
On the Use of Directed Moves for

Placement in VLSI CAD

by

Kristofer Vorwerk

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Kristofer Vorwerk 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Search-based placement methods have long been used for placing integrated circuits targeting

the field programmable gate array (FPGA) and standard cell design styles. Such methods offer

the potential for high-quality solutions but often come at the cost of long run-times compared to

alternative methods.

This dissertation examines strategies for enhancing local search heuristics—and in particular,

simulated annealing—through the application of directed moves. These moves help to guide a

search-based optimizer by focusing efforts on states which are most likely to yield productive

improvement, effectively pruning the size of the search space.

The engineering theory and implementation details of directed moves are discussed in the

context of both field programmable gate array and standard cell designs. This work explores the

ways in which such moves can be used to improve the quality of FPGA placements, improve the

robustness of floorplan repair and legalization methods for mixed-size standard cell designs, and

enhance the quality of detailed placement for standard cell circuits. The analysis presented herein

confirms the validity and efficacy of directed moves, and supports the use of such heuristics within

various optimization frameworks.

iii

Acknowledgements

My heartfelt thanks extend to my wife and family for their patience and encouragement, and to my

supervisor and friend, Dr. Andrew Kennings.

iv

To Katrina.

Dans les grandes choses, les hommes se montrent comme il leur convient

de se montrer; dans les petites, ils se montrent comme ils sont.

Sébastien Roch

v

TABLE OF CONTENTS

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Overview . 1

1.2 Design Styles for Modern VLSI CAD . 1

1.2.1 Standard Cell Circuits . 2

1.2.2 Field Programmable Gate Arrays . 2

1.2.3 Structured ASICs . 3

1.3 VLSI CAD Flow . 5

1.4 Motivation and Contributions . 6

1.4.1 Directed Moves for FPGAs . 8

1.4.2 Directed Moves for Mixed-Size Legalization 8

1.4.3 Directed Moves for Detailed Placement . 9

1.5 Organization . 9

2 Background 10

2.1 General Overview of Placement . 10

2.1.1 A Brief Overview of Placement Objectives 11

2.1.1.1 Half-Perimeter Wire Length . 11

2.1.1.2 Critical Path Delay . 12

2.1.2 Simulated Annealing-Based Placement . 14

vi

2.1.3 Partitioning-Based Placement . 15

2.1.4 Analytic and Force-Directed Placement . 19

2.1.4.1 Quadratic Placement . 20

2.1.4.2 Hybrid Methods . 21

2.1.4.3 Force-Directed Methods . 21

2.2 Placement Techniques Pertinent to Specific Design Styles 25

2.2.1 FPGA Placement . 26

2.2.1.1 Simulated Annealing and VPR . 26

2.2.1.2 Other Approaches to Improving FPGA Placement 27

2.2.2 Mixed-Size Legalization . 28

2.2.3 Detailed Placement . 30

2.2.3.1 Stochastic Search Techniques for Detailed Placement 30

2.2.3.2 Small-Window Detailed Placement 31

2.2.3.3 Congestion Control . 32

3 Improving Simulated Annealing for FPGAs with Directed Moves 36

3.1 Overview . 36

3.2 Motivation for Directed Moves . 37

3.3 Implementation . 39

3.3.1 Heuristics for Determining Source Cells . 39

3.3.2 Heuristics for Determining Target Locations 40

3.3.2.1 Domino . 41

3.3.2.2 Median Placement . 42

3.3.2.3 Monotone Path Deviation . 44

3.3.2.4 Priority Lists . 45

3.3.2.5 Other Approaches . 45

3.3.3 Resolving Infeasibilities . 46

3.3.4 Move Selection and Effectiveness . 46

3.4 Experimental Results . 48

3.4.1 Commentary on Successful Moves . 50

3.4.2 Non-Clustered Architectures . 52

3.4.2.1 Device Utilization Tests . 52

3.4.2.2 Comparison of Timing Trade-offs 53

3.4.2.3 Statistical Variance Measures . 56

3.4.3 Clustered Architectures . 60

3.4.3.1 CLB-Level Moves . 60

vii

3.4.3.2 BLE-Level Moves . 60

3.4.3.3 BLE-Level Moves With Directed Moves 63

3.5 Conclusion . 66

4 Improving Global Legalization with Directed Moves 70

4.1 Overview . 70

4.2 Top-Down Flow for Legalization and Floorplan Repair 71

4.2.1 Legalizing Large Cells . 72

4.2.1.1 Swap Permutation . 73

4.2.1.2 Move Permutation . 74

4.2.1.3 Determining the Placement from the Constraint Graphs 76

4.2.2 Legalizing Small Cells . 76

4.2.2.1 Legalizing Via Eight-Way Shifting 77

4.2.2.2 Further Improvements Via Linear Assignment 78

4.2.2.3 Commentary On The Success of the Shifting 80

4.2.3 Repairing Other Types of Constraints . 81

4.3 Experimental Results . 81

4.4 Conclusion . 83

5 Improving Detailed Placement with Directed Moves 87

5.1 Overview . 87

5.2 Optimal Multi-Row Improvement Using A* Search 88

5.2.1 Experimental Results . 90

5.3 Annealing-Based Detailed Placement . 93

5.3.1 Implementation Details . 94

5.3.2 Overlap and Legality . 95

5.3.3 Moves and Effectiveness . 96

5.3.4 Experimental Results . 98

5.3.4.1 Tests on Global Placements . 99

5.3.4.2 Tests on Detailed Placements . 102

5.3.4.3 Commentary on Cell Diversity and Annealing 103

5.4 Conclusion . 106

6 Conclusion 109

6.1 Summary . 109

6.2 Future Directions . 110

viii

Bibliography 112

Glossary 123

Appendices

A Related Papers 126

B On the Statistical Variability of Stochastic Placement Techniques 127

C Implementation Details and Data Structures 131

ix

LIST OF TABLES

1.1 Qualitative comparison of standard cell, FPGA, and structured ASIC design styles . 6

3.1 Combinations of source and target cell moves considered for FPGA directed moves 40

3.2 Summary of the results for unsuccessful directed moves 52

3.3 Comparison of average statistical variability in wire length and critical path 56

3.4 Summary of the results for high-utilization clustered architectures with directed

moves applied on the CLB-level netlist . 63

3.5 Results for high-utilization clustered architectures without directed moves but with

BLE-level moves . 66

3.6 Results for high-utilization clustered architectures with BLE-level moves and

directed moves . 69

4.1 Characteristics of the Calypto designs . 82

4.2 Characteristics of the IBM-HB designs . 83

4.3 Characteristics of the ISPD 2005 suite . 85

4.4 Comparison of Whim versus other tools . 85

4.5 Performance of Floorist, mPL6, and Whim on various benchmark designs 86

5.1 Circuit statistics for Suite 3 of the Peko benchmarks 92

5.2 Results for the linear assignment and A* improvement methods 94

5.3 Characteristics of the ISPD 2006 suite . 99

5.4 Characteristics of the ICCAD04 suite . 100

5.5 Parameter configurations used for testing the annealer 101

5.6 Quality of Whim’s legalization and detailed placement versus mPL and NTUplace3 . 103

5.7 Quality of Whim’s detailed placement at improving already-optimized placements

produced by mPL . 104

5.8 Characteristics of the ICCAD04 suite with cell widths shrunk by a factor of 5 . . . 107

x

5.9 Results comparing the effectiveness of annealing on standard cell designs, as the

width of standard cells is decreased . 108

B.1 Summary of post-routed wire length variability in VPR 128

B.2 Summary of post-routed critical path variability in VPR 129

xi

LIST OF FIGURES

1.1 Photomicrograph of a modern, mixed-size standard cell layout 3

1.2 Diagram of a modern FPGA architecture . 4

1.3 Simplified VPR-style FPGA architecture and interconnect 5

1.4 Partial floorplan of an HC230 structured ASIC from Altera Corporation 7

2.1 Pseudocode for a general simulated annealing placement algorithm 16

2.2 Placement region partitioned using alternating horizontal and vertical cuts 18

2.3 High-level pseudocode for a top-down partitioning-based placement technique . . . 19

2.4 Quadratic placement for a mixed-size problem with approximately twenty-seven

thousand cells . 22

2.5 Typical progression of a continuous placement method on circuit ibm04 from the

ICCAD04 mixed-size placement benchmark suite 23

2.6 Illustration of single-row branch-and-bound placement 33

2.7 Pseudocode for a single-row branch-and-bound placement algorithm 34

3.1 Illustration of the transportation problem used in Domino 42

3.2 Illustration of the median calculation for a cell C connected to three nets 44

3.3 Illustration of a feasible region computation for a node 45

3.4 Example of cell rippling when used with the median placement strategy 47

3.5 Illustration of the probabilities of selecting various directed moves 49

3.6 Critical path and wire length quality curves for 1 BLE/CLB, high-utilization

architectures . 54

3.7 Critical path and wire length quality curves for 1 BLE/CLB, medium-utilization

architectures . 55

3.8 Critical path and wire length quality curves for timing tradeoff = 0.1 57

3.9 Critical path and wire length quality curves for timing tradeoff = 0.9 58

xii

3.10 Critical path and wire length quality curves for various timing tradeoff param-

eters on a 1 BLE/CLB, medium-utilization architecture 59

3.11 Critical path and wire length quality curves for 4 BLE/CLB, medium-utilization

architectures . 61

3.12 Critical path and wire length quality curves for 8 BLE/CLB, medium-utilization

architectures . 62

3.13 Critical path and wire length quality curves for a 4 BLE/CLB medium-utilization

architecture without directed moves but with BLE-level moves 64

3.14 Critical path and wire length quality curves for a 8 BLE/CLB medium-utilization

architecture without directed moves but with BLE-level moves 65

3.15 Critical path and wire length quality curves for a 4 BLE/CLB architecture with

BLE-level moves and directed moves applied on both the CLB- and BLE-level

netlists . 67

3.16 Critical path and wire length quality curves for a 8 BLE/CLB architecture with

BLE-level moves and directed moves applied on both the CLB- and BLE-level

netlists . 68

4.1 Outline of Whim’s top-down framework . 72

4.2 A “swap” operation, which moves the edge from a→ e in Gv to a→ e in Gh 74

4.3 Diverging fanouts shown in a horizontal constraint graph 75

4.4 Insertion of two cells into the whitespace manager 77

4.5 Pseudocode for small cell legalization . 79

4.6 Candidate selection during the 8-way shifting . 80

4.7 A global placement of ibm09 and its legalized counterpart produced by Whim 84

4.8 Whim was found to be remarkably robust in its ability to produce valid, legalized

results even when presented with heavily-overlapping global placements 84

5.1 Pseudocode for the multi-row, A*-based placement algorithm 89

5.2 Pseudocode for computing a heuristic underestimation of the remaining wire length 91

5.3 Pseudocode for the standard cell rippling strategy 97

5.4 Illustration of the dominance of directed moves on the ISPD 2006 suite 102

5.5 Illustration of aborted moves in the standard cell annealer 106

xiii

CHAPTER 1

Introduction

1.1 Overview

As modern integrated circuits (ICs) have grown in size, performance has become limited by the

delay of the interconnect rather than the switching speed of logic elements. Computer-aided design

(CAD) tools have played an increasingly important role in the development of ICs and in the

maximization of design performance of Very Large Scale Integration (VLSI) devices.

CAD tools typically use a sequence of steps (or a “flow”) which ultimately transforms a high-

level representation of a circuit into a final, routed specification. The algorithms employed in a

typical design automation flow can be quite complicated—the optimization problems that must be

solved are often NP-complete [50, 78, 118], meaning that the optimal solutions to many of these

problems cannot be found in polynomial time but must be solved, instead, via heuristic methods

which approximate the optimal solutions.

1.2 Design Styles for Modern VLSI CAD

Computer-aided design tools make it possible to automate the entire VLSI layout process through

the use of restricted models and design styles which reduce the complexity of the circuit layout.

Three design styles which are typically used in modern CAD flows include standard cells,

field programmable gate arrays (FPGAs), and structured application specific integrated circuits

(ASICs).

1

Chapter 1. Introduction 2

1.2.1 Standard Cell Circuits

A standard cell is a logic module with a pre-defined internal layout. These cells have a fixed

height but differing widths, depending on the functionality of the module [103]. Standard cells

are placed in horizontal rows, with channels (or spaces) between rows reserved for interconnect

routing. Historically, routing was performed entirely in channels, though in modern circuits, with

more layers of metal available for routing, channels are not typically required. Logic modules

connect to fixed pads (terminals) which are often placed along the edges of the chip. Macrocells

are logic modules not in the standard cell format—they are usually larger than standard cells, and

may be placed at any convenient location on the chip. In this thesis, circuits with both standard

and macrocells are referred to as mixed-size designs. Figure 1.1 shows an example of a modern

mixed-size circuit layout.

1.2.2 Field Programmable Gate Arrays

In field programmable gate arrays (FPGAs), the entire wafer is prefabricated with a regular grid

structure of configurable elements, as shown in Figure 1.2. The placeable elements consist of logic

blocks, input/output (I/O) blocks, and intellectual property (IP) blocks, while other configurable

elements may exist for programming the routing fabric and configurations of the logic cells.

Logic blocks permit the implementation of a designer’s logic. Logic blocks may possess look-

up tables (LUTs) and flip-flops (FFs) which allow a designer to implement combinatorial and

synchronous logic. In addition to simple logic blocks, modern FPGAs may also implement random

access memories (RAMs), carry-chains, embedded processors, or analog circuitry. I/O blocks

provide the interface between the internal circuit and the package’s pins. A modern FPGA can

implement a wide variety of high-speed I/O interface standards.

The interconnect allows routing paths to be configured between individual logic blocks and

I/O blocks [19, 48]. FPGAs are usually customized by loading configuration data into internal

memory cells. Stored values in these cells determine the logic functions and interconnections in

the FPGA. Since clocks are generally distributed to every logic cell in an FPGA, they are routed

along dedicated, high-speed lines.

Academic studies in FPGA CAD have historically used a simplified representation of FPGA

architectures based on the format popularized by VPR [19]. A diagram showing the VPR-style

architecture and routing resources is shown in Figure 1.3. In this style, I/Os are located around the

periphery and core logic is arranged in a sea-of-gates-like fashion, not unlike some commercial

architectures (e.g., [1]). The FPGA architecture shown in this diagram possesses uniformly-sized

channels, with each I/O slot able to accommodate up to two I/O cells. Each logic cell supports four

inputs, corresponding to a cell with a four-input look-up table and a flip-flop.

Chapter 1. Introduction 3

Figure 1.1: Photomicrograph of a modern, mixed-size standard cell layout from [115].

Modern FPGAs are displacing ASICs in many applications due to their ease of use, faster

time-to-market, and lower non-recurring engineering costs. Unlike ASICs, FPGAs employ pre-

designed routing fabrics that are specifically architected to possess good routability. Conversely,

due to their pre-fabrication, FPGAs are not yet capable of achieving the high clock frequencies

offered by ASICs.

1.2.3 Structured ASICs

Structured ASICs are a comparatively new VLSI design style. Although the term is somewhat

ambiguous, it is generally agreed that structured ASICs “bridge the gap” between FPGAs and

full-custom ASICs.

In structured ASICs, the logic mask-layers of a device are predefined by the vendor. Designs

are specified through custom metal layers that create connections between lower-layer logic

elements (which are chosen from a standard library). A structured ASIC is similar to cell-based

ASICs in many ways. For one, the design can be implemented using high-density logic, IP cores,

and memory blocks located within the chip fabric. While all layers of a chip are generally

customized for each design in cell-based ASICs, the layers of structured ASICs are mostly

pre-determined. For example, structured ASICs typically predefine the power, clock, and test

structures, as well as base layers of logic, RAMs, and I/Os. These fixed layers simplify many of

the issues (such as signal integrity and clock skew) that could otherwise delay the production of a

cell-based ASIC.

Chapter 1. Introduction 4

Figure 1.2: Diagram of a modern Stratix FPGA device from Altera Corporation [12], illustrating

the presence of RAMs, DSP blocks, I/Os, and core logic cells in the fabric.

Unlike FPGAs, the interconnect in structured ASICs is directly routed, ensuring high perfor-

mance and low power consumption. Parts of the chip that are not used need not be connected (and,

therefore, remain powered down). This allows users to achieve similar densities, speed, and power

consumption as a full-custom ASIC design, with lower overall development costs and a shortened

development cycle [137]. Structured ASICs are suitable for medium- to high-volume applications

which may require higher densities, lower power, or greater performance than can be achieved

through FPGAs [133]. A qualitative comparison of the three design styles is shown in Table 1.1.

Altera’s HardCopy II devices are low-cost structured ASICs whose pin-outs, densities, and

architecture complement Altera’s Stratix FPGAs. With the HardCopy service, users can develop

and simulate prototype designs on a reprogrammable Stratix FPGA, and later migrate to the “hard-

wired” structured ASIC for volume production [41]. An illustration of Altera’s HC230 structured

ASIC is shown in Figure 1.4. HardCopy II devices are built using an array of fine-grained blocks

(called HCells), within a modern process technology. Moreover, they are customized using two

metal layers; therefore, configuration circuitry is not required.

Chapter 1. Introduction 5

(a) FPGA architecture.

(b) Routing resources and sample programmed interconnect.

Figure 1.3: Simplified VPR-style FPGA architecture and interconnect.

HardCopy II devices are nearly equivalent to their FPGA counterparts, but offer significant

advantages in terms of power and performance. HardCopy II devices consume less than 50% of

the power and offer up to 100% performance improvement over the equivalent Stratix II FPGA

due to more efficient use of logic blocks, metal interconnect optimization, die size reduction, and

signal buffering [41].

1.3 VLSI CAD Flow

The VLSI CAD flow ultimately aims to implement a user’s logic specification in the chosen design

style. There are several steps which are reasonably common to all of the aforementioned styles.

The CAD flow begins with a formal specification of a chip. A circuit may be specified,

for example, using a schematic or hardware description language such as VHDL or Verilog.

The conversion of this high-level representation into a usable, hardware-based implementation

Chapter 1. Introduction 6

Table 1.1: Qualitative comparison of standard cell, FPGA, and structured ASIC design styles.

Structured ASICs tend to combine the best of both design styles, including fast

development time and good overall circuit performance.

FPGA Standard Cell Structured ASIC

Low NRE Costs High NRE Costs Medium NRE Costs

Small-to-Medium Design Size Large Design Size Medium Design Size

Easy to Design Difficult to Design Easy to Design

Short Development Time Long Development Time Short Development Time

Performance Limited High Performance High Performance

High Power Consumption Low Power Consumption Low Power Consumption

High Per-Unit Cost Low Per-Unit Cost (at high volume) Low Per-Unit Cost (at high volume)

occurs during synthesis, which converts the specification into a placeable netlist consisting of

interconnected technology-specific cells [42,96]. In deriving this netlist representation, an attempt

is made to minimize numerous objectives, including critical path delay, circuit depth, gate-level

area, power, and so on.

After synthesis, the modules are placed in the IC. Placement seeks to position the netlist cells

in valid locations (without overlap) while optimizing criteria such as chip area, wire length, and

circuit frequency. The quadratic assignment problem (QAP) can be viewed as a simplified special

case of the placement problem, with a worst-case complexity of O(n!) [50] in the number of

modules. In practice, however, placement is substantially more complex due to the presence of

overlap constraints, the freedom with which cells may be placed in a die, and the presence of cost

functions which cannot be computed in polynomial time and must therefore be approximated using

heuristic approaches. The quality of these heuristics largely determine the performance and area

requirements of the final, integrated circuit.

After the cells have been placed, the circuit is routed. This process establishes the pin-to-pin

connections between cells. Finding an optimal routing given a placement is also a NP-complete

problem [103], although a number of heuristic approaches exist (cf. [19, 84]) which can find very

good, admissible routes in polynomial time.

The final steps in the VLSI CAD flow typically involve verification of the circuit layout. These

steps may consist of a “design rule check” to ensure that layout is legal and a layout-versus-input

check to ensure that the implemented design satisfies the original functionality.

Chapter 1. Introduction 7

IOE

Fast

PLL

Enhanced

PLL

Fast

PLL

IOE IOE IOEs

M-RAM Block

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

Array
of HCells

Array
of HCells

Array
of HCells

Array
of HCells

Array
of HCells

Array
of HCells

M4K RAM Blocks M4K RAM Blocks

Figure 1.4: Partial floorplan of an HC230 structured ASIC from Altera Corporation [41].

Heterogeneous resources including I/Os, M4K RAMs, PLLs, and Mega-RAMs must

be placed into disjoint slots.

1.4 Motivation and Contributions

Across each of the design styles, placement remains one of the most influential steps in the CAD

flow—it is directly responsible for determining the relative locations of modules and (indirectly)

for establishing the lengths of the routes between them. The decisions made during placement

substantially determine design performance, power, routability, and area. For example, in a study

of FPGA placement and routing heuristics [88], a finely-tuned placer was found to yield critical

path delays which were up to three times smaller, on average, than those produced by a naive,

random scattering strategy. Given its influence over solution quality, placement is, therefore, a

viable avenue in which to investigate ways for improving vital design characteristics, and is the

focal point of this thesis.

Despite recent advances in the literature, there remains substantial room for improving

placement heuristics [28]. This work examines strategies for improving placement by enhancing

stochastic search methods—such as simulated annealing—via the concept of directed moves.

These moves help to guide search-based optimization strategies by focusing efforts on moves

which are most likely to yield productive improvement, effectively pruning the size of the search

space. This thesis presents the engineering theory and implementation of directed moves, and

Chapter 1. Introduction 8

documents ways in which they can be used to improve the quality of global placements for

FPGAs, improve the quality of floorplan repair and legalization methods for mixed-size ASICs,

and improve the quality of detailed placements for standard cell ASICs.

1.4.1 Directed Moves for FPGAs

Simulated annealing remains a widely-used heuristic for FPGA placement due, in part, to the

flexibility with which the annealing objective can be adapted to handle realistic architectural con-

straints. For example, modern FPGA CAD software typically supports user-definable constraints

(such as “LogicLock” regions [41]) which are easily modelled by an annealing-based placer.

However, as FPGAs continue to grow in size, the large run-times incurred by simulated

annealing are becoming prohibitive. To limit the search space, practical implementations perform

random perturbations of logic within range-limited windows [19]. Such “simple moves” are

inexpensive, but many such moves must be performed to achieve good quality. In this work,

several directed moves are described which help to guide an FPGA placer to consistently produce

better-quality solutions for the same amount of run-time as previous techniques. Moreover, a

technique for automatically computing the most “effective” move is described—it is also shown

how such a mechanism can be incorporated into the placement heuristic, as well as how the

technique can be used as a termination criterion for the anneal.

1.4.2 Directed Moves for Mixed-Size Legalization

Traditionally, mixed-size placement methods have employed a two-stage approach, wherein a

heuristic method is employed to produce an initial (or “global”) placement, followed by overlap

removal. In such methods, detailed cell overlaps are ignored in the global placement and later

resolved by a “legalizer” once a sufficient cell distribution has been achieved [2, 8, 27, 27, 34, 60,

64, 128]. Legalizers attempt to preserve the global placement as much as possible, as doing so

preserves the objectives sought by the global placer, such as whitespace and density constraints

for routability. Owing to larger circuit sizes and oddly-shaped blocks, modern circuits render

many previous legalization techniques [8, 20] unreliable for producing legal solutions [86, 94], or

potentially destructive in the sense that tightly-packed cells may not be desirable for routability

(cf. [91]).

These observations motivate this work on legalization which addresses the second phase—

overlap removal—of the floorplacement problem. This thesis demonstrates that a straightforward,

top-down approach for legalizing circuits, when combined with a local search strategy employing

directed moves, can reliably produce feasible placements and floorplans with excellent quality and

Chapter 1. Introduction 9

run-times compared to leading academic tools. The method introduced in this work perturbs only

those features which are responsible for violating overlap constraints.

1.4.3 Directed Moves for Detailed Placement

Continuous placement methods have been studied as a means of placing cells for almost forty

years. These methods offer several alluring benefits, such as excellent run-time scalability,

good quality, and amenability toward engineering change-order (ECO) optimization. However,

these methods suffer from the drawback that they cannot precisely model complicated objective

functions as part of their optimization strategy. Yet, the literature in mixed-size placement is mostly

bereft of discussion on optimizing combinations of objectives at the same time, such as both wire

length and overlap.

Instead, many complicated optimizations—such as whitespace insertion—are performed after

legalization in a step known as detailed placement. Modern CAD theory has espoused the use

of branch-and-bound-based strategies for optimizing cells within very localized windows during

detailed placement. Simulated annealing and other search-based placement methods have been

all but abandoned because of the belief that they offer poor scalability for modern standard-cell

problems.

Despite this commonly-held belief, simulated annealing is shown, in this work, to be an

effective strategy for detailed placement. The improvements described herein are borne from the

use of directed moves within the annealer, and a strategy for maintaining legality via cell rippling

during placement. This work shows that directed moves can improve the quality of placements

produced by a standard cell annealer without harming run-time.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 3 introduces the concept and theory of

directed moves, and describes the implementation of several such moves within an academic

FPGA annealing framework. Chapter 4 describes the mixed-size legalization problem, and

presents a novel solution employing a top-down optimization strategy coupled with directed moves.

Chapter 5 examines the use of simulated annealing with directed moves for detailed standard cell

placement. Finally, Chapter 6 summarizes the work, and offers concluding remarks.

Supplementary information is provided in the form of appendices at the end of the thesis.

Appendix A presents a list of the papers that were published as a result of the work described

herein. Appendix B motivates the use of multiple seeds when reporting the results from annealing-

based placement. Finally, Appendix C presents an overview of the data structures related to this

work.

CHAPTER 2

Background

The quality of a global placement can effect a tremendous change in the overall performance

of an integrated circuit. Recent experiments suggest that placement tools yield results that are

50%–150% worse than optimal [38]. On the other hand, the demand for higher-quality placement

techniques must also be balanced with the need for shorter run-times.

This chapter begins, in Section 2.1, with a brief review of the most common strategies

for placement, including search-based, partitioning-based, and analytic methods. Subsequently,

Section 2.2 presents specific details pertinent to the different design styles examined in this thesis,

with emphasis on FPGA placement, mixed-size legalization, and standard cell detailed placement.

2.1 General Overview of Placement

Placement is a critical step in VLSI physical design and the focal point of discussion in this thesis.

As problem instances have increased in size and complexity, placement has, more and more,

become the bottleneck in deep sub-micron designs. Typically, placement seeks to minimize wire

length and critical path delays subject to the constraints that cells must be placed into prescribed

locations without overlap.

Placement typically begins with a circuit netlist modelled as a hypergraph Gh(Vh,Eh) with ver-

tices Vh = {v1,v2, . . . ,vn,vn+1, . . . ,vn+p} representing circuit cells and hyperedges Eh = {e1,e2, . . . ,em}

representing circuit nets. The set {v1,v2, . . . ,vn,} represents movable cells and the set {vn+1, . . . ,vn+p}

represents pre-placed cells and I/O pads. Each vertex vi has dimensions wi and hi that represent the

width and height of its corresponding circuit cell, respectively. Let (xi,yi) denote the coordinates

of the centre of vertex vi. Placement information is then captured in the x- and y-directions by two

vectors x = (x1,x2, . . . ,xn) and y = (x1,x2, . . . ,xn).

10

Chapter 2. Background 11

2.1.1 A Brief Overview of Placement Objectives

Depending on the design style and goal, a placement heuristic may optimize different objectives.

2.1.1.1 Half-Perimeter Wire Length

Wire length is one of the most commonly-employed measures of quality in standard cell and FPGA

placement—the minimization of wire length can lead to improvements across multiple objectives

(such as routability and circuit performance). However, the precise wire length of a net can

be impractical to compute for large-scale placement; instead, an approximation that is closely

correlated to the interconnection length is required.

For this purpose, the approximation most commonly employed in modern placement is that of

the half perimeter—or “bounding box”—wire length (HPWL) which, for any given net e ∈ Eh, is

half of the perimeter of the minimum rectangle that encloses all cells on net e. The HPWL of a net

e can be written as

HPWL(e) = (max
j∈e

x j−min
j∈e

x j)+(max
j∈e

y j−min
j∈e

y j) (2.1)

where x j represents the location of module j (connected, in this case, to net e) in the x-direction,

and similarly for the y-direction. The total half perimeter wire length of the circuit is given by

∑e∈Eh
HPWL(e).

The complexity of evaluating and minimizing HPWL depends largely upon the circuit’s

structure and the chosen placement technique. For a circuit in which every terminal is connected to

every net in Gh, a straightforward evaluation of (2.1) has a worst-case complexity of O(|Vh||Eh|).

Of course, this worst-case complexity is highly-dependent upon the structure of the netlist—in

sparsely-connected circuits, the complexity of evaluating (2.1) may approach O(|Eh|).

The chosen placement methodology also plays a contributory role in the complexity of

evaluating and optimizing HPWL. In simulated annealing-based placement (see Section 2.1.2),

Equation (2.1) need only be computed once in entirety at the beginning of placement. (This

computation can be made with the aforementioned worst-case complexity, since module locations

are generally known during annealing.) Thereafter, the HPWL can be updated incrementally

for only those nets which are perturbed during the placement; this incremental computation is

accelerated, in practice, by maintaining a cache of the bounding boxes of the nets. Since only a

small fraction of the nets in a design are modified at a given time by the annealer, the incremental

evaluation of HPWL can be performed quickly. On the other hand, a large number of these

perturbations may be required in order to achieve a high-quality placement result.

In partitioning-based techniques (see Section 2.1.3), the precise locations of all modules may

Chapter 2. Background 12

not be known during placement. As a result, it can be difficult to precisely evaluate (2.1). To com-

pensate for this imprecision, partitioning-based strategies typically employ an approximation to

HPWL based on a minimum-cut heuristic [23]. Efficient minimum-cut hypergraph bi-partitioning

heuristics, such as Fiduccia-Mattheyses [49], have linear-time complexity [103]; however, the need

for recursive bi-partitioning (to spread cells across the placement) and for multiple applications

of the partitioning heuristic (to ensure high-quality cut solutions) add to the complexity of the

technique.

Analytic and force-directed approaches (see Section 2.1.4) employ mathematical formulations

to minimize HPWL during placement. Historically, the mathematical minimization of HPWL was

accomplished using network flow or linear programming; however, these methods suffer from poor

run-time scalability. Modern approaches to mathematical placement convert the circuit hypergraph

to a weighted graph, whereupon the placement technique can employ efficient Newton-type

methods with a quadratic (or linearized quadratic) wire length objective. While quickly solvable,

such objectives may be poorly correlated with the HPWL of the circuit. The work of [70]

presented an analytical method for HPWL minimization that did not rely on a hypergraph-to-graph

conversion—instead, a family of smooth and everywhere-differentiable functions were presented

which were shown to approximate HPWL arbitrarily closely. The contributions of [70] laid the

foundation for a number of techniques based on differentiable approximations to HPWL, some of

which are reviewed in Section 2.1.4. In general, the complexity of these methods lies primarily in

the way in which cell overlap is minimized during placement rather than the actual evaluation of

the function used to approximate (2.1).

2.1.1.2 Critical Path Delay

Critical path delay minimization is another common placement objective, particularly in FPGA

CAD. Circuit timing is generally performed on a timing graph [19] which models the intercon-

nections and delays in the circuit. Timing analysis is computed using a method akin to CPM

analysis [132]. To perform timing analysis, a directed graph G(V,E) is constructed to model the

delays in the circuit. Pins on logic blocks become nodes in the graph. Nets in the netlist become

directed edges between nodes. Every edge is annotated with a physical delay. In the simplest

context, a primary output is the pin of an output pad, while a primary input is the pin of an

input pad. Register inputs and outputs can be considered as pseudo-primary outputs and inputs,

respectively.

A simplistic timing computation can be explained as follows. Given a node j, its arrival time,

Chapter 2. Background 13

Arr(j) can be computed from the equation:

Arr(j) =







0, j ∈ primary outputs

max{Arr(i)+ Delay(i, j)}, (i, j) ∈ E
(2.2)

where Delay(i, j) is the delay of the edge connecting nodes i and j. The maximum arrival time of

all nodes, Delaymax can be computed as:

Delaymax = maxArr(j), j ∈ primary inputs (2.3)

Given a node i, the required time of the node can be computed as:

Req(i) =







0, i ∈ primary inputs

min{Req(j)−Delay(i, j)}, (i, j) ∈ E
. (2.4)

The slack of an edge can then be computed as:

Slack(i, j) = Req(j)−Arr(i)−Delay(i, j). (2.5)

The critical path is the path with the worst slack, and can be viewed as the path which limits

the maximum performance of a design. discussion ignores the case of false paths. False paths

arise during static timing analysis—they are valid paths in terms of the interconnecting circuit,

but are unlikely to transmit signals during normal operation due to the circuit’s. They can arise

during static timing analysis because a graph-based timing analyzer may not simulate or correctly

model the actual switching behaviour of the circuit. Worst-case slack maximization—alternatively

referred to as critical path optimization—is, therefore, a common goal in timing-driven techniques.

Timing-driven placement algorithms can generally be viewed as being either net-based or

path-based. Path-based algorithms attempt to compute the delays of all paths and minimize the

longest path delay directly [77, 138], whereas net-based algorithms transform timing constraints

into weights. In the latter approach, timing analysis is performed at specific times throughout the

placement, and the weights on nets are adjusted to reflect the updated information.

It is worth noting that timing computation in commercial tools can be substantially more

complicated than in the academic literature, as such tools typically account for multiple clock

domains, rising and falling edge triggering, false paths, and so forth. In particular, this thesis

ignores the effects of false paths which “are paths that should not be considered during timing

analysis or which should be assigned low (or no) priority during optimization” [13]. Furthermore,

this thesis considers only static timing analysis, which relies on the interpretation of circuit

Chapter 2. Background 14

performance from the perspective of the timing graph, and does not incorporate simulation to

identify false paths (as is done during dynamic timing analysis).

2.1.2 Simulated Annealing-Based Placement

Search-based placement methods involve random, iterative improvement of an existing solution.

For example, simulated annealing-based placers, such as TimberWolf [110, 113] and VPR [19],

produce placements using stochastic search (cf. [75]). Genetic algorithms are another type of

search-based heuristic which work by “emulating the natural process of evolution as a means of

progressing toward the optimum” [103]. Genetic algorithms are generally not used in modern

CAD flows, and are not treated here.1

Simulated annealing is perhaps the most well-developed, well-studied method for module

placement. It can be time-consuming, but can yield good results. Most importantly, the cost

function used in an annealer can easily be extended to consider new constraints (such as overlap

removal or thermal “hot-spot” minimization) with only minimal changes required to the remainder

of the placement flow.

As a result of its flexibility, simulated annealing remains a widely-used heuristic for placement

in tightly-constrained design styles, such as FPGAs. FPGAs tend to impose more constraints on

the validity of cell locations than in standard cell designs—for instance, the placement of basic

logic elements in modern FPGAs is constrained by the pre-fabricated routing resources available

for each logic block. Thus, it does not merely suffice, in some FPGAs, to ensure that cells are

placed in non-overlapping locations, but also that the wires connecting logic blocks do not exceed

IC limitations. An annealing-based placer, more than any other placement technique, can quickly

and easily be modified to account for such constraints.

Simulated annealing is essentially an improvement of a random pairwise interchange algo-

rithm. In this approach, the heuristic periodically accepts moves that result in an increase in the

cost in an effort to prevent the method from becoming stuck in local minima. The heuristic works

as follows. All moves that result in a reduction in the cost are accepted. Moves which result in

a cost increase are accepted with a probability that decreases with the increase in cost [103]. A

temperature parameter T is typically used to control the probability of accepting moves which

increase cost. In most implementations, the acceptance probability is given by e
−∆C

T , where

∆C is the increase in cost [103]. Initially, the temperature is set to a large value, allowing

numerous cost-increasing moves to be accepted. The temperature is then gradually decreased,

so that the probability of accepting a cost-increasing move is also decreased. If left to run for

1 The reader is referred to [103] for more information about genetic placement.

Chapter 2. Background 15

a sufficiently long time with a proper cooling schedule, simulated annealing can converge to the

global minimum [85].

Simulated annealing derives its name from the annealing process in metals [75]. If a metal

has an imperfect crystal structure, its atomic arrangement can be restored by heating it to a high

temperature and then allowing it to cool slowly. At high temperature, the atoms have sufficient

kinetic energy to break loose from their incorrect positions. As the material cools, the atoms

become trapped at the correct lattice locations. If the material is cooled too rapidly, the atoms may

not move into correct lattice locations, thereby freezing defects into the crystal structure [103].

Analogously, in annealing-based placement, the high initial temperature T allows cells at incorrect

initial locations to be dislodged from their positions. As T decreases, the cells are placed into their

optimum locations.

The pseudocode for a typical simulated annealing-based placer is shown in Figure 2.1. Initially,

the cells in the netlist N are placed in random (but valid) locations. Within the inner loop, modules

are either randomly displaced to new locations or interchanged. A range-limiting function may

be applied to ensure that cells are not moved further than a specified distance from the target

location [103]. The change in cost is computed for a move by evaluating the change in only

those nets connected to cells that were moved. If the cost improved after the perturbation, the

new cell locations are retained. Otherwise, if the cost worsened, the new placement may still be

retained (probabilistically) based on the current temperature, T . The temperature for the next loop

of the algorithm is subsequently decreased based on the number of iterations and the previous

temperature. The temperature at iteration i + 1, for example, may be derived simply by taking a

fraction of the temperature in iteration i, as in Ti+1 = α ·Ti, for 0 < α < 1. In simulated annealing,

there “are no fixed rules about the initial temperature, the cooling schedule, the probabilistic

acceptance function, or the stopping criterion, nor are there any restrictions on the types of moves

to be used—displacement, interchange, rotation, and so on” [103].

2.1.3 Partitioning-Based Placement

A top-down, divide-and-conquer approach to global placement has been used successfully in

commercial tools for many years. This approach “seeks to decompose the given placement

problem instance into smaller instances by subdividing the placement region, assigning modules to

sub-regions, reformulating constraints, and cutting the netlist—such that good solutions to smaller

instances (sub-problems) combine into good solutions of the original problem” [23]. That is,

top-down methods recursively divide the placement area and the circuit netlist into smaller pieces

using either bi-section or (less commonly) quadri-section and a minimum-cut (or other) objective

function to approximate wire length.

Chapter 2. Background 16

Procedure: SIMULATED ANNEALING

Input: A netlist, N

begin1

Initialize variables;2

Generate a random placement of the cells in N;3

while outer loop count < MAX OUTER PASSES and exit criteria not satisfied do4

inner loop count← 0;5

while inner loop count < MAX INNER PASSES do6

Perform a random perturbation of the placement;7

∆C← the change in cost of the placement;8

if ∆C < 0 or the probability function accepts the move then9

Accept the new placement;10

else11

Reject the new placement (and restore the previous cell location);12

fi13

T ← decreased value based on cooling schedule;14

inner loop count← inner loop count+1;15

od16

outer loop count← outer loop count+1;17

od18

end19

Figure 2.1: Pseudocode for a general simulated annealing placement algorithm.

Modern partitioning-based placers decompose the netlist using minimum-cut hypergraph bi-

partitioning. Quadri-section techniques [109] are less commonly used in modern flows. Each

bi-partitioned instance is created from a division of a rectangular region, or block, in the placement

region. Figure 2.2 shows an example of a placement region partitioned alternately using horizontal

and vertical cuts. At each level, the number of nets intersected by the cut line is minimized, and the

sub-circuits are assigned to horizontally and vertically partitioned chip areas [103]. Pseudocode

for a general top-down, partitioning-based placement heuristic is provided in Figure 2.3. This

pseudocode provides a high-level outline of the placement strategy.

Inside each block, there exist nodes which correspond to the cells inside the block as well as

propagated external terminals. These terminals represent the connections from cells internal to the

block to modules external to the block. Such modules may exist in another partitioned region,

for instance. The modules are propagated to a block’s boundaries to account for the external

connections. The motivation for doing so follows from the notion that, if a module is “connected

to an external terminal on the right side of the chip, it should be preferentially assigned to the

right side of the chip, and vice-versa” [103]. To propagate terminals, the partitioning must be

done in a breadth first manner—there is little point in partitioning one group to finer levels without

Chapter 2. Background 17

partitioning the other groups, since in that case, no information would be available about the group

to which a module should preferentially be assigned [103].

Cell placement imposes additional constraints on the partitioning of a hypergraph—chiefly,

that the sizes of the partitions in the solution are not allowed to deviate from target partition sizes.

These constraints arise because the proportion of whitespace in modern designs is often quite

small. Thus, the total module area assigned to a block must closely match the available layout area

in the block [23]; otherwise, relaxed balance constraints can lead to uneven area utilization and

overlapping placements [10, 23].

Partitioning is typically performed using an iterative, multi-level Fiduccia-Mattheyses (FM)

heuristic [22, 49]. The Kernighan-Lin (KL) heuristic [45, 72] is also used for hypergraph

bi-partitioning. For example, the popular multi-level partitioner, hMetis [67, 68], employs FM

for large partitioning instances, while KL is used when the instances are smaller than a threshold

parameter.

Once a partitioned block is sufficiently small (or contains too few cells), partitioning-based

placers use an alternate, end-case algorithm to finalize cell locations. Tight balance constraints

and a potentially large variation in standard cell sizes makes small partitioning instances difficult

for a FM partitioner to solve. This problem arises in small instances because the FM algorithm

“may (1) never reach the feasible part of the solution space (especially if it has trouble finding

an initial balance-feasible solution) and (2) even a relative scarcity of feasible moves (from any

given feasible solution) can make the algorithm more susceptible to being trapped in a bad local

minimum” [23]. Consequently, a branch-and-bound strategy is typically employed for small

partitioning instances (cf. [21, 23]).

With the advent of multi-level hypergraph partitioning in [68], the quality of cuts generated

by partitioners improved significantly, and by extension, so did the quality of VLSI placements.2

Since then, hundreds of papers have undertaken the task of improving upon partitioning-based

techniques; the following is a selection of some of the most pertinent works.

In [23], the authors examined end-case partitioning strategies, as well as a branch-and-bound

technique for optimal cell placement. The authors point out that FM-like strategies do not work

well for end-case placement (when block sizes are too small) due, in part, to tight area-balancing

constraints. Instead, enumerative approaches can yield significantly better cuts for small blocks.

Since then, almost all partitioning-based placers have employed similar strategies for end-case

placement.

In [130], Vygen considers a method of quad-secting a placement region using American maps

and a linear-time binary-search-like heuristic. The author describes how a region of already-placed

2 An excellent review of partitioning and its applications to placement prior to 1995 is given in [10].

Chapter 2. Background 18

(a) One level (b) Two levels (c) Up to four levels

Figure 2.2: Placement region partitioned using alternating horizontal and vertical cuts. In this

diagram, a “level” refers to one horizontal followed by one vertical cut of each

partitioned block. Generally, iterative partitioning of a block stops when the size of

the block or the number of cells contained therein passes a threshold parameter. For

such blocks, a different end-case partitioning strategy is often employed.

cells (with a given weight, and a given capacity per region) can be quad-sected such that the total

weight of points assigned to a quadrant does not exceed its capacity and the total movement is

minimized. Vygen proves that, at most, only three cells may be “split” and partially assigned to

several quadrants [130]. This technique forms the basis for the BonnPlace [129] placement tool.

Caldwell et al. introduce a recursive bisection placement tool in [24]. This paper builds upon

the authors’ previous work on multi-level hypergraph partitioning and end-case placement (cf. [21–

23]), and describes the implementation of the first commercial-quality, academic partitioning-

based placer, Capo. Since then, Feng Shui [7] has emerged as another bisection-based placer. The

two differ primarily in their placement of horizontal cuts: while Capo attempts to place horizontal

cuts along standard cell row boundaries to aid cell legalization, Feng Shui allows cuts to occupy

a fraction of a row (a “fractional cut”). The latter then employs a row-by-row legalization strategy

after global placement to satisfy overlap constraints.3

Kahng and Reda, in [63], introduce a concept called “feedback”, which proposes a solution to

the problem of ambiguous terminal propagation. The concept of augmenting partitioning-based

techniques to determine how to propagate terminals (when there remain partitioning blocks which

have not yet been processed) is similar in motivation to [5]. In this work, however, the blocks at a

given level of the partitioning are placed via minimum-cut bisection, and then repeatedly restored

and replaced using the previous iteration’s cell locations to intelligently propagate terminals. While

feedback can slow the partitioning process by causing blocks at each level to be repartitioned

multiple times, a significant improvement in overall placement quality can result.

3 The topic of legalization is treated in more detail in Section 2.2.2.

Chapter 2. Background 19

Procedure: TOP-DOWN PARTITIONING PLACEMENT

Input: A netlist, N

Local Variables: A queue of blocks

begin1

Initialize a block which contains all cells in N and has the original2

placement region as its dimensions;3

4

while queue is not empty do5

Dequeue a block;6

if block is small enough then7

Use end-case placement to place cells in block;8

else9

Bi-partition cells from block into two smaller sub-blocks;10

Enqueue both sub-blocks;11

fi12

od13

end14

Figure 2.3: High-level pseudocode for a top-down partitioning-based placement technique [23].

2.1.4 Analytic and Force-Directed Placement

Analytic placement methods (cf. [46,47,76,104,117,129]) use linear or quadratic optimization to

place cells.

Although convex, HPWL is neither a strictly convex nor differentiable function, and is therefore

difficult to minimize directly. As a result, analytic methods typically select a different (but

satisfactory) approximation for efficient minimization. One of the most popular approximations

to HPWL is that of quadratic wire length. While linear programming formulations themselves

are generally not employed for global placement, various other techniques have been used to

approximate a linearized objective (cf. [9, 14, 69, 70, 79]).

In [54], Hall formulated the placement problem as a quadratic assignment problem (QAP)

and devised a method for solving it using eigenvalues. By itself, the quadratic assignment

problem is arguably the most difficult NP-hard combinatorial optimization problem—solving

general problems of size greater than thirty is still computationally impractical due, in part, to

the lack of sharp lower bound techniques [53].

The quadratic assignment problem is formulated as follows: given a cost matrix Ci j represent-

ing the connection cost of elements i and j and a distance matrix Dkl representing the distance

between locations k and l, find a permutation function p that maps elements i and j to locations

Chapter 2. Background 20

k = p(i) and l = p(j) such that the sum

φ = ∑
i, j

Ci jDp(i)p(j) (2.6)

is minimized [103]. Hall showed that cell placement could be converted to a quadratic assignment

problem, with Ci j representing the connectivity between cell i and cell j, and Dkl representing the

distance between slot k and slot l. The permutation function p maps each cell to a slot. The wire

length is given by the product of the connectivity and the distance between the slots to which the

cells have been mapped [103]. Thus, φ gives the total wire length for the circuit, which is to be

minimized [103]. Since the cost function seeks to minimize the square of the distance between

logic cells, this method is known as quadratic placement.

Requiring logic cells to be placed into fixed slots leads to a series of n equations which restrict

the values of the logic cell coordinates [35, 107]. If all of these constraints are imposed, the

quadratic problem becomes NP-hard. Instead, Hall proposed that these constraints be relaxed.

This leads to an approximation of the QAP placement which can be solved very quickly; however,

the consequence of this relaxation is that cells may overlap. To overcome this overlap, quadratic

methods are often augmented with “spreading forces”, as discussed in the following sections.

2.1.4.1 Quadratic Placement

An alternative quadratic formulation was introduced in [76]. In this approach, the overall method

for minimizing wire length is accomplished by solving the quadratic optimization problem (x-

direction only) given by

min
x

(

∑
i, j

ai j(xi− x j)
2

)

= min
x

1

2
xT Qxx+ cT

x x+dx (2.7)

where ai j represents the weight of the edge connecting cells i and j in the weighted graph

representation of the circuit. A similar optimization problem is solved for the y-direction. The

matrix Qx is the Hessian which encapsulates the hyperedge connectivities. Assuming that some

cells are fixed, the Hessian is a symmetric, positive-definite matrix. This requirement is realized

in any real circuit since I/O pads are fixed, typically around the periphery of the placement area.

The vector cx is a result of fixed cell-to-free cell connections, and the vector dx is a result of fixed

cell-to-fixed cell connections.

This optimization problem is strictly convex and has a unique minimizer given by the solution

Chapter 2. Background 21

of a single, positive-definite system of linear equations (x-direction only),

Qxx+ cx = 0.

In this formulation, cell overlap is ignored, and the vector x provides only relative cell locations.

An example of the highly-overlapping nature of a quadratic placement is shown in Figure 2.4.4

2.1.4.2 Hybrid Methods

Multiple techniques are often combined to improve the performance and quality of the resulting

placements, as well as to handle additional constraints in a convenient manner. For example,

Dragon [82] uses recursive partitioning to arrive at an initial placement, which is then improved

using simulated annealing methods.

Similarly, GORDIAN [76], GORDIAN-L [104] and BonnPlace [129] combine quadratic formula-

tions with top-down partitioning-based methods. In such frameworks, analytic techniques are used

to solve a relaxed placement problem to determine relative cell locations while ignoring placement

restrictions—that is, cells are allowed to overlap. Partitioning-based methods are subsequently

employed to enforce the constraints that cells must not overlap with each other while further

optimizing the placement.

In [11], the authors describe a means of augmenting partitioning-based placement using

analytic strategies. In their work, a quadratic placement is used to calculate the area balance

parameter for dividing each block—this parameter is then used to make a more informed

minimum-cut partition. The significance of this paper is that it presents a means of enhancing

the quality of cuts using analytic methods.

Adya et al. further the notion of analytically-augmented partitioning-based placement in [5].

In this work, the authors use quadratic placement to aid in propagating terminal cells within each

block. First moment constraints (based on the area of cells within each block) are added to the

quadratic problem to encourage cell spreading (cf. [76]). The locations of the cells from the

quadratic placement are then used to aid in the assignment of propagated terminals for partitioning

blocks which have not yet been processed.

2.1.4.3 Force-Directed Methods

Alternatively, an analytic method can use forces such that fairly non-overlapping placements are

obtained without the need for partitioning. Force-directed methods have been studied over the

past four decades as a means of placing cells. The common denominator in these methods is

4 The reader is referred to [54, 71,76, 117,121] for more information about the quadratic problem formulation.

Chapter 2. Background 22

Figure 2.4: Quadratic placement for a mixed-size problem with approximately twenty-seven

thousand cells. I/O pads, fixed along the periphery, “pull” some of the cells outward

from the centre, but the placement is still far from legal.

that “forces” are used to calculate the cells’ positions to achieve an objective such as shorter wire

length or smaller delay. The use of forces is borne out of the physical analogy with Hooke’s law for

stretched springs, wherein connected cells can be viewed as exerting attractive spring forces on one

another. The magnitude of the force between any two cells is directly proportional to the distance

between them. If the cells in such a system could move freely, they would move in the direction

of their forces until the system achieved equilibrium at a minimum energy state. Unfortunately,

a minimum energy placement is most often not valid as cells have physical dimensions which

are ignored in the spring analogy. Consequently, additional forces are applied to perturb the cell

positions and remove overlap. Force-directed methods, in general, purge cell overlap over many

iterations while trading off attractive and repulsive forces to achieve a placement in which cells

are distributed evenly without overlap. For example, the progress made by a force-directed placer

on circuit ibm04 from the ICCAD04 mixed-size placement benchmark suite [2] is illustrated in

Figure 2.5.

Force-directed methods differ from simulated annealing and partitioning-based methods.

Simulated annealing typically begins with an initial feasible (or nearly feasible) placement and

applies iterative improvement. Minimum-cut and partitioning methods are also constructive,

Chapter 2. Background 23

(a) (b)

(c) (d)

Figure 2.5: Typical progression of a continuous placement method on circuit ibm04 from the

ICCAD04 mixed-size placement benchmark suite; (a) initial result after the first

quadratic placement; (b) roughly one third through placement; (c) roughly two thirds

through placement; and, (d) prior to legalization and detailed improvement. The fairly

non-overlapping placement prior to legalization is obtained without the use of cutlines

and partitioning.

Chapter 2. Background 24

but rely on partitioning the placement area to remove cell overlap in a top-down fashion.

Force-directed methods, however, do not use partitioning, but rather eliminate cell overlap through

the introduction of additional forces. As such, force-directed placement methods are typically used

in conjunction with a legalization strategy to purge any remaining overlaps after global placement

(cf. Section 2.2.2).

The solution to the quadratic optimization problem in (2.1.4.1) results in a cell placement with

significant overlap. For example, Figure 2.5 (a) shows the placement for circuit ibm04 from

the ICCAD04 mixed-size placement benchmark suite [2] after the solution of an unconstrained

quadratic program—significant cell overlap is present.

To deal with the problem of cell overlap, Kraftwerk [46] and subsequently FDP [128] apply

additional constant forces to distribute cells evenly throughout the placement area to reduce cell

overlap. The quadratic equation (2.1.4.1) is extended with an additional constant force vector fx

yielding

Qxx+ cx + fx = 0. (2.8)

The vector fx is used to perturb the placement in the x-direction such that cell overlap is reduced

(a similar optimization can be performed in the y-direction). It is easy to show that the additional

forces do not restrict the solution space and that any given placement can satisfy (2.8) by proper

selection of fx [46].

This force-directed approach is iterative; cell overlap is not removed just by solving a single

instance of (2.8). Instead, the cell overlap is slowly removed over numerous iterations with the

additional constant forces being updated at each iteration to reflect the changing distribution of

cells throughout the placement area. Hence, the additional constant forces are accumulated over

iterations and the force equation at any given iteration i can be written as

Qxxi + cx +
i−1

∑
k=1

fk
x + fi

x = 0. (2.9)

The additional constant force is divided into two parts, namely those forces accumulated over

previous placement iterations 1 through i− 1 and a current constant force computed at iteration

i. Equivalently, the additional constant force computed at any given iteration is broken into two

specific components, namely (a) a stabilizing force that holds the current placement in equilibrium

(represented by the accumulation of forces from previous iterations) and (b) a a perturbing force

computed for a given placement to further reduce cell overlap.

Numerous other techniques have been proposed for augmenting the quadratic placement

formulation to remove cell overlap. These methods include the concept of fixed points, in

ARP [47], mFAR [59], and newer versions of Kraftwerk [108], bin shifting in FastPlace [120], and

Chapter 2. Background 25

frequency-based methods employing a discrete cosine transform in UPlace [29, 136]. The reader

is referred to [71] for more details of these techniques.

More linearized forms of the HPWL objective have also been studied within the context of

analytic placement. In the patent by Naylor et al. [93], the HPWL of a hyperedge is approximated

using a log-sum-exp formula, given by

HPWLλ(e) = α

(

ln(∑
v j∈ei

e
x j
α)+ ln(∑

v j∈ei

e
−x j

α)+(ln(∑
v j∈ei

e
y j
α)+ ln(∑

v j∈ei

e
−y j

α)

)

(2.10)

where α is defined as a “smoothing parameter”. The smaller the value of α, the more accurate the

approximation to (2.1). However, α cannot be chosen to be too small due to machine precision

and numerical stability. In effect, the use of the log-sum-exp formula picks the dominant cell

positions to approximate the exact HPWL for each edge as specified in (2.1). Despite its use

of transcendental functions, the approximation in (2.10) is both differentiable and strictly convex

which makes it relatively simple to minimize.

To spread cells, it is desirable to augment the log-sum-exp form with a penalty function that

penalizes the uneven distribution of cells. To this end, APlace [64–66, 93] imposes a grid on the

placement area and attempts to equalize the total cell area in every grid bin. APlace approximates

the total cell area in each grid bin by “area potentials” for each cell. The area potential uses a

bell-shaped function to model the effect of a cell’s area on nearby grid bins. This function enables

one to represent a continuous penalty term which is combined with the log-sum-exp approximation

to arrive at a linearly-weighted objective function representing a trade-off in linear wire length

minimization and the quadratic overlap penalty.

APlace is an example of a continuous placement method that deviates from the traditional

methods such as Kraftwerk. In particular, no component of APlace necessarily has a direct

analogy with the concept of a “force”. Hence, its relationship to other force-directed methods

is limited to its removal of cell overlap without the need to partition the placement area and,

perhaps, its use of the conjugate gradient method for minimization—it is reasonable to interpret

the gradient of the objective function used in APlace as a “force” which specifies a direction for

cell movements.

Alternatively, while Kraftwerk and its descendants spread cells using a Poisson distribution,

a mathematical model based on the Helmholtz equation is employed in mPL [26]. This method is

shown to be a generalization of Kraftwerk [71], and the reader is referred to [71] for more details.

Chapter 2. Background 26

2.2 Placement Techniques Pertinent to Specific Design Styles

This thesis deals primarily with the improvement of stochastic search techniques across several

different fields of VLSI CAD—FPGA placement, mixed-size circuit legalization, and standard

cell detailed placement. While the thesis aims to improve search-based methods in each of these

cases through the introduction of directed moves, it is nevertheless important to discuss the relevant

advances in each field in order to be able to establish a basis for fair comparison.

2.2.1 FPGA Placement

2.2.1.1 Simulated Annealing and VPR

Simulated annealing [75] is an important method for placement in FPGAs due to its flexibility in

handling complex objective functions and constraints.

VPR [19] is, perhaps, the best-known annealing-based, academic FPGA placer. Through VPR,

Betz et al. introduced several key improvements to FPGA placement, including the concept of

path-based weighting for timing-driven optimization, timing-driven clustering, fast incremental

bounding box computation, and a well-described, experimentally-tuned annealing schedule.

Timing-driven VPR employs the following delta-cost function:

∆C = λ ·
∆CT

Previous CT
+(1−λ) ·

∆CW

Previous CW
(2.11)

where CT is the timing cost, CW is the wire length cost, and λ represents the trade-off (that is,

“timing tradeoff”) between wire length and timing minimization. The value of CT is computed

based on the timing cost CTi j
for each edge (i, j) in the circuit timing graph, and can be expressed

as:

C(i, j) = 1−
Slack(i, j)

Delaymax

(2.12)

CTi j
= Delay(i, j) ·C(i, j)β (2.13)

CT = ∑
∀ edges i, j

CTi j
(2.14)

Here, β is used to weight connections that are more critical, and increases slowly (starting from

1) over the course of the anneal to a maximum value. VPR recomputes the circuit timing at every

temperature change, but only recomputes changes in delays within the inner loop of the anneal (at

the same temperature). This allows it to achieve good run-time while still maintaining a reasonably

accurate view of timing.

The value of CW is computed using a weighted bounding box where the weights compensate for

Chapter 2. Background 27

the fact that the bounding box wire length model underestimates the wiring necessary to connect

nets with more than three terminals [19]. The bounding box is also weighted in the x and y

directions to penalize placements which require more routing in areas of the FPGA with narrower

channels; although, in practice, most academic CAD investigations (including those in this thesis)

employ architectures where the channels have similar capacities. In practice, the wire length cost

function can be quickly computed using an incremental bounding box technique [19].

The annealing schedule employed by VPR has proven to be very successful. As described

in [112], the maximum number of moves evaluated at each temperature is given by:

inner num ·Ninner exp (2.15)

where N represents the number of movable logic cells. Note that inner exp is equal to 1.33 and

inner num is set to 10 by default.

The temperature reduction strategy in VPR follows from the reasoning that, at high tempera-

tures, the anneal is oscillating randomly from one placement to another and little improvement

in cost is obtained, while at low temperatures, too few moves are accepted [19]. Consequently,

the temperature update schedule employed in VPR follows the form Tnew = α · Told where α is a

parameter that varies between 0.5 and 0.95 depending on the annealing success rate.

VPR strives to keep the success rate of its random pairwise moves around 0.44, and does so by

varying the size of the random window. The range of the random window is initially set to the

size of the entire chip, and is gradually shrunk over the course of the anneal, as the success rate

declines. The anneal terminates when the temperature is less than a small fraction of the average

cost of a net [19].

2.2.1.2 Other Approaches to Improving FPGA Placement

Since the inception of VPR, numerous attempts have been made to improve upon placement quality

and run-time. Most techniques have fallen into one of the following categories: (1) better initial

placement (e.g., by coupling annealing with another placement strategy), (2) better clustering (for

clustered architectures), (3) modifications to the circuit netlist (e.g., through logic duplication or

basic logic element [BLE]-level placement), (4) more accurate objective functions (e.g., path-

based timing weights, or the incorporation of congestion metrics), or (5) changes to the annealing

schedule (temperature, acceptance criteria, and so on).5

Alternative strategies have been investigated to reduce the amount of run-time spent in high-

5 Some of these schemes are only applicable to clustered architectures, although fine-grained, non-clustered

architectures also exist; cf. [1].

Chapter 2. Background 28

temperature annealing regimes. For instance, faster placement heuristics, such as recursive min-cut

partitioning, have been employed [83, 116] to quickly produce better initial placements, thereby

requiring the annealer to run only in a lower temperature regime.

Better packing algorithms have also been shown to improve the quality of annealing-based

placements for clustered architectures. A new method for packing logic was proposed in

HDPack [30] where physical cell distances were incorporated into the packing cost function. A

routability-driven packing algorithm was described in iRAC [105] where careful attention was

paid to the selection of the seed BLE and the packing was controlled by the Rent parameter of

the architecture. Depth-optimal and depth-relaxed packing methods [39, 43, 114] have also been

described in which timing-critical logic was duplicated during clustering to obtain a set of clusters

with optimal depth.

Recent approaches for improving quality during annealing-based placement have focused on

modifying the circuit netlist prior to, during, or after placement. One method has been to perform

logic duplication and path straightening [17, 31, 32, 57]. Alternatively, a clustered (combinational

logic block, or CLB) netlist itself can be re-clustered during placement by moving BLEs, as

performed in SCPlace [31].

The design of better annealing objective functions has also been considered. By changing

timing weights [138] and deriving more accurate models for net costs, better placement results

have been reported. For instance, [77] describes a method for computing timing criticalities

based on path counting and the use of a discount function. Numerous works have also discussed

the integration of global routing and placement to improve the fidelity of the placer’s objective

function [103].

Run-time improvements have also been discussed in the recent literature. For instance, parallel

techniques have been described to accelerate annealing [25, 81]. Shorter temperature schedules

have additionally been proposed [119].

2.2.2 Mixed-Size Legalization

While force-directed methods have become a popular choice for the global placement of standard

cell and mixed-size designs, they have heightened the need for more effective solutions to the

legalization problem, in which module overlaps must be removed after global placement. This

problem is amplified in force-based methods because placements produced by such techniques

generally possess more overlap than that found in constructive approaches such as recursive

partitioning. (Figure 2.5 (d) illustrates the need for special techniques to purge the final overlaps

from designs produced by force-based methods.)

The legalization of modern mixed-size designs is extremely difficult due to the presence of

Chapter 2. Background 29

both macrocells and standard cells. Typically, the scale of these problems is such that optimal

approaches (such as those employed in [74, 87, 111]) are impractical and heuristics are required to

arrive at answers in reasonable run-times. Recent trends in the VLSI literature have attempted to

address the issue of legalizing mixed-size designs by borrowing concepts from the floorplanning

literature, as well as by introducing new heuristic methods. Modern legalization techniques aim to

perturb the placements as little as possible in order to maintain the quality of the global placement,

although simultaneous optimization of other objectives is sometimes undertaken.

Annealing is a popular approach to solving the floorplanning problem. Such floorplanners

typically permute sequence pairs [3, 4, 89] or edges in constraint graphs [80] to attain a feasible,

non-overlapping placement. These methods can achieve high-quality, legal floorplans for small

problem instances; however, they may not produce optimal results and can suffer from exponential

run-time scaling due to the size of the search space in larger problems.

Greedy heuristics account for much of the literature in large-scale, post-placement VLSI

legalization. A greedy shifting heuristic for simultaneously legalizing macrocells and standard

cells was proposed in [8], based on the patent of [56]. In this approach, a front-end contour (which

designates the leftmost empty site on each row) is maintained. Movable cells are traversed in y, and

the location of each cell (along the contour) is determined by considering the resultant wire length

and displacement penalty. This technique often results in illegal placements with cells extending

beyond the chip; thus, cells are typically packed very tightly [8] or larger blocks may be placed

first [64] to compensate.

An approach combining a transportation problem and cell rippling was presented in [20]. This

work focused on minimum-movement legalization of standard cell designs. In this method, a grid

is built over the placement area and buckets are connected to the flow source nodes by edges with

flow equal to the amount of overlap in each bucket. The buckets themselves are connected in each

direction, and buckets without overlap are connected to flow sink nodes. Buckets possess “soft”

vertical boundaries to reduce the flow and therefore reduce the cell movement. The solution to the

flow problem yields the edges along which cells should be rippled to minimize overlap.

In [90], a two-step approach is employed to remove overlap with minimal movement in FPGA

placements. In the first step, a topological constraint graph [80] is built from the macrocells by

means of a sequence pair [89]. Slacks are computed on the constraint graph using a “timing

analysis”, and critical arcs in the graph are improved by permuting the sequence pair accordingly.

Once the constraint graphs are legal, the large cells are placed by allocating the slacks in the

constraint graph using a linear-time heuristic. The large cells are subsequently fixed in place, and

the smaller cells are positioned via bipartite matching.

Doll et al. [44] divide the placement into multiple regions, and optimize each region by solving

a transportation problem. The algorithm allows regions to overlap in order to avoid becoming

Chapter 2. Background 30

trapped in local optima. In [61], Hur and Lillis employ a minimum-distance cell rippling strategy

to move cells from regions of high occupancy to regions with free capacity.

In XDP [40], a constraint graph (along the lines of [90]) is used to legalize macrocells with a

Tetris-like shifting [8] employed to legalize the standard cells. XDP’s standard cell shifting employs

both a front and a back-end contour. Standard cells are moved to the site between the two contours

which gives the shortest wire length. Macrocells are considered for movement between the interval

determined by the two contours, and the contours are updated appropriately.

Floorist [86] addresses the legalization problem by solving a constraint satisfaction problem

for macrocells. A pair of constraint graphs is built to model the overlapping features, and a greedy

search (guided by critical paths) is employed to render the graphs legal. A final stage translates the

constraint graphs into a coordinate representation. Standard cells are then legalized using Capo’s

traditional snap-to-site approach [2].

2.2.3 Detailed Placement

Detailed placement is performed in standard cell designs after both global placement and legaliza-

tion. Generally-speaking, the goal of detailed placement is to:

• optimize objectives which were not handled during global placement;

• undo any harm to the placement caused by legalization; and,

• improve upon the final quality of the placement.

Within the context of detailed placement, both heuristic and optimal strategies have been explored.

The prevailing methodologies for detailed placement in standard cell designs rely on optimal

techniques which can be employed on small, localized subsets of cells, although search-based

techniques have also been used in practice. Since modern problems can possess millions of

standard cells, strict mathematical programming formulations are not usually favoured; rather,

most attention in the literature has focused on one of three generic methods: stochastic search,

branch-and-bound rearrangement, and flow-based strategies.

2.2.3.1 Stochastic Search Techniques for Detailed Placement

Historically, simulated annealing has been viewed as a poorly-scalable, time-consuming strategy

for detailed placement, and it is for this reason that modern detailed placers generally focus on

alternative strategies. Some burden for this belief may be borne by TimberWolf [101], which

employed simulated annealing for both global and detailed placement, leading some to conclude

that the technique’s run-time scalability was poor.

Chapter 2. Background 31

The cost function originally employed by TimberWolf [101] accounts for wire length, but also

penalizes module overlap and the length of standard cell rows. This cost function can be described

as

φ = ∑
nets

(αxbbx(i)+αybby(i))+αo ∑
i6= j

(

OL(i, j)2
)

+ αr ∑
rows

|ARL(i)−DRL(i)| .

Here, bbx and bby denote the horizontal and vertical spans of net i’s bounding box. αx and αy are

weights applied to the horizontal and vertical wiring spans. The function OL(i, j) calculates the

amount of overlap between cells i and j, while αo acts as a weighting for the overlap penalty. The

quadratic nature of this overlap term discourages large overlaps. The third term of the objective

equalizes row lengths by increasing the cost if rows are unequal lengths. In this case, ARL(i) and

DRL(i) represent the actual row length and the desired row length of row i, while αr allows the

term to be weighted appropriately.

Timberwolf chooses cells randomly and either interchanges or displaces these cells to a

random location in the chip. The algorithm performs best when the number of displacements

is between three and eight times the number of interchanges [101]. In more recent versions of

Timberwolf [110], cell overlap is only briefly permitted when an interchange or displacement is

performed, but any resulting overlaps are purged by shifting cells to the left or right. Nevertheless,

because the effects of this shifting are not precisely modelled, the cost function used in [110] does

not exactly model the HPWL of the design.

Stochastic search techniques have been mentioned in more recent works, but only in limited

contexts, such as greedy (zero-temperature) approaches. In mPL [27], the authors state that window-

based cell swapping is employed to reduce wire length, that “all the cell permutations within

[a] window are examined”, and that “the [permutation] giving the shortest scaled wire length is

accepted” [27]. It is unclear, from the work, what types of cells are swapped (whether they must

be similarly-sized or not), what types of strategies are employed to maintain legality, how much

improvement is achieved, and whether or not this is done within an annealing context. Greedy

swap-based methods are also mentioned in [64, 95].

2.2.3.2 Small-Window Detailed Placement

As a result of the questionable success of annealing-based techniques, the focus for detailed

placement shifted to optimal arrangement of small subsets of cells. Absent any whitespace,

placement solutions can be considered as permutations of hypergraph nodes [23]. The detailed

improvement problem, then, lends itself to enumerative strategies which employ branch-and-bound

techniques to prune the search space.

Branch-and-bound placement in a single dimensions (i.e., a single row of a standard cell circuit)

has been well documented in the literature [23]. In this method, a window is scanned over each row,

Chapter 2. Background 32

and cells are “ripped up” in subsets of at most 8 (or so) cells. Cells are then added to the placement

problem one at a time, and the bounding boxes of incident edges are extended to consider the new

locations of each cell. From a given partial placement, the lower bound of the wire length of any

completion of the placement is computed. Extensions of the current partial solution are considered

only as long as this lower bound is smaller than the cost of the best seen complete solution [23].

To accommodate varying dimensions, cells may be packed with a fixed-size space between

neighbours—in other words, whitespace is distributed equally between them. Alternatively, it may

be possible to consider portions of whitespace themselves as dummy cells in the problem, and

optimize their location when placing logic cells. Replacing a cell with a cell of a different width

changes the location of at least one neighbour, and triggers bounding box re-computations for

incident nets [23].

Typically, cells are packed from left to right and are always added or removed (using a

lexicographic ordering) from the right end of the partially-specified permutation, as shown in

Figure 2.6. This formulation lends itself to a stack-based implementation where the states of

incident nets are pushed onto stacks when a node is appended on the right side of the ordering, and

popped when the node is removed [23]. Bounding is performed by removing cells from the end

of a partial solution before all lexicographically greater partial solutions have been visited [23].

Pseudocode for this procedure is provided in Figure 2.7.

Multi-row branch-and-bound placement techniques have received some attention in the liter-

ature. In [97], a mixed-integer linear program is presented to model the placement of unit-sized

standard cells in windows of up to 6× 6 cells. Due to the complexity of the problem and the

absence of good bounding criteria, the run-times for such a technique are impractical.

Dynamic programming techniques have also been employed for standard cell optimization.

For instance, a cell assignment technique is considered in NTUplace3 [33] in which an assignment

problem is employed to place up to 200 to 300 unrelated cells (within a window) at a time.6 A graph

colouring problem is used to gather the unrelated cells. Rather than using a min-cost max-flow

solver, however, the implementation in [33] solves a weighted bipartite matching problem, which

is conceptually similar though potentially more run-time efficient. Hur and Lillis [61] proposed a

detailed placement algorithm based on dynamic programming which iteratively picks two groups

of cells in the placement and optimally interleaves them.

2.2.3.3 Congestion Control

While the optimization of HPWL has been considered extensively in the literature, some work has

also focused on routing congestion minimization. By minimizing routing congestion, a placer can

6 This work bears a significant resemblance to the Domino [44] approach described in Section 3.3.2.1.

Chapter 2. Background 33

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

Figure 2.6: Illustration of single-row branch-and-bound placement.

improve the routability of a design by ensuring that the routing demand across a chip is less than

or equal to routing supply.

Routing congestion in a mixed-size ASIC design is most often modelled by overlaying a grid

on top of the placement. The congestion is related to the number of routed nets crossing the edges

of the individual grid bins. This formulation serves to reduce the computational effort, while still

affording the technique a reasonably precise view of routing demand. Several techniques—such as

those based on global routing and Rent’s Rule [58,131,135]—have been employed to give a more

accurate idea of the amount of “net overflow” leading into these congestion maps.

The ISPD 2006 placement contest [91] incorporated a modified objective function which

accounts for both wire length and a “scaled overflow” metric. This overflow metric approximates

the notion of routability-driven optimization by penalizing dense placements. The ISPD 2006 cost

function can be expressed as:

minΦ = HPWL× (1+ scaled overflow). (2.16)

The scaled overflow term approximates the “congestion” in a design, and is computed by imposing

a uniform grid on top of the placement, calculating the utilization for each grid bin (where

utilization is given by the area of movable objects divided by the capacity of the bin), and summing

the utilization for all bins. The overflow term is then squared and scaled linearly to be within limits

set by the contest.

Congestion can be alleviated by inserting whitespace after placement according to routability

metrics or other parameters (cf. [98, 99]). However, whitespace can also be crudely handled by

Chapter 2. Background 34

Procedure: SINGLE-ROW B&B

Input: A queue of relatively non-overlapping cells to place, s

Variables: A queue, q, which will contain the current working set

begin1

idx← numCells −1;2

costSoFar← 0;3

bestCostSeen← cost of current placement;4

nextLocation← set to the sub-problem’s leftmost edge;5

while idx < numCells do6

s.push(q.deque());7

cnt[idx]← idx;8

costSoFar← costSoFar + cost of placing s.top();9

nextLocation = nextLocation + widthOfCell(s.top());10

if costSoFar ≤ bestCostSeen then11

cnt[idx]← 0; // This signals a bounding.12

fi13

if cnt[idx] = 0 then14

// The ordering is complete or has been bounded.15

if idx = 0 and costSoFar < bestCostSeen then16

bestCostSeen← costSoFar;17

save current placement;18

fi19

while cnt[idx] = 0 do20

// Remove the right-most cell.21

costSoFar← costSoFar - cost of placing s.top();22

nextLocation← nextLocation - widthOfCell(s.top());23

q.enqueue(s.pop());24

idx← idx + 1;25

cnt[idx]← cnt[idx] - 1;26

od27

fi28

idx← idx - 1;29

od30

end31

Figure 2.7: Pseudocode for a single-row branch-and-bound placement algorithm. The placement

is produced from a lexicographic enumeration, and bounding is based on the best cost

seen.

Chapter 2. Background 35

“bloating” cells during placement and then restoring cell dimensions afterwards.

Although global placers (and possibly legalizers based on minimum-movement concepts) aim

to satisfy density targets (if provided), careful consideration to bin overflow must be paid during

detailed placement as well. For example, in NTUplace3, cells in over-utilized bins are shifted left

and right during detailed placement until the over-utilization is minimized—cells are shifted from

denser bins to sparser bins while preserving cell ordering. Only horizontal sliding is considered,

as vertical sliding was found to produce misalignment between standard cells and site rows [33].

This post-placement approach to congestion minimization can have deleterious effects on HPWL.

Several strategies for whitespace allocation were considered in the partitioning-driven placer,

Capo [100]. For example, whitespace can be distributed uniformly by proper cutline management

during partitioning. Such whitespace allocation “generally produces routable placements, at the

cost of increased wire length” [100]. Local tolerances can also be adjusted to control the shifting

of the cutline to produce less-uniform whitespace allocation, which can allow for tighter-packed

placements and better wire length quality.

CHAPTER 3

Improving Simulated Annealing for FPGAs

with Directed Moves

3.1 Overview

This chapter investigates the concept of “directed moves” as a means of improving simulated

annealing-based FPGA placement. This notion was inspired by previous research in the ASIC

domain [4, 55] where intelligent, deterministic strategies for selecting and replacing “poorly-

placed” cells were interspersed with simple, random moves during annealing. Directed moves

serve to reduce the size of the search space by focusing on cells and locations of interest; this

allows the annealer to converge more quickly and to attain a better placement for the same amount

of run-time as if random moves had been used alone.1

In this chapter, several concepts for directed moves are considered, such as median place-

ment [52,128], cell rippling, graph colouring, optimal linear assignment [44], and the minimization

of monotone path deviation [17, 32, 57]. These directed moves were implemented in a modern,

C++-based academic FPGA placement framework called KPF. The results confirm that, for the

same amount of computational effort, wire length-driven and timing-driven directed moves—when

used in combination with simple moves—routinely lead to improvement in both critical path delay

and wire length, compared to having used simple moves alone. Moreover, directed moves are

shown to reduce the statistical variability of the annealing-based placements. Additionally, a

1 Portions of this chapter were published in [126, 127].

36

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 37

technique is presented for measuring the effectiveness of moves, and for terminating the anneal.

Further numerical results explore the effects of moves in clustered FPGA architectures.

Section 3.2 motivates the concept of directed moves for FPGA placement. Section 3.3

discusses the implementation of the directed moves. Finally, Section 3.4 presents numerical results.

3.2 Motivation for Directed Moves

The motivation for this chapter—and, to a larger extent, this thesis—stems from the observation

that an annealer may spend time re-visiting previously-explored states, and may waste run-time

before discovering the lowest-cost states. In simulated annealing, the function for generating a

new state j given a current state i is given as g(i, j). A matrix P can be used to represent the state

transition probability of a traditional annealing process [75], and takes the form:

Pi j(T) =



















0 if j /∈ N(i) and i 6= j

min{1,e−
F(j)−F(i)

T } if j ∈ N(i)

1−∑ j∈N(i) Pi j(T) if i = j

(3.1)

where N(i) represents the neighbours of the state i, i /∈ N(i), T is the temperature, and F(i) is the

value of the cost function in state i. For a given T , the probability distribution of the annealing

problem can be viewed as a stationary time-homogeneous Markov chain, represented as:

πi(T) =
g(i)e−

F(i)
T

G(T)
(3.2)

where g(i) is a normalizing function such that ∑ j∈N(i)
g(i, j)
g(i)

= 1, and G(T) is a scaling factor such

that ||π(T)||= ∑i=1 |S|πi(T).

For this Markov model to converge to the optimal solution, the neighbour generation criterion

must satisfy g(i, j) = g(j, i) for all states i, j [85]. This leads to the stationary probability condition

π(T)P(T) = π(T), which in turn, leads to the detailed balance criterion:

πi(T)

π j(T)
=

g(i)

g(j)
e(−

F(j)−F(i)
T

) =
Pji(T)

Pi j(T)
. (3.3)

That is, the probability of changing from state i to state j must be the same as the probability of

generating i when the system is in j times the probability of accepting it [102].

If g(i, j) could be made to explore neighbour states that are more likely to yield improvement,

the amount of time required for the anneal can be reduced. This preferential state exploration forms

the basis for the directed moves described in this work.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 38

If directed moves are implemented without consideration for the detailed balance criterion,

the risk of oscillation and of converging to a local minimum is raised. It is worth noting that

it is possible to implement directed moves which do not harm detailed balance by ensuring that

the probability of accepting the “reverse” move (i.e., Pji) compensates for the earlier, directed

state exploration. However, as will be shown in this work, this compensation is not necessary,

in practice, to achieve high-quality placements provided that a sufficient portion of attempted

moves are still of the traditional, non-directed kind.2 Moreover, directed moves do not preclude

the attainment of high-quality results in a practical annealer since numerous heuristics (such as

clustering, windowing, non-infinite starting temperatures, and so forth) are already employed to

reduce run-time at the expense of producing sub-optimal solutions. Thus, the goal, in this work, is

for directed moves to serve as a means of “shifting” the cost function curve so that better-quality

placements can be produced more quickly.

Only two prior works— [4, 55]—are known to have discussed the concept of directed moves

in the context of cell placement. In [4], two types of moves are considered in the Parquet

ASIC floorplanner: a source-selection strategy to increase horizontal and vertical slacks in the

floorplanning problem, and a target-selection method for moving cells toward wire length-reducing

locations. The source-selection strategy is performed using a “priority list” approach in which

Parquet performs operations more frequently on the cells with worse slacks. The wire length

move is computed by occasionally solving a quadratic optimization problem and then trying

to move a given block closest to the average of the position of all modules connected to it.

Alternatively, in [55], a move based on weighted centroids was interspersed with random moves

to improve the quality of the wire lengths in the Timberwolf [101, 110, 113] standard cell placer.

The “schedule” for determining which moves to choose and how often to perform them, in both

cases, is hard-coded.

This work presents five additional contributions for directed moves compared to the previous

body of literature:

1. many new types of directed moves are considered;

2. a new technique (based on cell rippling) to retain placement feasibility is described;

3. the use of multiple directed moves to optimize separate annealing objectives (such as both

wire length and critical path delay) is explored;

4. a heuristic for automatically ranking moves and for determining when to terminate an anneal

based on the moves’ effectiveness is presented; and,

2 The move selection strategy described in Section 3.3.4 ensures that this is the case.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 39

5. a comprehensive quality versus run-time analysis of the directed moves is discussed for both

clustered and non-clustered FPGA architectures.

While some of the directed moves described in this chapter have been employed in post-placement

optimization strategies (e.g., [17]), the integration of these methods into the annealing loop

(1) unifies and simplifies the implementation and (2) allows the methods to consider a wider search

space which can lead to potentially better results.

3.3 Implementation

An academic annealing-based placer, called KPF, was developed as part of this work. It targets the

same type of architecture and CAD flow as VPR.

In KPF, a “move” is the fundamental operation of perturbing a placement (i.e., generating a

neighbour state)—picking a set of source (“from”) cells, S, choosing a set of target (“to”) locations,

T , and then assigning S to T . Like most annealers, feasibility is maintained throughout the anneal.

Thus, if a cell S0 is assigned to an occupied location T1 (i.e., occupied by cell S1), it will either

assign S1 to T0 (as in VPR) or ripple a set of cells along a path from T1 to T0 to retain legality. The

concept of rippling will be discussed in more detail in the following sections.

In KPF, multiple cells can be assigned to multiple locations in a single perturbation—the delta

cost for moving all cells is computed at once and the entire move is either accepted or rejected. It

is possible that significant improvement could be wrought from such a move, but at the same time,

if the move is rejected, it could be costly in terms of run-time.

VPR uses a random strategy to choose source cells and a random, shrinking window method

to choose target locations; these moves are referred to as “simple moves”. KPF implements such

moves as well as other strategies for picking source cells and target locations. In addition, both

assignment and rippling have been investigated as means of retaining feasibility, as summarized in

Table 3.1. As discussed in Section 3.4.1, not all possible combinations of strategies in this table

were exhaustively tested, and of the moves which were tested, not all proved to be useful. This

work focuses primarily on the subset of moves which did yield improvement in early testing.

3.3.1 Heuristics for Determining Source Cells

Three heuristics were implemented for determining source cells. The first heuristic was a

traditional random cell selection, as implemented in VPR.

The second heuristic was based on the concept of graph colouring in which the netlist

hypergraph is coloured prior to placement. During placement, the colouring is used to randomly

choose independent, non-connected cells (i.e., cells which do not share a net) in subsets of up

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 40

Table 3.1: Combinations of source and target cell moves considered in this chapter, as well as

the methods considered for resolving infeasibilities (via assignment or cell rippling).

For comparison purposes, “WL” or “CP” is used to indicate whether the move targets

primarily wire length or critical path delay. “♥” is used to indicate moves that lead to

higher quality and “\” to designate higher run-time complexity.

Target Selection⇒ Random Domino (WL) Median (WL) MPD (CP) Weighted Me-

dian (CP)

Centroid (CP) Priority

List (CP)

Source Selection ⇓

Random Assign (♥♥\) n/a

Assign (♥♥♥\\)

Ripple

(♥♥♥♥\\\)

Assign

(♥♥♥♥\\)

Ripple (♥♥\\\)

Assign

(♥♥\\\)

Ripple

(♥♥♥\\\\)

Assign (\) Assign (♥\)

Colouring n/a Assign

(♥♥♥♥\\\\)

n/a n/a n/a n/a n/a

Priority List n/a n/a Ripple (♥♥\\\) Ripple (\\) n/a n/a n/a

to 15 cells at a time. This graph colouring permits the later application of the Domino technique

(described in the next subsection) to compute an assignment (and therefore, a placement) for the

cells.

The final selection heuristic was based on priority lists, where a cell is chosen, at random,

from a list containing the 25% worst-placed cells in the design. At each annealing temperature

update, this priority list is recreated by scoring the cells based on (1) their distance away from

their optimal half-perimeter wire length (HPWL) positions as well as (2) the maximum timing

cost of paths through the cell. The goal of this source selection strategy is to “focus” the efforts

of the annealer so that it chooses cells that are more likely to yield improvements in quality (and

less time is wasted in unproductive moves). The distance from the optimal HPWL positions is

measured using the concept of median placement (which is described in the following subsection).

The timing cost ranks are computed as a function of pin criticality multiplied by delay for each

driver-sink pair.

3.3.2 Heuristics for Determining Target Locations

Several heuristics for determining the target locations for cells were implemented. These methods

generally incorporate aspects of randomness within a “focused” area, and are usually geared toward

optimizing wire length or timing. The first heuristic was a standard, random target location within

a shrinking window, as implemented in [19]. Additional, more complex moves are considered

below.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 41

3.3.2.1 Domino

In [44], the authors formulate a minimum-cost flow problem for determining how to place subsets

of approximately 20 standard cells. The algorithm, entitled Domino, works by first “binning” the

placement area with a set of overlapping bins—cells are “snapped” into their nearest bins. (Some

cells may be assigned to multiple bins based on how the bins overlap.) Domino “shreds” large cells

(to accommodate varying standard cell dimensions) by turning them into groups of smaller cells

connected by high edge affinities. Valid locations for the cells are then determined prior to cell

assignment.

Each sub-problem is solved using a transportation problem that moves cells to locations such

that the transportation cost is minimized. The transportation problem is formulated as a minimal-

cost, maximum flow problem as shown in Figure 3.1. The problem consists of a source node S

which supplies cells, a set of cell nodes u, location nodes λ, and a sink node, T . The capacities of

arcs between node S and each cell node is 1. The cost of assigning cell µ to location λ is given by

cµλ. Finally, the cost between locations and the sink node is also set to 1. The solution to the flow

problem dictates how to move the cells; a heuristic is then employed to actually move cells based

on where the flow “suggests” they go.3 After the application of the algorithm, large cells that were

shredded are reconstituted at the average locations of their smaller constituents.

The quality of the resultant placement is determined, in large part, by how accurately the cost

cµλ approximates the actual cost of assigning a cell µ to location λ. If none of the cells in the

sub-problem are interconnected (i.e., no cells share a common net), the cost c can be determined

perfectly, and the assignment is optimal. If, however, the cells do share common nets, then the

assignment is only approximate. This is because the assignment of cell µ to location λ could alter

the cost of assigning another interconnected cell to another location.

A method is presented in [44] to help in approximating the costs for cells which share nets.

Typically, cµλ is computed as the HPWL of assigning a cell µ to location λ; that is, given the

location (xλ,yλ), cµλ represents the sum of the horizontal and vertical spans of all nets attached to

µ if it were placed at (xλ,yλ). However, as mentioned above, the cost of nets shared by more than

one cell in the sub-problem cannot be accurately computed, since the horizontal and vertical spans

of the nets are not known prior to the assignment of the cells. To approximate the cost for such

nets, dummy cells φi are placed at the centres of gravity of each shared net. A dummy cell’s (x,y)

location is determined by

xφ =
1

|V (E)| ∑
µ∈V (E)

xµ and yφ =
1

|V (E)| ∑
µ∈V (E)

yµ.

3 The heuristic moves cells along the flow such that they end up in non-overlapping positions.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 42

Figure 3.1: Illustration of the transportation problem used in Domino. The weights on the arcs

denote the capacity and cost, respectively, in the minimum-cost flow formulation.

The contribution of internal net e to the cost cµλ is then given by:

Cφ = max(xφ,xµ)−min(xφ,xµ)+ max(yφ,yµ)−min(yφ,yµ).

A directed move heuristic was implemented based on Domino. Given a set of cells, KPF solves

a minimum cost linear assignment problem to assign the cells to sites where the sites are located at

the positions of the original cells. When setting up the assignment problem, it is important that the

costs on each arc closely model the actual cost of assigning a cell to a location. By selecting the

source cells via graph colouring, it is assured that none of the cells in the transportation problem

are interconnected (i.e., no cells share a common net); consequently, the wire length costs on the

arcs can be determined perfectly and the placement will be optimal for HPWL [44]. One caveat to

this approach is that the assignment ignores timing, and this can result in the move being rejected.

The approach to flow-based improvement presented in this thesis is similar to that of [44].

However, instead of using the flow formulation to determine how to move cells, a linear assignment

problem is solved to allocate each cell to each same-sized location in every sub-problem. Domino

uses flow as a guide in determining how to assign cells, whereas the approach presented here

uses the same formulation as Figure 3.1 to actually make the assignment. A high-performance

minimum-cost flow heuristic by Goldberg-Tarjan [36] is used to solve each sub-problem.

3.3.2.2 Median Placement

In [52], Goto proposed an algorithm that can be used to move a cell into a position that minimizes

the wire length of its connected nets while assuming that other cells are fixed. The algorithm

can be applied iteratively to each cell to obtain an improved placement. Central to the idea of

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 43

repositioning a cell is the concept of the median of a cell. Goto defines the median of a cell as the

position at which the HPWL of its connected nets is minimum.

The median of a cell C is computed as follows. Let EC denote the set of nets connected to

cell C. For each e ∈ EC, compute the enclosing rectangle of all pins on e while excluding those

connections to cell C; the dimensions of this rectangle can be denoted by coordinates (xmin
e ,ymin

e)

and (xmax
e ,ymax

e) where xmin
e and xmax

e are the minimum and maximum values in the x-direction,

respectively. The same definitions hold for ymin
e and ymax

e in the y-direction. Given these definitions,

the total wire length for all nets connected to cell C at position (x,y) is given by

fC = ∑
e∈EC

(fe(x)+ fe(y)) (3.4)

where

fe(x) =



















xmin
e − x, x < xmin

e

0, xmin
e ≤ x≤ xmax

e

x− xmax
e , x > xmin

e

(3.5)

fe(y) =



















ymin
e − y, y < ymin

e

0, ymin
e ≤ y≤ ymax

e

y− ymax
e , y > ymin

e

. (3.6)

Equation (3.4) is separable and the optimal position (x,y) for cell C can be calculated independently

in both the x- and y-directions. Goto showed that (3.4) can be written (x-direction only) as

fC = ∑
e∈EC

[

|x− xmin
e |+ |x− xmax

e |
]

(3.7)

with the optimal solution given by a median computation. In practice, medians are computed

simply by inserting xmin
e and xmax

e for all e ∈ EC into a vector and finding the median value. That

is, for a vector of length n indexed 1 to n, a suitable minimizing value for x is any value within the

range of values stored at the indices bn/2c and bn/2c+ 1 of the sorted vector. Figure 3.2 shows

the computation of the median rectangle for a cell connected to three nets.

Median placement was used as the basis for a directed move capable of computing target

locations in KPF. The algorithm follows from Goto’s work, with the target location being chosen

at random from within the optimal range shown in Figure 3.2.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 44

(a) (b)

Figure 3.2: Illustration of the median calculation for a cell C connected to three nets. In (a),

the original placement of cells is shown. In (b), the median, or optimal range of

(x,y) values for cell C is shown. Six x- and y-positions are used for the median

computation since three nets are involved. Note that two-pin nets degenerate to a

single point. A larger set of positions for cell C can be computed by expanding the

median rectangle outward according to the points used in the median computation,

thereby implementing the concept of ε-neighbourhoods described by Goto [52].

3.3.2.3 Monotone Path Deviation

To minimize critical path delay, a target heuristic was implemented based on the concept of

minimizing monotone path deviation (MPD). A monotone path between two nodes is a path with

a length that is equal to the Manhattan distance between the nodes [16]. Making the path more

monotone has been shown to reduce the delay on the critical path [16], as doing so “straightens”

the connections between sources and sinks.

Consider a node n with k inputs, ik, which are on the critical path. The monotone region for

node n can be expressed with respect to one of its inputs, i j, and a node, o, which is driven by n,

as the minimum bounding box enclosing i j, n, and o. Node n can be placed anywhere inside the

monotone region without increasing the deviation of n with respect to i j and o, which allows the

subpath i j→ n→ o to be shortened [16, 32]

The key to minimizing monotone deviation, then, is to consider the intersection of the

monotone regions for the critical inputs of n. This intersection presents a feasible region into

which n can be placed without increasing the deviation of n with respect to any of the inputs and

the output node o. An example of this concept is illustrated in Figure 3.3.

Given a source cell, KPF computes the feasible region with respect to the cell’s most critical

drivers and its most critical sink. The target location for the source cell is subsequently chosen at

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 45

Figure 3.3: Illustration of a feasible region computation for a node with 3 critical inputs and 1

critical output [32].

random from within the feasible region.

3.3.2.4 Priority Lists

Another timing-driven technique for target selection was implemented based on the concept of

priority lists. In this approach, a list was used to determine target cell locations by tracking the

top 25% of cells in the netlist containing the most timing slack. One of the cells in this target list

is chosen at random, and the source cell and this newly-chosen cell are swapped. This move is

conceptually similar to one employed in Parquet [4].

3.3.2.5 Other Approaches

Another modification to the median placement strategy was considered where, instead of deriving a

region from the median positions of connected cells, a weighted median computation is employed

to improve timing. In this approach, the median values of the nets are weighted by the timing cost

of their respective pins. This approach skews the median region toward pins with higher timing

costs. The target location into which to move a cell is chosen at random from within the weighted

median range. The intent of this heuristic was to produce a move that could simultaneously reduce

wire length as well as timing.

Lastly, a weighted centroid approach, akin to [55], was investigated. Given a source cell, the

target location for the cell is computed as the weighted centroid position of its drivers and receivers,

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 46

where the weights are based on the timing costs of the pins.

3.3.3 Resolving Infeasibilities

Early on, it was observed that median placement—despite being optimal for wire length (for a cell

moving into the computed median range)—often resulted in numerous rejects when “swapping”

with a cell. The median placement would yield good improvement for the first cell which was

being moved into its optimal range, but would often result in an increase in wire length for the

second cell as it was swapped back into the first cell’s original position. To lessen this impact, a

new method—cell rippling—was developed to maintain legality during placement.

Cell rippling works as follows. Given a source cell S0 (at location T0), some technique (e.g.,

median placement) is first used to calculate a target location, Tn, for that cell. If Tn is unoccupied,

S0 will simply be assigned to that location; however, if Tn is occupied, S0 is moved to Tn and the

previous contents are rippled from Tn by one grid unit toward the nearest empty location (which

will be bounded within the distance of T0 to Tn). This rippling is computed for all cells along the

path toward the empty site, creating a set of rippled cells and “spreading” the perturbation across

several cells instead of just one cell.

An example of cell rippling is shown in Figure 3.4. In this diagram, cell A was chosen as the

source cell and cell B was chosen at random (from within a median region) as its target location.

The cell rippling first discovers the nearest empty location within four units of B; B is subsequently

rippled toward the empty location and placed at C. The cell formerly at C is then rippled to D, and

the cell at D is rippled into the empty space at E. Four cells are assigned at one time in this “move”

and the entire rearrangement is either accepted or rejected by the annealer.

Although the nearest empty location is always used, the rippling directions are chosen

randomly so that in the event of multiple calls with the same source cell and target locations,

the chosen rippling path may be different each time. The cell rippling does not attempt to choose

a path which minimizes the effect on timing; it was felt that doing so would incur too much of a

run-time penalty for the move and might render it too deterministic.

3.3.4 Move Selection and Effectiveness

Empirically, directed moves have been observed to be more effective (relative to one-another) at

different times throughout the anneal. Ideally, moves will be employed when they are most likely

to improve the cost function. To accomplish this goal, the move selection probabilities are adapted

dynamically based on changes in the cost function.

In [62], the effectiveness (or, “quality factor”) of moves was computed as part of this dynamic

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 47

Figure 3.4: Example of cell rippling when used in conjunction with the median placement strategy.

move probability selection. The quality factor for a move type m was computed as follows:

Q (m) =

∑
accepted moves i of type m

|∆ci|

∑
attempted moves i of type m

ti
(3.8)

where ∆ci is the computed delta cost and ti is the time taken to compute and perform a move i.

In this work, the effectiveness is computed in a similar fashion, except that the equation is

modified as follows:

E(m) =

∑
attempted moves i of type m

|pi ·∆ci|

∑
attempted moves i of type m

ti
(3.9)

where pi is the probability of accepting the move.4 This reduces the sampling noise.

At the beginning of each temperature change, the annealer uses the relative effectiveness of

each move to determine the probability of selecting that move in the forthcoming pass of the

annealer. The more effective that a move was in the previous annealing pass, the more likely that it

will be chosen in the next pass of the annealer. Specifically, the probability, P , of selecting a move

4 Note that in Metropolis rejection schemes,

pi =

{

1 if ∆ci ≤ 0

e−
∆ci
T if ∆ci > 0

.

where T is the current temperature.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 48

i is computed as:

P (i) =
E(i)

∑
∀moves j

E(j)
. (3.10)

The probability of selecting a move remains constant until the next temperature change.

To prevent rapid fluctuation in the probabilities from one temperature change to another, the

move selection probabilities are smoothed using the function:

Psmoothed(i) = λ ·Pprev(i)+(1−λ) ·P (i) (3.11)

where Pprev(i) is the probability of selecting move i from the previous annealing temperature

pass, λ controls the effect that historical probabilities impart on the selection of current move

probabilities, and P (i) is the probability computed in (3.10). The probability of selecting

a move is constrained so that it never falls below a pre-defined threshold—this ensures that

poorly-performing moves are occasionally attempted (and not completely eliminated in the event

that they experience a “string of bad luck”).

Figure 3.5 shows the relative effectiveness of different moves during the placement of a design.

In this diagram, three types of moves were employed—median placement (with rippling), MPD

(without rippling), and random moves—with the move probabilities of each initially set to 30%,

20%, and 50%. As the temperature cooled, the directed moves became more effective than the

random moves. At low temperatures, most cells were placed in their optimal median ranges and

timing paths were relatively straight; thus, the directed moves become less effective (for the amount

of run-time that was required for their computation) than the simpler random perturbations.

The concept of move effectiveness can also be used to determine when to terminate the anneal.

If the condition:

∑
∀moves i

E(i)

attempts for move i
< ε (3.12)

is satisfied for some user-definable tolerance ε, the annealer can stop because there are no more

remaining, effective moves. VPR’s criterion [19], on the other hand, is tuned to specific parameters,

and is set to stop at an iteration n if T (n) < ||F(n)||
200×|E| where T (n) is the temperature at n, ||F(n)|| is

the normalized objective function value for the placement, and |E| represents the number of nets

in the netlist. VPR’s stopping criterion does not work if T (n) is zero, and may not be suitable for all

cost functions, whereas move effectiveness is independent of temperature and design parameters.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 49

Figure 3.5: Illustration of the probabilities of selecting median placement, MPD, and random

moves over the course of an anneal, as the temperature is decreased.

3.4 Experimental Results

Directed moves have the potential to produce high-quality results but can require more run-time

than simple moves. In this section, numerical results are presented to support the claim that

directed moves (when interspersed with simple moves) can consistently produce better-quality

placements for the same amount of work than if simple moves had been used alone.

For comparison purposes, KPF was used to produce placements and VPR was used for routing.

KPF employs criticality history costs [138] and path counting [77] to improve timing-driven results,

and can optionally perform BLE-level operations akin to [31]. With these enhancements, KPF

produces wire length, critical path delay, and run-time results which are on-par with leading

academic placers (cf. [31, 138]). It has been empirically validated that KPF’s solution quality and

run-time are comparable to VPR and that it is of sufficiently-high quality that the conclusions drawn

in this work regarding directed moves are valid.

The 20 largest designs from the MCNC testsuite [134] were employed for testing. Several ar-

chitectures were examined—specifically, 1 BLE/CLB, 4 BLE/CLB, and 8 BLE/CLB architectures.

Low-stress routing [19] was employed in all cases as this work aimed to quantify the benefits of

different types of annealing perturbations on the quality of placement results and not to measure

the minimum architectural channel widths. (It is noted that low-stress routing architectures also

exist commercially; cf. [1].) Each circuit from the testsuite was run with 5 different seeds with the

average over the 5 seeds used for each design.

The quality of KPF with directed moves was compared to KPF with simple moves alone.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 50

The probabilities of selecting a given directed move (versus a simple move) were determined

as described in Section 3.3.4. To produce the quality versus run-time curves, up to 16 different

combinations of starting temperatures and moves-per-temperature (inner num) were tested. The

average of 5 seeds for each of the 20 benchmark circuits (for the various combinations of directed

moves) was computed.

To aid in visualizing the quality-of-results (QOR) trends, the graphs in the following sections

present the normalized geometric means of the QOR for the entire suite (not for individual circuits),

plotted against the normalized run-times for the suite. The QOR and run-time values were

normalized against the longest-running, simple-move anneal—thus, a value of “1.0” on the y-

or x-axis roughly corresponds to the QOR or run-time achievable by an anneal with an inner num

of 10 and an initial starting temperature of 20 times the measured standard deviation.5

Care was taken to ensure that the annealing parameters were properly tuned for each of the run-

time comparison points presented in this work. It is noted that the baseline’s nominal (1.0x) run-

times may, subjectively, be considered large by industrial standards. Consequently, it is worthwhile

to consider the dominance of directed moves across a range of run-times. It is expected that the

improvement offered by directed moves at the nominal run-time will typically be smaller than the

improvement offered at faster run-times based on the justification presented in Section 3.2.

3.4.1 Commentary on Successful Moves

Very few of the directed moves that were implemented produced meaningful improvement in terms

of quality versus run-time compared to using simple moves alone. Moves which did not show early

promise were quickly eliminated from further testing. Some moves yielded good improvement but

the run-time costs usually outweighed the benefits—more often than not, it would have been better

to anneal longer using simple moves than to have employed certain directed moves.

Given the large number of combinations of moves and ways of retaining legality, benchmark

sweeps were conducted on 1 BLE/CLB high-utilization architectures to prune combinations of

moves which did not appear to be worth pursuing. The success of the moves was qualitatively

weighed based on run-time and quality relative to the other move combinations, as well as the

effectiveness of the move throughout the anneal. It is worth noting that, when plotted, successful

moves produced an effectiveness pattern similar to Figure 3.5, whereas unsuccessful moves

approached near-zero effectiveness after a couple of temperature passes.

Examples of move combinations which were attempted and deemed to be unsuccessful are

5 In other words, each trend-line in each graph in the following sections was produced from 1600 individual

placements—20 designs times 5 seeds per design times 16 different combinations of starting temperature and

moves-per-temperature.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 51

summarized in Table 3.2. Note that this table excludes the results produced by the weighted median

and MPD moves because these were among the most successful combinations, and are treated in

more detail in the subsequent sections. For each row in this table, the numerical results were

produced for the specified directed move in combination with a traditional, simple move. The

table highlights the ratios of quality and run-time relative to an anneal without directed moves.

The least successful moves fell into one of two categories:

1. moves that yielded improvement, but were otherwise too computationally expensive; and,

2. moves which did not yield improvement.

The Domino move offered some improvement but its run-time excluded it from further consider-

ation. The timing-weighted median placement move offered improvement in wire length but not

in timing, but because of the run-time overhead, it was not adequately compelling to use versus a

non-weighted median move. The priority list and weighted centroid strategies, on the other hand,

tended to produce both worse results and worse run-time. It may be reasonable to place cells at

centroids to minimize wire length, but it is not necessarily the case that the centroid is the right

place to put a cell to minimize critical path delay. Similarly, swapping critical cells with those

that are non-critical prevents the annealer from exploring potentially empty grid sites and does not

guarantee a progression to better solutions. It is also worth noting that an improvement in global

wire length does not necessarily guarantee an improvement in critical path delay. This can arise

because the wire length improvement may be made in paths which are non-critical (and, therefore,

have no effect on the timing objective). Additionally, to achieve better global wire length, the

localized lengths of specific driver-sink connections on the critical path may be lengthened by

wire length-centric techniques, which can, in turn, worsen circuit timing.

By and large, the most successful directed moves were those which coupled a sufficient amount

of randomness with a quick, easy-to-compute, high-quality placement heuristic. The three best

examples, from this work, are based on a random source selection and, for target selection,

either the use of median placement, median placement with cell rippling, or the minimization

of monotone path deviation. It is this set of moves which form the basis of the analysis for the

remainder of the work.

It is noted that the move selection algorithm (cf. Section 3.3.4) decreases the probabilities of

ineffective moves until they approach near-zero values. Consequently, all moves could be turned

“on” initially and the probabilities of selecting ineffective moves will be reduced automatically.

However, this requires several temperature passes which can slow down the placement. As a

result, in the remainder of the work, only the effective moves were enabled during placement.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 52

Table 3.2: Summary of the results for unsuccessful directed moves relative to a baseline anneal.

Source Strategy Target

Strategy

Legality timing

tradeoff

WL Ratio CP Ratio CPU

Ratio

Domino Graph

Colouring

Assign 0 0.97 0.98 4.7×

Domino Graph

Colouring

Assign 0.5 0.97 0.99 2.9×

Priority List Median Ripple 0 1.00 1.01 1.9×

Priority List Median Ripple 0.5 0.97 1.03 1.6×

Priority List MPD Ripple 0.5 1.05 1.05 1.5×

Random Centroid Assign 0.5 1.03 1.06 1.6×

Random Priority

List

Assign 0.5 1.04 1.06 1.4×

Random Weighted

Median

Assign 0.5 0.89 1.05 1.5×

Random Weighted

Median

Ripple 0.5 0.90 1.04 2.1×

3.4.2 Non-Clustered Architectures

The 1 BLE/CLB architecture was used for investigating directed moves under a variety of

scenarios.

3.4.2.1 Device Utilization Tests

In the first experiment, combinations of directed moves were tested on devices with both high-

utilization (≈ 100% utilized) and medium-utilization (≈ 60% utilized) architectures with the VPR-

equivalent cost function parameter timing tradeoff = 0.5. While the literature has traditionally

presented placement results in the context of high-utilization architectures, medium-utilization

devices were also considered in this chapter since these tend to be more representative of what

is seen in industry.

Results are presented for a set of the more successful directed moves including median place-

ment (“median”), median placement followed by cell rippling (“median + rippling”), weighted

median placement (to account for timing criticalities), and monotone path deviation (MPD). Note

that, in these figures, as long as the data points for directed moves fall below the baseline’s

trend-line, the directed moves offer improvement in QOR.

The success of the directed moves on a quality versus run-time basis for high-utilization

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 53

architectures is presented in Figure 3.6. This diagram shows the results from having used

different algorithms for source (“from”) cell selection and target (“to”) location determination.

Infeasibilities are resolved by swapping or rippling, as indicated in the diagram. In these

architectures, the use of median placement with rippling resulted in an improvement of 5% in

wire length (on average) at the nominal run-time, and at the cost of 2% worsening (on average) in

critical path delay. The use of occasional MPD moves resulted in 3% improvement in critical path

delay (on average) at the cost of 2% in wire length (on average) at the nominal run-time. Note that

this diagram includes information for other, non-successful moves for illustrative purposes; these

unsuccessful moves are not considered in the remainder of this work.

The success of directed moves is much more apparent in medium-utilization architectures, as

plotted in Figure 3.7. These curves show that, for the same amount of run-time, median plus

rippling moves yielded 9% better wire length (on average) and 2% better critical path delay (on

average) at the nominal run-time. The use MPD moves yielded 4% better critical path delay (on

average) and 2% better wire length (on average), at the nominal run-time.

It is believed that the greater success of directed moves in the medium-utilization architectures

stems from two sources. First, the larger the device, the larger the “search space” of available

locations that can be considered by the annealer. The use of directed moves allows this search

space to be pruned and focuses the annealer on regions most likely to yield improvement. Second,

directed moves are not constrained by shrinking windows, so they can move ill-placed cells

further distances at cooler temperatures than random moves. It is important to stress that the

improvements achieved by directed moves in the larger architectures are not a result of decreased

routing congestion as large channel widths were purposefully used to ensure low-stress routing.

In general, cell rippling was found to improve wire length quality when coupled with the

median placement moves, but it typically resulted in a 1% worsening of critical path delay.

Similarly, cell rippling was found to reduce the negative impact to wire length in the MPD

moves, but the critical path delay improvement was not as good. This is attributable to the fact

that the rippling occasionally perturbs timing-critical cells. Due to its success in wire length

minimization, the effect of cell rippling was examined primarily with the median placement move

in the remainder of this work.

3.4.2.2 Comparison of Timing Trade-offs

Given the improvements to wire length and critical path delay, one might be inclined to conclude

that, just by changing the timing tradeoff parameter, one could achieve similar results with

simple moves alone. This is not the case. The success of directed moves was found to be

orthogonal to the design of the cost function—no VPR-like parameters can be changed to achieve

the same improvement offered by directed moves.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 54

(a)

(b)

Figure 3.6: The (a) critical path and (b) wire length quality curves for 1 BLE/CLB high-utilization

architectures. This diagram also includes results for some of the non-successful moves

for comparative purposes.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 55

(a)

(b)

Figure 3.7: The (a) critical path and (b) wire length quality curves for 1 BLE/CLB medium-

utilization architectures.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 56

To validate this assertion, the timing tradeoff parameter was swept (from 0.1 to 0.9) for

placements generated by both simple moves and simple moves with directed moves interspersed.

The purpose of this test was to confirm that, for the same amount of run-time, directed moves

consistently dominated in both wire length and critical path delays versus simple moves alone. For

this test, the median (with rippling) move, the MPD move, and random moves were employed at

the same time.

In all cases, directed moves were found to dominate in terms of both critical path and wire

length. Figures 3.8 and 3.9 provide two examples of the domination offered by directed moves

at different ends of the timing tradeoff spectrum. The use of directed moves achieved, on

average, better results over the entire benchmark suite in terms of wire length and critical path

delays, irrespective of the timing tradeoff parameter in the cost function.

The values of timing tradeoff were also swept (from 0.1 to 0.9) to determine the best overall

quality versus run-time trade-off. The normalized results, acquired on a 1 BLE/CLB, medium-

utilization architecture (and computed with respect to the baseline annealer using timing tradeoff

= 0.5, inner num = 5) are shown in Figure 3.10. In general, the best balance between wire length

and critical path delay was offered by timing tradeoff = 0.5. Using this value (shown by the

trend-line), the combination of directed moves achieved a 2% improvement in critical path delay

and a 5% improvement in wire length, at the baseline algorithm’s nominal (1.0x) run-time.

3.4.2.3 Statistical Variance Measures

To measure statistical variability, each design in the suite was placed using 39 different seeds,

once with simple moves and again with both simple and directed moves enabled (using a mixture

of simple, median placement with rippling, and MPD minimizing moves). The averages of the

variance and standard deviation of the timing costs and bounding box costs are presented in

Table 3.3. In general, directed moves decreased the variance of the placements and tended to

make results more repeatable.

Table 3.3: Comparison of average statistical variability in wire length and critical path over the

benchmark suite.

Simple (Baseline) Simple & Directed Ratio (vs Baseline)

WL CP WL CP WL CP

Variance 1.34×105 1.16×10−13 1.31×105 9.91×10−14 0.98 0.85

Std Dev 3.29×102 3.08× 10−7 3.17×102 2.85×10−7 0.96 0.92

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 57

(a)

(b)

Figure 3.8: The (a) critical path and (b) wire length quality curves for timing tradeoff = 0.1,

illustrating the dominance of directed moves versus simple moves alone.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 58

(a)

(b)

Figure 3.9: The (a) critical path and (b) wire length quality curves for timing tradeoff = 0.9,

illustrating the dominance of directed moves versus simple moves alone.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 59

(a)

(b)

Figure 3.10: The (a) critical path and (b) wire length quality curves for various timing tradeoff

parameters on a 1 BLE/CLB, medium-utilization architecture. The red-dotted trend-

line is shown for the typical timing tradeoff of 0.5, while the blue trend-line is

shown for the baseline anneal (with a timing tradeoff of 0.5) without directed

moves.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 60

3.4.3 Clustered Architectures

Directed moves have also been tested on architectures with more than 1 BLE per CLB. For these

tests, the directed moves were chosen as a combination of simple, median placement with rippling,

and MPD minimizing moves, as these had shown the greatest promise in earlier testing.

3.4.3.1 CLB-Level Moves

Directed moves were first tested on clustered designs (that is, using CLB-level netlists) without

moving BLEs. Figures 3.11 and 3.12 show that directed moves work well on CLB-level netlists

on medium-utilization architectures. This is a straightforward application of the technique from

1 BLE/CLB architectures, and the dominance trends are similar. The results for high-utilization

architectures are summarized in Table 3.4. (The amount of improvement quoted in these tables

represents an approximate reading of the differences in the trend-lines of the dominance charts at

the stated run-time points.) Overall, the quality improvement offered by CLB-oriented directed

moves for the high-utilization clustered circuits was small. This is due to the small size of the

clustered designs and the fact that the baseline annealer does a good job of exploring the search

space for such small circuits, so there is less opportunity for improvement.

3.4.3.2 BLE-Level Moves

In testing clustered architectures, BLE moves were required to achieve the quality expected from

a modern placer [31]; such quality could not be achieved using the traditional pack-then-place

flow from VPR. BLE moves are conceptually similar to the CLB-level operations performed by

annealers like VPR except that they place BLEs instead of CLBs. One consequence of performing

BLE-level operations is that additional design-rule constraint (DRC) checking and bookkeeping

are required; these can be run-time intensive. Thus, to maintain reasonable run-times, fewer BLE

moves are typically performed than CLB moves. At the same time, the acceptance rate of BLE

moves tends to be smaller because they may not only be rejected by the change in cost function,

but also by the DRC checking.

In KPF, the BLE moves were implemented after the anneal in a greedy, zero-temperature pass

using move effectiveness as the termination criterion. While this differs from the implementation

in SCPlace, it was the intent of this work to establish a reasonable baseline against which the

success of directed moves could be measured and not to address the question of where to perform

BLE-level operations.

To justify the use of a zero-temperature BLE-level phase, tests were performed on both 4 and

8 BLE/CLB architectures without directed moves. Figures 3.13 and 3.14 summarize the results

with and without BLE-level moves for medium-utilization architectures, while the results from

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 61

(a)

(b)

Figure 3.11: The (a) critical path and (b) wire length quality curves for 4 BLE/CLB medium-

utilization architectures with directed moves applied on the CLB-level netlist.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 62

(a)

(b)

Figure 3.12: The (a) critical path and (b) wire length quality curves for 8 BLE/CLB medium-

utilization architectures with directed moves applied on the CLB-level netlist.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 63

Table 3.4: Summary of the results for high-utilization clustered architectures with directed moves

applied on the CLB-level netlist (negatives indicate improvement).

CPU Ratio Architecture WL CP

≈ 0.25× 4 BLE/CLB −1.5% −1.5%

≈ 0.50× 4 BLE/CLB −1% −1%

≈ 1.0× 4 BLE/CLB −0.5% −0.5%

≈ 0.25× 8 BLE/CLB −1% −1%

≈ 0.50× 8 BLE/CLB −0.5% −0.5%

≈ 1.0× 8 BLE/CLB ≈ 0% ≈ 0%

high-utilization architectures are summarized in Table 3.5. (The amount of improvement quoted in

this table represents an approximate reading of the differences in the trend-lines of the dominance

charts at the stated run-time points.)

As expected, the wire length and critical path delays improved with more clustered architec-

tures. The overall improvement (in the 8 BLE/CLB medium-utilization case) was a reduction of

25% in wire length and 11% in critical path delay at the nominal run-time, and this is in-line with

the amount of improvement reported in [31] for the contribution due to BLE operations during

annealing. Hence, it was felt that this implementation offered a reasonable basis for investigating

directed moves in clustered architectures.

3.4.3.3 BLE-Level Moves With Directed Moves

The ability for directed moves to work in conjunction with BLE-level moves was also tested. For

this test, directed moves were used during both the CLB- and BLE-level phases of the placement

and compared to the baseline (where CLB- and BLE-level moves were employed without directed

moves). The results are shown in Figures 3.15 and 3.16. In general, the directed moves maintained

dominance, but the amount of improvement was smaller than without BLE-level moves. Directed

moves offered improvement of 4% in wire length and 1% in critical path delay at the 0.2x run-time

point, but the improvement at the nominal run-time point was only 2% in wire length and little

change in critical path delay. It is believed that this difference may be attributable, in part, to the

size of the MCNC benchmarks: in architectures of 4 or 8 BLEs per CLB, the designs are small

by modern standards and may not have as much room for QOR improvement once BLE moves

are applied, since most of the search space may be explored by the default annealing schedule.

The results for high-utilization architectures, summarized in Table 3.6, also exhibited dominance

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 64

(a)

(b)

Figure 3.13: The (a) critical path and (b) wire length quality curves for a 4 BLE/CLB medium-

utilization architecture without directed moves but with BLE-level moves.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 65

(a)

(b)

Figure 3.14: The (a) critical path and (b) wire length quality curves for a 8 BLE/CLB medium-

utilization architecture without directed moves but with BLE-level moves.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 66

Table 3.5: Summary of the results for high-utilization clustered architectures without directed

moves but with BLE-level moves (negatives indicate improvement).

CPU Ratio Architecture WL CP

≈ 0.25× 4 BLE/CLB −17% −2%

≈ 0.75× 4 BLE/CLB −19% −4%

≈ 1.0× 4 BLE/CLB −20% −5%

≈ 0.25× 8 BLE/CLB −20% −5%

≈ 1.0× 8 BLE/CLB −25% −7%

≈ 2.0× 8 BLE/CLB −26% −9%

trends, albeit with less overall improvement.

3.5 Conclusion

This chapter described a means of augmenting a traditional, VPR-like FPGA annealer using the

concept of directed moves. Multiple types of moves were described, and results were presented

that showed that interspersing directed moves into an annealing-based placer led to consistent

improvement in QOR (for the same amount of run-time) over an annealer using simple moves

alone. Moreover, it was shown that directed moves are useful in (realistic) devices with lower

utilization. This work described how directed moves can reduce the statistical variability in

placements, which can lead to more repeatable results. Furthermore, it was established that the

benefits of directed moves cannot be achieved by changing the annealer’s cost function. A new

approach for BLE operations was described, and a technique for measuring move effectiveness

was also proposed.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 67

(a)

(b)

Figure 3.15: The (a) critical path and (b) wire length quality curves for a 4 BLE/CLB architecture

with BLE-level moves and directed moves applied on both the CLB- and BLE-level

netlists.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 68

(a)

(b)

Figure 3.16: The (a) critical path and (b) wire length quality curves for a 8 BLE/CLB architecture

with BLE-level moves and directed moves applied on both the CLB- and BLE-level

netlists.

Chapter 3. Improving Simulated Annealing for FPGAs with Directed Moves 69

Table 3.6: Summary of the results for high-utilization clustered architectures with BLE-level

moves and directed moves (negatives indicate improvement).

CPU Ratio Architecture WL CP

≈ 0.25× 4 BLE/CLB −3% −2%

≈ 0.5× 4 BLE/CLB −2% −1%

≈ 1.0× 4 BLE/CLB −1% −0.5%

≈ 0.25× 8 BLE/CLB −2% −0.5%

≈ 0.5× 8 BLE/CLB −1% −0.5%

≈ 1.0× 8 BLE/CLB −0.5% ≈ 0%

CHAPTER 4

Improving Global Legalization with Directed

Moves

4.1 Overview

While directed moves proved to be successful in the context of FPGA annealing-based placement,

it was felt that other avenues of VLSI CAD could also benefit. One area, in particular, where it

was felt that a stochastic search strategy could be augmented with such moves was in the area of

the legalization and floorplan repair of standard cell and mixed-size ASIC designs. 1

As mentioned in Chapter 2, and as illustrated in Figure 2.5 (d), the legalization problem

typically arises during large-scale ASIC placement due to the use of global methods (such as

force-directed placement) which produce placements with overlaps. Because of the various

objectives that may have been optimized during global placement (such as routing congestion,

wire length, and density), the goal of a legalizer should be to perturb the placement as little as

possible to preserve the qualities of the global placement.

This chapter demonstrates that a straightforward, top-down approach for legalizing circuits can

reliably produce feasible placements and floorplans with excellent quality and run-times compared

to leading academic tools. The method introduced in this work—named Whim—moves only those

features which are responsible for violating overlap constraints. Whim combines a constraint-based

approach [40, 90] with a novel polynomial time, eight-way geometric shifting method based on

the concept of whitespace management [15, 18]. The quality of this approach is justified across

1 Portions of this chapter were published in [122, 124, 125].

70

Chapter 4. Improving Global Legalization with Directed Moves 71

a broad range of benchmarks, and the technique is shown to produce placements which preserve

the qualities of the original layouts. Although this approach is described in the context of large-

scale VLSI floorplanning problems, it is important to note that Whim is equally applicable in other

contexts, including rectangle packing [89] and facility layout (e.g., [106]).

The rest of this chapter is organized as follows. The nature of this chapter’s top-down approach

is described in Section 4.2. Section 4.2.1 presents an approach for legalizing “large” cells, while a

technique for legalizing “small” cells is described in Section 4.2.2. Section 4.3 presents numerical

results.

4.2 Top-Down Flow for Legalization and Floorplan Repair

A good legalizer possesses several characteristics: (1) robust at resolving overlaps between “large”

cells (since “small” cells can be legalized fairly easily around them); (2) capable of handling fixed

cells; (3) capable of preserving whitespace by shifting cells as little as possible; and (3) good

run-time scaling. Whim addresses these characteristics by implementing a top-down legalizer

whose pseudocode is presented in Figure 4.1. Being top-down, Whim divides the placement into

manageable “chunks” to improve scalability.

The Whim framework works as follows. Initially, all cells are placed into a root partition. Circuit

statistics are collected and used to differentiate between the “large” and the “small” cells in this

partition. “Large” cells, for example, may consist of all cells greater than 50 times the average cell

area in the partition; all others are considered “small”.

Large cells are placed via the minimum-movement constraint graph-based floorplanning

technique described in Section 4.2.1. Once legalized, the large cells are fixed in place. If there are

too many “small” cells remaining, the placement region is alternately (and recursively) bisected in

the horizontal and vertical directions. Cutlines are located by computing the geometric occupancies

of the partitioned region, and placing the cutline so as to balance cell area. Fixed cells which

“straddle” the cutline are fixed in both sub-partitions, while small cells are assigned to their closest

(under-occupied) partition. Regions are recursively partitioned until the number of small cells in a

partition is below a threshold (say, 1000 cells). At this point, the small cell legalizer described in

Section 4.2.2 is employed to purge overlaps.

When working back up the partitioning tree, some cells may have been found to be unplaceable

in each sub-partition. (Unplaceable cells can arise from incorrect positioning of the cutline or

direction of the cut relative to the dimensions of the cells in the sub-partitions.) The two partitions

are merged together and a geometric-based technique, described in Section 4.2.2, is employed to

place any remaining, unplaced cells. The number of unplaced cells is usually very small, so this

operation does not take much time.

Chapter 4. Improving Global Legalization with Directed Moves 72

Procedure: RECURSIVELEGALIZE

Inputs: a partition block, B

Returns: number of unplaced cells in B

begin1

Determine large cells in B via circuit statistics;2

if the large cells are not already legal then3

Legalize large cells with large cell floorplanner;4

fi5

Fix all of the large cells;6

if number of small cells ≤ small cell threshold then7

if the small cells are not already legal then8

Legalize small cells with small cell legalizer;9

fi10

Fix all of the successfully-placed small cells;11

else12

Determine cut direction;13

Partition0← cells in left (bottom) partition;14

Partition1← cells in right (top) partition;15

Unplaced0← RECURSIVELEGALIZE(Partition0);16

Unplaced1← RECURSIVELEGALIZE(Partition1);17

if Unplaced0 > 0 or Unplaced1 > 0 then18

Unfix any unplaced cells;19

Legalize unplaced cells with whitespace manager;20

Fix any new cells that have been placed;21

fi22

fi23

return number of unplaced cells in B;24

end25

Figure 4.1: Outline of Whim’s top-down framework.

4.2.1 Legalizing Large Cells

Macrocell legalization schemes have been examined extensively in the context of floorplanning

for some time [4, 80, 89]. Annealing-based floorplanners are known to produce good results,

but can require large run-times and are generally limited to placing a few hundred cells at once.

Alternatively, most published techniques for the geometric placement of macrocells [56, 73, 123]

have suffered from large placement perturbations or failure to find legal placements on more

complicated problems.

A greedy, search-based floorplanner was implemented which is capable of legalizing 500−800

cells in reasonable run-time. This floorplanner is used to remove overlap between large cells

in each partition of the top-down flow (where “large” is a threshold determined from circuit

Chapter 4. Improving Global Legalization with Directed Moves 73

statistics in the partition). Operations on a topological constraint graph (TCG) are performed by

the floorplanner to achieve legality, and are similar in spirit to [40, 90]. This type of data structure

is particularly well-suited to legalization in the presence of fixed obstacles.

The term TCG, in this thesis, refers to the topological constraint graphs originally described

in [90]. Such graphs must maintain the “L1 property” [90] which requires that a path exist between

every pair of cells, through either direct or transitive arcs, in either the horizontal or vertical

directions but not both. Like [90], sequence pairs [89] for the horizontal and vertical directions are

first built from the placement by considering cell locations as points, and the TCGs are constructed

from the sequence pairs. The sequence pairs are only used to maintain the TCGs—the technique

presented in this chapter is driven entirely by the slacks on the arcs in the constraint graphs. The

sequence pairs merely aid in computing the changes to the graphs rather than manipulating the

graphs directly. It is worth noting that the term TCG was coined in [80] in reference to transitive

closure graphs for floorplanning; on the other hand, this thesis employs the term to refer to

constraint graphs which have been transitively reduced.

Once the TCGs are constructed, a slack analysis is performed on the TCGs [40, 90, 123]

to determine if the placement would fit in both directions. If so, the TCGs are said to admit

a “feasible” solution; if not, directed “move” and “swap” operations are applied to render the

graphs legal. It is important to note that the solution space for manipulating TCGs is very

large—O
(

(m!)22m
)

for m blocks [89]—and as such, optimal techniques are impractical for large

m.

4.2.1.1 Swap Permutation

A directed move heuristic similar to the “swap” operation of Nag and Chaudhary [90] (referred to

as an “edge adjustment” in [40]) is employed during TCG legalization. This involves “moving” an

edge from a constraint graph in one direction to the constraint graph in the other direction, as shown

in Figure 4.2. First, a path-counting heuristic (based on [77]) is applied to the violating constraint

graph. This allows the arcs in the graph to be ranked based on their criticality. Next, the longest

path in the violating constraint graph is determined, and the critical subgraph is extracted [40].

The reduction edges from this subgraph become the candidates for edge “adjustment” [40].

These candidate arcs are sorted based on their criticality (as computed by the path counting

heuristic [77]).

Starting from the most critical candidate arcs, the effects of moving an edge from one constraint

graph to the opposite graph are tested until the worst-case slack is improved. Moving an edge

between cells A and B in the horizontal constraint graph is as simple as swapping A and B in the

horizontal sequence pair (and rebuilding the TCGs)—this establishes a new vertical arc from A

to B. (Similarly, swapping in the vertical sequence pair would result in a horizontal arc from B

Chapter 4. Improving Global Legalization with Directed Moves 74

Figure 4.2: A “swap” operation, which moves the edge from a→ e in Gv to a→ e in Gh.

to A.) The algorithmic complexity of swapping elements in a sequence pair and rebuilding the

constraint graph is the same as moving the arc in the constraint graph in the first place—but,

instead of scanning through the constraint graphs to determine edges to add and delete (to preserve

the “L1” property), operations on the sequence pair (and the subsequent rebuilding of the constraint

graphs) led to a simpler implementation. As in [40] (and unlike the work of [90]), “diverging” and

“re-converging” fanouts are accounted for in the critical subgraph—that is, if an edge in the critical

path diverges from one node to, say, two nodes (as shown in Figure 4.3), both diverging edges will

be adjusted at the same time. This extension to [90] allows Whim to resolve overlaps more quickly

because the floorplanner does not as easily become trapped in local minima.

4.2.1.2 Move Permutation

Although rare, it is possible that a feasible solution may not be found by simply moving edges

between constraint graphs. To address this problem, the “move” operation from [90] was

implemented with the intent of moving a candidate cell from its current location (in the constraint

graph) to another location in either the same (or opposite) constraint graph so as to lessen or

remove the criticality of paths passing through the cell. (There is no similar technique in the works

of [40,80]. One may view this operation as a “multi-move”, because it accomplishes the equivalent

of a series of basic operations from [80].)

The “move” operation works as follows. A path counting heuristic is first applied to the

Chapter 4. Improving Global Legalization with Directed Moves 75

Figure 4.3: Diverging fanouts are shown in a critical horizontal constraint graph formed from

overlapping cells. Swapping only one edge (such as A→ B or C → D) would not

alleviate the criticality in the x-direction—both must be swapped at the same time.

violating constraint graph, and a candidate cell with the largest number of critical paths passing

through it is chosen for moving. Candidate arcs (specifically, reduction edges) can be identified in

both the horizontal and vertical constraint graphs which possess sufficient slack that the candidate

cell can be introduced with no deleterious effects. These candidate arcs are sorted based on their

distances from the candidate cell (where the distance is assumed to be the average distance of the

two connected cells, prior to floorplanning). The arcs are then tested until a feasible solution is

found. The testing is performed as follows: If a cell C is to be inserted between the arc A→ B in

the horizontal graph, cell C needs to be moved between the locations of A and B in the horizontal

sequence pair. Cells A and B may not necessarily be adjacent in the sequence pair, so the position

of C may be placed randomly between them; each choice gives rise to different constraint graph

formulations. The effect of the move is tested, and if it results in a reduction in the critical path,

the move is accepted. In general, rewarding moves can be found fairly quickly owing to judicious

sorting heuristics.

In practice, this type of directed constraint graph adjustment was found to be less efficient than

the “swap” operation (described earlier) in terms of the probability of it improving the feasibility

of the TCGs. At the same time, the “move” operation plays a key role in reducing overlap when

there exists a large number of fixed obstacles in the constraint graph. Movable cells can often

become “stuck” between fixed cells in the constraint graph—depending upon constraints in the

opposite direction, it may not be possible to eliminate the overlap simply by swapping arcs between

graphs. The “move” operation, on the other hand, can relocate movable cells away from these fixed

Chapter 4. Improving Global Legalization with Directed Moves 76

obstacles and thus eliminate the overlap. In this sense, the directed moves help the search heuristic

to escape from local minima and to explore the search-space of more promising operations.

4.2.1.3 Determining the Placement from the Constraint Graphs

Once the constraint graphs are feasible, a linear problem is solved to move cells by as small an

amount as possible. The LP formulation follows from [40]. Given TCGs Gh and Gv for the

horizontal and vertical directions, module locations xi and yi, module heights and widths hi and wi,

and the height and width of the partitioned regions, W and H, we can solve for the new positions

of the cells, x′i and y′i (within the partitioned region) using:

min
n

∑
i=1

(αdxi
+βdyi

) (4.1)

subject to:

−dxi
≤ x′i− xi ≤ dxi

−dyi
≤ y′i− yi ≤ dyi

x′j− x′i ≥
wi + w j

2
if ∃ei j ∈ Gh

y′j− y′i ≥
hi + h j

2
if ∃ei j ∈ Gv

wi

2
≤ x′i ≤W −

wi

2
hi

2
≤ y′i ≤ H−

hi

2

where α and β are positive values which can be used to preferentially weight individual slacks.

(These weights are set to 1 in this work.) CLP [37] is used as the LP solver; in practice, the run-time

for solving (4.1) is negligible compared to the run-time of the remainder of the legalization flow.

4.2.2 Legalizing Small Cells

As described in Section 4.2.1, large cells are first legalized via a constraint-graph-based floorplan-

ner and then fixed in place. “Small” cells are placed in the remaining gaps of whitespace. The

placement of these small cells is accomplished using a novel eight-way shift coupled with a linear

program to minimize the amount of shifting.

At the heart of the small cell legalizer is a technique for monitoring gaps of whitespace, termed

a “whitespace manager”. This method was inspired by [15, 18]. In this technique, gaps of

whitespace and occupied space are stored as a list of rectangles, and this list is incrementally

Chapter 4. Improving Global Legalization with Directed Moves 77

updated during legalization. The fundamental operation for monitoring whitespace involves

“dividing” the placement region into new, smaller whitespace-rectangles when a cell is inserted

into that region.

Consider the placement of a cell within a given (empty) partitioned region. Initially, the

whitespace for the empty partition is represented by a single rectangle the size of the partition.

When the cell is placed in the partition, the whitespace list is modified by “shredding” the

whitespace rectangle and replacing it with adjacent (neighbouring) whitespace rectangles around

the placed cell. Formally, for each edge e of a cell C that intersects the whitespace rectangle

O, and is not collinear with any edge of O, a new whitespace rectangle is created [15]. This

new whitespace rectangle is bounded by e and the three other edges of O. (Similarly, the list

of occupied space is modified by adding a rectangle to represent the placed cell.) In other

words, this technique tracks maximally-empty rectangles corresponding to the gaps of whitespace

available in the placement, as illustrated in Figure 4.4. By using a 2D interval tree for each set

of rectangles [15], the space manager for a gap of whitespace can be queried in O(log2 N + M)

time, where N is the number of whitespace rectangles in the data structure, and M is the number

of rectangles returned by the query. The proof of this complexity is provided in [15].

The whitespace manager affords Whim a thorough understanding of where cells may be placed

in a non-overlapping fashion. The whitespace manager can be queried to return the nearest gap

of whitespace capable of containing a cell of a particular size—as shall be seen, this capability

has important uses during floorplan repair, not only in terms of being able to derive overlap-free

placements but also in handling row and site alignment constraints.

4.2.2.1 Legalizing Via Eight-Way Shifting

In any given partition during top-down legalization, there may be fixed cells as well as movable

cells which need to be legalized. The whitespace management technique (described earlier in

Figure 4.4: Insertion of two cells into the whitespace manager.

Chapter 4. Improving Global Legalization with Directed Moves 78

this section) can be leveraged to place these cells by considering shifts in all eight directions

corresponding to packings along the top, bottom, left, right, and in the corners of the partition.

The pseudocode for this method is shown in Figure 4.5. The technique works as follows.

Initially, fixed cells within a partition are inserted into the whitespace manager. The list of

unplaced cells is sorted based on one of the eight different sorting directions (left-to-right, right-to-

left, bottom-to-top, top-to-bottom, and so forth). The list of sorted, unplaced cells is subsequently

traversed: for each unplaced cell, the closest gap of whitespace capable of holding that cell is

determined. If there exists no such gap, the cell is marked as unplaced, and the count of unplaced

cells is increased; otherwise, the cell is inserted into the gap and the whitespace manager is updated

accordingly. Once the unplaced cells have been traversed, the best placement found so far is

updated. The method repeats for each of the eight sorting directions and the best final solution is

returned.

This concept is illustrated in Figure 4.6 for an actual partition. In this diagram, the original

layout for a partition is shown in the top-left. The results from 8 different shifts are shown; illegal

candidates are marked with “×”, and the best (chosen) candidate—the legal solution with the least

perturbation—is marked with “X”. Note that a traditional left and/or right shifting (as in [8])

produces two of the candidates marked with “×” (that is, legalization failures). Moreover, calling

SMALLLEGALIZE with an already-legal placement results in no change to cell positions due to the

use of whitespace management, whereas contour-based approaches [8,40,56] typically move cells

even if there is no cell overlap.2

Once the movable cells are overlap-free, a constraint graph is constructed for the cells in the

horizontal direction. This constraint graph is used to represent only the horizontal relationships

between cells. Using this graph, an LP similar to (4.1) is solved to determine how to shift cells

to minimize their movement from their original positions. Only the x-direction is considered, as

this allows standard cells to remain within rows. In effect, the eight-way shifting technique acts as

a directed move for discovering and producing legal constraint graphs, while the LP problem is

responsible for the placement of the cells. The impact on run-time due to this LP-based shifting is

negligible.

4.2.2.2 Further Improvements Via Linear Assignment

The eight-way shifting technique may not preserve the original left/right and top/down ordering

relationships between small cells. Some cells, for instance, may be assigned to rows (in the

2 As will be described in Section 4.2.3, two whitespace managers are actually employed during placement—one for

placing macrocells and the other for placing standard cells. This allows standard cells to be aligned to rows and

sites.

Chapter 4. Improving Global Legalization with Directed Moves 79

Procedure: SMALLLEGALIZE

Inputs: a partition block, B

Returns: number of unplaced cells in B

begin1

for each fixed cell i in B do2

Insert cell i into the whitespace manager (as occupied space);3

od4

Unplaced← 05

for each of the sorting directions j = 1..8 do6

Sort the unplaced cells based on j;7

for each unplaced cell m do8

Query m’s whitespace manager for a free gap;9

if there are no gaps available then10

Unplaced← Unplaced +1;11

else12

Insert m into the gap and update whitespace manager;13

fi14

od15

if total movement and Unplaced is best so far then16

Record placement as the best so far;17

fi18

Reset the whitespace manager to its initial state;19

od20

Set placement to the best found;21

Solve LP to minimize cell movement;22

Use linear assignment to quickly minimize local movement;23

Fix the placed cells;24

return number of unplaced cells for the placement;25

end26

Figure 4.5: Pseudocode for small cell legalization.

vertical direction) which are further from their original positions than optimal. Typically, the

overall movement of cells within a partition can be reduced by 1− 3% (even after using the LP to

determine a minimum shift in x) via linear assignment. It is important to note that the use of linear

assignment is not necessary to achieve legality, but rather can be employed as a method to further

minimize the amount of perturbation.

To formulate the assignment problem, candidate locations are positioned at the same spots as

the cells in the partition. Cells are connected via arcs (in the assignment problem) only to those

locations which are the same size; consequently, the legality of the placement is preserved. The

costs on the arcs in the assignment problem represent the distances from a cell’s original position

to the candidate locations.

Chapter 4. Improving Global Legalization with Directed Moves 80

Figure 4.6: An illustration of candidate selection during the 8-way shifting. The original,

overlapping placement is shown in the top-left, along with the 8 candidates computed

via whitespace management. Only three candidates are legal (non-overlapping); the

candidate with the least perturbation from the original is chosen.

The Goldberg-Tarjan push-relabel, minimum-cost flow technique [36,51] is employed to solve

the linear assignment. While this method has a worst-case bound of O(|V |2|E| log |V |) (for V

vertices and E edges), it tends to be very fast in practice because the size of the problem can be

artificially limited to achieve good run-times.

4.2.2.3 Commentary On The Success of the Shifting

The combination of whitespace management and eight-way shifting has been found to be very

successful at finding legal placements. However, owing to the locations of fixed obstacles, the

positioning of the cutline, or the size of the partitioned region, the small cell legalization technique

may sometimes (though rarely) be unable to place cells within a partition. To address this problem,

unplaced cells in a given partition are merged with the unplaced cells in its sibling partitions as the

algorithm works its way back up the partitioning tree. These unplaced cells are themselves placed

using the whitespace manager. In effect, Whim operates in both a top-down and bottom-up fashion,

with most cells being placed as the partitions are descended, while unplaced cells are “repaired”

as the partitioning works its way up. Fixed cells from the merged partition are inserted into the

Chapter 4. Improving Global Legalization with Directed Moves 81

whitespace manager. The unplaced cells are sorted by area, from the largest to the smallest blocks.

For each unplaced cell, the whitespace manager is queried for the closest gap into which to place

the cell. If a gap is found, the cell is placed, the whitespace manager is updated. and the next

unplaced cell is selected. In practice, very few designs have been encountered which are not

legalizable using this strategy.

4.2.3 Repairing Other Types of Constraints

As mentioned in [86], non-overlap constraints are just one type of constraint considered in

legalization and floorplan repair. Other types of constraints, such as region constraints, proximity

constraints, and alignment constraints may be of interest. Whim’s approach can be extended to

repair these constraints during both large- and small-cell legalization. For instance, the TCG

floorplanner used for large cell legalization can be augmented to handle such constraints via

established approaches [86]. The whitespace manager and eight-way shifting can also be extended

to handle such constraints with negligible impact on performance—this is exactly what has been

done to ensure row alignments for standard cells.

In the context of standard cell placement, the initial gaps of whitespace for a partition are

represented as empty (whitespace) rectangles that correspond to the standard cell rows. This

ensures that, when querying the whitespace manager for the nearest available gap of whitespace in

which to place a standard cell, the gap which is returned always aligns with a row. In Whim, one

whitespace manager is used for placing macrocells and one for placing standard cells; additional

whitespace managers could be employed for designs with heterogeneous resources (such as RAM

and IP blocks) that require placement into (possibly disjoint) discrete placement slots (e.g., [41]).

4.3 Experimental Results

To evaluate Whim’s effectiveness, global (overlapping) placements were acquired from two aca-

demic ASIC tools—mPL6 [40] and NTUplace2 [34]—on the Calypto [94], IBM-HB [94], and

ISPD 2005 [92] benchmarks. Since not all placement tools supported soft blocks, the soft blocks

were converted to hard blocks with an aspect ratio of 1.0, where appropriate. The characteristics

of the designs are presented in Tables 4.1, 4.2, and 4.3.

Three legalizers were run on the output produced by these global placers. The first legalizer

was Floorist [86] (using the “-legal -Floorist” command line switch). The second legalizer

was that provided in mPL6, which is speculated to be XDP [40] (using the “-mPL DPonly 1” switch).

The third legalizer was the whitespace-based approach, Whim, presented in this work. A timeout

of 7200 seconds was imposed on all problems. The total Euclidean movement (“Mvmt”), the

half-perimeter wire length (“HPWL”), and CPU run-time (“RT”) for the circuits in question are

Chapter 4. Improving Global Legalization with Directed Moves 82

Table 4.1: Characteristics of the Calypto designs.

Circuit Cells Macros Nets AreaLargest(%)
AreaLargest

AreaSmallest

cal040 1 4605 4607 0.1 650.0

cal098 3200 1212 4673 0.1 529.0

cal336 7 105 147 2.2 1926.0

cal353 217 459 908 7.0 11556.0

cal523 934 1936 4350 0.3 770.0

cal542 7 74 92 20.1 11556.0

cal566 93 1553 5502 1.2 11556.0

cal583 772 1530 3390 0.4 2916.0

cal588 293 495 1111 0.6 900.0

cal643 139 316 598 6.5 6162.0

dct 0 8827 11463 50.0 46332.5

reported in Table 4.5. Overlap and HPWL were determined using PlaceUtils [86]. Designs

which are not legal are denoted by non-zero overlaps, while designs that crashed or exceeded the

run-time threshold are marked accordingly. It is noted that mPL6 crashed while producing global

placements on some IBM-HB designs, and also crashed while legalizing IBM-HB designs. A

summary of the geometric means for all legal results is presented in Table 4.4.

In general, Whim produced results with significantly less cell movement than the other

approaches. Although Whim has been presented in the context of floorplan repair, it also works

well for standard cell and mixed-size legalization, where Whim produced legal placements in

all but one case. From log outputs, it is believed that mPL6 performs compaction and greedy

swapping to improve HPWL—in contrast, neither Floorist nor Whim perform detailed placement

to improve or compact designs. Further HPWL improvement could be obtained at the cost of more

cell movement by performing detailed improvement (as in [8, 40]). An example of a legalized

placement produced by Whim is presented in Figure 4.7.

In general, the global placement tools produced reasonably overlap-free global placements

on standard, mixed-size benchmarks [2, 92]; yet, many placements were far from legal on those

benchmarks with characteristics closer to those of floorplanning problems [94]. Large overlaps

have been observed for several global placements produced by mPL6 and NTUplace2. (These

tools were run using command line parameters as provided by the authors of the respective tools.)

In Figure 4.8, an example of a global placement with significant overlap (i.e., many cells have

Chapter 4. Improving Global Legalization with Directed Moves 83

Table 4.2: Characteristics of the IBM-HB designs.

Circuit Cells Macros Nets AreaLargest(%)
AreaLargest

AreaSmallest

ibm01 0 911 5829 26.2 50305.1

ibm02 0 1471 8508 45.9 17325.5

ibm03 0 1289 10279 44.1 194393.3

ibm04 0 1584 12456 36.2 74745.8

ibm06 0 749 9963 55.2 104642.3

ibm07 0 1120 15047 18.9 2269.8

ibm08 3 1266 16075 48.3 294180.9

ibm09 1 1112 18913 21.7 172487.7

ibm10 177 1418 27508 19.6 418419.0

ibm11 0 1497 27477 17.9 56636.7

ibm12 284 949 26320 26.1 435131.8

ibm13 40 914 27011 17.1 194393.3

ibm14 58 1577 43062 8.0 105018.9

ibm15 29 1383 52779 44.2 358763.2

ibm16 20 1071 47821 7.7 182911.9

ibm17 160 1282 56517 3.9 74008.5

ibm18 0 943 42200 3.8 18990.6

been placed on top of one-another by the global placement tools) is presented, as well as the

legalized result produced by Whim. Over all benchmarks, Whim produced legal placements in all

but one case whereas Floorist and mPL6 produced numerous illegal placements, crashed, or

required significant (7200+ seconds) run-time. (Although, for poor global placements such as

those produced by mPL6 on the IBM-HB circuits, the resulting movement and HPWL increase was,

understandably, large.) It is felt that this serves as a testament to the robustness of this approach.

4.4 Conclusion

This chapter described the implementation of a top-down strategy for floorplan repair which

employs a combination of constraint graphs, linear programming, and a novel geometric shifting

technique to remove overlap between cells. Unlike some approaches, this method moves only

those features which are responsible for violating overlap constraints, thereby making it a versatile

way to post-process the outputs of global floorplanners and placers. The effectiveness of this

Chapter 4. Improving Global Legalization with Directed Moves 84

Pre-Legalization Post-Legalization

Figure 4.7: A global placement of ibm09 (from the ICCAD04 suite) and its legalized counterpart

produced by Whim.

Pre-Legalization Post-Legalization

Figure 4.8: Whim was found to be remarkably robust in its ability to produce valid, legalized results

even when presented with heavily-overlapping global placements.

Chapter 4. Improving Global Legalization with Directed Moves 85

Table 4.3: Characteristics of the ISPD 2006 suite. Note that these designs do not possess movable

macrocells.

General Statistics Standard Cell Widths

Circuit Cells Nets Min Max Median

adaptec1 210904 221142 3 77 13

adaptec2 254457 266009 3 75 8

adaptec3 450927 466758 3 80 10

adaptec4 494716 515951 3 80 10

bigblue1 277604 284479 3 43 11

bigblue2 534782 577235 3 104 9

bigblue3 1093034 1123170 3 104 8

bigblue4 2169183 2229886 3 104 8

Table 4.4: Comparison of Whim versus other tools.

vs. Floorist vs. mPL6

Suite Mvmt HPWL RT Mvmt HPWL RT

Calypto 1.02 0.87 0.23 0.91 0.79 0.20

IBM-HB 0.95 0.96 0.05 n/a n/a n/a

ISPD 2005 0.85 0.87 0.22 0.57 1.05 0.21

algorithm was quantified across a broad range of floorplans produced by multiple tools. Whim

succeeded in producing valid placements in almost all cases, while requiring only one fifth the

run-time and producing placements with 4 to 13% less HPWL and up to 43% less movement than

leading methods.

Chapter 4. Improving Global Legalization with Directed Moves 86

Table 4.5: Performance of Floorist, mPL6, and Whim on various benchmark designs.

Global Floorist mPL6 Whim

Tool Ckt OL (%) HPWL OL (%) Mvmt HPWL RT (s) OL (%) Mvmt HPWL RT (s) OL (%) Mvmt HPWL RT (s)

Calypto

m
P
L
6

cal040 394.6 3.01e04 run-time exceeded > 7200 0.0 4.12e05 6.63e05 186.5 0.0 2.64e05 2.88e05 8.1
cal098 118.5 3.03e05 0.0 1.22e05 3.83e05 201.5 0.0 1.31e05 3.30e05 33.6 0.0 1.29e05 3.17e05 15.3
cal336 1550.5 1.67e03 0.0 4.52e04 5.40e04 0.5 0.0 7.06e04 9.53e04 2.8 0.0 3.30e04 4.07e04 0.8
cal353 1450.7 9.75e03 0.5 6.34e04 9.84e04 22.9 0.0 8.35e04 1.39e05 24.1 0.0 5.54e04 1.00e05 1.5
cal523 291.5 6.04e05 0.0 2.59e05 7.18e05 771.8 crashed 0.0 2.69e05 5.98e05 12.5
cal542 567.9 9.38e02 0.0 1.05e04 1.42e04 0.2 0.0 1.60e04 1.79e04 1.1 0.0 5.73e03 1.16e04 0.6
cal566 243.8 1.06e05 0.7 3.55e05 9.52e05 951.3 0.0 3.88e05 1.85e06 41.6 0.0 2.83e05 9.66e05 7.2
cal583 427.5 6.52e04 0.1 2.76e05 4.48e05 565.8 0.0 3.19e05 6.21e05 109.3 0.0 1.77e05 3.80e05 12.5
cal588 258.0 8.14e04 1.3 3.09e04 1.03e05 16.3 0.0 2.36e04 8.53e04 4.6 0.0 2.89e04 7.83e04 1.6
cal643 394.5 1.10e04 0.2 2.77e04 4.79e04 6.9 0.0 3.75e04 6.12e04 9.9 0.0 2.54e04 5.17e04 0.9

dct 44.4 1.52e05 run-time exceeded > 7200 crashed 0.0 2.54e05 3.28e05 16.1

N
T
U
p
l
a
c
e
2

cal040 86.1 1.05e05 0.4 2.88e05 4.43e05 4232.4 0.0 4.15e05 7.11e05 718.8 0.2 7.87e04 2.08e05 13.1
cal098 49599.9 2.75e04 run-time exceeded > 7200 0.0 1.85e06 1.43e06 818.4 0.0 3.04e06 9.98e05 19.9
cal336 1867.0 4.80e03 0.0 4.32e04 6.69e04 0.4 0.0 7.60e04 8.60e04 1.6 0.0 3.69e04 3.92e04 0.8
cal353 12791.1 8.99e03 0.0 1.70e05 2.17e05 238.6 0.0 2.06e05 2.72e05 11.4 0.0 1.62e05 1.79e05 1.3
cal523 37617.5 9.62e04 run-time exceeded > 7200 crashed 0.0 2.26e06 2.93e06 11.6
cal542 42.1 6.28e03 0.0 2.65e03 9.30e03 0.2 0.0 4.25e03 1.13e04 1.5 0.0 4.05e03 1.07e04 0.6
cal566 70.1 4.16e05 0.0 9.35e04 6.87e05 380.6 crashed 0.0 6.25e04 5.97e05 5.2
cal583 26237.1 8.92e04 run-time exceeded > 7200 0.0 1.81e06 1.43e06 103.5 0.0 1.72e06 1.22e06 7.8
cal588 14224.5 1.07e04 0.4 1.77e05 2.69e05 286.0 0.0 2.81e05 3.40e05 16.5 0.0 1.55e05 2.46e05 1.4
cal643 94.6 2.55e04 0.0 1.07e04 3.72e04 3.0 0.0 1.03e04 3.57e04 2.0 0.0 9.40e03 3.50e04 0.9

dct 16.8 2.10e05 run-time exceeded > 7200 crashed 0.0 8.68e04 2.75e05 14.1
IBM-HB

m
P
L
6

ibm01 2980.6 7.33e05 0.0 7.00e05 7.94e06 1727.6 crashed 0.0 5.42e05 6.49e06 2.0
ibm02 1659.5 1.30e06 run-time exceeded > 7200 crashed 0.0 1.80e06 1.44e07 5.1
ibm03 2074.0 1.39e06 run-time exceeded > 7200 crashed 0.0 1.78e06 1.97e07 6.6
ibm04 4001.5 2.40e06 run-time exceeded > 7200 crashed 0.0 1.91e06 2.37e07 3.6
ibm06 3103.5 8.11e05 2.6 9.45e05 2.22e07 3167.4 crashed 0.0 7.58e05 2.38e07 2.0
ibm07 7036.1 1.89e06 0.0 1.53e06 5.01e07 5325.8 crashed 0.0 1.48e06 4.54e07 6.9
ibm11 2166.5 5.51e06 run-time exceeded > 7200 crashed 0.0 2.34e06 6.59e07 4.5
ibm16 949.9 1.90e07 3.7 1.99e06 1.98e08 938.9 crashed 0.0 1.83e06 2.19e08 16.5
ibm17 2241.7 2.61e07 0.5 1.79e06 2.34e08 1342.3 crashed 0.0 1.97e06 2.81e08 10.7
ibm18 1351.3 1.50e07 0.5 1.29e06 1.18e08 347.8 crashed 0.0 1.39e06 1.73e08 7.0

N
T
U
p
l
a
c
e
2

ibm01 44.2 2.32e06 0.3 2.02e05 4.33e06 320.6 crashed 0.0 1.05e05 2.91e06 2.1
ibm02 28.3 4.96e06 0.1 2.74e05 7.76e06 449.7 crashed 0.0 1.79e05 5.90e06 2.4
ibm03 16.6 7.81e06 0.1 2.90e05 9.21e06 87.5 crashed 0.0 1.28e05 8.28e06 2.9
ibm04 21.3 8.69e06 0.1 4.00e05 1.21e07 479.8 crashed 0.0 1.63e05 9.47e06 2.3
ibm06 28.5 5.93e06 0.1 1.15e05 7.81e06 26.6 crashed 0.0 1.44e05 7.49e06 2.3
ibm07 22.0 1.36e07 0.1 1.49e05 1.52e07 79.1 crashed 0.0 1.44e05 1.46e07 3.0
ibm08 22.6 1.51e07 0.1 1.61e05 1.74e07 94.1 crashed 0.0 1.44e05 1.65e07 4.0
ibm09 30.8 1.30e07 0.0 2.16e05 1.62e07 73.2 crashed 0.0 2.05e05 1.63e07 4.3
ibm10 14.7 3.82e07 0.0 5.84e05 4.35e07 305.9 crashed 0.0 3.99e05 4.22e07 8.3
ibm11 27.4 2.22e07 0.0 3.70e05 3.25e07 466.0 crashed 0.0 3.20e05 2.69e07 3.8
ibm12 14.1 4.79e07 0.0 6.17e05 5.33e07 40.5 crashed 0.0 5.30e05 5.13e07 7.1
ibm13 23.5 2.98e07 0.0 2.80e05 3.41e07 73.8 crashed 0.0 3.00e05 3.40e07 8.2
ibm14 32.9 5.70e07 0.1 3.30e05 6.28e07 498.0 crashed 0.0 3.20e05 6.16e07 8.1
ibm15 21.9 6.78e07 0.0 6.75e05 8.19e07 311.8 crashed 0.0 3.97e05 7.86e07 8.9
ibm16 23.8 8.51e07 0.0 3.51e05 9.53e07 211.2 crashed 0.0 4.08e05 9.34e07 7.8
ibm17 28.4 1.36e08 0.0 3.24e05 1.46e08 155.1 crashed 0.0 5.34e05 1.42e08 11.5
ibm18 37.9 6.63e07 0.1 2.12e05 7.50e07 56.6 crashed 0.0 2.28e05 7.46e07 7.1

ISPD 2005

m
P
L
6

adaptec1 17.6 8.01e07 0.0 8.42e06 8.86e07 2297.3 0.0 1.31e07 7.79e07 883.1 0.0 7.38e06 8.05e07 159.8
adaptec2 19.8 9.35e07 0.0 2.74e07 1.19e08 4948.4 0.0 2.97e07 9.20e07 883.3 0.0 1.91e07 9.67e07 224.0
adaptec3 15.4 2.15e08 run-time exceeded > 7200 0.0 7.06e07 2.14e08 1776.5 0.0 4.87e07 2.24e08 414.5
adaptec4 11.6 1.98e08 run-time exceeded > 7200 0.0 6.95e07 1.94e08 1901.2 0.0 4.41e07 2.04e08 396.0
bigblue1 12.8 1.02e08 0.0 1.46e07 1.16e08 140.1 0.0 2.05e07 9.68e07 1066.9 0.0 9.09e06 1.00e08 226.9
bigblue2 13.0 1.57e08 0.0 2.71e07 1.79e08 6962.8 0.0 5.81e07 1.52e08 2932.9 0.0 2.78e07 1.62e08 570.7
bigblue3 24.2 3.60e08 run-time exceeded > 7200 0.0 1.96e+08 3.44e+08 3970.2 0.0 9.39e+07 3.64e+08 1056.1
bigblue4 20.0 8.79e08 run-time exceeded > 7200 run-time exceeded > 7200 0.0 1.06e08 9.33e08 1622.3

N
T
U
p
l
a
c
e
2 adaptec1 23.2 8.69e07 0.0 1.02e07 9.82e07 1893.9 8.9 3.96e07 8.07e07 1624.0 0.0 8.85e06 8.65e07 150.5

adaptec2 16.8 1.05e08 0.0 1.39e07 1.15e08 272.8 5.2 4.64e07 9.63e07 1807.8 0.0 1.52e07 1.05e08 172.0
adaptec3 16.6 2.43e08 run-time exceeded > 7200 9.6 3.87e07 2.20e08 2952.5 0.0 6.16e07 2.44e08 329.7
adaptec4 10.7 2.16e08 0.0 5.69e07 2.81e08 3988.5 5.1 3.79e07 1.97e08 2850.2 0.0 3.38e07 2.15e08 538.6
bigblue1 13.2 1.11e08 0.0 6.82e06 1.18e08 64.5 0.6 3.44e07 1.05e08 1955.8 0.0 7.28e06 1.10e08 204.8
bigblue2 14.8 1.69e08 0.0 2.41e07 1.90e08 6267.2 5.6 2.85e07 1.53e08 3488.0 0.0 2.29e07 1.69e08 730.5
bigblue3 24.8 3.85e08 run-time exceeded > 7200 7.5 6.64e07 3.46e08 5342.6 0.0 3.74e08 4.09e08 1211.7
bigblue4 14.9 9.27e08 run-time exceeded > 7200 crashed 0.0 3.98e07 9.41e08 1316.1

CHAPTER 5

Improving Detailed Placement with Directed

Moves

5.1 Overview

Detailed placement for standard cell and mixed-size designs has received substantial attention

in the academic literature. During detailed placement, iterative techniques are employed to

“undo” the damage to wire length (or other placement objectives) caused by “snapping” cells

into non-overlapping locations during legalization. Moreover, detailed placement can be used to

improve upon the final quality—as global placements are typically obtained without attention to

local details, and since approximations are made in the cost functions for run-time reasons, some

improvement in quality can be wrought by locally replacing cells.

Typically, detailed placement techniques pass a “sliding window” over the design and rearrange

subsets of cells within the window to minimize local wire length. Optimal cell rearrangement has

been noted to yield better results than heuristic strategies [23] because modern global placements

already tend to be very good. The commonly-held belief is that heuristic methods are not as good

at improving wire length because they can easily become trapped in local minima. Moreover, it

is believed that stochastic search-based methods, like simulated annealing [75], can require too

much run-time and are, therefore, impractical for large circuits. On the other hand, the traditional

branch-and-bound techniques [23] can only optimize single-row windows containing less than 9

(or so) cells.

While it is clear that better local optimization can improve the quality of the entire placement,

87

Chapter 5. Improving Detailed Placement with Directed Moves 88

there is a need to design detailed placement strategies which can yield good improvement in final

wire length with only a minimal impact on overall run-time.

This chapter presents two approaches to solving the problem of detailed placement. The first

technique is a dynamic programming formulation that can be used to optimize cells across multiple

standard cell rows. Second, an annealing-based detailed placement strategy is described, and the

effectiveness of directed moves within the context of such an annealer is explored.

The rest of this chapter is organized as follows. Section 5.2 describes the strategies for

optimal wire length-based placement, and Section 5.3 examines the implementation of a simulated

annealing-based detailed placer for standard cells.

5.2 Optimal Multi-Row Improvement Using A* Search

Since single-row branch-and-bound has been used successfully in Capo for years, it is expected that

multi-row techniques could yield even further improvement. Unlike single-row branch-and-bound,

however, multi-row methods cannot be implemented efficiently with a “right-edge” stack, as

cells may be placed in either of two dimensions. To improve efficiency, this chapter presents

a constrained version of a generic multi-row placement algorithm: rather than ripping up and

determining where to replace cells, as in single-row branch-and-bound, the technique proposed

here only allows cells to exchange positions. That is, cells are placed (optimally) only in

those positions formally occupied by another cell (of the same size) in the sub-problem. This

constraint preserves the legalization of the circuit, as well as the congestion metric, as no overlap

is reintroduced.

Using this constraint, the multi-row strategy can be transformed into a dynamic programming

instance, employing an A* search. The pseudocode for the generic A*-based placement method

is presented in Figure 5.1. In each step, the algorithm tests the actual cost (“g”) of assigning the

next available cell in the sub-problem to an empty location. This creates a child of the current

placement, as shown in line 15. A heuristic estimate h (given in line 17) is then computed which

ranks each candidate by an estimate of the best wire length for the remaining nodes. The algorithm

then visits each candidate configuration based on the best heuristic estimate. As cells are assigned

to locations, they are fixed in place, and the algorithm proceeds to the next candidate.

The cost g is computed in a similar fashion as the costing strategy for assigning a cell µ to

location λ, as in [44]. That is, the contributions to the HPWL of all nets attached to cell µ are

summed, and the value is expressed as an incremental cost relative to the total cost of the candidate

placement.

The quality of the heuristic estimation function directly impacts the speed of convergence of

the A* approach. If the heuristic never overestimates the wire length, it is said to be an admissible

Chapter 5. Improving Detailed Placement with Directed Moves 89

Procedure: MULTI-ROW A* IMPROVEMENT

Input: A set of cells to place

Variables: An open and closed queue of candidate configurations

begin1

initial state← empty; // No cells are placed initially.2

open queue.insert(initial state);3

while open queue is not empty do4

// Grab the best candidate, and with it, the next empty location.5

curr state← open queue.remove front();6

if all cells in curr state have been placed then7

return ; // Finished successfully.8

fi9

closed queue.insert(curr state);10

// Test each unplaced cell in this location.11

child← enumerate(curr state);12

for each i = 1 . . .child.size() do13

// Compute the actual increase in wire length for this assignment.14

child[i].g← compute g(child[i]);15

// Estimate the wire length required to place all remaining cells.16

child[i].h← compute h(child[i]);17

if child[i] exists in open queue then18

if child in open.g > child[i].g then19

Replace child in open with child[i];20

fi21

else if child[i] exists in closed queue then22

if child in closed.g > child[i].g then23

closed queue.erase(child[i]);24

open queue.push(child[i]);25

fi26

else27

open queue.push(child[i]); // First visit.28

fi29

i← i+1;30

od31

Sort open queue using the sum of g and h;32

od33

end34

Figure 5.1: Pseudocode for the multi-row, A*-based placement algorithm. Note that, because the

heuristic underestimation function presented in this chapter decreases monotonically

as more cells are placed, it is not necessary to check the “closed” queue. This check is

merely provided in the pseudocode for completeness.

Chapter 5. Improving Detailed Placement with Directed Moves 90

function which will always find an optimal solution.1 The best possible heuristic will lead to the

tightest possible bounding.

The algorithm to compute the heuristic estimate cost h is shown in Figure 5.2. To estimate

the cost of the remaining cells in a candidate placement, the incremental costs of assigning each

unplaced cell µi to each empty location λ j are computed and summed. The key to this approach is

that, when estimating remaining wire length, cells may be costed in any location, even if doing so

would cause more than one cell to be costed in the same spot. As a result, the cost h is ensured to

monotonically underestimate the actual wire length.

Empirical evidence suggests that h usually comes very close to approximating the actual wire

length of the final (optimal) placement; therefore, the A* approach, on a whole, requires relatively

few steps to place each subset of cells. While no proof of the monotonicity or underestimation

of h is provided, computer simulations on more than 1 billion sub-problems have shown that h

always underestimates the actual wire length of the placement, and that it decreases monotonically

as more nodes are fixed in place.

5.2.1 Experimental Results

To test the quality of the A* strategy discussed in this chapter, C++ code was integrated into the

Whim tool (cf. Chapter 4). The Capo placement tool was used to produce legalized, HPWL-

optimized placements, and the quality of improvement for these placements was observed.

To broaden the comparisons, the single-row branch-and-bound technique from [24], a greedy

(same-size) swapping method (akin to [27]), and a linear assignment method similar to [33] were

also developed.

These four improvement techniques focus on slightly different levels of “locality”. The greedy

approach uses a large-scale binning strategy to gather up to 2000 cells per bin, where it then

performs random pair-wise interchanges of same-sized cells. The linear assignment approach

has been found to work best with subsets of approximately 20 cells, which is per [44], but

unlike [33]. This number offers a good trade-off between performance and accuracy in modelling

the assignment costs for each cell. On the other hand, empirical tests have found that the A*

method can efficiently handle up to 8 cells. A localized window is used to gather cells for the

problem, although it should be noted that, for the greedy, A*, and linear assignment approaches,

this is not a strict requirement for proper operation.

The Peko benchmark suite [28] was used to compare the efficacy of all four detailed improve-

ment methods. This benchmark offers several advantages to help in assessing the quality of the

1 If the estimate were to simply return zero, it would never overestimate the cost of a placement. In this case, the

A* method would effectively implement Dijkstra’s algorithm.

Chapter 5. Improving Detailed Placement with Directed Moves 91

Procedure: COMPUTE H

Input: A candidate placement

begin1

cost h← 0;2

for each unplaced node µi ∈ µ0, . . . ,µn do3

thisNodesBestCost← ∞;4

for each unfilled location λ j ∈ λ0, . . . ,λn do5

if λ j is not the same size as µi then6

continue ;7

fi8

cµiλ j
← cost of assigning µi to λ j; // Increment in HPWL.9

if cµiλ j
< thisNodesBestCost then10

thisNodesBestCost← cµiλ j
;11

fi12

od13

cost h← cost h + thisNodesBestCost;14

od15

return cost h;16

end17

Figure 5.2: Pseudocode for computing a heuristic underestimation of the remaining wire length,

given a candidate placement with some fixed and some unfixed cells (as well as a

sufficient number of unfilled locations into which to place the unfixed cells).

four detailed placement approaches. First, each Peko circuit has a known optimal wire length;

thus, it is possible to quantify the exact improvement of any particular algorithm. Second, all Peko

circuits employ same-size cells, which permits the maximum number of cell-to-location matches

for the A* and linear assignment approaches. Empirical evidence has shown that, with varying cell

widths, these techniques do not find closely-placed cells of similar sizes; consequently, the quality

of these methods can suffer on more realistic designs.

The statistics for the Peko circuits are presented in Table 5.1. The Capo placement tool,

which was used to acquire legalized placements of these circuits, was run on a Linux-based

Pentium 2.8 GHz computer. It should be noted that Capo made extensive use of “row ironing”—

single-row, optimal branch-and-bound on subsets of up to 9 cells after placement. Thus, the

post-legalized results presented here have already had some detailed improvement applied.

The four improvement methods implemented for this chapter were run on the same Pen-

tium 2.8 GHz computer. The linear assignment method was configured to operate on subsets of

up to 20 cells, the A* approach on subsets of up to 8 cells, and the single-row branch-and-bound

on subsets of up to 6 cells. These sizes were determined empirically to offer the best trade-off

Chapter 5. Improving Detailed Placement with Directed Moves 92

Table 5.1: Circuit statistics for Suite 3 of the Peko benchmarks. Wire length values are reported

using HPWL (divided by 106), and CPU times are reported in seconds.

Circuit Cells Pads Nets Rows Optimal WL Capo

WL CPU

peko01 12506 488 14111 113 0.822 1.436 39

peko02 19342 608 19584 140 1.27 2.353 62

peko03 22853 660 27401 152 1.51 2.737 78

peko04 27220 718 31970 166 1.76 3.301 97

peko05 28146 732 28446 169 1.95 3.660 104

peko06 32332 784 34826 181 2.07 3.798 114

peko07 45639 932 48117 215 2.89 5.623 183

peko08 51023 984 50513 227 3.15 5.775 202

peko09 53110 1004 60902 231 3.65 6.963 216

peko10 68685 1144 75196 263 4.75 9.725 306

peko11 70152 1154 81454 266 4.72 9.087 319

peko12 70439 1156 77240 266 5.02 9.590 336

peko13 83709 1260 99666 290 5.89 11.34 395

peko14 147088 1672 152772 385 9.03 17.44 789

peko15 161187 1748 186608 402 11.6 23.53 1029

peko16 182980 1864 190048 429 12.5 23.40 1163

peko17 184750 1872 189581 431 13.5 25.18 1220

peko18 210341 1998 201920 460 13.2 25.95 1320

of performance and quality. Each detailed placement algorithm was set to perform up to 35

passes. If the total improvement was less than 0.10% after every 5 passes of a given algorithm, the

improvement strategy was stopped. In practice, no more than 5 passes of these algorithms were

typically required.

Table 5.2 compares each of the four improvement strategies when run by themselves on the

benchmark suite. For each circuit, the number of detailed improvement passes, CPU time (in

seconds), and the ratio of HPWL after improvement to the HPWL prior to improvement. Results

for the single-row branch-and-bound and greedy swapping methods are also presented.

The single-row branch-and-bound method yielded very little additional improvement over that

of the legalized Capo placements. This was expected, since Capo applied one-row branch-and-

bound to its placements. The A* and linear assignment techniques, on the other hand, offered

an improvement of 2% on top of Capo. The performance for both methods was reasonable; this

Chapter 5. Improving Detailed Placement with Directed Moves 93

indicates that the A* heuristic estimate offers tight bounds to the placement sub-problems.

It is worth noting that, despite the improvement reported here, the A* and linear assignment

techniques are applicable only to same-sized cells, and thus the amount of improvement reported in

Table 5.2 should be treated as a “best case” scenario. Modern standard cell designs typically feature

a wide variety of cell widths; consequently, on circuits like those found in the ICCAD04 suite [6],

the improvement wrought by the A* and linear assignment methods are negligible because they are

unable to adequately explore the solution space. This suggests that a better, more robust technique

is required.

5.3 Annealing-Based Detailed Placement

While the methods outlined in Section 5.2 do not increase placement density, they also do not

help to improve it. These techniques are constrained by the fact that they only operate on same-

sized cells, and do so within localized windows. Furthermore, the objective functions considered

by these approaches are based solely on HPWL minimization—at least in the case of the A*

technique, it might not be possible to enhance the method to account for additional objectives such

as congestion or timing.

Given the advances in annealing-based placement for FPGAs, as described in Chapter 3, it

seemed reasonable to employ annealing for detailed placement of standard cells. Annealing

offers numerous advantages compared to other detailed placement strategies; chiefly, it can

model complex objective functions, and its run-time behaviour can be well-controlled (through

parameters such as inner num, inner exp, and starting temperature).

These advantages have always been thought to come at a cost, however: it has long been held

that annealers scaled poorly with circuit size. The results presented later in this section contradict

these beliefs, showing, instead, that annealing is quite competitive in terms of run-time. In addition,

it is shown that the technique is effective in terms of improving placement quality, particularly for

designs with near-uniform cell widths.

Much of what makes the annealer, in this work, so effective stems from the engineering and

implementation details. While the general concept of such a placer is well-understood, it is the

implementation of key aspects of the tool which ultimately determines its usefulness. It is also

worth noting that, by using a simulated annealer, one can directly optimize multi-part cost functions

(e.g., the ISPD06 cost function, which incorporates both an overlap metric and HPWL) without

having to trade-off between competing objectives in multiple, separate placement phases as is often

done in the literature (e.g., [128]).

The remainder of this chapter considers the details of an annealing based detailed placement

Chapter 5. Improving Detailed Placement with Directed Moves 94

Table 5.2: Results for the linear assignment and A* improvement methods when using the grid

binning strategy. All HPWL values have been divided by 106, and CPU times are

reported in seconds. The average CPU time represents the average amount of time

spent optimizing per cell, whereas the CPU value on each line represents the time spent

optimizing the design .

Circuit A* Method Linear Assignment Method Single-Row B&B Greedy Swapping

CPU WL Ratio CPU WL Ratio CPU WL Ratio CPU WL Ratio

peko01 30 0.973 37 0.978 5 0.999 57 0.985

peko02 49 0.977 44 0.977 6 0.999 57 0.988

peko03 55 0.976 51 0.981 8 0.999 96 0.985

peko04 48 0.977 80 0.982 9 0.999 108 0.987

peko05 73 0.973 84 0.969 22 0.996 91 0.985

peko06 78 0.977 70 0.980 11 0.999 128 0.986

peko07 130 0.978 99 0.981 18 0.999 122 0.989

peko08 130 0.977 150 0.979 21 0.999 154 0.988

peko09 141 0.976 117 0.979 19 0.999 160 0.988

peko10 140 0.977 201 0.978 29 0.999 224 0.989

peko11 138 0.976 153 0.979 25 0.999 203 0.988

peko12 189 0.976 208 0.975 31 0.999 400 0.986

peko13 172 0.976 246 0.979 37 0.999 279 0.988

peko14 279 0.978 422 0.979 59 0.999 420 0.989

peko15 323 0.979 356 0.980 76 0.999 603 0.989

peko16 381 0.976 543 0.975 78 0.999 1070 0.986

peko17 532 0.974 547 0.972 79 0.999 753 0.987

peko18 406 0.978 618 0.976 86 0.999 676 0.988

Averages 130 µs 0.976 147 µs 0.978 83 µs 0.999 163 µs 0.987

strategy.2

5.3.1 Implementation Details

The standard cell annealer in this work was based on KPF (cf. Chapter 3), which is, itself, loosely

based on VPR. The standard cell annealer possesses all of the features of its FPGA counterpart: the

ability to move multiple cells at once (“multi-moves”), a wire length-driven directed move based

on median improvement, and the concept of move effectiveness to automatically choose the move

most likely to yield improvement.

The standard cell annealer is not timing driven; instead, it optimizes the ISPD 2006 objective

function, or, in the case of designs without the need for congestion minimization, it optimizes

pin-to-pin HPWL. The scaled overflow term in the objective function is computed using a discrete

2 Note that the results in subsequent sections focus entirely on simulated annealing-based placement, and not on the

aforementioned strategies based on A* or linear assignment.

Chapter 5. Improving Detailed Placement with Directed Moves 95

binning strategy which is very fast in practice.

For performance reasons, during the anneal, pin offsets are only considered for the largest

≈ 10% of standard cells in a design (and even then, only if the standard cells exceed pre-defined

size tolerances). The reason for this constraint is purely based on run-time: if pin offsets were

to be considered for all standard cells, additional run-time would be required to verify when cells

with pin offsets are moved, and this could minimize the effectiveness of the bounding box caching

mechanism.

5.3.2 Overlap and Legality

In its earliest implementation, Timberwolf [101], permitted standard cells to overlap during

placement, preferring instead to penalize overlaps as the temperature was decreased. As recognized

in [110], such a formulation can be difficult to tune, as it can be challenging to trade-off overlap

minimization, temperature, and cost function optimization. It is also unclear whether such a

formulation would work in modern circuits which possess millions of placeable cells, feature large

variations in cell widths, and have many fixed obstacles (such as pre-placed macrocells) which can

make it difficult for cells to move outside of overlapping areas.

The approach employed in this thesis is to maintain legality throughout the anneal. After global

legalization (cf. Chapter 4), standard cells are snapped to their nearest, legal site locations. All

subsequent moves made during the anneal preserve legality. This requirement ensures that designs

are always feasible, and that that the cost function can be computed precisely3 since the (legalized)

module locations are known. On the other hand, additional logic is required during the anneal to

ensure that moves do not reintroduce overlap.

To this end, two types of strategies are described for preserving the legality of standard cell

placements. The first strategy is based on a swap operation: when a source cell is requested to be

placed in a target location, the contents of all cells at the target location (which could overlap with

the source cell) are gathered and tested to see if they fit in the source location. Only those swaps

which maintain legality are allowed to proceed (i.e., to have their costs computed).

The second strategy for maintaining legality is based on the ripple approach in Section 3.3.3.

For FPGA placement, the ripple move was found to be more costly in terms of run-time, but

very effective at minimizing the amount of displacement, and therefore, minimizing HPWL. The

concept of a ripple move for standard cell annealing is similar (in that cells are rippled toward

empty locations), though complicated by the presence of fixed obstacles and varying cell widths.

The pseudocode for the standard cell ripple-move is shown in Figure 5.3, and can be described

3 That is to say, unlike [110], there is no need to estimate the impact of a change in the placement on the cost

function.

Chapter 5. Improving Detailed Placement with Directed Moves 96

as follows. The technique operates on a data structure called a QueueElement, which is effectively

a linked list that tracks the assignment of cells (from one bin to the next, and so forth). It is worth

noting that the QueueElement stores only the set of feasible assignments and the assignment

currently being processed. For example, a QueueElement qualitatively models the notion of

“moving a node A from site (10,1) to site (5,3), then node B formerly at site (5,3) to the new site

(5,4), and then node C formerly at (5,4) to an as-of-yet-untested site (8,4)”. The ripple legalizer

determines the chain of source-to-destination moves by searching radially outward from the initial

destination point as long as the total displacement is less than the distance defined by the initial

source node to its initial destination site.

A QueueElement is created for the initial source node and destination bin. This QueueElement

is pushed to a priority queue which is sorted based on the total displacement of the chains specified

by each QueueElement. While the queue is not empty, the maximum number of iterations is not

exceeded, and the maximum displacement is not exceeded, the best queue element—the one with

the least total displacement thus far—is selected for “exploration”.

When a QueueElement is being “explored”, it must be tested to ensure that the current

assignment—in the above example, the assignment of node C to site (8,4)—does not overlap with

other sites that may have been considered in the rippling chain, and that there is, indeed, enough

room for C to fit at site (8,4). If these criteria are not satisfied, the queue element is “split” into four

separate queue elements, each one following a different site to the left, up, down, and right of site

(8,4). These new QueueElements are pushed to the priority queue as long as their new destination

sites have not yet been visited.

On the other hand, if the criteria are satisfied, then site (8,4) is examined to see if it is empty.

If it is empty, the list of assignments modelled by the QueueElement can be completed (because

node C can be moved into the empty site), and the rippling is complete. If, instead, there are nodes

at site (8,4), four new QueueElements must be created—one for each direction adjacent to site

(8,4)—and pushed to the priority queue, where the rippling repeats with the nodes from (8,4).

5.3.3 Moves and Effectiveness

Based on the analysis conducted in Chapter 3, three types of moves were implemented for the

standard cell annealer: a random move coupled with the simple legalizer, a median improvement

move coupled with the simple legalizer, and a median improvement move coupled with the ripple

legalizer.

Practically-speaking, the implementation of the median improvement move is identical to the

discussion in Chapter 3. Given a randomly-chosen source, the median improvement heuristic is

employed to find a target location. Then, either the simple or the ripple legalizer is invoked to

Chapter 5. Improving Detailed Placement with Directed Moves 97

Procedure: RIPPLE LEGALIZE

Input: An initial source node, ni and destination location, di

Variables: A queue, q, which contains the current working QueueElement

Return: True for success, false if a rippling strategy could not be found

begin1

initialDisp← distance of the displacement from ni to di;2

create a QueueElement for ni and di, and push to q;3

while q is not empty nor number of iterations exceeded do4

qelem← pop element in q with the least total displacement;5

if the displacement of qelem is more than initialDisp then6

return false;7

fi8

9

if the last assignment specified by qelem would not overlap with the rippling path or10

the destination site is not feasible then11

12

create 4 new QueueElements with the same assignment history but13

whose destination is shifted one unit left, right, up, down;14

15

push these 4 elements to q if the new destinations have not yet been visited;16

continue17

fi18

gather the nodes at the destination site specified in qelem;19

if there are no nodes at the destination site then20

// Rippling succeeded21

return true;22

else23

create 4 new QueueElements, appending the nodes from the destination site, and setting24

the next site to explore as the bin to the left, right, up, and down of the current destination;25

26

push these 4 elements to q if the new destinations have not yet been visited;27

fi28

od29

end30

Figure 5.3: Pseudocode for the standard cell rippling strategy.

Chapter 5. Improving Detailed Placement with Directed Moves 98

ensure that the move maintains legality. If the move is legal, its cost is computed and it is either

accepted or rejected.

Random moves are also employed in a manner similar to the FPGA annealer. That is, given

a randomly-chosen source cell, a range-limited window is used to narrow the search for the

destination location. The dimensions of this window are shrunk as the temperature decreases.

One slight difference with the FPGA tool, however, is that the window represents a multiple of the

number of cell heights and widths for the given (source) cell. Consider the following illustrative

example. If the random window size specifies 12 units by 12 units, and a source cell is provided

which is 5 standard cell units in width, the random move will search within a window measuring

60 units in width by 12 units in height, centred about the source cell. This ensures that only a single

range-limited window is required for designs which might possess widely-varying cell widths.

The concept of move effectiveness is also employed in the standard cell annealer, and is

identical to the implementation described in Chapter 3. Because the move effectiveness metric can

account for run-time, it is particularly useful at balancing the frequency with which moves based on

the ripple legalizer and simple legalizer are employed; this is vital to good run-time performance

because the ripple legalizer is computationally more intensive than the simple technique. Move

effectiveness is also useful for terminating the anneal, especially when the anneal is performed in

a low- (or zero-) temperature regime.

5.3.4 Experimental Results

The simulated annealer described previously was implemented in Whim (cf. Chapter 4). Several

tests were conducted using the ISPD 2006 [91] and ICCAD04 [6] benchmarks to establish the

effectiveness of this annealer and its directed moves. The ISPD 2006 suite can be viewed as

an extension of the ISPD 2005 suite, featuring more designs and incorporating the concept of

a “target density” for congestion minimization. The characteristics of these circuits are shown in

Table 5.3. Contrarily, designs in the ICCAD04 suite do not possess target densities, but feature a set

of widely-varying, movable macrocells; characteristics for this suite are summarized in Table 5.4.

In the case of the ISPD 2006 suite, the scripts provided by the ISPD contest organizers were

employed to compute the overlap and HPWL for all tools considered in this work, whereas the

Whim tool was used to measure the pin-to-pin HPWL for all designs considered in the ICCAD04

suite. In all cases, Capo was employed to ensure that the results were legal (and, in all cases, this

was found to be true).

In the following discussion, several tests were conducted in which global placements were first

produced by mPL [27], and the legalizers and detailed placement strategies of mPL, NTUplace3, and

Whim were compared. mPL was chosen to produce the global placements because it placed first

Chapter 5. Improving Detailed Placement with Directed Moves 99

Table 5.3: Characteristics of the ISPD 2006 suite. Note that these designs do not possesses

movable macrocells.

General Statistics Standard Cell Widths Target

Circuit Cells Nets Min Max Median Density

adaptec1 210904 221142 3 77 13 0.6

adaptec2 254457 266009 3 75 8 0.6

adaptec3 450927 466758 3 80 10 0.6

adaptec4 494716 515951 3 80 10 0.6

adaptec5 842482 867798 3 80 8 0.5

bigblue1 277604 284479 3 43 11 0.6

bigblue2 534782 577235 3 104 9 0.6

bigblue3 1093034 1123170 3 104 8 0.6

bigblue4 2169183 2229886 3 104 8 0.6

newblue1 330073 338901 3 75 8 0.8

newblue2 436516 465219 6 212 20 0.9

newblue3 482833 552199 3 104 15 0.8

newblue4 642717 637051 3 106 10 0.5

newblue5 1228177 1284251 3 104 8 0.5

newblue6 1248150 1288443 3 104 10 0.8

newblue7 2481372 2636820 3 104 8 0.8

in the ISPD 2006 contest [91] in terms of the combined cost function (wire length and overlap),

and (narrowly) placed second in the category of wire length alone. In some tests, both global

and detailed placements were produced by mPL, and Whim’s annealing strategy was employed to

improve upon them. All designs were executed on a Pentium 2.8 GHz Linux machine with 4 GB

of RAM. Run-times were measured in CPU seconds. All results reported from Whim’s simulated

annealer were averaged over three different random seeds.

5.3.4.1 Tests on Global Placements

Using the global placements generated by mPL, the legalizer and simulated annealer built into

Whim were compared to other legalization and detailed placement tools in an effort to answer the

following questions:

1. How effective are directed moves on standard cell designs?

Chapter 5. Improving Detailed Placement with Directed Moves 100

Table 5.4: Characteristics of the ICCAD04 suite.

General Statistics Standard Cell Widths

Circuit Cells Macros Nets AreaLargest(%)
AreaLargest

AreaSmallest
Min Max Median

ibm01 12260 246 14111 6.4 8412.0 2 46 8

ibm02 19071 271 19584 11.4 30053.0 2 100 6

ibm03 22563 290 27401 10.8 33088.0 2 146 6

ibm04 26925 295 31970 9.2 26600.0 2 162 8

ibm05 28146 0 28446 0.0 10.0 2 20 8

ibm06 32154 178 34826 13.6 36358.0 2 56 4

ibm07 45348 291 48117 4.8 17570.0 2 146 6

ibm08 50722 301 50513 12.1 50874.0 2 100 6

ibm09 52857 253 60902 5.4 29716.0 2 166 6

ibm10 67899 786 75196 4.8 71316.0 2 160 10

ibm11 69779 373 81454 4.5 29711.0 2 166 6

ibm12 69788 651 77240 6.4 74266.5 2 46 12

ibm13 83285 424 99666 4.2 33098.5 2 146 6

ibm14 146474 614 152772 2.0 17867.5 2 152 6

ibm15 160794 393 186608 11.0 125580.0 2 184 8

ibm16 182522 458 190048 1.9 31104.0 2 52 8

ibm17 183992 760 189581 0.9 12446.5 2 160 12

ibm18 210056 285 201920 1.0 10150.0 2 46 8

2. Given that Whim attempts to retain global placement quality (by minimally perturbing

placements during legalization), how effective is it when coupled with annealing-based

detailed placement for the ISPD 2006 designs?

3. Can a low-temperature anneal improve upon existing, final solutions from mPL or NTUplace3,

and if so, what are the run-time implications?

To measure the effectiveness of directed moves during annealing-based placement, a similar

methodology as that described in Chapter 3 was employed. Each global placement in the ISPD

2006 suite was legalized and detail-placed with and without directed moves for 3 separate random

seeds, using four configurations which varied the run-time and effort-level of the annealer. These

four configurations are summarized in Table 5.5, and were derived after a series of empirical studies

which suggested that these configurations led to good quality and run-time trade-offs.

Chapter 5. Improving Detailed Placement with Directed Moves 101

Table 5.5: Parameter configurations used for testing the annealer. Configuration A is the slower,

higher-quality annealer setting, while Configuration D is the fastest setting. These

configurations were chosen based on empirical testing.

Configuration Description

A inner num = 1

inner exp = 1.15

random window size = 12×12

initial temp set to achieve ≈ 20% acceptance rate

B inner num = 1

inner exp = 1.10

random window size = 10×10

initial temp set to achieve ≈ 20% acceptance rate

C inner num = 1

inner exp = 1.05

random window size = 8×8

initial temp set to achieve ≈ 15% acceptance rate

D inner num = 1

inner exp = 1.0

random window size = 6×6

initial temp set to achieve ≈ 10% acceptance rate

The run-times and resultant quality (as measured using the ISPD 2006 cost function) were

gathered for each design in the suite. The costs and run-times were then normalized relative to the

fastest, lowest-quality configuration. The resultant graph illustrating the effectiveness of annealing

with directed moves (versus an anneal without directed moves) is shown in Figure 5.4. It is worth

emphasizing that each point in this graph represents the normalized geometric mean of the quality

and run-time of the entire ISPD 2006 suite for a particular configuration. From this graph, the

trend is clear—as in Chapter 3, the directed moves consistently dominate in quality (for the same

amount of run-time) compared to an anneal performed without directed moves.

Another experiment was conducted to establish how well Whim’s legalization and detailed

improvement strategy compared to the state-of-the-art methods employed by mPL and NTUplace3.

For this test, the global legalization strategy described in Chapter 4, coupled with the annealer

using Configuration A (cf. Table 5.5) were used to legalize and improve mPL-generated global

placements. The results from Whim were then compared to both mPL and NTUplace3, and are

Chapter 5. Improving Detailed Placement with Directed Moves 102

Figure 5.4: Illustration of the dominance of directed moves on the ISPD 2006 suite.

summarized in Table 5.6. Whim achieved a 4% improvement, on average, versus these existing

tools, consistently producing placements with not just better HPWL but also less overlap.

5.3.4.2 Tests on Detailed Placements

Another experiment was conducted using the ISPD 2006 test suite in which the annealer (with

directed moves enabled) was employed to improve upon already-optimized, legalized placements

produced by mPL. This test sought to answer the question of whether or not an anneal (with T > 0)

would be capable of escaping a locally-minimal solution and achieve a meaningful improvement in

quality. The results achieved by the annealer using Configuration A—the most run-time intensive

setting—are shown in Table 5.7. The annealer was able to improve upon existing mPL placements

by 4% on average. While the run-time for the technique was higher than mPL’s legalization strategy,

it is worth noting that it was still less than that required for the global placement. Moreover, for

this test, the annealer was executed using the setting with the largest run-time—thus, given the

trend shown in Figure 5.4, the run-time of the annealer could be easily halved (by adjusting the

appropriate parameters) with only a ≈ 1% loss in quality.

It is also worth noting that the run-times for the annealer are generally consistent and scalable

Chapter 5. Improving Detailed Placement with Directed Moves 103

Table 5.6: Quality of Whim’s legalization and detailed placement versus mPL and NTUplace3.

“WL” represents the HPWL divided by 106, “SO” represents the ISPD 2006 “scaled

overlap” metric, and “TC” represents the total cost function.

Circuit mPL NTUplace3 Whim + Anneal Whim TC vs Whim CPU vs

WL SO TC WL SO TC WL SO TC mPL NTU mPL NTU

adaptec1 90.25 1.39 91.51 90.37 2.07 92.24 88.88 0.34 89.18 0.97 0.97 1.7 5.24

adaptec2 102.15 1.43 103.62 102.48 1.79 104.31 99.63 0.36 99.99 0.96 0.96 1.96 4.61

adaptec3 238.11 0.84 240.12 236.6 1.34 239.77 231.11 0.32 231.84 0.97 0.97 2.05 4.61

adaptec4 209.13 0.6 210.4 208.3 0.95 210.27 202.58 0.23 203.05 0.97 0.97 1.98 4.73

adaptec5 424.27 0.92 428.17 421.07 1.92 429.16 409.7 0.46 411.59 0.96 0.96 2.24 3.5

bigblue1 114.56 1.18 115.91 113.85 1.66 115.73 112.74 0.29 113.06 0.98 0.98 1.77 4.59

bigblue2 164.38 1.22 166.39 163.27 1.69 166.04 159.12 0.41 159.76 0.96 0.96 1.76 3.59

bigblue3 414.91 0.63 417.51 410.66 1.36 416.24 397.75 0.3 398.95 0.96 0.96 2.66 3.99

bigblue4 912.09 1.27 923.7 905.07 1.45 918.16 880.19 0.52 884.77 0.96 0.96 2.36 4.75

newblue1 66.53 0.61 66.94 66.16 8.24 71.61 64.88 0.09 64.94 0.97 0.91 2.47 4.19

newblue2 199.05 1.39 201.82 199.12 0.6 200.31 197.98 0.11 198.2 0.98 0.99 2.77 7.59

newblue3 283.54 0.61 285.27 280.54 0.2 281.11 271.34 0.05 271.47 0.95 0.97 1.7 4.53

newblue4 293.47 1.55 298.02 290.23 2.8 298.37 281.55 0.65 283.37 0.95 0.95 2.01 3.65

newblue5 528.44 1.37 535.66 524.69 2.35 537.04 510.65 0.73 514.38 0.96 0.96 2.17 3.6

newblue6 516.37 1.31 523.12 515.64 0.56 518.51 504.27 0.2 505.3 0.97 0.97 2.55 6.1

newblue7 1073.1 1.11 1085.05 1070.44 0.5 1075.79 1043.91 0.23 1046.36 0.96 0.97 2.92 6.83

Geomeans 0.96 0.96 2.16 4.64

relative to mPL. This stems from the fact that the annealer scales based on the VPR-inspired formula

in Equation (2.15), and that in particular, for Configuration A, inner exp was set to 1.15. By

adjusting this parameter, one can trade-off better quality for better run-time. This flexibility allows

the user to control whether the annealer scales linearly or at a weak power of the number of

placeable objects in the design.

5.3.4.3 Commentary on Cell Diversity and Annealing

Qualitatively, it has been observed that maintaining legality in circuits with varying standard

cell widths can be very hard—the annealer may “abort” many moves, as legality may not be

achievable. It is worth considering whether or not, as cell widths become less diverse, the amount

of improvement offered by a simulated annealing-based placer gets better. In other words, is it

possible that simulated annealing is more effective for architectures with more-uniform cell widths

(such as FPGAs and structured ASICs)?

The term “aborted”, in this discussion, applies to a move which could not be costed for any

reason. There are several explanations as to why a move may not be costed. The most common

explanations are related to the inability of the simple or ripple legalizers to maintain the feasibility

of the placement; some of these situations are illustrated in Figure 5.5. One of the most common

Chapter 5. Improving Detailed Placement with Directed Moves 104

Table 5.7: Quality of Whim’s detailed placement at improving already-optimized placements

produced by mPL. “WL” represents the HPWL divided by 106, “SO” represents the

ISPD 2006 “scaled overlap” metric, “TC” represents the total cost function, and “GP”

standards for “global placement”.

Circuit mPL Whim’s Annealer Ratios

WL SO TC WL SO TC Anneal TC
mPL TC

Anneal CPU
mPL CPU

Anneal CPU
mPL GP CPU

adaptec1 90.25 1.39 91.51 88.70 0.50 89.14 0.97 1.49 0.45

adaptec2 102.15 1.43 103.62 99.13 0.49 99.61 0.96 1.67 0.41

adaptec3 238.11 0.84 240.12 230.15 0.40 231.07 0.96 1.75 0.26

adaptec4 209.13 0.60 210.40 202.19 0.27 202.74 0.96 1.77 0.25

adaptec5 424.27 0.92 428.17 408.12 0.67 410.87 0.96 1.93 0.54

bigblue1 114.56 1.18 115.91 112.46 0.43 112.94 0.97 1.53 0.60

bigblue2 164.38 1.22 166.39 158.70 0.56 159.59 0.96 1.58 0.49

bigblue3 414.91 0.63 417.51 397.54 0.40 399.12 0.96 2.36 0.72

bigblue4 912.09 1.27 923.70 875.51 1.15 885.57 0.96 2.13 0.78

newblue1 66.53 0.61 66.94 64.72 0.17 64.83 0.97 2.21 0.74

newblue2 199.05 1.39 201.82 194.44 0.32 195.07 0.97 2.08 0.48

newblue3 283.54 0.61 285.27 270.86 0.09 271.11 0.95 1.40 0.27

newblue4 293.47 1.55 298.02 280.52 0.93 283.14 0.95 1.76 0.51

newblue5 528.44 1.37 535.66 507.82 1.05 513.17 0.96 1.96 0.58

newblue6 516.37 1.31 523.12 501.81 0.59 504.75 0.96 2.31 0.78

newblue7 1073.10 1.11 1085.05 1034.44 0.72 1041.93 0.96 2.45 0.70

Geomeans 0.96 1.87 0.5

reasons for an aborted move occurs when the simple legalizer tries to move a cell into a position

which overlaps with a larger cell (as in the case of node 1, in the figure) or a set of cells (in

the case of node 0), but there is insufficient room for the reverse “swap”. Alternatively, cells

could be moved inside unusable areas (such as inside macrocells or off the edge of the chip).

Another common source of aborted moves occurs while rippling: if an empty space could not be

found quickly enough, the annealer will abort the attempt. (This is done, by design, to maintain

reasonable run-times.) Additionally, if the outward search performed during rippling would have

incurred too much displacement, the ripple will be aborted. Although less common, it is possible

that, due to the order in which nodes are rippled, too large a set of cells may be in the current

QueueElement to find a feasible solution, and the search space will have been exhausted. It is also

possible that a node is placed at its optimal wire length-minimizing location, so the target location

computed by the median improvement move would overlap on top of the current cell position—this

can lead to a move being aborted because no new (or different) candidate location may have been

Chapter 5. Improving Detailed Placement with Directed Moves 105

found. Later in placement, as its window size shrinks, the random move can also “trap” small cells

around larger cells, since there would be less room with which to move the small cells out from

around the larger ones.

To address this question, four separate suites were employed: the first was the original

ICCAD04 suite; next, the same ICCAD04 suite, but with standard cell widths divided by 5, as

well as one with standard cell widths divided by 5 but the maximum size limited to 3 units; and

finally, the ICCAD04 suite with all standard cell widths set to the same, unit size. In each case,

the row layout was modified to maintain the same 10% whitespace and aspect ratio across all

designs. mPL was used to produce wire length-optimized (legalized and improved) placements for

all designs, and Configuration A (from Table 5.5) was employed to further improve the results.

The cell statistics for the suites where site widths were shrunk by a factor of 5 are provided in

Table 5.8.

Table 5.9 summarizes the results achieved across all four suites. From this chart, it is clear

that, as the cells in the designs approached more uniform widths, the number of “aborted” moves

decreased and the efficacy of the annealer improved substantially. Not only does the quality of

the annealing-based improvement get better based on the characteristics of the circuit to which it

was applied, it far exceeds the ability of typical, end-case optimal algorithms which, perhaps, are

only effective on those circuits with widely varying widths. This observation offers a possible

explanation as to why annealing remains the algorithm of choice for architectures with more

uniform, smaller cell widths, like FPGAs and structured ASICs.

An analysis of the aborted moves reveals several interesting trends. The ratio of the number of

attempted-to-aborted moves remains reasonably consistent throughout the anneal—while it may

be slightly higher at the beginning, the ratio decreases by a few percent as the anneal progresses.

This corresponds with the fact that some (but not the majority of) cells are in their optimal

HPWL-minimizing locations near the end of placement. Also, as cells are placed closer together

to minimize HPWL, the rippling moves and random window moves are less likely to find legal,

non-overlapping positions.

The most common cause of aborted moves was found to be the reverse swap operation in the

simple move legalizer—that is, the swap of the nodes from the target location back to the source’s

original position. Such moves are more difficult to legalize because the size of the nodes at the

target location often exceed the space available at the source in designs with varying cell widths.

This explains why there was a significant increase in the ratio of attempted-to-aborted moves as the

cells were shrunk to unit width (since such aborts are not possible for unit-width circuits). Another

common cause for aborted moves in these designs was due to the fact that the ripple legalizer could

not find a valid rippling path which minimized the amount of displacement. This is particularly

the case in these ICCAD04-derivative benchmarks due to the minimal amount of white space and

Chapter 5. Improving Detailed Placement with Directed Moves 106

Figure 5.5: Illustration of aborted moves in the standard cell annealer.

large percentage of macrocell area.

It is important to consider that aborted moves are not necessarily detrimental to run-time—

some sources for aborted moves have greater impact on run-time than others. For instance, the

aborted moves most commonly seen by the annealer—the reverse swap in the simple legalizer—

can be identified very quickly, which allows the annealer to attempt another move without much

impact on run-time. On the other hand, the ripple move may spend ten times the amount of

run-time as the simple legalizer only to discover, at the end of its processing, that it was unable to

find a legal solution. In this case, the move effectiveness heuristic compensates for this processing

time by lowering the probability with which such moves are chosen in the anneal.

5.4 Conclusion

This chapter described two new methods for improving placements—one based on a novel

application of dynamic programming, and the other on simulated annealing. While the A*-

based strategy proved effective at HPWL minimization, it was ineffective at minimizing more

complex objectives (such as those incorporating congestion), and could not achieve meaningful

improvement in designs which possess a plethora of cell widths.

To address this issue, a simulated annealer was incorporated into Whim and tested on a variety of

modern designs. The annealing-based strategy proved to be very effective at optimizing the circuits

in ISPD 2006 suite, especially when coupled with a directed move based on median placement and

a ripple-move legalization strategy.

Chapter 5. Improving Detailed Placement with Directed Moves 107

Table 5.8: Characteristics of the ICCAD04 suite with cell widths shrunk by a factor of 5, as well

as the suite with cell widths shrunk by a factor of 5 but limited to maximum size of 3.

The number of cells, nets, and whitespace remain the same as the original suite.

Cell Widths for Suite

No Max Width Max Width 3

Circuit Min Max Median Min Max Median

ibm01 1 10 2 1 3 2

ibm02 1 20 2 1 3 2

ibm03 1 30 2 1 3 2

ibm04 1 33 2 1 3 2

ibm05 1 4 2 1 3 2

ibm06 1 12 1 1 3 1

ibm07 1 30 2 1 3 2

ibm08 1 20 2 1 3 2

ibm09 1 34 2 1 3 2

ibm10 1 32 2 1 3 2

ibm11 1 34 2 1 3 2

ibm12 1 10 3 1 3 3

ibm13 1 30 2 1 3 2

ibm14 1 31 2 1 3 2

ibm15 1 37 2 1 3 2

ibm16 1 11 2 1 3 2

ibm17 1 32 3 1 3 3

ibm18 1 10 2 1 3 2

When compared to existing tools, the annealer consistently achieved improvements over

existing state-of-the-art methodologies, and was also capable of improving substantially upon

already-optimized placements. This work also showed that simulated annealing is more effective at

improving designs with similar cell widths due to the fact that more moves remain legal (i.e., fewer

moves are aborted). This observation lends credence to the notion that annealing may be more

effective at placing designs with more regular cells, such as those found in FPGAs or structured

ASICs. Finally, an anneal with directed moves was shown to consistently dominate versus an

anneal performed without directed moves, for the same amount of run-time effort.

Chapter 5. Improving Detailed Placement with Directed Moves 108

Table 5.9: Results comparing the effectiveness of annealing on standard cell designs, as the width

of standard cells is decreased. HPWL results are divided by 106. “Initial” HPWL

refers to the optimized, legalized HPWL achieved by mPL, whereas “Final” HPWL is

the HPWL after annealing-based improvement in Whim.

Design ICCAD04 Shrunk by 5 Shrunk by 5, max 3 Shrunk to unit-width

HPWL Moves HPWL Moves HPWL Moves HPWL Moves

Initial Final Final
Initial

Attempts
Aborts

Initial Final Final
Initial

Attempts
Aborts

Initial Final Final
Initial

Attempts
Aborts

Initial Final Final
Initial

Attempts
Aborts

ibm01 2.22 2.22 1.00 0.69 1.49 1.46 0.98 1.12 1.63 1.53 0.94 1.29 1.94 1.62 0.84 19.48

ibm02 4.81 4.80 1.00 0.88 4.40 3.91 0.89 1.17 4.28 3.75 0.88 1.20 3.66 3.03 0.83 30.25

ibm03 6.72 6.55 0.98 0.64 4.42 4.28 0.97 0.90 4.90 4.24 0.87 1.15 4.01 3.73 0.93 66.13

ibm04 7.32 7.30 1.00 0.64 5.55 5.19 0.94 1.01 4.74 4.50 0.95 1.36 5.34 4.43 0.83 35.67

ibm05 9.39 9.38 1.00 1.07 4.68 4.64 0.99 1.52 4.66 4.62 0.99 1.58 3.15 3.05 0.97 1067.18

ibm06 5.73 5.72 1.00 0.61 4.45 3.99 0.89 1.43 3.84 3.52 0.92 1.74 4.56 3.81 0.83 54.06

ibm07 9.82 9.78 1.00 0.64 6.49 6.15 0.95 0.93 6.03 5.77 0.96 1.12 5.16 4.74 0.92 89.64

ibm08 11.94 11.94 1.00 0.91 8.52 8.10 0.95 1.18 10.06 8.91 0.89 1.26 7.26 6.74 0.93 133.11

ibm09 12.34 12.23 0.99 0.68 7.93 7.49 0.94 0.97 7.32 6.95 0.95 1.20 7.75 6.82 0.88 97.83

ibm10 27.75 27.59 0.99 0.77 22.20 21.46 0.97 1.05 23.23 21.36 0.92 1.48 27.51 23.06 0.84 21.31

ibm11 18.18 17.67 0.97 0.65 10.99 10.53 0.96 0.94 9.93 9.55 0.96 1.23 8.72 7.99 0.92 134.46

ibm12 31.92 31.82 1.00 0.74 21.80 21.43 0.98 1.11 21.81 21.33 0.98 1.72 23.62 21.42 0.91 35.32

ibm13 22.46 22.29 0.99 0.59 14.99 14.09 0.94 0.87 13.28 12.62 0.95 1.22 12.46 11.13 0.89 120.41

ibm14 35.70 35.41 0.99 0.74 20.96 20.13 0.96 1.09 21.01 20.01 0.95 1.32 16.68 15.57 0.93 121.54

ibm15 47.07 46.05 0.98 0.80 27.19 26.29 0.97 1.13 26.09 24.16 0.93 1.32 20.41 18.85 0.92 220.07

ibm16 55.60 55.46 1.00 0.79 35.76 34.64 0.97 1.09 40.23 37.64 0.94 1.24 31.37 28.46 0.91 93.66

ibm17 64.65 64.50 1.00 0.82 35.24 34.37 0.98 1.15 34.42 33.36 0.97 1.60 25.37 23.99 0.95 102.15

ibm18 42.10 42.10 1.00 0.93 22.26 21.74 0.98 1.46 22.17 21.65 0.98 1.57 15.98 15.20 0.95 542.03

Geomeans 0.99 0.75 0.95 1.10 0.94 1.35 0.90 90.26

CHAPTER 6

Conclusion

6.1 Summary

This thesis discussed a number of strategies for augmenting stochastic search techniques with

non-random, “directed” moves. These moves were implemented within the context of various

VLSI CAD algorithms, including FPGA placement, mixed-cell floorplan repair, and standard cell

annealing.

In terms of FPGA placement, several types of directed moves were considered, and results were

presented that showed significant improvements over simple, random moves for the same amount

of annealing effort. It was shown that directed moves are useful in devices with lower utilization,

and can reduce the statistical variability in placements, which can lead to more repeatable results.

Furthermore, it was established that the benefits of directed moves cannot be achieved by changing

the annealer’s cost function. A zero-temperature approach for performing BLE operations was

described, and a technique for measuring move effectiveness was also proposed.

Directed moves were also introduced within the context of a top-down strategy employing a

combination of constraint graphs, linear programming, and a novel geometric shifting technique.

This repair strategy moves only those features which are responsible for violating overlap

constraints, thereby making it a versatile way to post-process the outputs of global floorplanners

and placers. The effectiveness of this algorithm was quantified across a broad range of floorplans

produced by multiple tools, producing placements with less movement, on average, than leading

methods.

Finally, the concepts of both optimal and heuristic detailed placement were explored, with the

notion of directed moves being examined in a simulated annealing-based standard cell placer.

109

Chapter 6. Conclusion 110

While the optimal placement strategy produced satisfactory improvements in certain circum-

stances, it was ineffective at minimizing more complex objectives (such as those incorporating

congestion), and could not achieve meaningful improvement in designs with varying cell widths.

To address this issue, an annealer, augmented with directed moves, was introduced. The annealer

achieved better results than existing state-of-the-art methodologies, and was even capable of

improving upon already-optimized placements. Furthermore, this work showed that simulated

annealing is more effective at improving designs with similar cell widths due to the fact that more

moves remain legal (i.e., fewer moves are aborted). This observation lends credence to the notion

that annealing may be more effective at placing designs with more regular cell widths, such as

those found in FPGAs or structured ASICs.

6.2 Future Directions

While this thesis described practical methods for improving stochastic search techniques in VLSI

CAD, it also laid the foundation for further research.

The directed moves considered in this work only begin to scratch the surface of what may

be possible in annealing-based placement for FPGAs. While the Domino moves proved to be

ineffective on a run-time basis, an open question remains as to whether or not a faster, more

efficient implementation can be made which could optimize hundreds of cells at once, and if the

concept of timing could be incorporated into the formulation. In [4], a quadratic formulation was

employed as a type of directed move for minimizing wire length in the Parquet floorplanner;

while not as accurate as the median placement strategy described in this work, it may offer better

run-time scaling and may prove to be useful for both wire length and timing minimization. Power

is fast-becoming an important optimization metric for modern FPGA CAD as well, and it may be

possible to derive power-minimizing moves for annealing-based placement. Furthermore, it may

be worthwhile to incorporate the concept of DRC-correctness into the BLE-based directed moves

to minimize the number of moves which are rejected due to cluster infeasibility.

In terms of floorplan repair, there exists some room for future improvement. The modelling of

standard cells and whitespace as soft (resizable) macros within the minimum movement floorplan-

ner may allow it to legalize large cells without reintroducing as much overlap (i.e., by preventing it

from accidentally moving a large macro on top of many standard cells). Furthermore, it is felt that

there is room for improving upon the simplistic partitioning strategy that was described, perhaps

by incorporating look-ahead partitioning and a more intelligent cutline placement mechanism.

With the advances put forth in this work, simulated annealing-based detailed placement may

find a renewed interest in the academic community. To this end, wire length- and congestion-

minimizing directed moves could prove invaluable for improving design quality. Faster approaches

Chapter 6. Conclusion 111

for cell rippling (that is, maintaining cell legality while minimizing the displacement of the cells)

may also be useful; for example, a legalization strategy which ripples via flow-based methods may

be a worthwhile pursuit. An open question remaining in this thesis is that of how well an annealer

which maintains legality during an anneal compares to an annealer which permits overlaps (but

purges said overlaps via a penalty term in the objective function or through shifting). Perhaps a

hybrid approach—where overlaps are occasionally reintroduced and then re-legalized—could lead

to better quality or run-time scalability.

In summary, stochastic search techniques may well see a renaissance in the field of VLSI CAD;

the future of module placement will hinge on new discoveries that build upon the knowledge of

the past.

BIBLIOGRAPHY

[1] ACTEL CORPORATION. ProASIC3 Flash Family FPGAs datasheet v1.1. Actel, 2009.

[2] ADYA, S. N., CHATURVEDI, S., ROY, J. A., PAPA, D. A., AND MARKOV, I. L.

Unification of partitioning, placement and floorplanning. In Proceedings of ICCAD (2004),

pp. 550–557.

[3] ADYA, S. N., AND MARKOV, I. L. Consistent placement of macro-blocks using

floorplanning and standard-cell placement. In Proceedings of ISPD (2002), pp. 12–17.

[4] ADYA, S. N., AND MARKOV, I. L. Fixed-outline floorplanning: Enabling hierarchical

design. IEEE Transactions on VLSI Syst. 11, 6 (2003), 1120–1135.

[5] ADYA, S. N., AND MARKOV, I. L. Improving min-cut placement for VLSI using analytical

techniques. In Proceedings of IBM ACAS Conference (2003), IBM ARL, pp. 55–62.

[6] ADYA, S. N., AND MARKOV, I. L. ICCAD04 mixed-size placement benchmarks.

http://vlsicad.eecs.umich.edu/BK/ICCAD04bench, 2004. Current May 2009.

[7] AGNIHOTRI, A., YILDIZ, M. C., KHATKHATE, A., MATHUR, A., ONO, S., AND

MADDEN, P. H. Fractional cut: Improved recursive bisection placement. In Proceedings

of ICCAD (2003), pp. 307–310.

[8] AGNIHOTRI, A. R., ONO, S., AND MADDEN, P. H. Recursive bisection placement: Feng

shui 5.0 implementation details. In Proceedings of ISPD (2005), pp. 230–232.

[9] ALPERT, C. J., CHAN, T., HUANG, D. J., KAHNG, A. B., MARKOV, I. L., MULET,

P., AND YAN, K. Faster minimization of linear wirelength for global placement. In

Proceedings of ISPD (1997), pp. 4–11.

[10] ALPERT, C. J., AND KAHNG, A. B. Recent directions in netlist partitioning: a survey.

Integr. VLSI J. 19, 1-2 (1995), 1–81.

112

http://vlsicad.eecs.umich.edu/BK/ICCAD04bench

Bibliography 113

[11] ALPERT, C. J., NAM, G.-J., AND VILLARRUBIA, P. G. Free space management for cut-

based placement. In Proceedings of ICCAD (2002), ACM Press, pp. 746–751.

[12] ALTERA CORPORATION. Stratix II device handbook v4.3. Data Sheet, Altera Corporation,

January 2008.

[13] ALTERA CORPORATION. Quartus II handbook v9.0. Tech. rep., Altera Corporation, March

2009.

[14] BALDICK, R., KAHNG, A. B., KENNINGS, A., AND MARKOV, I. L. Function smoothing

with applications to VLSI layout. In Proceedings of ASPDAC (1999), pp. 225–228.

[15] BELL, B. A., AND FEINER, S. K. Dynamic space management for user interfaces. In

Proceedings of User interface software and technology (2000), pp. 239–248.

[16] BERAUDO, G. A path based algorithm for timing driven logic replication in FPGA. Master’s

thesis, University of Illinois at Chicago, 2002.

[17] BERAUDO, G., AND LILLIS, J. Timing optimization of FPGA placements by logic

replication. In Proceedings of DAC (2003), pp. 196–201.

[18] BERNARD, M., AND JACQUENET, F. Free space modeling for placing rectangles without

overlapping. J. of Universal Comp. Sci. 3, 6 (1997), 703–720.

[19] BETZ, V., AND ROSE, J. VPR: A new packing, placement and routing tool for FPGA

research. In Field-Programmable Logic and Applications (1997), W. Luk, P. Y. Cheung,

and M. Glesner, Eds., Springer-Verlag, Berlin, pp. 213–222.

[20] BRENNER, U., AND VYGEN, J. Legalizing a placement with minimum total movement.

IEEE Transactions on Computer-Aided Design 23 (2004), 1597–1613.

[21] CALDWELL, A. E., KAHNG, A. B., KENNINGS, A. A., AND MARKOV, I. L. Hypergraph

partitioning for VLSI CAD: methodology for heuristic development, experimentation and

reporting. In Proceedings of DAC (1999), pp. 349–354.

[22] CALDWELL, A. E., KAHNG, A. B., AND MARKOV, I. L. Design and implementation of

the Fiduccia-Mattheyses heuristic for VLSI netlist partitioning. In Proceedings of Workshop

on Algorithm Engineering and Experimentation (1999), pp. 177–193.

[23] CALDWELL, A. E., KAHNG, A. B., AND MARKOV, I. L. Optimal partitioners and end-

case placers for standard-cell layout. In Proceedings of ISPD (1999), pp. 90–96.

Bibliography 114

[24] CALDWELL, A. E., KAHNG, A. B., AND MARKOV, I. L. Can recursive bisection alone

produce routable placements? In Proceedings of DAC (2000), pp. 477–482.

[25] CHAN, P. K., AND SCHLAG, M. D. F. Parallel placement for field-programmable gate

arrays. In Proceedings of FPGA (2003), pp. 43–50.

[26] CHAN, T., CONG, J., AND SZE, K. Multilevel generalized force-directed method for circuit

placement. In Proceedings of ISPD (2005), pp. 185–192.

[27] CHAN, T. F., CONG, J., SHINNERL, J. R., SZE, K. S., AND XIE, M. mPL6: Enhanced

multilevel mixed-size placement. In Proceedings of ISPD (2006), pp. 212–214.

[28] CHANG, C.-C., CONG, J., ROMESIS, M., AND XIE, M. Optimality and scalability study

of existing placement algorithms. Transactions on DISC 23, 4 (April 2004), 537–549.

[29] CHAUDHARY, K., AND NAG, S. K. Method for analytical placement of cells using density

surface representations. United States Patent 6,415,425, July 2002.

[30] CHEN, D. T., VORWERK, K., AND KENNINGS, A. Improving timing-driven FPGA

packing with physical information. In Proceedings of FPL (2007), pp. 117–123. Nominated

for Best Paper Award.

[31] CHEN, G., AND CONG, J. Simultaneous timing driven clustering and placement for FPGAs.

In Proceedings of FPL (2004), pp. 158–167.

[32] CHEN, G., AND CONG, J. Simultaneous timing-driven placement and duplication. In

Proceedings of FPGA (2005), pp. 51–59.

[33] CHEN, T.-C., JIANG, Z.-W., HSU, T.-C., CHEN, H.-C., AND CHANG, Y.-W. NTU-

place3: An analytical placer for large-scale mixed-size designs with preplaced blocks and

density constraints. IEEE Transactions on Computer-Aided Design 27, 7 (July 2008),

1228–1240.

[34] CHEN, T.-C. C., HSU, T.-C., JIANG, Z.-W., AND CHANG, Y.-W. NTUplace: a ratio

partitioning based placement algorithm for large-scale mixed-size designs. In Proceedings

of ISPD (2005), pp. 236–238.

[35] CHENG, C.-K., AND KUH, E. Module placement based on resistive network optimization.

IEEE Transactions on Computer-Aided Design 3, 3 (July 1984), 218–225.

[36] CHERKASSKY, B. V., AND GOLDBERG, A. V. On implementing the push-relabel method

for the maximum flow problem. Algorithmica 19, 4 (1997), 390–410.

Bibliography 115

[37] COIN-OR FOUNDATION. Computational infrastructure for operations research.

http://www.coin-or.org, 2006.

[38] CONG, J., KONG, T., SHINNERL, J. R., XIE, M., AND YUAN, X. Large-scale circuit

placement: Gap and promise. In Proceedings of ICCAD (2003), pp. 883–890.

[39] CONG, J., AND ROMESIS, M. Performance-driven multi-level clustering with application

to hierarchical FPGA mapping. In Proceedings of DAC (2001), pp. 389–394.

[40] CONG, J., AND XIE, M. A robust detailed placement for mixed-size IC designs. In

Proceedings of ASPDAC (2006), pp. 188–194.

[41] CORP., A. HardCopy Series Handbook, Volume 1: Section 1: HardCopy II Device Family

Data Sheet. Altera, 2005.

[42] DE MICHELI, G. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher

Education, 1994.

[43] DEHKORDI, M., AND BROWN, S. Performance-driven recursive multi-level clustering. In

Proceedings of FPL (2003), pp. 262–269.

[44] DOLL, K., JOHANNES, F. M., AND ANTREICH, K. J. Iterative placement improvement

by network flow methods. IEEE Transactions on Computer-Aided Design 13, 10 (October

1994), 1189–1200.

[45] DUNLOP, A. E., AND KERNIGHAN, B. W. A placement procedure for standard-cell VLSI

circuits. IEEE Transactions on Computer-Aided Design 4, 1 (January 1985), 92–98.

[46] EISENMANN, H., AND JOHANNES, F. M. Generic global placement and floorplanning. In

Proceedings of DAC (1998), ACM Press, pp. 269–274.

[47] ETAWIL, H., AREIBI, S., AND VANNELLI, A. Attractor-repeller approach for global

placement. In Proceedings of ICCAD (1999), pp. 20–24.

[48] ETAWIL, H. A. Y. Convex Optimization and Utility Theory: New Trends in VLSI Circuit

Layout. Ph. D. thesis, University of Waterloo, 1999.

[49] FIDUCCIA, C. M., AND MATTHEYSES, R. M. A linear-time heuristic for improving

network partitions. In Proceedings of DAC (1982), pp. 175–181.

[50] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco, 1979.

http://www.coin-or.org

Bibliography 116

[51] GOLDBERG, A. V., AND TARJAN, R. E. A new approach to the maximum-flow problem.

Journal of the ACM 35, 4 (1988), 921–940.

[52] GOTO, S. An efficient algorithm for the two-dimensional placement problem in electrical

circuit layout. IEEE Transactions on Computer Aided Systems CAS-28, 1 (1981), 12–18.

[53] HAHN, P. M., HIGHTOWER, W. L., JOHNSON, T. A., GUIGNARD-SPIELBERG, M., AND

ROUCAIROL, C. Tree elaboration strategies in branch and bound algorithms for solving

the quadratic assignment problem. Yugoslav Journal of Operations Research 11, 1 (2001),

41–60.

[54] HALL, K. M. An r-dimensional quadratic placement algorithm. Management Science 17

(November 1970), 219–229.

[55] HENTSCHKE, R. F., AND AUGUSTO DA LUZ REIS, R. Improving simulated annealing

placement by applying random and greedy mixed perturbations. In Proceedings of

Integrated Circuits and Systems Design (Washington, 2003), IEEE, pp. 267–272.

[56] HILL, D. Method and system for high speed detailed placement of cells within an integrated

circuit design. United States Patent 6,370,673, April 2002.

[57] HRKIC, M., LILLIS, J., AND BERAUDO, G. An approach to placement-coupled logic

replication. In Proceedings of DAC (2004), pp. 711–716.

[58] HU, B., AND MAREK-SADOWSKA, M. Congestion minimization during placement

without estimation. In Proceedings of ICCAD (2002), pp. 739–745.

[59] HU, B., AND MAREK-SADOWSKA, M. Multilevel expansion-based VLSI placement with

blockages. In Proceedings of ICCAD (November 2004), pp. 558–564.

[60] HU, B., ZENG, Y., AND MAREK-SADOWSKA, M. mFAR: Fixed-points-addition-based

VLSI placement algorithm. In Proceedings of ISPD (April 2005), pp. 239–241.

[61] HUR, S.-W., AND LILLIS, J. Mongrel: Hybrid techniques for standard cell placement. In

Proceedings of ICCAD (2000), IEEE Press, pp. 165–170.

[62] HUSTIN, S., AND SANGIOVANNI-VINCENTELLI, A. TIM, a new standard cell placement

program based on the simulated annealing algorithm. In IEEE Physical Design Workshop

(1987).

[63] KAHNG, A. B., AND REDA, S. Placement feedback: A concept and method for better

min-cut placements. In Proceedings of DAC (2004), pp. 357–362.

Bibliography 117

[64] KAHNG, A. B., REDA, S., AND WANG, Q. Aplace: A general analytic placement

framework. In Proceedings of ISPD (2005), pp. 233–235.

[65] KAHNG, A. B., AND WANG, Q. An analytic placer for mixed-size placement and timing-

driven placement. In Proceedings of ICCAD (November 2004), pp. 565–572.

[66] KAHNG, A. B., AND WANG, Q. Implementation and extensibility of an analytic placer. In

Proceedings of ISPD (2004), pp. 18–25.

[67] KARYPIS, G. Multilevel Optimization and VLSICAD. Kluwer Academic Publishers,

Boston, 2002, ch. 3.

[68] KARYPIS, G., AGGARWAL, R., KUMAR, V., AND SHEKHAR, S. Multilevel hypergraph

partitioning: Applications in VLSI domain. IEEE Transactions on VLSI Syst. 7, 1 (March

1999), 69–79.

[69] KENNINGS, A., AND MARKOV, I. L. Analytical placement of hypergraphs. Tech. Rep.

990020, UCSD VLSI CAD Laboratory, January 1999.

[70] KENNINGS, A., AND MARKOV, I. L. Analytical minimization of half-perimeter

wirelength. In Proceedings of ASPDAC (2000), pp. 179–184.

[71] KENNINGS, A., AND VORWERK, K. Force-directed and other continuous placement

methods. In Handbook of Algorithms for Physical Design Automation, D. Mehta, C. Alpert,

and S. Sapatnekar, Eds. CRC Press, 2007.

[72] KERNIGHAN, B. W., AND LIN, S. An efficient heuristic procedure for partitioning graphs.

Bell Sys. Tech. Journal 49, 2 (1970), 291–308.

[73] KHATKHATE, A., LI, C., AGNIHOTRI, A. R., YILDIZ, M. C., ONO, S., KOH, C.-K.,

AND MADDEN, P. H. Recursive bisection based mixed block placement. In Proceedings of

ISPD (2004), pp. 84–89.

[74] KIM, J.-G., AND KIM, Y.-D. A linear programming-based algorithm for floorplanning in

VLSI design. IEEE Transactions on Computer-Aided Design 2, 5 (2003), 584–592.

[75] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Optimization by simulated

annealing. Science (May 1983), 671–680.

[76] KLEINHANS, J. M., SIGL, G., JOHANNES, F. M., AND ANTREICH, K. J. GORDIAN:

VLSI placement by quadratic programming and slicing optimization. IEEE Transactions on

Computer-Aided Design 10, 3 (March 1991), 356–365.

Bibliography 118

[77] KONG, T. A novel net weighting algorithm for timing-driven placement. In Proceedings of

ICCAD (2002), pp. 172–176.

[78] LEIGHTON, F. T. Complexity issues in VLSI: Optimal layouts for the shuffle-exchange

graph and other networks. MIT Press, 1983.

[79] LI, J., LILLIS, J., LIU, L.-T., AND CHENG, C.-K. New spectral linear placement and

clustering approach. In Proceedings of DAC (1996), pp. 88–93.

[80] LIN, J.-M., AND CHANG, Y.-W. TCG-S: orthogonal coupling of P*-admissible

representations for general floorplans. In Proceedings of DAC (2002), pp. 842–847.

[81] LUDWIN, A., BETZ, V., AND PADALIA, K. High-quality, deterministic parallel placement

for FPGAs on commodity hardware. In Proceedings of FPGA (2008), pp. 14–23.

[82] M. WANG, X. Y., AND SARRAFZADEH, M. Dragon2000: Standard-cell placement tool

for large industry circuits. In Proceedings of ICCAD (November 2000), pp. 260–263.

[83] MAIDEE, P., ABABEI, C., AND BAZARGAN, K. Fast timing-driven partitioning-based

placement for island style FPGAs. In Proceedings of DAC (2003), ACM Press, pp. 598–603.

[84] MCMURCHIE, L., AND EBELING, C. Pathfinder: A negotiation-based performance-driven

router for FPGAs. In Proceedings of FPGA (1995), pp. 111–117.

[85] MITRA, D., ROMEO, F., AND SANGIOVANNI-VINCENTELLI, A. Convergence and finite-

time behavior of simulated annealing. In Proceedings of of the Conference on Decision and

Control (1985), pp. 761–767.

[86] MOFFITT, M. D., NG, A. N., MARKOV, I. L., AND POLLACK, M. E. Constraint-driven

floorplan repair. In Proceedings of DAC (July 2006), pp. 1103–1108.

[87] MOGAKI, M., MIURA, C., AND TERAI, H. Algorithm for block placement with size

optimization technique by the linear programming approach. In Proceedings of ICCAD

(1987), pp. 80–83.

[88] MULPURI, C., AND HAUCK, S. Runtime and quality tradeoffs in FPGA placement and

routing. In Proceedings of FPGA (2001), pp. 29–36.

[89] MURATA, H., FUJIYOSHI, K., NAKATAKE, S., AND KAJITANI, Y. Rectangle-packing-

based module placement. In Proceedings of ICCAD (1995), pp. 472–479.

[90] NAG, S., AND CHAUDHARY, K. Post-placement residual-overlap removal with minimal

movement. In Proceedings of DATE (1999), pp. 581–586.

Bibliography 119

[91] NAM, G.-J. ISPD 2006 placement contest: Benchmark suite and results. In Proceedings of

ISPD (2006), pp. 167–167.

[92] NAM, G.-J., ALPERT, C. J., VILLARRUBIA, P., WINTER, B., AND YILDIZ, M. The

ISPD2005 placement contest and benchmark suite. In Proceedings of ISPD (2005), pp. 216–

220.

[93] NAYLOR, W., DONELLY, R., AND SHA, L. Non-linear optimization system and method for

wire length and density within an automatic electronic circuit placer. United States Patent

6,662,348, July 2001.

[94] NG, A. N., MARKOV, I. L., AGGARWAL, R., AND RAMACHANDRAN, V. Solving hard

instances of floorplacement. In Proceedings of ISPD (2006), pp. 170–177.

[95] PAN, M., VISWANATHAN, N., AND CHU, C. An efficient and effective detailed placement

algorithm. In Proceedings of ICCAD (2005), pp. 48–55.

[96] PERRY, D. VHDL. McGraw-Hill, 1998.

[97] RAMACHANDARAN, P., AGNIHOTRI, A. R., ONO, S., DAMODARAN, P., SRIHARI, K.,

AND MADDEN, P. H. Optimal placement by branch-and-price. In Proceedings of ASPDAC

(2005), pp. 337–341.

[98] ROY, J. A., PAPA, D. A., ADYA, S. N., CHAN, H. H., NG, A. N., LU, J. F., AND

MARKOV, I. L. Capo: Robust and scalable open-source min-cut floorplacer. In Proceedings

of ISPD (2005), pp. 224–226.

[99] ROY, J. A., PAPA, D. A., AND MARKOV, I. L. Fine control of local whitespace in

placement. In VLSI Design (2008), vol. 2008. 10 pages.

[100] ROY, J. A., PAPA, D. A., NG, A. N., AND MARKOV, I. L. Satisfying whitespace

requirements in top-down placement. In Proceedings of ISPD (2006), pp. 206–208.

[101] SECHEN, C., AND SANGIOVANNI-VINCENTELLI, A. The TimberWolf placement and

routing package. IEEE Journal of Solid-State Circuits (April 1985), 510–522.

[102] SEGURA, E. C. Evolutionary computation with simulated annealing: Conditions for

optimal equilibrium distribution. Journal of Computer Science and Technology 5, 4 (2005),

178–182.

[103] SHAHOOKAR, K., AND MAZUMDER, P. VLSI cell placement techniques. ACM Comput.

Surv. 23, 2 (1991), 143–220.

Bibliography 120

[104] SIGL, G., DOLL, K., AND JOHANNES, F. M. Analytical placement: A linear or a quadratic

objective function? In Proceedings of DAC (1991), pp. 427–432.

[105] SINGH, A., AND MAREK-SADOWSKA, M. Efficient circuit clustering for area and power

reduction in fpgas. In Proceedings of FPGA (2002), pp. 59–66.

[106] SINGH, S. P., AND SHARMA, R. R. K. A review of different approaches to the facility

layout problems. Int. J. Adv. Manuf. Technol. 30 (2006), 425–433.

[107] SMITH, M. J. S. Application-specific integrated circuits. Addison-Wesley Longman

Publishing Co., Inc., 1997.

[108] SPINDLER, P., AND JOHANNES, F. M. Kraftwerk: A Fast and Robust Quadratic Placer

Using an Exact Linear Net Model. Springer-Verlag, New York, 2007, pp. 59–93.

[109] SUARIS, P. R., AND KEDEM, G. Standard cell placement by quadrisection. In Proceedings

of ICCAD (1987), pp. 612–615.

[110] SUN, W.-J., AND SECHEN, C. Efficient and effective placement for very large circuits.

IEEE Transactions on Computer-Aided Design 14, 3 (March 1995), 349–359.

[111] SUTANTHAVIBUL, S., SHRAGOWITZ, E., AND ROSEN, J. B. An analytical approach to

floorplan design and optimization. IEEE Transactions on Computer-Aided Design 10, 6

(1991), 761–769.

[112] SWARTZ, W., AND SECHEN, C. New algorithms for the placement and routing of macro

cells. In Proceedings of ICCAD (1990), pp. 336–339.

[113] SWARTZ, W., AND SECHEN, C. Timing driven placement for large standard cell circuits.

In Proceedings of DAC (1995), pp. 211–215.

[114] SZE, C., WANG, T.-C., AND WANG, L.-C. Multilevel circuit clustering for delay

minimization. In IEEE Transactions on Computer-Aided Design (2004), pp. 1073–1085.

[115] TAKAMURA, A., AND FUKASAKU, I. TITAC-2: An asynchronous 32-bit microprocessor

based on scalable-delay-insensitive model. In Proceedings of ICCD (1997), p. 288.

[116] TESSIER, R. Fast placement approaches for FPGAs. IEEE Transactions on Design

Automation of Electronic Systems 7, 2 (2002), 284–305.

[117] TSAY, R.-S., KUH, E., AND HSU, C.-P. PROUD: A sea-of-gates placement algorithm.

IEEE Design and Test of Computers 5, 6 (December 1988), 44–56.

Bibliography 121

[118] ULLMAN, J. Computational Aspects of VLSI. Computer Science Press, 1984.

[119] VICENTE, J. D., LANCHARES, J., AND HERMIDA, R. Annealing placement by

thermodynamic combinatorial optimization. IEEE Transactions on Design Automation of

Electronic Systems 9, 3 (2004), 310–332.

[120] VISWANATHAN, N., AND CHU, C. C.-N. Fastplace: Efficient analytical placement using

cell shifting, iterative local refinement and a hybrid net model. In Proceedings of ISPD

(2004), pp. 26–33.

[121] VORWERK, K. On the engineering of a stable force-directed placer. Master’s thesis,

University of Waterloo, 2004.

[122] VORWERK, K., ANJOS, M. F., AND KENNINGS, A. VLSI floorplan repair using dynamic

whitespace management, constraint graphs and linear programming. Journal of Engineering

Optimization 40, 6 (2008), 559–577.

[123] VORWERK, K., AND KENNINGS, A. Mixed-size placement via line search. In Proceedings

of ICCAD (2005), pp. 899–904.

[124] VORWERK, K., AND KENNINGS, A. Robust minimum movement legalization with

partitioning, constraint graphs and intelligent white space management. Tech. Rep.

UW-ECE-2006-08, University of Waterloo, 2006.

[125] VORWERK, K., KENNINGS, A., CHEN, D. T., AND BEHJAT, L. Floorplan repair using

dynamic whitespace management. In Proceedings of GLSVLSI (2007), pp. 552–557.

[126] VORWERK, K., KENNINGS, A., GREENE, J., AND CHEN, D. T. Improving annealing

via directed moves. In Proceedings of FPL (2007), pp. 363–370. Recipient of Best Paper

Award.

[127] VORWERK, K., KENNINGS, A., AND GREENE, J. W. Improving simulated annealing-

based FPGA placement with directed moves. IEEE Transactions on Computer-Aided

Design 28, 2 (2009), 179–192.

[128] VORWERK, K., KENNINGS, A., AND VANNELLI, A. Engineering details of a stable

analytic placer. In Proceedings of ICCAD (November 2004), pp. 573–580.

[129] VYGEN, J. Algorithms for large-scale flat placement. In Proceedings of DAC (1997),

pp. 746–751.

[130] VYGEN, J. Four-way partitioning of two-dimensional sets. Unpublished Manuscript, 2000.

Bibliography 122

[131] WANG, M., AND SARRAFZADEH, M. On the behavior of congestion minimization during

placement. In Proceedings of ISPD (1999), pp. 145–150.

[132] WOOLF, M. B. Faster Construction Projects with CPM Scheduling. McGraw Hill, 2007.

[133] WU, K.-C., AND TSAI, Y.-W. Structured ASIC, evolution or revolution? In Proceedings

of ISPD (2004), pp. 103–106.

[134] YANG, S. Logic synthesis and optimization benchmarks, version 3.0. Tech. rep.,

Microelectronics Center of North Carolina, 1991.

[135] YANG, X., KASTNER, R., AND SARRAFZADEH, M. Congestion estimation during top-

down placement. In Proceedings of ISPD (2001), pp. 164–169.

[136] YAO, B., CHEN, H., CHENG, C.-K., CHOU, N.-C., LIU, L.-T., AND SUARIS, P. Unified

quadratic programming approach for mixed mode placement. In Proceedings of ISPD

(2005), pp. 193–199.

[137] ZAHIRI, B. Structured ASICs: opportunities and challenges. In Proceedings of ICCD

(2003), pp. 404–409.

[138] ZHUO, Y., LI, H., ZHOU, Q., CAI, Y., AND HONG, X. New timing and routability driven

placement algorithms for FPGA synthesis. In Proceedings of GLSVLSI (2007), pp. 570–575.

Glossary

Nomenclature

In this work, the terms module, cell, and node are used to describe a standard or macrocell.

Macrocell and macro block are also used interchangeably. Similarly, net, wire, and interconnect

are used synonymously. The term pad is used to refer to the terminals of the chip. Moreover,

placement and solution (to the placement problem) are used synonymously to represent an

assignment of modules to physical locations on the chip [5]. The term placer refers to a tool

which implements a heuristic to place cells. Costing is used to represent the act of computing the

delta costs for a move in the simulated annealing strategies described herein.

Terms

Aborted Move Any move, in the standard cell annealer, which could not be costed.

Generally occurs when the move legalizers are unable to retain legality, and

the move must be rejected.

ASIC Application Specific Integrated Circuit.

BLE Basic Logic Element. A logic element in an FPGA which typically consists

of a FF and LUT.

Bookshelf An Internet-based repository for literature, benchmarks, and files related to

VLSI CAD. Available at: http://www.gigascale.org/bookshelf.

Capo A recursive, minimum-cut bi-partitioning placement tool, available at:

http://vlsicad.eecs.umich.edu/BK/PDtools.

CAD Computer Aided Design.

123

http://www.gigascale.org/bookshelf
http://vlsicad.eecs.umich.edu/BK/PDtools

Glossary 124

CLB Combinational Logic Element. A logic element in an FPGA which typically

consists of several BLEs.

CPU Central Processing Unit. Software run-times, in this thesis, are generally

reported in terms of the number of minutes spent executing on a CPU.

Dragon A partitioning- and simulated annealing-based placement tool, available at:

http://er.cs.ucla.edu/Dragon.

FF Flip-flop.

FPGA Field Programmable Gate Array. An integrated circuit where the logic and

wiring of the device can be reprogrammed after its manufacture. An FPGA

consists of an array of logic elements (which may include gates and look-up

tables), connected by programmable interconnect wiring.

HPWL Half Perimeter Wire Length. An approximation to the actual wire length

required to route a design. HPWL is calculated based on the lengths of the

horizontal and vertical spans of all nets.

IC Integrated Circuit.

I/O Input/Output.

Kraftwerk A commercial force-directed placer based on [1].

LUT Look-up Table. A logic element in an FPGA which can implement any

k−input function.

Macrocell A cell whose dimensions are neither defined nor constrained by the standard

cell library.

Mixed-Size

Design

A circuit which includes a mix of both standard cells and macrocells.

NP Non-deterministic Polynomial. A set of computational decision problems

which are solvable by a non-deterministic Turing Machine in a number of

steps that is a polynomial function of the size of the input. An exponential

amount of time may be required to discover the solution, but a potential

solution must be verifiable in polynomial time.

QAP Quadratic Assignment Problem. Described in [3, 4].

QOR Quality of Result. A term typically used in reference to the value of the cost

function employed during placement.

RAM Random Access Memory.

http://er.cs.ucla.edu/Dragon

Glossary 125

Standard Cell A cell whose dimensions are specified in a standard library.

Stochastic

Process

A stochastic process is a collection of interdependent random variables

which arise when a system’s subsequent state is determined both by the

process’s predictable actions and by a random element [2].

VLSI Very Large Scale Integration.

VPR Versatile Place and Route. A placement and routing tool for FPGA research,

available at: http://www.eecg.toronto.edu/∼vaughn/vpr/vpr.html.

WL Wire Length.

Bibliography

[1] EISENMANN, H., AND JOHANNES, F. M. Generic global placement and floorplanning. In

Proceedings of DAC (1998), ACM Press, pp. 269–274.

[2] GRAY, R., AND SHIELDS, P. Probability, random processes, and ergodic properties. Springer-

Verlag Berlin, 1988.

[3] HAHN, P. M., HIGHTOWER, W. L., JOHNSON, T. A., GUIGNARD-SPIELBERG, M., AND

ROUCAIROL, C. Tree elaboration strategies in branch and bound algorithms for solving the

quadratic assignment problem. Yugoslav Journal of Operations Research 11, 1 (2001), 41–60.

[4] HALL, K. M. An r-dimensional quadratic placement algorithm. Management Science 17

(November 1970), 219–229.

[5] SHAHOOKAR, K., AND MAZUMDER, P. VLSI cell placement techniques. ACM Comput.

Surv. 23, 2 (1991), 143–220.

http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html

APPENDIX A

Related Papers

The following works were published as a result of the work described in, related to, or written in

conjunction with this thesis.

[1] VORWERK, K., ANJOS, M. F., AND KENNINGS, A. VLSI floorplan repair using dynamic

whitespace management, constraint graphs and linear programming. Journal of Engineering

Optimization 40, 6 (2008), 559–577.

[2] VORWERK, K., AND KENNINGS, A. Robust minimum movement legalization with partition-

ing, constraint graphs and intelligent white space management. Tech. Rep. UW-ECE-2006-08,

University of Waterloo, 2006.

[3] VORWERK, K., KENNINGS, A., CHEN, D. T., AND BEHJAT, L. Floorplan repair using

dynamic whitespace management. In Proceedings of GLSVLSI (2007), pp. 552–557.

[4] VORWERK, K., KENNINGS, A., GREENE, J., AND CHEN, D. T. Improving annealing via

directed moves. In Proceedings of FPL (2007), pp. 363–370. Recipient of Best Paper Award.

[5] VORWERK, K., KENNINGS, A., AND GREENE, J. W. Improving simulated annealing-based

FPGA placement with directed moves. IEEE Transactions on Computer-Aided Design 28, 2

(2009), 179–192.

126

APPENDIX B

On the Statistical Variability of Stochastic

Placement Techniques

Randomness is a key attribute which works both for and against stochastic optimization methods.

By changing the value of the initial random seed, a simulated annealing-based placer can produce

widely-varying results.

To ascertain just how variable an annealing-based placement strategy can be, the well-known

placer, VPR [2], was tested using multiple initial random seeds. Specifically, each design in the

MCNC [4] suite was placed and routed 50 times using different starting seed values, and the

post-routed wire lengths and critical path delays were measured. An architecture comprising

1 BLE/CLB with low-stress routing was employed for these tests.

The results for routed wire length and critical path delays are presented in Tables B.1 and B.2.

These tables present the ratios of the minimum-to-average value, maximum-to-average value,

maximum-to-minimum, and the result from an Anderson-Darling test for normality [1] which

indicates the confidence level that the data are normal.

In terms of the wire length results, approximately 7 of the 20 designs could be considered

normal, 4 of the designs are strongly not-normal, and the remainder are indeterminate. The range

of results (as measured by the ratio of the maximum to the minimum wire lengths for each design)

is reasonably small, with most designs offering less than 10% swing depending on the random

seed. In most cases, the averages are reasonably well-centred with respect to the spread of the

results.

The critical path delay values, however, are quite different. The Anderson-Darling normality

test suggests that only 1 of the 20 designs is strongly normal, 12 are not-normal, and the remainder

127

Appendix B. On the Statistical Variability of Stochastic Placement Techniques 128

Table B.1: Summary of post-routed wire length variability in VPR.

Design Min/Avg Max/Avg Max/Min Normality

Confidence

alu4 0.96 1.04 1.08 48.18%

apex2 0.94 1.03 1.1 5.32%

apex4 0.97 1.03 1.07 68.00%

bigkey 0.94 1.1 1.17 13.89%

clma 0.96 1.06 1.1 87.03%

des 0.95 1.07 1.13 82.19%

diffeq 0.97 1.04 1.08 33.95%

dsip 0.93 1.1 1.19 18.63%

elliptic 0.95 1.04 1.09 97.49%

ex1010 0.98 1.02 1.04 31.31%

ex5p 0.97 1.04 1.07 77.32%

frisc 0.97 1.03 1.06 32.85%

misex3 0.95 1.04 1.09 89.81%

pdc 0.97 1.03 1.06 31.72%

s298 0.97 1.03 1.07 63.94%

s38417 0.98 1.03 1.06 2.94%

s38584.1 0.98 1.02 1.05 45.57%

seq 0.97 1.04 1.07 82.19%

spla 0.98 1.02 1.04 83.53%

tseng 0.96 1.03 1.07 52.65%

are indeterminate. The kurtosis for these data was measured, and it suggests that the variance is

due to infrequent extreme deviations, as opposed to frequent modestly-sized deviations. In other

words, critical path delays can often be affected by very large outliers.

Furthermore, the skewness of these data was computed, and it suggests that most designs follow

a positively-skewed pattern. (In other words, the shape of the data looks somewhat like a normal

curve whose “bell” has been shifted to the left.) This tends to agree with the observation that

the minimum-to-average ratio is smaller than the maximum-to-average ratio—in other words, the

average of the critical path delays tends to be closer to the minimums than to the maximums. It

is worth noting that the ratio of maximum-to-minimum critical path delay is quite large—often on

the order of ≈ 1.3, and as high as 1.91.

One interesting question which arises from these statistics is: how have results been computed,

Appendix B. On the Statistical Variability of Stochastic Placement Techniques 129

Table B.2: Summary of post-routed critical path variability in VPR.

Design Min/Avg Max/Avg Max/Min Normality

Confidence

alu4 0.89 1.14 1.28 17.06%

apex2 0.95 1.1 1.16 5.79%

apex4 0.93 1.2 1.28 0.09%

bigkey 0.83 1.59 1.91 0.30%

clma 0.77 1.15 1.49 9.39%

des 0.88 1.17 1.33 40.31%

diffeq 0.87 1.14 1.3 50.35%

dsip 0.89 1.22 1.37 1.62%

elliptic 0.88 1.15 1.3 3.35%

ex1010 0.9 1.09 1.2 84.90%

ex5p 0.91 1.16 1.27 0.00%

frisc 0.81 1.12 1.37 0.01%

misex3 0.89 1.17 1.31 4.06%

pdc 0.85 1.15 1.35 18.30%

s298 0.95 1.06 1.11 30.73%

s38417 0.89 1.18 1.32 41.77%

s38584.1 0.87 1.16 1.33 9.80%

seq 0.9 1.2 1.33 0.30%

spla 0.93 1.18 1.27 0.00%

tseng 0.95 1.06 1.13 29.17%

historically, in the academic literature? This question is difficult to answer, as there are no

known papers (to the author’s knowledge) which have examined the question of reliable, statistical

reporting of results for VLSI CAD. It would not be unsurprising to discover that, in their quest for

improvement, many authors have run multiple seeds, only to pick the most favourable results for

their papers.

At the same time, deriving a rigorous, statistical methodology for comparing results in the CAD

literature is difficult and potentially error-prone. While an analysis of variance could no doubt

strengthen one’s confidence in comparing two data sets, there are several practical considerations

to make: improperly used, such statistics can easily lead one to draw incorrect conclusions, and

the time required to establish such a level of rigour may be impractical. How, then, can one be

reasonably assured that results presented in a paper are reasonable?

Appendix B. On the Statistical Variability of Stochastic Placement Techniques 130

The approach taken in this thesis is to minimize the statistical variability of the results by

employing multiple random seeds for each design-under-test and averaging the results across the

seeds. (That is to say, if a circuit were to be placed for a specific architecture under specific

conditions, rather than placing it once, it would be placed several times, and the reported result

would be the average of all seeds.) In this way, the chance of coming across a serious outlier is

minimized.

Establishing how many seeds are necessary is a matter of trading-off confidence in the results

with the practical consideration of run-time. In the case of wire length-driven optimization, the

empirical observations presented here suggest that fewer seeds may be necessary (since there is

less variance in the results), whereas timing-driven optimizations may require more samples to

minimize variability.

To derive an approximate number of the minimum number of seeds required to achieve

sufficiently high confidence in the results, a statistical power computation was performed using

G*Power [3]. The wire length and timing results from VPR were input into the tool and a maximum

false negative rate of β = 0.20 was employed. (The false negative rate is the probability of making

a Type II statistical error—or, stated differently, the error of failing to observe a difference when,

in fact, there is one.) G*Power estimated that, on average, 3 to 5 seeds were required per design to

achieve the desired statistical confidence.

Thus, unless noted otherwise, the placement tools implemented in this thesis were run with a

minimum of 3 seeds when used in wire length-driven mode, and a minimum of 5 seeds when used

in timing-driven mode. It is hoped that by averaging the results rather than taking the extreme

outliers, more meaningful comparisons can be drawn.

Bibliography

[1] ANDERSON, T. W., AND DARLING, D. A. Asymptotic theory of certain “goodness-of-fit”

criteria based on stochastic processes. Annals of Mathematical Statistics 23 (1952), 193–212.

[2] BETZ, V., AND ROSE, J. VPR: A new packing, placement and routing tool for FPGA research.

In Field-Programmable Logic and Applications (1997), W. Luk, P. Y. Cheung, and M. Glesner,

Eds., Springer-Verlag, Berlin, pp. 213–222.

[3] ERDFELDER, E., FAUL, F., AND BUCHNER, A. GPOWER: A general power analysis

program. Behavior Research Methods, Instruments, and Computers 28 (1996), 1–11.

[4] YANG, S. Logic synthesis and optimization benchmarks, version 3.0. Tech. rep.,

Microelectronics Center of North Carolina, 1991.

APPENDIX C

Implementation Details and Data Structures

This chapter discusses some of the key data structures used to represent the architectures and

netlists in the annealers described in this thesis. The FPGA tools and standard cell tools each

possess very different requirements, not just in terms of device modelling, but also in terms of the

size of designs that must be processed.

FPGA Tools

The flow for the placement tool described in Chapter 3 is similar, but not identical, to VPR [3].

Several salient differences exist between the two.

Rather than employing a separate clustering and placement tool, KPF incorporates both

clustering and placement in one. It should be noted that, for the clustering results examined in

Chapter 3, all clusterings were produced by T-VPack [3], even though KPF includes the HDPack [5]

clustering tool.

Modelling FPGA Devices

The circuit and device data structures are also quite different from VPR. The device data for KPF

are specified in Python [1], and are read-in by a Python interpreter embedded inside KPF. During

compile time, the program Swig [2] automatically creates a C++-to-Python API which allows a

user-defined set of C++ functions to be called from within Python, so that the embedded interpreter

can call back into C++ routines. This allows the Python interpreter to manipulate C++ data

structures.

The architecture specification for KPF is very flexible, and allows the user to specify archi-

131

Appendix C. Implementation Details and Data Structures 132

tectural dimensions, locations of all BLEs, CLBs, and RAMs, hierarchical relationships between

the LUTs, FFs, BLEs, and CLBs, heterogeneous layouts, as well as a flexible set of clustering

constraints. Clustering constraints can be specified in terms of limits on the number of control

signals, limits on the number of data signals fed back within a CLB, limits on outputs, limits on

arbitrary combinations of signals (e.g., a user can specify that the number of clock and enable

signals be less than or equal to 3, but the total number of signals be less than 32), and limits on the

number of logic modules within both BLEs and CLBs. Most of these features were not described

in this thesis, as comparisons were made primarily to VPR-style architectures, although they were

built into KPF in anticipation of future extensibility.

For this thesis, a separate executable was created to automatically generate the Python

architecture files for each design in the MCNC [7] suite; the reason for this was primarily to

facilitate comparison with VPR’s ability to “auto-size” the devices for each design. For realistic

FPGA device modelling, where only one or two die sizes may be tested, it is more likely that a

user would simply hand-code the architecture file, or perhaps write a program to convert the IC

layout automatically to the desired format.

In KPF, the FPGA “grid” is modelled in a hierarchical fashion. A “layer” holds a matrix of

“sites”. Perhaps unique to this tool is the fact that the physical locations of sites do not have to align

with their position in the matrix, though, in practice, this is a good idea as it makes it much faster to

convert between physical coordinates and indices in the placement grid. (This is especially useful

when using median improvement moves [6], as one must be able to quickly convert the physical

locations into grid coordinates.)

In KPF, there are multiple layers for each type of cell, such as a FF, LUT, BLE, and so forth.

This is just one way to model a FPGA architecture; an alternative technique would have been to

simply place all cells within one (large) placement grid. Both approaches are viable, but trade-off

the complexity of iterating over available grid sites (which is the greatest advantage of the multi-

layer approach) with the ability to quickly convert physical locations to matrix indices (which is

the greatest advantage of a single-grid approach).

Modelling FPGA Netlists

The netlists in KPF use a node-pin-edge format, where the nodes represent placeable cells, the edges

represent the nets in the design, and the pins represent the connections between nodes and edges.

The types of pins and nodes are pre-defined, with pins characterized by their PinDescriptions

and nodes defined by their CellDescriptions. These pin and cell descriptions coincide with the

information supplied by the Python architecture file (which can configure the various properties,

such as pin offsets and types).

Appendix C. Implementation Details and Data Structures 133

Timing, in KPF, is done entirely on the netlist hypergraph, as it was felt that this offered the

greatest flexibility. For instance, in the event that the netlist were to be changed, a separate timing

graph data structure would not have to be recreated.

Because KPF supports pin offsets, careful consideration had to be made when designing the

incremental bounding-box algorithm, which is conceptually based on [3]. Only the larger cells

possess pin offsets (and not, generally, the core logic), as the pin offsets incur computational

overhead and increase the likelihood of cache misses when computing bounding box caches.

Example of a Python-based FPGA Architecture

Consider the following architecture file for VPR [3], which defines a 4 BLE/CLB architecture:

io_rat 4

inpin class: 0 bottom

inpin class: 0 left

inpin class: 0 top

inpin class: 0 right

inpin class: 0 bottom

inpin class: 0 left

inpin class: 0 top

inpin class: 0 right

inpin class: 0 bottom

inpin class: 0 left

outpin class: 1 top

outpin class: 1 right

outpin class: 1 bottom

outpin class: 1 left

inpin class: 2 global top

subblocks_per_clb 4

subblock_lut_size 4

Similar functionality is achievable using the Python scripting language coded in KPF; however,

substantially more information must be provided. In fact, the Python architecture file must

be specified for every device size to be tested—thus, during testing in this thesis, a separate

architecture file was generated for each of the MCNC [7] circuits, for each of the 1, 2, 4, or 8

BLE/CLB architectures under consideration.

The following is a simplified example of an architecture data file format used by KPF to model

the 4 BLE/CLB architecture used by the MCNC design alu4. Here, it can be seen how the features

of the Python programming language are employed for much of the repetitive processing—the

interpreter takes care of the parsing and syntax-checking—and how the Python-to-C++ API

embedded inside KPF handles the allocation and construction of the database objects.

Arch File: General Header

num_clbs_x = 20;

num_clbs_y = 20;

num_bles_per_clb = 4;

num_iob_rat = 4;

width_clb = 1.0000;

height_clb = 1.0000;

width_ble = 1.0000;

height_ble = 1.0000 / num_bles_per_clb;

width_generic_ram = 1.5000 * width_clb;

height_generic_ram = 1.5000 * height_clb;

width_lut = width_ble / 2.0;

height_lut = height_ble;

Appendix C. Implementation Details and Data Structures 134

width_dff = width_ble / 2.0;

height_dff = height_ble;

width_iob = 1.0000 / num_iob_rat;

height_iob = 1.0000;

Add the device to get started, and set up general properties.

AddDevice();

gp = GlobalProperty();

gp.SetDeviceName("VPR");

gp.SetNumBLEsPerCLB(num_bles_per_clb);

Arch File: Defining an FF

The following snippet illustrates how a FF with 1 input, 1 output, and 1 clock is defined.

cd = ArchCellDescriptor(ArchCellType_FF);

cd.SetHeight(height_dff);

cd.SetWidth(width_dff);

pd = ArchPinDescriptor();

pd.SetId(0);

pd.SetType(ArchPinType_DataInput);

pd.SetOffsetX(0.0);

pd.SetOffsetY(0.0);

cd.AddPin(pd);

pd = ArchPinDescriptor();

pd.SetId(1);

pd.SetType(ArchPinType_DataOutput);

pd.SetOffsetX(0.0);

pd.SetOffsetY(0.0);

cd.AddPin(pd);

pd = ArchPinDescriptor();

pd.SetId(2);

pd.SetType(ArchPinType_Clock);

pd.SetOffsetX(0.0);

pd.SetOffsetY(0.0);

cd.AddPin(pd);

Arch File: Defining a LUT

The following snippet illustrates how a LUT with 4 inputs and 1 output is defined.

cd = ArchCellDescriptor(ArchCellType_LUT);

cd.SetHeight(height_lut);

cd.SetWidth(width_lut);

pd = ArchPinDescriptor();

pd.SetId(0);

pd.SetType(ArchPinType_DataInput);

pd.SetOffsetX(0.0);

pd.SetOffsetY(0.0);

cd.AddPin(pd);

pd = ArchPinDescriptor();

pd.SetId(1);

pd.SetType(ArchPinType_DataInput);

pd.SetOffsetX(0.0);

pd.SetOffsetY(0.0);

cd.AddPin(pd);

pd = ArchPinDescriptor();

pd.SetId(2);

pd.SetType(ArchPinType_DataInput);

pd.SetOffsetX(0.0);

pd.SetOffsetY(0.0);

cd.AddPin(pd);

pd = ArchPinDescriptor();

pd.SetId(3);

pd.SetType(ArchPinType_DataInput);

pd.SetOffsetX(0.0);

pd.SetOffsetY(0.0);

cd.AddPin(pd);

pd = ArchPinDescriptor();

pd.SetId(4);

pd.SetType(ArchPinType_DataOutput);

pd.SetOffsetX(0.0);

pd.SetOffsetY(0.0);

cd.AddPin(pd);

The definitions for BLEs and CLBs follow similarly (but have been omitted for brevity).

Appendix C. Implementation Details and Data Structures 135

Arch File: Creating the Layers

The dimensions of each layer are specified as follows.

layer_iob = ArchLayer(ArchCellType_IOB);

layer_clb = ArchLayer(ArchCellType_CLB);

layer_ble = ArchLayer(ArchCellType_BLE);

layer_lut = ArchLayer(ArchCellType_LUT);

layer_dff = ArchLayer(ArchCellType_FF);

layer_iob.CreateGrid(22 , 22);

layer_clb.CreateGrid(22 , 22);

layer_ble.CreateGrid(22 , 22 * num_bles_per_clb);

layer_lut.CreateGrid(22 , 22 * num_bles_per_clb);

layer_dff.CreateGrid(22 , 22 * num_bles_per_clb);

Arch File: Setting Up the Layers

Each site in each layer is looped over, and the various properties—dimensions, capacity, locations,

and parent/children relationships with sites in other layers are thoroughly specified. This portion

of the architecture file can be quite long, so only a small sampling is provided below (for brevity).

In this example, note how the Python language simplifies the representation and configuration

of the architecture. It is worth emphasizing that each of the Python objects in this example

corresponds to an allocated object in KPF’s C++ database.

site_clb = layer_clb.GetSite(0 , 1);

site_clb.SetXPhys(0.0000);

site_clb.SetYPhys(1.0000);

site_clb.SetCapacity(0);

for subloc in range (0 , num_bles_per_clb):

site_ble = layer_ble.GetSite(0 , 1 * num_bles_per_clb + subloc);

site_ble.SetCapacity(0);

site_ble.SetXPhys(0.0000);

site_ble.SetYPhys(1.0000 + (subloc * height_ble));

site_ble.SetParent(site_clb);

site_clb.AddChild(site_ble);

site_lut = layer_lut.GetSite(0 , 1 * num_bles_per_clb + subloc);

site_lut.SetCapacity(0);

site_lut.SetXPhys(0.0000);

site_lut.SetYPhys(1.0000 + (subloc * height_ble));

site_lut.SetParent(site_ble);

site_ble.AddChild(site_lut);

site_dff = layer_dff.GetSite(0 , 1 * num_bles_per_clb + subloc);

site_dff.SetCapacity(0);

site_dff.SetXPhys(0.0000 + width_lut);

site_dff.SetYPhys(1.0000 + (subloc * height_ble));

site_dff.SetParent(site_ble);

site_ble.AddChild(site_dff);

Main Data Structures used in the FPGA Tools

In the following code examples, only member variables are shown in order to simplify the

presentation.

Architecture Database: Pin Description

This structure defines the basic pin attributes in the architecture, and is configured largely through

the Python file. (For instance, an architecture site can contain multiple PinDescriptions.) There

is a predefined set of pin types, but most other properties are configurable.

Appendix C. Implementation Details and Data Structures 136

class PinDescription

{
public:

enum Type {
Unknown = 0,

DataInput = 1,

DataOutput = 2,

CarryInput = 3,

CarryOutput = 4,

Enable = 5,

Clock = 6,

SyncLoad = 7,

SyncData = 8,

AsyncClear = 9,

AsyncSetReset = 10,

AsyncLoad = 11,

AsyncData = 12,

AsyncPre = 13,

Pad = 14,

END TYPE = 15

};

protected:

real64 offsetX;

real64 offsetY;

uint32 id;

Type type : 4;

};

Architecture Database: Cell Description

The CellDescription models the type of cell. There are a predefined set of cell types, but

most other properties are configurable through the Python files. Note that the CellDescription

contains PinDescriptions, as well as a handful of other ancillary classes (not shown) which

largely describe the functionality of the cell in the architecture. For example, the same type of cell

can contain multiple different sets of Configurations—this models the fact that some cells may

implement slightly different functionality depending upon where they are in the die, but that they

are still fundamentally the same type.

class CellDescription

{
public:

enum Type {
Unknown = 0,

BLE = 1,

CLB = 2,

FF = 3,

IOB = 4,

LUT = 5,

RAM = 6,

RAM SMALL = 7,

RAM MEDIUM = 8,

RAM LARGE = 9,

MAC = 10,

PLL = 11,

JTAG = 12,

END TYPE = 13

};

protected:

std::vector<Configuration ∗> configurations; // The configurations for this cell.

std::vector< std::vector<uint32> > pinCache; // Keeps a list (in vector form) of the types of pins on this node.

std::vector<SignalConstraint> constraints; // A list of the signal constraints for this cell type.

std::vector<PinDescription ∗> pinDescriptions; // A list of the actual pin descriptions.

DelayDescription dd; // Delay information.

real64 height;

real64 width;

uint32 maxNumFeedback;

uint32 numFeedbackPerCell;

Type type : 4;

bool hasFeedbackConstraint : 1;

};

Appendix C. Implementation Details and Data Structures 137

Architecture Database: Site

This data structure defines an individual, placeable location within the device grid. Note that Sites

exist inside Layers, and can form hierarchical relationships—for instance, FF and LUT Sites can

be configured as the children of BLE Sites, which are the children of CLB Sites. This kind of

relationship can be useful for defining complex clustering constraints or when placing carry chain

logic.

class Architecture::Site

{
public:

typedef std::vector< Node ∗ > Nodes t;

typedef std::vector< Architecture::Site ∗ > Children t;

private:

Nodes t nodes; // The cells contained in this site.

Children t ∗ children; // This site may (or may not) have children.

Architecture::Layer ∗ layer; // The layer to which this site belongs.

Architecture::Site ∗ parent; // This site may (or may not) have a parent.

PointSearch::Location physLoc; // Physical location.

uint32 capacity; // Number of pieces of logic that can be stored at this location.

sint32 id; // Unique identifier given to every architectural site.

uint32 occupancy; // The number of logic pieces that are already at this location.

sint32 subBlock; // The position in the children’s vector in the parent site

// (or -1 for sites without a parent/child relationship).

uint32 xidx; // The logical X indenx of this site (bottom left corner).

uint32 yidx; // The logical Y index of this site (bottom left corner).

};

Architecture Database: Layer

This class contains the matrix of Sites—the placement grid, in effect. A separate Layer exists for

each type of CellDescription in the device.

class Architecture::Layer

{
protected:

std::vector< std::vector< Architecture::Site > > grid;

PointSearch ps; // Useful for doing fast searches of neighbouring sites

std::vector< Architecture::Site ∗ > sitesByID; // Stores sites (in the grid) by ID; useful for lookups

real64 layerXmin; // Layer dimension

real64 layerXmax;

real64 layerYmin;

real64 layerYmax;

uint32 nx; // Max dimension of the layer

uint32 ny; // Max dimension of the layer

CellDescription::Type type; // Type of this layer

};

Netlist: Node

The Node class represents a basic, placeable logic unit, and corresponds to a specific type of

CellDescription, as specified in the device database. Nodes are placed in Site locations. Nodes

are connected to nets (or, Edges) through Pins.

class Node

{
public:

typedef std::vector<Pin ∗> Pins t;

protected:

Pins t pins; // All connected pins.

char ∗ name; // Name of node.

Architecture::Site ∗ site; // Location of the node.

CellDescription ∗ cd; // Type of the cell (its "cell description").

Appendix C. Implementation Details and Data Structures 138

sint32 id; // Identifiers.

sint32 config : 8; // The configuration of the cell; -1 (error), ... 127.

FixedMode fixed : 2; // Status of whether node is fixed.

PlacedType placed : 1; // How this particular cell has been placed.

};

Netlist: Edge

Edges model the nets in the design.

class Edge

{
public:

enum Type {
Local = 0,

Global = 1

};

typedef std::vector<Pin ∗> Pins t;

protected:

Pins t pins; // Connected pins.

char ∗ name; // Name of pin.

sint32 id; // Identifier for this pin.

Type type : 1; // The type of this edge

};

Netlist: Pin

Pins act as the connector between Nodes and Edges. Pins are of pre-defined types, based on their

PinDescription.

class Pin

{
protected:

Edge ∗ edge; // Edge associated with this pin.

Node ∗ node; // Node associated with this pin.

PinDescription ∗ desc; // Cached copy of this pin’s PinDescription.

sint32 idEdge; // Position in the pins vector for the edge.

sint32 idGlobal; // Global pin ID, unique to every pin in a netlist. Useful for global lookups.

sint32 idNode; // Position in the pins vector for the node.

};

Standard Cell Tools

The modelling of standard cell problems for legalization and detailed placement is similar to the

“layer”-based philosophy employed in the FPGA tools. In this case, there is a layer for each of

the three types of cells—standard cell, macrocell, and I/O. The standard cell layer contains rows,

and the rows contain sites. Special considerations were given to the fact that modern mixed-size

problems are very large (e.g., some designs possess over 2 million placeable objects, and the

placement grid may have over 65 million “sites”). Since these types of designs possess uniform

properties within a single row (e.g., same height, Y location, and orientation properties), many

individual sites’ properties could be moved into the row, thereby substantially reducing the memory

required to represent a single site.

The netlist format is also similar, employing a node-edge-pin philosophy. One salient differ-

ence is that, because the legalization tool can model both global and detailed cell positions, nodes

Appendix C. Implementation Details and Data Structures 139

have the ability to contain both “free-form” positions and dimensions, as well as “architectural”

positions and dimensions based on the site in which they are placed. Generally, all cells begin in

free-form mode, and for detailed placement, the standard cells are converted into “architectural”

mode, such that all operations performed during annealing are done using Sites (and the

dimensions of the standard cells are based on relative Site widths).

Note that the Python interpreter is not required for standard cell designs, as the architecture is

built directly from the Bookshelf [4] layout files. There is also less of a need to model different

types of constraints or architectures, and as such, many of the features built into the FPGA tools

are not present in the standard cell tools used in this thesis.

Careful consideration was given to the handling of pin offsets, as the offsets can substantially

complicate the task of bounding box caching. For run-time reasons, only the largest standard and

macrocells retain their pin offsets, and the offsets on all other cells are ignored. Doing so improves

the likelihood of cache hits, and can reduce run-times.

Main Data Structures used in the Standard Cell Tools

In the following code examples, only member variables are shown in order to simplify the

presentation.

Architecture: Layer

The Layer class contains the placement grid. However, rather than being a pure “vector of vectors

of Sites”, the standard cell placement grid consists of a Layer which contains a Row which

contains a Site. This affords some memory efficiency for the types of designs considered in

this thesis.

class Architecture::Layer

{
protected:

typedef std::vector< Row ∗ > Rows t;

Rows t rows; // The rows (usually running in Y direction) in the design.

real64 xmin;

real64 xmax;

real64 ymin;

real64 ymax;

uint32 maxNumSitesInRow; // Tracks max # of sites in a row, across all rows.

NodeType type;

bool isSorted;

};

Architecture: Row

The standard cell Row contains all of the common information for the Sites that it contains (such

as their height, width, and so forth).

class Architecture::Row

Appendix C. Implementation Details and Data Structures 140

{
protected:

typedef std::vector< Architecture::Site > Sites t;

Sites t sites; // The "columns" (sites) that the row contains.

real64 rowHeight; // The height of the row.

real64 siteWidth; // The width of the elements in the row.

real64 siteSpacing; // The spacing of elements in the row.

real64 xorigin; // The left-most (xmin) position of a site on this row; the row origin.

real64 yloc; // The Y coordinate (centred) of this row.

Architecture::Layer ∗ layer; // The layer parent.

sint32 id : 23; // Position in the ’row’ array of the layer.

Orientation availableOrient : 8; // The ways in which this node can be oriented.

bool isSorted : 1;

};

Architecture: Site

Unlike FPGA architectures, the standard cell Sites must be kept very small to reduce memory

consumption, and as such, are largely bereft of unique attributes—even the X positions of the sites

are computed based on their indices in their parent Row’s vector.

class Architecture::Site

{
protected:

Node ∗ containedCell; // The cell contained in this site. (Sites can contain only one cell.)

Row ∗ row; // Pointer to the site parent.

sint32 id : 31; // Used for determining X location of site.

uint32 capacity : 1; // The total capacity of the site. Either 0 or 1.

};

Netlist: Node

The standard cell node can be either “free-form” or “architectural”, meaning that a Node can cor-

respond to a macrocell (whose dimensions and locations, for the purposes of academic placement

tools, are relatively flexible), or to a standard cell (which must satisfy specific architectural Site

limitations).

class Node

{
public:

enum PlacedType

{
ToolPlaced = 0,

UserPlaced = 1

};

enum PropertyType

{
PropertyType FreeForm = 0,

PropertyType Arch = 1

};

struct NodePropertiesArchitecture

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// Used for properties which are tied to sites in the architecture;

// useful for cells which are being annealed.

{
Architecture::Site ∗ site;

sint32 numSiteWidths;

};

struct NodePropertiesFreeForm

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// Used for "free-form" (analytic placement-style) cell information.

{
real64 height;

real64 width;

real64 xloc;

real64 yloc;

Appendix C. Implementation Details and Data Structures 141

Orientation availableOrient: 8; // The ways in which this node can be oriented.

};

typedef std::vector<Pin ∗> Pins t;

private:

Pins t pins; // All connected pins.

// We support either a "free-form" set of node properties or the node

// can be tied to its architectural site.

union

{
NodePropertiesFreeForm ff;

NodePropertiesArchitecture arch;

} nodeProps;

std::string name; // Name of node.

sint32 id;

Orientation currentOrient : 8; // How this node is currently oriented.

NodeType type : 4; // Type of node.

bool isFixed : 1;

Node::PlacedType placed : 1; // How this particular cell has been placed.

Node::PropertyType nodePropertyType : 1; // Free-form or architecture-derived node properties.

bool isIOinCore : 1; // IOs in the core may be converted to macrocells; this is true in those rare

cases.

};

Netlist: Edge

The Edge class used in standard cells is effectively identical to its FPGA counterpart.

Netlist: Pin

Since architectural exploration was not a primary consideration for the standard cell tool, much of

the functionality related to defined cell and pin types were removed in the interest of conserving

memory. Consequently, the Pin class used in the standard cell annealer is a very basic Node-Edge

connector.

class Pin

{
private:

Edge ∗ edge; // Edge associated with this pin.

Node ∗ node; // Node associated with this pin.

real32 offsetX; // Offset from center.

real32 offsetY; // Offset from center.

};

Bibliography

[1] The Python programming language. http://www.python.org, 2009. Current May 2009.

[2] Simplified wrapper and interface generator. http://www.swig.org, 2009. Current May

2009.

[3] BETZ, V., AND ROSE, J. VPR: A new packing, placement and routing tool for FPGA research.

In Field-Programmable Logic and Applications (1997), W. Luk, P. Y. Cheung, and M. Glesner,

Eds., Springer-Verlag, Berlin, pp. 213–222.

http://www.python.org
http://www.swig.org

Appendix C. Implementation Details and Data Structures 142

[4] CALDWELL, A. E., KAHNG, A. B., AND MARKOV, I. L. Toward CAD-IP reuse: The macro

GSRC bookshelf of fundamental CAD algorithms. IEEE Design and Test of Computers 19, 3

(2002), 70–79.

[5] CHEN, D. T., VORWERK, K., AND KENNINGS, A. Improving timing-driven FPGA packing

with physical information. In Proceedings of FPL (2007), pp. 117–123. Nominated for Best

Paper Award.

[6] VORWERK, K., KENNINGS, A., AND GREENE, J. W. Improving simulated annealing-based

FPGA placement with directed moves. IEEE Transactions on Computer-Aided Design 28, 2

(2009), 179–192.

[7] YANG, S. Logic synthesis and optimization benchmarks, version 3.0. Tech. rep.,

Microelectronics Center of North Carolina, 1991.

