View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Chalmers Research

THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Security Analysis of Web

and Embedded
Applications

BENJAMIN ERIKSSON

CHALMERS

Division of Information Security
Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden, 2020

https://core.ac.uk/display/347172726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Security Analysis of Web and Embedded Applications

BENJAMIN ERIKSSON

Copyright ©2020 Benjamin Eriksson
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Information Security

Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using KTgX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2020.

ii

Abstract

As we put more trust in the computer systems we use the need for se-
curity is increasing. And while security features like HTTPS are becoming
commonplace on the web, securing applications remains difficult. This thesis
focuses on analyzing different computer ecosystems to detect vulnerabilities
and develop countermeasures. This includes web browsers, web applications,
and cyber-physical systems such as Android Automotive.

For web browsers, we analyze how new security features might solve a
problem but introduce new ones. We show this by performing a systematic
analysis of the new Content Security Policy (CSP) directive navigate-to.
In our research, we find that it does introduce new vulnerabilities, to which
we recommend countermeasures. We also create AutoNav, a tool capable of
automatically suggesting navigation policies for this directive.

To improve the security of web applications, we develop a novel black-
box method by combining the strengths of different black-box methods. We
implement this in our scanner Black Widow, which we compare with other
leading web application scanners. Black Widow both improves the cover-
age of the web application and finds more vulnerabilities, including ones in
Prestashop, WordPress, and HotCRP.

For embedded systems, We analyze the new attack vectors introduced by
combining a phone OS with vehicle APIs and find new attacks pertaining to
safety, privacy, and availability. Furthermore, we create AutoTame, which is
designed to analyze third-party apps for vehicles for the vulnerabilities we
found.

Keywords: Vulnerabilities, Android Automotive, Content Security Policy,
Web application scanning

iii

Acknowledgments

There are many people that I want to thank for their positive impact
on this journey. This endeavour would not have been possible without the
amazing support my supervisor Andrei. Thank you Andrei for always in-
spiring me and pushing me to try new things, be it traveling across to world
for internships, taking on new challenges at work or biking to new cities.

A huge thank you to all my amazing colleagues at Chalmers. You all
make coming to work both fun and inspiring! Especially to my PhD buddy
Alexander for being there for me since day one, always helping me when
I’'m lost, whether it is academic, technical, or personal, thank you for being
there! Thanks to Iulia for all the fun and insightful discussions, teaching me
things outside my bubble. I also want to thank Christoph from Mozilla for
an amazing internship, super fun summer, and great supervision.

On the personal side, I owe a lot to Jonas for pushing me in the right
direction, giving me the courage to pursue a PhD, and helping me co-author
my first paper! A special thanks to Agustin, Alejandro, Ann-sofie, Anton and
Matti for our daily trips to Verdansk.

Finally, a big thank you to my wife, best friend, and love of my life, Ann-
sofie. Thank you for your immense support during this journey, for motivat-
ing me to work and for motivating me to do things outside of work.

Contents

Introduction 1
1 Web applications. 2

1.1 Attackers 2

1.2 Client-side 3

1.3 Server-side 5

2 Embedded Systems 7

2.1 Permissionmodel 8

2.2 Android Automotive 8

2.3 Attack surface in vehicles 8

2.4 Attacks and Countermeasures 9
Bibliography 13
1 On the Road with Third-Party Apps 15
1 INTRODUCTION 17

2 BACKGROUND 21

2.1 Experimental Setup 22

2.2 Automatic analysis of Androidapps 22

2.3 Android Automotive 23

2.4 Android’s Permissionmodel 23

2.5 Covertchannels. 23

3 ATTACKS 24

3.1 Disturbance 24

3.2 Availability oL 25

3.3 Privacy 26

4 COUNTERMEASURES 27

4.1 Permission. 27

4.2 APIcontrol 28

43 System 29

4.4 Codeanalysis 30

vii

Contents

5 SPOTIFY CASESTUDY 31
5.1 Permissions L. 32
5.2 Vulnerability detection 32
5.3 AutoTameo o 32
5.4 Information flow analysis 33
5.5 Summaryo 34
6 RELATEDWORK 34
7 CONCLUSIONS e 35
Bibliography 37
Appendix 43
AutoNav: Evaluation and Automatization of Web Navigation
Policies 45
1 Introduction 47
1.1 Motivation. L o 47
1.2 Research questions, 49
1.3 Contributions Lo 50
2 Background 51
2.1 Threatmodel 52
2.2 CSP . . e 53
23 Originpolicy 53
24 Navigation. 54
2.5 Navigate-to directive 54
3 Vulnerabilities 55
3.1 Methodology 55
3.2 Specification L. 56
3.3 Implementation, 59
4 Countermeasures 62
4.1 Specification oL 62
4.2 Implementation 63
5 AutoNavo o000 oo 64
5.1 Inference 64
5.2 Policy generation 65
5.3 Crawling. 67
5.4 Limitations 67
6 Empirical Study L 68
6.1 Policy tradeoffs, .. 68
6.2 Coverage 70
7 Relatedwork 70
8 Conclusion 72

viii

Contents

Bibliography 75
Black Widow: black-box Data-driven Web Scanning 81
1 Introduction L 83
2 Challenges 86
2.1 Navigation Modeling 86
2.2 Traversing 87
2.3 Inter-state Dependencies 89
3 Approach. 90
3.1 Navigation Modeling 92
3.2 Traversal 94
3.3 Inter-state Dependencies 95
3.4 Dynamic XSS detection 96
4 Evaluation 96
41 Implementation 96
4.2 Experimental Setup 97
43 Code CoverageResults 100
44 Code InjectionResults 103
4.5 Takeaways, 104
5 AnalysisofResults, 104
5.1 Coverage Analysis 105
5.2 False positives and Clustering 106
5.3 WhatWeFind 107
5.4 CaseStudies 109
5.5 Features Attribution 111
5.6 MissedbyUs 113
5.7 Vulnerability Exploitability 114
5.8 Coordinated Disclosure 115
6 Related Work 115
7 Conclusion L 117
Bibliography 119
Appendix 123
3.1 Scanner configuration 123

ix

Introduction

Whether you are doing online banking, using the web, or listening to
music in your car, you are relying on the underlying systems to work effi-
ciently and securely. More and more services are moving online and privacy
concerns are increasing. At the same time, analyzing and improving security
is no easy task in large ecosystems such and the web or Android. To combat
this, we research and improve the security of the web browsers users use
to connect to the web and the web applications they interact with. And as
our cars become connected to the Internet and support the use of third-party
apps the attack surface, as well as the potential impact of vulnerabilities, in-
creases. We develop novel methods for finding vulnerabilities in these com-
plex ecosystems, mitigations for these problems and we implement them in
open-source tools that can be used by both industry and researchers.

Our research efforts can be divided into two major categories, web ap-
plications and embedded systems. For web applications we focus both on
the client-side, ensuring the security of the web browser, and the server-
side, ensuring the security of the application code running on the server. We
investigate the interplay between the client-side and the server-side in the
form of security policies. In the second paper [5] we research and improve a
recently proposed security policy, covering the interplay between client and
server. To help developers automatically generate these policies we created
AutoNav, an open-source tool capable of analyzing web sites and suggest-
ing policies. Improving the security of server-side code is the focus of the
third research paper [4]. Here we develop Black Widow, a black-box web ap-
plication scanner capable of finding more XSS vulnerabilities than previous
efforts. For embedded systems, we are interested in the security implications

Introduction

of porting a secure system, in this case Android, to new environments such
as vehicles. We explore this in the first paper [3]. In addition, to exploring the
new attack surface and presenting new attacks, we also create AutoTame, a
static analysis tool able to find apps exploiting the new vehicle-specific vul-
nerabilities we present.

1 Web applications

Any website you visit on the web can be considered a web application. When
you visit the website your web browser will send a request to the web ap-
plication, which will be handled by the application code running on the web
server. Once handled, the web application will respond with a complete web
page.

For a secure web, it is important to improve the security of both the web
browsers and web applications, as well as, the interaction between them.
The following sections will cover the multiple different attackers we consider
followed by the security concerns of both the client-side and the server-side
in more detail.

1.1 Attackers

The web is a complex ecosystem that allows attackers to use a multitude of
different attack vectors. To efficiently protect against these attackers it is cru-
cial to understand their capabilities. The security literature [13] divides the
attackers into four classes of attackers, injection, gadget, web, and network
attackers.

Injection The injection attacker is the classic web application user. They
can interact with the application to perform available actions, for exam-
ple, comment on images, make their posts, leave reviews, etc. By carefully
choosing which actions to perform, the attacker might be able to inject their
JavaScript code into the web application. As the attacker is not part of the
website, this is considered a Cross-Site Scripting (XSS) attack.

Gadget A gadget is a third-party code that is willingly being included on
a website. Common examples are analytic scripts and frameworks, such as
jQuery. A gadget attacker is an attacker that can change the gadget code, thus
being able to attack multiple websites at the same time. Consider ifmail. com
includes the script evil.com/analytics.js then a gadget attacker would
try to attack mail. com by changing the analytics.js code.

mail.com
evil.com/analytics.js
mail.com
analytics.js

1. Web applications

Web The unique capability of the web attacker is that they can host their
website on the web. The attacker-controlled website can be used to redirect
users to malware or force users to send requests to other websites.

The attacker-controlled website evil. com can force a user to initiates a
request tomail. com. If the user is already authenticated with mail. com then
the attacker could potentially forge a request to delete all the user’s emails
on mail.com. This is known as a Cross-site request forgery (CSRF) attack.

Network The final and strongest attacker is a network attacker. There
are two types of network attackers, passive and active. A passive network
attacker is capable of listening to all the traffic between the user and the
website, while an active network attacker can also modify the traffic.

With this capability, the attacker can record passwords being sent to the
website for later account takeovers. In the case of a bank application, an
active network attacker would be able to change the recipient bank account
of a transaction while it is being sent to the website.

1.2 Client-side

The focus of client-side security is to ensure clients, like web browsers, are
protected from malicious web servers or, more commonly, web servers that
have been hijacked by attackers. We can use the CIA triad to define security
as protecting the confidentiality, integrity, and availability of services online.
This includes ensuring that a website, e.g. evil.com, is not able to read or
modify your emails at mail.com.

Consider the two first requests in the listing below, line 3 and line 4.
A user visits evil.com and is then requested to fetch index from evil.com
(Line 3) and also frommail. com. It is the fundamental security feature Same-
Origin Policy (SOP) that decides to allow the first and block the second. SOP
isolates different origins, where an origin is defined as a triplet of protocol
(e.g. http), host (e.g. evil.com), and port (e.g. 80). This means that evil.com
and mail. com are different origins and, as such, attempts to fetch data from
each other should be blocked by the browser, as shown by the red dashed line
in ??. There are some exceptions to this rule, for example, evil.com could
load images and scripts from mail. com (Line 5).

SOP helps protect confidentiality as cross-origin data reads are blocked.
But SOP is not enough to protect integrity. Consider the POST request on line
6 in the code below where the browser is requested to send an email using
send_email.php on mail.com. If the client is authenticated to mail.com,
SOP will not block this request and an email can be sent. However, SOP will
still block the response. This type of attack is known as a Cross-site request

evil.com
mail.com
mail.com
mail.com
evil.com
mail.com
evil.com
evil.com
mail.com
evil.com
mail.com
evil.com
mail.com
mail.com
mail.com

Introduction

forgery (CSRF). While this is commonly fixed on the server-side, by including
special CSRF-tokens in requests, modern browsers are now stopping CSRF
by settings SameSite cookies to lax by default [10].

The final action worth mentioning here is navigation. Although fetch and
POST are secured in modern browsers, evil. com can still forcefully navigate
a user to mail. com or some other web page hosting malicious or unwanted
content (Line 7). To solve this, the new CSP directive navigate-to was pro-
posed [15]. As the policy was a draft, and still is, it was the perfect opportu-
nity to research its impact on the web security ecosystem. The results of this
are presented in the second paper [5]. To better understand this ecosystem
the next section will cover the possible attacks.

1 host: evil.com

3 FETCH http://evil.com/index Allowed

4+ FETCH http://mail.com/index Blocked
s FETCH http://mail.com/img.jpg Allowed
6 POST http://mail.com/send_email.php Allowed

7 NAVIGATE http://mail.com/send_email.php Allowed

1.2.1 Attacks and Countermeasures

The most notorious client-side attack on the web is XSS. In this attack, evil
. com can execute JavaScript on mail. com, despite SOP. This is accomplished
by injected data which contains HTML, for example:
<script>alert(1)</script>. While any of the attackers in Section 1.1 can
launch this attack, the injection attacker and the web attacker are the most
common. If the web application on main.com is programmed incorrectly, it
might output this data as HTML code. In this case, this would result in the
JavaScript being executed and a popup being showed to the user. A more ma-
licious attacker could leverage this JavaScript execution to steal passwords
and other credentials. Although it is best to fix the problem in the code on
the server-side, as we will explain Section 1.3, the browser can also help by
using CSP.

Content Security Policy (CSP) [16] is a mechanism for websites to define
security policies that the browser will enforce. For example, websites can
define a policy to only allow loading JavaScript from mail.com. Crucial for
XSS is that CSP can be used to block all inline JavaScript, which is the main
attack vector for XSS.

A newer type of client-side attack is navigation attacks. In a navigation
attack, users on mail.com could be redirected away to a malicious website
like evil. com. This happened in on Equifax in 2017 where their users were

evil.com
evil.com
mail.com
main.com
mail.com
mail.com
evil.com

1. Web applications

redirected to malware sites [1]. As mentioned in the previous section, the
CSP directive navigate-to is being developed as part of CSP Level 3 [15]
to mitigate navigation attacks. By using this new directive, Equifax could
define the following policy to only allow navigations to their domain.

1 navigate-to: equifax.com

The navigate-to directive will protect against navigation attacks from all
the attackers in Section 1.1, except the network attacker. This is because an
network attacker could remove the policy in transit. To protect against this
the website should use HTTPS.

In the second paper [5] we research this new navigation policy to test
both if it introduces new vulnerabilities and what the performance impact
on the web is. We discover that it efficiently protects against navigation at-
tack but also introduces new methods to probe users for private data. In
particular, the web attacker from Section 1.1 can abuse this policy gain in-
formation about the user visiting their website. To help the adaptation of
this new policy we develop AutoNav in the second paper [5]. AutoNav is
an open-source tool developers can use to scan their websites for outgoing
navigations, mostly hyperlinks, and then get suggested navigation policies.

1.3 Server-side

In contrast to client-side security, server-side security focuses on ensuring
the security of the server or the application. From the developer’s perspec-
tive, this means writing code without bugs that attackers can exploit. How-
ever, writing bugfree code is hard, as is evident by the billions of credentials
that have been stolen over the years due to poor security [9].

The following sections explain how web applications can be attacked
(Section 1.3.1) and how we can help developers find and fix bugs (Section 1.3.2).

1.3.1 Web application vulnerabilities

Many possible vulnerabilities can be present in web applications. OWASP’s
top 10 list [14] is a collection of the most critical web application vulnera-
bilities, with vulnerabilities ranging from injection attacks to authentication
misconfiguration and XSS. The work in this thesis mainly focuses on XSS as
it is both very prevalent and easy to exploit [14].

XSS vulnerabilities are caused by a web application reflecting user input
as HTML code. Consider a forum where users, more formally an injection
attacker (Section 1.1), can post messages. If a user posts hello and
this is directly added to the HTML code produced by the application then the

Introduction

browser will interpret the tag as HTML. This becomes more nefarious
if the user posts a message containing <script> tags, as this allows them
to execute JavaScript as the application. Using JavaScript attackers can steal
cookies and other valuable information.

Protecting against XSS is, in theory, simple. By converting the HTML
tag characters < and > with the escaped values < and >, a large portion
of XSS is solved. Depending on the precise context, other characters might
need escaping too, for example, quotes (") can be escaped as ". In the
code below we see two examples where user input, $name, and $url, are
reflected without any escaping. In these cases, an attacker could exploit this
to gain JavaScript execution.

1 SERVER-SIDE CODE => GENERATED HTML
3 Hello $name => Hello <script>alert(l)</script>
1 link => link

What makes XSS hard to detect in practice is that it is hard to know when
the data should be escaped for HTML. If the data is read from a database it
can be hard to determine for a developer if a malicious user could control
that data. Furthermore, escaping everything for HTML is not good either
as it can cause problems when exporting the data to non-HTML platforms.
This makes finding the vulnerabilities the major challenge of stopping XSS
attacks. Finding these vulnerabilities if the main focus of the third paper [4].

1.3.2 Finding vulnerabilities

No developer is perfect and sooner or later a mistake will lead to a poten-
tial vulnerability in the code. At this point, it is important to have systems
place to help find these vulnerabilities. This can range from manual security
analysis to fully automatic code and application scanners.

Automatic scanning can be divided into two categories: white-box and
black-box. White-box analysis can be used if application artifacts, such as
source code, models, and code annotations, are available. In this case, the
scanner can analyze these artifacts to uncover vulnerabilities. When these
artifacts are not available, which is the standard case for penetration testing,
black-box scanning can be utilized instead.

Black-box scanning dynamically interacts with the application, similar
to how a user would. The scanner probes the application in different ways
while analyzing the responses from the application for vulnerable patterns.
For example, a black-box scanner can post <script>alert(1l)</script>
to a forum and analyze the response for a JavaScript alert message. If this is

2. Embedded Systems

detected it would support the hypothesis that the forum has an XSS vulner-
ability.

The main challenge of black-box scanning is how to interact with the web
application. Modern web applications have complicated workflows where
combinations of links, form submissions, and JavaScript actions are required.
Additionally, the state of the web application is also important. For example,
a prerequisite for adding a product review could be to add a product. In this
case, the scanner would need to be able to add products before being able to
test the security of the review functionality.

Previous research in the field of black-box scanners focused on one prob-
lem at a time. For example, the Jaek scanner focused on exploring JavaScript
events [12]. The Enemy-of-the-state instead put the focus on modelling the
state of the web applications [2]. In Black Widow [4] we combine the strengths
of previous scanners while minimizing their weaknesses, in combination
with novel detection methods for XSS vulnerabilities.

2 Embedded Systems

As embedded systems become more complex and allow for third-party code
to run, they too need to ensure client-side security. A great example of such a
system is Android. Android is a popular operating system for mobile phones.
While Android is mainly developed by Google, it also allows third-party de-
velopers to create and distribute apps on the Google Play store. By allowing
third-party apps users can quickly create and share their favorite apps with-
out having to wait for the first-party company to develop them.

The downside with third-party apps is that it is hard to ensure that the
apps are not malicious or simply poorly implemented and vulnerable. The
main defense against apps stealing data or secretly recording your micro-
phone is permission.

Google is currently developing a new version of Android, named Android
Automotive, which will run in the infotainment systems of cars. Android Au-
tomotive provides an excellent chance to research the security implications
of porting a relatively secure platform, Android on phone, to work in a new
ecosystem of embedded systems in cars. This is the topic of the first paper [3].

Before explaining the security of Android Automotive, let us first explore
the general security mechanisms in Android, the new features in Android
Automotive, and finally the attack surface and possible attacks.

Introduction

2.1 Permission model

If an Android app wants to access your camera, microphone, or location,
for example, then the app must ask for permission to use this. The main
two permission types in Android are normal and dangerous [8]. Lower im-
pact APIs, such as Internet access or vibration control only requires normal
permissions. These permissions are granted when the user installs the app.
For more critical APIs, such as location, the dangerous permission are used.
When an app tries to access such an API the user will receive a pop-up in
which they have to grant the app access.

2.2 Android Automotive

Android Automotive [7] is a standalone version of Android which is designed
to be used in vehicles. The operating system is used in the vehicle’s infotain-
ment system, usually a unit in the middle of the dashboard with a touch-
screen. The infotainment system is responsible for presenting information,
such as maps and location, as well as entertainment such as music and radio.

Android Automotive introduces new APIs to control the vehicle’s heat-
ing, ventilation, and air conditioning system (HVAC). It also enables apps to
read sensor data including speed, temperature, and engine RPM.

2.3 Attack surface in vehicles

As the connectivity of the infotainment systems is increasing with new fea-
tures like Internet connectivity, WiFi, Bluetooth, and third-party code run-
ning locally, the attack surface is ever increasing. We have seen previous
attacks on infotainment systems where attackers were able to take over a
2014 Jeep Cherokee by exploiting the Uconnect system [11].

Many of the low-level systems, both in Android Automotive and the ve-
hicles, are already well explored. Communication protocols like WiFi and
Bluetooth and tried and tested implementations. Similarly, the internal sys-
tems in the vehicle isolated into different networks with firewalls between,
ensuring that the infotainment system cannot send break commands or turn
off the engine.

No solution is perfect and researching how to break the internal fire-
walls and communication protocol implementations would be interesting.
However, the target for the first research paper [3] was to identify what An-
droid Automotive apps can do within the specification. That is, what attacks
can apps perform without exploiting low-level vulnerabilities such as buffer
overflows.

2. Embedded Systems

2.4 Attacks and Countermeasures

The attacks I've found in the research on Android Automotive can be divided
into three categories, disturbance, availability, and privacy attacks.

Disturbance attacks is a novel vector since it targets a new asset, the
attention of the driver. Android was not designed with this in mind since it
is not critical what the user focuses on. In the first paper [3] we demonstrate
how malicious apps can take over the stereo and play music on max volume
while simultaneously overriding user input to turn down the volume. To
counter this we develop AutoTame, a set of static analysis methods that can
detect Android Automotive apps using dangerous APIs.

Availability attacks focus on acquiring as much system resources as pos-
sible, rendering other apps and the system itself unusable. A classic availabil-
ity attack is the Fork Bomb which has been demonstrated to work on classic
Android previously [6]. In a phone, the impact of such an attack is quite
limited, simply reboot the phone and it is back to normal. However, for the
infotainment system, which is used for navigation, having the user trying to
figure out how to reboot or having to pull over to fix it is more severe. This
problem is best solved on the OS level by limiting the number of processes
an app can spawn, similar to how most desktop operating systems solve it.
As a short term mitigation, we also develop static analysis methods to detect
apps trying to abuse this.

Finally, privacy attacks try to gain and exfiltrate sensitive information.
There are many interesting methods for abusing other apps, for example, an
app without Internet permission can ask the web browser to open a URL to
leak data. This is known as the confused deputy problem. In our research, we
found that the default music player in Android Automotive was able to exfil-
trate without giving any visual clues to the user. We also found new meth-
ods for acquiring sensitive information. In particular, Android Automotive
allows apps to read sensor data like gear and RPM, which can be combined
to calculate the velocity. This is significant since reading the gear and RPM
does not require any permissions while reading the velocity requires elevated
permissions. To counter this combinable sensors values should also require
the app to request permissions.

Thesis structure

Paper 1: On the Road with Third-Party Apps: Security Analysis of an
In-Vehicle App Platform [3]

This paper aims to uncover new security vulnerabilities and attack vectors
from the porting of Android to the vehicle-specific Android Automotive. We

Introduction

systematically investigate the attack surface of locally running third-party
apps in vehicles. We present new attack vectors with the focus on disturb-
ing the driver, potentially affecting road safety. We implement these attacks
and test them both in Android Automotive emulators and physical testbeds
supplied by Volvo Cars. To mitigate the problems we find we suggest en-
hancements to the permission model and improved API control. In addition,
we develop AutoTame, for code analysis of vehicle-specific applications.

Statement of contributions This paper was in collaboration with Jonas
Groth and Andrei Sabelfeld. Benjamin was responsible for finding and eval-
uating the attacks, designing the countermeasures and creating AutoTame.

Appeared in: Proceedings of the International Conference on Vehicle Tech-
nology and Intelligent Transport Systems (VEHITS), 2019.

Paper 2: AutoNav: Evaluation and Automatization of Web Navigation
Policies [5]

This paper performs a first investigation of the new navigate-to CSP di-
rective. We systematically analyze the potential vulnerabilities introduced
by navigate-to with respect to the full web ecosystem. We demonstrate
multiple attacks such as detecting if users are logged in to different websites,
probing active shopping carts and bypassing third-party cookie blocking. We
propose multiple countermeasures to these problems by enhancing the spec-
ification, browser implementations and web development practices. To aid
web developers in adapting this new policy we develop the black-box scanner
AutoNav. AutoNav can automatically crawl a website and infer navigation
policies. We also introduce a simplification and wildcard algorithm to allow
developers to easily optimize policies for performance or security. We eval-
uate AutoNav and the viability of navigate-to by an empirical study on
Alexa’s top 10,000 websites.

Statement of contributions This was a collaboration with Andrei Sabelfeld.
Benjamin was responsible for analyzing the potential vulnerabilities, design-
ing and implementing AutoNav, and performing the evaluation.

Appeared in: Proceedings of the Web Conference (WWW), 2020.

Paper 3: Black Widow: black-box Data-driven Web Scanning [4]

In this paper we improve the state-of-the-art in web application vulnerability
scanning by designing a black-box scanner by using a novel combination of

10

2. Embedded Systems

black-box scanning techniques. We analyze the main challenges black-box
scanners face in terms of vulnerability detection and code coverage. Based
on this we develop Black Widow, a data-driven web scanner capable of fol-
lowing complex workflows and interact with JavaScript events. We evaluate
our scanner on 10 web applications, including Drupal, HotCRP, Prestashop
and WordPress, and show that our scanner improves code coverage by be-
tween 63% and 280% compared to the other scanners. In addition, we also
find more XSS vulnerabilities than other scanners, including some in mod-
ern production software, including HotCRP, osCommerce, PrestaShop and
WordPress.

Statement of contributions This paper was written in collaboration with
Giancarlo Pellegrino and Andrei Sabelfeld. Benjamin was responsible for de-
veloping the new scanning method, designing and implementing the method
in Black Widow and performing the evaluation.

To appear in: Proceeding of the IEEE Symposium on Security & Privacy (IEEE
S&P), 2021.

11

(1]

(8]

(9]

Bibliography

ars Technica. Equifax website borked again, this time to redirect to
fake flash update, 2017. https://arstechnica.com/information-
technology/2017/10/equifax-website-hacked-again-this-
time-to-redirect-to-fake-flash-update/.

A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the state:
A state-aware black-box web vulnerability scanner. In USENIX Security
Symposium 12, pages 523-538, 2012.

B. Eriksson, J. Groth, and A. Sabelfeld. On the Road with Third-Party
Apps: Security Analysis of an In-Vehicle App Platform. In International
Conference on Vehicle Technology and Intelligent Transport Systems (VE-
HITS), 2019.

B. Eriksson, G. Pellegrino, and A. Sabelfeld. Black Widow: black-box
Data-driven Web Scanning. In IEEE Symposium on Security and Privacy
(S&P), 2021.

B. Eriksson and A. Sabelfeld. AutoNav: Evaluation and Automatization
of Web Navigation Policies. In Web Conference (WWW), 2020.

Y. Fratantonio. android-forkbomb, 2013.

Google Inc. Automotive, 2018. https://source.android.com/devic
es/automotive/.

Google Inc. Permissions overview, 2018. https://developer.androi
d.com/guide/topics/permissions/overview.

Information is beautiful. World’s biggest data breaches & hacks, 2020.

[10] MDN Web Docs. Samesite cookies, 2020. https://developer.mozi

1la.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite.

13

https://arstechnica.com/information-technology/2017/10/equifax-website-hacked-again-this-time-to-redirect-to-fake-flash-update/
https://arstechnica.com/information-technology/2017/10/equifax-website-hacked-again-this-time-to-redirect-to-fake-flash-update/
https://arstechnica.com/information-technology/2017/10/equifax-website-hacked-again-this-time-to-redirect-to-fake-flash-update/
https://source.android.com/devices/automotive/
https://source.android.com/devices/automotive/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

Bibliography

[11] C.Miller and C. Valasek. Remote exploitation of an unaltered passenger
vehicle. Black Hat USA, 2015, 2015.

[12] G. Pellegrino, C. Tschiirtz, E. Bodden, and C. Rossow. jAk: Using Dy-
namic Analysis to Crawl and Test Modern Web Applications. In Interna-
tional Symposium on Recent Advances in Intrusion Detection, pages 295—
316. Springer, 2015.

[13] P.D. Ryck, L. Desmet, F. Piessens, and M. Johns. Primer on Client-Side
Web Security. Springer, 2014.

[14] The OWASP Foundation. Owasp top 10 - 2017, 2017.
[15] M. West. Content security policy level 3, 2018.

[16] M. West, A. Barth, and D. Veditz. Content security policy level 2, 2016.

14

On the Road with Third-
Party Apps: Security Anal-
ysis of an In-Vehicle App
Platform

Benjamin Eriksson, Jonas Groth, Andrei Sabelfeld
VEHITS 2019

bstract. Digitalization has revolutionized the automotive indus-
A try. Modern cars are equipped with powerful Internet-connected
infotainment systems, comparable to tablets and smartphones. Re-
cently, several car manufacturers have announced the upcoming possi-
bility to install third-party apps onto these infotainment systems. The
prospect of running third-party code on a device that is integrated into
a safety critical in-vehicle system raises serious concerns for safety, se-
curity, and user privacy. This paper investigates these concerns of in-
vehicle apps. We focus on apps for the Android Automotive operating
system which several car manufacturers have opted to use. While the
architecture inherits much from regular Android, we scrutinize the ad-
equateness of its security mechanisms with respect to the in-vehicle
setting, particularly affecting road safety and user privacy. We inves-
tigate the attack surface and vulnerabilities for third-party in-vehicle
apps. We analyze and suggest enhancements to such traditional An-
droid mechanisms as app permissions and API control. Further, we in-
vestigate operating system support and how static and dynamic analy-
sis can aid automatic vetting of in-vehicle apps. We develop AutoTame,
a tool for vehicle-specific code analysis. We report on a case study of
the countermeasures with a Spotify app using emulators and physical
test beds from Volvo Cars.

1 INTRODUCTION

The modern infotainment system, often consisting of a unit with a touch-
screen, is mainly used for helping the driver navigate, listening to music or
making phone calls. In addition to this, many users wish to use their favorite
smartphone apps in their cars. Thus, several car manufacturers, including
Volvo, Renault, Nissan and Mitsubishi [42, 50], have chosen to use a special
version of Android for use in cars, called Android Automotive [19]. Other
manufacturers such as Volkswagen [49] and Mercedes-Benz [31] are instead
developing their new in-house infotainment systems. In contrast to the in-
house alternatives, Android Automotive is an open platform with available
information and code. This justifies our focus on Android Automotive apps.

Android Automotive For the manufacturers, a substantial benefit of us-
ing an operating system based on Android is gained from relying on third-
party developers to provide in-vehicle apps. A multitude of popular apps
already exists on the Android market, which can be naturally converted into
Android Automotive apps. Further, Android Automotive is a stand-alone
platform that does not require a connected smartphone, contrary to its com-
petitors MirrorLink [34], Apple CarPlay [1] and Android Auto [17].

Safety, security, and privacy challenges While third-party apps boost
innovation, they raise serious concerns for safety, security, and user privacy.
Indeed, it is of paramount importance that the platform both safely handles
these apps while driving and also safeguards the user’s privacy-sensitive in-
formation against leakage to third parties. Figure 1.1 gives a flavor of real-life
safety concerns, by showing a user comment on a radio app with almost half
amillion downloads. The user points out that they had to stop driving when a
shockingly loud ad was suddenly played, adding that ads “shouldn’t attempt
to kill you” [51].

17

1. On the Road with Third-Party Apps

Chippy Warren o
e
* % K o

Loved it until | was driving and had to stop because a stupid game

kill you! Thank you.

Figure 1.1: Top comment on a radio app. A user was shocked by the volume
of an ad and had to stop driving.

While the Android Automotive architecture inherits much from regular
Android, a key question is whether its security mechanisms are adequate
for in-vehicle apps. However, compared to the setting of a smartphone, in-
vehicle apps have obvious safety-critical constraints, such as neither being
able to tamper with the control system nor being able to distract the driver.
Further, car sensors provide sources of private information, such as location
and speed or sound from the in-vehicle microphone. In fact, voice controls
are encouraged for apps in infotainment systems, as to help keep the driver’s
hands on the wheel, opening up for audio snooping on users by malicious
apps. A recent experiment done by GM collected location data and radio
listening habits from its users with the goal of creating targeted radio ads [8].
This clearly highlights the value of user data in vehicles. Similar data could
potentially be collected by apps using the radio API to record the current
station [15]. Thus, a key question is whether Android’s security mechanisms
are adequate for in-vehicle apps.

Android Permissions Android’s core security mechanism is based on a
permission model [21]. This model forces apps to request permissions be-
fore using the system resources. Sensitive resources such as camera and GPS
require the user to explicitly grant them before the app can use them. In
contrast, more benign resources such as using the Internet or NFC can be
granted during installation. However, there are several limitations of this
model with implications for the in-vehicle setting. From a user’s perspec-
tive, these permissions are often hard to understand. Porter Felt et al. [40]
show that less than a fifth of users pay attention to the permissions when in-
stalling an app, and even a smaller fraction understands the implications of
granting them. Understanding the implications of giving permissions is even
harder. There are immediate privacy risks, such as an app having permission
to access the car’s position and the Internet can potentially leak location to
any third party. More advanced attacks would only need access to the vehicle

18

1. Introduction

speed. This may not seem like a privacy issue but by knowing the starting
position, likely the user’s home address, and speed, it is possible to derive
the path that the car drives [16].

Analyzing Android Automotive Security To the best of our knowledge,
this is the first paper to analyze application-level security on the Android
Automotive infotainment system. To assess the security of the Android Au-
tomotive app platform, we need to extend the scope beyond the traditional
permissions.

Attack surface For a systematic threat analysis, we need to analyze the
attack surface available to third-party apps. This includes analyzing what
effects malicious apps may have on the functions of the car, such as climate
control or cruise control, and on the driver. We demonstrate SoundBlast,
representative of disturbance attacks, where a malicious app can shock the
driver by excessive sound volume, for example, upon reaching high speed.
We also demonstrate availability attacks like Fork bomb and Intent storm
which render the infotainment system unusable until it is rebooted. Further,
we explore attacks related to the privacy of sensitive information, such as
vehicle location and speed, as well as in-vehicle voice sound. We show how
to exfiltrate location and voice sound information to third parties. In order
to validate the feasibility of the attacks, we demonstrate the attacks in a sim-
ulation environment obtained from Volvo Cars. Based on the attacks, we
derive exploitable vulnerabilities and use the Common Vulnerability Scoring
System (CVSS) [13] to assess their impact.

To address these vulnerabilities, we suggest countermeasures of permis-
sions, API control, system support, and program analysis.

Permissions We identify several improvements of the permission model.
This includes both introducing missing permissions, such as those, pertain-
ing to the location and the sound system in the car, as well as making some
permissions more fine-grained. For location, there are ways to bypass the
location permission by deriving the location from IP addresses. At the same
time, the location permission currently allows all or nothing: either sharing
highly accurate position information or not. The former motivates adding
missing permissions, while the latter motivates making permissions more
fine-grained. We argue that for many apps, like Spotify or weather apps,
low-precision in the location, e.g. city-level, suffices.

API control In contrast to permissions, API control can use more informa-
tion when decided to grant an app access to a resource. For example, using
high-precision data could be allowed only once an hour, or during an activ-
ity like running. Our findings reveal that apps currently need access to the

19

1. On the Road with Third-Party Apps

microphone in order to use voice controls. We deem this as breaking the
principle of least privilege [44]. To address this, we argue for full mediation,
so that apps subscribe to voice commands mediated by the operating system,
rather than having access to the microphone. Similarly, location data can also
be mediated to limit the precision and frequency of location requests, making
it possible to adhere to the principle of least privilege. These scenarios ex-
emplify countermeasures we suggest to improve API controls for in-vehicle
apps.

System We argue for improvements to the operating system in order to
protect against apps using too much of the system’s resources. Malicious
apps can cause the system to become unresponsive or halt, either by recur-
sively creating new processes or coercing other system processes to use up
all the resources. The countermeasures consist of limiting the number of re-
quests an app can make, limiting the resources system processes can use, or
completely blocking some capabilities for third-party apps, like creating new
processes.

Code analysis While previous methods protect the device from malicious
apps, our vision is to also be able to stop the apps before they make it to the
device. This can be accomplished by analyzing the code in the app store, be-
fore the app is published. This does not only protect against malicious apps
but also poorly written apps that fail to adhere to security best practices.
This could, for example, include apps not using encryption for data trans-
missions, which is currently a big problem [41]. Other problems include
vulnerable apps with high privileges being exploited by malicious apps or
colluding malicious apps sharing data over covert channels. Thus, we inves-
tigate how static and dynamic program analysis can be leveraged to address
the vulnerabilities.

We design and develop AutoTame, our own static analysis tool for detect-
ing dangerous use of APIs, including the new automotive APIs. AutoTame is
open source and will be freely available at the time of publication. Further, we
explore several state-of-the-art techniques, based on tools like FlowDroid [3]
and We are Family [4].

Threat model The threat model in this paper defines the attacker as be-
ing able to install one or more apps, with the victim’s permission, on their
infotainment system. Similar to previous research [45], we assume that the
victim is more inclined to install an app that asks for fewer permissions. This
means that, while one app with access to both Internet and GPS might be con-
sidered suspicious, two apps, one with access to the Internet, the other with
access to GPS, would be more acceptable. Such a model incentivizes apps

20

2. Background

to collude and share information over covert channels. Using this model we
analyze how much damage can be done by a user mistakenly installing ma-
licious apps.

Case study An ideal evaluation of our countermeasures would be a large-
scale of apps from an app store, in the style of the studies on Google Play,
e.g. [3, 10, 37]. Unfortunately, Android Automotive is at this stage an emerg-
ing technology with no apps yet publicly available for a study of this kind.
Nevertheless, we have been granted access to Infotainment Head Unit emu-
lators and physical test beds from Volvo Cars allowing us to perform a case
study with an in-vehicle app version of Spotify. We use this infrastructure to
evaluate our countermeasures.

Impact At the same time, an early study of Android Automotive security
has its advantages. Because our analysis comes at an early phase of Android
Automotive adoption by car manufacturers, it has higher chances for im-
pact. We have reported our findings to both Volvo Cars that participated in
our experiments and Google. We are in contact with both on closing the vul-
nerabilities we point out and on experimenting with the countermeasures.

Contributions The paper offers the following contributions:

« We present an attack surface for third-party in-vehicle apps, identify-
ing classes of disturbance, availability, and privacy attacks (Section 3).

« We propose countermeasures, based on fine-grained permissions, API
control, system support, and information flow (Section 4).

» We overview prominent representatives of techniques and tools for de-
tecting security and privacy violations in third-party apps (Section 4.4).

« We present our own static analysis tool, AutoTame, for detection of
dangerous API usage (Section 4.4).

+ We evaluate the countermeasures on a case study with the in-vehicle

app Spotify (Section 5).

2 BACKGROUND

As cars become more connected and their infotainment systems more pow-
erful, people expect the car to interact in a seamless way with their other
devices. In contrast to most other personal devices, a software bug in a car

21

1. On the Road with Third-Party Apps

can have lethal consequences. For example, in 2015 Miller and Valasek [33]
showed that it was possible to remotely take over a 2014 Jeep Cherokee by
exploiting their infotainment system Uconnect. More recently, in May 2018,
researchers found multiple vulnerabilities in the infotainment system and
Telematics Control Unit of BMW cars which made it possible to gain control
of the CAN buses in the vehicle [48]. These type of attacks show that remote
take over attacks of connected vehicles is a possibility and a real threat.

Attackers do not necessarily need to take control over the braking or
steering system to endanger or distract the driver. For example, an attacker
can make a malicious infotainment app that disturbs or shocks the driver at
a certain speed level. In order to shock the driver, the app may, for example,
play loud music or rapidly flash the screen.

In addition to security, privacy is also a concern as cars become more
capable of collecting data about their users. In accordance with the new EU
regulation, GDPR [11], the user has to be informed about how the data is used
and agree to their data being used in the described way. Previous research
projects have explored the possibility to automatically track and analyze how
privacy-sensitive information is leaked from Android apps [43], either delib-
erately through advertisement networks or inadvertently through insecure
communication means [41].

2.1 Experimental Setup

With access to Volvo Cars internal testing equipment, both the attacks and
countermeasures were tested on their infrastructure. In particular, the code
is tested on Volvo’s Infotainment Head Unit emulators (IHU) emulators and
physical test beds. All of the Android code is developed for Android SDK
version 26 and 27, which corresponds to Android 8.0 and 8.1.

2.2 Automatic analysis of Android apps

Automatically analyzing Android apps can be done through two major strate-
gies, static analysis or dynamic analysis. Static analysis only considers the
code while in dynamic analysis the code is executed and the program’s be-
havior is analyzed. Which ever method is chosen, a decision on what to look
for in the analysis has to be made. In this paper, two tracks are evaluated,
how privacy-sensitive information flows through the app and scanning apps
for common vulnerabilities.

22

2. Background

2.3 Android Automotive

Today, the Android system is officially used in all types of devices, from
phones and tablets to watches, TVs and soon cars [18]. Android Automo-
tive is a version of Android developed specifically for use in cars. It is essen-
tially Android with a User Interface (UI) adapted for cars and a number of car
specific APIs. The car specific APIs allow for control over vehicle functions,
such as the heating, ventilation, and air conditioning (HVAC), and reading of
sensor data, e.g. speed, temperature and engine RPM [19]. Android Automo-
tive is not be confused with Android Auto which is already available on the
market today. Unlike Android Auto, Automotive is a completely stand-alone
system that is not dependent on a smartphone. In Android Auto, apps run
on the users Android phone which then renders content on a screen in the
car. The apps and the Android system thus runs separated from the car.

2.4 Android’s Permission model

The Android operating system controls access to many parts of the system,
such as camera, position and text messages, through permissions. These per-
missions can be of one of four types; normal, dangerous, signature or signa-
tureOrSystem. The first two are the most common and can be granted to any
third-party app. Normal permissions give isolated accesses with minimal
risk for the system and user, these are automatically granted by the oper-
ating system. Dangerous permissions, on the other hand, give accesses to
private user data and control over the device that may harm the user. These
permissions have to be explicitly granted by the user on a per application
basis. Both Android’s coarse and fine location permissions are examples of
dangerous permissions, since both supply high precision data. The differ-
ence between them is that fine location has access to the GPS while coarse
uses cell towers and WiFi access points. Finally, there are the signature and
signatureOrSystem permissions, which requires the app to be pre-installed or
cryptographically signed [20].

2.5 Covert channels

A covert channel, as defined by Lampson, is a communication channel be-
tween two entities that are not intended for information transfer [25]. In
Android, a number of different covert channels exist that use both hardware
attributes and software functions to communicate. Apps can for example
communicate by reading and setting the volume, sending special intents or
cause high and low system load [29, 45].

23

1. On the Road with Third-Party Apps

Table 1.1: The attacks are divided into three different categories. Which asset and permissions the attacks affects and
requires are listed along with the needed user interaction.

Name Category Asset User interaction Permission Severity
SoundBlast Disturbance Driver’s attention ~ Start app None Medium®
Fork bomb DoS CPU resources Start app None Medium
Intent storm DoS CPU resources Start app None Medium
Permissionless speed Privacy Current speed Start app None Low
Permissionless exfiltration Privacy Data Exfiltration Start app None Low
Covert channel Privacy Data Exfiltration ~ Start app Channel dependent Low

2 The score is subject to the limitation of CVSS3 on lacking support for physical damage and safety risks [9].

3 ATTACKS

This section focuses on the implementation decisions regarding the attacks
presented in Table 1.1. The category and asset columns in the table give an
understanding of what the attack is targeting. More specifically, the asset is
what the attack is trying to take control over. In the case of denial-of-service
(DoS) attacks, this is usually some type of resource. Privacy attacks, on the
other hand, try to acquire and exfiltrate data such as speed or location. User
interaction and permission are used to judge how easy the attack is to ex-
ecute. The values are finally combined to create a severity score based on
the Common Vulnerability Scoring System (CVSS3) [13]. A shortcoming of
CVSS3 is that possible physical damage or safety risks are not considered in
the scoring. Distraction vulnerabilities, like the one exploited by SoundBlast,
and other automotive vulnerabilities will be underrated. These shortcomings
are currently being revised for CVSS3.1 [9]. The exact vectors and scores for
each attack are presented in Table 1.3. Table 1.2 present the same attacks
together with suitable countermeasures to mitigate the underlying vulnera-
bilities.

3.1 Disturbance

SoundBlast The SoundBlast attack relies heavily on the AudioManager
class in Android. This class supplies functions which are used to control
the volume of different audio streams in Android. Cars also have the more
specific CarAudioManager, however, this class requires special permissions.
Different audio streams are used to differentiate between volumes, e.g. mu-
sic volume, ringer volume, alarm volume, etc. A malicious app can use the
permissonless audio API to max the volume and shock the driver. The attack
is further improved by using a ContentObserver to listen for changes in
volume and force the volume to the maximum as soon as it changes. Using
the vehicle’s sensors, the attacker can also design the attack to only active
when traveling at high speeds.

24

3. Attacks

Testing the SoundBlast attack shows that it is possible to set any volume
on all the different audio streams in Android, without needing any permis-
sions. In addition, the attack can also detect changes in volume and max the
volume accordingly. The changes are also detected even if the driver uses
the hardware controls on the IHU or steering wheel. Killing the app is the
only way to regain control of the volume.

3.2 Availability

Fork bomb A fork bomb is a program that creates new instances of itself
until the system runs out of resources, either freezing the device or force a
reboot. While this might be acceptable on a phone, in a vehicle setting this is
problematic. Since the IHU usually handles navigation, freezing the device
might distract drivers trying to fix it, or frustrate them by having to stop and
reboot.

Forking in Android is not possible by default, resulting in the need for a
vulnerability to leverage in order to accomplish forking. Unlike previously
successful fork bomb attacks on Android [2], our attack takes an application-
level approach by creating a shell, which in turn has the power to fork itself.
Similar to other programming languages, Android also supports a version
of exec, which can be used to run external programs. However, this is not
enough to create a new process that can copy itself. By using exec to run
sh -s, anew shell is created, which in turn can execute the fork bomb.

When testing this attack it is able to fully grind both the emulator and
test bed to a halt, requiring a power cycle to regain control. It is thus able to
render the infotainment system unusable until the system is rebooted.

Intent storm The intent storm attack uses Android intents to continu-
ously restart the app itself. Similar to the fork bomb presented in section 3.2,
the intent storm attack tries to use up all the CPU resources, making the IHU
unusable. The difference, however, is that the intent storm does not use the
resources itself, but rather forces another system process, the system_server,
to use up all resources. The fast activity switching required is made possi-
ble with threads and intents. As soon as the app starts, it spins up 8 threads
which all ask Android to start its own main activity. Using multiple threads
increases the pressure on the system_server, making the device less respon-
sive.

During the tests, the system_server process was forced by the attack to
use 100% of the CPU, making the IHU unusable. In some cases, an error
message popped up on the device prompting the user to either kill or wait
for the app. Regardless of which alternative was picked, the attack would

25

1. On the Road with Third-Party Apps

continue without interruption since a request to restart the app had already
been sent. Similar to the fork bomb in section 3.2, this would grind the IHU
to a halt. However, in some cases, the IHU would automatically restart after
a few minutes.

3.3 Privacy

Permissionless speed In Android Automotive, apps have direct access to
the current speed. However, since speed is privacy sensitive it requires a
permission. By combining other permissionless sensor values, such as the
current RPM and gear, and knowledge about the wheel size, the speed can
be derived. The effectiveness of this attack does depend on the sampling
frequency of the sensors. The hardware test beds only contained the ITHU
and not the full car, meaning that the efficiency of the attack is yet to be
tested.

Permissionless exfiltraion The Android permission model clearly states
that any app wanting communicate on a network requires Internet permis-
sion. However, by using intents it is possible to force another app with Inter-
net permission to leak the data. Depending on how the intent is crafted, dif-
ferent apps will handle them, for example, the web browser will open URLs,
music player opens music files, etc.

While the implementation details differ depending on which app handles
the intent, the common procedure is to encode the data, split it into chunks
and send a separate intent for each chunk.

While the default web browser can be used, there are better options for
exfiltrating data. By changing the data type to audio/wav and using the
URL http://evil.com/music.wav?d=[datal, the music player will load
the URL instead. The stealthiness of this method depends on which music
player is used. Using the native Android music player, a small popup with a
play button will appear. By returning a malformed wav file from the server,
the music player will show a more subtle error message.

If a web browser is used, the attacker can have the server redirect the
request to a deep link, giving control back to the exfiltration app. Not only
does this give the app the ability to leak more data, but it also enables two-
way communication with the attacker’s server, all without using the Internet
permission.

In order to test this, a proof-of-concept code was developed that would
record audio for five seconds and then upload it using the described method.
The code only needs permission to record audio, but not to use the Internet.

26

http://evil.com/music.wav?d=[data]

4. Countermeasures

Testing this attack shows that it is possible to send data to the Internet with-
out using the Internet permission. The attack was successful using Chrome,
the standard music player, video player and image viewer. If the device has
not been configured with a default application for opening the type of data,
it will ask the user to pick one.

Covert channels Previous work on covert channels in Android have used
both vibration and volume settings to transmit data between colluding apps [45].
While these are still viable in Android Automotive, there are also additional
new interesting APIs. In particular the new climate control API for tem-
perature. Since the temperature is represented by a floating point value, the
bandwidth is more than tenfold that of the volume settings. However, chang-
ing the temperature does currently require a signature permission, making
it hard for third-party apps to acquire.

In contrast to previous work on covert channels, which relied on time
synchronization, our attack is based on asynchronous messages. This forces
the receiver to send an acknowledgment for each of the received values.
While this lowers the bit rate, in contrast to synchronous communication,
it greatly increases the reliability of the communication.

With this implementation, two apps can collude to leak privacy- sensi-
tive information to the Internet. One app requests permission to privacy-
sensitive information but not the Internet and then acts as a sender. The
second app requests Internet permission but not permission to access any
sensitive data. The second app can now receive sensitive information which
it does not have permission for and leak it to the Internet.

4 COUNTERMEASURES

The vulnerabilities are very different in nature and, as such, the mitigation
techniques differ. Some vulnerabilities can be mitigated by several different
techniques while others can only be mitigated by one. An overview of the
attacks together with mitigations for the underlying vulnerabilities are pre-
sented in Table 1.2.

4.1 Permission

The current permission model can be improved both by adding new per-
missions for unprotected resources, and also by refining some very broad
permission. The SoundBlast attack, from Section 3.1, relies on changing the
volume through an API called AudioManager which does not require any sort

27

1. On the Road with Third-Party Apps

of permission. At the same time, there exists an API called CarAudioManager,
which does require a permission. Cars usually have more advanced sound
systems than phones so a different API with more settings does make sense
as does the need for a permission. Still, when conducting experiments with
the emulator the AudioManager is present and usable by third-party apps,
thus allowing an attacker to circumvent the permission required by CarAu-
dioManager.

In addition to audio, Android allows apps to get the location of the de-
vice by using GPS. This can, for example, be used by apps to give weather
information. However, due to these systems having high precision and al-
lowing for multiple requests within short time intervals, apps often excessive
information.

There are multiple methods for preserving the user’s privacy while still
maintaining an acceptable level of functionality in apps using location [12,
32]. Which method is optimal is highly dependent on the type of information
the app needs. A simple approach is to truncate location, effectively creating
a grid of possible locations. A grid will better protect the privacy of the user,
but at the same time degrade the functionality of some apps [32]. In order to
handle apps like fitness trackers, which requires fast updates and high pre-
cision, truncation is not feasible. Fawaz and Shin [12] argue that in order
to preserve privacy, a choice has to be made between tracking distance and
speed, or tracking the path of the exercise. They present a method for track-
ing the distance and speed by supplying the exercise tracker with a synthetic
route, that has correct distance and speed but a forged path. Furthermore,
they argue that navigation apps with Internet access, usually used for real-
time traffic information, are the hardest to handle since they can potentially
leak the location. This problem could be solved by using state-of- the-art
information flow tracking to ensure that the location is never leaked.

4.2 API control

In some scenarios, permissions are not enough. This is usually the case when
access to a resource can be abused over time. For example, in the current
Android model, apps are allowed to record audio from the microphone at all
times, as long as it has been granted the permission once. This means that a
restaurant app that uses voice commands to find close by restaurants, can lis-
ten to everything the user says, at all times. Since voice commands are more
prevalent in vehicles, where the user’s focus is on driving, it is reasonable
to believe that more in-vehicle apps will use this functionality. One solution
to this problem is to use a voice mediator, which is a special service that
has access to the microphone and allows for third-party apps to subscribe

28

4. Countermeasures

to certain keywords. The app would only receive sentences that contain the
keywords it subscribed to, effectively removing its capabilities to eavesdrop.
Similar to the voice mediation, the same method can be used for location. By
using a location mediator apps can subscribe to arbitrary precision for loca-
tion data. The mediator can also introduce a trade-off between the refresh
rate and precision of the requests, mitigating real-time tracking.

4.3 System

Some problems are best solved at the operating system level. These problems
include resource management, e.g. how much CPU time or memory an app
should be allowed to use. One method of limiting the impact of availability
attacks is by limiting how frequent a resource can be acquired. Android al-
ready does this to a great extent when it comes to memory and CPU usage
by third-party apps. However, some system processes, the system_server pro-
cess in particular, can use all of the CPU, effectively starving the rest of the
system. This lack of rate limiting was exploited in the intent storm attack in
Section 3.2. While not tested, we speculate that this vulnerability could either
be countered by rate limiting the CPU usage of the system_server process or
limit incoming intents to the system_server.

Similar to CPU limiting, memory usage requires limitations too. When
Android is running low on memory it will start to terminate apps in the
background. This can sometimes result in the termination of apps that the
user wants to run in the background. In the case of vehicles, navigation
apps are a good example of apps that should not be killed of while driving.
A possible method for ensuring that the navigation works while driving is
to prohibit Android from terminating important apps. This protects against
both malicious apps using up the memory, and legitimate memory hungry
apps.

Akin to permissions, SELinux policies are policies which limit what the
processes in an OS can do. These policies play a crucial role in protecting
the vehicle’s subsystems from Android. The policies are also suitable for
specifying what an app is allowed to do. However, not how many times it
can do it. As Bratus et al. [5] explains, “SELinux does not provide an easy
way to control the use of the fork operation once forking has been allowed
in the program’s profile”, which shows that SELinux is not suited to stop
attacks like fork bombing. While it might be infeaseable in many situations,
blocking forking altogether could be a solution.

29

1. On the Road with Third-Party Apps

4.4 Code analysis

Automatic analysis techniques can be used to scan apps, both before instal-
lation and during runtime, to find vulnerabilities and block attacks. In the
following sections tools using these techniques are described in more detail.

Vulnerability detection Both AndroBugs [26] and QARK [27] are tools
that can be used to scan Android apps for known vulnerabilities. QARK is ca-
pable of finding many common security vulnerabilities in Android apps [22].
QARK can, for example, find incorrect usage of cryptographic functions,
trace intents and detect insecure broadcasts. In addition, QARK can also
generate exploits for some of these vulnerabilities. While not able to gen-
erate exploits, AndroBugs can detect vulnerabilities based on heuristics in
the code. For example, multiple dex files suggests a master key vulnerability
(CVE-2013-4787) [35]. The tools work well together since AndroBugs can
quickly scan multiple apps with heuristics and then QARK can perform a
deeper analysis of the interesting apps.

AutoTame To scan for dangerous use of the new automotive APIs, we de-
veloped a special tool built on the Soot framework, which can analyze both
Java and Android bytecode. The tool has a list of dangerous APIs, e.g con-
trolling the HVAC system, change audio volume or spawning shells. Using
Soot, our tool decompiles the APK and analyses each function in the app
while testing if it matches any of the ones in the list. AutoTame performs a
full application analysis. The main advantage of this is that it does not re-
quire any entry point analysis. Compared to many other languages, Android
apps do not have a single main function from which execution starts. There-
fore a full analysis ensures that any dangerous use of an API is detected.
However, without knowing the entry points, dead code could be flagged, po-
tentially leading to false positives. In addition to only detecting if the volume
is changed, AutoTame can also give extra warnings if the volume is set to a
high numeric value or if getStreamMaxVolume is used. If a match is found
the app can be removed or marked as potentially dangerous. The tool was
able to flag the SoundBlast attack, as well as the fork bomb.

Taint tracking Taint tracking can help detect privacy leaks where sensi-
tive information, such as the user’s location, is being sent to a remote server.
FlowDroid [3] is a tool for static taint analysis on Android, that can detect
these flows. The taint analysis works by tainting private sources of infor-
mation, such as the user’s location. If the location is written to a variable,
then this variable also becomes tainted. If at a later time this tainted variable

30

5. Spotify case study

Table 1.2: List of all developed attacks and which countermeasure(s) can be
used to mitigate each attack the underlying vulnerabilities.

Attacks / Countermeasures Permissions Location granularity ~SELinux AutoTame FlowDroid We are Family Rate limit

SoundBlast v v
Fork bomb v v
Intent Storm v

Permissionless speed
Permissionless exfiltration
Covert channels v

ANENEN
ENENEN
ANENEN

is written to a public sink, e.g an Internet connection, a leak from a private
source to a public sink will be detected.

What makes FlowDroid special is its highly accurate modeling of An-
droid’s life cycles. This is important as an app can be started in many differ-
ent ways. In addition to life cycles, FlowDroid is also able to track callback
functions, enabling it to track leaks via button clicks and other UI events. Im-
portant for the car API used in this paper is that FlowDroid can track dynam-
ically registered callback functions, which is used to establish the connection
to the car.

In order to make FlowDroid fully functional with Android Automotive
apps, we extended the tool with new sources and sinks. Some of the sources
added were used to acquire the car’s manufacturer, model and year. For sinks,
we added functions for writing to the climate control APIs.

Observable flows Taint tracking is not always enough to find all privacy
leaks. For this reason, a more powerful tool that can detect observable im-
plicit flows is introduced. The We are Family paper by Balliu et al. [4] presents
a two-fold hybrid analysis solution. The first stage is a static analysis that
transforms the application and adds monitors. These monitors will aid the
dynamic analysis tool in the second stage to find implicit flows. The added
monitors are in this case used to track the program counter label and analyze
the current taint value, making it possible to detect potential leaks during
runtime on the device. The dynamic tool developed in the paper is an ex-
tension of TaintDroid [10]. By using the transformed program together with
TaintDroid, the new tool is able to detect observable implicit flows, some-
thing TaintDroid was not able to do.

5 SPOTIFY CASE STUDY

To test some of the countermeasures, an in-depth case study was performed
on the Spotify app. The motivation behind using Spotify is that it was the
only third-party app available on the emulator and test bed, making it the

31

1. On the Road with Third-Party Apps

most realistic app to test. It was also much larger in size than the proof-of-
concept attacks. The larger size will show how well the methods handle real

apps.

5.1 Permissions

The first analysis that has to be performed is to gather an understanding of
the permissions the app uses. Spotify needs permission to Internet, Blue-
tooth and NFC, for data transfer. Furthermore, it also requires permission to
change audio settings, run at startup, and prevent the device from sleeping.
Since Spotify is a music streaming app that should be able to run in the back-
ground, as well as talk to other Bluetooth devices, these permissions seem
innocuous. Shifting focus to the dangerous permissions, Spotify does require
permission to read the accounts on the device, contacts stored on the device,
the device ID, and information about current calls. It is not clearly motivated
why this information is necessary, and while some connection between the
Spotify user and the device user is reasonable, having access to all contacts
seems excessive. Spotify does not ask for the location permission, instead,
they use IP-addresses for location [47]. In addition, Spotify can also record
audio and take pictures, as well as read and write access to the external stor-
age. Taking pictures is necessary to scan QR-codes and the microphone will
be used in Spotify’s driving mode [46]. Access to external storage is rea-
sonable since it allows for offline storage of music, however, it does include
access to other photos and media files beyond Spotify’s.

5.2 Vulnerability detection

To ensure that the app does not have any known vulnerabilities QARK is
used to scan the app. While QARK didn’t find any severe vulnerabilities, it
did find cases where a vulnerability could arise, e.g. by using a WebView in an
older version of Android (API < 18). Moreover, it also points out interesting
entry-points into the app, one of them leading to a version of Spotify meant
for another automotive system. In addition, a malicious third-party app can
also send intents to Spotify to search and play arbitrary music, skip songs,
or even crash the app. QARK did not find any vulnerabilities relating to the
vehicle APIs, motivating the need for further analysis.

5.3 AutoTame

Using AutoTame, multiple warnings about both changing the volume and
querying for max volume was found. Further manual analysis proved that

32

5. Spotify case study

the maximum volume was used directly to set the volume, as shown in Fig-
ure 1.2.

1 int i = this.c.getStreamMaxVolume(0);
2 this.c.setStreamVolume(0, i, 0);
3

Figure 1.2: Decompiled code setting volume to max

5.4 Information flow analysis

The permissions give an upper bound on what the app is capable of do-
ing. A more precise understanding of the app is achieved by analyzing it
with FlowDroid, using implicit flow tracking. Using these settings the in-
formation flow analysis found 13 leaks in the app. One interesting leak was
getLastKnownLocation being leaked into a dynamic receiver registration.
As shown in Figure 1.3, FlowDroid was able to track the sensitive location
through different assignments, function calls and control flows. While this
case might be quite benign, as it only leaks one bit, it still shows the capabil-
ities of the technique.

The analysis also over-approximates some leaks, especially when the in-
formation being sent is based on information being received. A concrete
example of this is when threads try to communication using sendMessage
and obtainMessage. Since the obtained information could contain sensitive
information, it is flagged as a leak. This could potentially be solved using
dynamic information flow tracking.

Figure 1.3: The publicly observable addAction function is implicitly depen-
dent on the private location information.

33

1. On the Road with Third-Party Apps

5.5 Summary

To summarize these findings, we see that a more robust and at the same
time more fine-grained permission model would be beneficial, as it would al-
low apps like Spotify to use lower precision location data instead of privacy-
invading high precision data. In addition, vulnerability detection methods
succeed in finding a bug that could be exploited to terminate Spotify. Finally,
static analysis proved successful for automatically detecting privacy leaks.

6 RELATED WORK

Previous security and privacy research on vehicles have to a large extent fo-
cused on low-level problems relating to the internal components. Koscher et
al. [24] showed that with physical access to the CAN bus it is possible to con-
trol both the speedometer, horn and in-vehicle displays to distract the driver.
Miller and Valasek [33] gained similar access to the CAN bus, this time re-
motely. A similar vulnerability found in an infotainment system used in cars
from Volkswagen was also recently discovered by researchers in the Nether-
lands [7]. They showed that it was possible to connect to the car via WiFi
to exploit a service running in the infotainment system to gain remote code
execution system. The most recent study on attacks against vehicles were
done by researchers at Tencent Keen Security Lab [48], where they found
multiple vulnerabilities in the infotainment system and Telematics Control
Unit of BMW cars, resulting in control of the CAN buses.

A contribution of our paper is to show that even without access to the
internal buses or exploiting low-level vulnerabilities, it is possible to cause
distractions and leak private information.

A more high-level study was done by Mazloom et al. [30] where they
conducted a security analysis of the MirrorLink protocol. MirrorLink allows
smartphones to run apps on the cars infotainment system. Their analysis
showed weaknesses in the MirrorLink protocol which could, amongst other
things, allow malicious smartphone apps to play unwanted music or interfere
with navigation. Mandal et al. [28] showed that the similar system Android
Auto have multiple problems that can be abused by third-party apps. For
example, auto playing audio when launching an app or showing visual ad-
vertisements, both which are against Android Auto’s quality policy. In our
paper, we show similar attacks are possible on Android Automotive, how-
ever, without the requirement of the user’s smartphone, since the malicious
app runs on the infotainment system.

Intents, which is the main component in our exfiltration attack, are prob-

34

7. Conclusions

lematic for many reasons. Khadiranaikar et al. [23] highlighted some of these
problems, including how malicious apps can both steal information and com-
promise other apps using intents. Our paper builds on these ideas to develop
new exfiltration methods for the Android Automotive platform.

There is a large body of work on Android permissions [14, 38, 39]. As
a representative example, a study on Android permissions by Porter Felt et
al. [37] shows that many apps are using more permissions that they need,
i.e. not adhering to the principle of least privilege. Other researches [6],
also argue for the need of a more fine-grained model which can grant ac-
cess to specific functions instead of full APIs or services. Extensions such as
Apex [36] have also been developed in order to supply end users with a more
fine-grained model, capable of granting permissions based on user-specified
policies. While our focus is on the specifics of the in-vehicle setting, we ar-
gue that many apps get access to more data than necessary due to the coarse
granularity of the permission model itself. For example, a weather app or
Spotify app only needs low-precision location, such as city level.

7 CONCLUSIONS

To the best of our knowledge, we have presented the first study to analyze
application-level security on the Android Automotive infotainment system.
Unfortunately, our analysis shows that in-vehicle Android apps are currently
as secure as regular phone apps. We argue it is insufficient because in-vehicle
apps can affect road safety and to some extent user privacy.

Our study of the attack surface available to third-party apps include driver
disturbance, availability, and privacy attacks, for which there is currently no
protection mechanisms in Android Automotive.

Consequently, it is important for car manufacturers that third-party apps
are limited in their abilities to cause a considerable distraction for the driver.
Additionally, there are a number of vehicle specific APIs, such as access to
current gear and engine RPM, that is a cause for concern when it comes to
user privacy.

To address the vulnerabilities that lead to these attacks, we have sug-
gested the countermeasures of robust and fine-grained permissions, API con-
trol, system support, and program analysis.

We have designed and developed AutoTame, a tool for detecting danger-
ous vehicle-specific API usage. We have demonstrated that in-vehicle code
analysis can be performed using AndroBugs and QARK, to detect known
vulnerabilities, AutoTame to detect vehicle specific vulnerabilities and Flow-
Droid, with the additional vehicle specific sources and sinks, to detect privacy

35

1. On the Road with Third-Party Apps

leaking apps.
We have evaluated the countermeasures with a Spotify app using an in-
frastructure of Volvo Cars.

36

(1]
(2]

(9]

Bibliography

Apple. Apple carplay, 2014. http://www.apple.com/ios/carplay/.

A. Armando, A. Merlo, M. Migliardi, and L. Verderame. Would you mind
forking this process? a denial of service attack on android (and some
countermeasures). In IFIP, 2012.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps.
SIGPLAN Not., 49(6):259-269, June 2014.

M. Balliu, D. Schoepe, and A. Sabelfeld. We Are Family: Relating
Information-Flow Trackers. In European Symposium on Research in
Computer Security, 2017.

S. Bratus, M. E. Locasto, B. Otto, R. Shapiro, S. W. Smith, and G. Weaver.
Beyond selinux: the case for behavior-based policy and trust languages.
2011.

S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and fine-grained
mandatory access control on android for diverse security and privacy
policies. In USENIX Security Symposium, 2013.

Computest. Research paper: The connected car - ways to get unautho-
rized access and potential implications. Technical report, April 2018.

Detroit Free Press. Gm tracked radio listening habits for 3 months:
Here’s why, 2018. https://eu.freep.com/story/money/cars/
general-motors/2018/10/01/gm-radio- listening-habits-
advertising/1424294002/.

D. Dugal. List of potential improvements for cvss 3.1, 2018.

37

http://www.apple.com/ios/carplay/
https://eu.freep.com/story/money/cars/general-motors/2018/10/01/gm-radio-listening-habits-advertising/1424294002/
https://eu.freep.com/story/money/cars/general-motors/2018/10/01/gm-radio-listening-habits-advertising/1424294002/
https://eu.freep.com/story/money/cars/general-motors/2018/10/01/gm-radio-listening-habits-advertising/1424294002/

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P.McDaniel, and A. N. Sheth. Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. ACM Trans.
Comput. Syst., 32(2):5:1-5:29, June 2014.

European Commission. Regulation (eu) 2016/679, 2016.
http://ec.europa.eu/justice/data-protection/reform/file
s/regulation_oj_en.pdf.

K. Fawaz and K. G. Shin. Location privacy protection for smartphone
users. In SIGSAC ’14, 2014.

FIRST.Org Inc. Common vulnerability scoring system v3.0: User guide,
2018.

M. Frank, B. Dong, Porter Felt, and D. Song. Mining permission request
patterns from android and facebook applications. In ICDM ’12. IEEE,
2012.

A. Gampe. Radiotestfragment, 2018. https://android.googlesour
ce.com/platform/packages/services/Car/+/4d1e3469ch2f285e
7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/sr
c/com/google/android/car/kitchensink/radio/RadioTestFrag
ment.java.

X. Gao, B. Firner, S. Sugrim, V. Kaiser-Pendergrast, Y. Yang, and
J. Lindqvist. Elastic pathing: Your speed is enough to track you. In
ubicomp 2014, 2014.

Google Inc. Android auto, 2014. https://www.android.com/auto/.
Google Inc. Android, 2018. https://www.android. com/.

Google Inc. Automotive, 2018. https://source.android.com/dev
ices/automotive/.

Google Inc. permission, 2018. https://developer.android.com/gu
ide/topics/manifest/permission-element.html.

Google Inc. Permissions overview, 2018. https://developer.androi
d.com/guide/topics/permissions/overview.

F. Ibrar, H. Saleem, S. Castle, and M. Z. Malik. A study of static analy-
sis tools to detect vulnerabilities of branchless banking applications in
developing countries. In ICTD ’17, 2017.

38

http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google/android/car/kitchensink/radio/RadioTestFragment.java
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google/android/car/kitchensink/radio/RadioTestFragment.java
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google/android/car/kitchensink/radio/RadioTestFragment.java
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google/android/car/kitchensink/radio/RadioTestFragment.java
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f/tests/EmbeddedKitchenSinkApp/src/com/google/android/car/kitchensink/radio/RadioTestFragment.java
https://www.android.com/auto/
https://www.android.com/
https://source.android.com/devices/automotive/
https://source.android.com/devices/automotive/
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview

Bibliography

(23]

[24]

[27]

(28]

B. Khadiranaikar, P. Zavarsky, and Y. Malik. Improving android appli-
cation security for intent based attacks. In IEMCON 2017, Oct 2017.

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experi-
mental security analysis of a modern automobile. In 2010 IEEE Sympo-
sium on Security and Privacy, 5 2010.

B. W. Lampson. A note on the confinement problem. Commun. ACM,
16(10):613-615, Oct. 1973.

Y.-C. Lin. Androbugs framework, 2018. https://github.com/Andro
Bugs/AndroBugs_Framework.

LinkedIn Corporation. Qark, 2018. https://github.com/linkedin/
gark.

A. K. Mandal, A. Cortesi, P. Ferrara, F. Panarotto, and F. Spoto. Vul-
nerability analysis of android auto infotainment apps. In CF ’18. ACM,
2018.

C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun. Analysis of
the communication between colluding applications on modern smart-
phones. In ACSAC 12, 2012.

S.Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy. A security analysis
of an in-vehicle infotainment and app platform. In WOOT, 2016.

Mercedes-Benz. Mercedes-benz user experience: Revolution in the
cockpit, 2018. https://www.mercedes-benz.com/en/mercedes-
benz/innovation/mbux-mercedes-benz-user-experience-
revolution-in-the-cockpit/.

K. Micinski, P. Phelps, and J. S. Foster. An empirical study of location
truncation on android. Weather, 2:21, 2013.

C. Miller and C. Valasek. Remote exploitation of an unaltered passenger
vehicle. Black Hat USA, 2015, 2015.

MirrorLink. Mirrorlink, 2009. https://mirrorlink.com/.

MITRE. CVE-2013-4787. Available from MITRE, CVE-ID CVE-2013-
4787., 2013. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-
2013-4787.

39

https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/linkedin/qark
https://github.com/linkedin/qark
https://www.mercedes-benz.com/en/mercedes-benz/innovation/mbux-mercedes-benz-user-experience-revolution-in-the-cockpit/
https://www.mercedes-benz.com/en/mercedes-benz/innovation/mbux-mercedes-benz-user-experience-revolution-in-the-cockpit/
https://www.mercedes-benz.com/en/mercedes-benz/innovation/mbux-mercedes-benz-user-experience-revolution-in-the-cockpit/
https://mirrorlink.com/

Bibliography

(36]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Nauman, S. Khan, and X. Zhang. Apex: extending android permis-
sion model and enforcement with user-defined runtime constraints. In
ASIACCS 10, 2010.

Porter Felt, E. Chin, S. Hanna, D. Song, and D. A. Wagner. Android
permissions demystified. In ACM Conference on Computer and Commu-
nications Security, pages 627-638. ACM, 2011.

Porter Felt, S. Egelman, M. Finifter, D. Akhawe, D. Wagner, et al. How
to ask for permission. In HotSec, 2012.

Porter Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission
re-delegation: Attacks and defenses. In USENIX Security Symposium,
2011.

A. Porter Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. A. Wagner.
Android permissions: user attention, comprehension, and behavior. In
SOUPS, page 3. ACM, 2012.

A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan,
J. Amann, and P. Gill. Studying tls usage in android apps. In CoNEXT
’17,2017.

RenaultdASNissan Alliance. Renault-nissan-mitsubishi and google
join forces on next-generation infotainment, 2018. https:
//www.alliance-2022.com/news/renault-nissan-mitsubishi-

and-google-join-forces-on-next-generation-infotainment/.

I. Reyes, P. Wiesekera, A. Razaghpanah,]. Reardon, N. Vallina-
Rodriguez, S. Egelman, and C. Kreibich. " is our children’s apps learn-
ing?" automatically detecting coppa violations. In ConPro’17, 2017.

J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9), 1975.

R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and X. Wang.
Soundcomber: A stealthy and context-aware sound trojan for smart-
phones. In NDSS ’11, 2011.

M. Singleton. Spotify is testing a driving mode feature, 2018.
https://www.theverge.com/2017/7/7/15937284/spotify-
driving-mode- feature-testing.

Spotify. Privacy policy, 2018. https://www.spotify.com/us/legal
/privacy-policy/.

40

https://www.alliance-2022.com/news/renault-nissan-mitsubishi-and-google-join-forces-on-next-generation-infotainment/
https://www.alliance-2022.com/news/renault-nissan-mitsubishi-and-google-join-forces-on-next-generation-infotainment/
https://www.alliance-2022.com/news/renault-nissan-mitsubishi-and-google-join-forces-on-next-generation-infotainment/
https://www.theverge.com/2017/7/7/15937284/spotify-driving-mode-feature-testing
https://www.theverge.com/2017/7/7/15937284/spotify-driving-mode-feature-testing
https://www.spotify.com/us/legal/privacy-policy/
https://www.spotify.com/us/legal/privacy-policy/

Bibliography

(48]

[49]

[50]

(51]

Tencent Keen Security Lab. New vehicle security research
by keenlab: Experimental security assessment of bmw cars,
2018. https://keenlab.tencent.com/en/2018/05/22/New-
CarHacking-Research-by-KeenLab-Experimental-Security-
Assessment-of-BMW-Cars/.

Volkswagen. 2018 passat press kit, 2018. https://media.vw.com/en-
us/press-kits/2018-passat-press-kit.

Volvo Car Group. Volvo cars to embed google assistant, google
play store and google maps in next-generation infotainment sys-
tem, 2018. https://www.media.volvocars.com/global/en-
gb/media/pressreleases/228639/volvo-cars-to-embed-
google-assistant-google-play-store-and-google-maps-
in-next-generation-infotainme.

C. Warren. Radio fm, 2018. https://play.google.com/store/ap
ps/details?id=com.radio.fmradio&hl=en&reviewId=gp%3AA0qp
TOFWacIVZQ-JHULA861Ku5ZYSNQAdIjsM8e6PhOaj2RWN2aVmoFJIFfmJh
C91yQEErw6Z0ORe3IOLF6K1V_o_Y.

41

https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://media.vw.com/en-us/press-kits/2018-passat-press-kit
https://media.vw.com/en-us/press-kits/2018-passat-press-kit
https://www.media.volvocars.com/global/en-gb/media/pressreleases/228639/volvo-cars-to-embed-google-assistant-google-play-store-and-google-maps-in-next-generation-infotainme
https://www.media.volvocars.com/global/en-gb/media/pressreleases/228639/volvo-cars-to-embed-google-assistant-google-play-store-and-google-maps-in-next-generation-infotainme
https://www.media.volvocars.com/global/en-gb/media/pressreleases/228639/volvo-cars-to-embed-google-assistant-google-play-store-and-google-maps-in-next-generation-infotainme
https://www.media.volvocars.com/global/en-gb/media/pressreleases/228639/volvo-cars-to-embed-google-assistant-google-play-store-and-google-maps-in-next-generation-infotainme
https://play.google.com/store/apps/details?id=com.radio.fmradio&hl=en&reviewId=gp%3AAOqpTOFWacIVZQ-JHULA86lKu5ZYSNQdIjsM8e6Ph0aj2RWN2aVmoFJFfmJhC91yQEErw6Z0Re3I0LF6k1V_o_Y
https://play.google.com/store/apps/details?id=com.radio.fmradio&hl=en&reviewId=gp%3AAOqpTOFWacIVZQ-JHULA86lKu5ZYSNQdIjsM8e6Ph0aj2RWN2aVmoFJFfmJhC91yQEErw6Z0Re3I0LF6k1V_o_Y
https://play.google.com/store/apps/details?id=com.radio.fmradio&hl=en&reviewId=gp%3AAOqpTOFWacIVZQ-JHULA86lKu5ZYSNQdIjsM8e6Ph0aj2RWN2aVmoFJFfmJhC91yQEErw6Z0Re3I0LF6k1V_o_Y
https://play.google.com/store/apps/details?id=com.radio.fmradio&hl=en&reviewId=gp%3AAOqpTOFWacIVZQ-JHULA86lKu5ZYSNQdIjsM8e6Ph0aj2RWN2aVmoFJFfmJhC91yQEErw6Z0Re3I0LF6k1V_o_Y

Appendix

Table 1.3: List of attacks and their severity score, based on CVSS v3.

Name CVSS v3 Vector Score
SoundBlast AV:L/AC:L/PR:N/ULLR/S:U/C:N/L.L/A:L | 4.4
Fork bomb AV:L/AC:L/PR:N/ULR/S:U/C:N/I:N/A:H | 5.9
Intent storm AV:L/AC:L/PR:N/ULR/S:U/C:N/I:N/A:H | 5.9
Permissionless speed AV:L/AC:L/PR:N/ULR/S:U/C:L/IN/A:N | 3.3
Permissionless exfiltration | AV:L/AC:L/PR:N/ULR/S:U/C:L/I:N/A:N | 3.3
Covert channel AV:L/AC:L/PR:N/ULR/S:U/C:L/I:N/A:N | 3.3

43

AutoNav: Evaluation and
Automatization of Web
Navigation Policies

Benjamin Eriksson, Andrei Sabelfeld
Web Conference (WWW) 2020

bstract. Undesired navigation in browsers powers a significant
A class of attacks on web applications. In a move to mitigate risks
associated with undesired navigation, the security community has pro-
posed a standard that gives control to web pages to restrict naviga-
tion. The standard draft introduces a new navigate-to directive of
the Content Security Policy (CSP). The directive is currently being im-
plemented by mainstream browsers. This paper is a first evaluation of
navigate-to, focusing on security, performance, and automatization
of navigation policies. We present new vulnerabilities introduced by
the directive into the web ecosystem, opening up for attacks such as
probing to detect if users are logged in to other websites or have active
shopping carts, bypassing third-party cookie blocking, exfiltrating se-
crets, as well as leaking browsing history. Unfortunately, the directive
triggers vulnerabilities even in websites that do not use the directive
in their policies. We identify both specification- and implementation-
level vulnerabilities and propose countermeasures to mitigate both. To
aid developers in configuring navigation policies, we develop and im-
plement AutoNav!, an automated black-box mechanism to infer navi-
gation policies. AutoNav leverages the benefits of origin-wide policies
in order to improve security without degrading performance. We eval-
uate the viability of navigate-to and AutoNav by an empirical study
on Alexa’s top 10,000 websites.

1 Introduction

As the power of the web platform grows, attackers increasingly target client-
side vulnerabilities [3, 9, 12, 16, 18, 37, 39, 43, 50, 56, 57]. Exploiting these
vulnerabilities is effective because clients manipulate highly sensitive infor-
mation, like login credentials, banking, health, and location data, on behalf
of the user.

1.1 Motivation

One of the bigger classes of client-side security vulnerabilities on today’s
web is cross-site scripting (XSS) [45]. An XSS vulnerability gives an attacker
the power to execute JavaScript code on another website. This can be used
to steal user credentials, change the behavior of the application or render
the website unusable. A common approach to mitigate this problem is to let
servers send extra security policies along with each HTTP response. The web
browser will then enforce these policies, for example, by restricting which
scripts to allow on the webpage. These security policies have been defined
by the web security community as part of Content Security Policy (CSP) [63].

Navigation attacks The current CSP standard (level 2 [63]) does not ad-
dress attacks via navigation. Attackers can thus freely redirect users to mali-
cious or inappropriate websites. This type of attack can affect the confiden-
tiality, integrity and availability of the attacked website. For confidentiality,
an attacker with injection capabilities can inject the following script to leak
the secret cookie.
1 <script>
window.location = "http://evil.com/?c="+document.cookie;

</script>
1

When the script is executed the user will be sent to http://evil. com, along
with their cookies, potentially allowing the attacker to take over their ac-
count. In addition to only stealing the cookie, the attacker could launch a
phishing attack by designing http://evil.com to look like the attacked

47

http://evil.com
http://evil.com

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

website. Here the user could be asked to supply more confidential informa-
tion or be forced to download malicious software. The availability of the
website is also compromised as every user visiting the page containing the
injected script will be sent away. Note that while CSP can block scripts, an
attacker could also force the user to perform a navigation by using meta tags
as shown below. While not valid HTML, modern browsers will follow meta
redirects in the HTML body.

1 <meta http-equiv="refresh"
: content="0;URL="http://evil.com/"" />

The navigate-to directive To mitigate these problems the World Wide
Web Consortium (W3C) has drafted a standard for the new CSP directive
navigate-to [61]. This directive has already been implemented in Chrome [36]
and Firefox [28]. A common motivation for the directive is to increase the se-
curity on websites, as well as, give advertising platforms better control over
navigations in ads [40]. We illustrate this in two example scenarios: HTM-
L/JavaScript injection and malicious advertisement.

HTML/JavaScript injection Understanding the space of navigation links
on a website can improve security thanks to navigate-to. By limiting the
possible navigations, attackers will not be able to redirect users. A real-world
example of where this policy would have helped is a vulnerability on bloc
kchain.info [27]. Attackers were able to inject HTML and JavaScript into
the search function on the page. This meant that a URL similar to blockcha
in.info/?search=<code>, which appears to point to blockchain.info,
could redirect the user to another website. This is known as a reflective XSS
vulnerability [48], as the code in the URL is reflected onto the page. Although
blockchain.info used CSP to mitigate XSS, it was still possible to inject
HTML code that forces a redirect. With the new directive, the following CSP
policy can mitigate this type of attack. This policy blocks any navigation
attempt to anything but self, i.e. blockchain.info.

1 navigate-to ’'self’
2

Malicious advertisement Advertisement platform providers benefit from
ensuring that users who click on their ads end up on the correct page. This
is especially important if the pages where the ads are served are sensitive
to inappropriate material, e.g. websites for kids, governments, or highly re-
spected financial websites. Using the new directive, advertisers would be

48

blockchain.info
blockchain.info
blockchain.info/?search=<code>
blockchain.info/?search=<code>
blockchain.info
blockchain.info
blockchain.info

1. Introduction

able to block navigations leading to incorrect ads. The policy is required
because even if the target site for the ad is correct when the ad is bought,
the website can at a later stage be hacked or misconfigured. Google Ads
could, for example, serve the following policy with an ad from shoes. com.
This would only allow navigation to https://shoes. com, blocking both the
HTTP version, as well as, possible deep-links to apps like app://shoes. com.
The unsafe-allow-redirects keyword allows for any number of server-
side redirections before reaching shoes. com.

1 navigate-to https://shoes.com 'unsafe-allow-redirects’
2

1.2 Research questions

The standardization [35, 61] and implementation [28, 36] efforts for
navigate-to are well underway. The time is critical to ask questions on
the security, performance, and adoptability of the proposed directive, before
its adoption starts on the web. (Our analysis at the time of the writing con-
firms that the landing pages of Alexa’s top 10,000 domains are yet to con-
tain navigate-to CSP headers). By pursuing these questions, our goal is to
deepen understanding of navigation policies and their impact, contribute to
the emergence of the new standard, and to utilize our findings for settling
the ongoing discussions by the community [29].

Security While there seems to be much to gain from a navigation pol-
icy, what is the impact on the security of the entire web ecosystem? For a
fully-fledged security evaluation, we seek to uncover both new vulnerabil-
ities and amplifying effects of known vulnerabilities. Our methodology is
thus to investigate possibilities of exploiting the directive by a comprehen-
sive range of attackers defined in the security literature [39]: injection [5],
gadget [6], web [2] and passive network [25] attackers. Even though these at-
tackers share some capabilities, they each have unique abilities, e.g. reading
network traffic or hosting websites, and as such require individual analysis.
This brings us to the questions of security: Does the new policy “break the
web”? Does the new policy introduce security vulnerabilities? How can they be
mitigated and by whom?

Automatization Once the new directive is secured, how can we aid its
adoption? CSP has been notoriously hard to adopt, introducing insecure poli-
cies or broken websites [56, 57]. To help developers use the new directive,
and increase both usability and adoptability, we investigate the possibility

49

shoes.com
https://shoes.com
app://shoes.com
shoes.com

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

of automatically generating navigation policies. Hence, the question: Can
automatic mechanisms be used to help generate the new policy?

Performance In contrast to CSP directives like script-src, intended to
whitelist scripts that can be loaded by a webpage, the navigate-to directive
will whitelist possible navigations. This results in already lengthy response
headers becoming even larger, further increasing the overhead of security
headers. This brings us to the question of performance: What are efficient
methods for delivering the new policy?

1.3 Contributions

This paper is a first systematic evaluation of navigate-to. Our goal is to
both initiate research on navigation security and to affect the emerging stan-
dards for navigation policies. We examine the security implications, effi-
ciency, and the possibility of automatic generation of the new navigate-to

policy.

Security The intricate connections between policies together with the grow-
ing complexity of the web results in new mechanisms becoming more chal-
lenging to incorporate into the ecosystem. This motivates the need to analyze
multiple types of attackers, as well as, reexamining existing mechanisms in
combination with new ones. We follow a methodology of examining the ef-
fects of navigate-to on a comprehensive range of attackers: injection [5],
gadget [6], web [2] and passive network [25] attackers. By scrutinizing the
full attack surface of the new directive, with respect to different types of at-
tackers, we identify specification- and implementation-level vulnerabilities
that can be exploited (Section 3). The vulnerabilities allow attackers to probe
other websites to detect if users are logged in or have active shopping carts,
bypass blocking mechanisms of third-party cookies, leak browsing history,
and open up new methods for exfiltration. This demonstrates that the di-
rective “breaks the web” in the sense of introducing vulnerabilities even in
otherwise secure websites that do not use the directive in their policies. We
present mitigations to security problems, both for web and policy developers
(Section 4).

Automatization Looking ahead when the proposed mitigations are in place,
our goal is to aid in the adoption of navigate-to. We develop AutoNav, an
automatic mechanism for navigation policy inference (Section 5). AutoNav

50

2. Background

crawls websites and generates navigate-to policies. The goal of this mech-
anism is to simplify the deployment of the new directive by helping web
developers and security engineers to find fitting policies for their websites.
To further improve security, AutoNav can also generate origin-wide poli-
cies for the new origin policy delivery mechanism that is currently being
drafted [59]. This improves security by applying the policy to the entire ori-
gin, covering pages that are easy to forget, like error pages. We implement
and evaluate the mechanism by an empirical study (Section 6). In our experi-
ments, we craw 100 pages per domain for 10,000 domains. Based on a subset
of 80 pages, AutoNav generates a policy for the remaining 20 pages. For 42%
of websites, AutoNav generated a policy which fully covered the 20 pages,
and at 59% 19 out the 20 pages were covered. Further investigation into the
category of websites shows that shopping websites and adult websites are
the easiest to cover.

Performance To evaluate the performance impact of the policy we per-
form an empirical study (Section 6). Based on 10,000 crawled domains from
Alexa’s top 10,000, the policy will result in an overhead of 215 bytes for
each HTTP response. We create simplification strategies to find a balance
between security, performance and maintainability. These simplifications
convert complicated policies with multiple subdomains to more manageable
policies by using wildcards. For example, instead of including all language-
specific subdomains from Wikipedia navigate-to *.wikipedia.comwould
be enough. Our simplification algorithm decreased the overhead by between
40% and 47%. Furthermore, we show that the use of an origin policy would
result in an overhead of 1904 bytes in total, as opposed to per HTTP response.
This is further decreased to 1004 bytes by using our simplification algorithm.
A 900 byte reduction might not seem like much, but it can have a big impact
on larger websites [21].

2 Background

Setting the background, we present the threat model in terms of relevant
attackers. We describe CSP and how it relates to the origin policy. Finally,
we explain navigation methods and how they are treated in the navigate-to
directive.

51

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

2.1 Threat model

The main goal of the navigate- to directive is to give web developers control
over where users can navigate from their website. The assets that need pro-
tecting include confidentiality, integrity and availability. Previous research
has already shown how confidential information, such as cookies, can be ex-
filtrated using navigation [65]. While the new directive is a step in the right
direction to address data exfiltration, Zalewski [65] points out that control
over navigation is not necessarily enough. Attackers could, for example, in-
ject HTML or JavaScript that change documents from private to public on
a website like Dropbox. Forced navigation can also be used for phishing at-
tacks by redirecting users to a similar-looking, but attacker-controlled, web-
site.

Modern web browsers support many different methods for navigation,
e.g. by clicking on a link, submitting a form, etc. These navigation methods,
and the subset that the navigate-to directive is intended to apply to, are
explained in Sections 2.4 and 2.5.

As mentioned above, we are interested in a comprehensive security eval-
uation of the impact of the directive on the entire web ecosystem. Hence,
our threat model includes four types of attackers from the security litera-
ture [39]: injection, gadget, web and network attackers. In practice there is
some overlap between the classes, for example, an attacker with web attacker
capabilities will usually also have injection attacker capabilities. However, the
best mitigation strategy might be different depending on which specific class
we need to defend against. Therefore it is important to study each distinct
class of attacker.

Injection attacker The injection attacker [5] is able to inject content into
a website. A typical example is a user who can post content on a forum. If
the user’s post contains JavaScript then that code could be executed by other
users on the site, in this scenario, with the goal to force a navigation.

Gadget attacker The gadget attacker [6] is similar but more powerful as
they are allowed to host code, or gadgets, on other websites. A notable ex-
ample is JQuery which is a JavaScript snippet that is used by many websites.
Since JavaScript do not support any isolation, these gadgets run with the
same capabilities as other scripts on the website. A malicious gadget could
exfiltrate information from the website it is integrated to, modify content on
pages or even navigate the user away from the website.

52

2. Background

Web attacker The web attacker [2] is able to host and configure a full web-
site. This is especially important for advertisers who want to ensure that the

landing page does not redirect to anything other than what was specified in
the ad.

Passive network attacker A passive network attacker [25] can listen in
on all the traffic sent from and to a client but can not decrypt HTTPS. If the
traffic is not encrypted, the attacker can read passwords and session cookies
being sent to the server.

Note that navigate-to is not designed to handle network attacks. Yet
we pay attention to network attackers in our effort to analyze the impact of
the directive on the entire web ecosystem.

2.2 CSP

CSP is intended to mitigate cross-site scripting (XSS) and other code injection
attacks. The current version of CSP, level 2, is supported by all major web
browsers [26]. Level 3, which includes the new navigate-to directive, is
being discussed and drafted [61].

CSP protects the users by specifying which resources and scripts are al-
lowed on a page. The web server sends the CSP policies each time a user
requests a page. These policies are then enforced by the browser to, among
other things, block XSS. The policy below will only allow scripts to be loaded
from the current origin, still blocking any injected inline scripts. In addi-
tion, the reporting header Content-Security-Policy-Report-0nly [33]
can be used to report policy violations without enforcing them. These re-
ports are sent as POST requests to the server. They can also be detected
using SecurityPolicyViolationEvent in JavaScript.

i Content-Security-Policy: script-src ’'self’

2.3 Origin policy

Today, CSP headers are sent with every HTTP(S) response, which is a con-
cern for both safety and performance [50]. For security, it is easy to for-
get the policy on special pages, like error pages [59]. It also harms perfor-
mance because servers need to repeat the same policy for each response,
even if the policy should apply to all. To address this, specifications are be-
ing drafted [59], implemented [60], and evaluated [50] to enable origin-wide
policies, known as origin policies [59] or origin manifests [50]. Using an origin

53

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

policy, the server only needs to include once which policies should apply to
the whole origin.

2.4 Navigation

Navigations can be performed in many different ways by browsers, e.g. by
clicking on a link, submitting a form or running JavaScript. Navigation meth-
ods can be split into two different categories, user-initiated or document-
initiated. While navigation is defined in the Fetch [52] and HTML [4] stan-
dards, the exact methods available depend on the web browser implementa-
tion. We make an effort to summarize the most common methods in Table 2.4.
The Automatic column shows if the navigation method can be performed au-
tomatically. This is true for all JavaScript function and, in case JavaScript is
allowed, <a> and <form> tags. It is worth noting that while a web page
cannot read a user’s browsing history, it can initiate navigation to go back
or forward in the browser history. There are many . location functions in
JavaScript that can navigate, e.g. window, document, parent, etc. They all
use the Location object defined in the HTML standard [4]. Some functions,
like window.navigate, only works in Internet Explorer [11]. The last col-
umn specifies which methods navgiate-to affects.

Table 2.4: Navigation methods together with initiator and possibility to au-
tomatically navigate.

Method Initiator Automatic Affected
<a> tag Document With JavaScript v
<form> tag Document With JavaScript v
<meta> tag Document Yes v
<iframe> tag [51] Document Yes v
window.open [53] Document Yes v
*.location [4] Document Yes v
window.navigate [11] Document Yes v
Typing the URL User No

History buttons User & Document Yes

Home button User No

2.5 Navigate-to directive

The navigate-to directive gives developers the power to control the naviga-
tions a document can initiate. Document initiated navigations are discussed

54

3. Vulnerabilities

in Section 2.4. This directive makes it harder for attackers to inject code to
redirect users from legitimate websites. For example, if an attacker manages
to inject links on disney. comthen Disney’s reputation is at stake if links lead
to inappropriate websites. To tackle this, Disney could add the following to
their CSP policy:

1 navigate-to *.disney.com *.thewaltdisneycompany.com

This would instruct the browser to only accept navigations to subdomains of
disney.comand thewaltdisneycompany.com, and block all navigations to
other websites. The standard also introduces the new keyword
unsafe-allow-redirects, which allows any redirects as long as the final
destination is allowed by the policy. It is deemed less safe since it does not
have full control over all the sites in the redirect chain. However, it is still
better than nothing in terms of limiting navigations.

The navigate-to directive is currently being standardized by W3C [61]
and implemented in Chrome [36] and Firefox [28]. It is available in the
current version of Chrome (version 77.0.3865), and other Chromium-based
browsers like Edge and Brave, behind a flag that enables experimental fea-
tures. It is also available in Firefox Nightly (Version 71.0a1) behind a flag [28].

3 Vulnerabilities

This section presents vulnerabilities and security concerns related to the
navigate-to policy. These vulnerabilities are not navigation attacks, but
rather vulnerabilities that become possible due to navigate-to. Except for
the last vulnerability in Section 3.3.3, where we rather want to show that
a small improvement to navigate-to can solve an existing problem. The
policy introduces new methods for acquiring privacy-sensitive information,
circumvention of security mechanism and data exfiltration. All the attacks
described in this section have been tested in practice. While some of the
vulnerabilities, like the data exfiltration, relies on the existence of other vul-
nerabilities, like content injection, the navigate-to adds a new layer to the
attacks. This possibility of combining attacks shows the importance of reex-
amining existing ones when introducing new mechanisms.

3.1 Methodology

To systematically find vulnerabilities we distinguish vulnerabilities relating
to the specification of the navigate-to directive and vulnerabilities related

55

disney.com
disney.com
thewaltdisneycompany.com

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

to its implementation. For each category, we divide the investigation of vul-
nerabilities pertaining to confidentiality, integrity and availability, in accor-
dance with the CIA triad. We draw on our threat model and examine vulner-
abilities with respect to injection, web, gadget, and passive network attack-
ers. Finally, we analyze how the directive can be used to circumvent modern
countermeasures, such as third-party cookie blocking.

The presentation of the vulnerabilities is ordered by our estimate of their
impact, from high to low. Table 2.5 lists the vulnerabilities we discover to-
gether with their corresponding attacker model. Interesting to note is that
resource probing and Google Search profiling can be exploited to attack web-
sites that themselves do not use the navigate-to directive. This results in
previously security websites becoming insecure.

Table 2.5: The uncovered vulnerabilities together with corresponding at-
tacker model.

Vulnerability / Attacker Injection Web Gadget Passive network

Resource probing

Google Search profiling

Third-party cookie bypass

S ENENEN

History sniffing

Data exfiltration v v

Ads leaking data v

3.2 Specification

The following vulnerabilities are present in the specification. This means
that any browser following the specification correctly will be vulnerable.

Unauthenticated

evil.com |—=| a.io/secret/ - - >| a.io/login/

Figure 2.4: A user visiting evil.com will be navigated to a.io/secret/. If
they are not logged in, they are further redirected to a.io/log
in/.

3.2.1 Resource probing

In cases where web applications redirect based on sensitive resources, these
resources could be probed. For example, probing for the existence of Dropbox

56

evil.com
a.io/secret/
a.io/login/
a.io/login/

3. Vulnerabilities

files. The probing attacks in this section are deterministic, as opposed to
other attacks that rely on timings [55]. The attacks are also general and
could potentially be used on any website, not solely on advertiser platforms
such as the attack presented by Venkatadri et al. [54].

A malicious website, i.e. a web attacker, can navigate a user to
dropbox.com/preview/wallet.txt to detect if a user has a file named
wallet.txt. If no such file exists then the user is redirected to
dropbox.com/home/wallet. txt, making it possible to craft a policy which
blocks /preview/ but not the redirection to /home/, like the following. Note
here that we only use path-sensitivity to block /preview/. If we are redi-
rected, then path-sensitivity is no longer available and we only have to allow
dropbox. com. The main difference compared to previous work on CSP redi-
rections [23] is that we only need path-sensitivity for the first request, not
the redirects.

1 navigate-to 'unsafe-allow-redirects’ https://www.dropbox.com/
not_preview/;

By utilising invisible iframes multiple files can be checked in parallel, without
the user being navigated away from the malicious website.

One specific application of resource probing that has been researched be-
fore is login detection. Previous methods [20, 32] relies on third-party cook-
ies, which can be blocked by the user or by the proposed default SameSite
policy [62]. Instead, note that a navigation to facebook.com/settings/
will redirect the user to the login page, facebook.com/login.php, if they
are not authenticated, similar to Figure 2.4. By allowing only one of these
URLs in the policy, the attacker can differentiate between a successful nav-
igation and a blocked one. This feature makes our method more powerful
and general.

We have also found that on some E-commerce websites it is possible to
detect if a customer has anything in their shopping cart. This is because
navigating directly to the shopping cart or checkout page sometimes redi-
rects the user depending on the content of the cart. PrestaShop, which is an
E-commerce platform used on hundreds of thousands of websites [8], does
exactly this. By visiting example.com/en/order a user will be redirected to
example.com/en/cart, assuming example.com uses PrestaShop.

Some of the probing attacks can leak more data if they are done in an ac-
tive fashion. The PrestaShop attack can be improved to, in theory, enumerate
the full cart. This is due to a Cross-Site Request Forgery (CSRF) [47] vulner-
ability in PrestaShop, currently being disclosed, which allows an attacker to
add and remove items. Using this method an attacker can repeatedly remove

57

example.com/en/order
example.com/en/cart
example.com

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

items and then check if the cart is empty.

These are only a few examples we have found where redirects are based
on sensitive data. We believe that many more such redirects currently ex-
ists on the web. Furthermore, navigations can bypass lax SameSite cookies,
making the attack possible on sites where previous CSRF attacks were not
possible.

3.2.2 Google Search profiling

Google Search relies on personalized search [19], meaning that the results of
a search query are based on the users’ previous interactions with Google. A
recent study [24] shows that users are put into so-called “filter bubbles” by
Google, resulting in varying result when searching for political terms such
as “gun control” or “immigration”. A web attacker can craft a malicious web-
site which uses the navigate- to directive together with Google’s I'm feeling
lucky function to extract top results from visitors. This type of extraction at-
tack is called cross-site search and has previously been successfully mounted
against Gmail and other websites [17]. The main difference is that previous
methods have relied on timing, whereas our method is fully deterministic.
Castelluccia et al. [10] were also able to infer sensitive information about
users based on Google Searches. However, their approach required network
attacker capabilities and assumed the traffic was unencrypted, which is not
the case anymore. Our attack can be mounted by anyone with the capability
to set up a website.

The attacker can then use these top results from Google to infer these
filter bubbles. Using the URL https://www.google.com/search?q=QUER
Y&btnI, Google will automatically redirect the user the top result for term
“QUERY”. Therefore the I'm feeling lucky function acts as an open redirec-
tor, which is something both OWASP [46] and Google [34] themselves warn
about. It is well known that Google has this problem but so far they choose
to accept the risk [1]. However, the navigate-to directive adds a new di-
mension to the problem as it enables attackers to infer data about users.

To exploit this the attacker can specify a report-only policy that only al-
lows google. com, as shown below. The redirect will violate the policy and
the browser will dutifully report which domain was in violation to the ma-
licious website. The attacker can iteratively update the query to get more
results. Assuming searching for “news” would return news.com, then the
next query would be “news -site:news.com”, which excludes news . com and
perhaps returns reports. cominstead. Another attack vector would be other
search engines using this approach to directly copy personalized search re-
sults from Google, similar to what Bing did [41].

58

https://www.google.com/search?q=QUERY&btnI
https://www.google.com/search?q=QUERY&btnI
google.com
news.com
news.com
reports.com

3. Vulnerabilities

1 Content-Security-Policy-Report-Only: navigate-to ’unsafe-allow-
redirects’ google.com

3.2.3 Third-party cookie bypass

A cookie is a piece of data that websites can save locally on users’ ma-
chines. [31] Depending on how the cookie is acquired, it will either be con-
sidered a first-party cookie or a third-party cookie. A navigation will result
in first-party cookies while image request and similar results in third-party
cookies.

Third-party cookies are useful for advertisers [14] as it allows them to use
small tracking pixels [15] for tracking users. Modern browsers allow users
to block third-party cookies or do it by default [42].

Previous work has demonstrated how Cookie Synchronization [7, 38] can
be used by ad platforms to effectively break the same-origin policy. Privacy-
aware users can mitigate this by blocking third-party cookies altogether.
However, the navigate-to directive introduces a new method for adver-
tisers to circumvent this by using navigations. As it requires control over
the CSP headers, web attackers are the main threat. Figure 2.5 shows a user
visiting a.1io, then being forcibly navigated to track.com and acquiring a
first-party cookie. Using the following policy, the redirection will be blocked,
making the attack unnoticeable to the user.

1 navigate-to ’'unsafe-allow-redirects’

2

User

Figure 2.5: When a user visits a.io or b.io, they can force the user to ob-
tain first-party cookies from track. com.

3.3 Implementation

The following vulnerabilities are due to implementation decisions. We focus
on Chrome’s [36] and Firefox’s [28] implementations of navigate-to,

59

a.io
track.com
a.io
b.io
track.com

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

3.3.1 History sniffing

The navigate-to policy can, in some cases, be exploited by a web attacker
with a malicious website to probe which websites a user has visited. The
attack uses the fact that websites using HSTS force the browser to remember
and upgrade insecure connections. Previous methods exploiting this have
relied on timing attacks which are now mitigated [64].

Using navigate-to, a malicious website can make a POST request to
another site which uses HSTS but is not preloaded. If the site redirects based
on the POST data then the attacker might be able to detect if a user has visited
the site before. This is possible because if the user has visited the site before
it will result in an internal redirect (HTTP 307), which keeps the POST data.
Otherwise, the server will redirect (HTTP 301/302), which drops the POST
data. If the server specifically performs a 307 redirect then the attack will
not work. By crafting a CSP that does not allow the redirect, the attacker can
differentiate between the two cases, denoted X and Y in Figure 2.6. This is,
for example, possible using the login function on the popular social media
website VK.

307 __https://target.conj> X |
[http:// target.com<
301 “https://target.con}>{Y |

Figure 2.6: If target.com uses HSTS, and the user has visited the site be-
fore, then the browser will automatically upgrade the connec-
tion to HTTPS using a 307 redirect instead of a server side 301.

3.3.2 Data exfiltration and communication

Previous research has shown that data exfiltration is possible in the face of
CSP [49]. The usage of forms and links to exfiltrate data has also been stud-
ied [65]. However, the navigate-to policy introduces an improved method
for exfiltration, and two-way communication, based on JavaScript together
with navigation. This works in Chrome, but not Firefox, as Chrome does not
unload the page for navigate-to violations.

Consider a website using connect-src 'none’ and frame-src ’none’
to limit external loads as much as possible. The connect-src directive pro-
tects against some exfiltration methods including XHR, fetch and <a ping>,
while frame-src will block exfiltration to iframes. Assume the website uses
unsafe-allow-redirects followed by a list of allowed URLs. Note here
that we show that unsafe has implications beyond the scope of restricting

60

target.com

3. Vulnerabilities

navigation. An attacker capable of injecting JavaScript, i.e. either an injec-
tion or gadget attacker, can now use window. location, as shown in the list-
ing below, to exfiltrate arbitrary data. Each navigation request will exfiltrate
data, then be blocked by the policy, as the attacker can choose a website out-
side the CSP whitelist. Furthermore, by adding a SecurityPolicyViolation
event listener the attacker can inspect the blocked URI in the violation. To
send a response, evil.com would redirect the request to a subdomain like
<msg>.evil.com.

1 function exfiltrate (data) {
2 window.location = "http://evil.com/?d=" + data;
3
4

}

The main difference between not using navigate-to and using the policy
described is that by blocking the navigations, the control is returned to the
attacker, allowing for further stealth exfiltration and communication.

3.3.3 Ads leaking data

We have found that ads served over HTTPS can still leak the final landing
page to a passive network attacker if an ad in the redirection chain is un-
encrypted. While network-level eavesdropping is outside of CSP’s threat
model, the navigate-to directive presents a great opportunity to fix this
problem. The problem stems from the fact that when a user clicks on an ad
they can be channeled through multiple tracking websites. Listing 2.1 shows
a chain where the user is redirected to three different websites before the
landing page. We performed a small empirical study using the same dataset
as in Section 6. We extracted all iframes and compared their source URL to a
list of known advertisement platforms, e.g. DoubleClick. If the URL matched
we followed it and recorded the redirects. This resulted in 24650 unique ads,
of which 26.7% have a website between the advertisement platform and the
landing page. This highlights the need for advertisement platforms to con-
sider potential redirects from tracking websites and further motivates the
need for the navigate-to directive.

1 https://www.googleadservices.com/. ..

2 http://www.kqzyfj.com/...

3 http://cj.dotomi.com/...

. http://www.emjcd.com/. ..

5 https://<landing page>/...

6
Listing 2.1: Example of

an ad chain containing three different unencrypted domains
between the encrypted ad platform and landing page.

61

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

As can be seen in Listing 2.1, both the first and last websites use HTTPS
but there exist sites between that are unencrypted. This is very hard for a
user to detect as both the ad and the landing page seems secure. The prob-
lem with having HTTP in the chain is that an eavesdropper can follow the
request and find the landing page. Our empirical experiments show 10.6% of
the ads follow this pattern. As ads become more personal this becomes a pri-
vacy concern. Advertisements related to economic status or specific diseases
might be leaked without the user’s knowledge.

4 Countermeasures

This section presents countermeasures to the vulnerabilities in 3. The coun-
termeasures cover the specification, mitigations for web developers, as well
as, implementation improvements in web browsers. Similarly to the vulner-
abilities in Section 3 we distinguish specification- and implementation-level
countermeasures.

4.1 Specification
4.1.1 Resource probing

Previous login detection methods have forced web developers to rewrite their
applications to avoid special types of redirections. As mentioned in [13],
Google added an extra regex check to make sure the redirection did not lead
to resources that could be loaded cross-origin, e.g. “jpg”, “js” and “ico”.

The navigate-to policy circumvents this by being able to block and re-
port different paths in the URL, ie. it is possible to block
example.com/settings/ and allow example.com/login/. In this case, if
/settings/ redirects to /login/ for unauthenticated users, then the CSP
report log can be inspected to discern between authenticated and unauthen-
ticated users.

To fix this, path precision could be removed from the policy. If an origin
as a whole can not be trusted, it seems to add little security to trust certain
paths on the origin. Since these vulnerabilities affect websites that do not
use navigate-to, we also present countermeasures web developers can im-
plement. We recommend avoiding redirection based on secrets. Instead, by
showing an error page or rendering the login form on the same page the
website is guaranteed to not leak any data, as there will be no redirections.
If redirection is necessary, encoding paths in GET parameters, e.g. from
example.com/files/ to example.com/?path=/files/, also mitigates the
problem.

62

4. Countermeasures

4.1.2 Google Search profiling

For vulnerabilities like Google Search profiling, as presented in Section 3.2.2,
the key countermeasure is to avoid open redirects [46]. One possible way for
Google to accomplish this without removing the I'm feeling lucky function
is to use a CSRF token [47].

4.1.3 Third-party cookie bypass

The navigation path through the redirection chain can depend on the user’s
cookies. For this reason, it is not possible to block cookies while checking if
the navigation is allowed. Instead, we suggest that cookies attained during
the check are temporarily sandboxed and then removed if the navigation is

blocked.

4.2 Implementation
4.2.1 History sniffing

Privacy problems related to HT TP Strict Transport Security (HSTS) [22] has
been researched before [44]. However, they focused on tracking mechanisms
similar to cookies but harder to remove.

The solution is to ensure that an attacker can not differentiate between
the paths in Figure 2.6. Again, it becomes the web developers responsibility
to either use an internal redirect or not redirect on post data.

4.2.2 Data exfiltration

What makes this attack extra powerful is its ability to regain execution con-
trol after the navigation fails. It is not specified what should happen when the
navigate-to policy blocks a navigation attempt. Currently, Chrome seems
to simulate a 204 response [58], resulting in the continuation of the script,
and the possibility to exfiltrate more data. Firefox, on the other hand, uses
a full-page error that unloads the original document. By using this strategy
the script will stop executing, blocking further exfiltration. The attack can
also be mitigated by avoiding unsafe-allow-redirects, as this will block
the exfiltration during the pre-navigation check.

4.2.3 Ads leaking data

The navigate-to directive could block redirect chains which contain HTTP
websites. Currently, the policy navigate-to https: allows navigation to
any website using = HTTPS. However, combined with

63

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

unsafe-allow-redirects HTTP is allowed in the chain, as long as the
landing page is HTTPS. One solution is to add a value
unsafe-allow-https-redirects which would only allow redirection by
HTTPS. A more general solution is to split the policy into navigate-to and
navigate-by, where the latter would apply as long as the request is redi-
rected. When no redirect is received, the landing page is checked against
the navigate-to policy. By using this method, the following policy would
allow any HTTPS redirections which lead to https://example.com.

1 navigate-to https://example.com
navigate-by https:

5 AutoNav

We present AutoNav, an automatic mechanism to aid web developers in in-
ferring policies for their websites. The mechanism crawls the website and
creates a map of where pages can navigate. This mapping is used to gen-
erate and simplify the policies. AutoNav can generate both per-page poli-
cies, where each page on a website gets its own policy, and origin-wide poli-
cies [59].

5.1 Inference

We use a key-value map from the crawler to infer the policies. The page is
used as a key, and a list of all possible navigations from the page is used as a
value. Listing 2.2 shows an example.

A
2 "example.com/a.html": [facebook.com, google.com],
3 "example.com/b.html": [twitter.com, google.com]
4

b

Listing 2.2: Example of a key-value map generate from crawling two
pages on example.com

Using the key-value map, AutoNav can generate separate policies for
each page on the website. This is shown in Listing 2.3. AutoNav can also
generate an origin-wide policy based on the union of all the URLs, as shown
in Listing 2.4. These policies are then simplified, using the method described
in Section 5.2, to reduce the size and improve maintainability.

A

"a.html": "navigate-to facebook.com google.com",

64

https://example.com
example.com

5. AutoNav

3 "b.html": "navigate-to twitter.com google.com"
Listing 2.3: Per-page policies generated from Listing 2.2.

{

1
2 "x": "pavigate-to facebook.com twitter.com google.com"
3
4

}

Listing 2.4: Origin-wide policy generated from Listing 2.2.

5.2 Policy generation

The navigation policy is a whitelist of URLs that the user is allowed to nav-
igate to. In the most secure setting, the policy should contain the full URLs
to each allowed target. While secure, this creates big and hard to main-
tain lists of URLs requiring much bandwidth. Take Wikipedia for exam-
ple, their policy could consist of all subdomains like en.wikipedia.org,
es.wikipedia.org, etc. for each language. A more compact policy is
*.wikipedia.org. This simplification results in both less data being trans-
mitted and a more maintainable policy, however, it does decrease security as
it also allows evil.wikipedia.org.

AutoNav supplies developers with best-effort policies that aim to help
them harden their websites. Using our parameterized simplification algo-
rithm, developers get a slider style method for finding a trade-off between
maintainability, performance and security. The simplification algorithm looks
for evidence that all subdomains are trusted. The two sources used are the
number of URLSs that point to the subdomains (denoted t;) and the number
of subdomains that are pointed to (denoted t,). The motivation for f, is that
even if multiple links are found to a.example.com it does not imply that
b.example. com should be allowed. Similarly, ¢; is motivated by the notion
that the more URLs that point to *.example. com, the more it can be trusted.
Figure 2.7 shows the tree representation of 10 URLs pointing to example. com
and its subdomains. u; in the figure represents one URL, e.g. u7 points to a re-
source on test.b.www.example.com. Furthermore, the figure also includes
tuples of the threshold values (f1, ¢;). Figure 2.8 shows the tree after simpli-
fication using a threshold of (2,2). Using this method the policy will only
contain 3 entries instead of 7 entries.

65

a.example.com
b.example.com
*.example.com

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

@1

Figure 2.7: Tree representation of 10 URLs collected from example. com and
its subdomains. The tuples corresponds to the (#1, t,) thresholds.

Figure 2.9 shows the result from crawling five pages on ebay.com and
generating a policy. The crawler was only supplied with the start page and
then found the other four using the crawling algorithm from Section 5.3. The
five pages crawled are shown in the middle of the figure in grey with inte-
ger labels. The arrows from these nodes indicate that a possible navigation
was found between two nodes. The colors correspond to which part of the
policy covers the navigation. As shown, *.ebay. com covers a lot of the sub-
domains, thus they all share the same color. Using the figure, an origin policy
could be generated by taking the union of all the colors.

This method of generating policies guarantees that the functionality of
the website will remain intact. This is because, if a domain is in the list of
possible navigations, then it will be included in the policy. Similar to other
policies, the generated policy would need to be recalculated if the website
was updated to include new possible navigations. For security, the method
guarantees that if a domain is not in the list, then it will not be added to
the policy. However, subdomains of domains in the list can be added to the

policy.

Figure 2.8: Result of applying the simplification algorithm, using a tresh-
old of (2,2), to the tree in Figure 2.7. Resulting in the fol-
lowing policy, navigate-to example.com www.example.com
*, www.example. com.

66

example.com
ebay.com

5. AutoNav

~.ebay.it

© -ebaypartnemetwork com e «.ebay.comau

Figure 2.9: Generated policies for ebay.com. The nodes with outwards
pointing arrows are the five pages that we crawled. All the other
nodes correspond to a possible navigation. The color indicates
which part of the policy covers the navigation.

5.3 Crawling

Our implementation of AutoNav uses selenium with a Chrome instance to
crawl the pages on a website. By only supplying AutoNav with the first URL
it will automatically collect and crawl new URLs that it finds. When a URL
from the same website is found it is added to a set of unvisited URLs, from
which the next URL is picked. For each page on a domain, all the JavaScript
is executed, then the URLs from links and forms are saved. When the crawl-
ing session is over, the inference method described in Section 5.1 is used to
generate the policy.

5.4 Limitations

We did not take special care to crawl behind the login. However, it is trivial
for a site owner to add a session cookie to the crawler. The more pages
AutoNav can crawl the more the policy will cover. Crawling too few pages
will result in an incomplete yet secure policy. The policy is secure because
AutoNav will never add a domain to the policy that has not been seen.

We use static links to infer the policies, which will miss possible redirec-
tions. While not a security concern, we would produce more precise policies
if each link was followed dynamically and the redirections recorded.

67

ebay.com

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

User-agent sniffing is a common problem for crawling studies. Since the
AutoNav is designed for developers we think they can manually add entries
like languages.mysite.org and use the AutoNav to detect everything else.

6 Empirical Study

This section presents an empirical study to evaluate the performance impact
of the new directive, as well as, how different delivery methods and sim-
plifications can reduce the impact. Next, we evaluate AutoNav in how well
automatically generated policies based on a subset of the website cover the
full website.

To test how the new navigate-to policy will function on common web-
sites we utilize AutoNav in a crawling experiment. For calculating the per-
formance impact in Section 6.1, we use Alexa’s top 10,000 websites. For eval-
uating AutoNav itself we use Alexa’s top 14,000, ensuring we have 10,000
domains which all have more than 100 pages each.

6.1 Policy tradeoffs

This section presents the performance tradeoffs between per-page and origin-
wide policies together with the delivery methods of HTTP headers and origin
policy.

The costs in Table 2.6 are based on a user visiting n pages on a website,
thus the cost of HTTP headers need aggregation over all pages, i.e. } ;.
The cost of sending a single CSP policy depends on the number of URLs it
contains. We defined the cost of the policy based on the set of URLs, i.e. |Uj],
U, being the set of URLs on page i. Further, we can define a set of all URLs as
the union of the sets of URLs on each page as | J;<, U}, with corresponding

Empirical performance Based onthe 10,000 crawled domains, a per-page
policy, without any simplifications, would increase the header size with 215
bytes, per response. A more maintainable origin-wide policy results in a size
increase to 1904 bytes. This cost can be decreased by using the origin policy
for delivery, in which case the user only downloads the policy once. Note,
as shown in Table 2.6, that an origin policy outperforms a per-page policy
after only 9 responses. While per-page policies might seem better, they are
difficult to use since they require knowledge about the content on each page.
As such, some website, e.g. Facebook, use origin-wide policies, motivating
the need for an origin policy delivery method.

68

6. Empirical Study

In addition to the comparison between per-page and origin policy, we
also evaluated the cost benefits of using our policy simplification algorithm.
Using maximum simplifications, i.e. f; = 1,#, = 1, the average size of the
origin wide policy decreases from 1904 to 1004 bytes, a decrease of 47%.
Similarly, the per-page policy decreases from 215 bytes to 129 bytes, which
is a 40% decrease. For some websites, the benefit of simplification is much
greater. In particular, this is the case when websites allow navigation to nu-
merous subdomains. For example, spravker. ru would require a 20438 byte
origin policy without simplification, but only 61 bytes after simplification.
The big difference stems from the fact that spravker. ru have 954 subdo-
mains.

Table 2.6: Empirical costs for different policy models.

HTTP Origin Policy

Per-page Y 215 -
i<n

Origin-wide) 1904 1904
i<n

We also performed a more in-depth analysis of three websites, ebay . com,
wikipedia.org and stackexchange.com, to see how the threshold affect
performance. Fixing t; to 0, we only focus on the number of subdomains
when deciding if wildcards should be used. Figure 2.10 shows these domains
as solid lines, together with the corresponding costs for their origin policies.
As can be noted, after the t, threshold reaches 280 subdomains Wikipedia
can no longer use the wildcard and the policy quickly increases in size. By
increasing t; to 1000, more URLs are required before simplifications can
take place. As can be seen in the dashed lines in Figure 2.10, the crawled
data from Wikipedia did not contain enough URLs to the same domain for
a simplification. This would be the desired behavior if Wikipedia required
high assurance before introducing wildcards.

69

ebay.com
wikipedia.org
stackexchange.com

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

o——o——+——0——o———o——r—o—o

4,000 | :

—O©— Wikipedia (f; = 0)

- ©- Wikipedia (t; = 1000)
Ebay (t; = 0)
Ebay (; = 1000)
Stackexchange (t; = 0)
Stackexchange (t; = 1000)

| e

| | | |
0 100 200 300 400
t, threshold

»

S

o
!

Policy size (B

Figure 2.10: Cost of origin policy for different domains and simplification
thresholds. The y-axis shows policy size in bytes and the x-
axis shows the t, threshold. The legend shows the t; threshold

6.2 Coverage

While full coverage may be desirable, the goal of AutoNav is to help even if
the coverage is not complete, by providing a useful baseline policy for devel-
opers to build on.

Our coverage was generated similarly to the method used in CSPAuto-
Gen [37]. We generate the policy based on a training set of 80% of the pages
on a domain and then test how well they match the other 20%. We define U
as the set of URLs in the training set. For the n pages in the validation set,
we check if URLs on the page are covered, i.e. p; C U, where p; is the set of

all the URLSs on page p;. Finally the coverage of a website is calculated as:

lpi:piCUN
n
Using this formula, ¢ is calculated for all the websites that were crawled.

In total 42% of all the websites were fully covered and for 59% of the websites
95% or more were covered. Note that these results come from only crawling
100 pages, deeper crawls can greatly increase this coverage.

CcC =

7 Related work

Automatic methods for generating CSP policies have been studied before [12,
16, 18, 37]. deDacota by Doupe et al. [12] performs static analysis of ASP.NET

70

7. Related work

code in order to separate JavaScript code from data. After the JavaScript has
been separated into files, a CSP policy was generated for the file. AutoCSP
by Fazzini et al. [16] takes a similar approach by analysing server-side code,
PHP in this case. However, AutoCSP uses dynamic taint tracking instead of
static analysis, allowing it to create policies for inline JavaScript events and
CSS code. While both AutoCSP and deDacota were successful, they required
access to the source code of the application. In contrast, AutoNav uses a
black-box approach which removes the need for the source code. Further-
more, the aforementioned methods focus on JavaScript and CSS, while our
focus is on navigation and URLs. In addition, static analysis of source code
will miss many URLSs since modern web applications, like WordPress, store
content in the database and not in the code.

In addition, research has been done on generating policies without access
to the source code. Golubovic’s autoCSP [18] method utilizes a reverse proxy
and the report function in CSP to run an application in learning mode. In this
mode, the tool externalizes inline code and generates policies for the scripts
that should be allowed. A drawback is that autoCSP requires manual navi-
gation through the application to ensure all scripts are triggered. While this
works well for scripts, it becomes challenging when all possible links need
to be navigated. A similar approach based on the report function in CSP was
utilized by King’s Firefox extension Laboratory [30]. Laboratory is impres-
sive as it enables users to record and generate CSP policies in real-time while
visiting a website. Starting with a strict policy, it gradually weakens it as vi-
olation reports are received. While this method could be extended to include
navigations, it would require the user to initiate all possible navigations on
each page. Instead of relying on the reporting functionality, our method uses
a combination of static and dynamic analysis to record the navigations a doc-
ument can initiate. By doing this we avoid the problem of having to initiate
all navigations to generate a report. We also improve on the manual aspect
of traversing a website by implementing an automatic crawler, as suggested
by Golubovic, in future works.

CSPAutoGen Pan et al. [37] is also intended to automatize CSP genera-
tion. CSPAutoGen uses a crawler to analyze websites and try to infer which
scripts should be allowed. Similar scripts are also generalized into abstract
syntax trees, based on how many similar scripts are found. Once a policy has
been inferred, CSPAutoGen functions as a proxy between the client and the
server. This enables CSPAutoGen to rewrite requests and responses in real-
time, without needing any CSP configurations on the website. This is a great
feature when a server needs to be secured without any direct modification.
While a similar approach could be used for URLs and navigation, our goal is

71

2. AutoNav: Evaluation and Automatization of Web Navigation Policies

to generate CSP policies that can be used by the server directly.

In addition to policy generation, we benefit from origin-wide policies [59].
Similarly to the work on evaluating general origin-wide policies by Van Acker
et al. [50], our results also indicate that an origin-wide policy provides addi-
tional security without degrading performance.

8 Conclusion

Security We have performed a security analysis of the emerging CSP di-
rective navigate-to. Our findings show that the current specification and
implementations introduce new vulnerabilities. The vulnerabilities include
methods for resource probing, login detection, circumventing blockage of
third-party cookies, as well as, history enumeration. To mitigate these prob-
lems we propose countermeasures to both the specification and implemen-
tation of the directive. We demonstrate that the directive triggers vulnerabil-
ities even in websites that do not use the directive in their policies. Thus, we
also propose countermeasures web developers can make to their applications
in order to mitigate the possibilities of being exploited.

Automatization We have evaluated the possibility of automatically gen-
erating policies to help developers adopt the policy, we created AutoNav. Au-
toNav uses a black-box approach to crawl websites and generate CSP policies
that can be directly applied to the website. Our results show that in total 42%
of all the websites were fully covered and for 59% of the websites 95% or more
were covered. We further simplify the process by identifying categories of
websites which the policy better fits. Our research shows that shopping and
adult websites are best covered. These websites have a high incentive to keep
the users on their site, with the exception of linking to sponsors or partners,
which AutoNav’s policies cover.

Performance To analyze the performance of navigate-to we have con-
ducted an empirical study of Alexa’s top 10,000 websites. For each website,
we have crawled 100 pages and based on theses generated policies. We show
that on average this directive would increase the header size by 215 bytes
per request. However, using our simplification algorithm we produce more
maintainable policies which were also 40% smaller on average. Our results in-
dicate that using an origin policy would require a one time cost of 1904 bytes,
or 1004 using simplifications, as opposed to 215 bytes per request. Thus we
show that the performance hit from the increased security can be efficiently
mitigated by adopting an origin policy with suitable simplifications.

72

8. Conclusion

Coordinated disclosure We are in the process of disclosing the discov-
ered vulnerabilities to the affected vendors, including Google where both
Chrome’s implementation of navigate-to directive and the Google Search
website are affected. Based on our recommendations Firefox chose to harden
their implementation against exfiltration attacks, as explained in Section 4.2.2.

Acknowledgements Thanks are due to Mike West, Christoph Kerschbaumer,
and Daniel Hausknecht for helpful discussions on the topic of navigate-to.
This work was partly funded by the Swedish Foundation for Strategic Re-
search (SSF) and the Swedish Research Council (VR).

73

(1]
(2]

[11]

Bibliography

F. Aboukhadijeh. Is google an open redirector?, 2011.

D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. Towards a
formal foundation of web security. In Computer Security Foundations
Symposium (CSF), pages 290-304. IEEE, 2010.

A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan. {NAVEX}:
Precise and scalable exploit generation for dynamic web applications. In
27th {USENIX} Security Symposium ({USENIX} Security 18), pages 377
392, 2018.

Apple, Google, Mozilla, Microsoft. Html living standard, 2019.

A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site
request forgery. In Proceedings of the 15th ACM conference on Computer
and communications security, pages 75-88. ACM, 2008.

A. Barth, C. Jackson, and]J. C. Mitchell. Securing frame communication
in browsers. Commun. ACM, 52(6):83-91, 2009.

M. A. Bashir, S. Arshad, W. Robertson, and C. Wilson. Tracing informa-
tion flows between ad exchanges using retargeted ads. In 25th {USENIX}
Security Symposium ({(USENILX} Security 16), pages 481-496, 2016.

BuiltWith Pty Ltd. Prestashop usage statistics, 2018.

S. Calzavara, A. Rabitti, and M. Bugliesi. Semantics-based analysis of
content security policy deployment. ACM Trans. Web, 12(2), Jan. 2018.

C. Castelluccia, E. De Cristofaro, and D. Perito. Private information
disclosure from web searches. In International Symposium on Privacy
Enhancing Technologies Symposium, pages 38-55. Springer, 2010.

Dottoro. navigate method (window), 2019.

75

Bibliography

[12]

[17]

[21]
[22]

(23]

[24]

[25]

[26]

A.Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and G. Vi-
gna. dedacota: toward preventing server-side xss via automatic code
and data separation. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, CCS 13, pages 1205-1216,
New York, NY, USA, 2013. ACM.

A. Elsobky. Novel techniques for user deanonymization attacks, 2016.

S.Englehardt and A. Narayanan. Online tracking: A 1-million-site mea-
surement and analysis. In Proceedings of the 2016 ACM SIGSAC confer-
ence on computer and communications security, pages 1388-1401. ACM,
2016.

Facebook Inc. Use facebook pixel, 2018.

M. Fazzini, P. Saxena, and A. Orso. Autocsp: Automatically retrofitting
csp to web applications. In 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, volume 1, pages 336—346, May 2015.

N. Gelernter and A. Herzberg. Cross-site search attacks. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 1394-1405. ACM, 2015.

N. Golubovic. autocsp - csp-injecting reverse http proxy, 2013.
Google Inc. Personalized search for everyone, 2009.

G. G. Gulyas, D. F. Somé, N. Bielova, and C. Castelluccia. To extend or
not to extend: on the uniqueness of browser extensions and web logins.
CoRR, abs/1808.07359, 2018.

S. Helme. Optimising twitter’s csp header, Jan 2018.

J. Hodges, C. Jackson, and A. Barth. Http strict transport security (hsts).
RFC 6797, RFC Editor, November 2012.

E. Homakov. Using content-security-policy for evil, Jan 2014.

D. Inc. Measuring the "filter bubble": How google is influencing what
you click, 2018.

C. Jackson and A. Barth. Forcehttps: protecting high-security web sites
from network attacks. In Proceedings of the 17th international conference
on World Wide Web, pages 525-534. ACM, 2008.

J. Karahalis. Content security policy (csp), 2018.

76

Bibliography

(27]

(28]

[29]

(30]

(31]

(32]

K. Karlsson. 179426 reflected xss on blockchain.info, 2017.

C. Kerschbaumer. 1529068 - implement csp ’navigate-to’ directive,
February 2018.

A. King. Allow navigation to only whitelisted urls via navigate-to 125,
2016.

A. King. april/laboratory, 2018.

D. Kristol and L. Montulli. Http state management mechanism. RFC
2965, RFC Editor, October 2000.

R. Linus. Your social media fingerprint, 2017.

[33] J. Medley. Content-security-policy-report-only, 2018.

[34] J. Morrison. Open redirect urls: Is your site being abused?, 2009.

[35]

(36]

(37]

(38]

[39]

[40]

[41]

A. Paicu. CSP ’navigate-to’ directive: Consensus & Standardization,
2018.

A. Paicu. Implement the 'navigation-to’ directive, 2018.

X.Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou. Cspautogen: Black-
box enforcement of content security policy upon real-world websites.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 653-665, New York, NY, USA,
2016. ACM.

P. Papadopoulos, N. Kourtellis, and E. Markatos. Cookie synchroniza-
tion: Everything you always wanted to know but were afraid to ask. In
The World Wide Web Conference, pages 1432—-1442. ACM, 2019.

P. D. Ryck, L. Desmet, F. Piessens, and M. Johns. Primer on Client-Side
Web Security. Springer, 2014.

G. B. Security. Communication with google’s blink security team,
November 2018.

R. Singel. Google catches bing copying; microsoft says ’so what?, Febru-
ary 2011.

N. Statt. Advertisers are furious with apple for new tracking restrictions
in safari 11, 2017.

77

Bibliography

[43]

[50]

[51]
[52]
(53]

[54]

M. Steffens, C. Rossow, M. Johns, and B. Stock. Don’t trust the locals:
Investigating the prevalence of persistent client-side cross-site scripting
in the wild. In NDSS, 2019.

M. Stockley. Anatomy of a browser dilemma - how hsts supercookies
make you choose between privacy or security, 2015.

The OWASP Foundation. Owasp top 10 - 2017, 2017.

The OWASP Foundation. Unvalidated redirects and forwards cheat
sheet, 2017.

The OWASP Foundation. Cross-site request forgery (csrf), 2018.
The OWASP Foundation. Cross-site scripting (xss), 2018.

S. Van Acker, D. Hausknecht, and A. Sabelfeld. Data exfiltration in the
face of csp. In Proceedings of the 11th ACM on Asia Conference on Com-
puter and Communications Security, pages 853—-864. ACM, 2016.

S. Van Acker, D. Hausknecht, and A. Sabelfeld. Raising the bar: Evalu-
ating origin-wide security manifests. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC 2018, San Juan, PR,
USA, December 03-07, 2018, pages 342-354, 2018.

A. van Kesteren. Fetch standard, February 2018.
A. van Kesteren. Fetch living standard, 2019.
M. Vasigh. Window.open(), 2018.

G. Venkatadri, A. Andreou, Y. Liu, A. Mislove, K. P. Gummadi,
P. Loiseau, and O. Goga. Privacy risks with facebook’s pii-based tar-
geting: Auditing a data broker’s advertising interface. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 89-107, May 2018.

T. Watanabe, E. Shioji, M. Akiyama, K. Sasaoka, T. Yagi, and T. Mori.
User blocking considered harmful? an attacker-controllable side chan-
nel to identify social accounts. In 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 323-337. IEEE, 2018.

L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc. Csp is dead,
long live csp! on the insecurity of whitelists and the future of content
security policy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1376-1387. ACM, 2016.

78

Bibliography

[57] M. Weissbacher, T. Lauinger, and W. Robertson. Why is csp failing?
trends and challenges in csp adoption. In International Workshop on
Recent Advances in Intrusion Detection, pages 212-233. Springer, 2014.

[58] M. West. Allow navigation to only whitelisted urls via navigate-to 125,
2016.

[59] M. West. Origin policy, 2017.

[60] M. West. Origin policy, 2017.

[61] M. West. Content security policy level 3, 2018.

[62] M. West. Incrementally better cookies, May 2019.

[63] M. West, A. Barth, and D. Veditz. Content security policy level 2, 2016.

[64] Yan (bcrypt). @bcrypt -paper2- advanced browser fingerprinting - toor-
con 2015, November 2015.

[65] M. Zalewski. Postcards from the post-xss world, 2011.

79

Black Widow: black-box
Data-driven Web Scanning

Benjamin Eriksson, Giancarlo Pellegrino, Andrei
Sabelfeld
IEEE Symposium on Security and Privacy (S&P) 2021

bstract. Modern web applications are an integral part of our dig-
A ital lives. As we put more trust in web applications, the need for
security increases. At the same time, detecting vulnerabilities in web
applications has become increasingly hard, due to the complexity, dy-
namism, and reliance on third-party components. Blackbox vulnerabil-
ity scanning is especially challenging because (i) for deep penetration
of web applications scanners need to exercise such browsing behavior
as user interaction and asynchrony, and (ii) for detection of nontriv-
ial injection attacks, such as stored cross-site scripting (XSS), scanners
need to discover inter-page data dependencies.
This paper illuminates key challenges for crawling and scanning the
modern web. Based on these challenges we identify three core pillars
for deep crawling and scanning: navigation modeling, traversing, and
tracking inter-state dependencies. While prior efforts are largely lim-
ited to the separate pillars, we suggest an approach that leverages all
three. We develop Black Widow, a blackbox data-driven approach to
web crawling and scanning. We demonstrate the effectiveness of the
crawling by code coverage improvements ranging from 63% to 280%
compared to other crawlers across all applications. Further, we demon-
strate the effectiveness of the web vulnerability scanning by featur-
ing no false positives and finding more cross-site scripting vulnerabili-
ties than previous methods. In older applications, used in previous re-
search, we find vulnerabilities that the other methods miss. We also
find new vulnerabilities in production software, including HotCRP, os-
Commerce, PrestaShop and WordPress.

1 Introduction

Ensuring the security of web applications is of paramount importance for
our modern society. The dynamic nature of web applications, together with
a plethora of different languages and frameworks, makes it particularly chal-
lenging for existing approaches to provide sufficient coverage of the existing
threats. Even the web’s main players, Google and Facebook, are prone to
vulnerabilities, regularly discovered by security researchers. In 2019 alone,
Google’s bug bounty paid $6.5 million [16] and Facebook $2.2 million [12],
both continuing the ever-increasing trend. Cross-Site Scripting (XSS) attacks,
injecting malicious scripts in vulnerable web pages, represent the lion’s share
of web insecurities. Despite mitigations by the current security practices,
XSS remains a prevalent class of attacks on the web [38]. Google rewards mil-
lions of dollars for XSS vulnerability reports yearly [21], and XSS is presently
the most rewarded bug on both HackerOne [20] and Bugcrowd [5]. This mo-
tivates the focus of this paper on detecting vulnerabilities in web applica-
tions, with particular emphasis on XSS.

Blackbox web scanning: When such artifacts as the source code, models
describing the application behaviors, and code annotations are available, the
tester can use whitebox techniques that look for vulnerable code patterns in
the code or vulnerable behaviors in the models. Unfortunately, these artifacts
are often unavailable in practice, rendering whitebox approaches ineffective
in such cases.

The focus of this work is on blackbox vulnerability detection. In con-
trast to whitebox approaches, blackbox detection techniques rely on no prior
knowledge about the behaviors of web applications. This is the standard for
security penetration testing, which is a common method for finding secu-
rity vulnerabilities [31]. Instead, they acquire such knowledge by interacting
with running instances of web applications with crawlers. Crawlers are a cru-
cial component of blackbox scanners that explore the attack surface of web
applications by visiting webpages to discover URLs, HTML form fields, and
other input fields. If a crawler fails to cover the attack surface sufficiently,
then vulnerabilities may remain undetected, leaving web applications ex-

83

3. Black Widow: black-box Data-driven Web Scanning

posed to attacks.

Unfortunately, having crawlers able to discover in-depth behaviors of
web applications is not sufficient to detect vulnerabilities. The detection of
vulnerabilities often requires the generation of tests that can interact with
the web application in non-trivial ways. For example, the detection of stored
cross-site scripting vulnerabilities (stored XSS), a notoriously hard class of
vulnerabilities [38], requires the ability to reason about the subtle dependen-
cies between the control and data flows of web application to identify the
page with input fields to inject the malicious XSS payload, and then the page
that will reflect the injected payload.

Challenges: Over the past decade, the research community has proposed
different approaches to increase the coverage of the attack surface of web
applications. As JavaScript has rendered webpages dynamic and more com-
plex, new ideas were proposed to incorporate these dynamic behaviors to
ensure a correct exploration of the page behaviors (jAk [30]) and the asyn-
chronous HTTP requests (CrawlJAX [4, 26]). Similarly, other approaches
proposed to tackle the complexity of the server-side program by reverse en-
gineering (LigRE [10] and KameleonFuzz [11]) or inferring the state (Enemy
of the State [8]) of the server, and then using the learned model to drive a
crawler.

Unfortunately, despite the recent efforts, existing approaches do not offer
sufficient coverage of the attack surface. To tackle this challenge, we start
from two observations. First, while prior work provided solutions to indi-
vidual challenges, leveraging their carefully designed combination has the
potential to significantly improve the state of the art of modern web applica-
tion scanning. Second, existing solutions focus mostly on handling control
flows of web applications, falling short of taking into account intertwined
dependencies between control and data flows. Consider, for example, the de-
pendency between a page to add new users and the page to show existing
users, where the former changes the state of the latter. Being able to extract
and use such an inter-page dependency will allow scanners to explore new
behaviors and detect more sophisticated XSS vulnerabilities.

Contributions: This paper presents Black Widow, a novel blackbox web ap-
plication scanning technique that identifies and builds on three pillars: nav-
igation modeling, traversing, and tracking inter-state dependencies.

Given a URL, our scanner creates a navigation model of the web applica-
tion with a novel JavaScript dynamic analysis-based crawler able to explore
both the static structure of webpages, i.e., anchors, forms, and frames, as well
as discover and fire JavaScript events such as mouse clicks. Also, our scan-
ner further annotates the model to capture the sequence of steps required

84

1. Introduction

to reach a given page, enabling the crawler to retrace its steps. When visit-
ing a webpage, our scanner enriches our model with data flow information
using a black-box, end-to-end, dynamic taint tracking technique. Here, our
scanner identifies input fields, i.e., taint source, and then probe them with
unique strings, i.e., taint values. Later, the scanner checks when the strings
re-surface in the HTML document, i.e., sinks. Tracking these taints allows
us to understand the dependencies between different pages.

We implement our approach as a scanner on top of a modern browser
with a state-of-the-art JavaScript engine. To empirically evaluate it, both
in terms of coverage and vulnerability detection, we test it on two sets of
web applications and compare the results with other scanners. The first
set of web applications are older well-known applications that have been
used for vulnerability testing before, e.g. WackoPicko and SCARF. The sec-
ond set contains new production applications such as CMS platforms in-
cluding WordPress and E-commerce platforms including PrestaShop and os-
Commerce. From this, we see that our approach improves code coverage by
between 63% and 280% compared to other scanners across all applications.
Across all web applications, our approach improves code coverage by be-
tween 6% and 62%, compared to the sum of all other scanners. In addition,
our approach finds more XSS vulnerabilities in older applications, i.e. phpBB,
SCAREF, Vanilla and WackoPicko, that have been used in previous research.
Finally, we also find multiple new vulnerabilities across production software
including HotCRP, osCommerce, PrestaShop and WordPress.

Finally, while most scanners produce false positives, Black Widow is free
of false positives on the tested applications thanks to its dynamic verification
of code injections.

In summary, the paper offers the following contributions.

e We identify unsolved challenges for scanners in modern web applications
and present them in Section 2.

e We present our novel approaches for finding XSS vulnerabilities using
inter-state dependency analysis and crawling complex workflows in Sec-
tion 3.

e We implement and share the source code of Black Widow!

e We perform a comparative evaluation of Black Widow on 10 popular web
applications against 7 web application scanners.

e We present our evaluation in Section 4 showing that our approach finds
25 vulnerabilities, of which 6 are previously unknown in HotCRP, osCom-
merce, PrestaShop and WordPress. Additionally, we find more vulnerabil-

1 Our implementation is available online on https://www.cse.chalmers.se/research
/group/security/black-widow/

85

https://www.cse.chalmers.se/research/group/security/black-widow/
https://www.cse.chalmers.se/research/group/security/black-widow/

3. Black Widow: black-box Data-driven Web Scanning

ities in older applications compared to other scanners. We also improve
code coverage on average by 23%.

e We analyze the results and explain the important features required by web
scanners in Section 5.

2 Challenges

Existing web application scanners suffer from a number of shortcomings
affecting their ability to cope with the complexity of modern web applica-
tions [3, 9]. We observe that state-of-the-art scanners tend to focus on sep-
arate challenges to improve their effectiveness. For example, jAk focuses on
JavaScript events, Enemy of the State on application states, LigRE on reverse
engineering and CrawlJAX on network requests. However, to successfully
scan applications our insight is that these challenges must be solved simul-
taneously. This section focuses on these shortcomings and extracts the key
challenges to achieve high code coverage and effective vulnerability detec-
tion.

High code coverage is crucial for finding any type of vulnerability as the
scanner must be able to reach the code to test it. For vulnerability detection,
we focus on stored XSS as it is known to be difficult to detect and a category
of vulnerabilities poorly covered by existing scanners [3, 9]. Here the server
stores and uses at a later time untrusted inputs in server operations, without
doing proper validation of the inputs or sanitization of output.

A web application scanner tasked with the detection of subtle vulnera-
bilities like stored XSS faces three major challenges. First, the scanner needs
to model the various states forming a web application, the connections and
dependencies between states (Section 2.1). Second, the identification of these
dependencies requires the scanner to be able to traverse the complex work-
flows in applications (Section 2.2). Finally, the scanner needs to track subtle
dependencies between states of the web application (Section 2.3).

2.1 Navigation Modeling

Modern web applications are dynamic applications with an abundance of
JavaScript code, client-side events and server-side statefulness. Modeling the
scanner’s interaction with both server-side and client-side code is compli-
cated and challenging. Network requests can change the state of the server
while clicking a button can result in changes to the DOM, which in turn
generates new links or fields. These orthogonal problems must all be han-
dled by the scanner to achieve high coverage and improved detection rate

86

2. Challenges

of vulnerabilities. Consider the flow in an example web application in Fig-
ure 3.11. The scanner must be able to model links, forms, events and the in-
teraction between them. Additionally, to enable workflow traversal, it must
also model the path taken through the application. Finally, the model must
support inter-state dependencies as shown by the dashed line in the figure.

The state-of-the-art consists of different approaches to navigation mod-
eling. Enemy of the State uses a state machine and a directed graph to infer
the server-side state. However, the navigation model lacks information about
client-side events. In contrast, jAk used a graph with lists inside nodes, to
represent JavaScript events. CrawlJAX moved the focus to model JavaScript
network requests. While these two model client-side, they miss other impor-
tant navigation methods such as form submissions.

A navigation model should allow the scanner to efficiently and exhaus-
tively scan a web application. Without correct modeling, the scanner will
miss important resources or spend too much time revisiting the same or sim-
ilar resources. To achieve this, the model must cover a multitude of meth-
ods for interaction with the application, including GET and POST requests,
JavaScript events, HTML form and iframes.

In addition, the model should be able to accommodate dependencies.
Client-side navigations, such as clicking a button, might depend on previous
events. For example, the user might have to hover the menu before being
able to click the button. Similarly, installation wizards can require a set of
forms to be submitted in sequence.

With a solution to the modeling challenge, the next challenge is how the
scanner should use this model, i.e. how should it traverse the model.

2.2 Traversing

To improve code coverage and vulnerability detection, the crawler compo-
nent of the scanner must be able to traverse the application. In particular,
the challenge of reproducing workflows is crucial for both coverage and vul-
nerability detection. The challenges of handling complex workflows include
deciding in which order actions should be performed and when to perform
possibly state-changing actions, e.g. submitting forms. Also, the workflows
must be modeled at a higher level than network requests as simply replay-
ing requests can result in incorrect parameter values, especially for context-
dependent value such as a comment ID. In Figure 3.11, we can observe a
workflow requiring a combination of normal link navigation, form submis-
sion and event interaction. Also, note that the forms can contain security
nonces to protect against CSRF attacks. A side effect of this is that the scan-
ner can not replay the request and just change the payload, but has to reload

87

3. Black Widow: black-box Data-driven Web Scanning

the page and resubmit the form.

The current state-of-the-art focuses largely on navigation and exploration
but misses out on global workflows. Both CrawlJAX and jAk focused on ex-
ploring client-side events. By exploring the events in a depth-first fashion,
jAk can find sequences of events that could be exploited. However, these se-
quences do not extend across multiple pages, which will miss out on flows.
Enemy of the State takes the opposite approach and ignores traversing client-
side events and instead focuses on traversing server-side states. To traverse,
they use a combination of picking links from the previous response and a
heuristic method to traverse edges that are the least likely to result in a state
change, e.g. by avoiding form submission until necessary. To change state
they sometimes need to replay the request from the start. Replaying requests
may not be sufficient as a form used to post comments might contain a sub-
mission ID or view-state information that changes for each request. Due to
the challenge of reproducing these flows, their approach assumes the power
to reset the full application when needed, preventing the approach from be-
ing used on live applications.

We note that no scanner handles combinations of events and classic page
navigations. Both jAk and CrawlJAX traverse with a focus on client-side
state while Enemy of the State focus on links and forms for interaction. Sim-
ply combining the two approaches of jAk and Enemy of the State is not trivial
as their approaches are tailored to their goals. Enemy of the State uses links
on pages to determine state changes, which are not necessarily generated by
events.

Keeping the scanner authenticated is also a challenge. Some scanners
require user-supplied patterns to detect authentication [28, 34, 36]. jAk au-
thenticates once and then assumes the state is kept, while CrawlJAX ignores
it altogether. Enemy of the State can re-authenticate if they correctly detect
the state change when logging out. Once again it is hard to find consensus
on how to handle authentication.

In addition to coverage, traversing is important for the fuzzing part of the
scanner. Simply exporting all requests to a standalone fuzzer is problematic
as it results in loss of context. As such, the scanner must place the application
in an appropriate state before fuzzing. Here some scanners take the rather
extreme approach of trying to reset the entire web application before fuzzing
each parameter [8, 10, 11]. jAk creates a special attacker module that loads
a URL and then executes the necessary events. This shows that in order to
fuzz the application in a correct setting, without requiring a full restart of the
application, the scanner must be able to traverse and attack both server-side
and client-side components.

88

2. Challenges

Solving both modeling and traversing should enable the scanner to crawl
the application with improved coverage, allowing it to find more parameters
to test. The final challenge, particularly with respect to stored XSS, is map-
ping the dependencies between different states in the application.

2.3 Inter-state Dependencies

It is evident that agreeing on a model that fits both client-side and server-side
is hard, yet important. In addition, neither of the previous approaches are
capable of modeling inter-state dependencies or general workflows. While
Enemy of the State model states, they miss the complex workflows and the
inter-state dependencies. The model jAk uses can detect workflows on pages
but fails to scale for the full application.

A key challenge faced by scanners is how to accurately and precisely
model how user inputs affect web applications. As an example, consider the
web application workflow in Figure 3.11 capturing an administrator regis-
tering a new user. In this workflow, the administrator starts from the in-
dex page (i.e., index.php) and navigates to the login page (i.e., Login.php).
Then, the administrator submits the password and lands on the administrator
dashboard (i.e., admin. php). From the dashboard, the administrator reaches
the user management page (i.e., admin. php#users), and submits the form to
register a new user. Then, the web application stores the new user data in the
database, and, as a result of that, the data of the new user is shown when visit-
ing the page of existing users (i.e., view_users. php). Such a workflow shows
two intricate dependencies between two states of the web application: First,
an action of admin.php#users can cause a transition of view_users.php,
and second, the form data submitted to admin.php#users is reflected in the
new state of admin.php#users.

To detect if the input fields of the form data are vulnerable to, e.g., cross-
site scripting (XSS), a scanner needs to inject payloads in the form of
admin.php#users and then reach view_users.php to verify whether the
injection was successful. Unfortunately, existing web scanners are not aware
of these inter-state dependencies, and after injecting payloads, they can hardly
identify the page where and whether the injection is reflected.

89

3. Black Widow: black-box Data-driven Web Scanning

view_users.php)<- - -~~~ UScrname

Figure 3.11: Example of a web application where anyone can see the list of
users and the admin can add new users. The dashed red line
represents the inter-state dependency. Green lines are HTML5
and orange symbolises JavaScript. The dotted blue lines be-
tween edges would be added by our scanner to track its path.
The sequence numbers shown the necessary order to find the
inter-state dependency.

3 Approach

Motivated by the challenges in Section 2, this section presents our approach
to web application scanning. The three key ingredients of our approach are
edge-driven navigation with path-augmentation, complex workflow traver-
sal, and fine-grained inter-state dependency tracking. We explain how we
connect these three parts in Algorithm 1. In addition to the three main pil-
lars, we also include a section about the dynamic XSS detection used in Black
Widow and motivate why false positives are improbable.

Algorithm 1 takes a single target URL as an input. We start by creating
an empty node, allowing us to create an initial edge between the empty node
and the node containing the input URL. The main loop picks an unvisited
edge from the navigation graph and then traverses it, executing the necessary
workflows as shown in Algorithm 2. In Algorithm 2, we use the fact that each
edge knows the previous edge. The isSafe function in Algorithm 2 checks
if the type of action, e.g. JavaScript event or form submission, is safe. We
consider a type to be safe if it is a GET request, more about this in Section 3.2.
Once the safe edge is found we navigate the chain of actions. Following this
navigation, the scanner is ready to parse the page. First, we inspect the page
for inter-state dependency tokens and add the necessary dependency edges,
as shown in Algorithm 3. Each token will contain a taint value, explained
more in Section 3.3, a source edge and a sink edge. If a source and sink are
found, our scanner will fuzz the source and check the sink. Afterward, we
extract any new possible navigation resources and add them to the graph.

90

3. Approach

Next, we fuzz any possible parameters in the edge and then inject a taint
token. The order is important as we want the token to overwrite any stored
fuzzing value. Finally, the edge is marked as visited and the loop repeats.

The goal of this combination is to improve both vulnerability detection
and code coverage. The three parts of the approach support each other to
achieve this. A strong model that handles different navigation methods and
supports augmentation with path and dependency information will enable
a richer interaction with the application. Based on the model we can build
a strong crawler component that can handle complex workflow which com-
bines requests and client-side events. Finally, by tracking inter-state depen-
dencies we can improve detection of stored vulnerabilities.

Data: Target url

Global: tokens // Used in Algorithm 3

Graph navigation; // Augmented navigation graph

navigation.addNode(empty);

navigation.addNode(url);

navigation.addEdge(empty, url);

while unvisited edge e in navigation do

traverse(e); // See Algorithm 2

inspectTokens(e, navigation); // See Algorithm 3

resources = extract({urls, forms, events, iframes});

for resource in resources do
navigation.addNode(resource) navigation.addEdge(e.targetNode,
resource)

© N G R W N e

ho
= o

12 end

13 attack(e);

14 injectTokens(e);
15 mark e as visited;

16 end

Algorithm 1: Scanner algorithm

1 Function traverse(e: edge)

2 workflow =[]; // List of edges

3 currentEdge = e;

4 while prevEdge = currentEdge.previous do
5 workflow.prepend(currentEdge);
6 if isSafe(currentEdge.type) then
7 ‘ break;

8 end

9 currentEdge = prevEdge

10 end

11 navigate(workflow);
12 end

Algorithm 2: Traversal algorithm

91

3. Black Widow: black-box Data-driven Web Scanning

1 Function inspectTokens(e: edge, g: graph)

2 for token in tokens do

3 if pageSource(e) contains token.value then

4 token.sink = e;

5 g.dependency(token.source, token.sink);
6 attack(token.source, token.sink);

7

8

9

end
end

end
10 Function injectTokens(e: edge)
11 for parameter in e do
12 token.value = generateToken();
13 token.source = ¢;
14 tokens.append(token);
15 inject token in parameter;
16 end
17 end

Algorithm 3: Inter-state dependency algorithms

3.1 Navigation Modeling

Our approach is model-based in the sense that it creates, maintains, and uses
a model of the web application to drive the exploration and detection of vul-
nerabilities. Our model covers both server-side and client-side aspects of
the application. The model tracks server-side inter-state dependencies and
workflows. In addition, it directly captures elements of the client-side pro-
gram of the web application, i.e., HTML and the state of the JavaScript pro-
gram.

Model Construction Our model is created and updated at run-time while
scanning the web application. Starting from an initial URL, our scanner re-
trieves the first webpage and the referenced resources. While executing the
loaded JavaScript, it extracts the registered JavaScript events and adds them
to our model. Firing an event may result in changing the internal state of the
JavaScript program, or retrieving a new page. Our model captures all these
aspects and it keeps track of the sequence of fired events when revisiting the
web application, e.g., for the detection of vulnerabilities.

Accordingly, we represent web applications with a labeled directed graph,
where each node is a state of the client-side program and edges are the ac-
tion (e.g., click) to move from one state to another one. The state of our
model contains both the state of the page, i.e., the URL of the page, and the
state of the JavaScript program, i.e., the JavaScript event that triggered the

92

3. Approach

execution. Then, we use labeled edges for state transitions. Our model sup-
ports four types of actions, i.e., GET requests, form submission, iframes and
JavaScript events. While form submissions normally result in GET or POST
requests, we need a higher-level model for the traversing method explained
in Section 3.2. We consider iframes as actions because we need to model the
inter-document communication between the iframe and the parent, e.g fir-
ing an event in the parent might affect the iframe. By simply considering
the iframe source as a separate URL, scanners will miss this interaction. Fi-
nally, we annotate each edge with the previous edge visited when crawling
the web application, as shown in Figure 3.11. Such an annotation will allow
the crawler to reconstruct the paths within the web application, useful infor-
mation for achieving deeper crawling and when visiting the web application
for testing.

Extraction of Actions The correct creation of the model requires the abil-
ity to extract the set of possible actions from a web page. Our approach uses
dynamic analysis approach, where we load a page and execute it in a mod-
ified browser environment, and then we observe the execution of the page,
monitoring for calls to browser APIs to register JavaScript events and modi-
fication of the DOM tree to insert tags such as forms and anchors.

Event Registration Hooking Before loading a page we inject JavaScript which
allows us to wrap functions such as addEventListener and detect DOM ob-
jects with event handlers. We accomplish this by leveraging the JavaScript
libraries developed for the jAk scanner [30]. While lightweight and easy to
use, in-browser instrumentation is relatively fragile. A more robust approach
could be directly modifying the JavaScript engine or source-to-source com-
pile the code for better analysis.

DOM Modification To detect updates to the page we rescan the page when-
ever we execute an event. This allows us to detect dynamically added items.

Infinite Crawls When visiting a webpage, crawlers can enter in an infi-
nite loop where they can perform the same operation endlessly. Consider
the problem of crawling an online calendar. When a crawler clicks on the
View next week button, the new page may have a different URL and content.
The new page will container again the button View next week, triggering an
infinite loop. An effective strategy to avoid infinite crawls is to define (i) a set
of heuristics that determine when two pages or two actions are similar, and
(ii) a hard limit to the maximum number of “similar” actions performed by
the crawler. In our approach, we define two pages to be similar if they share
the same URL except for the query string and the fragments. For example,

93

3. Black Widow: black-box Data-driven Web Scanning

https://example.domain/path/?x=1 and
https://example.domain/path/?x=2 are similar whereas
https://example.domain/?x=1and https://example.domain/path/?x=2
are different. The hard limit is a configuration parameter of our approach.

3.2 Traversal

To traverse the navigation model we pick unvisited edges from the graph
in the order they were added, akin to breadth-first search. This allows the
scanner to gain an overview of the application before diving into specific
components. The edges are weighted with a positive bias towards form sub-
mission, which enables this type of deep-dive when forms are detected.

To handle the challenge of session management, we pay extra attention
to forms containing password fields, as this symbolizes an opportunity to
authenticate. Not only does this enable the scanner to re-authenticate but it
also helps when the application generates a login form due to incorrect ses-
sion tokens. Another benefit is a more robust approach to complicated login
flows, such as double login to reach the administrator page—we observed
such workflow in phpBB, one of the web applications that we evaluated.

The main challenge to overcome is that areas of a web application might
require the user to complete a specific sequence of actions. This could, for
example, be to review a comment after submitting it or submit a sequence
of forms in a configuration wizard. It is also common for client-side code
to require chaining, e.g. hover a menu before seeing all the links or click a
button to dynamically generate a new form.

We devise a mechanism to handle navigation dependencies by modeling
the workflows in the application. Whenever we need to follow an edge in the
navigation graph, we first check if the previous edge is considered safe. Here
we define safe to be an edge which represents a GET request, similar to the
HTTP RFC [14]. If the edge is safe, we execute it immediately. Otherwise,
we recursively inspect the previous edge until a safe edge is found, as shown
in Algorithm 2. Note that the first edge added to the navigation graph is al-
ways a GET request, which ensures a base case. Once the safe edge is found,
we execute the full workflow of edges leading up to the desired edge. Al-
though the RFC defines GET requests to be idempotent, developers can still
implement state-changing functions on GET requests. Therefore, consider-
ing GET requests as safe is a performance trade-off. This could be deactivated
by a parameter in Black Widow, causing the scanner to traverse back to the
beginning.

Using Figure 3.11 as an example if the crawler needed to submit a form
on admin.php#users then it would first have to load login.php and then

94

3. Approach

submit that form, followed by executing a JavaScript event to dynamically
add the user form.

We chose to only chain actions to the previous GET request, as they are
deemed safe. Chaining from the start is possible, but it would be slow in
practice.

3.3 Inter-state Dependencies

One of the innovative aspects of our approach is to identify and map the ways
user inputs are connected to the states of a web application. We achieve
that by using a dynamic, end-to-end taint tracking while visiting the web
application. Whenever our scanner identifies an input field, i.e., a source, it
will submit a unique token. After that, the scanner will look for the token
when visiting other webpages, i.e., sinks.

Tokens To map source and sinks, we use string tokens. We designed to-
kens to avoid triggering filtering functions or data validation checks. At the
same time, we need tokens with a sufficiently high entropy to not be mis-
taken for other strings in the application. Accordingly, we generate tokens
as pseudo-random strings of eight lowercase characters e.g. frcvwwzm. This
is what generateToken () does in Algorithm 3. This could potentially be im-
proved by making the tokens context-sensitive, e.g. by generating numeric
tokens or emails. However, if the input is validated to only accept numbers,
for example, then XSS is not possible.

Sources and Sinks The point in the application where the token is in-
jected defines the source. More specifically, the source is defined as a tuple
containing the edge in the navigation graph and the exact parameter where
the token was injected. The resource in the web application where the to-
ken reappears defines the sink. All the sinks matching a certain source will
be added to a set which in turn is connected to the source. Similar to the
sources, each sink is technically an edge since they carry more context than
a resource node. Since each source can be connected to multiple sinks, the
scanner needs to check each sink for vulnerabilities whenever a payload is
injected into a source.

In our example in Figure 3.11, we have one source and one connected
sink. The source is the username parameter in the form on the management
page and the sink is the view users page. If more parameters, e.g. email or
signature, were also reflected then these would create new dependency edges
in the graph.

95

3. Black Widow: black-box Data-driven Web Scanning

3.4 Dynamic XSS detection

After a payload has been sent, the scanner must be able to detect if the
payload code is executed. Black Widow uses a fine-grained dynamic detec-
tion mechanism, making false positives very improbable. We achieve this
by injecting our JavaScript function xss(ID) on every page. This func-
tion adds ID to an array that our scanner can read. Every payload gener-
ated by Black Widow will try to call this function with a random ID, e.g.
<script>xss(71942203)</script>Finally, by inspecting the array we can
detect exactly which payloads resulted in code execution.

For this to result in a false positive, the web application would have to ac-
tively listen for a payload, extract the ID, and then run our injected xss (ID)
function with a correct ID.

4 Evaluation

In this section, we present the evaluation of our approach and the results
from our experiments. In the next section, we perform an in-depth analysis
of the factors behind the results.

To evaluate the effectiveness of our approach we implement it in our
scanner Black Widow and compare it with 7 other scanners on a set of 10
different web applications. We want to compare both the crawling capabili-
ties and vulnerability detection capabilities of the scanners. We present the
implementation details in Section 4.1. The details of the experimental setup
are presented in Section 4.2. To measure the crawling capabilities of the scan-
ners we record the code coverage on each of application. The code coverage
results are presented in Section 4.3. For the vulnerability detection capabili-
ties, we collect the reports from each scanner. We present both the reported
vulnerabilities and the manually verified ones in Section 4.4.

4.1 Implementation

Our prototype implementation follows the approach presented above in Sec-
tion 3. It exercises full dynamic execution capabilities to handle such dy-
namic features of modern applications like AJAX and dynamic code execu-
tion, e.g. eval. To achieve this we use Python and Selenium to control a
mainstream web browser (Chrome). This gives us access to a state-of-the-art
JavaScript engine. In addition, by using a mainstream browser we can be
more certain that the web application is rendered as intended.

We leverage the JavaScript libraries developed for the jAk scanner [30].
These libraries are executed before loading the page. This allows us to wrap

96

4. Evaluation

Table 3.7: Lines of code (LoC) executed on the server. Each column repre-
sents the comparison between Black Widow and another crawler.
The cells contain three numbers: unique LoC covered by Black
Widow (A \ B), LoC covered by both crawlers (A N B) and unique
LoC covered by the other crawler (B \ A). The numbers in bold
highlight which crawler has the best coverage.

Crawler Arachni Enemy Ak Skipfish wiaf Weet ZAP
A\B ANB B\A A\B ANB B\A A\B ANB B\A A\B ANB B\A A\B ANB B\A A\B ANB B\A A\B ANB B\A

Drupal 35146 22870 757 6365 51651 20519 | 25198 32818 5846 | 29873 28143 937 | 32213 25803 725 | 32981 25035 498 | 15610 42406 2591
HotCRP 2416 16076 948 | 16573 1919 of 6771 11721 271 | 11205 7197 31| 3217 15275 768 | 16345 2147 3| 16001 2491 24
Joomla 14573 29263 1390 | 33335 10501 621| 24728 19108 1079 | 33254 10582 328 | 12533 31303 1255 | 33975 9861 576 | 7655 36181 1659
osCommerce | 3919 6722 172 | 9626 1015 15| 4171 6470 507 | 4964 5677 110 | 5601 5040 661 | 6070 4571 103 | 6722 3919 209
phpBB 2822 5178 492 | 2963 5037 337 | 3150 4850 348 | 4643 3357 72| 4312 3688 79

4431 3569 21| 4247 3753 65
PrestaShop | 105974 75924 65650 | 157095 24803 3332 | 155579 26319 58 | 138732 43166 1018 | 156513 25385 3053 | 148868 33030 118 | 141032 40866 110
SCARE 189 433 12 270 352 5 342 280 2 164 158 5 104 218 6 520 102 2 340 282 2
Vanilla 5381 9908 491 | 6032 9257 185 | 3122 12167 53 | 8285 7004 577 | 8202 7087 171 | 8976 6313 18| 8396 6893 145
WackoPicko 202 566 2 58 710 9 163 305 0 274 494 14 111 657 9 195 273 0 379 389 2

WordPress 8871 45345 1615 | 35092 19124 256 | 18572 35644 579 | 7307 46909 5114 | 26785 27431 640 | 37073 17143 73| 25732 28484 781

functions such as addEventListener and detect DOM objects with event
handlers.

4.2 Experimental Setup

In this section, we present the configuration and methodology of our exper-
iments.

Code Coverage To evaluate the coverage of the scanners we chose to com-
pare the lines of code that were executed on the server during the session.
This is different from previous studies [8, 30], which relied on requested URLs
to determine coverage. While comparing URLs is easier, as it does not require
the web server to run in debug mode, deriving coverage from it becomes
harder. URLs can contain random parameter data, like CSRF tokens, that are
updated throughout the scan. In this case, the parameter data has a low im-
pact on the true coverage. Conversely, the difference in coverage between
main.php?page=news and main.php?page=Llogin can be large. By focus-
ing on the execution of lines of code we get a more precise understanding of
the coverage.

Calculating the total number of lines of code accurately in an application
is a difficult task. This is especially the case in languages like PHP where code
can be dynamically generated server-side. Even if possible, it would not give
a good measure for comparison as much of the code could be unreachable.
This is typically the case for applications that have installation code, which

97

3. Black Widow: black-box Data-driven Web Scanning

is not used after completing it.

Instead of analyzing the fraction of code executed in the web application,
we compare the number of lines of code executed by the scanners. This gives
a relative measure of performance between the scanners. It also allows us to
determine exactly which lines are found by multiple scanners and which lines
are uniquely executed.

To evaluate the code coverage we used the Xdebug [33] module in PHP.
This module returns detailed data on the lines of code that are executed in
the application. Each request to the application results in a separate list of
lines of code executed for the specific request.

Vulnerabilities In addition to code coverage, we also evaluate how good
the scanners are at finding vulnerabilities. This includes how many vulner-
abilities they can find and how many false positives they generate. While
there are many vulnerability types, our study focuses on both reflected and
stored XSS.

To evaluate the vulnerability detection capabilities of the scanners, we
collect and process all the vulnerabilities they report. First, we manually an-
alyze if the vulnerabilities can be reproduced or if they should be considered
false positives. Second, we cluster similar vulnerability reports into a set of
unique vulnerabilities to make a fair comparison between the different re-
porting mechanisms in the scanners. We do this because some applications,
e.g. SCAREF, can generate an infinite number of vulnerabilities by dynami-
cally adding new input fields. These should be clustered together. Classifying
the uniqueness of vulnerabilities is no easy task. What we aim to achieve is
a clustering in which each injection corresponds to a unique line of code on
the server. That is, if a form has multiple fields that are all stored using the
same SQL query then all these should count as one injection. The rationale
is that it would only require the developer to change one line in the server
code. Similarly, for reflected injections, we cluster parameters of the same
request together. We manually inspect the web application source code for
each reported true-positive vulnerability to determine if they should be clus-
tered.

Scanners We compare our scanner Black Widow with both Wget [27] for
code coverage reference and 6 state-of-the-art open-source web vulnerability
scanners from both academia and the web security community: Arachni [36],
Enemy of the State [8], jAk [30], Skipfish [42], w3af [34] and ZAP [28]. We
use Enemy of the State and jAk as they are state-of-the-art academic black-
box scanners. Skipfish, Wget and w3af are included as they serve as good

98

4. Evaluation

benchmarks when comparing with previous studies [8, 30]. Arachni and
ZAP are both modern open-source scanners that have been used in more
recent studies [19]. Including a pure crawler with JavaScript capabilities,
such as CrawlJAX [26], could serve as a good coverage reference. However,
in this paper we focus on coverage compared to other vulnerability scanners.
We still include Wget for comparison with previous studies. While it would
be interesting to compare our results with commercial scanners, e.g. Burp
Scanner [32], the closed source nature of these tools would make any type
of feature attribute hard.

We configure the scanners with the correct credentials for the web ap-
plication. When this is not possible we change the default credentials of the
application to match the scanner’s default values. Since the scanners have
different capabilities, we try to configure them with as similar configurations
as possible. This entails activating crawling components, both static and dy-
namic, and all detection of all types of XSS vulnerabilities.

Comparing the time performance between scanners is non-trivial to do
fairly as they are written in different languages and some are sequential while
others run in parallel. Also, we need to run some older ones in VMs for
compatibility reasons. To avoid infinite scans, we limit each scanner to run
for a maximum of eight hours.

TT TT7T7T
100% | —

Figure 3.12: Each bar compares our scanner to one other scanner on a web
application. The bars show three fractions: unique lines we
find, lines both find and lines uniquely found by the other scan-
ner.

Web Applications To ensure that the scanners can handle different types
of web applications we test them on 10 different applications. The appli-

99

3. Black Widow: black-box Data-driven Web Scanning

cations range from reference applications that have been used in previous
studies to newer production-grade applications. Each application runs in a
VM that we can reset between runs to improve consistency.

We divide the applications into two different sets. Reference applications
with known vulnerabilities: phpBB (2.0.23), SCARF (2007), Vanilla (2.0.17.10)
and WackoPicko (2018); and modern production-grade applications: Dru-
pal (8.6.15), HotCRP (2.102), Joomla (3.9.6), osCommerce (2.3.4.1), PrestaShop
(1.7.5.1) and WordPress (5.1).

4.3 Code Coverage Results

This section presents the code coverage in each web application by all of
the crawlers. Table 3.7 shows the number of unique lines of code that were
executed on the server. Black Widow has the highest coverage on 9 out of
the 10 web applications.

Using Wget as a baseline Table 3.7 illustrates that Black Widow increases
the coverage by almost 500% in SCARF. Similarly with modern production
software, like PrestaShop, we can see an increase of 256% in coverage com-
pared to Wget. Even when comparing to state-of-the-art crawlers like jAk
and Enemy of the State we have more than 100% increase on SCARF and 320%
on modern applications like PrestaShop. There is, however, a case where En-
emy of the State has the highest coverage on Drupal. This case is discussed
in more detail in Section 5.1.

While it would be beneficial to know how far we are from perfect cover-
age, we avoid calculating a ground truth on the total number of lines of code
for the applications as it is difficult to do in a meaningful way. Simply ag-
gregating the number of lines in the source code will misrepresent dynamic
code, e.g. eval, and count dead code, e.g. installation code.

100

4. Evaluation

all other scanners (U).

Table 3.8: Unique lines our scanner finds (A \ U) compared to the union of

Application | Our scanner Other scanners Improvement

A\U U A\ U)/|U|
Drupal 4378 80213 +5.5%
HotCRP 1597 18326 +8.7%
Joomla 5134 42 443 +12.1%
osCommerce 2624 9216 +28.5%
phpBB 2743 5877 +46.7%
PrestaShop 95139 153452 +62.0%
SCARF 176 464 +37.9%
Vanilla 2626 14 234 +18.4%
WackoPicko 50 742 +6.7%
WordPress 3591 58131 +6.2%

Table 3.9: Comparison of unique lines of code found by our scanner (A \ B)
and the other scanners (B \ A). Improvement is new lines found
by our scanner divided by the other’s total.

Crawler | Our scanner Other scanners Other’s total Improvement

A\B B\A B |A\ B|/|B|
Arachni 179 477 714389 283 664 +63.3%
Enemy 267372 25268 149 548 +178.8%
jAk 242066 9216 158 802 +152.4%
Skipfish 239064 8206 160 794 +148.7%
w3af 249 881 7328 149099 +167.6%
Wget 289 698 1405 103359 +280.3%
ZAP 226 088 5560 171124 +132.1%

We also compare Black Widow to the combined efforts of the other scan-
ners to better understand how we improve the state-of-the-art. Table 3.8 has
three columns containing the number of lines of code that Black Widow finds
which none of the others find, the combined coverage of the others and fi-
nally our improvement in coverage. In large applications, like PrestaShop,
Black Widow was able to find 53 266 lines of code that none of the others

101

3. Black Widow: black-box Data-driven Web Scanning

found. For smaller applications, like phpBB, we see an improvement of up to
46.7% compared to the current state-of-the-art.

To get a better understanding of which parts of the application the scan-
ners are exploring, we further compare the overlap in the lines of code be-
tween the scanners. In Table 3.9 we present the number of unique lines of
code Black Widow find compared to another crawler. The improvement is
calculated as the number of unique lines we find divided by the total number
of lines the other crawlers find.

We plot the comparison for all scanners on all platforms in Figure 3.12.
In this figure, each bar represents the fraction of lines of code attributed to
each crawler. At the bottom is the fraction found only by the other crawlers,
in the middle the lines found by both and on top are the results found by
Black Widow. The bars are sorted by the difference of unique lines found by
Black Widow and the other crawlers. Black Widow finds the highest number
of unique lines of code in all cases except the rightmost, in which Enemy of
the State performed better on Drupal. The exact number can be found in
Table 3.7.

Table 3.10: Number of reported XSS injections by the scanners and the clas-
sification of the injection as either reflected or stored.

Crawler Arachni | Enemy | jAk | Skipfish | w3af | Widow | ZAP
Type R §$ /R S|R SR S |R SR S |R S

Drupal - - - - - - - - -
HotCRP - - - - - - - oL
Joomla - - 8 - . - L
osCommerce | - - - - - - - - .-
phpBB - - - - - - - - - -
PrestaShop - - - - N - _
SCARF 31 - - - - o - - 1 -
Vanilla 2 - - - I - -
WackoPicko | 3 1 2 1 113 -1 1 1 -
WordPress - - - - - - - - .-

[Era—
'
'
'

=
—_
O

'

_ 0 = W N

102

4. Evaluation

Table 3.11: Number of unique and correct XSS injections by the scanners
and the classification of the injection as either reflected or stored.

Crawler Arachni | Enemy | jAk | Skipfish | w3af | Widow | ZAP
Type R S |R S|R S/R S |R SIR S |R S

Drupal - - - - - - -
HotCRP - - - - I - S
Joomla - - - - - - - - - -
osCommerce | - - - - - - - - - -
phpBB

PrestaShop
SCARF

Vanilla - - - - I _ .
WackoPicko
WordPress - - - - I _ ..

w

' |

1 |

Ll 1

1 1

1 1

1 1

1 1

_

1 1

=

W =
1 1
| |

w
[
oo
[
—
1
—_
1
—_
|

_ W = W =
= NN U
'
|

4.4 Code Injection Results

This section presents the results from the vulnerabilities the different scan-
ners find. To be consistent with the terminology used in previous works [8,
30], we define an XSS vulnerability to be any injected JavaScript code that
results in execution. While accepting JavaScript from users is risky in gen-
eral, some applications, like Wordpress, have features which require exe-
cuting user supplied JavaScript. In Section 5.7 we discuss the impact and
exploitability of the vulnerabilities our scanner finds.

In Table 3.10 we list all the XSS vulnerabilities found by the scanners on
all the applications. The table contains the number of self-reported vulnera-
bilities. After removing the false positives and clustering similar injections,
as explained in Section 4.2, we get the new results in Table 3.11. The results
from Table 3.11 show that Black Widow outperforms the other scanners on
both the reference applications and the modern applications. In total, Black
Widow finds 25 unique vulnerabilities, which is more than 3 times as many as
the second-best scanner. Of these 25, 6 are previously unknown vulnerabili-
ties in modern applications. We consider the remaining 19 vulnerabilities to
be known for the following reasons. First, all WackoPicko vulnerabilities are
implanted by the authors and they are all known by design. Second, SCARF
has been researched thoroughly and vulnerabilities may be already known.
We conservatively assumed the eight vulnerabilities to be known. Third, the
vulnerabilities on phpBB and Vanilla were fixed in their newest versions.

It is important to note we did not miss any vulnerability that the others

103

3. Black Widow: black-box Data-driven Web Scanning

found. However, there were cases where both Black Widow and other scan-
ners found the same vulnerability but by injecting different parameters. We
explore these cases more in Section 5.6. Furthermore, Black Widow is the
only scanner that finds vulnerabilities in the modern web applications.

4.5 Takeaways

We have shown that our scanner can outperform the other scanners in terms
of both code coverage and vulnerability detection. Figure 3.12 and Table 3.7
show that we outperform the other scanners in 69 out of 70 cases. Addi-
tionally, Table 3.8 and Table 3.9 show we improve code coverage by between
63% and 280% compared to the other scanners and by between 6% and 62%,
compared to the sum of all other scanners. We also improve vulnerability
detection, as can be seen in Table 3.10 and Table 3.11. Not only do we match
the other scanners but we also find new vulnerabilities in production appli-
cations.

In the next section, we will analyze these results closer and conclude
which features allowed us to improve coverage and vulnerability detection.
We also discuss what other scanners did better than us.

5 Analysis of Results

The results from the previous section show that the code coverage of our
scanner outperforms the other ones. Furthermore, we find more code in-
jections and in particular more stored XSS. In this section, we analyze the
factors which led to our advantage. We also analyze where and why the
other scanners performed worse.

Since we have access to the executed lines of code we can closely ana-
lyze the path of the scanner through the application. We utilize this to ana-
lyze when the scanners miss injectable parameters, what values they submit,
when they fail to access parts of the application and how they handle ses-
sions.

We start by presenting interesting cases from the code coverage evalu-
ation in Section 5.1, followed by an analysis of the reported vulnerabilities
from all scanners in Section 5.2. In Section 5.3, we discuss the injections our
scanner finds and compare it with what the others find. In Section 5.4, we
perform two case studies of vulnerabilities that only our scanner finds and
which requires both workflow traversal and dependency analysis. Finally, in
Section 5.5, we extract the crucial features for finding injections based on all
vulnerabilities that were found.

104

5. Analysis of Results

5.1 Coverage Analysis

As presented in Section 4.3, Black Widow improved code coverage, compared
to the aggregated result of all the other scanners, ranged from 5.5% on Drupal
to 62% on PrestaShop. Comparing the code coverage to each scanner, Black
Widow’s improvement ranged from 63.3% against Arachni to 280% against
Wget. In this section, we analyze the factors pertaining to code coverage by
inspecting the performance of the different scanners. To better understand
our performance we divide the analysis into two categories. We look at both
cases where we have low coverage compared to the other scanners and cases
where we have high relative coverage.

Low coverage As shown in Figure 3.12, Enemy of the State is the only
scanner that outperforms Black Widow and this is specifically on Drupal.
Enemy of the State high coverage on Drupal is because it keeps the authen-
ticated session state by avoiding logging out. The reason Black Widow lost
the state too early was two-fold. First, we use a heuristic algorithm, as ex-
plained in Section 3.2 to select the next edge and unfortunately the logout
edge was picked early. Second, due to the structure of Drupal, our scanner
did not manage to re-authenticate. In particular, this is because, in contrast
to many other applications, Drupal does not present the user with a login
form when they try to perform an unauthorized operation. To isolate the
reason for the lower code coverage, we temporarily blacklist the Drupal lo-
gout function in our scanner. This resulted in our scanner producing similar
coverage to Enemy of the State, ensuring the factor behind the discrepancy
is session handling.

Skipfish performs very well on WordPress, which seems surprising since
it is a modern application that makes heavy use of JavaScript. However,
WordPress degrades gracefully without JavaScript, allowing scanners to find
multiple pages without using JavaScript. Focusing on static pages can gener-
ate a large coverage but, as is evident from the detected vulnerabilities, does
not imply high vulnerability detection.

High coverage Enemy of the State also performs worse against Black Widow
on osCommerce and HotCRP. This is because Enemy of the State is seemingly
entering an infinite loop, using 100% CPU without generating any requests.
This could be due to an implementation error or because the state inference
becomes too complicated in these applications.

Although Black Widow performs well against Wget, Wget still finds some
unique lines, which can seem surprising as it has previously been used as a
reference tool [8, 30]. Based on the traces and source code, we see that most

105

3. Black Widow: black-box Data-driven Web Scanning

of the unique lines of code Wget finds are due to state differences, e.g. visiting
the same page Black Widow finds but while being unauthenticated.

5.2 False positives and Clustering

To better understand the reason behind the false positives, and be transparent
about our clustering, we analyze the vulnerabilities reported in Table 3.10.
For each scanner with false positives, we reflect on the reasons behind the
incorrect classification and what improvements are required. We do not in-
clude w3af in the list as it did not produce any false positives or required any
clustering.

a) Arachni reports two reflected XSS vulnerabilities in Vanilla. The
injection point was a Cloudflare cookie used on the online support forum for
the Vanilla web application. The cookie is never used in the application and
we were unable to reproduce the injection. In addition, Arachni finds 31 XSS
injections on SCARF. Many of these are incorrect because Arachni reuses
payloads. For example, by injecting into the title of the page, all successive
injection will be label as vulnerable.

b) Enemy of the State claims the discovery of 8 reflected XSS vulner-
abilities on Joomla. However, after manual analysis, none of these result
in code execution. The problem is that Enemy of the State interprets the re-
flected payload as an executed payload. Itinjects, eval (print "[random]"),
into a search field and then detects that "[random]" is reflected. It incor-
rectly assumes this is because eval and print were executed. For this rea-
son, we consider Enemy of the State to find 0 vulnerabilities on Joomla.

¢) jAk reports 13 vulnerabilities on WackoPicko. These 13 reports
were different payloads used to attack the search parameter. After applying
our clustering method, we consider jAk to find one unique vulnerability.

d) Black Widow finds 32 stored vulnerabilities on phpBB. Most of these
parameters are from the configuration panel and are all used in the same
database query. Therefore, only 3 can be considered unique. Two parame-
ters on PrestaShop are used in the same request, thus only one is considered
unique. Black Widow did not produce any false positives thanks to our dy-
namic detection method explained in section 3.4

e) Skipfish claims the detection of a stored XSS in WackoPicko in
the image data parameter when uploading an image. However, the injected
JavaScript could not be executed. Interesting to note is that Skipfish was able
to inject JavaScript into the guestbook but was not able to detect it.

f) ZAP claims to find 9 reflected XSS injection on osCommerce. They
are all variations of injecting javascript:alert(1) into the parameter of

106

5. Analysis of Results

a link. Since it was just part of a parameter and not a full URL, the JavaScript
code will never execute. Thus, all 9 injections were false positives.

5.3 What We Find

In this section, we present the XSS injections our scanner finds in the dif-
ferent applications. We also extract the important features which made it
possible to find them.

HotCRP: Reflected XSS in bulk user upload The admin can upload a
file with users to add them in bulk. The name of the file is then reflected on
the upload page. To find this, the scanner must be able to follow a complex
workflow that makes heavy use of JavaScript, as well as handle file parame-
ters. It is worth noting that the filename is escaped on other pages in HotCRP
but missed in this case.

osCommerce; Stored and reflected XSS Admins can change the tax classes
in osCommerce and two parameters are not correctly filtered, resulting in
stored XSS vulnerabilities. The main challenge to find this vulnerability was
to find the injection point as this required us to interact with a navigation
bar that made heavy use of JavaScript.

We also found three vulnerable parameters on the review page. These
parameters were part of a form and their types were radio and hidden. This
highlights that we still inject all parameters, even if they are not intended to
be changed.

phpBB; Multiple Stored XSS in admin backend Admins can change
multiple different application settings on the configuration page, such as
flooding interval for posts and max avatar file size. On a separate page, they
can also change the rank of the admin to a custom title. In total, this results
in 32 vulnerable parameters that can be clustered to 3 unique ones. These
require inter-state dependency analysis to solve. Once a setting is changed,
the admin is met with a “Successful update” message, which does not reflect
the injection. Thus, the dependency must be found to allow for successful
fuzzing.

PrestaShop; Reflected XSS in admin dashboard The admin dashboard
allows the admin to specify a date range for showing statistics. Two pa-
rameters in this form are not correctly filtered and result in a reflected XSS.

107

3. Black Widow: black-box Data-driven Web Scanning

Finding these requires a combination of modeling JavaScript events and han-
dling workflows. To find this form the scanner must first click on a button
on the dashboard.

SCARF; Stored XSS in comments There are many vulnerabilities in SCARF,
most are quite easy to find. Instead of mentioning all, we focus on one that
requires complex workflows, inter-state dependencies and was only found
by us. The message field in the comment section of conference papers is
vulnerable. What makes it hard to find is the traversing and needed before
posting the comment and the inter-state dependency analysis needed to find
the reflection. The scanner must first create a user, then create a conference,
after which it can upload a paper that can be commented on.

Vanilla; Stored and reflected XSS The language tag for the RSS feed is
vulnerable and only reflected in the feed. Note that the feed is served as
HTML, allowing JavaScript to execute. There is also a stored vulnerability in
the comment section which can be executed by saving a comment as a draft
and then viewing it. Both of these require inter-state dependency analysis
to find the connecting between language settings and RSS feeds, as well as
posting comments and viewing drafts.

Black Widow also found a reflected XSS title parameter in the configura-
tion panel that was vulnerable. Finding this mainly required and modeling
JavaScript and forms.

WackoPicko; Multi-step stored XSS We found all the known XSS vul-
nerabilities [7], except the one requiring flash as we consider it out-of-scope.
We also found a non-listed XSS vulnerability in the reflection of a SQL error.
Most notably we were able to detect the multi-step XSS vulnerability that no
other scanner could. This was thanks to both inter-state dependency track-
ing and handling workflows. We discuss this in more detail in the case study
in Section 5.4.1.

WordPress; Stored and reflected XSS The admin can search for nearby
events using the admin dashboard. The problem is that the search query is
reflected, through AJAX, for the text-to-speech functionality. Finding this
requires modeling of both JavaScript events, network requests and forms.

Our scanner also found that by posting comments from the admin panel
JavaScript is allowed to run on posts. For this, the scanner must handle
the workflows needed to post the comments and the inter-state dependency
analysis needed to later find the comment on a post.

108

5. Analysis of Results

5.4 Case Studies

In this section, we present two in-depth case studies of vulnerabilities that
highlights how and why our approach finds vulnerabilities the other scan-
ners do not. We base our analysis on server-side traces, containing the exe-
cuted lines of code, generated from the scanner sessions. By manually ana-
lyzing the source code of an application we can determine the exact lines of
code that need to be executed for an injection to be successful.

The cases we use are the comment section in WackoPicko and the config-
uration panel in phpBB. As we have shown, Black Widow can find vulnera-
bilities in more complex modern web applications. Nevertheless, these cases
allow us to limit the number of factors when comparing our approach with
the other scanners. Since WackoPicko and phpBB have been used in previous
studies [8, 30] they also serve as a level playing field for all scanners.

5.4.1 Comments on WackoPicko

WackoPicko has a previously unsolved multistep XSS vulnerability that no
other scanner has been able to find. The difficultly of finding and exploiting
is the need for correctly reproducing a specific workflow. After submitting a
comment via a form the user needs to review the comment. While review-
ing, the user can choose to either delete the comment or add it. If, however,
the user decided to visit another page, before adding or deleting, then the
review form will be removed and the user will have to resubmit the com-
ment before reviewing it again. Thus, the steps that must be taken are: Find
an image to comment on (view.php#50, i.e. line 50 in view.php), Post a
comment (preview_comment.php#54), Accept the comment while review-
ing (view.php#53) In Table 3.12 we note that two scanners are able to find
the input but not exploit it.

Both Enemy of the State and Arachni managed to post a comment but
neither could exploit the vulnerability. Enemy of the State was able to post
a comment containing an empty string but the fuzzing was unsuccessful.
Arguably, Arachni made it a bit further since it was able to inject an XSS
payload. However, the payload was not detected and reported. Enemy of the
State’s shortcoming is that it fuzzes the forms independently while Arachni’s
shortcoming is that it forgets it’s own injection.

jAk and ZAP had problems finding the first step, i.e. viewing the pictures,
because the login form breaks the HTML standard by putting a form inside a
table [41]. We avoid this by using a modern browser to parse the web page.
This allows Black Widow to view the web page as the developer intended,
assuming they tested it in a modern browser

109

3. Black Widow: black-box Data-driven Web Scanning

Both w3af and Skipfish were able to find the pictures but not able to post
the comment. w3af because it could not model the textarea in the form.
Skipfish, on the other hand, does not have this problem. We believe that
Skipfish logged out after seeing the picture but before posting the comment.
The data shows that Skipfish does not try to log in multiple times. In com-
parison, we correctly handle the textarea allowing us to post comments. At
the same time, we also try to log in multiple times if presented with a login
form. This mitigates losing the session forever at an early stage.

To solve this challenge Black Widow needs to combine the modeling of
form elements, handle workflows and use inter-state dependency analysis to
correctly inject and detect the vulnerability.

Table 3.12: Steps to recreate the vulnerability in WackoPicko. The columns
contain the file name and line of code for each step.

Crawler ‘ view.php#50 ‘ preview_comment.php#54 ‘ view.php#53 ‘ Exploit

Arachni v v v
Enemy v v v
jAk

Skipfish v
w3af v
Widow v
ZAP

5.4.2 Configuration on phpBB

The configuration panel on phpBB has multiple code injection possibilities.
To find these the crawler must overcome two challenges. First, to reach the
admin panel requires two logins, the first to authenticate as a user and then
again, with the same credentials, to authenticate as an administrator. Sec-
ond, the injected parameter is not reflected on the same page. To detect this
injection inter-state dependency analysis is required. The steps needed to
find the vulnerability is, log in as admin (admin/index.php#28), find the
vulnerable form (admin_board.php#34), successfully update the database
(admin_board.php#74) find the reflection (admin_board. php#34).

As shown in Table 3.13, none of the other scanners managed to access
the configuration panel. This is because phpBB requires a double login.
Arachni, jAk, Skipfish, w3afand ZAP all require user-supplied credentials to-
gether with parameters before running. Based on the traces they do not try
these credentials on the admin login form, only the first login form. Enemy

110

5. Analysis of Results

of the State, on the other hand, tries the standard username and password
scannerl. This was enough to log in but it did not manage to log in as an
admin.

Our scanner solves the double login by being consistent with the values
we submit. This allows us to both authenticate as a user and then also as an
admin when presented with the login prompt. After submitting the form in
configuration panel with our taint tokens and later revisiting it, we detect
the inter-state dependency and can fuzz the source and sink.

Table 3.13: Steps to recreate the vulnerability in phpBB. The columns con-
tain the file name and line of code for each step.

admin/ admin_ admin_ admin_

Crawler | index.php | board.php | board.php | board.php | Exploit
#28 #34 #74 #34

Arachni

Enemy

jAk

Skipfish

w3af

Widow v v v v v

ZAP

5.5 Features Attribution

In this section, we identify and attribute the key features that contributed to
finding the vulnerabilities in the web applications.

In particular, we try to determine the impact of our modeling, traversing
and inter-state dependency analysis techniques. Below are the definitions
we use in Table 3.14.

Modeling Modeling is considered to contribute if a combination of HTML
forms and JavaScript events were used to find the code injection.

Traversal Workflow traversal contributes if the point of injection depends
on a previous state. This could, for example, be a form submission, a click of
a button or some other DOM interaction.

111

3. Black Widow: black-box Data-driven Web Scanning

Inter-state dependency A code injection is defined to need inter-state
dependency analysis if the point of reflection is different from the point of
injection.

Table 3.14 shows the 25 unique code injections from the evaluation. Of
these, modeling contributed to 4, workflow traversal contributed to 9, and
inter-state dependency analysis contributed to 13. In total, at least one of
them was a contributor in 16 unique injections. The remaining 9 were usually
simpler. Four of them were from WackoPicko where the results of injection
were directly reflected. SCARF had 3 directly reflected injections and osCom-
merce had 2. It is clear, especially for unique vulnerabilities, that modeling,
workflow traversal and inter-state dependency analysis plays an important
role in detecting stored XSS vulnerabilities.

112

5. Analysis of Results

Table 3.14: For each of the vulnerabilities we note contributing features,
i.e. modeling, workflow reproduction or inter-state dependency
(ISD) analysis. We also present if they were uniquely detected

by Black Widow.
Id | Application | Description ‘ Model ‘ Workflow ‘ ISD ‘ Unique
1 | HotCRP User upload v v v
2 | osCommerce | Review rating v
3 | osCommerce | Tax class v
4 | phpBB Admin ranks v v
5 | phpBB Configuration v v
6 | phpBB Site name v v
7 | PrestaShop Date v v v
8 | SCARF Add session v v v
9 | SCARF Comment v v v
10 | SCARF Conference name
11 | SCARF Edit paper v v v
12 | SCARF Edit session
13 | SCARF Delete comment v v v
14 | SCARF General options
15 | SCARF User options v
16 | Vanilla Comment draft v v
17 | Vanilla Locale v v
18 | Vanilla Title banner v v
19 | WackoPicko | Comment
20 | WackoPicko | Multi-step v v v
21 | WackoPicko | Picture
22 | WackoPicko | Search
23 | WackoPicko | SQL error
24 | WordPress Comment v v v
25 | WordPress Nearby event v v v v

5.6 Missed by Us

Out of the 25 unique injections found by all scanners, we also find all 25.
There was, however, an instance where Arachni found a vulnerability by in-
jecting a different parameter than we did. This does not constitute a unique
vulnerability due to our clustering, which we explain in Section 4.4. On

113

3. Black Widow: black-box Data-driven Web Scanning

SCAREF, input elements can be dynamically generated by adding more users.
The input names will simply be 1_name, 2_name, etc. Arachni managed to
add multiple users by randomizing email addresses. Since our crawler is fo-
cused on consistency, we do not generate valid random email addresses and
could therefore not add more than one user.

The drawback, as we have discussed is that is it easier to lose the state if
too much randomness is used. A possible solution to this could be to keep
two sets of default values and always test both when possible. There is still
the risk that using multiple users can result in mixing up the state between
them. It would also introduce a performance penalty as multiple submissions
for each form would be required.

The w3af scanner was able to find a reflected version of a vulnerable
parameter that we considered to be stored. In this particular case on SCARF,
it was possible to get a direct reflection by submitting the same password
and retype password in the user settings. This is what w3af did. Our scanner
injected unique values into each field, resulting in an error without reflection,
however, the fields were still stored. Inter-state dependency analysis was
used to detect these stored values when revisiting the user settings.

Further possible improvements include updating our method for deter-
mining safe requests and more robust function hooking. A machine learning
approach, such as Mitch [6], could be used to determine if a request can
be considered safe. The function hooking could be done by modifying the
JavaScript engine instead of instrumenting JavaScript code.

5.7 Vulnerability Exploitability

For the six new vulnerabilities, we further investigate the impact and ex-
ploitability. While all of these vulnerabilities were found using an admin
account in the web application, the attacker does not necessarily need to be
an admin. In fact, XSS payloads executed as the admin gives a higher impact
as the JavaScript runs with admin privileges. What the attacker needs to do
is usually to convince the admin to click on a link or visit a malicious website,
i.e. the attacker does not require any admin privileges. Although, there might
be an XSS vulnerability in the code, i.e. user input being reflected, there are
orthogonal mitigations such as CSRF tokens and CSP that can decrease the
exploitability.

To exploit the HotCRP vulnerability the attacker would have to guess a
CSRF token, which is considered difficult. Similarly, PrestaShop has a persis-
tent secret in the URL which would have to be known by the attacker. One
of the WordPress vulnerabilities was a self-XSS, meaning the admin would
need to be convinced to, in this case, input our payload string, while the other

114

6. Related Work

one required a CSRF token. Finally, osCommerce required no CSRF tokens
making it both high impact and easy to exploit.

5.8 Coordinated Disclosure

We have reported the vulnerabilities to the affected vendors, following the
best practices of coordinated disclosure [15]. Specifically, we reported a total
of six vulnerabilities to HotCRP, osCommerce, PrestaShop and WordPress.

So far our reports have resulted in HotCRP patching their vulnerabil-
ity [24]. A parallel disclosure for the same vulnerability was reported to
PrestaShop and is now tracked as CVE-2020-5271 [1]. Due to the difficulty of
exploitation, WordPress did not consider them vulnerabilities. However, the
nearby event vulnerability is fixed in the latest version. We have not received
any confirmation from osCommerce yet.

6 Related Work

This section discusses related work. Automatic vulnerability scanning has
been a popular topic due to its complexity and practical usefulness. This
paper focuses on blackbox scanning, which requires no access to the appli-
cation’s source code or any other input from developers. We have evalu-
ated our approach with respect to both community-developed open-source
tools [28, 34, 36] and academic blackbox scanners [8, 30]. There are also
earlier works on vulnerability detection and scanning [2, 10, 11, 17, 23, 35].
While we focus on blackbox testing, there is also progress on whitebox se-
curity testing [13, 18, 22, 25, 39].

As previous evaluations [3, 9, 29, 37, 40] show, detecting stored XSS is
hard. A common notion is that it is not the exact payload that is the problem
for scanners but rather crawling deep enough to find the injections, as well as,
model the application to find the reflections. Similar to our findings, Parvez et
al. [29] note that while some scanners were able to post comments to pictures
in WackoPicko, something which requires multiple actions in sequence, none
of them was able to inject a payload.

We now discuss work that addresses server-side state, client-side state,
and tracking data dependencies.

Server-side state Enemy of the State [8] focuses on inferring the state of
the server by using a heuristic method to compare how requests result in dif-
ferent links on pages. Black Widow instead takes the approach of analyzing
the navigation methods to infer some state information. For example, if the

115

3. Black Widow: black-box Data-driven Web Scanning

previous edge in the navigation graph was a form submission then we would
have to resubmit this form before continuing. This allows us to execute se-
quences of actions without fully inferring the server-side state.

One reason many of the other scanners pay little attention to server-side
state is to prioritize performance from concurrent requests. Skipfish [42] is
noteworthy for its high performance in terms of requests per second. One
method they use to achieve this is making concurrent requests. Concurrent
requests can be useful in a stateless environment since the requests will not
interfere with each other. ZAP [28], w3af [34] and Arachni [36] take the same
approach as Skipfish and use concurrent requests in favor of better state con-
trol. Since our traversing method relies on executing a sequence of possibly
state-changing action we need to ensure that no other state-changing re-
quests are sent concurrently. For this reason, our approach only performs
actions in serial.

Client-side state jAk considers client-side events to improve exploration.
The support for events is however limited, leaving out such events as form
submission. While other scanners like Enemy of the State, w3af, and ZAP
execute JavaScript, they do not model the events. This limits their ability
to explore the client-side state. As modern applications make heavy use of
JavaScript, Black Widow offers fully-fledged support of client-side events.
In contrast to jAk, Black Widow models client-side events like any other
navigation method. This means that we do not have to execute the events in
any particular order which allows us to chain them with other navigations
such as form submissions.

Tracking data dependencies Tracking payloads is an important part of
detecting stored XSS vulnerabilities. Some scanners, including Arachni, use
a session-based ID in each payload. Since the ID is based on the session this
can lead to false positives as payloads are reused for different parameters. jAk
and Enemy of the State use unique IDs for their payload but forgets them on
new pages. w3af uses unique payloads and remembers them across pages.
ZAP uses a combination in which a unique ID is sent together with a generic
payload but in separate requests. This works if both the ID and payload are
stored on a page. In addition to using unique IDs for all our payloads, Black
Widow incorporates the inter-state dependencies in the application to ensure
that we can fuzz the correct input and output across different pages.

LigRE [10], and its successor KameleonFuzz [11] use a blackbox approach
to reverse engineering the application and apply a genetic algorithm to mod-
ify the payloads. While they also use tainting inside the payloads to track

116

7. Conclusion

them, we use plaintext tokens to avoid filters destroying the taints. While
Black Widow works on live applications, KameleonFuzz requires the ability
to reset the application. Unfortunately, neither LigRE nor KameleonFuzz are
open-source, which has hindered us from their experimental evaluation.

7 Conclusion

We have put a spotlight on key challenges for crawling and scanning the
modern web. Based on these challenges, we have identified three core pillars
for deep crawling and scanning: navigation modeling, traversing, and track-
ing inter-state dependencies. We have presented Black Widow, a novel ap-
proach to blackbox web application scanning that leverages these pillars by
developing and combining augmented navigation graphs, workflow traver-
sal, and inter-state data dependency analysis. To evaluate our approach, we
have implemented it and tested it on 10 different web applications and against
7 other web application scanners. Our approach results in code coverage im-
provements ranging from 63% to 280% compared to other scanners across
all tested applications. Across all tested web applications, our approach im-
proved code coverage by between 6% and 62%, compared to the sum of all
other scanners. When deployed to scan for cross-site scripting vulnerabil-
ities, our approach has featured no false positives while uncovering more
vulnerabilities than the other scanners, both in the reference applications,
i.e. phpBB, SCARF, Vanilla and WackoPicko, and in production software,
including HotCRP, osCommerce, PrestaShop and WordPress.

Acknowledgment

We would like to thank Sebastian Lekies for inspiring discussions on the chal-
lenges of web scanning. We would also like to thank Nick Nikiforakis and
the reviewers for their valuable feedback. This work was partially supported
by the Swedish Foundation for Strategic Research (SSF) and the Swedish Re-
search Council (VR).

117

(1]

(2]

Bibliography

CVE-2020-5271. Available from MITRE, CVE-ID CVE-2020-5271.,
Apr. 20 2020.

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Saner: Composing static and dynamic analysis to validate
sanitization in web applications. In 2008 IEEE Symposium on Security
and Privacy (sp 2008), pages 387-401. IEEE, 2008.

[3] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Au-

tomated black-box web application vulnerability testing. In 2010 IEEE
Symposium on Security and Privacy, pages 332-345. IEEE, 2010.

C.-P. Bezemer, A. Mesbah, and A. van Deursen. Automated security
testing of web widget interactions. In Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pages
81-90. ACM, 2009.

Bugcrowd. The State of Crowdsourced Security in 2019. https://ww
w.bugcrowd.com/, 2020.

S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and G. Tolomei. Mitch:
A machine learning approach to the black-box detection of csrf vul-
nerabilities. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 528-543. IEEE, 2019.

A. Doupé. Wackopicko, 2018.
A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the state:
A state-aware black-box web vulnerability scanner. In USENIX Security

Symposium 12, pages 523-538, 2012.

119

https://www.bugcrowd.com/
https://www.bugcrowd.com/

Bibliography

(9]

[10]

(17]

A. Doupé, M. Cova, and G. Vigna. Why johnny canidAZt pentest: An
analysis of black-box web vulnerability scanners. In International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assess-
ment, pages 111-131. Springer, 2010.

F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. Ligre: Reverse-
engineering of control and data flow models for black-box xss detec-
tion. In 2013 20th Working Conference on Reverse Engineering (WCRE),
pages 252-261. IEEE, 2013.

F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. Kameleonfuzz: evo-
lutionary fuzzing for black-box xss detection. In Proceedings of the 4th
ACM conference on Data and application security and privacy, pages 37—
48, 2014.

Facebook. A Look Back at 2019 Bug Bounty Highlights. https:
//www . facebook.com/notes/facebook-bug-bounty/a-look-
back-at-2019-bug-bounty-highlights/3231769013503969/,
2020.

V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward automated
detection of logic vulnerabilities in web applications. In USENIX Secu-
rity Symposium, volume 58, 2010.

R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content. RFC 7231, RFC Editor, June 2014.

Google. Project zero: Vulnerability disclosure faq, 2019.

Google. Vulnerability Reward Program: 2019 Year in Re-
view. https://security.googleblog.com/2020/01/vulnerabil
ity-reward-program-2019-year.html, 2020.

W. G. Halfond, S. R. Choudhary, and A. Orso. Penetration testing with
improved input vector identification. In 2009 International Conference on
Software Testing Verification and Validation, pages 346—355. IEEE, 2009.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Se-
curing web application code by static analysis and runtime protection.
In Proceedings of the 13th international conference on World Wide Web,
pages 40-52, 2004.

S. Idrissi, N. Berbiche, F. Guerouate, and M. Shibi. Performance evalua-
tion of web application security scanners for prevention and protection

120

https://www.facebook.com/notes/facebook-bug-bounty/a-look-back-at-2019-bug-bounty-highlights/3231769013503969/
https://www.facebook.com/notes/facebook-bug-bounty/a-look-back-at-2019-bug-bounty-highlights/3231769013503969/
https://www.facebook.com/notes/facebook-bug-bounty/a-look-back-at-2019-bug-bounty-highlights/3231769013503969/
https://security.googleblog.com/2020/01/vulnerability-reward-program-2019-year.html
https://security.googleblog.com/2020/01/vulnerability-reward-program-2019-year.html

Bibliography

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

against vulnerabilities. International Journal of Applied Engineering Re-
search, 12(21):11068-11076, 2017.

InfoSecurity. XSS is Most Rewarding Bug Bounty as CSRF is Re-
vived. https://www.infosecurity-magazine.com/news/xss-bu
g-bounty-csrf-1-1-1-1/, 2019.

S. Innovation. Google Awards $1.2 Million in Bounties Just for XSS
Bugs. https://blog.securityinnovation.com/google-awards-
1.2-million-in-bounties-just-for-xss-bugs, 2016.

N. Jovanovic, C. Kruegel, and E. Kirda. Static analysis for detecting
taint-style vulnerabilities in web applications. Journal of Computer Se-
curity, 18(5):861-907, 2010.

S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat: a web vulner-
ability scanner. In Proceedings of the 15th international conference on
World Wide Web, pages 247-256, 2006.

E. Kohler. Correct missing quoting reported by Benjamin Eriksson at
Chalmers. https://github.com/kohler/hotcrp/commit/81b7ffe
e2c5bd465c82acf139ccO64daacca845c, 2020.

X.Li, W. Yan, and Y. Xue. Sentinel: securing database from logic flaws in
web applications. In Proceedings of the second ACM conference on Data
and Application Security and Privacy, pages 25-36, 2012.

A. Mesbah, E. Bozdag, and A. Van Deursen. Crawling ajax by inferring
user interface state changes. In 2008 Eighth International Conference on
Web Engineering, pages 122-134. IEEE, 2008.

H. NikAgiAG. Wget - gnnu project, 2019.
OWASP. Owasp zed attack proxy (zap), 2020.

M. Parvez, P. Zavarsky, and N. Khoury. Analysis of effectiveness of
black-box web application scanners in detection of stored sql injection
and stored xss vulnerabilities. In 2015 10th International Conference for
Internet Technology and Secured Transactions (ICITST), pages 186-191.
IEEE, 2015.

G. Pellegrino, C. Tschiirtz, E. Bodden, and C. Rossow. jAk: Using Dy-
namic Analysis to Crawl and Test Modern Web Applications. In In-
ternational Symposium on Recent Advances in Intrusion Detection, pages
295-316. Springer, 2015.

121

https://www.infosecurity-magazine.com/news/xss-bug-bounty-csrf-1-1-1-1/
https://www.infosecurity-magazine.com/news/xss-bug-bounty-csrf-1-1-1-1/
https://blog.securityinnovation.com/google-awards-1.2-million-in-bounties-just-for-xss-bugs
https://blog.securityinnovation.com/google-awards-1.2-million-in-bounties-just-for-xss-bugs
https://github.com/kohler/hotcrp/commit/81b7ffee2c5bd465c82acf139cc064daacca845c
https://github.com/kohler/hotcrp/commit/81b7ffee2c5bd465c82acf139cc064daacca845c

Bibliography

(31]

(39]

[40]

[41]

[42]

A.Petukhov and D. Kozlov. Detecting security vulnerabilities in web ap-
plications using dynamic analysis with penetration testing. Computing
Systems Lab, Department of Computer Science, Moscow State University,
pages 1-120, 2008.

PortSwigger. Burp Scanner - PortSwigger. https://portswigger.ne
t/burp/documentation/scanner, 2020.

D. Rethans. Xdebug - debugger ad profiler tool for php, 2019.
A. Riancho. w3af - open source web application security scanner, 2007.

T. S. Rocha and E. Souto. Etssdetector: A tool to automatically detect
cross-site scripting vulnerabilities. In 2014 IEEE 13th International Sym-
posium on Network Computing and Applications, pages 306-309, Aug
2014.

Sarosys LLC. Framework - arachni - web application security scanner
framework, 2019.

L. Suto. Analyzing the accuracy and time costs of web application se-
curity scanners. San Francisco, February, 2010.

The OWASP Foundation. Owasp top 10 - 2017, 2017. https://www.ow
asp.org/images/7/72/0WASP_Top_10-2017_%28en%29.pdf.pdf.

A. Vernotte, F. Dadeau, F. Lebeau, B. Legeard, F. Peureux, and F. Piat.
Efficient detection of multi-step cross-site scripting vulnerabilities. In
A. Prakash and R. Shyamasundar, editors, Information Systems Security,
pages 358-377, Cham, 2014. Springer International Publishing.

M. Vieira, N. Antunes, and H. Madeira. Using web security scanners
to detect vulnerabilities in web services. In 2009 IEEE/IFIP International
Conference on Dependable Systems & Networks, pages 566—-571. IEEE,
2009.

WHATWG. Html standard, 2019.

M. Zalewski. Skipfish, 2015.

122

https://portswigger.net/burp/documentation/scanner
https://portswigger.net/burp/documentation/scanner
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

Appendix

3..1 Scanner configuration
3.1.1 Arachni

The following command was used to run Arachni.

1 arachni [url] --check=xss* --browser-cluster-pool-size=1 --plugin?
autologin:url=[loginUrl],parameters="[userField]=[username]&[
passField]=[password]",check="[logout string]}

3..1.2 Black Widow

The following command was used to run Black Widow.

1 python3 crawl.py [url]

3..1.3 Enemy of the State

First we changed the username and password in the web application to scan-
nerl then we ran the following command.

1 jython crawler2.py [url]

3.1.4 jAk

We updated the example. py file with the URL and user data.

1 url = [url]
2 user = User("[sessionName]", 0, url, login_data = {"[userField]": "[
username]", "[passField]": "[password]"}, session="ABC")

3..1.5 Skipfish

The following command was used to run Skipfish.

123

3. Black Widow: black-box Data-driven Web Scanning

1 skipfish -uv -o [output]

2 --auth-form [loginUrl]

3 --auth-user-field [userField]
4 --auth-pass-field [passField]
5 --auth-user [username]

6 --auth-pass [password]

7 --auth-verify-url [verifyUrl]
8 [url]

3..1.6 w3af

For w3af we used the following settings, generic and xss for the audit plugin,
web_spider for crawl plugin and generic (with all credentials) for the auth
plugin.

3.1.7 Wget

The following command was used to run Wget.

1 wget -rp -w 0 waitretry=0 -nd --delete-after --execute robots=off [url
]

3..1.8 ZAP

For ZAP we used the automated scan with both traditional spider and ajax
spider. In the Scan Progress window we deactivated everything that was not
XSS. Similar to Enemy of the State, we changed the credentials in the web
application to the scanner’s default, i.e. ZAP.

124

	Introduction
	Web applications
	Attackers
	Client-side
	Server-side

	Embedded Systems
	Permission model
	Android Automotive
	Attack surface in vehicles
	Attacks and Countermeasures

	Bibliography
	On the Road with Third-Party Apps
	Introduction
	Background
	Experimental Setup
	Automatic analysis of Android apps
	Android Automotive
	Android's Permission model
	Covert channels

	Attacks
	Disturbance
	Availability
	Privacy

	Countermeasures
	Permission
	API control
	System
	Code analysis

	Spotify case study
	Permissions
	Vulnerability detection
	AutoTame
	Information flow analysis
	Summary

	Related Work
	Conclusions
	Bibliography
	Appendix

	AutoNav: Evaluation and Automatization of Web Navigation Policies
	Introduction
	Motivation
	Research questions
	Contributions

	Background
	Threat model
	CSP
	Origin policy
	Navigation
	Navigate-to directive

	Vulnerabilities
	Methodology
	Specification
	Implementation

	Countermeasures
	Specification
	Implementation

	AutoNav
	Inference
	Policy generation
	Crawling
	Limitations

	Empirical Study
	Policy tradeoffs
	Coverage

	Related work
	Conclusion
	Bibliography

	Black Widow: black-box Data-driven Web Scanning
	Introduction
	Challenges
	Navigation Modeling
	Traversing
	Inter-state Dependencies

	Approach
	Navigation Modeling
	Traversal
	Inter-state Dependencies
	Dynamic XSS detection

	Evaluation
	Implementation
	Experimental Setup
	Code Coverage Results
	Code Injection Results
	Takeaways

	Analysis of Results
	Coverage Analysis
	False positives and Clustering
	What We Find
	Case Studies
	Features Attribution
	Missed by Us
	Vulnerability Exploitability
	Coordinated Disclosure

	Related Work
	Conclusion
	Bibliography
	Appendix
	Scanner configuration

