modeled the ε-Greedy approach according to Algorithm 1. We �rst initialize the current

(wins) and total (trials) counters and probabilities for all classes C and action types A (line 2-5).

Since our algorithm starts with no previous app knowledge, we initialize all wins and trials with

0.

Until all resources are used, we obtain the expected reward of all elements on the app's

current screen (state) and draw a random number (lines 6-8) to decide whether we select a

random widget (line 9) or select the one which has the highest reward probability, given the

current knowledge18 (line 11). We then perform the action a on the widget w, obtain a reward

r (line 13) and use this reward to update the counters (trials, wins) and the probability for the

class (line 14-16). The counters wins and trials for each action type and class represent our

accumulated knowledge.

Algorithm 1 ε-Greedy approach. Before each action it selects between acquiring new knowl-
edge (exploring) or exploiting the best widget-action on the screen, based on its current knowledge
(exploitation)

Require: ε ∈ (0, 1)
1: function ε-Greedy
2: for (a, c) ∃ A · C do
3: wins(a,c), trials(a,c) ← knowledge-base(a, c)

4: P (a|C(w))← wins(a,C(w)

trials(a,C(w)

5: end for
6: while stop criteria not met do
7: S = (w,P (a|w))∀ w in the current screen
8: if random() > ε then
9: e← random w ∈ S
10: else
11: e← max (P (a|w)), (w,P (a|w)) ∈ S
12: end if
13: r ← e.w.perform(e.a)
14: wins(a,C(w)) ← wins +r
15: trials(a,C(w)) ← trials +1

16: P (a|C(w))← wins(a,C(w)

trials(a,C(w)

17: end while
18: end function

18If two or more widgets have the same probability, we randomly select one.
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5.2.3 A Thompson Sampling Based Strategy

Our Thompson sampling approach, shown in Algorithm 2, starts analogously to the ε-Greedy

one, by initializing the (wins) and total (trials) counters and probabilities for all classes C and

action types A (line 2-5). In contrast to the ε-Greedy approach, however, the probability is a

B distribution, based on the wins and trials.

Until all resources are used, we sample the probability distribution for all elements on the

app's current screen (state) and select the best sample, that is, the one with the highest value

(lines 6-9). We then perform the action a on the widget w, obtain a reward r (line 10) and use

this reward to update the counters (trials, wins) and the probability distribution for the class

(line 11-13). The counters wins and trials for each action type and class are used to recalibrate

our probabilities after performing each action, and the β distributions encode the accumulated

knowledge.

Algorithm 2 Thompson Sampling based approach for test generation. For all UI elements on
the screen, a sample is taken from a B distribution and the UI element with best sample is
selected
1: function thompson-sampling
2: for (a, c) ∃ A · C do
3: wins(a,c), trials(a,c) ← knowledge-base(a, c)
4: P (a|C(w))← B(1+wins(a,c), 1+trials(a,c)−wins(a,c))
5: end for
6: while stop criteria not met do
7: S ← P (a|C(w))∀ w in the current screen
8: L← sample(s) | ∀ s ∃ S
9: e← max (L)
10: r ← e.w.perform(e.a)
11: wins(a,C(w)) ← wins +r
12: trials(a,C(w)) ← trials +1
13: P (a|C(w))← B(1+winsC(w), 1+trialsC(w)−winsC(w))
14: end while
15: end function

5.3 Reinforcement Learning With Previous Knowledge

When users interact with an app, they not only learn while using it but also reuse their previous

knowledge about how to use apps. Similarly, our techniques support the use of a priori knowledge

alongside reinforcement learning. Also, reinforcement learning can be used alongside previously

existing approaches to enhance previously gathered models with information about the app under

test.

5.3.1 Integrating Static Models

Our reinforcement learning techniques support the reuse of previous knowledge through the

knowledge-base function (Line 3) in Algorithm 1 and Algorithm 2.

We modeled the use of a priori data according to Algorithm 3. We obtain the probability

values for the action and class (line 2) from the a priori knowledge. We then initialize the number

63



5. Learning Widget Interactions

of wins with the value obtained from the previous knowledge, weighted by ψ, and the number

of trials as ψ. Higher ψ values give more weight to the previous knowledge and make the newly

acquired knowledge to have a smaller initial e�ect.

Algorithm 3 Knowledge-base function to reuse a priori knowledge alongside our ε-Greedy and
Thompson sampling approaches

1: function knowledge-base(action, class)
2: p← probability(action, class)
3: wins ← p× ψ
4: trials ← ψ
5: return wins, trials
6: end function

5.3.2 Extending Exploration Strategies

The principles of reinforcement learning can be applied to other test generation strategies for

more e�ective testing. To illustrate the bene�ts of using reinforcement learning on di�erent test

generation approaches, we propose an extension to the crowd-based dynamic exploration [68].

We extend the authors' original approach with our reinforcement learning model so that the test

generator can adapt to cases where the original model was not so useful.

Our extended algorithm is shown in Algorithm 4. We �rst initialize our trials and wins for all

classes C and action types A (lines 2-7) with the values from the original crowd-based model. We

then execute the exploration until a stop condition is met (Line 8). To generate each interaction,

we trigger our original stochastic select algorithm (4) while replacing the crowd-model for our

extended version (Line 10).

We then perform a on the widget w and obtain a reward r (Line 11) and update the trials

and wins counters and the class probability, according to the action result (Lines 12�14). In

this algorithm, the wins and trials counters for each action type and class allow the crowd-based

model to adapt according to the app behavior.

We implemented our approach as plug-ins for DM-2 [53]. Since Android does not provide

a unique identi�er for UI elements, we relied on DM-2 heuristics, based on their textual or

graphical content, to uniquely identify them. It then uses these UI elements as a heuristic

to uniquely identify a UI state. We reuse this metric to determine if an action was e�ective;

therefore, if the UI state before the action is di�erent from the state after, we consider that the

action was e�ective.

We extended the original set of capabilities from DM-2. In its original version, it only

performs clicks and long clicks to trigger app behavior. We included four swipe events: swipe

up, down, left, and right, for scrollable widgets � according to their Android properties.

5.4 Evaluation

Our approach aims to learn to interact with an app while testing it. We, thus, conducted a set

of experiments to measure its e�ectiveness and bene�ts. In the remainder of this section, we

present our dataset and our answers to the following research questions:
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Algorithm 4 Fitness Proportionate Selection with reinforcement learning. Starting from the
widget class probabilities from the crowd-based model and dynamically tuning these values
according to the behavior of the app under testing.

Require: n > 0
1: function fitness-proportionate-selection-with-reinforcement learning
2: for (a, c) ∃ A · C do
3: p← crowd-based-model(action, class)
4: wins ← p× ψ
5: trials ← ψ

6: P (a|C(w))← wins(a,C(w)

trials(a,C(w)

7: end for
8: while stop criteria not met do
9: S = (w,P (a|w))∀ w in the current screen
10: e← originalStochasticSelectAlgorithm(S, P )
11: r ← e.w.perform(e.a)
12: wins(a,C(w)) ← wins +r
13: trials(a,C(w)) ← trials +1

14: P (a|C(w))← wins(a,C(w)

trials(a,C(w)

15: end while
16: end function

RQ1 (Learning Without a Priori Knowledge). Can reinforcement learning be used to

more e�ectively test apps?

RQ2 (Learning With a Priori Knowledge). Is knowledge learned from the app under

test more bene�cial to testing than static models from other apps?

RQ3 (Extending Static Models). Can reinforcement learning be used to enhance static

models?

5.4.1 Experimental Setup

We reused the set of benchmark apps from [68], shown in Table 6, as well as the number of state-

ments, widgets, and events found by static analysis in their experiment. We obtained the same

app versions used in the original experiments from the Google Play Store19, the o�cial market

for Android apps, and from F-droid20, an open-source repository of Android apps. Compared

to the original work, we excluded the apps Alogblog, Jamendo, DroidWeight, Tomdroid, and

SyncMyPix, because they either no longer work on newer versions of Android or were unavail-

able for download.

5.4.2 RQ1: Learning Without A Priori Knowledge

By guiding test generation towards more e�ective UI elements, we previously demonstrated

(Chapter 4) that we could cover parts of the application faster. In this experiment, we want to

19https://play.google.com/store/apps
20https://f-droid.org
21This app crashed when being evaluated with Backstage.
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Table 6: Set of evaluation benchmark apps

App Source #Stmts Widgets Events

KeePassDroid (2.0.6.4) F-Droid 43 169 0

Munch (0.44) F-Droid 8084 387 0

BART Runner (2.2.6) F-Droid 8125 170 5

2048 (2.06) F-Droid 168 3 1

Pizza Cost (1.05-9)21 F-Droid 1240 N/A N/A

Mirrored (0.2.9) F-Droid 2475 29 0

Easy xkcd (5.3.9) F-Droid 13768 265 6

Dialer2 (2.90) F-Droid 2005 55 19

PasswordMaker (1.1.11) F-Droid 4378 177 30

World Weather (1.2.4) Play Store 4116 205 0

Der Die Das (16.04.2016) Play Store 3225 69 0

wikiHow (2.7.3) Play Store 3703 183 7

gather empirical evidence that it is possible to achieve a similar outcome without collecting data

a priori, but instead by learning how to use an app e�ectively while doing so.

With this goal, we compared our implementations of the ε-greedy and Thompson Sampling

strategies (henceforth ε-Greedy and Thompson) against Borges et al.'s crowd-based approach

(henceforth Baseline). We compared only against this implementation as it has been shown

in previous research [53, 68] to outperform DroidBot [37], Monkey [30] and the original

DroidMate on this same dataset.

We explored each of the 12 apps from our test dataset ten times on Google Pixel 2 XL

devices running Android 8.1 (API 27), and we obtained the average coverage from these tests.

We again opted for ten runs per app to mitigate the noise caused by the semi-random search and

app non-determinism. In each run, we programmed the test generator to trigger 1000 actions,

including an app restart, after every 100 actions to increase the probability of exploring di�erent

app branches. We opted for 1000 actions as it represents ≈ 20 minutes of exploration, and

more than 15 minutes have been shown not signi�cantly to increase the coverage of random

testing tools [53]. Moreover, we used the same amount of actions for both approaches since the

reinforcement learning approaches do not have a meaningful performance penalty compared to

the baseline.

5.4.2.1 Parameter calibration

Our ε-Greedy approach requires the value of ε to be determined. This value is used to determine

the strategy exploration/exploitation rate and has a signi�cant impact on its behavior. Before

our experiment, we performed a small-scale experiment to determine its value. We randomly

selected �ve apps from the test dataset and explored them 4 times for each of the following ε

values: 0.05, 0.1, 0.2, and 0.3. Based on the coverage variation, we opted for ε = 0.3. The results

of these experiments are shown in Appendix C.
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5.4.2.2 Results

The results of this experiment are shown in Figure 24. ε-Greedy performed better than the

Baseline, achieving≈18% more coverage on average. Thompson outperformed both strategies,

achieving ≈24% more coverage than the Baseline and 6% more than ε-Greedy. On a per-app

analysis, presented in Figure 25, Thompson obtains more coverage on eight apps, ε-Greedy

obtains more coverage on on,e and Baseline obtains more coverage in 3. To verify the statistical

signi�cance of our results, we performed a Friedman's test. It resulted in a p-value < 0.00001,

indicating that our results are signi�cant at 5%.
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Figure 24: Comparison of statement coverage between Baseline, ε-Greedy, and Thompson

ε-Greedy and Thompson strategies led to an average coverage increase of 18% and 24%,

respectively, when compared to a statically gathered crowd-model.

5.4.3 RQ2: Learning With A Priori Knowledge

Our previous experiment showed that reinforcement learning approaches could guide test gen-

eration towards more e�ective UI elements, leading to better test coverage. In this experiment,

we want to gather empirical evidence that information gathered through reinforcement learning

is more bene�cial to the test result than the information gathered statically and reapplied.

With this goal, we compared our implementations of the ε-greedy and Thompson sampling

strategies, started with a priori knowledge (henceforth ε-Greedy+K and Thompson+K)

against their counterparts with no starting knowledge. Similarly to RQ1, we explored each

app from our test dataset ten times � to mitigate noise � on Google Pixel 2 XL devices running

Android 8.1, and we obtained the average coverage from these tests. In each run, we con�gured
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the test generator to trigger 1000 actions, including an app restart, after every 100 actions to

increase the probability of exploring di�erent app branches. We used the UI interaction model

mined and trained by [68] as a priori knowledge, since it is representative of app behavior and,

similar to our approach, can be used on any arbitrary app.

5.4.3.1 Parameter Calibration

To use a priori knowledge alongside our reinforcement learning approaches, we need to de�ne a

weight ψ for the model. Higher values of ψ reduce the reinforcement learning e�ect and increase

the relevance of initial knowledge, and smaller values give a higher signi�cance to knowledge

gained through reinforcement learning. To determine a value for ψ, we randomly selected �ve

apps from the test dataset and explored them four times, using Thompson+K, for each of the

following ψ values: 10, 20, 50, and 100. Based on coverage obtained by these tests, we opted for

ψ = 20. The results of these experiments are shown in Appendix C.

5.4.3.2 Results

The results of our comparison between ε-Greedy, ε-Greedy+K, Thompson, andThompson+K

are shown in Figure 26. Both ε-Greedy+K and Thompson+K achieved a lower average cover-

age than their counterparts without a priori knowledge�4% and 8%, respectively. This indicates

that the knowledge obtained during the testing is more valuable than the knowledge from the

model. A priori knowledge prevented bad random seeds from achieving especially bad results dur-

ing testing, increasing the minimum overall coverage achieved. On a per-app analysis, ε-Greedy

obtains more coverage on two apps, ε-Greedy+K obtains more coverage on four apps�including

three draws against Thompson or Thompson+K. Thompson obtains more coverage on eight

apps�including two draws against ε-Greedy+K�, and Thompson+K obtains more coverage

on one app�drawing against ε-Greedy+K. To verify the statistical signi�cance of our results,

we performed a Friedman's test. It resulted in a p-value of 0.00073, indicating that our results

are signi�cant at 5%. The individual app results are shown in Appendix C.

Reinforcement learning without a priori knowledge outperformed those with a priori

knowledge by up to 8%, indicating that reinforcement learning data is more bene�cial to

testing than statically gathered data.

5.4.4 RQ3: Extending Static Models

Our previous experiment indicated that the knowledge gathered by reinforcement learning while

testing an app is more relevant to the test quality than a priori knowledge. In this experiment,

we gather empirical evidence that other test generation approaches can bene�t from the use of

reinforcement learning.

For this experiment, we extended the Baseline algorithm, allowing it to adjust its knowledge

through reinforcement learning while testing an app. We denote this extension as Baseline+K.

Similarly to the previous experiments, we explored each app from our test dataset ten times�to

mitigate noise�on Google Pixel 2 XL devices running Android 8.1, and we obtained the average
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Figure 26: Comparison of coverage between ε-Greedy, ε-Greedy+K, Thompson and
Thompson+K.

coverage from these tests. In each run, we programmed the test generator to trigger 1000 actions,

including an app restart after every 100 actions to increase the probability of exploring di�erent

app branches.

The results of our comparison between Baseline and Baseline+K are shown in Figure 27.

Baseline+K performed signi�cantly better than the Baseline� with a 20% coverage increase.

These results also indicate that knowledge obtained during the testing is more valuable than the

a priori knowledge from the model, as the Baseline does not obtain knowledge from the app

under test during testing, but Baseline+K does. On a per-app analysis, Baseline obtains

more coverage on two apps, and Baseline+K obtains more coverage on the remaining ten apps.

To verify the statistical signi�cance of our results, we performed a Friedman's test. It resulted in

a p-value of 0.02387, indicating that our results are signi�cant at 5%. The individual app results

are shown in Appendix C.

The addition of reinforcement learning to a statically mined model lead to 20% coverage

improvement.

5.4.5 Threats to Validity

Regarding external validity, we cannot ensure that our results generalize to all apps and testing

tools, due to the size of our dataset. To mitigate this threat, our benchmark apps were taken

from previous research, which sampled from a variety of sources, commercial (Google Play Store)

and open-source (F-Droid); and from a variety of di�erent categories. We used Android due to

its popularity, but the concepts presented in this paper also apply to other platforms or domains
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Figure 27: Comparison of coverage between Baseline and Baseline+K

(e.g., iOS and web applications). For further con�dence in external validity, more evaluations

on other tools and platforms are necessary.

Regarding construct validity, our approach is implemented on top of DM-2 and inherits its

limitations. Apps that do not work on DM-2 do not work on our approach. Our model and

strategy are, however, generic and could be adapted for any other tool. An additional construct

limitation is the use of random testing. Our approach comprises prioritizing test inputs, instead

of randomly interacting with them. However, it does not analyze the semantics of a UI to

input meaningful values on input �elds or perform tasks in a human-like way. Therefore, our

approaches' maximum coverage is limited by the inherent limitations of random exploration

strategies. However, our ε-Greedy and Thompson approaches could be applied alongside

any systematic or model-based testing tool to assist them in prioritizing between alternatives.

Finally, to exploit a priori knowledge, we used the UI interaction model we mined and trained

in Chapter 4; thus, this data su�ers from the same threats to construct validity we previoulsy

presented: the extracted information for the UI interaction models is incomplete because of the

inherent limitations of static analysis and the actual tool, Backstage [74], used to mine them.

Our approaches, however, do not require a priori knowledge.

Regarding internal validity, we only instrumented Java byte code to measure the coverage

and, therefore, not measured the coverage of other parts of the app code, such as web content and

native code. While there is a strong correlation between �nding faults and the code coverage of a

test suite, the use of a curated repository of bugs could provide more accurate results regarding

the techniques' e�ectiveness.

Finally, the measurement of e�ective actions (UI change) is a heuristic based on design

guidelines and usability principles. If an app does not follow these principles, the heuristic may

not hold.

71



5. Learning Widget Interactions

5.5 Limitations

Our experiments showed the bene�ts of learning or re�ning an interaction model while testing

apps. Nevertheless, our implementation and approach would not work for all apps.

Our implementation inherits all limitations from DM-2, which we previously discussed in

Section 3.7. Moreover, in our approach, similar limitations to those from the statically mined

interaction model (Section 4.4), as both approaches are conceptually similar.

In addition to these limitations, our approach is unable to determine how e�ective an action

is concerning the amount of functionality they trigger. Instead, we rely on a simple image com-

parison algorithm (subtraction) to measure the e�ectiveness of an action. While this approach is

fast to execute, it is susceptible to UI changes. If a widget moves a few pixels or has a di�erent

graphical representation when focused, we consider the action as e�ective, even if it has not trig-

gered any app behavior. One could imagine that the code triggered by an action could be a more

accurate measurement of e�ectiveness. However, such a metric would not work for components

such as checkbox and radio groups, which frequently do not directly trigger app behavior. Being

unable to determine how e�ective an action was accurate, limited how we modeled our rein-

forcement learning approach. We opted to model the MAB problem using Bernoulli multi-armed

bandits, i.e., a model with a binary reward. Determining how to quantify app functionality and

model it as a reward guide test generation remains an open research question.

5.6 Related Work

This section summarizes the most relevant works related to this research.

The closest work to the approach we presented in this chapter is iMPAcT [39], which identi-

�es the UI patterns used in each app screen and compare them to an internal catalog of patterns

to determine how to interact with the app. We, similarly, also learn how to interact with an app.

However, we do it entirely dynamically, without relying on a human-de�ned catalog of interaction

patterns. Moreover, we learn how to interact with the speci�c app that is being tested; thus, our

approach works even if the app under test requires di�erent types of interactions as other apps.

Similarly, other test generation approaches have also experimented with reinforcement learn-

ing. GUI testing with reinforcement learning [93, 94] showed that reinforcement learning could

be used for automated GUI (robustness) testing. As a reinforcement learning algorithm, they

used Q-learning [95], a popular model-free reinforcement learning technique. Esparcia et al. [96]

also used Q-learning as a meta-heuristic for action selection in their testing tool and showed that

the superiority of action selection by Q-learning could only be achieved through an adequate

choice of parameters. Koroglu et al. [83] used Q-learning for Android GUI testing to achieve

activity coverage and to detect crashes. They used o�ine Q-learning�split into a learning

phase and a testing phase: During the learning phase, their approach learns an abstract model

from multiple apps. It then uses the gained knowledge (Q-matrix) as a model to predict which

actions might lead to new activity functionality or a crash. Their approach uses a reinforcement

learning technique, but is closer to our UI interaction model (Chapter 4) than to our approach,

as both learn static models. Our approach gains and applies knowledge during testing, gener-

ating a model that is speci�c to the app under test. Finally, our approach is closely related to
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Autoblacktest [97]. It uses Q-learning to learn how to interact with each interaction type of

each UI element in the app. Instead of learning how to interact with individual app elements

app, our approach learns how to interact with classes of elements, allowing the knowledge to

be transferred between di�erent UI elements. Moreover, by using classes, we prevent a state

explosion problem: there are only a few thousand possible combinations of widget classes and

interactions in all apps. At the same time, there is a virtually in�nite combination of states, UI

elements, and interactions. Finally, by using classes of UI elements we can reuse a model learned

on one app while testing di�erent apps, similarly to how we reused our UI interaction model

from Chapter 4.

In Section 2.2, we presented existing test generation approaches, which are loosely related

to our work. Such test generators can bene�t from knowing how to interact with UI elements.

Random testing techniques, such as Monkey [30], Dynodroid [31], and DM-2 [34], create

random sequences chains of events to explore an app. Our approach can be used alongside such

test generators to guide them towards events that are more likely to a�ect the app.

Model-based testing techniques infer app models using static, dynamic, or hybrid analysis.

GUIRipper [35] andMOBIGuittar [36] create a state machine model of the app while testing

it. ORBIT [42] follows a similar approach but uses static analysis to reduce the number of

GUI elements to test. SmartDroid [43] relies only on statically generated activity and function

call graphs to identify paths that should be explored. Our approach can be used alongside

such techniques. By learning which interactions to do, approaches that build an app model

dynamically can better decide which actions to take. When they use static or hybrid analysis, our

approach can help them handle unknown states or decide between two equally good alternatives.

Systematic testing approaches employ various algorithms to test applications exhaustively or

to generate tests that trigger speci�c behaviors. For example, EvoDroid [48] and Sapienz [49]

use search-based algorithms, while ACTEve [47] and IntelliDroid [46] rely on concolic ex-

ecution, and CRASHSCOPE [52] follows a depth-�rst-search approach. For such approaches,

knowing which actions are more likely to work can be bene�cial to guide test generation or to

prioritize inputs to test.

5.7 Lessons Learned

This chapter presented the second of our approaches to learning the language of apps. More

speci�cally, it presented our approach to addressing the problem of determining how to interact

with the UI element through the use of reinforcement learning.

In this chapter, we modeled tests as an instance of the MAB problem, and we showed how

techniques used to solve the MAB problem perform when used to generate tests. We also showed

how o integrate our reinforcement learning approach with previously mined models, such as our

UI interaction models (Chapter 4). Our results showed that reinforcement learning approaches�

without previous knowledge�lead to an average code coverage improvement of 20% compared

to a statically mined model.

Further use case scenarios might include saving the knowledge obtained during exploration

in a re�ned model. Because of the �ne adjustments of the model, their e�ects are more visible

over time; thus, we expect that each new test can lead to a more e�cient one. This re�ned model
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could, for instance, test new versions of the same app, allowing for a �continuous learning and

testing� cycle. Moreover, it would also be possible to transfer re�ned models between di�erent

apps.

This work is the �rst approach to combine a crowd-based model with reinforcement learning

exploration strategies and does not, by any means, cover the whole �eld. There is still much

room for improvements and future work:

Coverage as a reward. Instead of using the action e�ectiveness of with a binary reward, one

could use coverage as a reward, thus leading towards actions that explore more code loca-

tions.

Automated parameter calibration. Our preliminary experiments also showed that the val-

ues for ε and ψ signi�cantly a�ect the exploration e�ectiveness and coverage. Our values

were, however, selected based on a manually performed optimization. More adequate pa-

rameter values can be found through an automated multivariate optimization experiment.

Learning Rate. One could also introduce a learning rate α to our approach:

trials(a,C(w)) ← α× trials+ 1

wins(a,C(w)) ← α× wins+ r

The learning rate adjusts whether the algorithm should forget previous results quicker

(α < 1) and have a downward pressure toward ignorance, or whether the algorithm should

act riskier (α > 1) and be more resistant to changing environments.

Reproducibility: To facilitate replication and extension, all our work is available as open

source. The replication package is available at:

https://github.com/uds-se/droidmate-bandits
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Chapter 6

Learning Textual Inputs

This chapter is an expanded version of our 2020 AST submission Testing Apps With Real-

World Inputs [98]. My contribution in this work is as follows: (I) original idea; (II) theoretical

foundation; (III) partial implementation; (IV) partial evaluation.

Mobile applications (apps) that take complex data as input, such as travel bookings, maps, or

online banking forms, are part of our everyday life. It does not su�ce to know which UI elements

to interact with to trigger their functionality. Instead, they require realistic and coherent test

inputs to be tested adequately.

Consider the example in Figure 28. To search online for a book, the user is required to type

an author, title, or ISBN. While it is possible to input virtually any value for author and title, the

ISBN must contain only numbers and must be 10 or 13 digits long to bypass syntactic validation.

Now consider an automated test generator being used to test this app. To explore an app's

functionality, a test generator would systematically identify the user interface elements and

interact with them. However, to �nd a book (and to explore the functionality associated with

having found a book), it must �rst either input an existing ISBN or a valid combination of

author name and book title. However, random generated author and book names, or ISBNs,

are unlikely to produce any results and, instead, fail to reach code regions located beyond input

validation checks.

Even if the test generator were able to bypass the syntax validation rules, the generated

values would rarely be semantically meaningful. Although the ISBN may be valid in itself, a

random valid ISBN still is unlikely to point to some existing book.

Currently, these scenarios are handled by using a curated set of inputs, such as dictionaries,

or by manually written values for speci�c inputs. Both approaches are laborious, expensive, and

subject to human bias, undermining two of the main bene�ts of automated testing.

The past research of Mariani et al. [14] indicated that knowledge bases could be a reliable

source of semantically coherent inputs. Their Link tool would query the DBPedia data collection

to identify data to be used in the tests. They then manually used the extracted data to generate

complex system test inputs. If a �eld required a �ZIP� code, for instance, Link would query for

�ZIP� codes from DBPedia.
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Figure 28: Book search functionality in an app. It requires syntactically and/or semantically
correct values to be tested

When Link was conceived, it targeted desktop and web applications. However, would such

an approach also work for mobile devices? Due to the limited screen size, mobile apps have

di�erent UI design patterns [38, 99], which diverge from those used on desktops, making a Link-

like approach less accurate. Nevertheless, Link's core strategy to query a knowledge base for

input values might be applicable for mobile devices too.

In this chapter, we investigate whether a Link-like approach would help to generate better

tests for Android apps, and if so, in what way. Our approach associate labels with input �elds

and extract its semantics; it then uses these concepts to consume data from a knowledge base

and inputs these values during test generation in a user-like order.

The remainder of this chapter is organized according to our contributions. After discussing

the approaches and tools used in this work (Section 6.1), we present a set of metrics that

e�ectively associate descriptive elements with input �elds, tailored to Android-speci�c design

guidelines, and thus extend Link for use in mobile test generation (Section 6.2).

We then evaluate our approach (Section 6.3). Our result shows that concepts can be associated

with input �elds with 87% precision. They also show that about three out of four queries to the

knowledge base returned valid results, 94% of which were semantically valid, leading to an average

improvement of 10% in statement coverage compared to random tests.

After discussing limitations (Section 6.4) as well as related work (Section 6.5), Section 6.6

prescribes future work and concludes our paper.
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6.1 Background: Exploiting the Web of Data to Generate

Inputs

Mariani et al. [14] proposed Link to query input values from a knowledge base. Their work

exploited the metrics based on the Gestalt principles [100] of how humans perceive objects and

patterns to associate descriptor labels to input �elds. In this section, we describe the underlying

principles or their approach, which we adapted to the peculiarities of mobile apps.

6.1.1 Associating Descriptor Labels to Input Fields

Link relied on the Gestalt principles of visual perception to associate descriptor labels with

input �elds on desktop GUIs. It used the metrics of Proximity, Homogeneity, and Closure, as

implemented by Becce et al. [101]. These metrics work as follows:

Proximity Humans associate elements which are close to each other. Besides, app UIs are

developed to be explored from left to right and top to bottom. Therefore, this metric

dictates that descriptive labels must be located on the left or top of an input �eld.

Homogeneity Elements should be distributed according to their semantics. On UI design, the

regular distribution of UI elements is mostly done through their alignment. This metric

dictates that a label should be either vertically or horizontally aligned to the input �eld.

Closure Semantically correlated elements should be grouped for easier comprehension. There-

fore, this metric dictates that semantically correlated UI elements should be placed in the

same container.

6.1.2 Querying Knowledge Bases

Linked Data [102, 103] is a type of knowledge base which describes how to de�ne and publish

machine-readable typed links between arbitrary items on the Web so that it is interlinked and

accessible through semantic queries. It is used extensively in di�erent topical domains, including

Media, Government, and Publications [104]. It builds upon standard Web technologies such

as HTTP, Resource Description Framework (RDF), and Uniform Resource Identi�ers (URIs).

Links are represented with the RDF language, and URIs [105] identify the items. For example,

the URI http://dbpedia .org/resource/London identi�es the city of London, while the URI

http:// dbpedia.org/resource/Bird identi�es the animal category �Bird�.

Link exploited this structure to query for complex input values, based on the UI semantics

while maintaining the semantic coherence between the inputs. It �rst queries DBPedia [106]

classes and predicates for resource URIs whose name match those obtained in the label matching

step. Link uses WordNet to search for synonyms when it cannot �nd any class or predicate with

the exact word queried.

It then associates the discovered elements by systematically querying for resources that occur

as the subject of both elements. If a resource exists, the elements are merged into a single

query. Otherwise, they are kept disjoint. Finally, Link queries DBPedia for resources to obtain

resources.
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6.2 Method

We propose an approach with four steps, namely: description matching, concept extraction, input

value acquisition and input value consumption, as illustrated in Figure 29.

Label 
Matching

Concept 
Extraction

Input Value 
Acquisition

Input Value 
Consumption

Labels Concepts Inputs

UI actions

Figure 29: Approach overview diagram. Associate input �elds and labels elements, extract the
label's concepts and query for input values. Finally, use queried values to �ll input �elds during
testing

Given a UI state, we start by identifying and matching descriptive labels with input �elds,

using a modi�ed version of Becce's metrics adapted to mobile apps. We then use natural language

processing (NLP) techniques [107] to extract the concept associated with the label. We use the

extracted concepts, instead of the original labels, to query knowledge bases for input values.

Finally, we �ll all input elements with the queried values and randomly interact with the non-

input elements.

6.2.1 Matching Labels

To match descriptor labels with input �elds, we extend Becce's metrics to support mobile apps.

We reuse their metrics of Proximity, Homogeneity, and Closure on the AndroidWindow Hierarchy

dump [108], which is similar to the DOM structure used in Becce's original work.

Becce's metrics are based on the idea that descriptor labels and input �elds are distinct

elements. This approach works on web and desktop apps because the hint text is frequently

used to exemplify or assist the user in �lling the input �eld, not to describe its meaning. This

does not hold to mobile apps. Due to limited screen size, mobile apps frequently reuse the input

element for descriptive proposes, through its hint text, as shown in Figure 30.

We thus add an Enclosure metric, which combines the Gestalt principles of proximity and

closure. Our metric is de�ned as follow:

Enclosure Input �elds can describe themselves to mitigate UI space requirements. Therefore,

a UI element describes the other if it is contained within the other.

With this new metric, we produced an algorithm, shown in Algorithm 5, to match a label

with an input �eld on mobile apps. In principle, our matching algorithm is a map function

match(�eld, state) → concept, which receives an input �eld and a UI state and returns a

concept. For our abstraction, we consider as a UI state the set of all UI elements on an app

screen.
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Figure 30: Self-explanatory input �elds. Due to limited space, Android apps frequently use the
hint text property to describe the input �eld

Algorithm 5 Matching of an input �eld to a concept

1: function match(�eld, state)→ concept
2: if (�eld, state) /∈ memory then
3: if hasText(�eld) and hasNoun(�eld) then
4: label ← �eld . Enclosure
5: else
6: label ← becce(�eld, state) . Proxim., Homogen., and Closure
7: end if
8: result ← concept(best)
9: memory ←

(
(�eld, state), label

)
10: else
11: result ← memory(�eld, state)
12: end if
13: return result
14: end function

Our algorithm starts by checking if the input �eld to be matched has not already been

processed (line 2). This check is necessary because our enclosure metric uses the hint text as

a descriptor. Android does not know if an input �eld has been �lled or not; that is, it does

not di�erentiate between the hint text and a typed value on an input �eld. Moreover, it is no

longer possible to determine the original label of an input �eld once it is �lled. We thus create a

memory with all previously encountered input �elds, alongside their matched labels. This allows
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us to reuse the original label description in case the �eld gets �lled in the future.

If the input �eld is in the memory, we simply return the previously mapped concept (line

11). Otherwise, if the input �eld is processed for the �rst time, we match it to a concept. We

�rst attempt to match it with our enclosure metric. If the input �eld has a text and this text

contains a noun (line 3), we de�ne this text as its label (line 4). We consider only labels that

contain a noun as candidates descriptors because nouns are used to de�ne objects. Otherwise, we

apply Becce's original metrics (line 6) to search for the most relevant label descriptor. Finally,

we extract the label's concept, according to Section 6.2.2, and add it to our cache, preventing

the input �eld from being mapped again (line 8-9).

6.2.2 Extracting Concepts

Since we match input �elds to both external widgets, as well as hint texts, a label can contain

information such as City or Name (required) as previously shown in Figure 30, or more complex

information such as Enter your username or Type a location. As a consequence, we must pre-

process the label to extract a concept from it. Our approach is shown in Algorithm 6.

Algorithm 6 Extracting the concept of a label

1: function concepts(label)→ concept
2: tagged ← part-of-speech(label)
3: for candidate in nouns(tagged) do
4: lemma ← lemmatization(candidate)
5: value ← link(lemma)
6: if |value| = 0 then
7: synonyms ← synonyms(lemma)
8: for synonym in synonyms do
9: value ← link(synonym)
10: if |value| > 0 then
11: return value
12: end if
13: end for
14: else
15: return value
16: end if
17: end for
18: return ∅
19: end function

We employ natural language processing (NLP) techniques [107] to extract the concept of a

label. First, we use part-of-speech tagging [109] to identify all nouns of a label (line 2). We then

take the �rst noun as the candidate concept (line 3). We use lemmatization [110] to reduce this

noun to its in�ectional form and query the available classes and predicates of the knowledge base

using this lemma (lines 4-5). If the lemma is found in the knowledge base (line 6), we use it as the

label's concept. Otherwise, we search for synonyms in a dictionary (line 7) and systematically

query the knowledge base for each synonym, until a result is found in the knowledge base or

there are no synonyms left (lines 8-13). If we found a result for any synonym, we return the
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result as the label's concept (line 11). If we did not, we proceed to the next noun (line 3). If we

do not �nd any result for any of the nouns, we return an empty label (line 18).

6.2.3 Obtaining Input Values

We leverage Link to obtain semantically aware input values to use during testing once we

extracted all input �elds and their concepts. Link consumes our concepts and uses the knowledge

base to identify the largest subset of interconnected concepts. By identifying elements which are

interconnected, it ensures the semantic coherence of part of the inputs.

Consider our motivating example. Link can associate the concepts: author, title and ISBN

and query for semantically coherent values, such as (Sun Tzu, The Art of War, 9781590302255).

It is not, however, able to associate the term publisher with them. We overcome this limitation

by recursively using Link, until all concepts which exist in the knowledge base produce input

values, either interrelated to other concepts or independently. We summarize our approach to

query a knowledge base for input values in Algorithm 7.

Algorithm 7 Querying a knowledge base for candidate input values for a set of concepts

1: function query(concepts)→ input values
2: largest-set ← link-associate(concepts)
3: values ← link(largest-set)
4: if | (concepts \ largest-set) | > 0 then
5: values ← query(concepts \ largest-set) . Recursion
6: end if
7: return values
8: end function

Our approach starts with a set of concepts to query, and it recursively queries the knowledge

base until all concepts have been used. It �rst uses Link's concept association feature to obtain

the largest set of interrelated concepts (line 2) and invokes Link to obtain input values for these

concepts (line 3). If there are remaining concepts to query, it recursively invokes itself, passing

only the remaining concepts (lines 4-6). Finally, it returns the list of queried input values (line

7).

6.2.4 Consuming Input Values

Users expect app functionality to be triggered when interacting with speci�c types of UI ele-

ments [80]. They expect apps to trigger some functionality when they press a button or click on

an image. They seldom expect anything but input validation to happen when they enter data on

an input �eld. Moreover, app UIs are designed to guide the user towards speci�c �ows, making

the app intuitive. For example, users �ll out forms sequentially, with apps guiding them to the

next �eld after entering a value. Under these premises, we intuitively split the UI elements into

two categories: input and non-input �elds.

To test an app UI, we then �rst enter values in all input �elds for which we successfully

queried an input value. We �ll the input �elds from top to bottom and left to right to emulate

the behavior of a user. Once we have �lled all possible input �elds, we randomly interact with

the remaining UI elements to access functionality.
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6.3 Evaluation

In this chapter, we presented our approach to obtain real-world input values for testing au-

tomatically. This section aims to gather empirical evidence that such inputs can be obtained

automatically and lead to better tests. More speci�cally, we aim to answer the following research

questions:

RQ1 (Associating and Extracting Concepts) Can semantic concepts be accurately as-

sociated with input �elds?

RQ2 (Obtaining Input Values) Can syntactically valid and semantically coherent tex-

tual inputs values be extracted from a knowledge base automatically?

RQ3 (Consuming Input Values) Do textual inputs, automatically extracted from a knowl-

edge base, improve test generation?

6.3.1 Experimental Setup

To evaluate our approach, we implemented Saigen (Semantic Aware Input Generator) as a

DM-2 [53] plug-in. To identify the UI states and elements on the app, we relied on DM-2's

uniqueness measurement, which allows the same UI element to be re-identi�ed between di�er-

ent states. Moreover, for our experiments, we consider as input �elds only UI elements of class

android.widget.TextView, Android's native input �eld. We used as a knowledge base DBPe-

dia [106]�a structured source of information gathered from Wikipedia�and we used WordNet

as a synonym dictionary.

For this evaluation, we could not reuse all apps from the previous evaluations (Chapters 3

to 5), as they do not contain input �elds. Therefore, we previewed 120 Android apps on Google

Play Store and F-Droid from June to July 2018. We then �ltered out those apps with less than

10,000 downloads and remained with 85 apps. We explored these 85 apps using DM-2's random

strategy for 500 actions and �ltered out those in which the exploration did not reach any native

Android text �eld. We used 500 actions as a limit as previous work [53] showed only a marginal

discovery of new functionality after this point. After these �ltering steps, our dataset contained

26 apps across di�erent domains, including travel, music, tools, books, games, business, and cars.

These apps (henceforth test set) and their information are shown in Table 7.

Finally, we executed all experiments on a set of Google Nexus 5X and Google Pixel XL

devices, running Android 7.1.2. To prevent device-dependent behavior, all tests for the same

app were executed on the same device.

6.3.2 RQ1: Associating and Extracting Concepts

Our �rst research question aims to measure the accuracy of our label matching and concept

extraction approaches, as they have a high impact on our remaining studies. With this goal,

we re-executed DM-2's default exploration strategy for 500 actions on all 20 apps from the test
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Table 7: Selected Applications for the experiment (M for Millions)

Name Domain Downloads

Trip.com Travel 1M+
Booking.com Travel 100M+
Agoda Travel 10M+
Book Catalogue Books 100,000+
Yelp Travel 10M+
Kayak Travel 10M+
Arnab Tools 100,000+
Youtube Music Music 50M+
Lonely Planet Guides Travel 500,000+
TripAdvisor Travel 100M+
Airbnb Travel 10M+
Expedia Travel 10M+
My Books - Library Books 50,000+
CLZ Games Games 10,000+
Nader Tools 50,000+
Rakesh Tools 10,000+
Careerjet Job Search Business 1M+
All Job Search Business 50,000+
AnyCar Cars 1M+
Jamendo Music 100,000+
Cirtru Lifestyle 10,000+
Carlo Autos 10,000+
arXiv eXplorer Books 10,000+
Hyderabad Jobs Business 10,000+
WorkAbroad Interactive Business 10,000+
Everycar Lifestyle 10,000+

set while recording (screenshot) all input �elds found and their matched label descriptors22. We

then manually classi�ed each input �eld found according to the following rules:

� True Positive (TP) if the label matches the correct input �eld;

� False Positive (FP) if the label does not match the correct input �eld, and there is a

textual label for this input �eld on the screen.

� True Negative (TN) if the input �eld was not matched to any label, and there was no

textual label matching label on the screen;

� False Negative (FN) if the input �eld was not matched to any label, however, there was

a valid textual label for it on the screen.

We applied the rules according to the point of view of a human, accounting for a limitation

of our implementation: we do not associate input �elds with images. While it is still possible for

a human to extract concepts from images, our implementation works only with textual contents.

Therefore, if our approach was unable to match an input �eld because an image instead of a

22We ignored �elds with the following concepts: username, password, and email, as they are intentionally not
available on the knowledge base.
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6. Learning Textual Inputs

text identi�ed it, we classi�ed this as a true negative. Our reasoning for this choice is that the

algorithm did not incorrectly associate the input �eld with an incorrect label.

We, however, consider as false-negative, situations where our approach could not �nd a

textual label for an input �eld because it did not contain any noun, such as Flying to or Where

to? While our approach disregards labels without nouns, it is intuitive for a human to associate

Flying to to the destination of a �ight.

Since the evaluation was manual and thus subject to human bias, we performed three inde-

pendent evaluations for each �eld-label pair and selected as the �nal result the one with more

votes.

Our �ndings are shown in Table 8 and summarized in Table 9. Our experiment identi�ed

322 unique input widgets, of which 247 were matched (≈ 75%). Overall, our matching algorithm

achieved 87% precision and 94% recall, with 86% accuracy. These input �elds represented 1.2%

of the total number of unique UI elements found during the tests, which is in line with previous

research [111] that demonstrated that less than 3% of the UI elements on apps are input �elds.

The per-app breakdown of our results shows that most apps yielded high true-positive and

true-negative values. Our manual evaluation of the false positives showed that some apps used

noun-less labels, such as Where to?, to identify the content of an input �eld, as shown in Fig-

ure 31a. Other false positives happened when hints were used to exemplify inputs, as shown in

Figure 31b. Both false-positive examples highlight the limitations of our approach.

SAIGEN matched 75% of the input �elds with 87% precision.

6.3.3 RQ2: Obtaining Inputs

Our second research question's goal is to assess the quality of querying a knowledge base for

input values. We explored the apps in our test set using DM-2's default exploration strategy

for 500 actions with this goal. During the exploration, we recorded the input values obtained for

each input �eld matched from the RQ1.

We then manually assessed the syntactic and semantic quality of the inputs we obtained from

the knowledge base. We considered input as syntactically valid if it has passed all app input

validation checks (no validation errors triggered).

We considered it as semantically valid if it matches the label associated with the input �eld.

Similar to the previous research question, we analyzed our results from a human perspective and

performed three independent analyses to mitigate the inherent bias of manual evaluations. We

randomly chose twelve apps from our test set for this evaluation due to the signi�cant manual

e�ort involved in analyzing each input value queried from the knowledge base.

Table 10 shows the number of unique labels found on each app, as well as the number of

unique labels that were successfully queried. Using DBPedia, we were able to �nd an input for,

on average, 48% of the labels found at least once during testing, with the worst app (Trip.com)

�nding only 23%. Note that the total number of labels is less or equal to the number of text

�elds found in the app (Table 8). This happens because the same label can be reused on di�erent

input �elds.
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6. Learning Textual Inputs

Table 9: Unique label descriptor to input �elds matching

Classi�ed as
Input True False Total Precision = 87%

True TP = 216 FN = 13 229 Recall = 94%

False FP = 31 TN = 56 87 Accuracy = 86%

Total 247 69 316 Speci�city = 64%

(a) Label without noun (b) Noun which is not a concept

Figure 31: App functionality which requires syntactically and/or semantically correct values to
bypass validations

Regarding the number of queries and the quality of the results, our results are shown in Ta-

ble 11. We executed 479 queries for the 204 unique input �elds matched (Table 8). This number

is higher than the overall number of unique input �elds because the same �elds can be used in

di�erent queries. Considering our initial example, the concepts Author, Title, and ISBN are used

together on the example screen, as well as alongside the label Date (from date published) on a

di�erent screen, resulting in two di�erent queries. The knowledge base was able to return input

values for 397 out of our 479 queries (≈ 83%), of which we classi�ed 390 values as syntactically

correct (≈ 98%) and 375 as semantically coherent (≈ 94%).

83% of Saigen's queries were able to �nd a result in the knowledge base. 98% of the

results were syntactically valid, and 94% of them were semantically valid.
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Table 10: Per app breakdown of unique labels and number of labels found on the knowledge base

Name Unique Found Ratio

Trip.com 13 3 23%
Booking.com 3 2 67%
Agoda 1 1 100%
Book Catalogue 24 13 54%
Yelp 4 2 50%
Kayak 4 2 50%
Arnab 8 7 88%
Youtube Music 2 1 50%
Lonely Planet Guides 6 2 33%
TripAdvisor 9 4 44%
Airbnb 7 6 86%
Expedia 20 8 40%
Cirtru 5 3 60%
Carlo 3 1 33%
arXiv eXplorer 3 1 33%
Hyderabad Jobs 8 3 37%
WorkAbroad Interactive 9 4 44%
Everycar 8 3 37%

Total 137 66

6.3.4 RQ3: Consuming Input Values

The goal of our �nal research question is to measure if automatically extracted textual inputs

improve Android testing. Moreover, it aims to measure the bene�ts of orderly interacting with

the app UI. In this work, we used code coverage as an indication of the test quality, as previous

researches [61] has shown it to be a good predictor. We obtained the code coverage from DM-2's

native code instrumentation metrics.

After instrumentation, many apps in our test set could no longer be used. This issue arises

because many popular apps have safety veri�cations in place, such as certi�cate checks, which

render the app unusable once instrumented. In the end, 11 out of our 20 apps could be instru-

mented with DM-2, namely: My Books Library, Rakesh, Kayak, Arnab, Book Catalog, Cirtru,

Carlo, arXiv eXplorer, Hyderabad Jobs, WorkAbroad Interactive, and Everycar.

For this experiment, we explored each app 11 times in each of the con�gurations described in

Table 12, to mitigate noise caused by the seed selection and by app non-determinism, resulting

in 20 executions per app. In each test of each app, we executed 500 actions (≈ 30min), as

previous researches [53, 68, 82] showed this to be enough to reach over 95% of the maximum

test coverage. We compared the explorations by the number of actions because the overhead of

querying DBPedia can be signi�cantly reduced by hosting it locally for testing.

The results of our experiments are summarized in Figure 32. The random exploration with

random textual inputs (Scenario 1) achieved an average statement coverage of 38%, with a

minimum of 4% and a maximum of 74%. Scenario 2, which replaces random inputs for Saigen

generated inputs but still retains DM-2's random exploration strategy, achieved an average

coverage of 45%, with a minimum of 7% and a maximum of 74%. These results indicate that

syntactically valid and semantic coherent inputs are bene�cial to the tests, with an average
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6.3. Evaluation

Table 12: Coverage test scenarios

# Textual Input generation Widget Selection

1 Random Random
2 Saigen Random
3 Random Sorted
4 Saigen Sorted

increase of 7%.

Figure 32: Coverage (%) per experimental scenario

Using randomly generated textual inputs, alongside our sorted exploration order (Scenario 3),

achieved an average coverage of 41%, with a minimum of 10% and a maximum of 74%. These

numbers are marginal improvements over DM-2's random strategy concerning average coverage

(3%) but are a signi�cant increase in the minimum test coverage by 6%. Compared against

Scenario 2, random inputs with a sorted widgets interaction achieve, on average, 4% less coverage;

however, it still increases the minimum test coverage by 3%. These results indicate that orderly

interacting with widgets after �lling out the text �elds a�ects the test coverage. However, it also

shows that the value entered on the input �eld is more important than the interaction order.

Finally, in Scenario 4, when combining the sorted exploration order with Saigen, we achieve

an average statement coverage of 48%, with a minimum of 11% and a maximum of 75%. These

results again show the bene�ts of using valid input values, outperforming all our previous test

scenarios. When compared to random input values and interaction order, Scenario 4 achieves,

on average, 10% more coverage, with a 7% increase in the minimum coverage. Compared to

Scenario 2 (Saigen inputs and random interaction order), the minimum coverage obtained is

increased by 4%, and the average coverage is increased by 3%.

To ensure the statistical signi�cance of our results, we performed a Friedman Test, which

resulted in a p-value < 0.00001, meaning that the results are signi�cant at 1%.

Filling input �elds with Saigen generated values before interacting with other widgets

improve code coverage by an average of 10%.
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6.3.5 Threats to validity

Regarding external validity, our experiments have demonstrated evidence that the Saigen gen-

erated textual input values can signi�cantly improve the test coverage with a set of benchmark

apps. However, we cannot ensure that the results generalize to all apps and testing tools. We

selected apps from di�erent sizes and categories to mitigate this threat. Additionally, we added

Saigen to random test generation approaches; thus, our results are limited by their constraints,

such as their inherent inability to perform complex tasks. Saigen, however, can be used along-

side any test generation approach to �ll input �elds automatically.

Regarding construct validity, in the process of extracting a concept from a label, we use a

dictionary to identify synonyms for concepts that are not in the knowledge base. We observed

that the synonyms acquired from the dictionary are sometimes not �exible enough for our use.

Our approach is, however, abstract concerning how to obtain synonyms. Additionally, a notable

limitation to our work includes the inability of Link to generate queries when multiple words are

used as a query input for the knowledge base. As it stands, the approach requires a single word

to be used as a query input for each concept. This can be problematic when the concepts that

Saigen extract from the label descriptor contains more than one word per concept or contains

multiple concepts. This limitation causes the loss of semantics and may result in the returned

values being inaccurate, as explored in [112].

Regarding internal validity, we opted for DM-2's native bytecode instrumentation to acquire

statement coverage, being able to test our approach with both open source and commercial

apps. Our tests showed that some apps have failsafe mechanisms, such as certi�cate checks, to

prevent app repackaging. A more accurate coverage measurement can be obtained by using the

app source code instead of its bytecode and by measuring coverage on native and JavaScript

components.

6.4 Limitations

Our experiments showed that using real-world values for input �elds leads to improved test

coverage. Nevertheless, our implementation and approach do not work for all apps. Our im-

plementation inherits the limitations of DM-2, which we previously discussed in Section 3.7.

Additionally, our approach is limited concerning its use of semantics. As we showed in Sec-

tion 6.3.2, our approach does not consider the semantics of the app under test or those of the

whole UI when obtaining input �elds. While a human can, for example, associate a label From

in a travel app with a location, our approach does not. The extraction of semantics on apps and

UIs is an ongoing research topic [113, 114, 115].

Another limitation of our approach is image semantics. We currently consider only textual

semantics expressed by nouns. However, some apps use icons instead of text for better usability.

These apps will not work with our approach. These are the same limitations we encountered

and discussed in Section 4.4.
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6.5 Related Work

This section summarizes the most relevant works related to this research.

Closest to the approach we presented in this chapter is LINK [14], which we extended. LINK

exploits semantic data available on the web to obtain complex values for input �elds. In this

work, we reused LINK's core concepts, while adapting it to the particularities of Android testing.

Another closely related approach is presented in McMinn et al. [116], where the authors query a

search engine using labels from a UI to obtain input values. Our approach also uses information

from the web. While using a search engine leads to more possible results than querying a

knowledge base, knowledge bases can be hosted locally, making the overhead of searching an

input value negligible. Moreover, since the entries on a knowledge base contain associations, it

is possible to query for multiple, semantically correlated values at once, such as requesting a zip

code, name of a city and a country to �ll a registration form.

This chapter is also loosely related to the existing test generation approaches we previously

presented in Section 2.2. Such test generators can bene�t from knowing which input values to

�ll. Random testing techniques, such as Monkey [30], Dynodroid [31], and DM-2 [34], create

random sequences chains of events to explore an app. This includes random strings to input on

text �elds. Our approach can be used alongside such test generators to input meaningful values

instead of random strings, enabling them to bypass some input validations.

Model-based testing techniques infer app models using static, dynamic, or hybrid analysis.

GUIRipper [35] andMOBIGuittar [36] create a state machine model of the app while testing

it. ORBIT [42] follows a similar approach but uses static analysis to reduce the number of GUI

elements to test. SmartDroid [43] relies only on statically generated activity and function call

graphs to identify paths that should be explored. Our approach can be used alongside such

techniques. By learning which input values should be entered on an input �eld, techniques that

dynamically extract the model can cover more code coverage in the app. Similarly, techniques

that rely on static analysis to build the app model also bene�t from such approach, as input

validation frequently occurs externally�by checking the result of a web service or database query,

for example�and cannot be statically extracted.

Systematic testing approaches employ various algorithms to test applications exhaustively

or generate tests that trigger speci�c behaviors. Tools which use search-based algorithms Evo-

Droid [48] and Sapienz [49] can use meaningful and random input values to generate a more

diverse set of inputs. Approaches that follow a prede�ned exploration order, such as CRASH-

SCOPE [52], can also bypass input validation rules when entering meaningful input values.

Finally, approaches that rely on concolic testing or symbolic execution [47, 46] also bene�t from

inputting meaningful values during testing, as some input validation rules are external to the

app and cannot be determined.

6.6 Lessons Learned

This chapter closes the Part II of this thesis, Learning the Language of Apps. More speci�cally,

it presented an approach to address the problem of determining which input values should be

typed by automatically obtaining real-world inputs from a knowledge base.
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It presented how to extract the concepts associated with input �elds on Android and how

to use them to search a knowledge base for input values, which can be used during testing.

Our results showed that even on mobile devices, it is possible to correctly identify over 95% of

the labels associated with input �elds; and that entering these values on the forms from a user

perspective led to an average coverage improvement of 10%.

While our experiments were conducted in DM-2, our approach is not tied to any speci�c test

generator or strategy and can be used alongside other tools. Our approach builds upon previous

research for desktop and web applications, adapting it towards Android peculiarities. There is

still much room for improvements and future work:

Non-Textual UI Semantics. Our label matching approach attempts to identify a textual el-

ement to be paired to an input �eld. Due to size constraints, developers frequently use

non-textual objects, such as images, to describe input �elds. Extracting UI semantics from

non-textual elements on the GUI can allow for more accurate matching of input �elds and

labels.

Enhanced Concept Extraction. The concept extraction algorithm uses standard natural lan-

guage processing techniques, such as part-of-speech tagging and lemmatization. It can

bene�t from more advanced textual concept extraction approaches that derive a context

from the textual content. A brief survey of such techniques is presented in [117].

Enhanced Exploration Strategies. We explored the use of semantically aware inputs along-

side a random test generation approach. The same approach can be used with model-based

or explorative strategies to trigger more complex app functionality.

Reproducibility: To facilitate replication and extension, all our work is available as open

source. The replication package is available at:

https://github.com/uds-se/droidmate-saigen
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Chapter 7

Testing With User Interface Grammars

This chapter is taken, directly or with minor modi�cations, from our submission Testing

With User Interface Grammars which is currently under review at ACM Transactions on

Software Engineering and Methodology (TOSEM) with number TOSEM-2020-0062 [118].

My contribution in this work is as follows: (I) original idea; (II) partial implementation;

(III) evaluation.

Graphical user interfaces integrate graphical interactions such as mouse clicks with textual in-

teractions such as form entries. To produce inputs to explore functionality behind a GUI, one

must know multiple languages:

� The language of graphical inputs (i.e., sequences of touch events such as clicks and swipes)

comes as �nite-state automaton denoting which interactions lead to which states;

� The languages of textual inputs (e.g., string inputs into a form) come as formally de�ned

languages (regular expressions, grammars) denoting legal sequences of characters.

In the previous part of this thesis, we presented techniques to learn each of these input

languages. The problem is that these two formalisms so far are separate. Consider an application

with a simple screen where one can enter an email address and password, for example, Figure 33.

A �nite-state model for this app (Figure 34) would consist of a sequence of states, whose �rst

two would be reached by entering textual input (�Type�) and the last one by subsequent clicking

(�Click�) on a button.

Properly testing the functionality behind the UI modeled in Figure 34, of course, would

include testing whether it works for valid and invalid passwords as well as legal and illegal email

addresses.23 However, a �nite-state model, as in Figure 34, does not capture the textual languages

of password and email. For password, one could provide a regular expression, which in turn could

be converted into its own �nite-state machine and thus integrated into Figure 34. For email,

however, there is no such possibility, as the language of email addresses is de�ned as a context-free

language [119] and needs a grammar for adequate representation. Nevertheless, if one wanted

23This is a real problem. Many websites erroneously do not accept emails with long top-level domains such as
.education, .international and .industries.
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Figure 33: Simple sign in screen

s1start s2

Type(Email)

Type(Password)

Click(Sign In)

Figure 34: Finite-state automaton for the simple sign in screen

to test whether any of the �elds are vulnerable to overly long inputs, SQL injection, or similar

stress tests, a �nite-state (sub)model representing these inputs quickly becomes unmaintainable.

In a recent textbook [120], Zeller et al. observed and demonstrated that states, user inter-

actions, and textual inputs could be integrated into a single formalism that allows for uniform

assessment and production of test cases. The key idea is to use a context-free grammar as a

single representation of all inputs, in which we encode graphical user interactions as sequences

of symbols, and we embed the �nite-state automaton modeling the transitions between states.

We can use such grammars as producers of interaction sequences that integrate graphical and

textual interactions.

Figure 35 shows the excerpt of a grammar integrating the �nite-state model from Figure 34

with textual rules for email addresses and passwords. Such grammar models interactions as

sequences of individual actions (in our example, Type() and Click()), which in turn can take

textual arguments denoting UI elements and texts to be entered. The action Type(Password,
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〈start〉 ::= 〈s1〉 (1)

〈s1〉 ::= Type(Email, 〈email〉) 〈s1〉 | (2)

Type(Password, 〈pass〉)〈s1〉 | (3)

Click(Sign In)〈s2〉 | ε (4)

〈s2〉 ::= ε (5)

〈pass〉 ::= 〈valid-pass〉 | 〈invalid-pass〉 | 〈malicious〉 (6)

〈valid-pass〉 ::= 〈char〉〈valid-pass〉 | 〈number〉〈valid-pass〉 | ε (7)

〈invalid-pass〉 ::= 〈valid-pass〉〈symbol〉 | ε (8)

〈email〉 ::= 〈valid-email〉 | 〈invalid-email〉 (9)

〈valid-email〉 ::= 〈local-part〉@〈domain〉 (10)

〈invalid-email〉 ::= 〈local-part〉@ |@〈domain〉 (11)

〈local-part〉 ::= 〈dot-atom〉/〈quoted-string〉/〈obs-local-part〉 (12)

〈malicious〉 ::= 〈valid-pass〉� OR �1� = �1 (13)

. . . (14)

Figure 35: Excerpt of grammar modeling UI transitions and textual production rules

〈pass〉), for instance, means to type a text into the password �eld�a text whose structure is

given by the grammar rule for 〈pass〉.
Such an integrated representation for producing UI interactions has several advantages. It

allows users to control what to test and how to test; and to uniformly apply concepts of grammar-

based testing across both GUI interaction and textual input. For example:

1. Testers can edit the production rules 〈valid-pass〉 (lines 6 and 7) and 〈valid-email〉 (lines
9 and 10) to test the app with valid emails and passwords�creating a sequence such as

Type(Email, �e@mail.com�), and Type(Password, �abc123�), Click(Sign In).

2. Testers can also extend the production rule 〈malicious〉 (lines 6 and 13) to test if the app

behaves correctly with intentionally malicious passwords, such as abd� OR �1� = �1, or

use the production rule 〈invalid-email〉 (lines 9 and 11) to check if the app rejects invalid

emails, such as invalid@.

3. Testers pro�t from other features of grammar testing, such as assigning probabilities to

individual rules, thus ensuring during production that speci�c sequences are tested more

thoroughly than others [121]. Such probabilities are common features of grammar testing;

no speci�c adaptation is required.

4. Another feature of grammar testing that users pro�t from is: producers can ensure coverage

of all grammar rules. In our model, such a producer would cover not only all states and tran-

sitions, but also all variants in the textual inputs (say, 〈valid-email〉 and 〈invalid-email〉),
and combinations thereof. Again, achieving such coverage is already a feature of grammar

testing tools [122]; no specialization for UI testing is required.
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It is worth noting that these bene�ts do not come from some speci�c tool or its implemen-

tation, but rather from the model itself. Embedding a �nite-state automaton into a grammar

preserves all its original features (it can also be extracted as such again), just like the grammar

easily captures all lexical and syntactic properties of textual inputs. But can we also extract such

complex models from existing applications? And can we successfully test using such models?

In this work, we build on the concept of UI grammars to explore how to mine UI grammars

and test with UI grammars on real-world applications, using the Android mobile platform as an

example domain. After introducing how to apply UI grammars on the Android user interface

(Section 7.1), we make the following contributions:

Mining UI Grammars. Given an app with a graphical user interface, we automatically mine

UI grammars from system tests, which can be either manually written or automatically

generated (Section 7.2). In our experiments, we tested 46 open-source Android apps au-

tomatically, and we successfully mined UI grammars from all test cases. Moreover, we

measured the accuracy of our grammar by using it to produce new tests that execute spe-

ci�c interactions from the original tests. 82% of these test cases successfully reach their

target.

Generating Tests from UI Grammars. We show how established grammar fuzzing tech-

niques can be applied to the mined UI grammars (Section 7.3). Our experiments show

that grammar-generated inputs cover the UI and code more e�ciently than the test case

from which it was mined. Compared to the original test case, inputs generated by a UI

grammar need only 23% of the events to reach 80% of the UI events and 83% of the lines

of code.

Associating Grammar Elements with Covered Code. We associate the lines of code reached

by each UI element with each grammar production, allowing grammar fuzzing techniques

to not only target previously reached UI events but to target the previously reached lines of

code (Section 7.4). Moreover, we exploit this association between UI grammar and reached

lines of code to guide test generation towards speci�c functionality�for instance, those

impacted by a code change during regression testing�producing multiple inputs that e�-

ciently trigger speci�c lines of code. During our experiments, 70.5% of the inputs generated

by a mined code grammar can reach their target line of code. Moreover, they need only

11% of the events to reach 79% of the lines of code, when compared to the original test

case.

After discussing limitations (Section 7.6) as well as related work (Section 7.7), we present

our conclusions (Section 7.8).

7.1 User Interface Grammars

The graphical user interface (UI) of an Android app is composed of graphical and structuring

elements, commonly referred to as widgets, which are grouped in activities or fragments (states),

and displayed. A user interacts with an app through UI-events, such as a click or a swipe, which

are handled by the UI state or one of its widgets.
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Interacting with an Android app can thus be modeled as producing and applying valid se-

quences of events. On an abstract level, widgets and UI states describe the app's input language;

that is, they determine the set of valid sequences of input events. Traditionally, UIs are modeled

as �nite-state models (FSM), where nodes represent UI states, and transitions represent actions

which may lead the app to other UI state [35, 37, 44] A FSM su�ces to model all types of

UI interactions, be they widget clicks, keyboard keys, gestures, or button presses. However, it

cannot model the input format of textual �elds on the UI, as a regular language cannot always

represent them (e.g., an email).

In formal language theory, grammars are well-known formalisms to specify input languages.

On the Chomsky hierarchy for grammars [12], context-free grammars (CFG) are the formal-

ism of choice to model languages that cannot be encoded as FSM, but that do not require

context-sensitivity. A grammar consists of a start symbol, 〈start〉 as a convention, and a set

of production rules which indicate how to expand symbols [123]. Each grammar symbol can

be a non-expandable terminal symbol; or a nonterminal symbol, which can be expanded into

other symbols. We represent nonterminal symbols with their names between 〈〉. In a CFG, the

left-hand side of a production rule always contains a single nonterminal symbol.

Widgets and UI states describe the input language of the app; that is, the sequences of

interactions that can be performed. We thus encode such a language using a CFG that models

UI actions as terminal symbols and UI states and transitions as nonterminals, which we name UI

grammar. On a single state, a UI grammar must support di�erent interaction types, targeted or

not to a speci�c UI element, as well as handle nondeterminism, because the same action may lead

the app to di�erent states. Finally, an input produced by a UI grammar must encode su�cient

information to produce a unique app interaction.

To illustrate the usefulness of a UI grammar, consider an app represented by the state machine

from Figure 36. This app can start in the auth or main state, depending on how they are

launched. On the auth state, the user must enter a valid four-digit PIN, �1234� for example, to

continue. If the user enters an invalid PIN, such as �abcd�, the app remains in the auth state.

Moreover, in the auth state, the user can press the device's back button or press a clear button

on the app to clear the typed PIN. In the main state, the user can interact with the app by

clicking on menu or clear buttons, as well as by swiping left. By pressing the device's back button,

the app continues in the main state or returns to auth, depending on much time has passed since

the last authentication. Finally, the user can stop using the app at any point in time.

auth

start

main

start

press back

type valid pin

type invalid pin click clear

swipe left

click clear

click menu
press back

press back

Figure 36: Example app

Note that while this �nite-state model is clean and easy to read, it does not specify constraints

on textual inputs. In our example, for instance, a valid PIN must be a four-digit number. To
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express this constraint, one must either supply a separate de�nition in a di�erent notation, such

as a regular expression (say, [0-9][0-9][0-9][0-9]), or, to stay within the model, include

another �nite state diagram such as the one illustrated in Figure 37. If one is to model invalid

PINs, the regular expressions and models to be attached become even more complicated.
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Figure 37: A �nite state model to specify that a valid PIN must have 4 digits

Now let us represent this same state model as UI grammar in Figure 38. To this end, we

embed the �nite state model into the grammar, where each FSM state becomes a nonterminal

symbol. Each state's transition becomes a possible expansion of the symbol. Transitions become

nonterminal symbols, too, expanding to the possible states reached.

� The 〈start〉 production rule can lead to either the auth or main state (Line 1).

� In the 〈auth〉 state (Lines 2�6), it is possible to enter a valid PIN and continue to the main

state (Line 2) or enter an invalid PIN, click on the clear button or press back and continue

in the auth state (Lines 3�5).

� In the main state (〈main〉), it is possible to click clear, menu or to swipe left and stay in

the main state (Lines 7�9). It is also possible to press the back button on the device and

go to the auth or main states (Line 10).

� Finally, it is also possible to stop using the app altogether at any moment (Lines 6 and 11).

The grammar goes beyond a simple embedding, though. In contrast to the FSM, the input

speci�cation of a valid 4-digit PIN can be modeled within the grammar (lines 13�14), without

the use of an additional model or signi�cant complexity increase. If a user interface accepts more

complex inputs, such as an e-mail address, a domain name, or a SQL query, the languages for

each of these inputs can be modeled within the grammar�and be used for test generation.
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〈start〉 ::= 〈auth〉 | 〈main〉 (1)

〈auth〉 ::= Type(PIN, 〈valid-pin〉) 〈main〉 | (2)

Type(PIN, 〈invalid-pin〉) 〈auth〉 | (3)

Click(clear) 〈auth〉 | (4)

Back(auth) 〈auth〉 | (5)

ε (6)

〈main〉 ::= Click(clear) 〈main〉 | (7)

Click(menu) 〈main〉 | (8)

Swipe(main, left) 〈main〉 | (9)

Back(main) 〈Back(main)〉 | (10)

ε (11)

〈Back(main)〉 ::= 〈auth〉 | 〈main〉 (12)

〈valid-pin〉 ::= 〈digit〉〈digit〉〈digit〉〈digit〉 (13)

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (14)

. . . (15)

Figure 38: Equivalent grammar for the example app

7.1.1 Actions

Let us now go further into how to model UI interactions, notably on the Android platform.

To interact with an Android app, one can interact with a speci�c screen widget by, for

example, clicking or entering text into it. One can also perform actions that do not target a

speci�c app widget, such as swiping on the screen or pressing the back button in the navigation

bar. It is also possible to stop using the app at any moment or to close it without interacting

with the app itself by pressing the home button24.

In our UI grammar, we model UI actions as terminal symbols. More speci�cally, we encode

UI actions as widget actions, which target a speci�c UI element, state actions, which targets a

UI state and empty actions, which allows the test to stop at any moment, without any further

interaction.

7.1.1.1 Widget Actions

Widget actions represent actions that target a speci�c UI element on the screen. They are used

to model actions such as clicking, long clicking, or entering text into a speci�c UI element.

We model widget actions as terminal symbols in the grammar, and we encode them as:

action(widget, payload)

where action is an action type, such as Click, LongClick or Type; widget is the UI element which

should handle the event; payload the action payload, such as a text to be typed or a nonterminal

24While apps can also handle system events, such as message/call received, in this work, we model exclusively
transitions which happen through UI interactions. However, our model could also be used to model system events
by extending the de�nition of state actions.
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grammar symbol to produce input values.

By not including a state, this encoding allows the same widget to be re-identi�ed in di�erent

states. It supports multiple actions for the same widget or distinct payloads for the same action

in the same state.

When used in a UI grammar, a widget action is always followed by a state or transition

nonterminal. The actions Type(PIN, 〈valid-pin〉), Type(PIN, 〈invalid-pin〉), Click(clear) and

Click(menu) from our example grammar (Figure 38) are examples of widget actions.

7.1.1.2 State Actions

State actions represent actions that are not directed to speci�c widgets but instead target a

speci�c UI state. They are used to model inputs such as pressing the back button on the

navigation bar, swiping on parts of the screen, or performing other gestures.

We model state actions as terminal symbols in the grammar and we encode them as:

action(state, payload)

where action is an action type, such as Click, LongClick or Type; state is the UI state which

should handle the event; payload the action payload, such as the direction�or start and end of

coordinates�for a swipe action, or sequences of coordinates for other gestural events.

The encoding is similar to that of a widget action; however, instead of a widget, it contains a

state. This encoding provides similar bene�ts as the one used for widget actions; that is: we can

re-identify actions between di�erent states and express, in the same state, distinct action types

or di�erent actions of the same type with distinct payloads.

When used in a UI grammar, a state action is always followed by a state or transition nonter-

minal. In our example grammar from Figure 38, the Back(auth), Back(main), and Swipe(main,

left) are state actions.

7.1.1.3 Empty Action

The terminal symbol ε denotes these actions. They are used in all production rules in the

UI grammar to model that a user may close or stop using the app at any moment, without

interacting with any widget of UI state.

In the example grammar from Figure 38, the states 〈auth〉 (Line 6) and 〈main〉 (line 11) can
be expanded into the empty action.

7.1.2 States

In an app, the UI state of an app determines which UI elements exist and which actions are

valid. In our UI grammar, a UI state is modeled by a nonterminal symbol, whose expansions

determine which actions can be produced and which other states are reached.

To uniquely identify states, we use identi�ers generated from the UI elements on the screen

or extracted from the UI semantics. As any nonterminal symbol in a grammar, a state must be

de�ned, i.e., used on the left-hand side of one production rule, once and must be used at least

once on the right-hand side of some production rule.
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7.1.2.1 De�nition

A state nonterminal de�nes which actions and transitions can be performed on the state. Thus,

in a UI grammar, a state nonterminal de�nition can contain actions, followed by transitions or

states on its right-hand side. In addition to any number of actions, all state nonterminals must

be able to produce an empty action, indicating that the user can stop interacting with the app at

any moment.

Our grammar from Figure 38, for example, de�nes two state nonterminals: 〈auth〉 and 〈main〉.

7.1.2.2 Use

On the right-hand side of a production rule, a state symbol represents which UI states a transition

can reach. In our model, a UI state can only be reached either by starting the app or through

a UI transition. Therefore, a state nonterminal can only be used on the right-hand side of a

production rule if the left-hand side of the same rule is a transition symbol.

Our grammar from Figure 38 uses the state nonterminals 〈auth〉 and 〈main〉 on the right-hand
side of the transition production rules in lines 12.

7.1.3 Transitions

In an app, each action may transition the app into a di�erent UI state, and the same action

may transition the app into di�erent states depending on a wide variety of constraints. On a

log-in screen, such as the one in our �rst example, clicking a log-in button may lead the app

into an error state if the username or password is incorrect. It may lead the app into a di�erent

error state if the device has no Internet connection. Even when the username and password are

correct, after clicking the button, the app may, sometimes, advertise a product for monetization,

while on other times leading directly to its logged-in screen.

In our UI grammar, such behaviors are modeled by a transition nonterminal. As any nonter-

minal symbol in a grammar, a state must be de�ned once, that is used on the left-hand side of

one production rule, and must be used at least once on the right-hand side of some production

rule.

We encode a transition nonterminal according to the action which triggered it as:

〈action(state, widget, payload)〉

where action is an action type, such as Click, LongClick or Back; widget is the UI element from

the preceding action, if any; state is the UI state from the preceding action; payload the payload

of the preceding action, if any.

7.1.3.1 De�nition

A transition nonterminal de�nes which states can be reached after an action. Thus, in a UI

grammar, a transition nonterminal de�nition can contain state nonterminals on its right-hand

side.

Our grammar from Figure 38, for example, de�nes the transition nonterminal 〈Back(main)〉,
which can lead to both 〈auth〉 and 〈main〉 states.

103



7. Testing With User Interface Grammars

While in our example, we used a transition nonterminal only when the action could lead the

app to more than one state. Nevertheless, one could also expand state nonterminals used on

the right-hand side of a production rule into transition nonterminals. For example, one could

rewrite the 〈auth〉 nonterminal de�nition to use transition nonterminals, with the result shown

in Figure 39.

〈auth〉 ::= Type(PIN, 〈valid-pin〉) 〈Type(auth, PIN, valid-pin)〉 | (1)

Type(PIN, 〈invalid-pin〉) 〈Type(auth, PIN, invalid-pin)〉 |
(2)

Click(clear) 〈Click(auth, clear)〉 | (3)

Back(auth) 〈Back(auth)〉 | (4)

ε (5)

〈Type(auth, PIN, valid-pin) 〉 ::= 〈main〉 (6)

〈Type(auth, PIN, invalid-pin) 〉 ::= 〈auth〉 (7)

〈Back(auth)〉 ::= 〈auth〉 (8)

〈Click(auth, clear)〉 ::= 〈auth〉 (9)

Figure 39: State 〈auth〉 using transition nonterminals

7.1.3.2 Use

When used on the right-hand side of a production rule, a transition symbol de�nes an action's

e�ect. Since only widget or state actions cause UI transitions, a transition symbol must be

preceded by an action symbol when used on the right-hand side of a production rule.

7.1.3.3 Grammar Entry point

A grammar must have an entry point, commonly expressed by the nonterminal 〈start〉 An app,

however, may start in di�erent UI states, according to external conditions. We support such

behavior by de�ning that the 〈start〉 symbol of a UI grammar is always a transition symbol, which

points to all states which the app can display when launched. In our example from Figure 38

the grammar start symbol (line 1) can transition the app to both 〈auth〉 and 〈main〉.

7.2 Mining User Interface Grammars From Test Cases

UI grammars describe the GUI and transitions of an app; however, writing a grammar from

scratch is a laborious and error-prone task. When test cases are available, be they manually

written or automatically generated, UI Grammars can be extracted automatically, as long as the

test case can uniquely identify widgets and UI states.

We abstract a test case as a sequence of events. In this abstraction, we assume that an event

contains a source state, the state the app was before the action; an action type, such as Click,

Swipe, or Type; an action payload with additional data needed by the action such coordinates
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for swipes or the text to type; a target widget, if the action targeted a speci�c widget and a

reached state, that is, the state the app reached after the action.

Based on this abstraction, we use the mining algorithm described in Algorithm 8 to extract

a UI grammar from such a sequence of events.

Algorithm 8 Mining a UI Grammar from an existing test case

1: function extract UI Grammar(trace) returns grammar
2: for entry in trace do
3: (src, action, payload, target, dst) ← entry
4: if isLaunch(action) then
5: grammar ← 〈start〉 ::= 〈dst〉
6: else
7: action ← get-terminal(entry))
8: transition ← 〈action(src, target, payload)〉
9: grammar← 〈src〉 ::= action transition
10: grammar ← 〈src〉 ::= ε
11: grammar ← transition ::= get-state(〈dst〉)
12: end if
13: end for
14: end function
15:

16: function get-terminal(entry) returns terminal
17: (src, action, payload, target, dst) ← entry
18: if hasTarget(entry) then
19: terminal ← action(target, payload)
20: else
21: terminal ← action(src, payload)
22: end if
23: end function

We model our mining algorithm as a mapping function which receives a test log (trace)

as input and produces a UI grammar. It starts by decoding each entry in the trace into its

components, the source (src) and destination (dst) UI states, the conducted action that led

from src to dst and, if the action was targeted towards a UI widget, the target widget and its

corresponding payload (Lines 2-3).

If the action type is launch, that is, start the app from the Android launcher, it appends

the state resulting from the launch (〈dst〉) to the production rule 〈start〉 (Lines 4-5). If not,

the algorithm decides if the action is a state or widget action by checking if the current trace

contains a target widget (Line 18) and encodes the action terminal (Lines 7;16-23) and transition

nonterminal symbols accordingly (Lines 8).

The algorithm then adds the production rules 〈src〉 ::= action transition and 〈src〉 ::= ε to

the grammar (Lines 9-10). Where the �rst production rule adds a new possible action to the

state production rule 〈src〉, and the second ensures that an input generated from this grammar

can terminate in this state. For simplicity, we assume in our algorithm that a production rule

is created if none exists with the same left-hand side symbol; otherwise, the right-hand side of

the new production rule is appended to the right-hand side of the existing production rule as an

alternative if the same alternative does not already exist.
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Finally, the algorithm ends by creating the transition production (Line 11), which points to

the next state or to the empty action (ε) if the current entry is the last one on the trace or if

the next entry is a launch action.

Note that this algorithm does not extract grammar for input �elds, instead entering the

original value used on the test case. We opted for this solution as the mining algorithm does not

handle app semantics; that is, what would be the correct or incorrect input values? Moreover,

without more executions of the test case, it is not possible to know which transitions would occur

when typing a di�erent input value. While techniques to extract grammars from test executions

exist in the literature [124], they require several test runs, making them unsuitable for real-world

apps. Moreover, they rely on a parsing phase to validate the input, which does not apply to

mobile apps.

7.3 Guiding Tests Towards User Interface Coverage

Specifying inputs via grammar allows apps to be explored systematically and e�ciently. Expan-

sions of a context-free grammar can be e�ciently modeled and controlled through a represen-

tation known as derivation trees. Similar to other computational tree structures, a derivation

tree consists of nodes, which point to other nodes (children). The only node without a parent is

denoted root, and the nodes with no children are denoted leaves.

The process of expanding a grammar derivation tree can be abstracted as follows: start

from the root node and traverses the tree searching for a nonterminal symbol that is not yet

expanded. Choose an expansion for this symbol from the grammar and add it as a new child of

the unexpanded node. Repeat this process until there is no nonterminal symbol left to expand.

By choosing among di�erent expansions for the same symbol, a grammar can produce di�erent

sequences of symbols, which on our UI grammars represent di�erent sequences of events to trigger

on the app.

When randomly expanded, grammar production rules are e�cient generators of test inputs;

however, such inputs may cover the same actions and transitions multiple times. A more e�-

cient approach is to guide the grammar expansion towards speci�c targets, such as features or

unexplored actions.

We employ a grammar-expansion technique based on the derivation trees by exploiting the

algorithms presented in the fuzzing book [120]. We updated their textbook algorithms to guide

the grammar expansion towards the terminal symbols in the grammar, instead of the nontermi-

nals. With this change, we guide the input generation algorithms to produce values which cover

speci�c UI actions.

We guide the input generation using an iterative deepening depth-�rst strategy to select the

best expansion for each non-expanded node. With this approach, we �rst cover all children up to

a given depth and choose the child, which yields the highest number of newly covered terminals.

If no children in depth can produce new terminals, we proceed to the next depth. If two or more

children yield the same maximum terminal coverage on a speci�c depth, we randomly select one

to expand. We repeat this process for each non-expanded symbol in the derivation tree until all

symbols have been expanded.
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Just as the original test case may restart the app to explore new paths, we cannot ensure

that the input-generator process will create a single input that covers all terminal symbols in

the grammar. Thus, we produce as many inputs as needed to cover all terminal symbols. After

producing each input, we reset the derivation tree back to its root node, while retaining the list

of reached terminals, and expand it again. We repeat this process until all terminal symbols are

reached.

We then convert each derivation tree into a test case. Terminal symbols represent actions on

a UI grammar and can be translated into a sequence of events to be sent to the app. To convert

a derivation tree into a test case, we concatenate the root node with all terminals from the tree

following a depth-�rst search strategy. The result of this approach are inputs such as: 〈start〉
→ Type(PIN, `abcd') → Click(clear) → Back(auth) → Type(PIN, `1234') → Click(menu) →
Back(main) → Swipe(main, left). Which su�ces to cover all terminal symbols from the example

grammar in Figure 38.

By guiding the input generation towards terminal symbols, our inputs avoid repeating the

same widget action on di�erent states, such as Click(clear) in both 〈auth〉 and 〈main〉 states.

One may not want to generate inputs that cover all actions in the grammar but instead target

speci�c actions or states. While it is possible to adapt the algorithm to expand the derivation

tree to target speci�c goals, a more general solution is to translate the grammar, remove all

non-relevant terminals, and use the original expansion algorithm.

We illustrate such a translation in Figure 40. The state production rule 〈main〉 from Fig-

ure 40a can be expanded into four actions. Assuming, for example, that we are only interested in

the actions 〈Click(main, menu)〉 and 〈Back(main)〉. We can rewrite this production rule without

the remaining actions, while retaining all possible transitions, as illustrated in Figure 40b, and

use it as a regular UI grammar to produce test cases.

〈main〉 ::= Click(clear) 〈Click(main, clear)〉 |
Click(menu) 〈Click(main, menu)〉 |
Back(main) 〈Back(main)〉 |
Swipe(main, left) 〈Swipe(main, left)〉 |
ε

(a) Production rule

〈main〉 ::= 〈Click(main, clear)〉 |
Click(menu) 〈Click(main, menu)〉 |
Back(main) 〈Back(main)〉 |
〈Swipe(main, left)〉 |
ε

(b) Rewritten production rule

Figure 40: Example on how to translate a production rule in a UI grammar to target speci�c
actions (e.g. Click(menu) and Back(main) on the main state
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〈main〉 ::= Click(clear) 〈Click(main, clear)〉 |
Click(menu) 〈Click(main, menu)〉 |
Back(main) 〈Back(main)〉 |
Swipe(main, left) 〈Swipe(main, left)〉 |
ε

(a) UI Grammar

〈main〉 ::= loca . . . loca′ 〈Click(main, clear)〉 |
locb . . . locb′ 〈Click(main, menu)〉 |
locc . . . locc′ 〈Back(main)〉 |
locd . . . locd′ 〈Swipe(main, left)〉 |
ε

(b) Equivalent Code Grammar

Figure 41: Associating UI grammars with lines of code

7.4 Guiding Tests Towards Code Coverage

We showed how to use inputs produced via a UI grammar to guide test generation towards speci�c

UI elements, as well as to e�ectively re-trigger all actions from the grammar. Nevertheless,

multiple actions can trigger the same underlying lines of code.

Thus, we can assume that a more e�cient approach to testing the app code is to guide

the test generation towards uncovered code elements, not actions. This, however, requires our

UI grammar to be associated not only with UI actions but also with code locations. That is,

it requires the underlying app code to be associated with the input elements which trigger it.

Therefore, to avoid using a secondary model, we propose an extension of our UI grammars, called

code grammars.

Code grammars are similar to UI grammars; however, their terminal symbols no longer encode

UI actions, such as click and swipes, but instead encode the lines of code reached by that action.

At a syntactical level, the only di�erence between code and UI grammars is the encoding of

its terminal symbols, which change from UI actions to lines of code. At a semantic level, state

production rules on a code grammar model all code locations that can be reached from a state,

while the semantics of the transition production rules remain unchanged.

Figure 41 shows the di�erence between a UI and a code grammar. Figure 41a shows a state

production from a UI grammar containing, besides ε, four possible actions and transitions. As

a code grammar (Figure 41b), the production rule no longer has four actions. Instead, each

terminal now represents the lines of code (locx) triggered when the action is performed.

7.4.1 Mining Code Grammars

It is signi�cantly harder to write code grammars than UI grammar. While apps may support

hundreds of di�erent UI actions, they may have hundreds of thousands of lines of code. Ideally,

code grammars should be automatically generated from the app source code or its execution.

We address this challenge by mining code grammars from test cases.
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In Section 7.2, we presented an algorithm to mine UI grammars from existing test cases

automatically. We abstracted test cases as sequences of events containing: source state, action

type, action payload, target widget, and reached the state. To mine code grammars, we extend

this abstraction and assume that the lines of code reached by each action are also available

in the event sequence. This information can be obtained, for example, by monitoring the app

statements reached during testing (coverage) and associating this information with each action.

With this extension, we adapt Algorithm 8 to mine code grammars by replacing the get-

terminal function (Lines 16-23 in the original algorithm) with the one shown in Algorithm 9.

This new algorithm decodes an entry (Line 2) and sets the list of statements (Line 6) as the

terminal symbol or ε when this action did not trigger any statement (Line 4).

Algorithm 9 Mining a code Grammar from an existing test case

1: function get-terminal(entry) returns terminal
2: (src, action, payload, target, dst, stmts) ← entry
3: if stms is empty then
4: terminal ← ε
5: else
6: terminal ← stmts
7: end if
8: end function

7.4.2 Guiding Tests Towards Code Locations

We previously showed how UI grammars could be used to guide testing towards speci�c func-

tionality. While manually written tests typically exist to cover critical functionality, such tests

may perform many actions and spawn for many minutes.

On a regular development cycle, small changes to the app code are made continuously, and

it is expensive to continuously determine which of the existing tests trigger the modi�ed code

segment and execute them. Moreover, such tests may trigger the modi�ed code location in

a single context. Ideally, one wants to create several and quick tests to trigger speci�c code

segments through multiple contexts. One may then, less frequently, execute more extensive tests

for additional guarantees.

Code grammars can be used to generate multiple small inputs to trigger speci�c code locations

with minimal e�ort. We use a code grammar to produce inputs following the same approach

we used on UI grammars (Section 7.3), that is, by expanding a derivation tree through an

iterative deepening depth-�rst strategy. Similarly to inputs produced by a UI grammar, it may

be necessary to produce multiple inputs to cover all terminals in the code grammar. Thus, we

produce as many inputs as needed to cover all terminal symbols, and then convert produced

input into a test case.

On a UI grammar, terminal symbols represent actions and can be translated into a sequence

of events to be sent to the app. However, on a code grammar terminal symbols represent

lines of code, and cannot be translated into app events. Therefore, to convert a derivation

tree into a test case, we expand the grammar to use transition nonterminals for all transitions

and then concatenate the root node with all transition nonterminals from the tree following
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〈main〉 ::= loca . . . loca′ 〈Click(main, clear)〉 |
locb . . . locb′ 〈Click(main, menu)〉 |
locc . . . locc′ 〈Back(main)〉 |
locd . . . locd′ 〈Swipe(main, left)〉 |
ε

(a) Code Grammar

〈main〉 ::= 〈Click(main, clear)〉 |
locb 〈Click(main, menu)〉 |
locc 〈Back(main)〉 |
〈Swipe(main, left)〉 |
ε

(b) UI Grammar

Figure 42: Translating a production rule to target speci�c lines of code (e.g. locb and locc)

a depth-�rst search strategy. We opted for transition nonterminals as they encode su�cient

information to produce an event, without requiring changes in the grammar expansion algo-

rithm. The result of this approach are inputs such as: 〈start〉 → 〈Type(auth, PIN, `abcd')〉 →
〈Click(auth, clear)〉 → 〈Back(auth)〉 → 〈Type(auth, PIN, `1234')〉 → 〈Click(main, (menu)〉 →
〈Back(main)〉 → 〈Swipe(main, left)〉.

By guiding the input generation towards terminal symbols, our inputs avoid repeating the

same line of code on di�erent widgets and states.

Nevertheless, one may want only to test speci�c lines of code. Thus it is possible to rewrite

the grammar to remove non-relevant code segments. We guide input production towards speci�c

lines of code using the same approach we used to guide input production towards speci�c actions

on a UI grammar; that is, we rewrite our grammar while removing all non-relevant segments

from it. For example, consider the code grammar segment shown in Figure 42a. This production

rule reaches multiple lines of code (locx). If only locb and locc are of interest, we can rewrite

this production without the remaining code segments (Figure 42b) while retaining all possible

transitions, and use it as a regular code grammar to produce test cases.

7.5 Evaluation

The UI grammar aims to be a unifying model, encompassing both the graphical elements from

the app and its textual inputs. Moreover, it aims to connect these elements with the source

code segments they trigger. We previously introduced the concept of UI grammars, proposed an

algorithm to mine them from existing test cases automatically, and showed how to use them to

produce new tests. In the remainder of this section, after describing our experimental setup, we

present our experiments to answer the following research questions:

RQ1 (Grammar mining). Can UI grammars model test cases produced by a random test

generator?

RQ2 (UI Grammar Accuracy). Are UI grammars accurate models to guide test genera-

tion towards speci�c app actions?

RQ3 (UI Grammar Expansion). Can mined UI grammars be used to trigger e�ciently

all actions from the test cases they were mined from?

RQ4 (Code Grammar Accuracy). Are code grammars accurate models to guide test

generation towards speci�c code locations on the app?
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RQ5 (Code Grammar Expansion). Can mined code grammars be used to trigger e�-

ciently all lines of code triggered by the test case they were mined from?

7.5.0.1 Modeling Widgets and States

Before mining UI grammars, it is necessary to determine how to identify widgets and UI states

uniquely. Natively, Android does not provide any identi�er for either. Therefore, several heuris-

tics were proposed to identify states and widgets on Android apps [125, 53, 44]. We adopted

the de�nitions from our previous works [53, 68] for our experiments, as they were already imple-

mented in the test generator that we use in our evaluation. Nevertheless, any other widget and

UI state de�nition could have been used alongside UI grammars.

Widgets: Without source code access, there is no unique identi�er for a UI element. The

closest information it has is a resource ID, which is speci�ed by the developer. Nevertheless, the

resource ID is optional and seldom used and can also be reused in the same state. Using the

Android accessibility service25, one can obtain a set of properties for each widget w. We used

this information to identify a widget (idw) uniquely by:

textidw =



hint text, content desc., or resource ID if w is an input �eld

hint text, text, and content desc. if w has textual content

resource ID if w has a resource ID

class name, package name, and fallback ID26 otherwise

States: As with widgets, Android does not provide a reliable way to identify UI states. While

one may consider each activity as a state, Android supports a single-activity multiple-fragment

architecture, where the developer loads at runtime di�erent fragments in the same activity. We,

thus, opted to de�ne app states from a user perspective based on the widgets available on the

screen and their current con�guration. They de�ned a UI state as

ids =
W⋃
w

idw

where idw is the unique identi�er of a widget and W are all the relevant widgets on the screen.

Their metric considers as relevant the widgets that have no children or have textual content

or are actionable. Moreover, to be resilient against external sources, they ignore elements that

do not belong to the app under test. This includes advertisement containers and other apps

launched through intents27 when determining a UI state.

7.5.1 Experimental Setup

Due to the absence of existing test cases for a large corpus of apps to use as a benchmark, we

instead evaluate our approach on test cases that are generated by an automated test generator
25https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
26The fallback ID is based on the position of the widget on the UI hierarchy tree produced by the Accessibility

Service, calculated using the parent ID and the index from the current element and all its ancestors until the UI
hierarchy root.

27Non-app widgets are �ltered out based on their package name.
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for Android. This is a common approach to create test cases [126], and the generated tests are

conceptually similar to a user interacting with the app. That is, the test generator inspects the

contents of a screen, chooses a widget to interact with, and interacts with the widget using the

accessibility app API. We, thus, expect our results to be valid for realistic existing test cases

created by other approaches.

We executed our experiments on physical Google Pixel XL devices and emulators using

the same device con�guration. Both the emulators and devices use Android 9 (API 28) with

all security patches until August 2019. To prevent divergences on the results from the use of

physical devices and emulators, each app was tested entirely on a single device or emulator.

We randomly selected 46 Android apps28 from F-droid, an open-source repository of Android

apps. We opted for open-source Android apps as they tend to be smaller, and test generators

can cover larger amounts of functionality. Note that this is not a limitation from the use of

grammars, but instead of the underlying test generation approach used to generate the initial

test cases. One can apply UI grammars on larger apps by generating the initial test manually

or by using approaches tailored to speci�c apps. Since our test case is automatically generated,

we measure its code coverage to determine its overall quality [61]. We measure code coverage

through Jimple statements [63], an intermediate bytecode-like representation of their compiled

source code. On average, the apps on the dataset contain 14,389 statements, with the smallest

app containing 1,347 and the largest 72,056.

7.5.2 RQ1: Mining Grammars

For this experiment, we executed DM-2 [53] to randomly explore each application for 1000

actions (≈60 minutes), with a forced restart every 100 actions to allow the test generator to

explore di�erent paths. We enabled the following action types during the exploration: click, long

click, swipe (left, right, up, and down), type, press back, and press home.

We opted for DM-2 as it provides unique identi�ers (UID) for each widget and UI state

it encounters during testing. It also includes an execution log containing all actions executed

during testing. Moreover, we opted for a �xed number of clicks instead of a �xed time for a

better comparison with the grammar, which can be used to generate only sequences of actions.

Our initial tests had an average Jimple coverage of 39.14%, in line with contemporary black-box

testing techniques [29].

Before converting our initial test cases into a UI grammar, we preprocessed them to address

some of DM-2's speci�cities. First, we removed non-UI actions, such as enabling WiFi or muting

the phone, as those actions are not relevant for the UI grammar, but are performed internally

by DM-2 during each app reset. Moreover, DM-2 considers all non-app states as equivalent�it

always presses the back button�but produces di�erent identi�ers for each one. To address this

limitation, we replace the source and destination states UID of all states which do not belong to

the app by a single identi�er.

We then used our grammar mining algorithm on the preprocessed DM-2 test traces to extract

UI grammars. We were able to successfully extract a UI grammar for all the 46 test traces.

28The full list of apps is available in https://github.com/uigrammar/uigrammar
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Figure 43 shows the size of each of the mined grammars with respect to the number of production

rules, and unique states.

Figure 43: Size of the mined UI grammars measured by number of production rules, unique
states and unique widgets

On average, the mined UI grammars were composed of 141 production rules with a minimum

of 10 and a maximum of 619. Considering states, the mined UI grammars represent, on average,

93 unique states per test case, with a maximum of 452 states. The largest grammar was produced

by the test case from BeHe Pro29 with 619 production rules. An example of the smallest mined

UI grammar for the app ALSA Mixer WebUI30 is shown in Figure 44.

〈start〉 ::= 〈s00〉
〈s00〉 ::= ε | Click(w00) 〈Click(s00, w00)〉

〈Click(s00, w00)〉 ::= 〈s01〉
〈s01〉 ::= ε | Click(w01) 〈Click(s01, w01)〉 |

Click(w02) 〈Click(s01, w02)〉 |
Click(w05) 〈Click(s01, w05)〉

〈Click(s01, w01)〉 ::= 〈s00〉
〈Click(s01, w02)〉 ::= 〈s02〉
〈Click(s01, w05)〉 ::= 〈s03〉

(14 more production rules . . . )

Figure 44: Segment of the UI Grammar mined for the app ALSA Mixer WebUI

We inspected the reasons behind large grammars (outliers). DM-2's UID heuristic causes

a high number of production rules. It uniquely identi�es a UI state as the concatenation of all

leaf widgets with either a resource ID or text on the screen. When a widget is created, deleted,

moved, or its text changes, DM-2 identi�es the set of UI elements as a new state. While such

29https://f-droid.org/de/packages/com.vlath.beheexplorer/
30https://f-droid.org/de/packages/cz.jiriskorpil.amixerwebui/
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an approach allows DM-2 to guide its test towards least interacted UI elements, it also identi�es

many similar states with di�erent UIDs. Thus, the grammars generated from such tests are

closely related to the test itself and cannot be easily generalizable for other tests on the same

app. UI grammars, however, are not tied to any speci�c test generator. They can be mined from

other tools, with di�erent state identi�cation mechanisms, or be manually written.

UI grammars could be automatically mined from all test cases generated for 46 open-source

apps. The test cases, and resulting grammars contained the following action types: click,

long click, swipe (left, right, up, and down), type, press back, and press home.

7.5.3 RQ2: UI Grammar Accuracy

We showed that UI grammars could be mined automatically from existing test cases. However,

we have not yet measured how accurate such grammars are. In this research question, we evaluate

the grammar accuracy by checking if tests produced from UI grammars can guide test generation

towards speci�c actions.

For this experiment, we reuse the apps, environment, and mined grammars from Section 7.2.

First, we randomly selected a statistically signi�cant number of actions as targets. To determine

the number of samples necessary, we considered the unique actions in the grammar as population,

established a desired con�dence level of 90%, a margin of error of 10%, and assumed that the

elements follow a normal distribution.

Since the apps in our dataset have di�erent sizes, and the initial tests reached di�erent

amounts of coverage, the number of samples required for each app varied between 9 and 69, with

an average of 54. For each target, we rewrote the grammar to guide the test towards the speci�c

action, and we generated ten test cases, to explore multiple ways to reach it.

Fuzzing UI grammars that target speci�c actions resulted in 30,710 sets of inputs, comprising

85,348 actions (including app launch). The produced inputs had, on average, four actions, with

a minimum of 1 and a maximum of 16, their distribution is shown in Figure 45a.

We then developed a DM-2 extension named DroidGram to execute our grammar-based

test cases. DroidGram consumes a sequence of grammar symbols and decodes them into

device actions, while monitoring which grammar symbols are successfully reached. We use this

information to measure how often the test inputs can reach their �nal action.

In our experiments, 82% of the inputs generated by fuzzing with UI grammars reached their

target action, with a few reaching all their targets and the worst reaching 20.3% of them, as

summarized in Figure 45b. These values highlight a limitation of using context-free grammars

to model apps: apps are context-sensitive, and some actions can only be triggered under speci�c

contexts. Nevertheless, the same limitation also occurs on approaches that model apps as FSMs.

Most inputs generated by the grammars for FOSSASIA 2017 31 and from NewPipe32 failed to

reach the targets. We manually inspected these apps to determine the cause. Both apps relied

heavily on Internet content and were a�ected by larger delays during replay; that is, DM-2 could

31https://f-droid.org/wiki/page/org.fossasia.openevent
32https://f-droid.org/de/packages/org.schabi.newpipe/
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(a) Input size (b) Reached actions

Figure 45: Size of inputs used to measure the grammar accuracy and success rate of these inputs
reaching their targets

not perform several widget actions because the target widget was not yet on the screen. Our UI

grammars does not support modeling communication with external servers.

When producing tests to trigger speci�c app actions, 82% of the test cases produced by a

mined UI grammar successfully reach their target.

7.5.4 RQ3: UI Grammar Expansion

In this section, we evaluate if mined UI grammars can be used to e�ectively re-trigger all UI

actions from the test case it was mined from.

For this experiment, we reuse the apps, environment, and mined grammars from Section 7.2.

We fuzz with each grammar to produce inputs that cover all UI actions (terminal symbols) in the

grammar and concatenate them into a single test case. While multiple inputs may be necessary

to cover all terminals in the grammar, each input starts with a restart app action (〈start〉). Thus,
we have a test case in which the app restarts multiple times by concatenating the inputs.

We generate ten di�erent test cases for each app to explore multiple paths within the gram-

mar, resulting in 460 inputs. We used DroidGram to execute our grammar-based test cases

while monitoring which grammar terminals and lines of code are successfully reached. We mea-

sured grammar and code coverage relative to the original test suite; that is, how many di�erent

actions (terminals) and the inputs produced by the grammar can reach lines of code from the

original test case.

The test cases produced by our UI grammars required, on average, 229 actions to re-trigger

all the actions from the original test case (≈23%), as shown in Figure 46a. The longest grammar-

based test cases were 812 actions long (83% of the original) and were produced by the grammar

from RedReader33, a Reddit client. We manually inspected the app and grammar and observed

33https://f-droid.org/de/packages/org.quantumbadger.redreader/
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that this app has several UI elements with textual content, which are created dynamically. DM-

2 identi�ed them as di�erent UI states resulting in a grammar where most state nonterminals

contain a single possible action, allowing the test generation undermining our terminal guided

input generation approach.

(a) Input size (b) Terminal coverage

Figure 46: Size of the test cases produced by UI grammars, and their terminal coverage relative
to the initial grammar

We summarize our results concerning terminal (action) coverage in Figure 46b. Test cases

produced by the UI grammar triggered, on average, 70% of the actions, with a minimum of 16%.

Additionally, 62 inputs�13.5% of all inputs produced�reached 100%. While most grammar-

based test cases reached most actions (terminals) from the original test case, some inputs were

able to trigger meager amounts. We manually inspected the worst performing app.

The BART Runner34 app, which checks public transportation schedules in San Francisco,

obtained the worst results. Its functionality is highly dependent on external resources, such as

train schedules and the current date and time, which are not modeled by the UI grammar. Since

DM-2 identi�es a widget based on their textual content, the inputs produced by the grammar

were not valid, as di�erent connections are shown at each time. Such a problem, however, occurs

with any test case that identi�es widgets based on their textual content and can be mitigated

by using other metrics to de�ne widgets uniquely.

Regarding code coverage, grammar-based test cases reached an average of 83% of the lines of

code reached by the original test case, with a minimum of 14.7% and 30 (6.5%) of them reaching

100%, as shown in Figure 47. The BART Runner app, again, achieved the worst code coverage

results, as it could not execute large parts of the input.

On an action-per-action comparison, UI Grammar-based test cases are more e�ective at

achieving code coverage than the original test case. On average, they perform better than the

initial test on the �rst ≈170 actions, with the largest di�erence being observed at ≈70 actions.

Until ≈210 actions, both tests are virtually tied, and after 300 actions, the original test case

signi�cantly outperforms UI grammar-based test cases. Nevertheless, the same applies to any

34https://f-droid.org/de/packages/com.dougkeen.bart/
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systematic approach as, given enough time, a random test generator outperforms any systematic

approach [127]. Note as well that most test cases are shorter than 300 actions and, thus, would

no longer be executing at that moment.

Figure 47: Average code coverage over time for UI grammar-based test cases, compared to the
the original test case on the �rst 50% of the original actions

With 23% of the original actions and only a few outliers, most grammar-based test cases are

signi�cantly shorter than the test case they were mined from. Thus, we envision such tests as

complementary to the original test case. One can execute them to detect errors faster on large

swaths of the actions (80%) and execute the complete and more time-consuming test-suite after

such tests succeed.

UI grammar-based test cases reach 80% of the original test case actions with 23% of the

input size. Moreover, they are more e�ective than the original test case at achieving code

coverage on short tests.

7.5.5 RQ4: Code Grammar Accuracy

We showed how mined UI grammars successfully guide test generation towards the actions from

the test case they were mined from. In this section, we evaluate the accuracy of code grammars

by checking if tests produced from code grammars can guide test generation towards speci�c

lines of code.

For this experiment, we reuse the apps, environment, and initial test cases from Section 7.5.2.

During our initial experiments, we collected the lines of code that were reached by each action

in the original test suite. We attach this information to DM-2's trace and use it to mine code

grammars, as we showed in Section 7.4. The code grammars are identical in the number of

productions and nonterminal symbols to the UI grammars generated in Section 7.5.2, varying

only in the number of terminal symbols.

Similar to our experiment in RQ2 (Section 7.5.3), we randomly select a statistically signi�cant

number of terminals from our code grammars as targets. While in RQ2, we considered as a

population the unique actions in the grammar This time, we consider as a population the unique

117



7. Testing With User Interface Grammars

(a) Input size (b) Reached actions and code seg-

ments

Figure 48: Input size and coverage achieved with code grammar-based test cases

lines of code reached by the original test. We again established the desired con�dence level of

90%, a margin of error of 10%, and assumed that the elements follow a normal distribution.

Since the apps in our dataset have di�erent sizes, and the initial tests reached di�erent

amounts of coverage, the number of samples required for each app varied between 55 and 69,

with an average of 67. For each target (line of code), we rewrote the grammar to guide the test

towards it, and we generate ten test cases, to explore multiple ways to reach it.

Fuzzing code grammars that target speci�c lines of code resulted in 30,710 sets of inputs,

comprising 85,348 actions (including app launch). The produced inputs had, on average, four

actions, with a minimum of 1 and a maximum of 16. Their distribution is shown in Figure 48a.

We reused DroidGram to execute the grammar-based test cases and monitor both the

reached actions and Jimple coverage of this new test. We use this information to evaluate how

often the test inputs can trigger their target line of code.

70.5% of the inputs produced by a code grammar can reach their target line of code, with

the worst-performing seed reaching only 4%, as summarized in Figure 48b. These values are

slightly below the 82% success in reaching an action using a UI grammar, further highlighting

the limitations of using a context-free model to represent apps: certain lines of code can only be

reached in speci�c app contexts. Nevertheless, this is not only a limitation of UI grammars but

also occurs approaches that model apps as FSMs.

Most inputs generated from the grammars for FOSSASIA 2017 35 and NewPipe36 could not

successfully reach the target actions nor lines of code. We manually inspected these apps to

determine the cause.

Both apps relied heavily on Internet content and were a�ected by larger delays during replay;

that is, DroidGram could not perform several widget actions because the target widget was

not yet on the screen. Neither our UI nor code grammars, however, support modeling the

35https://f-droid.org/wiki/page/org.fossasia.openevent
36https://f-droid.org/de/packages/org.schabi.newpipe/
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communication with external servers.

When producing tests to trigger speci�c code locations, 70.5% of the test cases produced by a

mined code grammar successfully reach their target line of code.

7.5.6 RQ5: Code Grammar Expansion

We previously showed how mined code grammars successfully guide test generation towards

speci�c lines of code. In this section, we evaluate if mined code grammars can be used to

e�ectively re-trigger all lines of code from the test case it was mined from.

For this experiment, we reuse the apps, environment, and code grammars from Section 7.5.5.

We then fuzz with each code grammar to produce ten di�erent test cases for each app to explore

multiple paths within the grammar and execute the resulting 460 test cases with DroidGram

while monitoring the covered actions and lines of code.

Test cases produced by our code grammars required, on average, 107 actions to reach all lines

of code from the original test suite, with a maximum of 812 actions. This represents ≈11% of

the original test suite size and ≈50% of the actions required to trigger all terminals compared to

the UI grammar (7.5.4). The input size distribution is shown on Figure 49.

As in Section 7.5.4, we observed some outliers regarding the input size with the same Re-

dReader app having the longest input. The causes are the same as those in we presented in Sec-

tion 7.5.4: since most production rules on its grammar contain a single possible expansion, the

input generation strategy was not able to guide the testing towards more e�cient inputs properly.

Figure 49: Size of the test cases produced by code grammars

We summarize our results concerning code coverage in Figure 50. Test cases produced using

the code grammars reached, on average, 79% of the lines of code from the original test suite�

most of which is obtained with less than 60 actions�with the worst input reaching 14.3% and two

inputs reaching 100%. The worst inputs were produced by the Simple Last.fm app37. In this app,

most lines of code covered by the initial test were concentrated in a few grammar productions,

37https://f-droid.org/de/packages/com.adam.aslfms/

119

https://f-droid.org/de/packages/com.adam.aslfms/


7. Testing With User Interface Grammars

which could not be reached by all test cases due to app context, resulting in signi�cant coverage

loss.

Figure 50: Code coverage over time for UI grammar-based test cases, compared to the the original
test suite on the �rst 50% of the original actions

On a per action basis, tests using code grammars are faster at achieving code coverage than

the original test suite, as shown in Figure 50. On average, they perform better than the original

test on executions of up to 100 actions, with the largest di�erence being observed at less than 50

actions. Until ≈130 actions, both tests are virtually tied, and after 150 actions, the original test

case signi�cantly outperforms code grammar-based test cases. Nevertheless, the same applies

to any systematic approach as, given enough time, a random test generator outperforms any

systematic approach [127]. Note as well that most test cases are signi�cantly shorter than 150

actions and, thus, would no longer be executing at that moment.

When compared to test cases produced by UI grammars, tests produced using a code grammar

reach ≈95% of the coverage, with 50% of the actions. Therefore, the same bene�ts apply to test

cases based on code grammar. Such tests can complement the original test suite, allowing errors

to be detected quickly on 79% of the code. At the same time, complete and more time-consuming

test-suite can be executed after such tests succeed.

Test cases produced using mined code grammars obtain code coverage with less actions than

the tests the grammars were mined from, reaching 79% of the code with less than 10% of the

actions.

7.5.7 Threats to Validity

In this section, we discuss the limitations and threats to the validity of our technique and

evaluation.

Regarding external validity, we cannot ensure that our results generalize to all apps and

testing tools, due to the size of our dataset and automatically generated test cases. We randomly

selected our apps from an open-source (F-Droid) repository, which has been previously used to

evaluate test generators [29, 68, 82]. While we evaluated our approach on Android apps, the
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concepts presented in this paper also apply to other platforms or domains (e.g., iOS and web

applications). Therefore, more evaluations of other tools and platforms would be needed to

mitigate these threats.

Regarding internal validity, we used DM-2 to generate the test case from which we mined

the UI grammars and, thus, we inherit its limitations. If DM-2 misidenti�ed a state or failed

to identify a widget, the same will be re�ected in the mined grammars. Additionally, DM-2

cannot ensure that all test cases it generates can be re-executed, due to the inherent �akiness of

Android UI tests: an app may reach di�erent states depending on external conditions, such as

time and location, altering its typical execution path. They may also communicate with external

servers, which may take longer than usual to reply. Furthermore, the mined grammars can only

cover behaviors seen on the initial test. The mined grammars will not know any behavior not

contained in the test cases. UI grammar can, however, be mined from any sequences of events

with uniquely identi�able widgets and states, be it automatically generated or manually written.

Regarding construction validity, UI grammars only model interactions that happen through

the UI (user events). While the grammar encoding can be used to model system events, such

as call/message received, such an implementation has not been evaluated. Moreover, we used

a semi-random testing approach to generate our initial test case. We opted for it instead of

manually written tests because they are not always available and may cover only speci�c app

functionality. With randomly generated tests, we avoid specifying which app features to test.

We also did not use more advanced test generation techniques as they cannot be applied without

instrumenting the OS or app [46, 128]. Our evaluation showed that UI grammars could reach

the majority of the original actions and code segments with a much smaller number of actions.

Such numbers may vary when comparing to manually written tests or di�erent test generation

techniques.

Finally, we use context-free grammars as a unifying model. However, many UI actions can

only be triggered in speci�c contexts. In our experiments, we mitigated this problem by using

DM-2's UID to identify states and widgets. DM-2's UID mechanism di�erentiates between

di�erent UI contexts through the elements which are available on the screen. It allowed us to

reach 82% of the target actions successfully. Nevertheless, DM-2's UID metric still does not

model all possible context-sensitive behavior. For example, it produces the same identi�er if

the widget in the state is enabled�and thus can be interacted with�or not. Moreover, our

experiments mining grammars in Section 7.5.2 and expanding them in Section 7.5.4, showed

that when the state identi�cation metric is too �ne-grained towards context-sensitive behavior,

the resulting context-free grammars, as well as the inputs produced by it, become larger.

7.6 Limitations

Our experiments showed that context-free grammars could model both UI transitions and textual

elements of an app. Nevertheless, our implementation and approach do not work for all apps. Our

implementation inherits the limitations of DM-2, which we previously discussed in Section 3.7.

Another limitation of our implementation is the association between actions and lines of

code. We de�ned the lines of code triggered by an action as those reached when the action

occurs. However, an app may start delayed or scheduled tasks, such as starting a download
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in the background or checking for updates. In our implementation, this functionality will be

associated with the action that occurs when it executes, not with the action that started it.

While our approach is abstract about the mechanism used to associate lines of code and actions,

how to address this problem is still an open question.

Concerning our approach, it relies on context-free grammars and, thus, do not model context.

Using a UI grammar to create tests that trigger context-dependent functionality�actions or

code�will produce invalid test cases. Moreover, UI grammars model a single app and cannot be

used to test, for example, client-server architectures fully.

7.7 Related Work

In Section 2.2, we presented existing test generation approaches, which are loosely related to our

work. This section summarizes the most relevant works related to this research.

Model-based input generators encode an app as a model which describes its functionality and

use it to generate inputs systematically. Such models can be de�ned as a priori or automatically

inferred. Model-based Android test generators have employed various encodings to model the

behavior of an app, such as �nite-state models [35], graphs [40], test speci�cations [129], and

custom representations [38].

Regarding our model inference, our approach is similar to DroidBot [37], Android Ripper [35,

36] and APE [130], which dynamically generate a transition model of an app during testing, based

only on the run-time state of its GUI widgets. Other closely related approaches are Stoat [44]

and A3E Targeted [40], which uses both static and dynamic analysis to infer a stochastic model

of the app's GUI and use it for testing. Our approach uses context-free grammars, a well-known

formalism, to specify input languages to model apps. Compared to state machines, grammars

are more readable and easier to extend and are particularly useful for modeling textual inputs.

While our UI grammar can be manually speci�ed or automatically inferred from test executions,

their main advantage is using a single representation to model the app UI and its transitions as

well as the lines of code reached by each UI element. By combining both representations in a

standard formalism we can reuse established input generation techniques [131, 132] to guide test

generation towards speci�c UI actions [133] or code segments [134].

Regarding our model representation, while not frequently used to test Android apps, gram-

mars have been intensively used to test compilers [135, 136]. Techniques such as Travor [137] and

Nautilus [132] employ speci�c grammar encodings for general-purpose fuzzing. Such techniques

could be used without modi�cation to produce inputs from our UI grammar.

Our work in this chapter is conceptually similar to dynamic feature location [138]. In software

evolution and maintenance, dynamic feature location attempts to identify software features by

comparing execution traces with and without the features [139]; ranking them accordingly to

the frequency and location in which speci�c methods are used [140]; or exploiting execution

traces and the source code [141, 142, 143]. UI grammar productions can be associated with code

segments and thus used for features location. However, their main advantage, is that they can

quickly produce multiple inputs to trigger the same feature without following the sequence of

actions from the original test case. Also, each generated grammar input is signi�cantly shorter
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than the original test suite. Finally, UI grammars can be easily extended and combined with

other grammars, allowing new inputs to cover the same features to be added.

7.8 Lessons Learned

To thoroughly test programs via graphical user interfaces, one has to consider both graphical and

textual input. User interface grammars encode states, transitions, user interactions, and textual

inputs in a single, uni�ed representation. In this chapter, we showed how to use UI grammars

to model complex user interactions on the Android platform, how to mine UI grammar from

test cases automatically, and how to use UI grammars to produce test inputs targeting speci�c

elements, interactions, and covered code.

In our experiments, we automatically extracted UI grammars out of 46 test cases for di�erent

open-source apps. We then used UI grammars to produce test cases targeted towards speci�c

elements in the grammar�that is, towards speci�c interactions in the app�and 82% of the test

cases produced through a UI grammar reached their targets successfully. Finally, using the mined

UI grammars to produce test inputs, we covered most of the UI actions (80%), and source code

(83%) form the original test case, with signi�cantly shorter test cases.

The use of context-free grammars to model graphical user interfaces brings a solid foundation

to the �eld, opening up several future research possibilities.

� UI grammars allow for much better modularity and interplay in test generation tools.

Rather than having monolithic tools in which modeling, mining, and testing cannot be

separated from each other, we can have future approaches model, mine, or test using

one single representation that is well-known and well-understood by programmers and

researchers alike.

� User interface grammars allow to directly apply established techniques for grammars from

formal languages. For instance, grammars can be easily converted from and into alternate

language models such as regular expressions or �nite-state models.

� Being grammars, UI grammars can also act as parsers�for instance, to parse the traces of

existing tests and thus recombine fragments of input sequences, say from past bug-inducing

inputs [131].

� In a grammar, one can add probabilities to individual productions, allowing to focus tests on

speci�c (textual or graphical) features�or on associated code locations. The combination

of probabilities and parsing allows for anomaly detection over events and transitions from

the grammar.

Reproducibility: To facilitate replication and extension, all our work is available as open

source. The replication package is available at:

https://github.com/uigrammar/uigrammar
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Chapter 8

Conclusion and Future Work

In this thesis, we investigated how to learn and model the language of Android apps. Users

can e�ectively use apps because they know this language. They know how to interact with the

UI elements and which textual values to input. Our statement in this thesis was that a test

generator could also learn this language and, in doing so, would be able to produce better tests.

In the �rst part of this thesis, we presented DM-2, a platform for Android test generation, which

worked as the base for the remainder of our approaches.

In the second part of the thesis, we presented our approaches to learning the language of

apps. We �rst learned which UI elements to interact with by emulating human behavior. When

faced with a new app, a human uses its experience (knowledge) from using other apps to know

how to interact with it. Similarly, we learned o�ine, from a set of popular apps from the Google

Play Store, a UI interaction model that predicts how likely a UI element is to be interactive. We

then extended two test generators to consume our model (Droidmate-M and Droidbot-M)

and showed that using such a model lead to signi�cant improvement in code coverage on both

test generators.

We then learned the next part of the language of apps, namely: how to interact with a

UI element? A human uses its previous experience when interacting with an app for the �rst

time. However, once it has used the app, it learns how that speci�c app behaved, which actions

worked and which did not. Thus, we followed a similar approach and learned how to interact

with the UI elements of an app while using it. We modeled test generation as an instance of the

MAB problem and employed the traditional reinforcement learning algorithms used to address

it. Our experiments showed that learning how to interact with app UI elements during testing

lead to further coverage improvement when compared against reusing only previously gathered

knowledge. They also showed that dynamically learned knowledge can be used alongside other

testing algorithms, producing tests with higher code coverage.

We then closed the second part of this thesis by learning which input values should be typed.

Many apps require complex inputs, such as an address, a departure airport, or a product to

search for. Humans understand the semantics of the UI and enter such information easily. To

adequately interact with such apps, a test generator must also be able to enter such values. With

this goal, we presented Saigen to automatically identify the UI semantics and query a knowledge

base for candidate input values. Our experiments showed that using such queried inputs lead to

an overall improvement in code coverage.
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Finally, in the last part of this thesis, we modeled the language of apps, bringing together

UI actions, transitions, and textual inputs and source code into a uni�ed model. While the UI

actions and transitions can be represented as a regular language, input values do not. Therefore,

we used context-free grammars as a unifying formalism. We showed how grammars model test

cases, how they could be extracted from existing tests, and how they can be used to produce

inputs. Additionally, we showed how to associate grammar productions with the app code

they trigger, and exploited this relationship to produce test cases directed towards speci�c code

statements.

We acknowledge that even by learning the language of apps, one cannot ensure an app is

completely tested. Some apps�such as games�require precise knowledge to be used. Some app

functionality is only available after following a long and complicated sequence of events�such

as registering, receiving a con�rmation email, accessing a website to enable the account, and

returning to the app to log in. Learning such interaction patterns is still an open question.

Throughout this thesis (Sections 3.9, 4.6, 5.7, 6.6, and 7.8), we presented the lessons we

learned and highlighted open qu estions for each of the approaches we presented. While this

thesis introduced how to learn and model di�erent aspects of app interaction, it is just the

beginning.

Learning interaction sequences Some app functionality requires sequences of events to be

triggered. To buy an item on a shopping app, for example, it usually is necessary to add

the item to the cart, click on checkout, enter billing and shipping information, and con�rm

the purchase. Learning interaction patterns only makes the test generator more likely to

trigger app functionality but does not guarantee that the right functionality is triggered,

in the correct sequence. Triggering the right interactions, in the right order, can lead to

signi�cant improvements. In Section 6.3, we observed that splitting the widgets into the

input and the non-input �elds, and interacting with the input �elds before the rest, already

improves test coverage. Similar behavior is seen in [50] when splitting the UI into buttons

and non-buttons. Learning interaction sequences could allow test generators to reach more

functionality.

Associating UI semantics When using an app, humans rely not only on their knowledge of

how apps work but also on the semantics of its UI. Our learning techniques could bene�t

from semantic information. UI semantics can be used to determine interaction patterns and

be a piece of valuable information for learning interaction sequences. Better mechanisms

for semantic extraction can also be used to obtain more accurate real-world values for

testing, such as by restricting a from label in a �ight app to airports. Semantics can also

be associated with our mined UI grammars, opening possibilities in �elds such as anomaly

detection and test transfer.

Learning app functionality We learned how to interact with an app, but not how to use it.

That is, we did not explore how to trigger app functionality correctly. Learning interaction

sequences and associating them with UI semantics could be used to allow test generators

to reuse previously acquired knowledge when testing di�erent apps. Such behavior could

e�ectively allow the development of approaches that learn how to use apps, not only from
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an interaction perspective but by actually learning how to trigger app functionality in the

process.

Finally, the general concepts we have presented in this thesis are not limited to the Android

platform or mobile apps in general. Our techniques to learn and model the language of apps

can be used on di�erent platforms, such as web or iOS. Also, while we designed DM-2 to test

Android apps, its architecture is easily extensible. One can, for example, extend its automation

engine to interact with iOS apps and reuse out-of-the-box the approaches we implemented. We

conclude this thesis in the hope that it provides useful insights on how to teach test generators

to use apps e�ectively, leading to better tests.
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Appendix A

Apps and Results for DM-2

Table 13: Apps used to evaluate DM-2

App Source Downloads Category

Alogblog F-Droid - Internet

KeePassDroid (2.0.6.4) F-Droid - Security

BART Runner (2.2.6) F-Droid - Navigation

Jamendo (1.0.4) F-Droid - Music

DroidWeight (1.3.3) F-Droid - Sports & Health

Pizza Cost (1.05-9) F-Droid - Money

Munch (0.44) F-Droid - Internet

Mirrored (0.2.9) F-Droid - Internet

World Weather (1.2.4) Play Store 1k-5k Weather

SyncMyPix (0.16) Play Store 250k-500k Social

Der Die Das (16.04.2016) Play Store 500k-1M Learning

wikiHow (2.7.3) Play Store 1M-5M Books
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A. Apps and Results for DM-2

Figure 51: Coverage over time between DM-2, DroidBot and Monkey for Alogblog app
(a2dp.Vol)

Figure 52: Coverage over time between DM-2, DroidBot and Monkey for KeePassDroid app
(com.android.keepass)
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Figure 53: Coverage over time between DM-2, DroidBot and Monkey for Munch app
(com.crazyhitty.chdev.ks.munch)

Figure 54: Coverage over time between DM-2, DroidBot andMonkey for BART Runner app
(com.dougkeen.bart)
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A. Apps and Results for DM-2

Figure 55: Coverage over time between DM-2, DroidBot and Monkey for World Weather
app (com.haringeymobile.ukweather)

Figure 56: Coverage over time between DM-2, DroidBot and Monkey for SyncMyPix app
(com.nloko.android.syncmypix)
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Figure 57: Coverage over time between DM-2, DroidBot and Monkey for Der Die Das app
(com.lubosmikusiak.articuli.derdiedas)

Figure 58: Coverage over time between DM-2, DroidBot and Monkey for Jamendo app
(com.teleca.jamendo)
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A. Apps and Results for DM-2

Figure 59: Coverage over time between DM-2, DroidBot and Monkey for WikiHow app
(com.wikihow.wikihowapp)

Figure 60: Coverage over time between DM-2, DroidBot and Monkey for Pizza Cost app
(de.drho�mannsoft.pizza)
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Figure 61: Coverage over time between DM-2, DroidBot and Monkey for Mirrored app
(de.homac.Mirrored)
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Appendix B

Apps and Results for Static UI
Interaction Model Experiments

Table 14: Apps used to evaluate the UI interaction model

App Source Downloads Category

Alogblog F-Droid - Internet
KeePassDroid (2.0.6.4) F-Droid - Security
Munch (0.44) F-Droid - Internet
BART Runner (2.2.6) F-Droid - Navigation
Jamendo (1.0.4)15 F-Droid - Music
2048 (2.06) F-Droid - Games
DroidWeight (1.3.3) F-Droid - Sports & Health
Pizza Cost (1.05-9)15 F-Droid - Money
Mirrored (0.2.9) F-Droid - Internet
Easy xkcd (5.3.9) F-Droid - Internet
Dialer2 (2.90) F-Droid - Phone & SMS
PasswordMaker (1.1.11) F-Droid - Security
Tomdroid (0.4.1) F-Droid - Writing
World Weather (1.2.4) Play Store 1k-5k Weather
SyncMyPix (0.16) Play Store 250k-500k Social
Der Die Das (16.04.2016) Play Store 500k-1M Learning
wikiHow (2.7.3) Play Store 1M-5M Books
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B. Apps and Results for Static UI Interaction Model Experiments
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Figure 62: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
Alogblog app (com.alogblog.aaa)
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Figure 63: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
KeppPassDroid app (com.android.keepass)
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Figure 64: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
Munch app (com.crazyhitty.chdev.ks.munch)
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Figure 65: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
BART Runner app (com.dougkeen.bart)
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B. Apps and Results for Static UI Interaction Model Experiments
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Figure 66: Coverage over time betweenDM-2 (Random) andDroidmate-M (Guided) for World
Weather app (com.haringeymobile.ukweather)
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Figure 67: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for Der
Die Das app com.lubosmikusiak.articuli.derdiedas
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Figure 68: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
SyncMyPix app (com.nloko.android.syncmypix)
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Figure 69: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
WikioHow app (com.wikihow.wikihowapp)
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B. Apps and Results for Static UI Interaction Model Experiments
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Figure 70: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for Pizza
Cost app (de.drho�mannsoft.pizza)

%
 C

ov
er

ag
e

0,0 %

20,0 %

40,0 %

60,0 %

80,0 %

T (sec)

0 90 18
0

27
0

36
0

45
0

54
0

63
0

72
0

81
0

90
0

99
0

10
80

11
70

12
60

13
50

14
40

Random Guided

Figure 71: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
Mirrored app (de.homac.Mirrored)
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Figure 72: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for Easy
XKCD app (de.tap.easy.xkcd)
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Figure 73: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
Dialer2 app (org.dnaq.dialer2)
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B. Apps and Results for Static UI Interaction Model Experiments
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Figure 74: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
PasswordMaker app (org.passwordmaker.android)
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Figure 75: Coverage over time between DM-2 (Random) and Droidmate-M (Guided) for
TomDroid app (org.tomdroid)
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Appendix C

Apps and Results for Reinforcement
Learning Experiments
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Figure 76: Results for the parameter tuning experiments for selecting ε for ε-Greedy strategy
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C. Apps and Results for Reinforcement Learning Experiments

0.2

0.4

0.6

%
 C

ov
er

ag
e

ψ = 10 ψ = 20 ψ = 50 ψ = 100

Figure 77: Results for the parameter tuning experiments for selecting the weight of the static
model (ψ)

164



0

0,
2

0,
4

0,
6

0,
8

Ke
eP

as
sD

ro
id

M
un

ch
BA

RT
 R

un
ne

r
W

or
ld

 W
ea

th
er

De
r D

ie
 D

as
20

48
w

ik
iH

ow
Pi

zz
a

M
or

ro
re

d
Ea

sy
 x

kc
d

Pa
ss

w
or

dM
ak

er
Di

al
er

2

Ep
si

lo
n

Ep
si

lo
n-

H
Th

om
ps

on
Th

om
ps

on
-H

F
ig
u
re

78
:
P
er

ap
p
co
m
p
ar
is
on

of
st
at
em

en
t
co
ve
ra
ge

b
et
w
ee
n
ε-
G
r
e
e
d
y
,
ε-
G
r
e
e
d
y
+
K
,
T
h
o
m
p
s
o
n
,
an
d
T
h
o
m
p
s
o
n
+
K

165



C. Apps and Results for Reinforcement Learning Experiments
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Appendix D

Apps and Results for UI and Code
Grammars
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D. Apps and Results for UI and Code Grammars

Table 15: Apps used in the experiments and the coverage achieved by the initial test case

Name Version Statements Test Coverage (%)

AAT 1.8 31124 12201 (39%
ALSA Mixer WebUI 0.3.2 2633 504 (19%)
Altcoin Prices 1.7.0 6191 2913 (47%)
BART Runner 2.2.6 8095 3934 (49%)
BeHe Pro 2.6.4 4524 2646 (58%)
Bits & Baeume 1.37.3 4434 1520 (34%)
Boilr 0.7.0 10955 3248 (30%)
BookList 1.7 1438 231 (16%)
Car Report 3.25.0 17417 2736 (16%)
Conversations Legacy 2.5.8 64624 7152 (11%)
Cool Mic 1.0.6 2750 1769 (64%)
Cool Reader 3.2.9-1 53883 11118 (21%)
CPU Info 4.2.0 14283 7018 (49%)
Crates.io uno�cial 1.3.2 3478 1270 (37%)
Democracy Droid 3.7.1 3544 1803 (51%)
Diceware Password Generator 1.8 1873 568 (30%)
Easy Diary 1.4.1973 14044 5783 (41%)
Easy Weather 1.1 1763 392 (22%)
eBooks 0.4 1375 296 (22%)
Episodes 0.12 4441 840 (19%)
F-Droid 1.7 41409 14067 (34%)
Fake Traveler 1.6 1347 270 (20%)
Fancy Places 1.2.4 3731 1878 (50%)
Flite TTS Engine 3.0.0 1493 981 (66%)
FOSDEM Companion 1.6.2 11843 6719 (57%)
FOSSASIA 1.0.1 13983 6015 (43%)
Goblim 2.8 3725 955 (26%)
Good Weather 4.4 5301 3122 (59%)
Halachic Times 6.0 12444 6086 (49%)
Inventum 0.3 6813 4490 (66%)
Just Craigslist 2.0 6738 4181 (62%)
KouChat 1.1.1 12153 3809 (31%)
LinuxDayOSM 1.6.2 2972 1587 (53%)
My Expenses 3.0.0 72056 15970 (22%)
MyHackerspace 1.8.2 2260 1189 (53%)
NewPipe 0.16.1 49460 16095 (33%)
NWS Weather Alerts Widget 1.1.3 2647 1345 (51%)
RedReader 1.9.10 43357 14462 (33%)
Simple Last.fm Scrobbler 1.5.7 12279 3422 (28%)
Single-Feed 2.8 2276 1248 (55%)
SmartNavi 2.2.4 6467 2621 (41%)
taz.app 3.9.2.3 26134 11199 (43%)
Transportr 2.0.4 21124 4984 (24%)
Tricky Tripper 1.6.0 16677 4590 (28%)
Vlille Checker 4.2.3 3552 2260 (64%)
Your forecast 4.7.7 26781 10014 (37%)
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Table 16: Size of the mined grammar for individual apps

Name Prod. Rules State Prod. Widgets

AAT 107 66 36
ALSA Mixer WebUI 10 403 367
Altcoin Prices 236 41 42
BART Runner 203 148 132
BeHe Pro 619 65 81
Bits & Baeume 20 39 25
Boilr 140 10 30
BookList 17 20 42
Car Report 302 259 301
Conversations Legacy 189 157 102
Cool Mic 60 124 171
Cool Reader 95 80 57
CPU Info 31 5 13
Crates.io uno�cial 104 452 15
Democracy Droid 138 36 25
Diceware Password Generator 23 2 2
Easy Diary 206 71 34
Easy Weather 16 126 43
eBooks 94 80 62
Episodes 30 121 67
F-Droid 114 79 74
Fake Traveler 199 19 87
Fancy Places 21 33 40
Flite TTS Engine 94 57 43
FOSDEM Companion 238 33 12
FOSSASIA 120 117 44
Goblim 86 65 43
Good Weather 80 146 129
Halachic Times 95 6 11
Inventum 167 259 206
Just Craigslist 95 68 36
KouChat 334 138 105
LinuxDayOSM 17 136 112
My Expenses 514 148 132
MyHackerspace 103 73 78
NewPipe 178 88 120
NWS Weather Alerts Widget 45 6 9
RedReader 331 11 23
Simple Last.fm Scrobbler 141 4 16
Single-Feed 75 6 8
SmartNavi 148 224 51
taz.app 135 53 97
Transportr 79 16 20
Tricky Tripper 215 25 37
Vlille Checker 56 118 59
Your forecast 186 76 59
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