478 research outputs found

    Simulated Annealing with min-cut and greedy perturbations

    Get PDF
    Custom integrated circuit design requires an ever increasing number of elements to be placed on a physical die. The process of searching for an optimal solution is NP-hard so heuristics are required to achieve satisfactory results under time constraints. Simulated Annealing is an algorithm which uses randomly generated perturbations to adjust a single solution. The effect of a generated perturbation is examined by a cost function which evaluates the solution. If the perturbation decreases the cost, it is accepted. If it increases the cost, it is accepted probabilistically. Such an approach allows the algorithm to avoid local minima and find satisfactory solutions. One problem faced by Simulated Annealing is that it can take a very large number of iterations to reach a desired result. Greedy perturbations use knowledge of the system to generate solutions which may be satisfactory after fewer iterations than non-greedy, however previous work has indicated that the exclusive use of greedy perturbations seems to result in a solution constrained to local minima. Min-cut is a procedure in which a graph is split into two pieces with the least interconnection possible between them. Using this with a placement problem helps to recognize components which belong to the same functional unit and thus enhance results of Simulated Annealing. The feasibility of this approach has been assessed. Hardware, through parallelization, can be used to increase the performance of algorithms by decreasing runtime. The possibility of increased performance motivated the exploration of the ability to model greedy perturbations in hardware. The use of greedy perturbations while avoiding local minima was also explored

    On the Use of Directed Moves for Placement in VLSI CAD

    Get PDF
    Search-based placement methods have long been used for placing integrated circuits targeting the field programmable gate array (FPGA) and standard cell design styles. Such methods offer the potential for high-quality solutions but often come at the cost of long run-times compared to alternative methods. This dissertation examines strategies for enhancing local search heuristics---and in particular, simulated annealing---through the application of directed moves. These moves help to guide a search-based optimizer by focusing efforts on states which are most likely to yield productive improvement, effectively pruning the size of the search space. The engineering theory and implementation details of directed moves are discussed in the context of both field programmable gate array and standard cell designs. This work explores the ways in which such moves can be used to improve the quality of FPGA placements, improve the robustness of floorplan repair and legalization methods for mixed-size standard cell designs, and enhance the quality of detailed placement for standard cell circuits. The analysis presented herein confirms the validity and efficacy of directed moves, and supports the use of such heuristics within various optimization frameworks

    Efficient quadratic placement for FPGAs.

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are widely used in industry because they can implement any digital circuit on site simply by specifying programmable logic and their interconnections. However, this rapid prototyping advantage may be adversely affected because of the long compile time, which is dominated by placement and routing. This issue is of great importance, especially as the logic capacities of FPGAs continue to grow. This thesis focuses on the placement phase of FPGA Computer Aided Design (CAD) flow and presents a fast, high quality, wirelength-driven placement algorithm for FPGAs that is based on the quadratic placement approach. In this thesis, multiple iterations of equation solving process together with a linear wirelength reduction technique are introduced. The proposed algorithm efficiently handles the main problems with the quadratic placement algorithm and produces a fast and high quality placement. Experimental results, using twenty benchmark circuits, show that this algorithm can achieve comparable total wirelength and, on average, 5X faster run time when compared to an existing, state-of-the-art placement tool. This thesis also shows that the proposed algorithm delivers promising preliminary results in minimizing the critical path delay while maintaining high placement quality.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .X86. Source: Masters Abstracts International, Volume: 44-04, page: 1946. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005

    Placement and routing for reconfigurable systems.

    Get PDF
    Applications using reconfigurable logic have been widely demonstrated to offer better performance over software-based solutions. However, good performance rating is often destroyed by poor reconfiguration latency - time required to reconfigure hardware to perform the new task. Recent research focus on design automation techniques to address reconfiguration latency bottleneck. The contribution to novelty of this thesis is in new placement and routing techniques resulting in minimising reconfiguration latency of reconfigurable systems. This presents a part of design process concerned with positioning and connecting design blocks in a logic gate array. The aim of the research is to optimise the placement and interconnect strategy such that dynamic changes in system functionality can be achieved with minimum delay. A review of previous work in the field is given and the relevant theoretical framework developed. The dynamic reconfiguration problem is analysed for various reconfigurable technologies. Several algorithms are developed and evaluated using a representative set of problem domains to assess their effectiveness. Results obtained with novel placement and routing techniques demonstrate configuration data size reduction leading to significant reconfiguration latency improvements

    On The Engineering of a Stable Force-Directed Placer

    Get PDF
    Analytic and force-directed placement methods that simultaneously minimize wire length and spread cells are receiving renewed attention from both academia and industry. However, these methods are by no means trivial to implement---to date, published works have failed to provide sufficient engineering details to replicate results. This dissertation addresses the implementation of a generic force-directed placer entitled FDP. Specifically, this thesis provides (1) a description of efficient force computation for spreading cells, (2) an illustration of numerical instability in this method and a means to avoid the instability, (3) metrics for measuring cell distribution throughout the placement area, and (4) a complementary technique that aids in minimizing wire length. FDP is compared to Kraftwerk and other leading academic tools including Capo, Dragon, and mPG for both standard cell and mixed-size circuits. Wire lengths produced by FDP are found to be, on average, up to 9% and 3% better than Kraftwerk and Capo, respectively. All told, this thesis confirms the validity and applicability of the approach, and provides clarifying details of the intricacies surrounding the implementation of a force-directed global placer

    Runtime and quality tradeoffs in FPGA placement and routing

    Get PDF
    Abstract Many applications of FPGAs, especially logic emulation and custom computing, require the quick placement and routing of circuit designs. In these applications, the advantages FPGA-based systems have over software simulation are diminished by the long run-times of current CAD software used to map the circuit onto FPGAs. To improve the run-time advantage of FPGA systems, users may be willing to trade some mapping quality for a reduction in CAD tool runtimes. In this paper, we seek to establish how much quality degradation is necessary to achieve a given runtime improvement. For this purpose, we implemented and investigated numerous placement and routing algorithms for FPGAs. We also developed new tradeoff-oriented algorithms, where a tuning parameter can be used to control this quality vs. runtime tradeoff. We show how different algorithms can achieve different points within this tradeoff spectrum, as well as how a single algorithm can be tuned to form a curve in the spectrum. We demonstrate that the algorithms vary widely in their tradeoffs, with the fastest algorithm being 8x faster than the slowest, and the highest quality algorithm being 5x better than the least quality algorithm. Compared to the commercial Xilinx CAD tools, we can achieve a 3x speed-up by allowing 1.27x degradation in quality, and a factor of 1.6x quality improvement with 2x slowdown

    New FPGA design tools and architectures

    Get PDF

    FieldPlacer - A flexible, fast and unconstrained force-directed placement method for heterogeneous reconfigurable logic architectures

    Get PDF
    The field of placement methods for components of integrated circuits, especially in the domain of reconfigurable chip architectures, is mainly dominated by a handful of concepts. While some of these are easy to apply but difficult to adapt to new situations, others are more flexible but rather complex to realize. This work presents the FieldPlacer framework, a flexible, fast and unconstrained force-directed placement method for heterogeneous reconfigurable logic architectures, in particular for the ever important heterogeneous FPGAs. In contrast to many other force-directed placers, this approach is called ‘unconstrained’ as it does not require a priori fixed logic elements in order to calculate a force equilibrium as the solution to a system of equations. Instead, it is based on a free spring embedder simulation of a graph representation which includes all logic block types of a design simultaneously. The FieldPlacer framework offers a huge amount of flexibility in applying different distance norms (e. g., the Manhattan distance) for the force-directed layout and aims at creating adapted layouts for various objective functions, e. g., highest performance or improved routability. Depending on the individual situation, a runtime-quality trade-off can be considered to either produce a decent placement in a very short time or to generate an exceptionally good placement, which takes longer. An extensive comparison with the latest simulated annealing placement method from the well-known Versatile Place and Route (VPR) framework shows that the FieldPlacer approach can create placements of comparable quality much faster than VPR or, alternatively, generate better placements in the same time. The flexibility in defining arbitrary objective functions and the intuitive adaptability of the method, which, among others, includes different concepts from the field of graph drawing, should facilitate further developments with this framework, e. g., for new upcoming optimization targets like the energy consumption of an implemented design

    Towards Machine Learning-Based FPGA Backend Flow: Challenges and Opportunities

    Get PDF
    Field-Programmable Gate Array (FPGA) is at the core of System on Chip (SoC) design across various Industry 5.0 digital systems—healthcare devices, farming equipment, autonomous vehicles and aerospace gear to name a few. Given that pre-silicon verification using Computer Aided Design (CAD) accounts for about 70% of the time and money spent on the design of modern digital systems, this paper summarizes the machine learning (ML)-oriented efforts in different FPGA CAD design steps. With the recent breakthrough of machine learning, FPGA CAD tasks—high-level synthesis (HLS), logic synthesis, placement and routing—are seeing a renewed interest in their respective decision-making steps. We focus on machine learning-based CAD tasks to suggest some pertinent research areas requiring more focus in CAD design. The development of open-source benchmarks optimized for an end-to-end machine learning experience, intra-FPGA optimization, domain-specific accelerators, lack of explainability and federated learning are the issues reviewed to identify important research spots requiring significant focus. The potential of the new cloud-based architectures to understand the application of the right ML algorithms in FPGA CAD decision-making steps is discussed, together with visualizing the scenario of incorporating more intelligence in the cloud platform, with the help of relatively newer technologies such as CAD as Adaptive OpenPlatform Service (CAOS). Altogether, this research explores several research opportunities linked with modern FPGA CAD flow design, which will serve as a single point of reference for modern FPGA CAD flow design
    • …
    corecore