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Abstract- Web based applications are complex in structure which results in facing immense amount 

of exploiting attacks, so testing should be done in proactive way in order to identify threats in the 

applications. The intruder can explore these security loopholes and may exploit the application which 

results in economical lose, so testing the application becomes a supreme phase of development.  The 

prime objective of testing is to secure the contents of applications either through static or automatic 

approach. The software houses usually follow fuzz based testing in which flaws can be explored by 

randomly inputting invalid data while on the other hand model based testing is the automated approach 

which test the applications from all perspectives on the basis of abstract model of the application. The 

main theme of this research is to study the difference of fuzz based testing and model based testing in 

terms of test coverage, performance, cost and time. This research work guides the web application 

practitioner in selection of suitable methodology for different testing scenarios which save efforts 

imparted on testing and develop better and breaches free product. 
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I.   INTRODUCTION 

Web applications are the key part of today’s world of internet where users perform different kinds 

of activities via remote device with ease such as online transactions, reservation of tickets for flights 

etc. This trend of services are now widely utilized by every organization such as banking sectors 

which manages a lot of daily transections and transport sector for issuing tickets etc., this trend looks 

easy and calm from end users perspective but it arises questionable debate when we talk about 

privacy and confidentiality of information that is, how much it is secure and what sort of parameters 

are followed in order to sure its safety?. Unfortunately, the web application didn’t get much trust 

and satisfaction from users in context of safety of information and this put a question mark on its 

ability of protection and security of the information of an organization, providing the services 

through that application. In order to understand these factors, we need to understand the simple 

workout of banking sectors   which utilizes this platform to manage their daily-based activities like 

transferring and depositing fund, balance inquiry, transections history withdrawal and so on. All 
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these details are stored in centralized storage called database which linked with server of that bank. 

Now, if hacker accesses the server side’s script or even if he able to crack the database of that 

application, then surely the whole system is under custody of that person and he able to steal those 

sensitive credentials of customers and bank and put both of them on the edge of forfeiture like 

transferring bank balance of customer to another account without prior to his and bank managements 

knowledge. Such uncertainties put both stakeholders and users at the edge uncertain risk; the 

primary factors of such uncertainties are actually come from customer’s side when they 

continuously requesting for changes that in turn intended the developers to more be focused on 

user’s modifications instead of prioritize security structure [11]. 

The secondary factor of susceptibilities and flaws are triggered due to flaws in applications 

designs and code which can be undone by following quality of testing experiments where several 

behavior aspects of applications are being analyzed in context of quality and security which verifies 

whether the application fulfills the properties of intended behavior or not as it makes sure that 

application remains in safe and quality shells and also shows the power of quality testing. Yes! The 

fact is confessed that it quite tired procedure as it demands a lot of effort and cost to ensure the 

applications compliance because most of the testing is done by following old-fashioned approaches 

instead of automatic testing which ensures the safety of application by consuming less time and 

effort yields betters results as compared to manual approaches.  

Model based testing is increasing broad significance because of speedier and creation of test 

scripts for verifying application’s security and reliability. This approach is seems to be a semi-

automatic kind of approach that generate test cases on the basis of models where these models are 

actually action and events of the system that reflects the functionality and intended behavior of the 

system and are abstracted from set of requirements. These models are created manually or by the 

help of software’s. Due to swift and complexity in the development industry, there comes a supreme 

task of testing application full-fledged at earliest possibility. Model based testing is type of black 

box testing because in such condition the test cases is obtained from model that are designs for 

system under test. These test cases are then packed in the form of test suits and executed on the 

system in systematic series. The priority reason to select model based testing is that its principle 

objective is to automate manual based activities by minimizing the cost of generating models for 

coverage and to reduce the efforts for designing and implementation of test cases [20]. 
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While, the fuzz technique targets the application in order to verify its conformity and reliability 

by exploring important security loopholes in the application. The concept behind this approach is to 

act like an intruder in order to target the system by continuously inserting testing data that compose 

of malicious inputs and then analyze the system by monitoring it behavior. Actually fuzzing was 

initially used to find zero days in black-hat community. The main concern of this approach is to 

generate data for testing that able to strike the victim application or at least create a negative impact 

on the execution of the application and then monitoring the outcome. Although there are many 

others alternates available to explore hidden vulnerabilities but fuzz is more popular at industrial 

level as it does not required the source code and does not have blind spots to like human testers, and 

also cost saving technique than manual approaches [10]. 

II.   REVIEW OF LITERATURE 

Testing is actually an estimation of application applicability by observing its execution. Testing 

involves dynamic validation of tangible behavior of the system against its predictable behavior. This 

is achieved with a determinate set of test cases termed as test suites appropriately designated from 

the infinite set of anticipated traces of execution. The behavior of application is examined by 

smearing invasive tests that stimulated the application and then evaluate the system responses by 

observation. After execution of test cases, the actual and anticipated behavior of the application 

under test is compared with each other which results in conclusion, where the test oracle is used as 

mechanism for determining conclusion. The conclusion can either be pass, fail or inconclusive. The 

pass conclusion suggests that application’s behavior is conformed while the fail and inconclusive 

conclusions suggests that application is either not conformed or unknown respectively [6]. 

The procedure of model based testing by stated that it’s quite similar for every application that is 

first developing models for system which are under examined and then translate these models into 

test modeling and finally generate test cases which are executable on system based on coverage 

criterion. Though, implementation of model based testing to a new industrial application always 

faces tedious difficulties because of practices follows at industrial level are quite complex and need 

of proficient tools and category of the SUT [1]. 

The experimental study estimate the usage of model based testing in creation of models, their 

generation, and accomplishment of automatic test cases in context of mobile apps. However, they 

followed ESG (Event Sequence Graph) technique to design the artifacts of test models in order to 

define requirements and features of mobile apps which are under examination of testing procedure. 
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Their focus is on mobile apps, so they employed testing cases using a framework called Robotium. 

The results after analysis favors the model based approach and shows that this approach works well 

in terms of test case generation and ability to detect faults and flaws in application and the same 

time it enhanced the quality of test cases  while reducing time and cost for testing and development 

of test models. Although there are supreme challenges might be occur during this technique that are 

problems of test modeling, concretization of test in context of mobile applications and the need of 

proficient tools. The experimental study concluded that Model based testing along with Event 

Sequence Graph modeling can be used as an efficient approach to test the applications based on 

android operating system [7]. 

Fuzz testing technique is actually based on comprehensive assessment. It is different from 

traditional way of fuzz testing that follows the concept of blind injection, this method divides the 

input into various fields by executing the dynamic assessment and make a rank for each field on the 

base of comprehensive assessment results in detecting vulnerabilities more quickly as compare to 

old ones. Experimental analysis shows that the field division is more effective as it makes fuzz 

testing approach more efficacious and coherent [10]. 

The study presented a methodology based on fuzzy logic with collaboration of model based 

methodology in order to rank test cases by means of information accessible from the symbolic tree’s 

execution that acquired from a model. The responses to the fuzz based logic system are test suits, 

symbolic tree’s execution dimensions, and comparative test case size. The fuzz based logic system 

yields particular crispy output termed as importance for each test case. The test cases are ordered on 

the basis of crisp output. This methodology presumes that the information covered from test cases 

at the model-level is accessible and uncertain to follow those models which are at higher abstraction 

level [17]. 

In order to explore security flaws in services of webs, the processes of the target system need to 

be thoroughly observed on the behalf of fuzz approach. The presence of susceptibilities in target 

system are recognized and evaluated based on the consequences achieved after monitoring. They 

also discussed the process of fuzz testing by stated that common methods of monitoring comprises 

observation analysis, following via debuggers, and dynamic binary composition. After that, a 

regular request is presented after sending a series of abnormal tests to the target system and the 

status of operations can be examined by the analysis of the responses of the systems for the regular 

or typical requests [10]. 
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III.  PROCEDURE 

The research work is comprised of three sections: - Survey Experiments and proposed framework. 

The survey was mandatory part of research and data is collected by conducting survey which 

generates data that used for further analyzed by the help of statistical tools. While the experimental 

work dynamically validates the findings of survey results, however the least portion discuss the 

framework that based on the strengths of two above discussed techniques. 

A. Survey Results 

The respondents believe that model based testing works much better as semi-automated technique 

as it comes with more quality and reliability in context of applications testing while fully automatic 

suited more when deadline is little far away from the end as shown in Figure. 1. 

 
  Figure 1:  Level of MBT 

 

While the survey results conclude that model based testing is best suited for testing functional 

requirements as it requirements are the raw information in order to develop models which further 

generated test cases on the basis of these models. If the raw information is available for non-
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functional requirements, then it somehow test them well but not up to that standard mark as shown 

in Figure. 2. 

 

 

Figure 2: Requirement level in MBT 

 

The model based testing is moderately cost effective, as it requires development of models and 

second, its best tools are available at commercial cost but it somehow reduces cost in terms of efforts 

as well as moderately effective in terms of time, as it requires development of models and test cases 

to generate which at the initial phase demands more time than other techniques. Where is the fuzz 

testing is very cost effective, as it requires test data and second, its best tools are available at lower 

cost and very effective in terms of time, as it requires simple testing inputs related to target 

application and then execute these inputs and verifies the behavior of the application. It also very 

efficient terms of execution as it simply requires a set of inputs and tools to insert these into target 

applications.  

There are two ways to see the test coverage, one is as strength of Fuzz testing and other is model 

based testing.  The coverage is solely depending on the experience of the tester, the one who is 
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writing that particular test and in the case if the test cases are not written by experience tester, then 

it should be approved by experience testers.  Also note that in model based testing, the test coverage 

is always higher than Fuzz testing due to the fact that the cases is derived by examine the test 

coverage. 

Figure 3: Test coverage of MBT and Fuzz 

 

By consideration of test coverage and taking the help of average score of fuzzy testing and MBT 

the Figure.3 was created. It indicates that Fuzz testing has comparatively maximum test coverage 

then is path, branch, and statement coverage, it has also observed that due to zero- tolerance towards 

the test coverage the model based testing shows maximum coverage. The requirement traceability 

is one of strengths of model based testing. As per the data of survey, the requirement can be traceable 

through various ways by the test cases. However in MBT, the traceability is done in a different way. 

According to the respondents, it is a great challenge for companies and MBT to trace the requirement 

often it difficult in MBT approach to track the results back to the system requirements. Currently, 

remarkable studies related to finding out more appropriate way to make requirements traceable in 

MBT process have been done. According to the survey data analysis, figure 4 shows the requirement 

traceability in Fuzz testing and MBT. 

 
Figure 4: Requirement Traceability in MBT and Fuzz 
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B. Experiment Results 

The comparison of test coverage results of the test cases generated from both approaches (MBT 

and Fuzz testing) are presented in Table 1. The test cases written by Fuzz group – 1, showed that 

there are two test cases required to test all conditions which sorted out during the analysis and design 

phase, and also two test cases are required to cover all the statements i.e. statement coverage and 

total of four test cases were required to test all possible paths i.e. path coverage. Similarly from Fuzz 

group – 2 test data, the branch, path and statement coverage was 3, 3 and 1 respectively. From test 

data gathered from Fuzz group – 3, branch, path and statement coverage was 3, 4 and 1 respectively. 

The test data from the three MBT teams resulted in branch, path and statement coverage of (3, 3, 2), 

(3, 4, 2) and (3, 3, 2) respectively. 

TABLE I 

MBT Group Model Based Testing Test Coverage Fuzz Based Testing Fuzz Testing Group 

Group 1 3 Coverage of Paths 4 Group 1 

2 Coverage of Statements 2 

3 Coverage of Branches 2 

Group 2 4 Coverage of Paths 3 Group 2 

2 Coverage of Statements 1 

3 Coverage of Branches 3 

Group 3 3 Coverage of Paths 4 Group 3 

2 Coverage of Statements 1 

3 Coverage of Branches 3 

 

While, the cost calculated by giving each team “x” value as standard cost per minute. For 

calculation we have given a standard value which is 0.5 units per minute i.e. 30 units per hr. The 

cost was calculated with respect to time consumed by each team. The results that were calculated 

are mentioned in the Table II.  

TABLE II 

MBT Group Model Based Testing Cost and Time Fuzz Based Testing Fuzz testing Group 

Group 1 35 unit Cost 57.5 unit Group 1 
70 unit Time 11.5 unit 

Group2 45 unit Cost 55.5 unit Group2 
90 unit Time 111 unit 

Group 3 37.5 unit Cost 48 unit Group 3 
75 unit Time 96 unit 
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C. Proposed Framework 

The conceptual framework is proposed based on the strengths of both approaches. The definition 

of good framework is the one which is appropriate to indicate the several types of bugs depend on 

the three components: 

I) The ability to develop models of the target application accurately termed as Target of 

Evaluation (TOE). 

II) The ability to cover the behaviors of target application in a broad variety with the generated 

set of test patterns. 

III) The ability to cover a wide range of vulnerabilities and flaws with the generated test cases. 

However, the proposed framework is composed of three primary sections such as Target 

Application profile, modeling of data and algorithm testing which merges the strengths of both 

testing techniques in quite different way. 

a)  Target Application Profile 

Before the fuzz testing is used or organized, the dynamic behavior of the target application that is 

termed as target of Evaluation (TOE) should be recognized and studied also involved the internal 

behavior of entities and the interaction behavior between them. The modeling for which UML state 

machine model is established that is based on the analysis of specifications either static or manual. 

Then applying selected graph traversal algorithm to the finite state model which generates a set of 

test patterns that represent the abstract behavior of the target of evaluation (TOE). 

b)  Modeling of Data 

This phase enhances the code coverage, grammar-based data descriptors are followed to create 

the well-formed input vectors, which usually comes from the application-specific knowledge. The 

smart test vectors can pass the parameters error check near the code interface, and go inside the 

program. The XML descriptors are best suited to describe the structure of the input vector. 

c)  Test Algorithms  

In this phase numerous generic based algorithms can be developed for different levels of 

vulnerabilities such as security flaws, buffer-overflows, coding bugs, integer-overflow type bugs 

and null-pointer type bugs etc. A set of executable test cases that usually large in size is created by 

the test schema which merged with the test vector and testing algorithmic modification. 

Furthermore, for fully automated testing, few other factors need to be considered, such as 
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observation of the responses given for manipulated inputs and verify whether the target of evaluation 

took some unexpected action etc. The figure illustrates the working of the framework. 

 

Figure 5:  XMBFT FRAMEWORK 
 

IV.   CONCLUSION 

The world of todays is totally based on internet, where tasks and operations are performed with 

in couple of minutes via remote access such as internet banking, seat reservation, or even online 

trading and shopping can be done via internet. The platform which is used for such activities are 

actually web based application which provide services to end users via remote devices by entering 

their secret credentials to login. The web application are actually a mixture of multiple programming 

languages such as JavaScript, AJAX and PHP which combine together to execute users operations. 

So, by keeping such concepts in mind, we must agree upon the fact that web applications should 

have a complex and tight security mechanism for securing users secrete credentials. But 

unfortunately the fact is against this concept, as security of websites are not still up to that mark 
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where users feels that its credentials are saved on a secure place. The reasons behind these issues is 

that we still don’t give value to testing and consider it as a last phase of development life cycle and 

follow the traditional and manual ways to test the application by neglecting the fact that how 

precious would be to test the applications at that time before they launched online for performing 

operations. The researchers and experts try to overcome these security issues by introducing advance 

techniques which executes automatically in order to test the application with in little time and cost, 

the examples of such techniques are model based testing, fuzz testing etc.  

Model based testing is best considering to be a craftsman art where we have to focus on three 

import aspects such as understanding the target application, ability to establish accurate and precise 

models from raw information and ability to use the tools. This technique is good for discovering 

potential conflicts that causes the application to crash as this technique is automated that submits 

tests as input and executed it for specific period of time. Where, Synopsys report defines the fuzz 

testing as a valuable technology that used to uncover flaws and vulnerabilities in application by 

bombarding series of malformed inputs to a target application and then observe the spotted areas of 

the application for results. If the target application performs unexpected actions then examination 

of that failure is required, that examination uncover the root causes of that failure that may exploited 

for illegal purposes. Fuzzing plays a role of verification agent during implementation and 

deployment phases where undetected flaws may distress the integrity of the application. These 

techniques are approaches in analytical way in order to discover their strengths and weakness during 

web applications testing. After analysis the results concludes that model based testing is good in 

context of generating quality of test cases, requirement traceability then fuzz testing, but cost and 

effort required during fuzz testing is lesser as compared to model based testing, as model based 

testing requires a lot of time at initial level in order to analysis the raw information and to create 

application models while in fuzz we just need to develop data sets for application and then bombard 

them towards application. However it is true that model based testing is better in discovering 

vulnerabilities as compare to fuzz technique. But model based approach may halt where application 

structure is either too complex or there is no raw information in the form of requirements related to 

that application, then here fuzz testing comes and generate effective results to some extent. But we 

have to admired that, model based testing can cover large variety of scenarios with moderately little 

effort and random execution of models can expose those issues which are not easy to discover 

upfront such as design and specification issues. Where, the fuzz technique is good at discovering 
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coding issues more accurately then other. But model based testing have some limitations too such 

as, if we need to test the application of large size then we need large set of random test cases of 

model based testing which requires a great deal of time and infrastructure. So we proposed a 

conceptual framework on the basis of their strengths which need further development and then 

require implementation in order to verify its outcome. 
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