
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Deep Reinforcement Learning Driven Applications Testing

by

Andrea Romdhana

Theses Series DIBRIS-TH-2023-XXXV

DIBRIS, Università di Genova
Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/



Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

Deep Reinforcement Learning Driven Applications
Testing

by

Andrea Romdhana

January, 2023



Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13

I-16145 Genova, Italy
http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

(S.S.D. INF/01)

Submitted by Andrea Romdhana
DIBRIS, Univ. di Genova

....

Date of submission: October 2022

Title: Deep Reinforcement Learning Driven Applications Testing

Advisors: Mariano Ceccato, Paolo Tonella, Alessio Merlo
Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi

Università di Genova
...

Ext. Reviewers:
ABHIK ROYCHOUDHURY - National University of Singapore

LEONARDO MARIANI - University of Milano Bicocca



Abstract

Applications have become indispensable in our lives, and ensuring their correct-
ness is now a critical issue. Automatic system test case generation can significantly
improve the testing process for these applications, which has recently motivated re-
searchers to work on this problem, defining various approaches. However, most
state-of-the-art approaches automatically generate test cases leveraging symbolic
execution or random exploration techniques. This led to techniques that lose effi-
ciency when dealing with an increasing number of program constraints and become
inapplicable when conditions are too challenging to solve or even to formulate. This
Ph.D. thesis proposes addressing current techniques’ limitations by exploiting Deep
Reinforcement Learning. Deep Reinforcement Learning (Deep RL) is a machine
learning technique that does not require a labeled training set as input since the
learning process is guided by the positive or negative reward experienced during the
tentative execution of a task. Hence, it can be used to dynamically learn how to build
a test suite based on the feedback obtained during past successful or unsuccessful at-
tempts. This dissertation presents three novel techniques that exploit this intuition:
ARES, RONIN, and IFRIT.

Since functional testing and security testing are complementary, this Ph.D. thesis
explores both testing techniques using the same approach for test cases generation.
ARES is a Deep RL approach for functional testing of Android apps. RONIN ad-
dresses the issue of generating exploits for a subset of Android ICC vulnerabilities.
Subsequently, to better expose the bugs discovered by previous techniques, this the-
sis presents IFRIT, a focused testing approach capable of increasing the number of
test cases that can reach a specific target (i.e., a precise section or statement of an ap-
plication) and their diversity. IFRIT has the ultimate goal of exposing faults affecting
the given program point.

1



Acknowledgements

I would like to thank Professors Mariano Ceccato, Paolo Tonella, and Alessio Merlo. Over those
years, they went over their role, taking care of me and demonstrating to be great people other
than good Professors. I am also grateful that Fondazione Bruno Kessler and the University of
Genova allowed me to take on a position as a Ph.D. student.

Naturally, I am also indebted to the people at Università della Svizzera Italiana for allowing me
to work at the Software Institute while doing my research.

I would also like to thank all my friends inside and outside the university. You made this journey
less difficult!

Many thanks go to my family for always believing in me, supporting my choices, and counseling
me. I could not ask for more.

Last but not least, I want to thank my sweetheart Hanna for standing by me no matter what.



Table of Contents

Chapter 1 Introduction 5

1.1 Motivation of Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 GUI Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Security Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Focused Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2 State of the Art 14

2.1 Automated Test Input Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 GUI Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Random Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Model-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Structural Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Machine Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Security Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Static Application Security Testing . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Dynamic Application Security Testing . . . . . . . . . . . . . . . . . . . 19

2.3.3 Static and Dynamic Security Testing . . . . . . . . . . . . . . . . . . . . 19

1



2.4 Focused Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Background on Reinforcement Learning 21

3.1 Overview on Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Tabular RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 4 GUI Testing of Mobile Apps through Reinforcement Learning 27

4.1 ARES: Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 ARES: Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Application Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.3 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.4 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Fast Android Test Environment (FATE) . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 FATE Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 FATE Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.3 Representative Family of Models . . . . . . . . . . . . . . . . . . . . . 35

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Experimental Results: Study 1 . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.2 Experimental Results: Study 2 . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 5 Security Testing of Mobile Apps through Reinforcement Learning 52

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Android Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.2 Vulnerabilities related to ICC Channels . . . . . . . . . . . . . . . . . . 54

2



5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 RONIN: Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Static Phase: Vulnerability Identifier . . . . . . . . . . . . . . . . . . . . 58

5.3.2 Static Phase: Oracle Instrumenter . . . . . . . . . . . . . . . . . . . . . 59

5.3.3 Dynamic Phase: Overview . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.4 Dynamic Phase: Deep RL and GUI Events . . . . . . . . . . . . . . . . 60

5.3.5 Dynamic Phase: Deep RL . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Evaluation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.2 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5.1 RQ1: Exploit Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5.2 RQ2: Comparison with Letterbomb on Ghera . . . . . . . . . . . . . . . 65

5.5.3 RQ3: Comparison with Letterbomb in the Wild . . . . . . . . . . . . . . 66

5.5.4 RQ4: Disabling GUI Events . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.5 RQ5: DeepRL vs Random . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 6 Focused Testing through Reinforcement Learning 70

6.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 Instantiating RL for Focused Testing . . . . . . . . . . . . . . . . . . . . 72

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.2 Program Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.3 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 Evaluation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.2 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3



6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.1 Reachability and Uniformity . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.2 Mutation Score and Faults Detected . . . . . . . . . . . . . . . . . . . . 82

6.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6.1 Future extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 7 Conclusion 86

7.1 Open Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 88

4



Chapter 1

Introduction

Software verification and validation are essential components of modern software development
processes that aim to improve the relationship between expected and actual software behaviors.
Testing is the most common activity in software verification and validation. Testing assesses the
quality of a software system by determining whether the results obtained by running it with a
limited set of inputs correspond to its expected behavior. Depending on which portion of the ap-
plication under test (AUT) is targeted, the testing phase can be carried out at different granularity
levels: unit testing targets single components, whereas system testing targets sets of integrated
classes or components and the whole system [PY08]. Unit testing aims at exhibiting faults in
single units and may miss faults that occur during the integration of the numerous AUT software
layers or during system execution. As a result, system testing, or testing the fully integrated
application from the end user’s perspective, is a fundamental type of testing. System testing en-
tails running applications through their interfaces and stimulating all the layers and components
involved in the execution. Because the number and complexity of the entities typically involved
in system-level execution can be significant, defining test cases that thoroughly sample and ver-
ify an application’s behavior is difficult and costly. The automated generation and execution of
system test cases can significantly improve software testing activities while lowering software
development costs. As a result, the research community is becoming increasingly interested in
automated system test case generation. This Ph.D. thesis studies the problem of automatically
generating system test cases for a popular type of software system, applications. Applications are
software systems designed to perform a specific task. An application could showcase a Graphical
User Interface or not. Applications that receive input as a unique stimulus from the outside are
known as Non-interactive applications. These applications receive input, process it, and return
an output. Applications relying on a Graphical User Interface (GUI) as the primary point of user
interaction are known as Interactive applications. These applications are used daily to perform
various tasks ranging from travel and social networking to banking and shopping. For instance,
the Google Play Store contains more than 2.5 million interactive applications [Sta22]. As op-

5



posed to receiving input, processing it, and producing an output, interactive applications interact
with the users through stimuli on the Graphical User Interface (GUI). The application reacts
to such stimuli by producing new information and allowing users to interact further with new
GUI elements not available before. As a result, interactive applications aim at engaging users
in a user-friendly way. This thesis studies the problem of testing non-interactive and interactive
applications and investigates solutions ideally applicable to those types of applications. The ty-
pologies of testing that I will focus on are GUI Testing, Security Testing, and Focused Testing.
Since functional testing and security testing are complementary, this Ph.D. thesis explores both
testing techniques using the same approach for test cases generation. Subsequently, to better
exhibit the bugs exposed by previous testing techniques, this thesis presents a focused testing
approach capable of increasing the number of test cases that can reach a specific target (i.e., a
precise section or statement of an application) and their diversity. Figure 1.1 shows the logical
flow that connects the three testing techniques.

GUI Testing. GUI testing produces test cases capable of exposing functional bugs as depicted in
Figure 1.1. We define the term GUI testing to mean that a GUI-based application, i.e., one that
exposes a graphical user interface (GUI) to users, is tested solely by performing sequences of
events (e.g., “click on button”, “enter text”, “open menu”) on GUI widgets (e.g., “button”, “text-
field”, “pull-down menu”). In GUI testing, the level of code coverage is regarded as an adequacy
criterion, and bug detection is a goal to ensure adequate testing of the software. However, in all
but the most trivial GUI-based systems, the space of all potential event sequences that may be
executed is vast. Increasing the number of possible operations increases the sequencing problem
exponentially [HCM10]. Moreover, the complexity of current applications makes their explo-
ration trickier than in the past, as they can contain states that are difficult to reach and events that
are hard to trigger. Due to these challenges, manual and automated testing can become a severe
issue since the chances of achieving high code coverage diminish.

Security Testing. Security testing produces test cases capable of exposing vulnerability bugs
as depicted in Figure 1.1. Security testing verifies and validates software system requirements
related to security properties, e.g., confidentiality, integrity, availability, authentication, autho-
rization, and non-repudiation. Sometimes security properties come as classical functional re-
quirements, e.g., “user accounts are disabled after three unsuccessful login attempts”, defining
security as a functional quality characteristic. For example, web application security vulnera-
bilities such as Cross-Site Scripting or SQL Injection, which security testing techniques aim to
address, are acknowledged problems [BBGM10] with thousands of vulnerabilities reported ev-
ery year [Det22]. Furthermore, surveys published by Synopsys [Syn22] show the high cost of
insecure software due to inadequate testing, even on an economic level. Therefore, support for
security testing is essential to increase its effectiveness and efficiency in practice.

Focused Testing. Focused testing takes the bugs exposed by GUI testing and security testing
generating additional test cases (Figure 1.1). Many software projects are constantly developing,
and new versions are released continuously. These modifications may introduce new code or

6



alter the existing code’s execution flow. Therefore, existing test suites may not adequately cover
the new/modified code. As a result, it is crucial to automate the creation of test suites focusing
on specific application sections, to ensure that such new/modified code sections do not introduce
bugs into the system. Although monitoring the level of code coverage is a highly recommended
practice, coverage strategies alone have limited capabilities in detecting real faults. Covering
a faulty statement once does not guarantee that the fault will be activated, i.e., the application
state will be infected and will propagate to an observable output [IH14, AGB+16, Voa92]. In
addition to coverage, another key goal of test suite creation should be diversity because diversity
can increase the chances of fault exposure [SYB18]. To address this problem, Menéndez et
al.[MJS+21] proposed to focus the testing process on the code sections added/modified by the
developers and to generate a diversified set of uniformly distributed test cases that exercise such
sections. This methodology, known as focused testing, ensures that multiple, diverse tests (i.e., a
focused test suite) exercise a few specific application elements.

There exist several approaches that automate the generation of test cases belonging to the afore-
mentioned testing typologies. Random testing strategies [Goo20c, MTN13, MAZ+15, PLEB07]
stimulate the AUT by producing pseudo-random test cases. However, random generation is nei-
ther effective nor efficient on complex applications. Model-Based strategies [AFT+12, SMC+17a,
GSM+19] extract test cases from navigation models built employing static or dynamic analysis.
If the model accurately reflects the AUT, a deep exploration can be achieved. Nonetheless,
automatically constructed models tend to be incomplete and inaccurate. Structural strategies
[ANHY12, GTDR18, MMM14, MJS+21, GHGM17] generate inputs using symbolic execution
or evolutionary algorithms. These strategies are more powerful since a specific coverage target
guides them. However, they do not take advantage of past exploration successes to dynami-
cally learn the most compelling exploration strategy. Reinforcement Learning (RL) is a machine
learning approach that does not require a labeled training set as input since the learning process is
guided by the positive or negative reward experienced during the tentative execution of the task.
Hence, it represents a way to dynamically build an optimal exploration strategy by taking advan-
tage of past successful or unsuccessful moves. RL has been extensively applied to the problem of
GUI and Android testing [MPRS12, PHW+20]. However, only the most basic RL (i.e., Tabular
RL) has been applied to testing problems so far. In Tabular RL, the value of the state-action
associations is stored in a fixed table. The advent of Deep Neural Networks (DNN) replaced
Tabular approaches with Deep Learning ones, in which the action-value function is learned from
the past positive and negative experiences made by one or more neural networks. When the state
space to explore is extremely large (e.g., when an app has a significant amount of widgets), Deep
RL has proved to be substantially superior to Tabular RL [BM95] [Rie05] [Li17]. This thesis
studies the problem of defining cost-effective Deep RL-based testing approaches for interactive
and non-interactive applications. I investigate ways to automatically generate system test cases
that can satisfy the requirements expressed by testing typology without requiring the presence of
artifacts expensive to produce.

7



Security 
Testing

Functional 
Testing

Application

Bug Set

Focused 
Testing

Input1

Input2

Inputn

Test Cases

Figure 1.1: Logical flow between testing techniques

1.1 Motivation of Reinforcement Learning

Given the complexity of contemporary applications, the number of possible inputs or interaction
sequences might be huge. Thus it is crucial to identify a set of meaningful inputs or interactions.

Depending on the testing typology, the set of meaningful inputs or interactions assumes a differ-
ent meaning:

• In GUI testing, the objective is to generate test cases that maximize code coverage and bug
detection.

• In focused testing, we aim to forge multiple, diverse test cases that exercise specific appli-
cation elements.

• In security testing, the primary purpose is to detect and validate the most significant num-
ber of software vulnerabilities.

Reinforcement Learning is a machine learning approach that represents a viable option to pro-
duce meaningful inputs or interactions. In RL, the learning process is guided by the positive
or negative reward experienced during the tentative testing of an AUT. Hence, it represents a
way to dynamically build optimal test cases by taking advantage of past successful or unsuc-
cessful moves. For example, a GUI interaction that only navigates through menus and windows
is seldom meaningful because it does not increase the explored AUT surface, and the algorithm
reward is negative. In contrast, a GUI interaction that goes in the “register user” window, fills out
the form with valid data, clicks “register”, and continues the exploration is meaningful because
it increases the AUT’s explored surface, experiencing positive reward.

1.2 Research Contribution

In this dissertation, I advance state of the art by defining techniques that exploit Deep Reinforce-
ment Learning in different ways:

8



GUI Testing of Mobile Apps through Reinforcement Learning. This thesis presents the first
Deep RL approach, ARES, for automated black-box testing of Android apps. ARES uses a DNN
to learn the best exploration strategy from previous attempts. Thanks to DNN, it achieves high
scalability, general applicability, and the capability to handle complex app behaviors. ARES
implements multiple Deep RL algorithms that come with a set of configurable, often critical,
hyperparameters. To speed up selecting the most appropriate algorithm for the AUT and fine-
tuning its hyperparameters, I have developed another tool, FATE, which integrates with ARES.
FATE is a simulation environment that supports rapid assessment of Android testing algorithms
by running synthetic Android apps (i.e., abstract navigational models of real Android apps). On
average, the execution of a testing session on a FATE synthetic app is 10 to 100 times faster than
the execution of the same session on the corresponding real Android app. I applied ARES to
two benchmarks made of 41 and 68 Android apps, respectively. The first benchmark compares
the performance of the ARES algorithms, while the latter evaluates ARES w.r.t. the state-of-
the-art testing tools for Android. Experimental results confirmed the hypothesis that Deep RL
outperforms Tabular RL in exploring the state space of Android apps, as ARES exposed the
highest number of faults and obtained the highest code coverage. Furthermore, I carried out a
qualitative analysis showing that the features of Android apps that make Deep RL particularly
adequate include, among others, the presence of concatenated activities and blocking activities
protected by authentication.

The results of this research activity have been published as:

ANDREA ROMDHANA, ALESSIO MERLO, MARIANO CECCATO, PAOLO TONELLA,
DEEP REINFORCEMENT LEARNING FOR BLACK-BOX TESTING OF ANDROID APPS,
ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY

Security Testing of Mobile Apps through Reinforcement Learning. This thesis proposes an
approach to exploit generation, called RONIN, based on Deep Reinforcement Learning. Deep
RL can be used to dynamically learn how to build an Intent that exposes a specific vulnerability
based on the feedback obtained during past successful or unsuccessful attempts. More specif-
ically, RONIN manipulates the parameters of the Intents by applying a sequence of actions to
them. Each action receives positive feedback if we move closer to the target statement (i.e., the
vulnerable statement) upon execution of the Intent; neutral (zero) feedback if the minimum dis-
tance between the statements that we reached and the target statement does not change; negative
feedback if we increase the distance from the target w.r.t. the last Intent execution.

The results of this research activity are under journal review as:

ANDREA ROMDHANA, ALESSIO MERLO, MARIANO CECCATO, PAOLO TONELLA,
ASSESSING THE SECURITY OF INTER-APP COMMUNICATIONS IN ANDROID THROUGH
REINFORCEMENT LEARNING, COMPUTERS & SECURITY

Focused Testing through Reinforcement Learning. This thesis proposes IFRIT, a novel ap-
proach to focused testing based on Deep Reinforcement Learning. Deep RL can be used to

9



dynamically learn how to build a focused test suite based on the feedback obtained during past
successful or unsuccessful attempts. IFRIT manipulates a test input by applying a sequence
of modifiers (actions) to it. Each action receives positive feedback if the target statements are
reached upon execution of the test input and such input was never generated before (to promote
diversity); neutral (zero) feedback if the target statements get executed, but the input is not new;
negative feedback if the input does not reach the target.

The results of this research activity have been published as:

ANDREA ROMDHANA, MARIANO CECCATO, ALESSIO MERLO, PAOLO TONELLA,
IFRIT: FOCUSED TESTING THROUGH DEEP REINFORCEMENT LEARNING, 2022 IEEE
CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION (ICST)

1.3 Problem Definition

Software testing is carried out to assess software qualities or identify flaws so developers can fix
them. A good test has a high probability of finding an as-yet-undiscovered error, and a successful
test uncovers one or more of such as-yet-undiscovered errors. Thus research and development
on testing aim at efficiently performing effective testing – to find more errors in the requirement,
design, and implementation and to increase confidence that the software has various qualities.
Errors can be functional faults or security faults. Once a fault has been found, it is helpful
to have several diversified scenarios that expose such faults. In this way, debugging and error
fixing are simplified. To this aim, I decided to approach the problem of testing an application by
investigating several approaches: GUI testing, security testing, and focused testing.

1.3.1 GUI Testing

In GUI testing, automating the generation of test cases for interactive applications faces one main
objective: detecting bugs.

Bug detection is the metric we rely on to evaluate the quality of a test cases generator [HN11].
Bug detection is essential to improve software reliability. The evaluation of code coverage is
the problem of identifying the parts of a program that did not execute in one or more runs of
a program [TH02]. Covering more code we are also more likely to discover more faults. The
purpose of a GUI test case generator is to identify the highest possible number of bugs.

10



1.3.2 Security Testing

Software security testing is the process of identifying whether the security features of an applica-
tion’s implementation are consistent with the design. We can divide software security testing into
security functional testing and security vulnerability testing. Security functional testing ensures
that software security functions are implemented correctly and consistently based on software
security requirements. The application is tested as it is meant to be used, to assure that spe-
cific functions and activities of the code are working. Software security requirements mainly
include data confidentiality, integrity, availability, authentication, authorization, access control,
etc. Security vulnerability testing is to discover security vulnerabilities as an attacker. The term
vulnerability refers to system design, implementation, operation, and management flaws. A vul-
nerability may be used to attack, resulting in a state of insecurity. Security vulnerability testing is
to identify software security vulnerabilities and analyze how an application manages unexpected
inputs. Because of this reason, Reinforcement Learning characteristics better apply to security
vulnerability testing. In this thesis, I focus on security vulnerability testing, i.e., the generation
of a test case generator whose purpose is to identify and exploit security vulnerabilities.

1.3.3 Focused Testing

The application components addressed by focused testing are said to be program points (pp) (i.e.,
specific nodes in the control flow graph). Given the space of the program inputs X , we denote by
Xpp the sub-space of inputs whose execution traverses pp. A focused test input generator aims at
producing inputs x that belong to Xpp. In addition to this, the generator should produce a diverse
set of inputs that belongs to Xpp.

Following the work by Chakraborty et al. [CMV13], we define diversity using entropy. A diverse
set is a set with high entropy. We define a generator G as an algorithm that creates inputs for a
program P . We define a focused generator Gpp as a generator that generates inputs that traverse
a specific program point pp. Considering the generator as a random variable whose values are
inputs traversing pp, our goal is to make them as much diverse as possible, i.e., we aim at creating
a focused generator Gpp whose entropy is maximized.

Since the entropy of a random variable is maximum when its probability distribution is uni-
form [Cov99], Gpp should be a uniform random variable, and the generator should be a uniform
focused generator, i.e., a generator that gives the same generation probability to every input
x ∈ Xpp.

We need to quantify how close a focused test input generator is to generating samples from a
uniform distribution to measure its uniformity. The work in [MMP05] reports different statistical
tests to measure it. These tests are divided into several categories: order statistics, spacing, order
spacing, and collisions. Some of them do not apply to discrete distributions [MMP05], while

11



others do not manage gaps in the domain [Pla83]. Tests based on the collisions can deal with
gaps, and discrete distributions [GR11a]. Consistently with the recommendation made by the
authors of DFT [MJS+21], as a practical way to measure the degree of uniformity of a sample of
values generated for a given random variable Gpp, we use the L2 test [GR11b]. The idea behind
this test is that collisions (i.e., identical variable values) observed in the sample should be less
than those that an ϵ-far uniform distribution defined on the same domain would generate, where
ϵ is a user-defined tolerance. When this happens, the L2 test is passed; otherwise, it fails. The
L2 test relies on the following formulas:

c =
∑

x ̸=y,(x,y)∈S×S

δx,y/2 (1.1)

θ =
(|S|

2

)1 + 3ϵ2/4

n
(1.2)

where S is a sample generated from Gpp; c counts the number of collisions in S using Kronecker
delta δx,y; ϵ defines the acceptable tolerance, i.e., the maximum allowed distance from the uni-
form probability distribution; n is the domain size. When c < θ, the test is passed; otherwise it
fails. In this thesis, I focus on the problem of developing a test generator that focuses the test-
ing process on specific pp and generates a diversified set of uniformly distributed test cases that
exercise such pp.

1.4 Thesis Organization

The thesis is organized as follows:

• Chapter 2 formalizes the problem of GUI testing, security testing, and focused testing.

• Chapter 3 describes the state of the art of automatic test case generation for interactive and
non-interactive applications, discussing strengths and limitations.

• Chapter 4 describes the key concepts of Reinforcement Learning.

• Chapter 5 introduces ARES. It describes how ARES tests Android apps through the GUI
and presents the results of an empirical evaluation of ARES.

• Chapter 6 presents RONIN. It describes how RONIN assesses the Security of Inter-Component
Communications (ICC) in Android through Reinforcement Learning. RONIN detects
and exploits vulnerabilities in ICC and presents the results of an empirical evaluation of
RONIN.

12



• Chapter 7 presents IFRIT, an approach that uses Deep Reinforcement Learning to generate
diverse inputs while maintaining a high reachability of the desired application component.
RONIN achieves better results than state-of-the-art and baseline tools, improving reacha-
bility, diversity, and fault detection.

• Chapter 8 summarizes the contributions of the thesis and discusses open research direc-
tions.

13



Chapter 2

State of the Art

2.1 Automated Test Input Generation

The two main families of test input generators make use respectively of static/dynamic symbolic
execution [CDE08, SMA05, GKS05] and search-based algorithms [McM04, FA13, PKT18].
Techniques based on symbolic execution encode the path constraints that must be satisfied to
traverse a given path in a formula that can be passed to an SMT solver. Search-based algorithms
rely instead on a fitness function that heuristically measures the distance between the path tra-
versed when executing a candidate input and the coverage target. Inputs that get closer to the
target are selected and iteratively improved until the target is covered. Both approaches succeed
when the target is covered, but none attempt to generate multiple, uniformly distributed inputs
that reach the target.

Differently from symbolic execution and search-based test generation, random test input genera-
tion [MAZ+15, PLEB07] ensures uniformity of the generated inputs by construction. However,
when the target to be covered requires that very specific path conditions are satisfied, this ap-
proach has a very low probability of generating inputs whose execution can actually traverse the
target. So, despite the high intrinsic uniformity of the generated inputs, this approach is often
ineffective because of the low reachability of targets that are difficult to cover randomly.

Only a few works [AH12, FPCY16, BSRT19] include diversity among the test generator’s goals,
but none in the context of focused testing. Alshahwan et al. [AH12] maximize the diversity of
the distribution of the outputs produced upon the execution of the automatically generated test
inputs. So, they consider output, instead of input diversity. Feldt et al. [FPCY16] propose a new
diversity metric, called test suite diameter, to quantify the degree of diversity in a test suite, but
they do not use it directly for (focused) test generation. Biagiola et al. [BSRT19] use diversity
as a criterion to select the most promising candidates because in-browser web test execution is
computationally expensive, and diversity ensures wider exploration of behaviors. However, their

14



goal is different from the generation of uniformly distributed inputs that reach a target of interest.

2.2 GUI Testing

Recently, many researchers have investigated the challenging problem of automatically gener-
ating test cases for interactive applications. So far, the research community efforts have mostly
focused on the problem of automatically generating GUI interactions. The techniques proposed
for automating the generation of GUI interactions can be divided into four classes: random ap-
proaches [Goo20c, VKCF+15], model-based approaches [MPRS12, MBN03, AFT+14], struc-
tural approaches [GTDR18, DBCR20b, DBCR20b, MHJ16], and machine learning-based ap-
proaches [BGZ18, KSM+18, LYGC19].

2.2.1 Random Approaches

Random approaches are arguably the most simple type of test case generation technique. They
produce test cases as sequences of events identified randomly or using simple heuristics. Mon-
key [Goo20c] is one of the most popular black-box GUI testing tools available in the official
Android toolkit. It triggers events by interacting randomly with screen coordinates. This simple
random approach works relatively well on some benchmark applications [CGO15a]. Nonethe-
less, Monkey tests involve many ineffective or repeated events, as there is no guidance to make
the exploration efficient. Other random testing techniques use an observe-select-execute cycle.
The application GUI is monitored to detect possible events before selecting the next one to exe-
cute [MTN13, VKCF+15]. This approach improves over Monkey. These techniques use differ-
ent strategies to detect enabled events. Testar-Random targets desktop applications and uses the
widget types to detect which events can be performed (e.g., a button widget accepts click events).
Dynodroid targets Android apps and analyzes the source code to detect the event listeners reg-
istered for each widget (e.g., if a widget registers an onClick listener, it accepts clicks events).
Because of their simplicity, these techniques can quickly generate and execute test cases; there-
fore, they are often used to perform stress testing. Generally, random testing techniques can be
pretty effective as they can quickly cover significant portions of the AUT interaction space with
their high-speed [BP14, CGO15b]. However, because of their lack of guidance, they struggle to
cover those complex interactions that require a long and precise sequence of events. Thus, these
approaches often fail to cover entire parts of the application execution space and might leave
relevant AUT functionalities completely untested.

15



2.2.2 Model-based Approaches

Model-based approaches [AFT+12] [AFT+14] [GSS+20] first build navigation models of the
Android application employing static or dynamic analysis, used to explore the application states
efficiently. Then they extract test cases from such models to eventually expose bugs. Model-
based approaches propose different definitions and encodings of GUI models. In general, GUI
models are directed graphs where the GUI windows represent the set of nodes, and the edges
are the set of transitions between windows. Windows are defined in terms of the widgets they
contain, and edges are defined as

Egde : ⟨Wsource,Wtarget, T rigger⟩ (2.1)

where Wsource and Wtarget are the windows from which the transition originates and to which it
arrives, while Trigger is an event that operates on a widget in Wsource that causes the current
window to pass to Wtarget. Model-based approaches can be distinguished between approaches
that first build the GUI model and then generate test cases and approaches that iteratively com-
bine the building of the GUI model with test case generation. The approach of first building
the GUI model and then using it for deriving test cases was firstly introduced in the paper by
Memon et al. that defined GUI Ripper [MBN03]. GUI Ripper builds the AUT GUI model by
performing a depth-first traversal of the AUT GUI and then uses the GUI model to derive a
model, called EFG, of the partial execution order of the events in the GUI. GUI Ripper gave rise
to a series of techniques that produce test cases by iteratively navigating the extracted GUI model
utilizing various model abstractions, GUI coverage metrics based on combinatorial interaction
testing, and heuristics [MX05, MBNR13, AFT+12, AFT+14]. AndroidRipper [AFT+12], and
MobiGUITAR [AFT+14] try to maximize the exploration by using the ripping technique. Guo et
al. [GSS+20] use static analysis to improve GUI exploration. Stoat [SMC+17a] uses a stochastic
FSM to model the application behavior. The application model is built using dynamic analysis,
enhanced with a weighted UI exploration strategy, and with the help of static analysis. Model-
based approaches are limited by the completeness of the derived GUI model. Some relevant GUI
elements might not be accessible without performing complex sequences of actions that the GUI
exploration strategies used by these techniques might overlook. Model-based methodologies
omit to test potentially essential areas of the GUI interaction spaces in these situations.

2.2.3 Structural Approaches

Structural approaches [ANHY12, GTDR18, MMM14, DBCR20b, MHJ16] leverage the AUT
source code to drive test case generation and maximize AUT source code coverage, ideally, exe-
cuting each AUT source code statement. Several structural approaches steer test case generation
leveraging genetic algorithms, a classical search-based approach [Bac96] inspired by natural se-
lection that has been used in many software engineering contexts [Har07, HJ01, HMZ12]. In

16



a nutshell, a genetic algorithm starts with a random population of solutions for its search prob-
lem. It iteratively evolves them (using crossover and mutations), selecting the fittest individuals
(according to a fitness metric) for reproduction to produce a better population for the next iter-
ation. In interactive application testing, the search problem is finding the set of test cases with
the highest AUT statement coverage. Then, using statement coverage as the fitness metric, ge-
netic algorithms evolve an initial set of random test cases combining/mutating them to retain
those that achieve the highest coverage [MHJ16]. For instance, Sapienz [MHJ16] maximizes
code coverage and bug revelation using a Pareto-optimal multi-objective search-based approach,
which applies genetic operators such as mutation and crossover to produce new test cases. It can
generate specific input for text fields by reverse-engineering the APK. This process occasionally
results in invalid sequences discarded by the fitness functions that reward test cases with high
coverage. TimeMachine [DBCR20b] improves Sapienz by identifying interesting states in the
past and restarting the search process from them when the search stagnates. Other techniques
instead use symbolic/concolic execution [CS13] to generate test cases that aim to achieve 100%
code coverage [ANHY12, CCYW16, GKKP09]. Symbolic execution is notoriously costly as
it requires analyzing the AUT source code, and it is typically used on rather small command-
line software or at the unit level [11]. Ganov et al. proposed a technique that symbolically
executes only GUI event handlers [GKKP09], while Cheng et al. use a cloud-based architec-
ture that parallelizes concolic-execution on multiple machines to foster scalability [CCYW16].
Coverage-based approaches aim to maximize code coverage. Thus, they can often cover signifi-
cant portions of the code and discard non-meaningful interaction sequences that cover little code.
However, coverage-based approaches are limited by the cost of analyzing the source code and
often do not scale well to complex applications.

2.2.4 Machine Learning Approaches

Some Machine Learning-based approaches [BGZ18] [KSM+18] [LYGC19] use an explicit, su-
pervised training process to learn from previous test executions. They can reuse previous knowl-
edge acquired on different apps or past versions of the application under test. Approaches such
as QBE [KSM+18] make the transfer of knowledge to new apps possible by abstracting the ap-
plication state in a form that is supposed to hold across different domains and implementations.
However, the effectiveness of such a transfer learning process depends on the similarity between
new and old apps. One of the first works proposing RL for GUI testing is AutoBlackTest (ABT)
[MPRS12]. ABT uses Q-Learning to learn how to generate test cases that traverse the GUI of
a desktop application triggering the highest number of changes in said GUI. This approach is
based on the simplest form of RL, Tabular Q-Learning, whose effectiveness strongly depends
on the Q-Table’s initial values. ABT generates test cases alternating between events selected
at random (80% of the time) with events that maximize the GUI changes (20% of the time) to
balance between exploration of the GUI and exploitation of the Q-Learning. One of the most
recent approaches to testing based on Deep Learning is Q-Testing [PHW+20]. However, it also

17



uses Tabular Q-Learning as a backbone. At the same time, learning is limited to the compu-
tation of the similarity between Android application states, which determines the reward of the
Q-Learning algorithm. This thesis aims at overcoming the limitations related to machine learning
techniques.

2.3 Security Testing

The automatic detection of vulnerabilities in mobile apps is still an open problem despite decades
of research efforts in the field. For example, a recent study [atlay] reported that mobile apps re-
leased in Q1 2021 across 18 of the most popular categories have - on average - 39 vulnerabilities
per Android application that can affect the security and privacy of the users. To cope with such
issues, the industry and the research community released several security assessment methodolo-
gies and tools to detect vulnerabilities by exploiting Static Application Security Testing (SAST)
and Dynamic Application Security Testing (DAST) techniques or a combination of both tech-
niques, resulting in a classification into the following subcategories: Static Analysis Security
Testing (SAST), Dynamic Analysis Security Testing (DAST), and Static and Dynamic Analysis
Security Testing.

2.3.1 Static Application Security Testing

SAST approaches detect security hazards inside the applications without the burden of execut-
ing and testing them in a controlled environment. To this aim, they are easy to integrate into
a CI/CD pipeline since the scanning process can be launched as soon as a team member com-
mits code to a source code repository. Moreover, SAST tools can examine the entire surface of
an application in opposition to DAST techniques that can explore only parts of the application
reached by proper inputs. Notable examples include [LL05], MobSF [Mob22], and DroidPatrol
[TSQ+19]. Livshits et al. [LL05] propose an approach based on a scalable and precise points-to
analysis to find security vulnerabilities in Java applications. IccTA [LBB+15] is a methodology
that exploits data-flow analysis techniques to find data leaks related to inter-component com-
munication of Android applications. Amandroid [WRO18] leverages static analysis techniques
that perform inter-component and intra-component data-flow point-to-point analysis in Android
apps. HybriDroid [LDR16] searches for WebView bugs in web-based applications by analyzing
the call graphs of Java and Javascript code to detect errors related to the usage of the JavaScript-
Interface. However, static analysis techniques can not verify that a specific vulnerability is a
true positive. Thus a security expert must conduct a further manual investigation to determine
whether a malicious user can exploit a particular vulnerability.

18



2.3.2 Dynamic Application Security Testing

Dynamic application security testing is a method in which testers examine an application while
running but have no knowledge of its internal interactions or designs at the system level and no
access or visibility into the source program. DAST looks at an application from the outside in,
examines its running state, and observes its responses to simulated attacks made by a testing tool.
An application’s responses to these simulations help determine whether the application is vulner-
able and could be susceptible to a real malicious attack. An example of DAST tool is AppScan
[HCL22], which targets desktop and web applications. It automatically crawls the target applica-
tion and tests for vulnerabilities. Test results are prioritized and presented to allow the operator to
triage issues quickly and hone in on the most critical vulnerabilities. Buzzer [CGLX15] targets
the Android system, fuzzing its system services by sending requests with malformed arguments
to them. Stowaway [FCH+11] detects permission overprivileged dynamically in Android apps.
Mutchler et al. [MDM+15] look for vulnerabilities in Android web apps. IntentDroid [HTP15]
dynamically stimulates an Android app’s Intent interface to find flaws. However, DAST tech-
niques can explore only parts of the application reached by proper inputs because they do not
leverage information that a previous static analysis can gather.

2.3.3 Static and Dynamic Security Testing

A variety of approaches rely upon the conjunction of static and dynamic analysis to detect vul-
nerabilities. Saner [BCF+08] combines static and dynamic analysis techniques to identify faulty
sanitization procedures in web applications that attackers can bypass. AFL [Zal22] is a security-
oriented tool that employs compile-time instrumentation and genetic algorithms to automatically
discover test cases that trigger new internal states in C programs, improving the functional cov-
erage for the fuzzed code. Kelinci [KLP17] applies AFL-style fuzzing to Java applications. Con-
tentScope [Jia13] examines Android application Content Providers to identify instances when
data from those components leaked or was contaminated. This happens when one application
manipulates the Content Provider of another application without the necessary permissions or
authorization. AppAudit [XGL+15] is primarily concerned with discovering privacy leakage
vulnerabilities in Android apps. AppCaulk [STDF14] detects and stops data breaches through
static and dynamic analysis and the ability to establish data leak policies. The DynaLog [AYS16]
framework leverages existing open-source tools to extract high-level behaviors, API calls, and
critical events that can be used to examine an application. He et al. [HYHW19] developed a tool
that can first identify the third-party libraries inside apps, then extracts call chains of the privacy
source and sink functions during its execution, and finally evaluates the risks of privacy leaks
of the third-party libraries according to the privacy leakage paths. However, these techniques
can ideally find vulnerabilities in the applications under test automatically but can not determine
whether such vulnerabilities are exploitable.

19



2.4 Focused Testing

Focused testing aims at testing specific, individual components of a program. In the work by
Alipour et al. [AGGC16], the authors define focused testing as a black-box method aiming to
reach a specific target. A specific API can be an example of a target. Alipour et al. use a general
test generator to reach that target by activating or deactivating different generator options.

Menéndez et al.[MJS+21] adopt a white-box approach and increase the granularity. The compo-
nents addressed by focused testing are said to be program points (pp) (i.e., specific nodes in the
control flow graph). Instead of using general-purpose generators, Menéndez et al. use a genera-
tor based on SMT solvers. Their tool, i.e., DFT, does not generate inputs for the real program but
its symbolic path abstraction. This introduces some assumptions on the possibility of deriving
and solving precise path conditions for the components targeted by focused testing. Moreover,
the speed of test suite generation might be affected negatively when the path constraints grow
in size and complexity. However, random generators struggle to cover specific program points
because they lack guidance. Moreover, an SMT solver loses efficiency when dealing with an
increasing number of program constraints, and it becomes inapplicable when constraints are too
challenging to solve or formulate.

20



Chapter 3

Background on Reinforcement Learning

After a general overview on RL, this section presents Tabular RL and Deep RL in more detail.

3.1 Overview on Reinforcement Learning

The objective of Reinforcement Learning [SB18] is to train an agent that interacts with some
environment to achieve a given goal. The agent is assumed to be capable of sensing the current
state of the environment, and to receive a feedback signal, named reward, each time the agent
takes an action.

At each time step t, the agent receives an observation xt, takes an action at that causes the
transition of the environment from state st to state st+1. A state st is a complete description of
the state of the environment. An observation xt partially represents the state, which may omit
information. The agent also receives a scalar reward R(xt, at, xt+1), that quantifies the goodness
of the last transition.

For simplicity, let us assume xt = st [Ach18]. The behavior of an agent is represented by a
policy π, i.e., a rule for deciding on what action to take, based on the perceived state st. A policy
can be:

• Deterministic: at = π(st), i.e. a direct mapping between states and actions;

• Stochastic: π(at|st), a probability distribution over actions, given their state.

DDPG [LHP+15] and TD3 [FvHM18] are examples of RL algorithms that learn a deterministic
policy, while SAC [HZAL18] is a RL algorithm that learns a stochastic policy.

21



The standard mathematical formalism used to describe the agent environment is a Markov Deci-
sion Process (MDP). An MDP is a 5-tuple, ⟨S,A,R, P, ρ0⟩, where :

• S is the set of all valid states,

• A is the set of all valid actions,

• R : S × A → IR is the reward function, with rt = R(st, at, st+1),

• P : S × A → P (s) is the transition probability function, with P (st+1|st, at) being the
probability of transitioning into state st+1 starting from state st and taking action at,

• ρ0(s) is the starting state distribution.

Markov Decision Processes obey the Markov property: a transition only depends on the most
recent state and action (and not on states/actions that precede the most recent ones).

The goal in RL is to learn a policy π which maximizes the so-called expected return, which can
be computed as:

G(τ) =
∞∑
t=0

γtrt

A discount factor γ ∈ (0, 1) is needed for convergence. When t → ∞, if γ = 1, the expected
return and the RL algorithm would not converge. The discount factor determines how much the
agent cares about rewards in the distant future relative to those in the immediate future: if γ is
small, the agent will tend to be myopic and only learn about actions that produce an immedi-
ate reward. If γ is close to 1, the agent will evaluate each of its actions based on its estimated
future rewards. τ is a sequence of states and actions in the environment τ = (a0, s0, a1, s1...),
named trajectory or episode. Testing an Android app can be seen as a task divided into finite-
length episodes. Almost all reinforcement learning algorithms involve estimating value func-
tions—functions of states (or action-value functions—functions of state-action pairs) [SB18]
that estimate the goodness to perform a given action in a given state. The notion of goodness is
defined in terms of expected future return. The future rewards the agent can receive depend on
what actions it will take. The value function V π(s) is defined as the expected return starting in a
state s and then acting according to a given policy π:

V π(s) = E[Gt|s0 = s]

The action-value function Qπ(s, a) can be used to describe the expected return after taking an
action a in state s and thereafter following the policy π:

22



Qπ(s, a) = E[Gt|s, a]

Correspondingly, we can define the optimal value function, V ∗(s), as the V π(s) that gives the
highest expected return when starting in state s and acting according to the optimal policy in
the environment. The optimal action-value function, Q∗(s, a), gives the highest achievable ex-
pected return under the constraints that the process starts at state s, takes action a, and then acts
according to the optimal policy in the environment.

A policy that chooses greedy actions only concerning Q∗ is optimal, i.e., knowledge of Q∗ alone
is sufficient for finding the optimal policy. As a result, if we have Q∗, we can directly obtain
the optimal action, a∗(s), via a∗(s) = argmaxa Q

∗(s, a). The optimal value function V ∗(s) and
action-value function Q∗(s, a) can be computed by means of a recursive relationship known as
the optimal Bellman equations:

V ∗(st) = max
a

E[r(st, at) + γV ∗(st+1)]

Q∗(st, at) = E[r(st, at) + γmax
at+1

[Q∗(st+1, at+1)]]

The optimal Bellman equation constrains the value of a state under an optimal policy to be equal
to the expected return for the best action from that state. The optimal Bellman equations are a
system of equations for each state. If the MDP of the environment is known, then the system of
equations can be solved analytically, finding the optimal value function (or the optimal action-
value function) and, at last, the optimal policy. Otherwise, approximate solutions are found
iteratively.

3.2 Tabular RL

Tabular techniques refer to RL algorithms where the state and action spaces are approximated
using value functions defined using tables. In particular, Q-Learning [WD92] is one of the most
adopted algorithms of this family. Q-Learning aims to learn a so-called Q-Table, i.e., a table
containing the value of each state-action pair. A Q-Table represents the current estimate of the
action-value function Q(s, a). Every time an action at is taken and a state st is reached, the
associated state-action value in the Q-Table is updated as follows:

Q(st, at) := Q(st, at) + α(rt + γmax
a

Q(st+1, a)−Q(st, at))

where α is the learning rate (between 0 and 1). If the learning rate is close to 0, the agent
exploits only prior knowledge, while when close to 1, the agent considers only the most up-to-
date information. γ is the discount factor applied to the future reward. Typically, γ ranges from

23



0.8 to 0.99 [MKS+13] [LHP+15] [FvHM18], while maxa Q(st+1, a) gives the maximum value
for future rewards across all actions. It is used to update the reward for the current state-action
pair.

RL algorithms based on the Tabular approach do not scale to high-dimensional problems because
it is difficult to manually define a good initial Q-Table in such cases. In case a good initial Q-
Table is unavailable, convergence to the optimal table through the update rule described above is
too slow [LHP+15].

3.3 Deep Reinforcement Learning

In large or unbounded discrete spaces, where representing all states and actions in a Q-Table
is impractical, Tabular methods become highly unstable and incapable of learning a successful
policy[MKS+13]. The rise of Deep Learning, relying on the powerful function approximation
properties of Deep Neural Networks, has provided new tools to overcome these limitations. One
of the first Deep Reinforcement Learning algorithms is DQN (Deep Q-Networks) [MKS+13].

DQN uses convolutional neural networks to approximate the computation of the action-value
function Qπ. Training of such neural networks is achieved by using the so-called experience
replay [Lin93]. With experience replay, the agent’s experience et is stored within a buffer D
named replay buffer. The experience et is defined as the tuple:

et = (st, at, rt, st+1, d).

The tuple contains the state st of the environment, the action at taken in st, the reward rt, and
the next state of the environment st+1. The parameter d represents a binary value that indicates
whether the transition has led the agent to a terminal state. The algorithm occasionally retrieves
random experience samples from the replay buffer to train the neural network. If the network
learns only from consecutive samples of experience as they occurred sequentially in the environ-
ment, the samples would be highly correlated and lead to inefficient learning [MKS+13]. Instead,
taking random samples from the memory replay breaks this correlation.

While DQN can indeed solve problems with high-dimensional observation spaces, it can only
handle discrete and low-dimensional action spaces. The recent advancements over DQN de-
scribed in the following paragraphs (namely, DDPG, TD3, and SAC) overcome such limitations
and allow dealing with high-dimensional action spaces.

Deep Deterministic Policy Gradient (DDPG)

DDPG [LHP+15] is an Actor-Critic algorithm, i.e., it includes two roles: the Critic, which es-
timates the value function, and the Actor, which updates the policy π in the direction suggested

24



by the Critic. It is based on a deterministic policy gradient [SLH+14] that can operate over
continuous action spaces.

More specifically, the Critic aims to learn an approximation of the function Q∗(s).

Suppose that the approximator is a neural network Qϕ(s, a), and that we have a set D of past
experiences et (st, at, rt, st+1, d). The parameter list ϕ represents the coefficients of the neural
network model, and the objective of the training phase is to optimize them, while set D is the
previously seen replay buffer. The replay buffer should be large enough to avoid overfitting. The
loss function of the neural approximator is the so-called Mean-Squared Bellman Error (MSBE),
which measures how close Qθ(s, a) is to satisfying the Bellman equation:

L(ϕ,D) = E[(Qϕ(st, at)− (rt + γ(1− d)max
at+1

Qϕ(st+1, at+1)))
2]

The term subtracted from Qϕ(st, at) is named the target, because minimization of MSBE makes
the Q-function as close as possible to this value. Since the target depends recursively on the same
parameter ϕ to train, MSBE minimization can become unstable. The solution is to use a second
neural network, called target network, whose parameters are updated to be close to ϕ, but with
some time delay that gives stability to the process.

The Actor’s goal is to learn a deterministic policy πθ(s) which maximizes Qϕ(s, a). Because the
action space is continuous and we assume the Q-function is differentiable concerning the action,
we can use gradient ascent for the policy parameter. In case the action space is non-differentiable,
DDPG degenerates, performing like DQN[LHP+15].

Twin Delayed DDPG (TD3)

Although DDPG can often achieve good performance, it tends to be susceptible to the critical tun-
ing of its hyperparameters. In fact, Fujimoto et al.[FvHM18] demonstrated that in Actor-Critic
algorithms, such as DDPG, the policy update introduces accumulation errors and introduces an
overestimation bias of the values of the Q-function. The researchers state that the introduced
errors may be minimal but raise two concerns: (1) the error may develop into a more signifi-
cant bias over many updates if left unchecked, and (2) an inaccurate value estimate may lead
to poor policy updates. TD3 [FvHM18] is an algorithm that addresses this issue by introducing
three major changes, mostly on the Critic side: (1) Clipped Double Q-Learning: TD3 learns two
Q-functions instead of one and uses the smaller of the two Q-values as the target in the MSBE
function. Using the smaller Q-value for the target, and regressing towards that, helps mitigate
overestimation in the Q-function. (2) Delayed Policy Update: TD3 updates the policy and the
target networks less frequently than the Q-function. Delaying policy updates reduces per-update
errors and further improves performance. (3) Target Policy Smoothing: TD3 adds noise to the

25



target action to make it harder for the policy to exploit Q-function errors by smoothing out Q
across changes in the action.

Soft Actor Critic (SAC)

The central feature of SAC [HZAL18] is entropy regularization. Using the entropy-regularized
method, an agent gets a bonus reward at each time step which is proportional to the entropy of
the policy at that time step. In fact, differently from TD3, the policy of SAC is non-deterministic,
and the inclusion of entropy in the reward aims to promote policies with a wider spread of alter-
natives from which to choose stochastically. The RL problem becomes the problem of finding
the optimal policy π∗ according to the following equation:

π∗ = argmax
π

E[
∞∑
t=0

γt(R(st, at, st+1) + αH(π(·|st)))].

The first term of the equation E[
∑∞

t=0 γ
t(R(st, at, st+1)] comes from standard RL algorithms, in

which the objective is to maximize the expected sum of rewards. The second term αH(π(·|st))
contains the entropy H , that is directly controlled by the entropy regularization coefficient α > 0.
This parameter explicitly controls the explore-exploit trade-off. With higher α the exploration is
encouraged, while lower α corresponds to more exploitation.

26



Chapter 4

GUI Testing of Mobile Apps through
Reinforcement Learning

In this chapter, I present ARES, a Deep RL approach for black-box testing of Android apps. Ex-
perimental results show that it achieves higher coverage and fault revelation than the baselines,
including state-of-the-art tools. I also investigated the reasons behind such performance quali-
tatively, and I have identified the key features of Android apps that make Deep RL particularly
effective on them to be the presence of chained and blocking activities. Moreover, I have devel-
oped FATE to fine-tune the hyperparameters of Deep RL algorithms on simulated apps since it is
computationally expensive to fine-tune them on real apps. To sum up, this chapter provides the
following advancements to state of art:

• ARES, the first publicly available testing approach based on Deep Reinforcement Learn-
ing, released as open-source;

• FATE, a simulation environment for fast experimentation of Android testing algorithms,
also available as open-source;

• A thorough empirical evaluation of the proposed approach, whose replication package is
publicly available to the research community.

4.1 ARES: Approach

This section describes ARES (Application of REinforcement learning to android Software test-
ing), our approach to black-box Android GUI testing based on Deep RL. Figure 6.1 shows an
overview of the approach. The RL environment is represented by the Android application under

27



Figure 4.1: The ARES testing workflow. Information about widgets is extracted from the GUI
and used to compute the state st and the reward rt. bi indicates the clickable buttons, scrollj
indicates a portion of the GUI that we can scroll, and editk an element that can be filled with
text.

test (AUT), which is subject to several interaction steps. At each time step, assuming the GUI
state is st, and the reward is rt, ARES first takes action at. Then, it receives the new GUI state
st+1 of the AUT, and a reward rt+1 (not shown in Figure 6.1). Intuitively, if the new state st+1 is
similar to the prior state st, the reward is negative. Otherwise, the reward is a large positive value.
In this way, ARES promotes the exploration of new states in the AUT, under the assumption that
this is useful to test the application more thoroughly.

The reward is used to update the neural network, which learns how to guide the Deep RL al-
gorithm to explore the AUT in depth. The update strategy depends on the Deep RL algorithm
(DDPG, TD3, or SAC).

4.1.1 Problem Formulation

To apply RL, I have to map the problem of Android black-box testing to the standard mathemat-
ical formalization of RL: an MDP, defined by the 5-tuple, ⟨S,A,R, P, ρ0⟩. Moreover, I have to
map the testing problem onto an RL task divided into several finite-length episodes.

28



State Representation

Our approach is black-box because it does not access the source code of the AUT. It only relies
on the GUI of the AUT. The state st ∈ S is defined as a combined state (a0, ...an, w0, ...wm).
The first part of the state a0, ...an is a one-hot encoding of the current activity, i.e., ai is equal
to 1 only if the currently displayed activity is the i-th activity; it is equal to 0 for all the other
activities. In the second part of the state vector, wj is equal to 1 if the j-th widget is available in
the current activity; otherwise, it is equal to 0.

Action Representation

User interaction events in the AUT are mapped to the action set A of the MDP. ARES infers
executable events in the current state by analyzing the dumped widgets and their attributes (i.e.,
clickable, long-clickable, and scrollable). In addition to the widget-level actions I also use two
system-level actions, namely toggle internet connection and rotate screen. These system-level
actions are the only system actions that can be easily tested. In fact, since Android version 7.0,
testing other system-level actions (like those implemented in Stoat [SMC+17a]) would depend on
the Android version used [SMC+17b], [Goo20b], and would require a rooted device [Goo19a].

Moreover, certain apps, such as apps in the Finance and Entertainment categories (e.g., Netflix,
SkyGo, Amazon Prime, and Lloyds), do not start on a rooted device due to the root checks that
are on the apps [TM17] [Goo19b] [Mic20], compromising their testing.

Each action a is 3-dimensional: the first dimension represents the widget ARES is going to
interact with or the identifier of system action. The second dimension specifies a string to be used
as text input if needed. Actually, an index pointing to an entry in a dictionary of predefined strings
is used for this dimension. The third dimension depends on the context: when the selected widget
is both clickable and long-clickable, the third action determines which of the two actions to take.
When ARES interacts with a scrollable object, the third dimension determines the scrolling
direction.

Transition Probability Function

The transition function P determines which state the application can transit to after ARES has
taken action. In our case, this is decided solely by the execution of the AUT: ARES observes the
process passively, collecting the new state after the transition has occurred.

29



Reward Function

The RL algorithm used by ARES receives a reward rt ∈ R every time it executes an action at. I
define the following reward function:

rt =


Γ1 if act(st+1) ̸∈ act(Et) or crash
−Γ2 if pack(act(st+1)) ̸= pack(AUT )

−Γ3 otherwise.
(4.1)

with Γ1 ≫ Γ2 ≫ Γ3 (in our implementation Γ1 = 1000, Γ2 = 100, Γ3 = 1). To select
the values of the reward, I conducted a preliminary experiment on a sub-sample of five apps
(i.e., Antennapod, RedReader, Opentasks, Simple-Solitaire, and YalpStore). On these apps, I
tested several types of rewards that are commonly used in literature: combination I (Γ1 = 1000,
Γ2 = 100, Γ3 = 1), combination II (Γ1 = 1, Γ2 = 1, Γ3 = 0), and combination III (Γ1 = 100,
Γ2 = 10, Γ3 = 1). I found that combination I gives the best results.

The exploration of ARES is divided into episodes. At time t, the reward rt is high (Γ1) if ARES
was able to transition to an activity never observed during the current episode Et (i.e., the next
activity act(st+1) does not belong to the set of activities encountered so far in Et): if a new
episode is started at t+ 1, its set of activities is reset: act(Et+1) = ∅.

Resetting the set of encountered activities at the beginning of each new episode is a technique
that encourages ARES to visit and explore the highest number of activities in each episode to re-
inforce its explorative behaviors continuously. In contrast, if I provide the algorithm a significant
reward only a few times (i.e., “sparsely”), the information to learn the optimal state-action com-
binations might be insufficient. The algorithm might fail to reproduce the sequence of actions
leading to a high reward in the future. In that case, the performance of the algorithm results is
poor. On the contrary, rewarding any activity change, regardless of its novelty, would encourage
cycling behaviors [CA16].

The reward is high (Γ1) also when a faulty behavior (crash) occurs. It is very low (−Γ2) when
the displayed activity does not belong to the AUT (i.e., the package of the current activity,
pack(act(st+1)), is not the package of the AUT), as I aim to explore the current AUT only.
In all other cases, the reward is moderately negative (−Γ3), as the exploration remains inside the
AUT, even if nothing new has been discovered.

4.2 ARES: Implementation

ARES features a custom environment based on the OpenAI Gym [BCP+16] interface, which
is a de-facto standard in the RL field. OpenAI Gym is a toolkit for designing and comparing

30



RL algorithms and includes several built-in environments. It also includes guidelines for the
definition of custom environments. Our custom environment interacts with the Android emulator
[Goo20a] using the Appium Test Automator Framework [App20b].

4.2.1 Tool Overview

As soon as it is launched, ARES leverages Appium to dump the widget hierarchy of the GUI
in the starting activity of the AUT. The widget hierarchy is analyzed by searching for clickable,
long-clickable, and scrollable widgets. Afterward, these widgets are stored in a dictionary con-
taining several associated attributes (e.g., resource-id, clickable, long-clickable, scrollable, etc.)
and compose the action vector, i.e., the vector of executable actions in the current state. At each
time step, ARES takes action according to the behavior of the exploration algorithm. Once the
action has been fully processed, ARES extracts the new widget hierarchy from the current GUI
and calculates its MD5 hash value. If it has the same MD5 value of the previous state, ARES
leaves the action vector unchanged. If the MD5 value does not match, ARES updates the action
vector. ARES performs the observation of the AUT state and returns the combined vector of ac-
tivities and widgets. ARES organizes the testing of each app as a task divided into finite-length
episodes. ARES aims to maximize the total reward received during each episode. Every episode
lasts at least 250 time steps. Its duration is shorter only if the app crashes. I conducted a pre-
liminary experiment on a sample app to select the ideal episode boundaries. I trained the same
algorithm on this app by varying the episode length. Training characterized by short episodes
results in poor performance due to the impossibility of exploring the application. Similarly, long
episodes suffered from poor performance due to a low number of episodes completed. Once an
episode comes to an end, the app is restarted, and ARES uses the acquired knowledge to explore
the app more thoroughly in the next episode.

4.2.2 Application Environment

The application environment is responsible for handling the actions to interact with the AUT.
Since the environment follows the guidelines of the Gym interface, it is structured as a class
with two key functions. The first function init(desired_capabilities) is the initial-
ization of the class. The additional parameter desired_capabilities consists of a dictio-
nary containing the emulator setup and the application to be tested. The second function is the
step(a) function, that takes an action a as command and returns a list of objects, including
observation (current AUT state) and reward.

31



4.2.3 Algorithm Implementation

ARES is a modular framework that adopts a plugin architecture to integrate the RL algorithm to
use. Hence, extension with a new exploration algorithm can be easily achieved. In the current im-
plementation, ARES provides five different exploration strategies: (1) random, (2) Q-Learning,
(3) DDPG, (4) SAC, (5) TD3. The random algorithm interacts with the AUT by randomly se-
lecting an action from those in the action vector. Compared to Monkey [Goo20c], our random
approach performs better since it selects only actions from the action vector. In fact, Monkey
generates random, low-level events on the whole GUI, which could target no actual widget and
then be discarded.

Our Q-Learning strategy implements the algorithm proposed by Watkins and Dayan [WD92].
The Deep RL algorithms available in ARES are DDPG, SAC, and TD3. Their implementation
comes from the Python library Stable Baselines [HRE+18] and allows ARES to save the status
of the neural network as a policy file at the end of the exploration. In this way, the policy can be
loaded and reused on a new version of the AUT at a later stage, rather than restarting ARES from
scratch each time a new AUT version is released. ARES is publicly available as open-source
software at https://github.com/H2SO4T/ARES.

4.2.4 Compatibility

ARES has been successfully tested on Windows 10, macOS 11.1 (and older), Ubuntu 20 (and
older), and Scientific Linux 7.5. ARES is fully compliant with parallel execution and enables
parallel experiments to be performed on emulators or real devices, handling each instance com-
pletely separately. ARES is also compatible with several Android versions (i.e., it has been
successfully tested on Android 6.0, 7.0, 7.1, 8.0, 8.1, 9.0, and 10.0). Moreover, since ARES
is based on the standard OpenAIGym, new algorithms and exploration strategies can be easily
added to the tool.

4.3 Fast Android Test Environment (FATE)

Deep RL algorithms require fine-tuning, which is expensive on real apps. Therefore, I devel-
oped FATE, a simulation environment for fast Android testing. FATE models only the navi-
gation constraints of Android apps, so it can efficiently compare alternative testing algorithms
and quickly tune their corresponding hyperparameters. After this algorithm selection and tuning
phase through FATE is completed, the selected algorithms and their configurations are ported to
ARES to test real apps.

32



4.3.1 FATE Design

In FATE, developers model an Android app by means of a deterministic Finite State Machine
(FSM) F = (Σ, S, s0, δ, F ), where Σ is a set of events, S a set of states with s0 the initial state
and F the set of final states, and δ the state transition function δ : S ×Σ −→ 2S . The states S of
the FSM correspond to the activities of the app, while the events Σ trigger the transitions between
activities, which in turn are modeled as a transition table δ. Events represent the clickable widgets
(e.g., buttons) available in each activity. Transitions have access to a set of global variables
and possess, among others, the following attributes: ID, type, active (boolean attribute), guard
(boolean expression that prevents the transition from being taken if it evaluates to false), set
(new values to be assigned to global variables), destination (target activity, i.e., value of δ). A
prototype of a FATE model is shown in figure 4.2.

State S0 State S1

ID
type
active
guard
set
destination

Transition

global vars

Figure 4.2: Prototype of a FATE model.

4.3.2 FATE Implementation

Figure 4.3 shows the FATE model of the prototypical app Social Network. To build such a model,
developers can use Ptolemy [Lee09] to graphically draw an FSM that mimics the behavior of the
application. While creating an FSM with Ptolemy is not mandatory in FATE, it simplifies the
job of designing a logically correct model, thanks to the checks it performs. Then, FATE auto-
matically translates the Ptolemy model (saved in XML format) into a JSON file that replicates
the structure and behavior of the Ptolemy model. The JSON model translation has two main
fields: global_vars and nodes. The first contains a list of global variables organized by
name and value. The latter contains a list of all the activities. Each activity is characterized
by a node_id and a list of corresponding node transitions, each including all the respective
transition attributes.

The model of Social Network in Figure 4.3 contains a transition from login to main_act
which is subjected to the guard user_pass == real_pass, i.e., the entered password must

33



Figure 4.3: FATE model of Social Network: global variables are shown on the top-left; inputs on
the bottom-left; red edges indicate non-deterministic transitions.

be correct in order for the transition to be taken. In the JSON model, the such transition is coded
as:

1 "transition": {
2 "transition_id": 0,
3 "type": "button",
4 "active": true,
5 "guard": "user_pass == real_pass",
6 "set": null,
7 "destination": "main_act"
8 }

Another example of guarded transition is the one between messages and chat_x. The guard
count_messages >= 1 checks whether there exists at least one message from which a chat
thread can be started. In the JSON model this is coded as:

1 "transition": {
2 "transition_id": 0,
3 "type": "button",
4 "active": true,
5 "guard": "count_messages >= 1",
6 "set": null,
7 "destination": "main_act"
8 }

In FATE, a Python environment compliant with the OpenAI Gym standard takes the JSON app
model as input and tests it automatically using the selected algorithm. The available algorithms
are: (1) Random, (2) Q-Learning, (3) DDPG, (4) SAC, (5) TD3. FATE was built with modularity
in mind, and new exploration algorithms can be easily added to the tool. Compared to testing an
Android app through Espresso or Appium, FATE makes test case execution significantly faster

34



because there is no need to interact with the app via its GUI. Moreover, the application navi-
gation logic is simulated by the transition function δ, making it usually much faster to execute.
Consequently, developers can run a large number of experiments, evaluate multiple algorithms,
check various algorithm or application configurations, and find the optimal set of hyperparam-
eters, all of which would be prohibitively expensive to execute on a standard Android testing
platform. A limitation of FATE is that its effectiveness in hyperparameter tuning depends on
the fidelity of the app models created by the developers. Despite not being the developer of the
apps under test, I have been able to define models for them that turned out to be sufficiently
faithful. In fact (see Section 6.1), the results obtained on the real apps with ARES and their
FATE models are very close to each other. FATE is publicly available as open source software at
https://github.com/H2SO4T/ARES.

4.3.3 Representative Family of Models

For fast evaluation of the Deep RL algorithms implemented in ARES, I modeled four Android
apps using FATE. Each model represents the generalization of the apps belonging to a specific
family, such as Shopping category. To obtain a set of app models representing the most common
apps used in everyday life, I inspected AppBrain (a website that aggregates Google Play Store
statistics and rankings) [app20a]. I selected four different and representative categories from the
top ten: Music & Audio, Lifestyle, Business, and Shopping. From each category I then selected
and modeled in FATE one prototypical app: Player, Social Network, Bank and Market Place.
Each model is configurable with a variable degree of complexity.

The simplest scenario is Player. It features a wide number of activities arranged in a tree-
like structure. It reflects the generalization of various applications to manage the settings and
stream/add/remove media content, including apps or app components. Social Network (see Fig-
ure 4.3) starts by prompting a login activity with fields for username and password. Following
the login activity, I have several activities that replicate a standard social network behavior, in-
cluding a basic chat activity. The presence of inner password-protected operations characterizes
the Bank model. Market Place models a typical app for e-commerce: the user can search for
goods, login, purchase products, and monitor the orders. The four representative app models
used in this work are publicly available inside the FATE tool.

4.4 Evaluation

I seek to address the following research questions, split between the following two studies:

Study 1 (FATE):

35



• RQ1 Are the results of synthetic apps comparable to those of their translated counterparts?

• RQ2 Which Deep RL algorithm and which algorithm configuration performs better on the
synthetic apps?

• RQ3 How does activity coverage vary as the model of the AUT becomes increasingly
difficult to explore?

• RQ4 What are the features of the synthetic apps that allow Deep RL to perform better than
Q-Learning?

In Study 1, I want to understand if results obtained on synthetic app models run by FATE corre-
late with those obtained when executing the same apps (RQ1), once they are translated into real
Android apps in Java code that ARES can execute. In particular, I translated three synthetic apps
to Java/Android: Social Network, Bank, and Market Place. Due to its simplicity, I decided not
to translate the ”Player” model. I compare the rankings of the algorithms produced by FATE and
ARES. Text inputs are chosen from a dictionary of 40 strings, which include credentials neces-
sary to pass through the login activities. Since in this study I also use synthetic apps generated
from models (i.e., Player, Social Network, Bank, and Market Place), coverage is measured at
the granularity of Android activities. In fact, there is no source code implementing the business
logic. Each run has a length of 4000-time steps, close to an hour of testing in a real Android test
setting. With FATE, 4000 times steps are executed in approximately 200 seconds.

To answer RQ2, I take advantage of the fast execution granted by FATE to compare alternative
RL algorithms on all synthetic apps and determine their optimal configuration (see Appendix
1). Text inputs are chosen from a dictionary of 20 strings, which include credentials necessary
to pass through the login activities. To account for non-determinism, I executed each algorithm
60 times for each hyperparameter configuration of the algorithms and applied the Wilcoxon
non-parametric statistical test to conclude the difference between algorithms and configurations,
adopting the conventional p-value threshold at α = 0.05. Since multiple pairwise comparisons
are performed with overlapping data, the chance of rejecting true null hypotheses may increase
(type I error). To control this problem, I adopt the Holm-Bonferroni correction [Hol79], which
consists of using more strict significance levels when the number of pairwise tests increases.

To answer RQ3, I consider the best-performing configuration of the Deep RL algorithms, as
selected from RQ2, and gradually increase the exploration complexity of the apps. Specifically,
20 strings, 40 strings, 80 strings indicate an increasing size of the string pool. Such string
pool is a dictionary of 20, 40, or 80 strings containing numbers and words, including the app’s
username and password, to use with a login activity. The string pool does not contain duplicates.
augmented 5 and augmented 10 indicate an increasing size of the self navigation links (with 5
or 10 “dummy” buttons that do nothing) within the login activities.

I adopt the widely used metric AUC (Area Under the Curve) for the assessment, measuring
the area below the activity coverage plot over time. To account for the non-determinism of

36



the algorithms, I repeated each experiment 30 times and applied the Wilcoxon non-parametric
statistical test. In RQ4, I investigate qualitatively the cases where Deep RL is superior to Tabular
Q-Learning.

Study 2 (ARES):

• RQ5 How do code coverage and time-dependent code coverage compare between Ran-
dom, Q-Learning, DDPG, and SAC?

• RQ6 What are the fault exposure capabilities of the alternative approaches?

• RQ7 What features of the real apps make Deep RL perform better than Q-Learning?

• RQ8 How does ARES compare with state-of-the-art tools in terms of coverage and bug
detection?

In Study 2, I use real apps and compare the alternative Deep RL algorithms between each other
and with Random and Tabular Q-Learning. At last, I compare ARES to state-of-the-art testing
tools.

To address RQ5-RQ6 and RQ7, I randomly selected 100 apps among the 500 most starred F-
Droid apps available on GitHub, and 41 successfully compiled. I consider coverage at the source
code level and compare both the final coverage and the coverage increase over time (RQ5). To
obtain coverage data at the instruction level, I instrumented each app using JaCoCo [MRH20].
As in Study 1, I measured AUC concerning the code coverage and compared AUC values using
the Wilcoxon statistical test with a significance level set to 0.05 (with correction). I exclude
TD3 from the comparison since it performed consistently worse than the other RL algorithms on
synthetic apps.

In addition to code coverage, I also report the number of failures (unique app crashes) triggered
by each approach (RQ6). To measure the number of unique crashes observed, I parsed the output
of Logcat and (1) removed all crashes that do not contain the package name of the app; (2)
extracted the stack trace; (3) computed the hash code of the sanitized stack trace, to uniquely
identify it. With RQ7, I qualitatively analyze the different performances of Deep RL vs. Q-
Learning on real apps.

To address RQ8, I evaluate and compare ARES and state-of-the-art tools in terms of code cover-
age and the number of crashes using two different sets of apps under test, RQ8-a and RQ8-b, that
accommodate the different requirements and constraints of the tools being compared. As state-
of-the-art tools, I selected Monkey [Goo20c], Sapienz [MHJ16], TimeMachine [DBCR20b] and
Q-Testing [PHW+20]. In RQ8-a, I compare ARES, Monkey, Sapienz, and TimeMachine on
a set of 68 apps coming from AndroTest [CGO15c]. These apps are instrumented using Emma
[emm06], the same coverage tool that is used in Sapienz and TimeMachine. In RQ8-b, I compare

37



ARES to Q-Testing on a set of ten apps instrumented using JaCoCo, the coverage tool supported
by Q-Testing.

All experimental data were generated and processed automatically. Each experiment was con-
ducted with a one-hour timeout and was repeated ten times for a total of 4560 hours (≈ 190
days). The emulators involved in the study are equipped with 2 GB of RAM and Android 10.0
(API Level 29) or Android 4.4 only for the tool comparison.

4.4.1 Experimental Results: Study 1

Table 4.1 shows the ranking of the algorithms produced by ARES vs. FATE on the three apps
translated from the synthetic FATE models to Java/Android. Below the ranking, Table 4.1 shows
the AUC values obtained by the respective algorithms. The behaviors of the considered algo-
rithms on synthetic (FATE) vs. translated (ARES) apps are very similar. The AUC values are
quite close, and Spearman’s correlation between AUC values across algorithms is 0.99 for Social,
0.89 for Bank, and 0.99 for Market; it is 0.95 overall. All correlations are statistically significant
at level 0.05. ARES required 450 hours to complete the experiments. FATE required around 10
hours, reducing the computation time by a factor of 45 while producing similar results as ARES.

App Tool Ranking / AUC
Social ARES Q-Learn DDPG Rand SAC TD3

4: 7788 5: 6802 3: 9547 2: 9594 1: 15101
FATE Q-Learn DDPG Rand SAC TD3

4:7737 5:7363 3:9291 2:10361 1:14451
Bank ARES Q-Learn DDPG Rand SAC TD3

4: 8614 5: 7976 3: 9344 1: 12138 2: 10932
FATE Q-Learn DDPG Rand SAC TD3

4: 7750 5: 6458 2: 9746 1: 16535 3: 9305
Market ARES Q-Learn DDPG Rand SAC TD3

1: 16866 2: 16788 4: 15936 5: 15930 3: 15944
FATE Q-Learn DDPG Rand SAC TD3

1: 16496 2: 16318 4: 15943 5: 15936 3: 15949

Table 4.1: Ranking of algorithms produced by ARES vs FATE; AUC values below ranked algo-
rithms.

RQ1: The results obtained on synthetic apps are comparable to those obtained on their
translated counterparts.

Figure 4.4 shows the coverage growth for the synthetic app Social. Each curve shows the mean
of 60 runs. The shaded area around the mean represents the Standard Error of the Mean (SEM =
σ/

√
n, where σ is the standard deviation and n = 60 the number of points). The highest activity

coverage is obtained consistently by Deep RL algorithms, which have higher AUC values. Table
4.2 reports the AUC obtained on the synthetic apps in all tested configurations. Table 4.2 also

38



Figure 4.4: Activity coverage of the Social synthetic app in FATE.

shows the Vargha-Delaney effect size in the case of a statistically significant p-value < α/k
where k is computed from the Holm-Bonferroni correction for multiple tests, between the winner
algorithm (highest AUC) and the remainders.

Results show that Deep RL algorithms achieve higher coverage in most experiments. DDPG
performs better in the simplest configuration, 20 strings, while SAC performs better in almost
all other configurations, including the most complex ones. Q-Learning prevails in only two sce-
narios belonging to Market Place, but the difference from the other algorithms is not statistically
significant (p-value > α).

RQ2: Results lead us to select DDPG and SAC as best performing Deep RL algorithms to
be involved in Study 2 experiments.

DDPG is selected due to its high performance in relatively simple scenarios; SAC because of its
ability to adapt and maintain good performance in most scenarios.

RQ3: While in simple situations (e.g., the Player app), all algorithms achieve a high level
of coverage, when things get more complex (e.g., when the string pool increases), Deep
RL algorithms retain higher coverage than all other algorithms.

I have manually inspected the step-by-step exploration performed by Q-Learning and by the

39



App Config Rand Q-Learn TD3 SAC DDPG Effect Size
Player 20 str 88719 89022 89903 89943 90337 -

Social

20 str 15840 20387 22809 25463 30008 L(Rand), M(Q)
40 str 9291 7737 14451 10361 7363 S(DDPG)
80 str 4535 5640 5730 7254 4774 -
aug 5 13960 15400 13094 17402 13385 -

aug 10 5291 3998 13737 11559 8870 M(Q, Rand)

Bank

20 str 22894 21622 29159 28016 36977 M(Q, Rand)
40 str 9746 7750 9305 16535 6458 S(Q, DDPG)
80 str 3998 4843 4776 5621 4798 -
aug 5 12815 8634 8702 14914 11472 -

aug 10 4121 6289 13289 14195 15361 M(Q, Rand)

Market

20 str 19236 18471 20980 23403 25923 -
40 str 15943 16496 15949 15936 16318 -
80 str 15944 15945 15935 15937 15932 -
aug 5 18917 16377 16500 21208 16027 -

aug 10 4121 6289 13289 14195 15361 -

Table 4.2: Mean AUC for synthetic apps: effect size between the winner (shaded cell) and other
algorithms is reported only when p-value is statistically significant (S = Small; M = Medium; L
= Large).

Deep RL algorithms. I found that login activities substantially complicate the exploration per-
formed by Q-Learning. In fact, it is more difficult to reproduce the right username-password
combination for a Tabular Q-Learning algorithm, which has limited adaptation capabilities. In
contrast, Deep RL algorithms memorize the right combination in the DNN used to guide the
exploration. In addition, large action spaces make it challenging for Q-Learning to learn an ef-
fective exploration strategy. The DNNs used by Deep RL algorithms can easily cope with large
spaces of alternatives to choose from. The performance degradation of Q-Learning confirms this
as the string pool increases in dimension or as new interactive elements (“dummy” buttons) are
added, which confuse Q-Learning during its exploration.

RQ4: The performance of Q-Learning declines in the presence of blocking activities that
require specific input combinations that must be learned from past interactions or when
the input/action space becomes excessively large, while Deep RL can learn how to cope
with such obstacles thanks to the DNN employed to learn the exploration strategy.

4.4.2 Experimental Results: Study 2

Table 4.3 shows coverage and crashes produced by each algorithm deployed in ARES. The high-
est average coverage and average number of crashes over ten runs are shaded in gray for each app.

40



I grouped the apps into three different size categories (Low-Medium, Medium, and High), de-
pending on their ELOC (Executable Lines Of Code). Results show that the Deep RL algorithms
arise more often as winners when the ELOC increase. Usually, larger size apps are more so-
phisticated and offer a richer set of user interactions, making their exploration more challenging
for automated tools. I already know from Study 1 that when the action space or the observation
space of the apps increase, Deep RL can infer the complex actions needed to explore such apps
more easily than other algorithms. Study 2 confirms the same trend.

Overall, SAC achieves the best performance, with 42.61% instruction coverage and 0.3 faults
detected on average. DDPG comes next, with 40.09% instruction coverage and 0.12 faults de-
tected on average. To further investigate these results, I computed the AUCs reached by each
algorithm, and I applied the Wilcoxon test to each pair of algorithms. Table 4.4 shows the AUCs
achieved by the four algorithms and the Vargha-Delaney effect size between the winner and the
other algorithms when the p-value is less than α. SAC results as the winner on 56% of the con-
sidered real apps, followed by Random (34%). Moreover, Table 4.4 confirms the trend observed
in Table 4.3: as ELOC increase, a higher proportion of Deep RL algorithms produces the highest
AUC. Figure 4.5 shows an example of code coverage over time for the app Loyalty-card-locker,
averaged on 10 runs. SAC increases its coverage almost until the end of the exploration, while
the other algorithms reach a plateau after around 35 minutes of exploration.

RQ5: SAC reached the highest coverage in 24/41 apps, followed by DDPG (11 apps),
Random (10 apps), and Q-Learning(1 app). SAC also has the highest AUC in 24/41 apps,
followed by Random (13 apps), Q-Learning (11 apps), and DDPG (5 apps).

I suspect that the higher performance of SAC is related to its entropy regularization parameter.
Thanks to the entropy regularization, in contrast to the other Deep RL algorithms that do not
contain such parameters, SAC can maintain a high level of exploration even at the end of the
testing phase, preventing the policy from converging to a bad local optimum.

Table 4.3 shows that SAC exposed the highest number of unique crashes (102), followed by Ran-
dom (73), DDPG (52) and Q-Learning (43). The most common types of error exposed by SAC
during testing are: RuntimeException (34 occurrences), NullPointerException (14), IllegalArgu-
mentException (13). Figure 4.6 shows around a thirty percent overlap between the crashes found
by SAC and the other algorithms. The overlap with Random is the highest. SAC discovered
about 40% of unique crashes found by Random; however, SAC found many new crashes that
Random did not find.

RQ6: The SAC algorithm implemented in ARES generates the highest number of crashes,
102, in line with the results on coverage (RQ5), where SAC was also the best-performing
algorithm.

I have manually inspected the coverage progress of the different algorithms on some of the real

41



Figure 4.5: Instruction coverage over time for the app Loyalty-card-locker.

apps considered in Study 2. I have identified two structural patterns: concatenated activities
(i.e., a sequence of nested activities possibly requiring some precondition to move from one to
the next) and blocking activities (activities that require a specific input combination to enable
the transition to the next activity). I observed that Deep RL algorithms achieve higher coverage
than the other algorithms when it is necessary to replicate complex behaviors to: (1) overcome
blocking activities, e.g., to create an item to be able to access its properties later or to successfully
authenticate within the app; (2) to pass through concatenated activities without being distracted
by already seen activities or ineffective buttons (high dimensional action/observation space); (3)
reach an activity located deeply in the app. Such behaviors are possible thanks to the learning
capabilities of the DNNs used by Deep RL algorithms, while they are hardly achieved by the
other existing approaches, including Tabular Q-Learning.

RQ7: In the presence of blocking activities or complex concatenated activities (activities
with a high number of widgets or located in depth) that require the capability to reuse
knowledge acquired in previous explorations, the learning capabilities of Deep RL algo-
rithms make them the most effective and efficient exploration strategies.

42



0

30

60

90

120

SAC Random

31
60

4242
0

30

60

90

120

SAC DDPG

21

71

3131
0

30

60

90

120

SAC Q

16

75

2727

0

20

40

60

80

DDPG Random

55
34

1818
0

15

30

45

60

DDPG Q

2635

1717
0

20

40

60

80

Random Q

24
54

1919

Figure 4.6: Comparison of the total number of unique crashes on the 41 apps involved in RQ5-6:
dark gray areas indicate the proportion of crashes found by both techniques.

4.4.2.1 Comparison between ARES and state-of-the-art tools

RQ8-a. Table 4.5 shows the coverage reached and the faults exposed by each testing tool on
68 Android apps from AndroTest. Coverage data are summarized employing boxplots in Fig-
ure 4.7. The highest average coverage and average number of crashes over ten runs are high-
lighted with a gray background. ARES achieved 54.2% coverage and detected 0.48 crashes
on average. TimeMachine achieved 50.4% code coverage and 0.42 faults on average. Sapienz
reached a mean code coverage of 48.8% and discovered 0.22 faults on average. Monkey achieved
43.9% code coverage and discovered 0.11 faults. ARES achieved the highest code coverage on
average, followed by TimeMachine, Sapienz, and Monkey. TimeMachine detected the most
unique crashes (179), followed by ARES (171), Sapienz (103) and Monkey (51). Actually,
ARES discovered less crashes than TimeMachine mostly because TimeMachine uses a system-
level event generator, taken from Stoat [SMC+17a], which ARES does not support. However,
system events present two major drawbacks: a) they vastly change depending on the Android
version [SMC+17b] [Goo20b] (despite TimeMachine is compatible with Android 7.1, it uses
only system-level actions compatible with Android 4.4 [DBCR20a]); and b) to execute them,
root privileges are required. ARES does not require root privileges to work properly on any
app (i.e., I recall that certain apps do not execute on rooted devices [TM17]). Analyzing the
execution traces of each tool, I searched and identified the faults immediately after the genera-
tion of system events unrelated to the AUT. More than a third (63) of the crashes generated by
TimeMachine come from system-level actions. Figure 4.8 shows a pairwise comparison of de-
tected crashes among evaluated techniques. TimeMachine also finds only 20% of unique crashes
found by ARES. For example, in the app mnv, only ARES generated a crash of the type Null-
PointerException, in which a missing control on input generates the failure of the conversion

43



function CharSequence.toString(). The text field from which the bug can be generated is not
immediately available, but several interaction steps with the app are required. This shows that
ARES can be used together with other state-of-the-art Android testing techniques (in particular,
TimeMachine) to cover more code and discover more crashes jointly.

The good results of ARES in code coverage and exposed faults are due to the reinforcement
mechanisms of the RL algorithms and the reward function that drives the testing tool through
states of the app leading to hard-to-reach states. Search-based techniques such as Sapienz typ-
ically observe the program behavior over an event sequence that may be very long. Hence, the
associated coverage feedback, used to drive search-based exploration, does not have enough fine-
grained details to support good local choices of the actions to be taken. The fitness function used
by these algorithms evaluates an entire action sequence and does not consider the individual steps
in the sequence. TimeMachine improved this weakness by relying on the coverage feedback ob-
tained at an individual state to determine which portion of the app is not still explored. The
drawback of this kind of approach is a higher computational cost that requires a higher testing
time. In fact, while the time to dump the GUI is in common both to TimeMachine and ARES,
measuring the coverage as feedback at each timestep implies three steps:

• generation of the coverage files concerning the AUT,

• retrieval of coverage files from the Android device,

• coverage computation and processing.

These steps together take, on average, a second and a half to be completed. The strategy of ARES
relies on monitoring the transition between activities taking on average 0.1 milliseconds rather
than computing the code coverage at each time step. Hence, the latter approach offers a better
trade-off between the granularity of the feedback and the computational cost required to obtain
it.

RQ8-a: ARES achieved the highest code coverage in 41/68 apps, followed by TimeMa-
chine (12/68), Sapienz (6/68), and Monkey (2/68). ARES triggered crashes more often
than other tools in 23/68 apps, followed by TimeMachine (15/68), Sapienz (5/68), and
Monkey (0/68). However, TimeMachine generated the highest number of unique crashes
(179), but 63 of them came from system-level events. ARES generates 171 faults, Sapienz
103, and Monkey 51.

RQ8-b. Table 4.6 shows the coverage reached and the faults exposed by ARES and Q-Testing
on 10 Android apps instrumented with JaCoCo. ARES achieved 64.3% coverage and exposed
0.41 faults on average; it detected 17 unique crashes. Q-Testing achieved 52.5% code coverage
and 0.27 crashes on average, and it detected 16 unique crashes. ARES achieved the highest code
coverage on almost all apps, and on average ARES covered 12% more code than Q-Testing.

44



0

20

40

60

80

Monkey Sapienz TimeMachine ARES

+ + +
+

Figure 4.7: Code coverage achieved by ARES, TimeMachine, Sapienz, and Monkey.

Q-Testing generated six faults in common with ARES, while the other four faults are generated
using the system-level events of Stoat. In the app antennapod, only ARES generated a Number-
FormatException with a text field located deeply in the Settings submenu. In this comparison,
the main advantage of ARES seems to be a better reward function that encourages the tool to
visit the greatest number of activities within the same episode. Instead, Q-Testing determines
the reward of the Q-Learning algorithm by computing the similarity between Android app states,
which does not guarantee an efficient way to overcome blocking activities.

RQ8-b: ARES reached the highest code coverage on 9/10 apps, the highest average of
crashes in 7/10 apps, and the highest number of unique crashes. Q-Testing, the state-of-
the-art RL Android testing tool, reached the same level of exploration of ARES only in
1/10 apps and the highest average number of crashes on only 1/10 apps.

4.4.3 Threats to Validity

I adopted several strategies to enhance the internal validity of our results. I chose apps coming
from a standard testing benchmark used in previous studies to mitigate risks of selection bias. I
used default settings, given the same starting condition, and ran each tool several times under the
same workload to ensure that no testing tool was at a disadvantage. I followed the Stoat protocol
to identify unique crashes and manually checked the ones found. To measure coverage, I used
JaCoCo, a standard coverage tool.

45



0

45

90

135

180

ARES TimeMachine

144136

3535

0

30

60

90

120

Sapienz Monkey

31

81

2222
0

45

90

135

180

TimeMachine Monkey

22

148

31310

45

90

135

180

TimeMachine Sapienz

80

156

2323

0

45

90

135

180

ARES Monkey

20

138

3333
0

45

90

135

180

ARES Sapienz

77
145

2626

Figure 4.8: Comparison of total number of unique crashes involved in RQ8-a: dark gray areas
indicate the proportion of crashes found by both testing tools.

4.5 Discussion

Using ARES as a testing tool involves several benefits:

• black-box automated testing: ARES relies only on the GUI of the AUT. This allows
developers to test their production apps with no modifications. Available state-of-the-art
tools, such as Sapienz and TimeMachine, rely on code coverage to drive exploration, and
as recognized by the researchers who developed them, this makes testing less efficient.

• wide compatibility: ARES works on Windows, Linux, and MacOS. ARES can test apps
in parallel on emulators or real devices with Android from 6.0 to 10.0.

• policy reuse: at the end of the testing phase, ARES saves the status of the neural network
as a policy file. Instead of restarting ARES from scratch each time a new version of the
AUT is launched, the policy can be loaded and reused on a later version of the AUT.

• modularity: within ARES, the app environment is decoupled from the RL algorithm used
during the testing phase, allowing to deploy new algorithms easily.

Despite the advantages given by ARES there are also some limitations:

• benefits on easy apps: performance on simpler apps sometimes aligns with the perfor-
mance of dummy methods such as random algorithms and does not justify using Deep
RL.

46



●
40

50

60

70

80

Q−Testing ARES

+

+

Figure 4.9: Code coverage achieved by ARES and Q-Testing.

• system-level events: ARES implements a limited set of events that act at the system level,
including the most commonly supported ones, such as toggle Internet connection and ro-
tate screen. The other system-level events require rooted devices to work, which brings
some drawbacks, among which is the inability to work with apps that, for security reasons,
perform a “root-check” and stop working if the device is rooted.

47



Applications ELOC Rand Q SAC DDPG Rand Q SAC DDPG
%Coverage(mean) #Crashes(mean)

Silent-ping-sms 263 41 41 41 41 0 0 0 0
Drawablenotepad 452 20 21 26 25 0.7 0.6 0.7 0.1
SmsMatrix 466 23 20 24 22 1.2 0 1.2 0.9
Busybox 540 75 73 74 76 0 0 0 0
WiFiKeyShare 627 37 36 37 37 0 0 0 0
Talalarmo 1094 69 71 71 71 0 0.5 0.5 0
AquaDroid 1157 55 55 55 55 1.0 0.4 0.8 0.3
Lexica 1215 72 72 74 75 0.3 0.1 1.5 1.2
Loyalty-card-locker 1228 41 37 50 41 0.5 0.4 0.8 0.1
Dns66 1264 58 58 58 58 0.1 0 0 0.2
Gpstest 1311 47 46 47 46 0 0 0 0
Memento 1336 77 76 74 77 0 0 0 0
Editor 1547 50 46 51 50 0 0 0 0
AndOTP 1560 20 25 27 20 0.5 0.5 0.7 0.2
BookyMcBookface 1595 26 25 25 24 0 0 0 0
Tuner 2207 80 74 79 75 0 0 0 0
WifiAnalyzer 2511 78 75 80 79 0 0 0 0
AdAway 3064 38 37 45 40 0 0 0.1 0.1
Gpslogger 3201 36 31 32 28 0 0 0 0.1
Connectbot 3904 26 25 28 18 0 0 0 0
Neurolab 3954 29 28 29 28 0 0.4 0.3 0.6
Anuto 4325 46 46 47 47 0 0 0 0
PassAndroid 4569 1 1 1 1 0 0 0 0
Markor 4607 51 43 53 41 0.3 0 0.4 0
Vanilla 4747 29 34 41 33 0 0 0 0
Average 45 43.84 46.76 44.32 0.15 0.12 0.28 0.15

Afwall 5130 12 12 16 13 0 0 0 0
OpenTracks 5260 45 42 44 45 0 0 0 0
Opentasks 5772 43 50 53 44 0 0 0.2 0
UserLAnd 5901 60 60 60 60 0.1 0.2 0.4 0.2
Simple-Solitaire 5907 10 30 31 31 0 0.4 0.4 0.2
Authorizer 5923 5 5 5 5 0 0 0 0
YalpStore 6734 35 34 38 33 0 0 0 0
CameraRoll 6836 32 31 31 32 0.8 0.1 1.6 0.1
AntennaPod 7975 46 40 48 38 0.5 0.1 0.8 0.4
Phonograph 8758 16 16 16 16 0 0 0 0
Average 30.4 30.5 34.2 31.7 0.14 0.08 0.34 0.09

MicroMathematics 10506 35 35 47 41 0 0 0 0
LightningBrowser 11961 35 36 43 37 0 0 0.4 0.1
Firefox-focus 12482 33 34 41 35 0.5 0.3 0.8 0.1
RedReader 12958 42 42 44 46 0 0 0.1 0
Wikipedia 23543 42 43 44 41 0 0 0 0
Slide 30483 19 17 18 19 0.8 0.3 1.2 0.3
Average 34.33 34.50 39.5 36.5 0.21 0.1 0.38 0.1

Total Average 39.62 39.58 42.61 40.09 0.17 0.1 0.3 0.12
Unique crashes 73 43 102 52

Table 4.3: Average coverage and the number of crashes observed on 41 real open-source apps in
10 runs of ARES.

48



App Rand Q SAC DDPG Effect Size
Silent-ping-sms 0.36 0.36 0.38 0.37 S(DDPG),M(Rand),L(Q)
Drawable-notepad 0.13 0.14 0.20 0.18 L(Rand,Q)
SmsMatrix 0.13 0.13 0.11 0.11 -
Busybox 0.54 0.56 0.68 0.68 L(Q,Rand)
WiFiKeyShare 0.29 0.29 0.33 0.30 L(DDPG,Q,Rand)
Talalarmo 0.62 0.60 0.64 0.64 L(Q)
AquaDroid 0.529 0.526 0.531 0.522 L(Rand, Q, DDPG)
Lexica 0.63 0.61 0.66 0.65 L(Q,Rand)
Loyalty-card-locker 0.23 0.23 0.34 0.21 L(DDPG,Q,Rand)
Dns66 0.51 0.51 0.47 0.45 L(DDPG,SAC)
Gpstest 0.40 0.40 0.39 0.36 L(DDPG)
Memento 0.64 0.65 0.64 0.65 -
Editor 0.42 0.37 0.37 0.37 L(DDPG,Q,SAC)
AndOTP 0.16 0.18 0.23 0.15 M(Rand), L(DDPG)
BookyMcBookface 0.22 0.20 0.20 0.20 M(DDPG), L(SAC)
Tuner 0.68 0.66 0.60 0.60 L(DDPG,SAC)
WifiAnalyzer 0.56 0.56 0.67 0.58 L(DDPG,Q,Rand)
AdAway 0.25 0.25 0.27 0.25 -
Gpslogger 0.28 0.28 0.23 0.20 L(DDPG,SAC)
Connectbot 0.19 0.19 0.22 0.09 L(DDPG,Q,Rand)
Neurolab 0.23 0.23 0.22 0.22 -
Anuto 0.35 0.40 0.43 0.33 L(DDPG,Q,Rand)
PassAndroid 0.018 0.017 0.017 0.017 -
Markor 0.40 0.40 0.43 0.25 L(DDPG,Q,Rand)
Vanilla 0.17 0.23 0.26 0.23 L(Rand)

Afwall 0.09 0.09 0.13 0.10 L(DDPG,Q,Rand)
OpenTracks 0.37 0.35 0.35 0.35 -
Opentasks 0.18 0.46 0.46 0.29 L(DDPG,Rand)
UserLAnd 0.49 0.49 0.49 0.47 -
Simple-Solitaire 0.06 0.21 0.19 0.18 L(Rand)
Authorizer 0.05 0.046 0.047 0.049 S(SAC), M(Q)
YalpStore 0.28 0.28 0.31 0.26 L(DDPG,Q,Rand)
Camera-Roll 0.26 0.37 0.25 0.25 L(Rand,DDPG,SAC)
AntennaPod 0.33 0.33 0.35 0.22 L(DDPG)
Phonograph 0.085 0.077 0.075 0.076 S(Q,DDPG,SAC)

MicroMathematics 0.17 0.17 0.30 0.18 L(DDPG,Q,Rand)
Lightning-Browser 0.28 0.28 0.36 0.29 L(DDPG,Q,Rand)
Firefox-focus 0.27 0.28 0.43 0.35 L(Rand, Q)
RedReader 0.31 0.31 0.31 0.33 -
Wikipedia 0.30 0.30 0.33 0.28 -
Slide 0.13 0.13 0.12 0.14 -

Table 4.4: AUCs achieved on real apps; effect size between the winner and others when p-value
< α.

49



App Coverage Faults
Monkey Sapienz TM ARES Monkey Sapienz TM ARES

a2dp 38 44 42 42 0 0.4 0.1 0.3
aagtl 16 18 17 19 0.3 1.0 1.7 1.5

aarddict 13 15 17 17 0 0 0.2 0.2
acal 18 27 27 28 0.5 0.8 1.0 1.0
addi 19 20 17 20 0.4 0.3 0.4 0.6

adsdroid 30 36 36 35 0.1 0.4 0.5 0.7
aGrep 45 - 59 56 0.1 - 0.3 0.2

aka 65 84 77 84 0.1 0.7 0.1 0.4
alarmclock 64 41 60 71 0.5 0.5 0.6 0.8
aLogCat 67 71 75 87 0 0 0 0
Amazed 36 66 63 89 0.1 0.3 0.2 0.2
AnyCut 63 65 63 73 0 0 0 0

anymemo 31 50 43 53 0.2 0.8 0.3 1.0
autoanswer 12 16 21 15 0 0 0.5 0.5
baterrydog 63 67 62 69 0 0.1 0.4 0.5

battery 73 78 77 92 0 0.4 0.5 0.4
bites 34 41 45 43 0.1 0.2 0.9 0.5

blokish 55 52 68 45 0 0.2 0 0.3
bomber 76 73 77 84 0 0 0 0

Book-Catalogue 27 29 27 25 0.1 0.2 0.8 0.5
CountdownTimer 74 62 77 84 0 0 0 0
dalvik-explorer 66 72 70 72 0.3 0.2 0.7 0.8

dialer2 39 42 42 44 0 0 0.3 0.4
DivideAndConquer 84 83 82 80 0 0.2 1.0 0.9

fileexplorer 41 49 55 64 0 0 0 0
frozenbubble 80 76 75 70 0 0 0 0

gestures 37 52 51 55 0 0 0 0
hndroid 7 15 18 18 0.1 0.4 1.1 1.3
hotdeath 75 75 72 74 0.1 0.2 0.8 0.9

importcontacts 40 39 40 42 0.1 0 0.6 0.8
jamendo 53 41 54 63 0 0.4 1.4 1.6
k9mail 6 7 8 8 0.4 0 1.8 1.2
LNM 47 - - 75 0 - - 0.2

lockpatterngenerator 75 79 74 78 0 0 0 0
LolcatBuilder 26 25 29 26 0 0 0.1 0

manpages 40 73 70 74 0 0.4 0.3 0.4
mileage 38 45 48 45 0.3 1.0 2.3 1.8
Mirrored 57 59 62 59 0.4 0 0.8 0.7

mnv 41 60 43 56 0.5 0.3 1.0 1.1
multismssender 34 59 61 73 0 0.2 0.3 0.4

MunchLife 67 72 71 88 0 0 0 0
MyExpenses 41 60 50 63 0 0 0.2 0.2

myLock 25 31 50 30 0 0 0.5 0.2
Nectroid 34 66 58 57 0 1.0 0.3 0.9

netcounter 43 70 58 69 0 0 0.4 0.5
PasswordMaker 53 58 55 59 0.3 0.8 0.6 0.9

passwordmanager 7 8 17 18 0 0 0 0
Photostream 30 34 35 29 0.1 0 0.4 0.8

QuickSettings 50 45 46 52 0 0.2 0 0.4
RandomMusicPlayer 53 58 58 63 0 0 0.6 0.8

Ringdroid 22 29 48 30 0 0.1 0.3 0.2
sanity 26 19 31 22 0.2 0.3 0.5 0.4

soundboard 42 32 59 61 0 0.6 0 0.4
SpriteMethodTest 58 80 73 88 0 0 0 0

SpriteText 60 60 57 60 0 0.4 0 0.5
swiftp 12 14 13 17 0 0.4 - 0.6

SyncMyPix 21 21 23 25 0 0 0 0
tippy 75 83 74 85 0 0.4 0.3 0.4

tomdroid 47 46 51 69 0 0.3 0 0.3
Translate 49 48 48 50 0 0 0 0
Triangle - - - - - - - -

weight-chart 63 67 66 71 0 0 0 0
whohasmystuff 61 68 66 81 0.1 0 0.9 1.0

wikipedia 31 32 33 35 0 0 0 0
Wordpress 4 5 7 8 0 0.5 1.5 1.0
worldclock 83 88 86 90 0 0 0.6 0.4

yahtzee 51 57 56 69 2 0.2 0.5 0.5
zooborns 30 16 35 37 0 0 0.1 0.5
Average 43.9 48.8 50.4 54.2 0.11 0.22 0.42 0.48

Sum 51 103 179 171

Table 4.5: Results on 68 open-source apps coming from AndroTest.

50



App Coverage Faults
ARES Q-Testing ARES Q-Testing

Alogcat 84 76 0 0
Antennapod 48 42 0.8 0.4

AnyCut 72 67 0 0
batterydog 65 49 0.5 0.3
Jamendo 64 46 0.4 0.7

Multismssender 71 45 0.4 0
Myexpanses 63 36 0.4 0.2

talalarmo 74 74 0.8 0.5
Tomdroid 61 50 0.3 0.2

vanilla 41 40 0.5 0.4
Average 64.3 52.5 0.41 0.27

Sum 17 16

Table 4.6: Comparison between Q-Testing and ARES.

51



Chapter 5

Security Testing of Mobile Apps through
Reinforcement Learning

In this chapter, I propose a different approach to exploit generation, which I call RONIN, based
on Deep Reinforcement Learning. Deep Reinforcement Learning (Deep RL) is a machine learn-
ing technique that does not require a labeled training set as input since the learning process is
guided by the positive or negative reward experienced during the tentative execution of a task.
Hence, it can be used to dynamically learn how to build an Intent that exposes a specific vul-
nerability based on the feedback obtained during past successful or unsuccessful attempts. More
specifically, RONIN manipulates the parameters of the Intents by applying a sequence of actions
to them. Each action receives positive feedback if I move closer to the target statement (i.e.,
the vulnerable statement) upon execution of the Intent; neutral (zero) feedback if the minimum
distance between the statements that I reached and the target statement does not change; negative
feedback if I increase the distance from the target concerning the last Intent execution. RONIN
uses a Deep Neural Network (DNN) to generate (initially random) actions during the training
phase and observes their outcome (i.e., states and rewards). Then, RONIN leverages the col-
lected information and iteratively trains the DNN to take a given action when in a given state.
Our paper gives the following major contributions to the state of the art:

• The first Deep RL approach to Android security testing focused on ICC vulnerabilities.
This approach applies to a wide range of Android apps by relying on feedback provided
through dedicated instrumentation.

• RONIN, an open source tool, whose code is available at the url: https://github.c
om/H2SO4T/RONIN.

• An empirical study shows our approach’s effectiveness compared with existing and base-
line techniques.

52



5.1 Background

5.1.1 Android Background

The Android Software Development Kit (SDK) offers programmers a collection of communi-
cation components for building mobile applications. Activities, Services, Broadcast
Receivers, and Content Providers are the four Android’s pre-defined components. All
such components (except dynamically registered Broadcast Receivers) are declared in the app’s
manifest file (AndroidManifest.xml).

An Activity is a GUI that an app displays to a user and that the user can interact with. A
Service manages background tasks for an app. A Content Provider manages access to
a central repository of data primarily intended to be used by other applications, allowing secure
access. A Broadcast Receiver receives Intents that are broadcast by other apps or the
Android framework (for example, informing the user that the battery is low). Intents can be
exchanged between Activities, Services, and Broadcast Receivers. Activities might be made up
of Fragments, each of which could be a user-viewable portion or a full screen. Fragments
introduce modularity and reusability into the activity’s UI by allowing developers to divide the
UI into smaller, more manageable discrete pieces. Moreover, fragments support the dynamic
composition of a GUI, allowing developers to add and remove fragments (and the layouts therein)
dynamically and programmatically.

Android apps execute in a sandboxed environment to prevent malware from infecting the system
and the hosted applications [EOM09]. The Android sandbox utilizes the isolation capabilities
of the Linux kernel. Although sandboxing is an essential security feature, interoperability is
negatively affected as a result. Apps need to be able to interact in a variety of ways. For instance,
if the user points to the Google Play website, the browser app should be able to launch the
Google Play app. To support interoperability, Android supplies high-level ICC mechanisms via
the Binder class, implemented as a driver in the Linux kernel. ICC is achieved via Messages
and Intents. Intents are messaging objects that contain both the payload and the target
application component. Intents can either be implicit, which means that the target is not specified,
or explicit, which means that a specific target is provided. Intents can be broadcast to Broadcast
Receivers, invoke activities, or launch a Service. External parties can invoke an application
component via an Intent if the manifest file allows that. The manifest also defines the permissions
that the external party must possess.

According to the Android documentation, [Goo22], Intents contain actions, categories, and sup-
plementary data that an app utilizes to decide how to carry out activities based on it. The attribute
known as an Intent’s action denotes the general action to be taken in response to an Intent (e.g.,
deliver data to some agent). The categories of Intent offer more details about how the app should
carry out the Intent’s action. A developer can declare categories in the application manifest, al-
lowing the system to know if the application can handle a specific Intent category. For example,

53



by putting the CATEGORY BROWSABLE category, an app specifies that a specific activity can
be invoked through intent by a browser.

5.1.2 Vulnerabilities related to ICC Channels

We can refer to an Android component as public if 1) it is exported via Intent filters, either
explicitly or implicitly; 2) it requires neither signed nor system permissions; or 3) unsanitized
data originating from a public component flows into it. The presence of public components leaves
a hole in the Android sandbox. They expose themselves to incoming data from malicious parties,
which might lead to vulnerabilities if the data is not sanitized or validated. Fragments are also
potentially vulnerable, as they can access incoming ICC data via their enclosing Activity and its
initiating Intent. Malicious parties can be both local and remote. Malware is highly prevalent in
Android and can interact directly with the public ICC interfaces through explicit Intents without
special permissions [HTP15]. Unsafe handling of incoming ICC data can result in different
forms of attack. Below I list three of the main threats that I aim to discover.

Cross-Application Scripting (XAS). Similarly to Cross-Site Scripting (XSS) in the Web land-
scape, XAS [HTP15] arises when script content (mostly JavaScript code) is injected into the
HTML UI of a hybrid mobile application. Hybrid apps allow developers to write code based
on platform-neutral web technologies and wrap them into a single native app that can render
HTML/CSS content and execute JavaScript. This enables different forms of attack, including: 1)
UI defacing/rewriting to trigger phishing attacks, 2) access to sensitive information, and 3) run
native code via JavaScript. A concrete entry point for XAS attacks is the WebView class, which
renders HTML content within a mobile app. The main method of WebView is loadUrl. If a
malicious app can control the current URL, all the attacks above become potential threats. To
exploit an XAS vulnerability, an attacker can inject JavaScript code using either the JavaScript
URI scheme or the file scheme. The attacker creates a malicious HTML file and directs the target
WebView object to load that file via an Intent.

Fragment injection. The static instantiate(Context ctx, String fname, Bundle
args) method of class Fragment accepts as fname the name of the Fragment subclass to load
reflectively. An attacker can leverage this to arbitrary load code obtainable through the class
loader of ctx. A successful Fragment injection attack can result in loading an attacker-selected
class into the context of the vulnerable app, which grants that class the same privileges and ac-
cess rights as its host app. Otherwise, an exception is thrown, but before that, the class’ static
initializer and default constructor are executed, creating another attack vector. Another alter-
native is to load a Fragment already defined by the application or Android/Java framework but
inject malicious initialization data into the Fragment. Fragments that are normally loaded by pri-
vate Activities are more likely to trust rather than validate their initialization arguments, which
renders them more exploitable to Fragment manipulation attacks.

54



Unhandled Exceptions (Denial of Service). Programming errors that trigger unchecked excep-
tions (like null dereference) will usually cause the target app to crash if the exception is missed.
This presents an opportunity for Denial-of-Service (DoS) attacks and can generally drive the
application into an unexpected state.

Running Example. The code in Listing 5.1 illustrates how incoming ICC messages are pro-
cessed. An attacker can take advantage of an ICC-based vulnerability in an Android app by
including actions, categories, or additional data with malicious payloads or by deleting these
parameters. getExtraString retrieves the value of the custom string field of an Intent. The
Activity contains two exploitable vulnerabilities that are reachable from the app’s ICC inter-
face. If the Activity receives an Intent whose ExtraString s1 contains the string URL
(line 20) the WebView of the Activity will load the string associated to ExtraString s2
(line 22). This leads to the first XAS vulnerability. When ExtraString s1 does not con-
tain URL, the app performs a string comparison between ExtraString s2 and a hardcoded
string (line 27). If ExtraString s2 is a null object, a Null Pointer Exception will
be thrown, which results in the app crashing as the thrown exception is not caught. A mali-
cious app can leverage this vulnerability to perform an inter-process denial-of-service (IDOS)
attack on the MainActivity by periodically sending an Intent with no ExtraString s2. The
function getFragmentInstance contains a Fragment injection (FI) vulnerability [HTP15],
which occurs because within getFragmentInstance an incoming Intent with a string of
extra data containing the key fname can be exploited by supplying as its value the name of a
Fragment that resides in the corresponding app. This Fragment is then instantiated and loaded
into the app (line 39).
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle savedInstanceState) {

// ...
}

@Override
protected void onResume(){

super.onResume();
Button button = (Button) findViewById(R.id.get):
WebView webView = (WebView) findViewById(R.id.webView1) :
button.setonClickListener(new View.OnClickListener() {

@override
public void onclick(View v) {

TextView textView = (TextView) findViewById(R.id.concat);
Intent intent = getIntent():
String a = intent.getStringExtra("s1");
if ("URL".equals(a)) {

/* If s2 contains a malicious site it will be loaded by the WebView*/
webView.LoadUrl(intent.getstringExtra("s2"));

} else {
String b = intent.getStringExtra("s2");
/* If String b is null the app will crash */
if (b.equals ("www.test.com"))

webView.LoadUrl(intent.getStringExtra("s2"));
}

55



}
});

}

// ...

public static void getFragmentInstance(Intent my_intent){
/* If fname is not checked we can have a Fragment Injection */
String fname = my_intent.getStringExtra("fname");
return Fragment.instantiate(this, fname) ;
}

}

Listing 5.1: RONIN: An example app that contains ICC vulnerabilities

5.2 Related Works

Several approaches have been developed to identify vulnerabilities in Android apps [SBGM16].
ComDroid [CFGW11] was one of the first significant works to target ICC-based vulnerabilities
in detail, Epicc [OMJ+13] and IC3 [OLD+15] extracted information about Intents in a flow-
sensitive manner. IccTA [LBB+15], and COVERT [BSGM15] identified vulnerabilities involv-
ing interaction between apps rather than only individual apps. FlowDroid [ARF+14] performs
a static taint analysis to identify flows and privacy leakages from Android API sources to sinks.
Amandroid [WRO18] is a static analysis approach based on Soot [Gro22] that performs inter-
component and intra-component data flow point-to-point analysis. This methodology combines
FlowDroid and IccTA approaches, resulting in more precise results concerning both. DroidPatrol
[TSQ+19] identifies a list of potential vulnerabilities and proposes quick fixes. MobSf [Mob22]
executes a plethora of security evaluations. However, none of these approaches can determine
program paths and the set of Intents needed to execute them.

Another set of approaches relies solely on dynamic analysis to discover vulnerabilities. Buzzer
[CGLX15] fuzzes Android system services to find flaws. Stowaway [FCH+11] detects permis-
sion overprivileged dynamically. Mutchler et al. [MDM+15] look for vulnerabilities in Android
web apps. IntentDroid [HTP15] dynamically stimulates an app’s Intent interface to find flaws.
None of these strategies use static analysis, preventing them from finding many potential ICC-
based program paths that may lead to a vulnerability.

A variety of approaches rely upon the conjunction of static and dynamic analysis to detect vul-
nerabilities. ContentScope [Jia13] examines Android app Content Providers to identify instances
when data from those components leaked or was contaminated. This happens when one app ma-
nipulates the Content Provider of another app without the necessary permissions or authorization.
To avoid privilege escalation threats, IPC Inspection [FWM+11] is an OS-based security mecha-
nism that evaluates an app’s privileges as it gets requests from other apps. AppAudit [XGL+15]
is primarily concerned with discovering privacy leakage vulnerabilities. However, it only con-

56



ducts minimal Intent analysis (e.g., failing to account for various Intent attributes). AppCaulk
[STDF14] detects and stops data breaches through static and dynamic analysis and the ability to
establish data leak policies. The DynaLog [AYS16] framework leverages existing open-source
tools to extract high-level behaviors, API calls, and critical events that can be used to examine an
application. He et al. [HYHW19] developed a tool that can first identify the third-party libraries
inside apps, then extracts call chains of the privacy source and sink functions during its execu-
tion, and finally evaluates the risks of privacy leaks of the third-party libraries according to the
privacy leakage paths.

Methods such as [SAS+22] [CQX+20] also detect vulnerabilities by combining static and dy-
namic analysis. Chao et al. [CQX+20] propose an approach that uses a static analysis method to
obtain some basic vulnerability analysis results for the application. Then, the application security
vulnerability is verified using dynamic taint analysis and is reported to the user. Schindler et al.
[SAS+22] combine free, open-source tools to support developers in checking that their applica-
tion does not introduce security issues by using third-party libraries. None of these methods are
thought to generate exploits. In [DC20, DCS20] Demissie et al. present an approach based on
static analysis and automated test case generation to generate exploits that target the Permission
Re-delegation vulnerabilities. To the best of our knowledge, Letterbomb [GHGM17] is the only
tool that automatically generates exploits for IDOS, XAS, and FI vulnerabilities. Letterbomb re-
lies on two phases. The first phase leverages combined path-sensitive symbolic execution-based
static analysis. During the second phase, the tool tries to exploit the statically discovered vulner-
abilities by generating an Intent and sending it to the analyzed app. However, Letterbomb only
stimulates an app using the Intents, but Intent usage can also be triggered by other events coming
from the GUI, which may result in missed vulnerabilities for Letterbomb. Moreover, Letterbomb
becomes inapplicable when the constraints to reach a certain path within the app are too difficult
to traverse. RONIN overcomes the limitations of Letterbomb by automatically triggering GUI
events and by adopting a Deep RL algorithm to generate valid exploits. Our empirical evaluation
showed the superiority of our new approach w.r.t. Letterbomb.

5.3 RONIN: Approach

This section describes RONIN (ReinfOrcement learning for security testiNg of INter-app com-
munication), our approach to automatic generation of Inter-App Communication exploits. Figure
6.1 shows an overview of the approach. RONIN takes as input an app, and starts the Vulnerability
Identifier. This analysis outputs all the statically identified vulnerable statements within the app.
Moreover, the Vulnerability Identifier constructs a dictionary of the possible parameters that can
be used as payloads in the Intents and the taint graph that leads to each identified vulnerability.
According to the information coming from the taint graph, the Oracle Instrumenter injects code
lines within the app to let RONIN’s dynamic analysis verify its distance to the vulnerability dur-
ing the exploitation of the app. The Oracle Instrumenter produces as output many instrumented

57



APKs, one for each identified vulnerability. At last, the Dynamic Exploiter leverages the infor-
mation collected during the static phase and dynamically stimulates each instrumented APK with
random GUI events and Intents crafted through Deep RL.

Figure 5.1: The RONIN workflow. At first, RONIN analyzes the APK using static analysis and
collects potential vulnerabilities. Then RONIN instruments the APK to verify whether a vulner-
ability has been reached or not. At last, RONIN leverages Intent generation through DeepRL and
GUI stimulation to effectively exploit a vulnerability.

5.3.1 Static Phase: Vulnerability Identifier

The Vulnerability Identifier analyzes an APK in search of ICC vulnerabilities. At first, it searches
for a possible entry point. An entry point consists of an Intent function that can lead to an ICC
vulnerability (an Intent function is any function that retrieves the parameters of Intents, such as
getStringExtra). Once an entry point is found, Vulnerability Identifier taints the related
Intent variable (e.g., variable Intent at line 18 in Listing 5.1). Subsequently, the Vulnerability
Identifier analyzes the taint graph in search of possible improper usages of the tainted variables.

58



If so, RONIN produces: 1) a file that contains the vulnerable statements, 2) a dictionary of
parameters related to the possible payloads of the Intent, and 3) the inter-components taint graph.
To identify the vulnerable statements, I rely on the SEBASTiAn tool [PRC+22].

5.3.2 Static Phase: Oracle Instrumenter

To detect whether a generated Intent successfully exploits a vulnerability, RONIN instruments
the app. The Oracle Instrumenter leverages the vulnerable statements and taint graphs previ-
ously produced by the Vulnerability Identifier to instrument the original APK. I describe how
Oracle Instrumenter instruments the app for the three aforementioned vulnerability types. I only
need to introduce the instrumentation once per identified vulnerability. After such one-time in-
strumentation, I can reuse it to detect multiple successful exploitations.

To instrument apps vulnerable to an IDOS attack, for each vulnerable statement RONIN adds a
log instruction to record that the vulnerable statement has been executed. Additionally, RONIN
instruments the statements can help the exploration during the dynamic phase, i.e., the statements
that connect the Intent function to the vulnerability.

XAS instrumentation requires instrumenting each statement where a URL is loaded. Instrumen-
tation must ascertain the URL loaded after the WebView’s page has finished loading to verify
whether the malicious URL injection was successful. To that end, RONIN logs the current
HTML page loaded from the URL of a WebView once its page has finished loading.

For the FI instrumentation, RONIN injects logging statements to check for three conditions that
together indicate a successful FI: (1) the target Activity has received the FI Intent, (2) the injected
Fragment was instantiated successfully, and (3) the Activity is running without throwing any
exception.

5.3.3 Dynamic Phase: Overview

This section describes the dynamic phase of RONIN, which leverages Deep RL to generate
Intents for the app under test and uses a random algorithm to generate GUI events. Figure 5.2
shows the workflow of this phase. An app represents the RL environment under analysis, which
is subject to several interaction steps. The objective is to successfully exploit the vulnerabilities
discovered during the static phase. At each time step, RONIN observes the app state, computes
the state st, and chooses an action at which modifies the current Intent. Then, it launches the
Intent, and it optionally generates random GUI events. Subsequently, it iterates, receiving the
new state st+1 and the reward rt+1 (not shown in Figure 5.2).

Intuitively, if RONIN comes closer to the vulnerability, the reward is positive; it is neutral if the
distance remains the same. Otherwise, the reward is negative if the distance from the vulnerabil-

59



ity increases.

The reward is used to update the neural network, which learns how to guide the Deep RL algo-
rithm to generate Intents that exploit the app’s vulnerabilities. The actual update strategy depends
on the selected Deep RL algorithm.

Figure 5.2: The dynamic phase workflow.

5.3.4 Dynamic Phase: Deep RL and GUI Events

The Dynamic Analysis of RONIN relies on the generation of Deep RL and random GUI events.
Algorithm 1 represents the logic of the dynamic phase. The algorithm takes as input the in-
strumented APKs, the dictionary of the Intent parameters, and the taint graphs. The algorithm
iterates on each vulnerability of each APK and tries to exploit it within a maximum time (10
minutes in our scenario) by mutating a default Intent and eventually generating a random GUI
event. The GUI event is generated only if the Intent does not produce any log trace. At last, the
algorithm computes the distance from the target vulnerability and the reward used to train the
DeepRL algorithm. This process iterates until the timer expires, and the algorithm returns all the
exploits generated during the execution.

5.3.5 Dynamic Phase: Deep RL

To apply RL, I have to map the problem of generating Android Intents to the standard mathemat-
ical formalization of RL: an MDP, defined by the 5-tuple, ⟨S,A,R, P, ρ0⟩.

60



Algorithm 1 : The Dynamic Phase
Input: Instrumented apks, Dictionary of Intent parameters, Taint Graphs
for apk ∈ Instrumented apks do

for vulnerability ∈ apk do
Start App Testing
Intent = EmptyIntent
while not Timer Expired do

mutateIntent(Intent)
Launch Intent
LogTrace = CollectLogTrace()
if LogTrace is empty then

GenerateRandomGuiEvent()
LogTrace = CollectLogTrace()

end if
Distance = DistanceFromVulnerability()
Reward = ComputeReward(Distance)
if Distance = 0 &

LogTrace = Vulnerability-Exploited then
Store Intent and Actions to Take

end if
trainDeepRLAlgorithm(Distance, Reward)

end while
end for

end for

State Representation. The state st ∈ S is defined as a combined state (a0, ...an, node0, ...nodem).
The first part of the state a0, ...an is a one-hot encoding of the current activity, i.e., ai is equal
to 1 only if the currently displayed activity is the i-th activity; it is equal to 0 for all the other
activities. The second part of the state vector, node0, ...nodem represents all the nodes of the
paths that lead to a specific vulnerability. When a specific node is traversed by the last action
generated by RONIN I set the corresponding node flag to 1; un-executed nodes have their flag
set to 0.

Action Representation. Each time RONIN takes action, it manipulates a previously generated
Intent. RONIN mutates an Intent by adding, removing, or modifying one of its parameters.
Hence, an action a = ⟨a0, a1, a2⟩ is 3-dimensional: the first component a0 specifies which type
of action RONIN will apply to one of the Intent parameters. If zero, RONIN will remove a
parameter from the Intent. Otherwise, if one is, it will add/modify the corresponding parameter.
The second component a1 encodes the index of the parameter to be manipulated. The third
component a2 specifies which payload is associated with the parameter selected by the previous
action component. For example, RONIN can associate to a boolean parameter the payloads True
or False. Transition Probability Function. The transition function P determines which state

61



the application can transit to after RONIN has taken action. This is decided solely by the app’s
execution: RONIN passively observes the process, collecting the new state after the transition.

Reward Function. The RL algorithm RONIN uses receives a reward rt ∈ R every time it executes
an action at. I define the following reward function:

rt =


Γ1 if dist from vuln()t = 0

Γ2 if dist from vuln()t − dist from vuln()t−1 < 0

−Γ2 if dist from vuln()t − dist from vuln()t−1 > 0

Γ0 if dist from vuln()t − dist from vuln()t−1 = 0

(5.1)

with Γ1 ≫ Γ2 ≫ Γ0 (in our implementation Γ0 = 0, Γ1 = 10, Γ2 = 1).

At the time t, the reward rt is positive (Γ1) if RONIN was able to trigger the selected vulnera-
bility, i.e., the distance from the vulnerability is zero. When an action takes RONIN closer to
the vulnerability without triggering it for the previous execution, the reward is slightly positive
(Γ2). The reward is negative (−Γ2) when the action taken does not reach the target and de-
creases the distance from the vulnerability concerning the last execution. If the distance from the
vulnerability remains the same as in the last execution, the reward is neutral (Γ0 = 0).

5.4 Evaluation

I seek to address the following research questions:

• RQ1 To what extent can RONIN identify exploits for the three types of vulnerabilities
described? Exploit generation is the ultimate goal of RONIN. I evaluate RONIN’s exploit
generation capability by considering both exploits and unique exploits. I aim to evaluate
the ability of RONIN to generate multiple different exploits.

• RQ2 How does RONIN compare with the state-of-the-art on a vulnerability benchmark? I
aim to evaluate the performance of RONIN in comparison with one baseline, Letterbomb.
To the best of our knowledge, Letterbomb represents the state-of-the-art and produces a
diversified set of exploits capable of triggering a vulnerability. I evaluate the two tools on
a benchmark to understand their key differences.

• RQ3 How does RONIN compare with the state-of-the-art on apps obtained from the wild?
I aim to evaluate the performance of RONIN and Letterbomb in detecting the three con-
sidered vulnerabilities in the wild, considering a set of apps coming from the Google Play
Store.

62



• RQ4 How does RONIN behave when the generation of GUI events is disabled? I aim to
evaluate RONIN’s performance in detecting the three considered vulnerabilities when GUI
event generation is disabled (ablation study).

• RQ5 How does RONIN behave when Deep RL is substituted with a random algorithm?
I aim to evaluate RONIN’s performance in detecting the three considered vulnerabilities
when it generates Intents using a random algorithm (ablation study).

5.4.1 Evaluation Design

To evaluate the proposed approach, I used the software subjects from the Ghera dataset [MR17]
and the Google Play Store. Ghera contains benign apps with vulnerabilities related to Crypto,
ICC, Networking, NonAPI, Permission, Storage, System, and Web APIs. From the Ghera
dataset, I used three ICC apps that contain four vulnerabilities related to IDOS, XAS, and FI.
I randomly selected 1500 apps from the Google Play Store among the 20k most downloaded
apps. Such apps are the top free Android apps ranked by the number of installations according
to Androidrank [21], and have been downloaded from the Google Play Store between Dec. 2021
and Jan. 2022.

5.4.2 Evaluation Procedure

With RQ1, I evaluated RONIN in terms of: 1) How many apps coming from Google Play Store
are vulnerable; 2) How many exploits can RONIN generate; 3) how many of them are unique
exploits.

In RQ2, I compare RONIN to Letterbomb on three apps from the Ghera dataset. These apps
contain four vulnerabilities (i.e., 3 IDOS, 1 FI). The objective is to successfully detect and then
exploit the vulnerabilities within the apps, obtaining a correct sequence of actions that fulfill the
exploitation of the vulnerability. I investigate the reasons behind the failures and successes of
both tools being compared.

In RQ3, I compare RONIN to Letterbomb on the number of generated exploits and unique ex-
ploits. Moreover, I evaluate whether the exploits generated by the two tools differ among them
or belong mostly to the same set.

In RQ4, I disable GUI events generation in RONIN to evaluate their impact on the overall per-
formance (number of exploits and number of unique exploits).

In RQ5, I randomly evaluate RONIN’s performance (number of exploits and number of unique
exploits) when generating Intents. I also compare the Deep RL and random algorithm on time
necessary to generate the first exploit in each of the exploited vulnerabilities. To account for non-

63



determinism, I applied the Wilcoxon non-parametric statistical test to conclude the difference
between Deep RL and the random algorithm, adopting the conventional p-value threshold at α =
0.05.

5.5 Experimental Results

5.5.1 RQ1: Exploit Generation

Table 5.1 (top) shows the results of RQ1, split by each of the three considered vulnerability types
(i.e., IDOS, XAS, and FI). In Column 2, I report the number of Google Play Store apps for which
RONIN statically detected a vulnerability, followed by the number of detected vulnerabilities. In
Column 4, I report the number of apps for which RONIN successfully generated an exploit
(Expl. Apps), followed by the number of successfully generated exploits and the number of
unique exploits, where an exploit is unique if it either reaches a unique vulnerable statement or,
in the case of FI, it successfully injects a unique Fragment.

RONIN successfully exploited 25 apps containing IDOS vulnerabilities, ten apps containing
XAS vulnerabilities, and one with an FI vulnerability. RONIN obtained 46 unique exploits and
180 total exploits for IDOS, 10 unique and 18 total exploits for XAS, and two unique and six total
exploits for FI. It should be noticed that a vulnerable statement may be exploited from more than
one program path, resulting in multiple non-unique exploits for the same vulnerable statement.
These results indicate that RONIN is capable of producing a sizeable number of exploits.

RONIN
Vuln. Type Apps Vulnerabilities Expl. Apps Exploits Unique Expl.

IDOS 537 867 25 180 46
XAS 158 134 10 18 10

FI 28 31 1 6 2
Letterbomb

IDOS 1232 1523 12 74 15
XAS 174 231 3 10 3

FI 84 119 0 0 0

Table 5.1: Detected vulnerabilities and generated exploits

Bench. App Vuln. Letterbomb RONIN
Detected Exploited Detected Exploited

FragmentInjec. IDOS ✗ ✗ ✓ ✓
FI ✗ ✗ ✓ ✓

UnhandledExc. IDOS ✓ ✗ ✓ ✓
UnprotectedBroad. IDOS ✗ ✗ ✓ ✓

Table 5.2: Comparison between RONIN and Letterbomb on Ghera

64



5.5.2 RQ2: Comparison with Letterbomb on Ghera

Table 5.2 shows the comparison between RONIN and Letterbomb on the apps from the Ghera
dataset. RONIN detects the known ICC vulnerabilities in all the apps, while Letterbomb just only
one. In most cases of false negatives, Letterbomb fails to detect the lack of null checks when
executing backward data-flow analysis along the use-def chains. Listing 5.2 shows the IDOS
vulnerability of app UnprotectedBroadcastRecv-PrivEscalation-Lean at line 8. This vulnerabil-
ity can be exposed when the Intent provided to the BroadcastReceiver does not contain one of
the extra strings at lines 5-6. RONIN successfully detects the IDOS, while Letterbomb can not
identify the function sendTextMessage as a possible cause of a crash.
public class MyReceiver extends BroadcastReceiver {

@Override
public void onReceive (Context context, Intent intent) {

if (intent.getAction() != null && intent.getAction().equals("edu.ksu.cs.benign.myrecv")){
String number = intent.getStringExtra("number");
String text = intent.getStringExtra("text");
SmsManager smsManager = SmsManager.getDefault();
smsManager. sendTextMessage(number, null, "Benign: " + text, null, null);
Log.d("benign", "Message sent");

}
}

}

Listing 5.2: IDOS vulnerability occurring when either of the extra strings at lines 5-6 is not
supplied

Let us consider the exploited vulnerabilities (Columns 4 and 6 in Table 5.2). RONIN successfully
exploited all the statically detected vulnerabilities, while Letterbomb failed in exploiting the
single IDOS it was able to detect statically. The latter failure happened because Letterbomb
does not generate GUI events when trying to exploit a vulnerability. Listing 5.3 shows that
the vulnerability at line 12 in the app UnhandledException-DOS-Lean is triggered when the
button instantiated at line 3 is pressed. Once pressed, the button consumes the Intent (line 9),
then extracts the extra values (lines 10-11), and at last calls the function length on both extra
values. Suppose one of the extra values is unavailable; the app crashes. RONIN can exploit such
a vulnerability, firstly sending the correct Intent and secondly clicking on the button that uses the
payload coming from the Intent.

In summary, RONIN can detect and exploit all vulnerabilities in the Ghera benchmark, while
Letterbomb can detect just one vulnerability but can not exploit it.

1
2public void onResume() {
3super.onResume();
4Button button = (Button) findViewById(R.id.get);
5button.setOnClickListener(new View.OnClickListener(){
6@Override
7public void onclick(View v) {
8TextView textView = (TextView);
9MainActivitv.this.findViewById(R.id.concat);
10Intent intent = MainActivity.this.getIntent();
11String a = intent.getStringExtra("s1");
12String b = intent.getstringExtra("s2") ;
13textView.setText("total length:" + Integer.toString(a.Length() + b.Length()));
14}
15});
16}

65



Listing 5.3: IDOS vulnerability occurring when the button instantiated at line 3 is pressed

5.5.3 RQ3: Comparison with Letterbomb in the Wild

RONIN is the only approach that generates exploits in the wild for all the three types of vulnera-
bilities that both tools target. Table 5.1 (top vs bottom) shows the results of RONIN’s vulnerabil-
ity comparison with Letterbomb in the wild. For IDOS and XAS, RONIN generates three times
more unique exploits than Letterbomb. Letterbomb can not generate any exploits for FI, while
RONIN generates two exploits.

I also compared the two sets of vulnerabilities exploited by the two tools and found that 93% of
the vulnerabilities exploited by Letterbomb are also triggered by RONIN. RONIN does not cover
the remaining 7% of vulnerabilities because its static analysis does not detect them. Moreover,
12% of RONIN’s vulnerabilities are related to GUI events that Letterbomb can not manage.

Listing 5.4 shows an example of a vulnerability that Letterbomb does not exploit. This vulnera-
bility is similar to the one presented for RQ2. At line 12, I have an IDOS vulnerability contained
within the function attached to a button. If RONIN sends an Intent that does not contain the
extra parameter emergency number, the if condition at line 12 will generate a crash, raising
a NullPointerException. Letterbomb misses it because it does not generate GUI events to reach
vulnerable code.

In summary, RONIN can generate three times more unique IDOS/XAS exploits than Letter-
bomb and can generate FI exploits that Letterbomb misses.
call.setOnClickListener(new View.OnClickListener(){

@override
public void onClick(View view) {
Intent intent = getIntent();
String emergency_number = intent.getStringExtra("emergency_number");
if (ContextCompat.checkSelfPermission(getcontext(),

Manifest.permission.CALL_PHONE) != PackageManager.PERMISSION_GRANTED) {
ActivityCompat.requestPermissions(getActivity(), new String[]{Manifest.permission.CALL_PHONE}, REQUEST_CALL);

} else {
if (emergency_number.length() = 10) {

String dial = "tel:" + emergency_number;
startActivity(new Intent(Intent.ACTION_CALL, Uri.parse(dial)));

}
}

}
});

Listing 5.4: IDOS vulnerability occurring when the button attached to the onClick

5.5.4 RQ4: Disabling GUI Events

Table 5.3 shows the difference in behaviors when I disable GUI events in RONIN. The overall
number of unique exploits found by RONIN decreases by 7, 6 IDOS, and 1 XAS, respectively

66



(see Column 4 in Table 5.3). The number of exploited apps also decreases, specifically by five
apps (for IDOS). These results confirm that adding GUI event generation is extremely useful
for covering a broader range of vulnerabilities.

RONIN Without GUI Events
Vuln. Type Expl. Apps Exploits Unique Expl.

IDOS 20 (-20%) 162 (-10%) 40 (-13%)
XAS 10 14 (-22%) 9 (-10%)

FI 1 6 2

Table 5.3: RONIN’s reduced performance when GUI Events are disabled

5.5.5 RQ5: DeepRL vs Random

Table 5.4 shows the vulnerabilities exploited by RONIN when using random Intent generation
instead of Deep RL. The two approaches perform similarly regarding the number of exploited
apps and unique exploits. RONIN with the random method only misses two vulnerabilities and
one app. We can appreciate the difference between the two methods when looking at the total
number of generated exploits. Actually, RONIN with Deep RL generates 48 more exploits than
RONIN with the random method.

Let us now consider the time required by either version of RONIN to generate an exploit. Figure
5.3 shows the comparison between Deep RL and Random on one of the analyzed apps. When
the point lies on the x−axis (y = 0), the action did not generate any exploit at the corresponding
time step. When y equals 1, one of the two algorithms generates a valid exploit for the analyzed
app. The Deep RL approach remains more consistent than Random in generating exploits after
generating the first one, and it generates the first exploit earlier than random. The reason is that
once the Deep RL algorithm generates the first exploit, it is encouraged to generate new exploits
similar to the previous one, leveraging previous knowledge. On the contrary, the random method
does not have any memory of past actions, resulting in poor performance compared to Deep RL.

Figure 5.4 shows the distribution of the number of time steps needed to generate the first ex-
ploit for each of the apps under analysis. The Deep RL approach employs fewer time steps to
generate the first exploit, driven by the negative or the positive reward it receives. Instead, the
random approach could not leverage any information collected during the dynamic phase, so the
occurrence of the first exploit is unpredictable and is not consistent across runs. Moreover, the
Wilcoxon non-parametric statistical test demonstrates that the difference between the algorithms
is statistically significant (p-value < α).

In summary, while RONIN with random Intent generation can still generate almost the same
number of unique exploits as RONIN with Deep RL, the latter generates the first exploit much
earlier than Random, and it then continues to generate valid exploits much more consistently
than Random.

67



RONIN Random
Vuln. Type Expl. Apps Exploits Unique Expl.

IDOS 24 (-4%) 137 (- 24%) 44 (-5%)
XAS 10 14 (-22%) 10

FI 1 5 (-17%) 2

Table 5.4: RONIN’s reduced performance when random Intent generation is adopted and Deep
RL is disabled

Figure 5.3: Time required by Deep RL vs Random to generate an exploit

Figure 5.4: Distribution of the time steps required by Deep RL vs Random to generate the first
exploit

68



5.6 Discussion

This chapter presents RONIN, an approach for generating exploits for Android ICC vulnerabili-
ties through static analysis, Deep Reinforcement Learning-based dynamic analysis, and software
instrumentation. RONIN, achieves better results than state-of-the-art and baseline tools, im-
proving the number of exploited vulnerabilities. RONIN can generate three times more unique
IDOS/XAS exploits than Letterbomb and can generate FI exploits that are missed by Letter-
bomb.

69



Chapter 6

Focused Testing through Reinforcement
Learning

This chapter addresses the issue of developing a high-quality test suite to repeatedly cover a
given point in a program, with the ultimate goal of exposing faults affecting the given program
point. my approach, IFRIT, uses Deep Reinforcement Learning to generate diverse inputs while
keeping a high level of reachability of the desired program point. IFRIT achieves better results
than state-of-the-art and baseline tools, improving reachability, diversity, and fault detection.
The key algorithmic advantage of IFRIT over DFT is that it requires only runtime coverage
information from the subject under test. On the contrary, DFT requires that the subject under
test can undergo static symbolic execution and that the generated path constraints, once relaxed
by means of parametrization, can be solved by an SMT tool. The requirements of DFT limit
its practical applicability to simple numeric functions only. On the contrary, IFRIT requires
minimal runtime information on the coverage of the target statements, used to provide feedback
to the RL agent during training. Hence, it is generally applicable to any, arbitrarily complex,
software system. In terms of reachability and diversity, my empirical results show that IFRIT
is equally effective as or more effective than DFT when executed on subjects to which DFT is
applicable (i.e., the benchmark used in the original paper [MJS+21] that proposed DFT). Results
show also that IFRIT is applicable to programs that cannot be handled by DFT. On them, IFRIT
outperforms the only available baseline, which is random test input generation.

IFRIT gives the following major contributions to the state of the art:

• The first Deep RL approach to focused testing. By relying just on runtime coverage feed-
back, this approach is applicable to a wide range of programs.

• IFRIT, an open source tool, whose code is available at the URL: https://github.c
om/H2SO4T/IFRIT .

70



• An empirical study showing the effectiveness of my approach in comparison with existing
and baseline techniques.

6.1 Approach

IFRIT (reInFoRcement learnIng for focused Testing) is an approach to focused testing based
on Deep RL. Figure 6.1 shows an overview of IFRIT. The RL environment is represented by a
program P under test, which is subject to several interaction steps. The objective is to generate
inputs that reach a program point pp ∈ P (see Section II). At each time step, IFRIT observes the
code coverage measured on the program, computes the state st, the reward rt, and chooses an
action at used to generate a new input for the program. Then, it iterates, receiving the next code
coverage st+1 and reward rt+1 (not shown in Figure 6.1).

Intuitively, if the new state st+1 reaches the target point in the program with new input, the reward
is positive; it is neutral if such input is not new. Otherwise, if the target is not reached, the reward
is negative.

The reward is used to update the neural network, which learns how to guide the Deep RL al-
gorithm to generate useful inputs for the program. The actual update strategy depends on the
selected Deep RL algorithm.

Figure 6.1: The IFRIT testing workflow. Code coverage is extracted (e.g., by gcovr, a utility for
generating summarized code coverage results), from which IFRIT generates the state st and then
determines the reward rt for the chosen action at. By choosing an action at, IFRIT generates a
new input that stimulates the program under test.

71



6.1.1 Instantiating RL for Focused Testing

To apply RL, I have to map the problem of focused testing to the standard mathematical formal-
ization of RL: an MDP, defined by the 5-tuple, ⟨S,A,R, P, ρ0⟩. Moreover, I have to map the
testing problem onto an RL task divided into several finite-length episodes.

State Representation

The state st ∈ S is defined as a combined state (b0, ...bn, i0, ...im). The first part of the state
b0, ...bn represents the frequency of branch coverage during the last program execution, i.e., bi is
equal to k > 0 if the i-th branch of the program has been taken k times; it is equal to 0 if it was
not traversed at all. The second part of the state vector, i0, ...im is equal to the last vector of input
values generated by IFRIT. This means that the last execution of program P was performed by
calling P (i0, ..., im), where ⟨i0, ...im⟩ is called the input vector.

Action Representation

Each time IFRIT takes action, it manipulates a previously generated input (e.g., a number or
a string) by using modifiers. Modifiers mutate an input value based on the type of such input.
Hence, an action a = ⟨a0, a1, a2⟩ is 3-dimensional: the first component a0 encodes the index of
the input vector to be manipulated. In fact, in the general case a program accepts a vector of input
values as input, and an action a will manipulate only one of them. The second component a1
specifies the data to use to manipulate the input, depending on the context. The third component
a2 specifies how to use the second component on the input, i.e., what operation to apply using
the second component as a parameter for such operation.

Numeric Input Manipulation. When managing numerical inputs, the starting input vector con-
tains only zeros. The mutation of numeric input is done by using scale factors and operands.
The first component (i) of the action indicates which portion of the input vector to modify
(input[i]). The second component (scale_factor) indicates the scale factor, and the
third specifies the operation (<op>) associated with that scale factor: input[i] <op> scale_
factor, where <op> can be any arithmetic operator among +, -, *, /.

String Input Manipulation. When managing string inputs, the starting input is a vector of empty
strings. IFRIT mutates the string by iteratively adding or removing characters to/from the input.
The first component of the action indicates which portion of the input vector to modify. The
second component indicates which char to use, and the third specifies the operation to perform
(i.e., add char at the beginning, append char at the end, and remove char at the beginning/end).
In the case of remove, the second component is not used.

72



Transition Probability Function

The transition function determines which state the program can go to after IFRIT has taken
action. In our case, this is decided solely by the program’s execution: IFRIT observes the process
passively, collecting the new state after the program’s execution has occurred.

Reward Function

The RL algorithm used by IFRIT receives a reward rt ∈ R every time it executes an action at. I
define the following reward function:

rt =



Γ1 if input(st+1) ̸∈ inputs(Ej) ∧
x ∈ Xpp

Γ0 if input(st+1) ∈ inputs(Ej) ∧
x ∈ Xpp

−Γ1 x ̸∈ Xpp.

(6.1)

with Ej the current episode and Γ1 > Γ0 ≥ 0 (in our implementation Γ0 = 0, Γ1 = 1). This
structure of the reward function and the chosen reward values are widely used in the literature in
several different contexts [MKS+13] [LHP+15].

The exploration of IFRIT is divided into episodes. At time t, the reward rt is positive (Γ1) if
IFRIT was able to reach the selected program point pp with an input never generated during the
current episode Ej (i.e., the current input does not belong to the set of inputs generated so far in
Ej): if a new episode Ej+1 is started at t+ 1, its set of inputs is reset: inputs(Ej+1) = ∅.

When an input that reaches the target has already been generated before in the same episode, the
reward is zero (Γ0), as it is no more useful during the current episode, but it remains a good input
for the given task.

Resetting the set of generated inputs at the beginning of each new episode is a technique that
encourages IFRIT to generate a high number of different inputs in each episode, which in turn
makes the reward positive several times in the episode. In contrast, if I provide the algorithm a
significant, positive reward only a few times (i.e., “sparsely”), e.g., because I have seen all new
inputs already in previous episodes, the information to learn the optimal state-action combina-
tions might be insufficient. The algorithm might fail to reproduce the sequence of actions leading
to a high reward in the future, and the performance of the algorithm results be poor. On the con-
trary, another pattern to avoid is rewarding every successful input, regardless of its novelty, as
this would encourage cycling behaviors [CA16]. Our definition of the reward function tries to
balance the frequency of positive rewards and the avoidance of cycling behaviors by rewarding

73



positive inputs that are novel just in the current episode, not across all past episodes. The reward
is negative (−Γ1) when the input does not reach the target (i.e., the selected program point pp).

6.2 Implementation

IFRIT features a custom environment based on the OpenAI Gym [BCP+16] interface, which
is a de-facto standard in the RL field. OpenAI Gym is a toolkit for designing and comparing
RL algorithms and includes several built-in environments. It also contains guidelines for the
definition of custom environments. Our custom environment interacts with a C program.

6.2.1 Tool Overview

As soon as it is launched, IFRIT automatically generates a configuration file that contains in-
formation about the C program under test. The configuration file includes several data useful
for compilation and the execution of the program (e.g., how many parameters the program takes
as input, the type of each input, the target file, the target program point pp). Afterward, IFRIT
instantiates a custom environment compatible with the C program and starts the testing phase.
At each time step, IFRIT takes an action (i.e., modifies the input vector) according to the behav-
ior of the exploration algorithm. Once the action has been fully processed, which includes the
execution of the C program, IFRIT elaborates the code coverage information, from which IFRIT
computes the observation and the reward for the algorithm.

IFRIT organizes the whole testing session into finite-length episodes. The goal of IFRIT is to
maximize the total reward received during each episode. Every episode lasts 24000-time steps.
To select the ideal episode boundaries, I conducted a preliminary experiment on a subset of
programs coming from CodeFlaws (CF)[TYM+17]. On this subset, I trained the same Deep RL
algorithm by varying the episode length. Training characterized by short episodes results in poor
performance due to the impossibility of exploring the input space. Similarly, long episodes took
too much training time. Once an episode comes to an end, IFRIT resets the input vector to the
default value, and then it uses the acquired knowledge to reach the target of the C program in the
next episode. Figure 6.2 shows an example of numeric input manipulation. IFRIT generates an
action that contains the rules to modify the previous input vector (a). I select the parameter of (a)
indicated by the action and add to it the third scale factor (i.e., three). The new input vector (b)
is now used to stimulate the program under test (not shown in the figure).

74



Figure 6.2: The IFRIT action vector [0, 2, 1] indicates that the input element at index 0 should be
modified by applying the operator at index 1 (i.e., ‘+’) with the scale factor at index 2 (i.e., ‘3’).
The new input element at index 0 becomes thus equal to 3 (i.e., 0+3).

6.2.2 Program Environment

The application environment is responsible for handling the actions to interact with the program.
Since the environment follows the guidelines of the Gym interface, it is structured as a class with
two key functions. The first function init(configuration_file) is the initialization of
the class. The additional parameter configuration_file consists of a dictionary contain-
ing the program tester setup and the program to be tested. The second function is the step(a)
function, that takes an action a as input and returns a list of objects, including observation
(code coverage state) and reward.

6.2.3 Algorithm Implementation

IFRIT exploits Stable Baselines [HRE+18], a modular library that adopts a plugin architecture
to integrate the RL algorithm to use. In the current implementation, IFRIT provides two ex-
ploration strategies: (1) random, and (2) PPO. The random algorithm interacts with the pro-
gram by randomly selecting a mutation to perform on the input vector. Currently, one Deep
RL algorithm is available in IFRIT: PPO. Its implementation comes from the Python library
Stable Baselines. IFRIT is publicly available as open-source software at the URL: https:
//github.com/H2SO4T/IFRIT.

6.3 Evaluation

I seek to address the following research questions:

75



• RQ0 Which scale factors provide the best configuration of IFRIT? Selecting proper scale
factors is essential to maximize the performance in terms of reachability and uniformity of
IFRIT. I conducted a preliminary experiment to determine the optimal scale factors to use.

• RQ1 What proportion of inputs generated by IFRIT reaches the target point of the pro-
gram under test and how uniform are such inputs? To evaluate the usefulness of IFRIT, I
analyzed two key aspects: uniformity and reachability.

• RQ2 How do the test suites generated by IFRIT compare to those generated by the state-
of-the-art tool DFT and random generators in terms of uniformity and reachability? What
is the time required to produce them? I aim to evaluate the reachability and diversity of
IFRIT in comparison with three baselines, namely, a pseudo-random generator (Random),
Random Mutations, and DFT. To the best of our knowledge, DFT is the only test input
generator with focused testing, producing a diversified set of test inputs capable of reaching
the target. Random performs random uniform sampling of the input domain. It has the
highest possible (100%) uniformity level by construction, but it might produce only a few
or no inputs that reach the target. Random Mutations perform a uniform selection of the
input mutation to apply to a previously generated input. This means that it uses the same
mutation operators as IFRIT but applies them randomly instead of learning how to apply
them by means of RL.

• RQ3 What is the quality of the test suites generated by IFRIT concerning the state-of-
the-art, in terms of mutation killing capability and fault detection? Fault detection is the
ultimate goal of focused testing. I evaluate IFRIT’s fault detection by considering both mu-
tants and real faults. Mutation testing introduces small syntactic alterations to the program
(i.e., mutants). It measures the ability of a test suite to detect the errors caused by these al-
terations, i.e., the ability to kill the mutants. I aim to evaluate the ability of IFRIT to detect
these artificial faults, in comparison with three baselines, Random, Random Mutations,
and DFT. I also evaluate fault detection on real faults.

6.3.1 Evaluation Design

To evaluate the proposed approach, I used the software subjects coming from two open-source
software repositories: the Software-artifact Infrastructure Repository (SIR) [GRD06], and Code-
Flaws (CF) [TYM+17]. SIR contains C programs that accept numeric or string inputs. From
the SIR repository, I used tcas as a numeric program. It is used to avoid collisions in aircraft
systems. The tcas the program has 135 LoC and 40 branch statements. As programs that ac-
cept string input, I used printokens, printokens2, flex, gzip, grep. The programs
have 570 to 10459 LoC and 45 to 1065 branch statements. The CF repository includes 7,436 C
programs in total. Each of them has, on average, 50 LoC. Among these, around 3900 programs
have both a buggy and a fixed version. I randomly selected 100 pairs of buggy/fixed programs

76



for our experiment. These programs have an average of 10 branch statements. To identify the
program points pp on which I should focus the test generation process, I applied a tree edit dis-
tance algorithm to each program’s buggy and fixed versions. Finally, I evaluated the performance
of IFRIT, by computing reachability and uniformity.

6.3.1.1 Tree Alignment

The target point in our experiments is the one that contains the fault or the mutation. When this
error is fixed by adding new lines or deleting existing lines of code, the identification of the target
program is rather complex. Using Zhang and Shasha’s algorithm [ZS89], the alignment process
converts the programs into their abstract syntax trees and calculates the tree edit distance between
them. This algorithm provides the shortest sequence of edit commands at the node granularity
that converts one tree into another. Each node is labeled with the edit operation corresponding
to it, which can be transform, insert, delete, or keep. I set the program point after the modified
node in the fixed version using this information. In the presence of multiple modified lines, I
treat them all as target program points, with the beginning of each area serving as the program
point of interest. This ensures that IFRIT targets all modified code.

Figure 6.3: Example of alignment

Figure 6.3 shows an example of target point identification. In this example, the fix of the fault
requires deleting a line. I set the program point at line 5, immediately after the deleted node.

6.3.2 Evaluation Procedure

To answer RQ0, I conducted a preliminary experiment on numeric input manipulation. The
objective is to determine the optimal number of scale factors to use. I selected a subset of
10 programs coming from CodeFlaws (CF) [TYM+17]. I tested each program in 5 different
groups of scale factors. I selected scale factors that can ensure a good exploration of the input
space once combined, considering the input domain and the episode length during the testing
phase. Configurations A-B-C uses small scale factors that allow to easily generate inputs close

77



among them. Configurations D-E feature both small both large-scale factors that allow to quickly
traverse the input space.

To answer RQ1, I measure the performance of IFRIT in terms of reachability and uniformity. In
RQ2, I compare the same metrics concerning other baseline techniques. Every experiment was
repeated 20 times per program to account for the non-determinism of the algorithms involved.
Moreover, I checked whether there is a statistically significant difference between these distri-
butions by using the Wilcoxon rank sum test. When the p-value is smaller than 0.05, I consider
that there is a significant difference between IFRIT and the best-performing generator between
the opponents.

The last part (RQ3) compares the ability of IFRIT to detect mutants and real faults for the baseline
tools. I dedicate one hour of testing time per technique for each program point.

6.4 Experimental Results

6.4.1 Reachability and Uniformity

Configuration Scale Factors Reachability
A 1,2,3 90%
B 1,2,3,4,5 100%
C 3,4,5,6,7 92%
D 1,2,5,10 87%
E 1,2,5,10,100 83%

Table 6.1: The Configurations

Table 6.1 shows the reachability obtained with different configurations of scale factors of IFRIT.
Configuration B achieves the highest score in terms of reachability. When only a few scale
factors are used (i.e., Configuration A), IFRIT does not explore enough of the input space of the
programs and does not generate enough different inputs within the same episode. The problem
with the other configurations (i.e., Configurations C-D-E) is that they tend to generate sparse
inputs, which do not explore accurately the neighborhoods of the inputs that are close to those
reaching the program point. Configuration B has enough scale factors to explore the input space
at large, but at the same time, it has factors that are small enough to avoid overly big jumps in
the input space.

RQ0: Configuration B achieves the highest score in terms of reachability. Hence it has
been selected as the default configuration of IFRIT.

78



Repo IFRIT DFT Random Random Mutations

Size Reach. Unif. Time Reach. Unif. Time Reach. Time T. To IFRIT Reach. Unif. Time T. To IFRIT

CF

2000 100% 100%(M) 468 100% 85% 158 48% 8 17 60% 90% 12 20
6000 100% 95% (S) 468 99% 85% 483 51% 25 49 70% 90% 28 40
12000 88% 95% (M) 468 82% 80% 683 52% 53 90 53% 85% 59 98
24000 84% 90% (L) 468 81% 60% 1071 53% 97 153 51% 85% 108 178

tcas

2000 95% (S) 95% 477 85% 90% 161 9% 23 243 24% 85% 29 115
6000 93% (M) 90% 477 83% 85% 476 10% 70 651 20% 90% 82 381
12000 90% (M) 95% (S) 477 80% 85% 657 13% 140 969 19% 85% 157 744
24000 86% (S) 95% (S) 477 78% 85% 1034 13% 280 1852 14% 85% 284 1745

Table 6.2: Comparison on mean reachability and mean uniformity across the considered tools.
Boldface highlights the best results, when statistical significance is reached (the effect size is
summarized in brackets: N = Negligible; S = Small; M = Medium; L = Large).

Table 6.2 shows the comparison between IFRIT and baseline tools when dealing with programs
that accept only numeric inputs, as DFT can handle only this type of program. I chose a program
point at the beginning of each branch of each program in our corpus to measure reachability and
uniformity. When there is a statistically significant difference between IFRIT and the second best
performing generator according to the Wilcoxon test (p-value < 0.05), I show the performance
metric in boldface, including the Vargha-Delaney effect size in brackets (N = Negligible; S =
Small; M = Medium; L = Large).

To measure reachability, I read the traces produced by the instrumentation and verified that the
flag of the program point is active for the given test case. I calculated the percentage of tests that
reached their target program points for each test suite and showed their descriptive statistic in
Table 6.2 (mean). This table shows that the Random has the worst reachability results (around or
lower than 50%), and Random Mutations behave similarly. DFT performs well on the programs
coming from CodeFlaws. The metric “Time to IFRIT” (i.e., T. to IFRIT) in Table 6.2 is computed
for Random as the hypothetical time in minutes needed to produce the same number of inputs
that reach the target as IFRIT by continuing random generation beyond the test suite size limit
(indicated in column 2). For instance, if the test suite size is 2000 and the IFRIT reachability is
90% (Random reachability is 40%), I know that in total IFRIT has been able to produce 1800
(Random: 800) inputs that reach the target. Hence, the execution time of Random should be
multiplied by a factor ×2.25 (i.e., 1800/800) to generate the same number of reaching inputs
produced by IFRIT.

There is no advantage in using IFRIT rather than a random algorithm on simple programs like
the ones contained in CF. In fact, the time to achieve reachability with Random is lower than the
time that IFRIT takes to generate the same amount of inputs that reach the target. Instead, on
tcas it is clear that a random generator can not match the performance of IFRIT in a reasonable
amount of time. Considering DFT, its reachability on CF is close to that of IFRIT. This could be
due to the simplicity of the programs that the CF repository contains. On tcas, IFRIT performs
better than DFT, and the difference is statistically significant. This could be due to the higher
complexity of the program under test, which the symbolic execution component of DFT can not
handle efficiently.

79



I measured the uniformity of the approaches by running the L2-test, which requires the definition
of a distance metric and the associated ϵ-margin. I used ϵ = 0.05. This distance is smaller than
the traditional distance from the state-of-the-art experiments, where it is generally around 0.25
[DGPP16], hence setting a stricter criterion for the L2-test. I limited the number of samples
generated for the experiments considering the following domain sizes: 2,000, 6,000, 12,000,
and 24,000, respectively. The L2-test results are shown in Table 6.2. Percentages represent
the proportion of test suites generated for each program point that passed the L2-test. Because
it samples directly from the uniform distribution, Random passes the L2-test in all cases by
construction (its value is always 100%). Hence, it is not included in Table 6.2. IFRIT achieves
significant improvements in almost every scenario w.r.t. DFT.

Table 6.3 shows the comparison between IFRIT and baselines tools when dealing with programs
that accept string inputs. I could not test DFT in this scenario since it only generates numeric
inputs. The Random string generator, which builds up a random string length at first, and then it
generates random characters to fill the string, shows the worst reachability results. I do not report
its uniformity results because it generates a uniform distribution by construction. Random Muta-
tions, which randomly mutates previously computed strings, perform better than Random. Still,
the reachability of IFRIT is higher than that of Random Mutations, with statistical significance
and a large effect size. Looking at the metric “Time To IFRIT”, on simple programs (e.g., print-
tokens, and printtokens2 ), both Random and Random Mutations are more convenient to use than
IFRIT. IFRIT becomes more convenient to use when dealing with more complex programs (e.g.,
gzip and grep) and a test suite of size 6000. Figure 6.4 shows the reachability of the different
generators on tcas (with test suite size: 12,000) over time. Random is the fastest to terminate,
but its reachability is low compared to the other generators. DFT reaches a plateau after 500
minutes and remains quite stable until the end. This plot confirms that IFRIT is faster than DFT,
and achieves better results than Random and DFT.

RQ1: IFRIT produces test suites with a close to uniform distribution and it reaches the
target program point 85% of the times on average.

RQ2: IFRIT improves reachability and uniformity with respect to the baselines and state-
of-art tools.

Qualitative Analysis

Figure 6.5 shows an excerpt from tcas, which includes a target program point controlled by
the condition enabled && ((tcas_equipped && intent_not_known) || !tcas_
equipped). The boolean variables that appear in this condition are defined in previous state-
ments as boolean expressions that involve input variables (identifiers made of words starting

80



Figure 6.4: Reachability over time for IFRIT, DFT, and Random on tcas (with test suite size:
12,000).

with a capital letter and continuing with lower case letter, such as Other_Capability) and
constants (upper case identifiers, such as TCAS_TA).

The symbolic execution step of DFT will replace all program variables (e.g., tcas_equipped)
with the expressions defining them along the path of interest and will repeat the process recur-
sively until only input variables and constants are left. In the example in Figure 6.5, such sym-
bolic substitution produces a rather complex boolean expression for the condition controlling the
target. Indeed, the resulting symbolic condition contains 6 distinct input variables and 4 distinct
constants and involves 8 boolean or relational operators. Then, DFT relaxes the constraints by
introducing parameters to be optimized by a search algorithm. However, due to the complexity
of the parameterized expression, the SMT solver executed to find a solution either finds no solu-
tion (8% of the cases) or finds a diverging solution, i.e., a solution that respects the parameterized
constraints but does not lead to the target.

On the contrary, IFRIT’s incremental input mutation process can find a solution by exploring the
neighborhood of previously attempted candidate inputs. While initially such a search process is
mostly random, once any viable solution is found, the positive reward received by the RL algo-
rithm is consolidated into its exploration policy. Hence, in the next iterations, the RL algorithm
will exploit such accumulated knowledge to select the actions (input mutations) that are more
likely to lead to the target. At the same time, as a larger reward, Γ1 is granted only when new
inputs that reach the target are generated, the learned policy will avoid the mere repetition of
previous actions, which would re-generate the same inputs multiple times (this is associated with
a smaller reward Γ0), and will promote diversity in the generation process.

81



Repo IFRIT Random Mutations Random

Size Reach. Unif. Time Reach. Unif. Time T. To IFRIT Reach. Time T. To IFRIT

printtokens 2000 89% (L) 90% 523 51% 100% 70 123 40% 58 129

6000 86%(L) 85% 501 60% 95% 130 186 39% 112 246

printtokens2 2000 88% (L) 85% 502 56% 85% 74 116 37% 62 147

6000 84%(L) 90% 490 65% 85% 134 173 39% 117 252

flex 2000 83% (L) 80% 496 22% 85% 69 260 13% 65 415

6000 80% (L) 85% 478 32% 90% 123 307 15% 123 656

gzip 2000 70% (L) 85% 533 14% 85% 87 435 8% 75 656

6000 70% (L) 85% 520 22% 85% 160 509 10% 137 959

grep 2000 72% (L) 85% 487 12% 80% 92 552 9% 81 648

6000 71% (L) 85% 483 24% 85% 174 514 13% 143 781

Table 6.3: Reachability and uniformity across the considered tools. Boldface highlights the best
results, when statistical significance is reached (the effect size is summarized in brackets: N =
Negligible; S = Small; M = Medium; L = Large).

Overall, the reachability of IFRIT for this target branch was 92%, while DFT had reachability of
80%. At the same time, IFRIT passed the uniformity L2 test 90% of the time.

6.4.2 Mutation Score and Faults Detected

I evaluate IFRIT in terms of mutation score and number of faults detected and compare it with the
baseline techniques. I created up to 100 mutants per program using Milu [JH08]. I did not filter
the generated mutants. I used the same test suite on both the mutant and the original program
to see if they produce different results. When the test results differ, I conclude that the test suite
strongly kills the mutant. The mutation score represents the percentage of mutants that were
killed. I used the alignment algorithm described in Section VI to determine the program point
where the mutation or the fault is located. I allocate one hour of testing time per technique for
each program point.

Table 6.4 shows the mutation score and percentage of faults detected for each technique and
repository. On numeric inputs, I compare Random, Random Mutation, DFT, and IFRIT. On CF,
IFRIT performs statistically better than DFT in killing mutants. The effect size is small. On
tcas, IFRIT is statistically better both in killing mutants and in fault detection. Considering the
programs that accept string inputs, IFRIT reaches up to 61% improvement in mutation score and
up to 59% improvement in detecting real faults.

Figure 6.6 shows the asymptotic behavior of the different generators on tcas. DFT reaches a
plateau and remains quite stable earlier than IFRIT, which keeps a positive derivative all over
the allotted time budget, while Random and Random Mutations are not enough powerful to kill

82



Repo Mutants Faults

IFRIT DFT Random Rand. Mut. IFRIT DFT Random Rand. Mut.

CF 89%(S) 79% 71% 72% 81% 80% 74% 72%

tcas 85%(M) 73% 7% 10% 65% (S) 55% 10% 13%

IFRIT Rand. Mut. Random IFRIT Rand. Mut. Random

printtokens 80% (L) 32% 23% 73% (L) 40% 26%

printtokens2 74% (L) 38% 27% 75% (L) 35% 28%

flex 70% (L) 32% 25% 81% (L) 28% 23%

gzip 74% (L) 15% 13% 78% (L) 12% 17%

grep 70% (L) 14% 9% 73% (L) 9% 14%

Table 6.4: Mutation Score and Faults Detected on the two repositories in a Fixed Time Budget
(One hour). Boldface highlights the best results, when statistical significance is reached (the
effect size is summarized in brackets: N = Negligible; S = Small; M = Medium; L = Large).

Figure 6.5: Example of a conditional branch from tcas, where the DFT parameterized con-
straints are unsatisfiable or divergent, while IFRIT input mutations are guided toward the target.

a significant proportion of mutants. This plot confirms that IFRIT outperforms the rest of the
tools, achieving better results even on the SIR repository.

RQ3: On every repository, IFRIT performs better than the baselines, with an improvement
between 18% and 78% on mutation score, and between %7 and %61 on fault detection.

83



Figure 6.6: Mutation score over time for IFRIT, DFT, and Random on tcas.

6.5 Threats to Validity

Construct Threats. Our definition of diversity may pose a threat to construct validity. Due to its
grounding in information theory, I used uniformity as a measure of diversity. Other authors, on
the other hand, use test case similarity metrics. It is possible that different findings would have
been obtained if similarity measures had been used instead of relying on diversity/distance.

External Threats. Our experiments are performed on open-source code repositories. Although
our subjects have been previously used in the literature [MJS+21, CKMT10, SDM+18], our
results might not generalize to other subjects or programming languages.

6.6 Discussion

IFRIT improves the quality of fault detection and mutation killing when a focused test suite that
reach a given target is to be generated automatically. By using Deep RL, our approach enhances
the diversity of the test suite, making the input distribution close to a uniform distribution. Empir-
ical results show that the quality of the test suites generated by IFRIT significantly outperforms
random generation and the state-of-the-art tool DFT. Moreover, IFRIT is faster in generating big
test suites since it does not rely on symbolic execution.

84



6.6.1 Future extensions

The current implementation of IFRIT is limited to the manipulation of numeric and string inputs
only. However IFRIT can be extended to deal with types such as structures and pointers, by
recursively applying the generators for strings and numbers, for structure fields that belong to
these two types, and by choosing abstract memory references to typed data structures from a
pool of available memory references, when pointers are used as structure fields. This extension
of IFRIT is part of the ongoing tool development.

Another potential extension of IFRIT would be to add support for other programming languages.
Given the black-box nature of the RL algorithm being used, the main limitations are technologi-
cal (e.g., how to collect coverage information) rather than conceptual.

85



Chapter 7

Conclusion

This thesis addresses the problem of automatically generating test cases for applications through
Deep Reinforcement Learning. This problem has been investigated from different viewpoints.
This thesis explored both GUI testing and security testing for test cases generation. Subsequently,
this thesis presented a focused testing approach capable of increasing the number of test cases
that can reach a specific target to better exhibit the bugs exposed by previous testing techniques.

I studied the problem of automated GUI testing of Android apps, proposing an approach based on
Deep RL. The approach is implemented in the open-source tool ARES. The AUT represents the
RL environment subject to several interaction steps. At each time step, assuming the GUI state
is st, and the reward is rt, ARES first takes an action at. Then, it receives the new GUI state st+1

of the AUT, and a reward rt+1. If the new state st+1 is similar to the prior state st, the reward is
negative. Otherwise, the reward is positive. In this way, ARES promotes the exploration of new
states in the AUT, assuming that this is useful for testing the application more thoroughly. The
reward is used to update the neural network, which learns how to guide the Deep RL algorithm
to explore the AUT. The AUT’s best exploration strategy is automatically learned as the test
progresses. ARES outperformed all the considered baselines in terms of coverage achieved over
time and exposed bugs.

In this thesis, I also studied the issue of generating exploits for a subset of Android ICC vulner-
abilities (i.e., IDOS, XAS, and FI) through static analysis, Deep Reinforcement Learning-based
dynamic analysis, and software instrumentation. More in detail, RONIN takes as input a mobile
app. It starts the static analysis that outputs all the identified vulnerable statements within the
AUT. According to the information coming from the static analysis, the AUT is instrumented
to let RONIN’s dynamic analysis verify whether a vulnerability has been triggered. During the
dynamic analysis, RONIN stimulates the AUT with Intents crafted through Deep RL and ran-
dom GUI events to confirm whether the statically identified vulnerabilities can be exploited. The
RONIN approach achieved better results than state-of-the-art and baseline tools in the number of

86



exploited vulnerabilities.

At last, I studied the issue of developing a test suite to repeatedly cover a given point in a pro-
gram, with the ultimate goal of exposing faults affecting the given program point. The approach,
IFRIT, uses Deep Reinforcement Learning to generate diverse inputs while maintaining a high
reachability of the desired program point. IFRIT achieves better results than state-of-the-art and
baseline tools, improving reachability, diversity, and fault detection.

7.1 Open Research Directions

The results of this thesis open new research directions toward the automatic generation of effec-
tive test cases for interactive and non-interactive applications.

RONIN: Potential Extensions RONIN approach proved effective in exploiting certain classes of
ICC vulnerabilities in Android apps. However, the current version of RONIN only supports the
automatic exploitation of three categories of vulnerabilities. Potential future extensions include
the application of RONIN to other complex attack patterns, e.g., multi-app attack scenarios such
as colluded applications [RCT+14] and confused deputy attacks [WCB+15].

RL-based Black-box Testing of IoT Devices through Mobile Apps. The huge pervasiveness
of interacting IoT devices is enabling unprecedented application scenarios. Although the IoT
paradigm is increasing in terms of features and supporting frameworks, the same maturity is still
not achieved from a cybersecurity standpoint. More specifically, I argue that a missing security
enabler is a methodology that supports the systematic detection of vulnerabilities in IoT firmware
and apps in a technology-agnostic way. Investigating an approach that leverages Reinforcement
Learning techniques to test IoT devices without accessing their firmware could be interesting.
The key idea is that IoT devices are controlled through their companion mobile app. “Command
and control” attacks are carried on thanks to companion apps.

87



Bibliography

[Ach18] Josh Achiam. Key concepts in rl, 2018.

[AFT+12] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M Memon. Using gui ripping for automated testing of
android applications. In 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 258–261. IEEE, 2012.

[AFT+14] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta,
and Atif M Memon. Mobiguitar: Automated model-based testing of mobile apps.
IEEE software, 32(5):53–59, 2014.

[AGB+16] Iftekhar Ahmed, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen.
Can testedness be effectively measured? In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2016, page 547–558, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[AGGC16] Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi. Gener-
ating focused random tests using directed swarm testing. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, pages 70–81, 2016.

[AH12] Nadia Alshahwan and Mark Harman. Augmenting test suites effectiveness by in-
creasing output diversity. In Proceedings of 34th International Conference on Soft-
ware Engineering, ICSE, pages 1345–1348, 2012.

[ANHY12] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Automated
concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, pages 1–11,
2012.

[app20a] Appbrain, 2020.

[App20b] Appium, 2020.

88



[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[atlay] atlasVPN. Over 60% of android apps have security vulnerabilities. https://
atlasvpn.com/blog/over-60-of-android-apps-have-securit
y-vulnerabilities, Accessed in January 16, 2023.

[AYS16] Mohammed K Alzaylaee, Suleiman Y Yerima, and Sakir Sezer. Dynalog: An au-
tomated dynamic analysis framework for characterizing android applications. In
2016 International Conference On Cyber Security And Protection Of Digital Ser-
vices (Cyber Security), pages 1–8. IEEE, 2016.

[Bac96] Thomas Back. Evolutionary algorithms in theory and practice: evolution strate-
gies, evolutionary programming, genetic algorithms. Oxford university press,
1996.

[BBGM10] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the art: Auto-
mated black-box web application vulnerability testing. In 2010 IEEE symposium
on security and privacy, pages 332–345. IEEE, 2010.

[BCF+08] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In 2008 IEEE Symposium on
Security and Privacy (sp 2008), pages 387–401, 2008.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[BGZ18] Nataniel P Borges, Maria Gómez, and Andreas Zeller. Guiding app testing with
mined interaction models. In 2018 IEEE/ACM 5th International Conference on
Mobile Software Engineering and Systems (MOBILESoft), pages 133–143. IEEE,
2018.

[BM95] Justin A Boyan and Andrew W Moore. Generalization in reinforcement learning:
Safely approximating the value function. In Advances in neural information pro-
cessing systems, pages 369–376, 1995.

[BP14] Marcel Böhme and Soumya Paul. On the efficiency of automated testing. In Pro-
ceedings of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering, pages 632–642, 2014.

89



[BSGM15] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. Covert: Com-
positional analysis of android inter-app permission leakage. IEEE transactions on
Software Engineering, 41(9):866–886, 2015.

[BSRT19] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Diversity-based
web test generation. In Proceedings of the ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software En-
gineering, ESEC/SIGSOFT FSE, pages 142–153, 2019.

[CA16] Jack Clark and Dario Amodei. Faulty reward functions in the wild, 2016.

[CCYW16] Lin Cheng, Jialiang Chang, Zijiang Yang, and Chao Wang. Guicat: Gui testing
as a service. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 858–863, 2016.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI, pages 209–224, 2008.

[CFGW11] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing
inter-application communication in android. In Proceedings of the 9th international
conference on Mobile systems, applications, and services, pages 239–252, 2011.

[CGLX15] Chen Cao, Neng Gao, Peng Liu, and Ji Xiang. Towards analyzing the input valida-
tion vulnerabilities associated with android system services. In Proceedings of the
31st Annual Computer Security Applications Conference, pages 361–370, 2015.

[CGO15a] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated test
input generation for android: Are we there yet?(e). In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 429–440.
IEEE, 2015.

[CGO15b] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated test
input generation for android: Are we there yet?(e). In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 429–440.
IEEE, 2015.

[CGO15c] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated test
input generation for android: Are we there yet?(e). In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 429–440.
IEEE, 2015.

90



[CKMT10] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. Adaptive
random testing: The art of test case diversity. Journal of Systems and Software,
83(1):60–66, 2010.

[CMV13] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. A scalable approx-
imate model counter. In International Conference on Principles and Practice of
Constraint Programming, pages 200–216. Springer, 2013.

[Cov99] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[CQX+20] Wang Chao, Li Qun, Wang XiaoHu, Ren TianYu, Dong JiaHan, Guo GuangXin,
and Shi EnJie. An android application vulnerability mining method based on static
and dynamic analysis. In 2020 IEEE 5th Information Technology and Mechatronics
Engineering Conference (ITOEC), pages 599–603. IEEE, 2020.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three
decades later. Communications of the ACM, 56(2):82–90, 2013.

[DBCR20a] Zhen Dong, Marcel Bohme, Lucia Cojocaru, and Abhik Roychoudhury. Github
repository: Timemachine, 2020.

[DBCR20b] Zhen Dong, Marcel Bohme, Lucia Cojocaru, and Abhik Roychoudhury. Time-
travel testing of android apps. In Proceedings of the 42nd International Conference
on Software Engineering (ICSE), pages 481–492, 2020.

[DC20] Biniam Fisseha Demissie and Mariano Ceccato. Security testing of second or-
der permission re-delegation vulnerabilities in android apps. In Proceedings of
the IEEE/ACM 7th International Conference on Mobile Software Engineering and
Systems, pages 1–11, 2020.

[DCS20] Biniam Fisseha Demissie, Mariano Ceccato, and Lwin Khin Shar. Security analysis
of permission re-delegation vulnerabilities in android apps. Empirical Software
Engineering, 25(6):5084–5136, 2020.

[Det22] CVE Details. Vulnerabilities by date, 2022.

[DGPP16] Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Collision-
based testers are optimal for uniformity and closeness. arXiv preprint
arXiv:1611.03579, 2016.

[emm06] Emma, 2006.

[EOM09] William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding android
security. IEEE security & privacy, 7(1):50–57, 2009.

91



[FA13] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Trans. Soft-
ware Eng., 39(2):276–291, 2013.

[FCH+11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android permissions demystified. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 627–638, 2011.

[FPCY16] Robert Feldt, Simon M. Poulding, David Clark, and Shin Yoo. Test set diameter:
Quantifying the diversity of sets of test cases. In Proceedings of IEEE International
Conference on Software Testing, Verification and Validation, ICST, pages 223–233,
2016.

[FvHM18] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

[FWM+11] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and Erika
Chin. Permission re-delegation: Attacks and defenses. In USENIX security sym-
posium, volume 30, page 88, 2011.

[GHGM17] Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek. Automatic
generation of inter-component communication exploits for android applications. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing, pages 661–671, 2017.

[GKKP09] Svetoslav Ganov, Chip Killmar, Sarfraz Khurshid, and Dewayne E Perry. Event lis-
tener analysis and symbolic execution for testing gui applications. In International
Conference on Formal Engineering Methods, pages 69–87. Springer, 2009.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In Proceedings of the ACM SIGPLAN 2005 Conference on Pro-
gramming Language Design and Implementation, pages 213–223, 2005.

[Goo19a] Google. Broadcasts, 2019.

[Goo19b] Google. Safety net, 2019.

[Goo20a] Google. Android emulator, 2020.

[Goo20b] Google. System-level events api 25, 2020.

[Goo20c] Google. Ui/application exerciser monkey, 2020.

[Goo22] Google. Intent, 2022.

92



[GR11a] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs.
In Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation, pages 68–75. Springer, 2011.

[GR11b] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs.
In Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation, pages 68–75. Springer, 2011.

[GRD06] Alex Kinneer Gregg Rothermel, Sebastian Elbaum and Hyunsook Do. Software-
artifact infrastructure repository, 2006.

[Gro22] Sable Research Group. Soot - a framework for analyzing and transforming java
and android applications, 2022.

[GSM+19] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. Practical gui testing of android applica-
tions via model abstraction and refinement. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 269–280. IEEE, 2019.

[GSS+20] Wunan Guo, Liwei Shen, Ting Su, Xin Peng, and Weiyang Xie. Improving au-
tomated gui exploration of android apps via static dependency analysis. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 557–568, 2020.

[GTDR18] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. Android testing
via synthetic symbolic execution. In 2018 33rd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 419–429. IEEE, 2018.

[Har07] Mark Harman. The current state and future of search based software engineering.
In Future of Software Engineering (FOSE’07), pages 342–357. IEEE, 2007.

[HCL22] HCL. Appscan, 2022.

[HCM10] Si Huang, Myra B. Cohen, and Atif M. Memon. Repairing gui test suites using
a genetic algorithm. In 2010 Third International Conference on Software Testing,
Verification and Validation, pages 245–254, 2010.

[HJ01] Mark Harman and Bryan F Jones. Search-based software engineering. Information
and software Technology, 43(14):833–839, 2001.

[HMZ12] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search-based soft-
ware engineering: Trends, techniques and applications. ACM Computing Surveys
(CSUR), 45(1):1–61, 2012.

93



[HN11] Cuixiong Hu and Iulian Neamtiu. Automating gui testing for android applications.
In Proceedings of the 6th International Workshop on Automation of Software Test,
AST ’11, page 77–83, New York, NY, USA, 2011. Association for Computing
Machinery.

[Hol79] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70, 1979.

[HRE+18] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex
Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and
Yuhuai Wu. Stable baselines. https://github.com/hill-a/stable-baselines, 2018.

[HTP15] Roee Hay, Omer Tripp, and Marco Pistoia. Dynamic detection of inter-application
communication vulnerabilities in android. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, pages 118–128, 2015.

[HYHW19] Yongzhong He, Xuejun Yang, Binghui Hu, and Wei Wang. Dynamic privacy leak-
age analysis of android third-party libraries. Journal of Information Security and
Applications, 46:259–270, 2019.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290, 2018.

[IH14] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with
test suite effectiveness. In Proceedings of the 36th International Conference on
Software Engineering, ICSE, pages 435–445, 2014.

[JH08] Yue Jia and Mark Harman. Milu: A customizable, runtime-optimized higher order
mutation testing tool for the full c language. In Testing: Academic Industrial Con-
ference - Practice and Research Techniques (taic part 2008), pages 94–98, 2008.

[Jia13] Yajin Zhou Xuxian Jiang. Detecting passive content leaks and pollution in android
applications. In Proceedings of the 20th Network and Distributed System Security
Symposium (NDSS), 2013.

[KLP17] Rody Kersten, Kasper Luckow, and Corina S. Păsăreanu. Poster: Afl-based fuzzing
for java with kelinci. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, page 2511–2513, New York,
NY, USA, 2017. Association for Computing Machinery.

94



[KSM+18] Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tan-
riverdi, and Yunus Donmez. Qbe: Qlearning-based exploration of android applica-
tions. In 2018 IEEE 11th International Conference on Software Testing, Verifica-
tion and Validation (ICST), pages 105–115. IEEE, 2018.

[LBB+15] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. Iccta: Detecting inter-component privacy leaks in android apps. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, vol-
ume 1, pages 280–291. IEEE, 2015.

[LDR16] Sungho Lee, Julian Dolby, and Sukyoung Ryu. Hybridroid: Static analysis frame-
work for android hybrid applications. In 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pages 250–261, 2016.

[Lee09] Edward A. Lee. Finite state machines and modal models in ptolemy ii. Tech-
nical Report UCB/EECS-2009-151, EECS Department, University of California,
Berkeley, Nov 2009.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[Li17] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017.

[Lin93] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical
report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

[LL05] V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java
applications with static analysis. In USENIX security symposium, volume 14, pages
18–18, 2005.

[LYGC19] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Humanoid: a deep
learning-based approach to automated black-box android app testing. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 1070–1073. IEEE, 2019.

[MAZ+15] Lei Ma, Cyrille Artho, Cheng Zhang, Hiroyuki Sato, Johannes Gmeiner, and
Rudolf Ramler. GRT: program-analysis-guided random testing (T). In Proceed-
ings of the 30th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, pages 212–223,
2015.

95



[MBN03] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. Gui ripping: Reverse en-
gineering of graphical user interfaces for testing. In 10th Working Conference on
Reverse Engineering, 2003. WCRE 2003. Proceedings., pages 260–269. Citeseer,
2003.

[MBNR13] Atif Memon, Ishan Banerjee, Bao N Nguyen, and Bryan Robbins. The first decade
of gui ripping: Extensions, applications, and broader impacts. In 2013 20th Work-
ing Conference on Reverse Engineering (WCRE), pages 11–20. IEEE, 2013.

[McM04] Phil McMinn. Search-based software test data generation: a survey. Softw. Test.
Verification Reliab., 14(2):105–156, 2004.

[MDM+15] Patrick Mutchler, Adam Doupé, John Mitchell, Chris Kruegel, and Giovanni Vigna.
A large-scale study of mobile web app security. In Proceedings of the Mobile
Security Technologies Workshop (MoST), volume 50, 2015.

[MHJ16] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing
for android applications. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, pages 94–105, 2016.

[Mic20] Microsoft. your device is rooted and you can’t connect-android, 2020.

[MJS+21] Héctor D Menéndez, Gunel Jahangirova, Federica Sarro, Paolo Tonella, and David
Clark. Diversifying focused testing for unit testing. ACM Transactions on Software
Engineering and Methodology (TOSEM), 30(4):1–24, 2021.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[MMM14] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid: Segmented evo-
lutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, pages 599–609,
2014.

[MMP05] Y Marhuenda, D Morales, and MC Pardo. A comparison of uniformity tests. Statis-
tics, 39(4):315–327, 2005.

[Mob22] MobSF. Mobile security framework (mobsf), 2022.

[MPRS12] Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro. Auto-
blacktest: Automatic black-box testing of interactive applications. In 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation,
pages 81–90. IEEE, 2012.

96



[MR17] Joydeep Mitra and Venkatesh-Prasad Ranganath. Ghera: A repository of android
app vulnerability benchmarks. In Proceedings of the 13th International Conference
on Predictive Models and Data Analytics in Software Engineering, PROMISE,
page 43–52, New York, NY, USA, 2017. Association for Computing Machinery.

[MRH20] Evgeny Mandrikov Marc R. Hoffmann, Brock Janiczak. Jacoco code coverage,
2020.

[MTN13] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input gener-
ation system for android apps. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 224–234, 2013.

[MX05] Atif M Memon and Qing Xie. Studying the fault-detection effectiveness of gui test
cases for rapidly evolving software. IEEE transactions on software engineering,
31(10):884–896, 2005.

[OLD+15] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick Mc-
Daniel. Composite constant propagation: Application to android inter-component
communication analysis. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 77–88. IEEE, 2015.

[OMJ+13] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. Effective {Inter-Component} communication
mapping in android: An essential step towards holistic security analysis. In 22nd
USENIX Security Symposium (USENIX Security 13), pages 543–558, 2013.

[PHW+20] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. Reinforce-
ment learning based curiosity-driven testing of android applications. In Proceed-
ings of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 153–164, 2020.

[PKT18] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test
case generation as a many-objective optimisation problem with dynamic selection
of the targets. IEEE Trans. Software Eng., 44(2):122–158, 2018.

[Pla83] Robin L Plackett. Karl pearson and the chi-squared test. International Statistical
Review/Revue Internationale de Statistique, pages 59–72, 1983.

[PLEB07] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In Proceedings of the 29th Interna-
tional Conference on Software Engineering, ICSE, pages 75–84, 2007.

[PRC+22] Francesco Pagano, Andrea Romdhana, Davide Caputo, Luca Verderame, and
Alessio Merlo. SEBASTiAn: a Static and Extensible Black-box Application Secu-
rity Testing tool for iOS and Android applications. 10 2022.

97



[PY08] Mauro Pezzè and Michal Young. Software testing and analysis: process, princi-
ples, and techniques. John Wiley & Sons, 2008.

[RCT+14] Tristan Ravitch, E Rogan Creswick, Aaron Tomb, Adam Foltzer, Trevor Elliott,
and Ledah Casburn. Multi-app security analysis with fuse: Statically detecting
android app collusion. In Proceedings of the 4th Program Protection and Reverse
Engineering Workshop, pages 1–10, 2014.

[Rie05] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient
neural reinforcement learning method. In European Conference on Machine Learn-
ing, pages 317–328. Springer, 2005.

[SAS+22] Christian Schindler, Müslüm Atas, Thomas Strametz, Johannes Feiner, and Rein-
hard Hofer. Privacy leak identification in third-party android libraries. In 2022
Seventh International Conference On Mobile And Secure Services (MobiSecServ),
pages 1–6. IEEE, 2022.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[SBGM16] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek. A taxonomy
and qualitative comparison of program analysis techniques for security assessment
of android software. IEEE Transactions on Software Engineering, 43(6):492–530,
2016.

[SDM+18] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and
Marcelo de Almeida Maia. Dissection of a bug dataset: Anatomy of 395 patches
from defects4j. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 130–140. IEEE, 2018.

[SLH+14] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Mar-
tin Riedmiller. Deterministic policy gradient algorithms. In Eric P. Xing and
Tony Jebara, editors, Proceedings of the 31st International Conference on Ma-
chine Learning, volume 32 of Proceedings of Machine Learning Research, pages
387–395, Bejing, China, 22–24 Jun 2014. PMLR.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine
for C. In Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 263–272, 2005.

[SMC+17a] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. Guided, stochastic model-based GUI testing
of android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations

98



of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8,
2017, pages 245–256, 2017.

[SMC+17b] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. System-level events api 19, 2017.

[Sta22] Statista. Number of available applications in the google play store. https:
//www.statista.com/statistics/266210/number-of-availab
le-applications-in-the-google-play-store, 2022.

[STDF14] Julian Schutte, Dennis Titze, and José Marı́a De Fuentes. Appcaulk: Data leak
prevention by injecting targeted taint tracking into android apps. In 2014 IEEE
13th International Conference on Trust, Security and Privacy in Computing and
Communications, pages 370–379. IEEE, 2014.

[SYB18] Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. A theoretical and empirical
study of diversity-aware mutation adequacy criterion. IEEE Trans. Software Eng.,
44(10):914–931, 2018.

[Syn22] Synopsys. The cost of poor software quality in the us: A 2020 report, 2022.

[TH02] Mustafa M Tikir and Jeffrey K Hollingsworth. Efficient instrumentation for code
coverage testing. ACM SIGSOFT Software Engineering Notes, 27(4):86–96, 2002.

[TM17] Vincent F Taylor and Ivan Martinovic. Short paper: A longitudinal study of fi-
nancial apps in the google play store. In International Conference on Financial
Cryptography and Data Security, pages 302–309. Springer, 2017.

[TSQ+19] Md Arabin Islam Talukder, Hossain Shahriar, Kai Qian, Mohammad Rahman,
Sheikh Ahamed, Fan Wu, and Emmanuel Agu. Droidpatrol: a static analysis plugin
for secure mobile software development. In 2019 IEEE 43rd annual computer soft-
ware and applications conference (COMPSAC), volume 1, pages 565–569. IEEE,
2019.

[TYM+17] Shin Hwei Tan, Jooyong Yi, Sergey Mechtaev, Abhik Roychoudhury, et al. Code-
flaws: a programming competition benchmark for evaluating automated program
repair tools. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering Companion (ICSE-C), pages 180–182. IEEE, 2017.

[VKCF+15] Tanja EJ Vos, Peter M Kruse, Nelly Condori-Fernández, Sebastian Bauersfeld, and
Joachim Wegener. Testar: Tool support for test automation at the user interface
level. International Journal of Information System Modeling and Design (IJISMD),
6(3):46–83, 2015.

99



[Voa92] Jeffrey M. Voas. PIE: A dynamic failure-based technique. IEEE Trans. Software
Eng., 18(8):717–727, 1992.

[WCB+15] Jianliang Wu, Tingting Cui, Tao Ban, Shanqing Guo, and Lizhen Cui. Paddyfrog:
systematically detecting confused deputy vulnerability in android applications. Se-
curity and Communication Networks, 8(13):2338–2349, 2015.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

[WRO18] Fengguo Wei, Sankardas Roy, and Xinming Ou. Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of android apps.
ACM Transactions on Privacy and Security (TOPS), 21(3):1–32, 2018.

[XGL+15] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu. Effective
real-time android application auditing. In 2015 IEEE Symposium on Security and
Privacy, pages 899–914. IEEE, 2015.

[Zal22] Michal Zalewski. American fuzzy lop (afl), 2022.

[ZS89] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM journal on computing, 18(6):1245–
1262, 1989.

100


