

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

33

WEB Based Applications Testing:

Analytical Approach towards Model

Based Testing and Fuzz Testing

1Umer Zaheer Khan and Dr. Salman Afsar

Abstract- Web based applications are complex in structure which results in facing immense amount

of exploiting attacks, so testing should be done in proactive way in order to identify threats in the

applications. The intruder can explore these security loopholes and may exploit the application which

results in economical lose, so testing the application becomes a supreme phase of development. The

prime objective of testing is to secure the contents of applications either through static or automatic

approach. The software houses usually follow fuzz based testing in which flaws can be explored by

randomly inputting invalid data while on the other hand model based testing is the automated approach

which test the applications from all perspectives on the basis of abstract model of the application. The

main theme of this research is to study the difference of fuzz based testing and model based testing in

terms of test coverage, performance, cost and time. This research work guides the web application

practitioner in selection of suitable methodology for different testing scenarios which save efforts

imparted on testing and develop better and breaches free product.

Keywords: ESG, MBT, SUT, TOE, UML.

I. INTRODUCTION

Web applications are the key part of today’s world of internet where users perform different kinds

of activities via remote device with ease such as online transactions, reservation of tickets for flights

etc. This trend of services are now widely utilized by every organization such as banking sectors

which manages a lot of daily transections and transport sector for issuing tickets etc., this trend looks

easy and calm from end users perspective but it arises questionable debate when we talk about

privacy and confidentiality of information that is, how much it is secure and what sort of parameters

are followed in order to sure its safety?. Unfortunately, the web application didn’t get much trust

and satisfaction from users in context of safety of information and this put a question mark on its

ability of protection and security of the information of an organization, providing the services

through that application. In order to understand these factors, we need to understand the simple

workout of banking sectors which utilizes this platform to manage their daily-based activities like

transferring and depositing fund, balance inquiry, transections history withdrawal and so on. All

1 Raiumer23@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Business Management, Karachi, Pakistan: Journal...

https://core.ac.uk/display/287324412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

34

these details are stored in centralized storage called database which linked with server of that bank.

Now, if hacker accesses the server side’s script or even if he able to crack the database of that

application, then surely the whole system is under custody of that person and he able to steal those

sensitive credentials of customers and bank and put both of them on the edge of forfeiture like

transferring bank balance of customer to another account without prior to his and bank managements

knowledge. Such uncertainties put both stakeholders and users at the edge uncertain risk; the

primary factors of such uncertainties are actually come from customer’s side when they

continuously requesting for changes that in turn intended the developers to more be focused on

user’s modifications instead of prioritize security structure [11].

The secondary factor of susceptibilities and flaws are triggered due to flaws in applications

designs and code which can be undone by following quality of testing experiments where several

behavior aspects of applications are being analyzed in context of quality and security which verifies

whether the application fulfills the properties of intended behavior or not as it makes sure that

application remains in safe and quality shells and also shows the power of quality testing. Yes! The

fact is confessed that it quite tired procedure as it demands a lot of effort and cost to ensure the

applications compliance because most of the testing is done by following old-fashioned approaches

instead of automatic testing which ensures the safety of application by consuming less time and

effort yields betters results as compared to manual approaches.

Model based testing is increasing broad significance because of speedier and creation of test

scripts for verifying application’s security and reliability. This approach is seems to be a semi-

automatic kind of approach that generate test cases on the basis of models where these models are

actually action and events of the system that reflects the functionality and intended behavior of the

system and are abstracted from set of requirements. These models are created manually or by the

help of software’s. Due to swift and complexity in the development industry, there comes a supreme

task of testing application full-fledged at earliest possibility. Model based testing is type of black

box testing because in such condition the test cases is obtained from model that are designs for

system under test. These test cases are then packed in the form of test suits and executed on the

system in systematic series. The priority reason to select model based testing is that its principle

objective is to automate manual based activities by minimizing the cost of generating models for

coverage and to reduce the efforts for designing and implementation of test cases [20].

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

35

While, the fuzz technique targets the application in order to verify its conformity and reliability

by exploring important security loopholes in the application. The concept behind this approach is to

act like an intruder in order to target the system by continuously inserting testing data that compose

of malicious inputs and then analyze the system by monitoring it behavior. Actually fuzzing was

initially used to find zero days in black-hat community. The main concern of this approach is to

generate data for testing that able to strike the victim application or at least create a negative impact

on the execution of the application and then monitoring the outcome. Although there are many

others alternates available to explore hidden vulnerabilities but fuzz is more popular at industrial

level as it does not required the source code and does not have blind spots to like human testers, and

also cost saving technique than manual approaches [10].

II. REVIEW OF LITERATURE

Testing is actually an estimation of application applicability by observing its execution. Testing

involves dynamic validation of tangible behavior of the system against its predictable behavior. This

is achieved with a determinate set of test cases termed as test suites appropriately designated from

the infinite set of anticipated traces of execution. The behavior of application is examined by

smearing invasive tests that stimulated the application and then evaluate the system responses by

observation. After execution of test cases, the actual and anticipated behavior of the application

under test is compared with each other which results in conclusion, where the test oracle is used as

mechanism for determining conclusion. The conclusion can either be pass, fail or inconclusive. The

pass conclusion suggests that application’s behavior is conformed while the fail and inconclusive

conclusions suggests that application is either not conformed or unknown respectively [6].

The procedure of model based testing by stated that it’s quite similar for every application that is

first developing models for system which are under examined and then translate these models into

test modeling and finally generate test cases which are executable on system based on coverage

criterion. Though, implementation of model based testing to a new industrial application always

faces tedious difficulties because of practices follows at industrial level are quite complex and need

of proficient tools and category of the SUT [1].

The experimental study estimate the usage of model based testing in creation of models, their

generation, and accomplishment of automatic test cases in context of mobile apps. However, they

followed ESG (Event Sequence Graph) technique to design the artifacts of test models in order to

define requirements and features of mobile apps which are under examination of testing procedure.

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

36

Their focus is on mobile apps, so they employed testing cases using a framework called Robotium.

The results after analysis favors the model based approach and shows that this approach works well

in terms of test case generation and ability to detect faults and flaws in application and the same

time it enhanced the quality of test cases while reducing time and cost for testing and development

of test models. Although there are supreme challenges might be occur during this technique that are

problems of test modeling, concretization of test in context of mobile applications and the need of

proficient tools. The experimental study concluded that Model based testing along with Event

Sequence Graph modeling can be used as an efficient approach to test the applications based on

android operating system [7].

Fuzz testing technique is actually based on comprehensive assessment. It is different from

traditional way of fuzz testing that follows the concept of blind injection, this method divides the

input into various fields by executing the dynamic assessment and make a rank for each field on the

base of comprehensive assessment results in detecting vulnerabilities more quickly as compare to

old ones. Experimental analysis shows that the field division is more effective as it makes fuzz

testing approach more efficacious and coherent [10].

The study presented a methodology based on fuzzy logic with collaboration of model based

methodology in order to rank test cases by means of information accessible from the symbolic tree’s

execution that acquired from a model. The responses to the fuzz based logic system are test suits,

symbolic tree’s execution dimensions, and comparative test case size. The fuzz based logic system

yields particular crispy output termed as importance for each test case. The test cases are ordered on

the basis of crisp output. This methodology presumes that the information covered from test cases

at the model-level is accessible and uncertain to follow those models which are at higher abstraction

level [17].

In order to explore security flaws in services of webs, the processes of the target system need to

be thoroughly observed on the behalf of fuzz approach. The presence of susceptibilities in target

system are recognized and evaluated based on the consequences achieved after monitoring. They

also discussed the process of fuzz testing by stated that common methods of monitoring comprises

observation analysis, following via debuggers, and dynamic binary composition. After that, a

regular request is presented after sending a series of abnormal tests to the target system and the

status of operations can be examined by the analysis of the responses of the systems for the regular

or typical requests [10].

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

37

III. PROCEDURE

The research work is comprised of three sections: - Survey Experiments and proposed framework.

The survey was mandatory part of research and data is collected by conducting survey which

generates data that used for further analyzed by the help of statistical tools. While the experimental

work dynamically validates the findings of survey results, however the least portion discuss the

framework that based on the strengths of two above discussed techniques.

A. Survey Results

The respondents believe that model based testing works much better as semi-automated technique

as it comes with more quality and reliability in context of applications testing while fully automatic

suited more when deadline is little far away from the end as shown in Figure. 1.

 Figure 1: Level of MBT

While the survey results conclude that model based testing is best suited for testing functional

requirements as it requirements are the raw information in order to develop models which further

generated test cases on the basis of these models. If the raw information is available for non-

Semi-automaticManualFully Automatic

14

12

10

8

6

4

2

0

Level of Implementation (MBT)

C
o

u
n

t

Chart of Level of Implementation (MBT)

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

38

functional requirements, then it somehow test them well but not up to that standard mark as shown

in Figure. 2.

Figure 2: Requirement level in MBT

The model based testing is moderately cost effective, as it requires development of models and

second, its best tools are available at commercial cost but it somehow reduces cost in terms of efforts

as well as moderately effective in terms of time, as it requires development of models and test cases

to generate which at the initial phase demands more time than other techniques. Where is the fuzz

testing is very cost effective, as it requires test data and second, its best tools are available at lower

cost and very effective in terms of time, as it requires simple testing inputs related to target

application and then execute these inputs and verifies the behavior of the application. It also very

efficient terms of execution as it simply requires a set of inputs and tools to insert these into target

applications.

There are two ways to see the test coverage, one is as strength of Fuzz testing and other is model

based testing. The coverage is solely depending on the experience of the tester, the one who is

Non-Functional testingFunctional testing

12

10

8

6

4

2

0

Requirements tested with MBT

C
o

u
n

t

Chart of Requirements tested with MBT

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

39

writing that particular test and in the case if the test cases are not written by experience tester, then

it should be approved by experience testers. Also note that in model based testing, the test coverage

is always higher than Fuzz testing due to the fact that the cases is derived by examine the test

coverage.

Figure 3: Test coverage of MBT and Fuzz

By consideration of test coverage and taking the help of average score of fuzzy testing and MBT

the Figure.3 was created. It indicates that Fuzz testing has comparatively maximum test coverage

then is path, branch, and statement coverage, it has also observed that due to zero- tolerance towards

the test coverage the model based testing shows maximum coverage. The requirement traceability

is one of strengths of model based testing. As per the data of survey, the requirement can be traceable

through various ways by the test cases. However in MBT, the traceability is done in a different way.

According to the respondents, it is a great challenge for companies and MBT to trace the requirement

often it difficult in MBT approach to track the results back to the system requirements. Currently,

remarkable studies related to finding out more appropriate way to make requirements traceable in

MBT process have been done. According to the survey data analysis, figure 4 shows the requirement

traceability in Fuzz testing and MBT.

Figure 4: Requirement Traceability in MBT and Fuzz

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

40

B. Experiment Results

The comparison of test coverage results of the test cases generated from both approaches (MBT

and Fuzz testing) are presented in Table 1. The test cases written by Fuzz group – 1, showed that

there are two test cases required to test all conditions which sorted out during the analysis and design

phase, and also two test cases are required to cover all the statements i.e. statement coverage and

total of four test cases were required to test all possible paths i.e. path coverage. Similarly from Fuzz

group – 2 test data, the branch, path and statement coverage was 3, 3 and 1 respectively. From test

data gathered from Fuzz group – 3, branch, path and statement coverage was 3, 4 and 1 respectively.

The test data from the three MBT teams resulted in branch, path and statement coverage of (3, 3, 2),

(3, 4, 2) and (3, 3, 2) respectively.

TABLE I

MBT Group Model Based Testing Test Coverage Fuzz Based Testing Fuzz Testing Group

Group 1 3 Coverage of Paths 4 Group 1

2 Coverage of Statements 2

3 Coverage of Branches 2

Group 2 4 Coverage of Paths 3 Group 2

2 Coverage of Statements 1

3 Coverage of Branches 3

Group 3 3 Coverage of Paths 4 Group 3

2 Coverage of Statements 1

3 Coverage of Branches 3

While, the cost calculated by giving each team “x” value as standard cost per minute. For

calculation we have given a standard value which is 0.5 units per minute i.e. 30 units per hr. The

cost was calculated with respect to time consumed by each team. The results that were calculated

are mentioned in the Table II.

TABLE II

MBT Group Model Based Testing Cost and Time Fuzz Based Testing Fuzz testing Group

Group 1 35 unit Cost 57.5 unit Group 1
70 unit Time 11.5 unit

Group2 45 unit Cost 55.5 unit Group2
90 unit Time 111 unit

Group 3 37.5 unit Cost 48 unit Group 3
75 unit Time 96 unit

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

41

C. Proposed Framework

The conceptual framework is proposed based on the strengths of both approaches. The definition

of good framework is the one which is appropriate to indicate the several types of bugs depend on

the three components:

I) The ability to develop models of the target application accurately termed as Target of

Evaluation (TOE).

II) The ability to cover the behaviors of target application in a broad variety with the generated

set of test patterns.

III) The ability to cover a wide range of vulnerabilities and flaws with the generated test cases.

However, the proposed framework is composed of three primary sections such as Target

Application profile, modeling of data and algorithm testing which merges the strengths of both

testing techniques in quite different way.

a) Target Application Profile

Before the fuzz testing is used or organized, the dynamic behavior of the target application that is

termed as target of Evaluation (TOE) should be recognized and studied also involved the internal

behavior of entities and the interaction behavior between them. The modeling for which UML state

machine model is established that is based on the analysis of specifications either static or manual.

Then applying selected graph traversal algorithm to the finite state model which generates a set of

test patterns that represent the abstract behavior of the target of evaluation (TOE).

b) Modeling of Data

This phase enhances the code coverage, grammar-based data descriptors are followed to create

the well-formed input vectors, which usually comes from the application-specific knowledge. The

smart test vectors can pass the parameters error check near the code interface, and go inside the

program. The XML descriptors are best suited to describe the structure of the input vector.

c) Test Algorithms

In this phase numerous generic based algorithms can be developed for different levels of

vulnerabilities such as security flaws, buffer-overflows, coding bugs, integer-overflow type bugs

and null-pointer type bugs etc. A set of executable test cases that usually large in size is created by

the test schema which merged with the test vector and testing algorithmic modification.

Furthermore, for fully automated testing, few other factors need to be considered, such as

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

42

observation of the responses given for manipulated inputs and verify whether the target of evaluation

took some unexpected action etc. The figure illustrates the working of the framework.

Figure 5: XMBFT FRAMEWORK

IV. CONCLUSION

The world of todays is totally based on internet, where tasks and operations are performed with

in couple of minutes via remote access such as internet banking, seat reservation, or even online

trading and shopping can be done via internet. The platform which is used for such activities are

actually web based application which provide services to end users via remote devices by entering

their secret credentials to login. The web application are actually a mixture of multiple programming

languages such as JavaScript, AJAX and PHP which combine together to execute users operations.

So, by keeping such concepts in mind, we must agree upon the fact that web applications should

have a complex and tight security mechanism for securing users secrete credentials. But

unfortunately the fact is against this concept, as security of websites are not still up to that mark

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

43

where users feels that its credentials are saved on a secure place. The reasons behind these issues is

that we still don’t give value to testing and consider it as a last phase of development life cycle and

follow the traditional and manual ways to test the application by neglecting the fact that how

precious would be to test the applications at that time before they launched online for performing

operations. The researchers and experts try to overcome these security issues by introducing advance

techniques which executes automatically in order to test the application with in little time and cost,

the examples of such techniques are model based testing, fuzz testing etc.

Model based testing is best considering to be a craftsman art where we have to focus on three

import aspects such as understanding the target application, ability to establish accurate and precise

models from raw information and ability to use the tools. This technique is good for discovering

potential conflicts that causes the application to crash as this technique is automated that submits

tests as input and executed it for specific period of time. Where, Synopsys report defines the fuzz

testing as a valuable technology that used to uncover flaws and vulnerabilities in application by

bombarding series of malformed inputs to a target application and then observe the spotted areas of

the application for results. If the target application performs unexpected actions then examination

of that failure is required, that examination uncover the root causes of that failure that may exploited

for illegal purposes. Fuzzing plays a role of verification agent during implementation and

deployment phases where undetected flaws may distress the integrity of the application. These

techniques are approaches in analytical way in order to discover their strengths and weakness during

web applications testing. After analysis the results concludes that model based testing is good in

context of generating quality of test cases, requirement traceability then fuzz testing, but cost and

effort required during fuzz testing is lesser as compared to model based testing, as model based

testing requires a lot of time at initial level in order to analysis the raw information and to create

application models while in fuzz we just need to develop data sets for application and then bombard

them towards application. However it is true that model based testing is better in discovering

vulnerabilities as compare to fuzz technique. But model based approach may halt where application

structure is either too complex or there is no raw information in the form of requirements related to

that application, then here fuzz testing comes and generate effective results to some extent. But we

have to admired that, model based testing can cover large variety of scenarios with moderately little

effort and random execution of models can expose those issues which are not easy to discover

upfront such as design and specification issues. Where, the fuzz technique is good at discovering

Pakistan Journal of Engineering Technology and Science (PJETS)

 Volume 8, No 1, June 2018

44

coding issues more accurately then other. But model based testing have some limitations too such

as, if we need to test the application of large size then we need large set of random test cases of

model based testing which requires a great deal of time and infrastructure. So we proposed a

conceptual framework on the basis of their strengths which need further development and then

require implementation in order to verify its outcome.

 REFERENCES
[1] S. Ali, and H. Hemmati, "Model-based Testing of Video Conferencing Systems: Challenges, Lessons learnt, and

Results," IEEE 7th International Conference on Software Testing, Verification and Validation (ICST), pp. 353–362,

2014.

[2] D. Amalfitano, N. Amatucci, A. R. Fasolino, U. Gentile, and G. Mele, "Improving Code Coverage in Android Apps

Testing By Exploiting Patterns and Automatic Test Case Generation," International Workshop on Long-term
Industrial Collaboration on Software Engineering, pp. 29-34. Vasteras, Sweden: ACM, 2014.

[3] I. Andrianto, I. Liem, and A. Y. D. Wardhana, "Web Application Fuzz Testing," International Conference on Data

and Software Engineering (ICoDSE), pp. 978-984, 2017.
[4] M. Al-Refai, W. Cazzola, and G. Sudipto, "A Fuzzy Logic Based Approach for Model-based Regression Test

Selection," International Conference on Model Driven Engineering Languages and Systems, pp. 55-62, 2017.

[5] W. Chunlei, L. Liu, and L. Qiang, "Automatic fuzz testing of web service vulnerability," International Conference on
Information and Communications Technologies (ICT 2014), pp. 25-35, 2014.

[6] M. Felderer, P. Zech, R. Breu, M. Buchler, and A. Pretschner, "Model-based Security Testing: A Taxonomy and

Systematic Classification," Software Testing, Verification and Reliability, pp. 530-560, 2015.
[7] C. F. Guilherme, A. T. Endo, "Evaluating the Model-Based Testing Approach in the Context of Mobile

Applications," Electronic Notes in Theoretical Computer Science, pp. 3-21, 2015.

[8] A. M. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, "Software Testing Techniques: A Literature Review," 6th
International Conference on Information and Communication Technology for The Muslim World (ICT4M), pp. 177-

182, 2015.

[9] A. S. Kalaji, R. M. Hierons, and S. Stephen, "Generating Feasible Transition Paths for Testing from an Extended
Finite State Machine (EFSM)," Software Testing Verification and Validation, pp. 230-239, 2009.

[10] C. Li, Q. Wei, and Q. Wang, "RankFuzz: Fuzz Testing Based on Comprehensive Evaluation," Fourth International

Conference on Multimedia Information Networking and Security, pp. 939–942, 2012.
[11] L. Li, Q. Dong, D. Liu, and L. Zhu, "The Application of Fuzzing in Web Software Security Vulnerabilities Test,"

International Conference on Information Technology and Applications, pp. 130–133, 2013.

[12] A. Morozov, K. Ding, T. Chen, and K. Janschek, "Test Suite Prioritization for Efficient Regression Testing of Model-
based Automotive Software," International Conference on Software Analysis, Testing and Evolution, pp. 20-29,

2017.

[13] C. Ma, and J. Provost, "A Model-Based Testing Framework with Reduced Set of Test Cases For Programmable
Controllers," 13th IEEE Conference on Automation Science and Engineering (CASE), pp. 944-949, 2017.

[14] M. Mussa, S. Ouchani, W. A. Sammane, and A. Hamou-Lhadj, "A Survey of Model-Driven Testing Techniques,"

International Conference on Quality Software, pp. 167-172, 2007.
[15] T. Mouelhi, F. Fleurey, B. Baudry, and Y. L. Traon, "A Model-Based Framework for Security Policy Specification,

Deployment and Testing Models," Lecture Notes in Computer Science, 537-552, 2008.

[16] H. Nikolas, "Efficient Fuzz Testing Leveraging Input, Code, and Execution," 39th IEEE International Conference on
Software Engineering Companion, pp. 417-420, 2017.

[17] E. J. Rapos, and J. Dingel, "Using Fuzzy Logic and Symbolic Execution to Prioritize UML-RT Test Cases," 8th

International Conference on Software Testing, Verification and Validation (ICST), pp. 52-62, 2015.
[18] N. Rafique, N. Rashid, S. Awan, and Z. Nayyar, "Model Based Testing in Web Applications," International Journal

of Scientific Engineering and Research (IJSER), pp. 56–60, 2014.

[19] S. Roohullah Jan, S. T. Shah, Z. Johar, Y. Shah, and F. Khan, " An Innovative Approach to Investigate Various
Software Testing Techniques and Strategies," International Journal of Scientific Research in Science, Engineering

and Technology (IJSRSET), pp. 682-689, 2016.

[20] M. Utting, P. Alexendar, and B. Legeard, "A Taxonomy of Model-based Testing Approaches," Software Testing,
Verification and Reliability, pp. 297-312, 2012.

