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Abstract: Field-Programmable Gate Array (FPGA) is at the core of System on Chip (SoC) design
across various Industry 5.0 digital systems—healthcare devices, farming equipment, autonomous
vehicles and aerospace gear to name a few. Given that pre-silicon verification using Computer Aided
Design (CAD) accounts for about 70% of the time and money spent on the design of modern digital
systems, this paper summarizes the machine learning (ML)-oriented efforts in different FPGA CAD
design steps. With the recent breakthrough of machine learning, FPGA CAD tasks—high-level
synthesis (HLS), logic synthesis, placement and routing—are seeing a renewed interest in their
respective decision-making steps. We focus on machine learning-based CAD tasks to suggest some
pertinent research areas requiring more focus in CAD design. The development of open-source
benchmarks optimized for an end-to-end machine learning experience, intra-FPGA optimization,
domain-specific accelerators, lack of explainability and federated learning are the issues reviewed to
identify important research spots requiring significant focus. The potential of the new cloud-based
architectures to understand the application of the right ML algorithms in FPGA CAD decision-
making steps is discussed, together with visualizing the scenario of incorporating more intelligence
in the cloud platform, with the help of relatively newer technologies such as CAD as Adaptive
OpenPlatform Service (CAOS). Altogether, this research explores several research opportunities
linked with modern FPGA CAD flow design, which will serve as a single point of reference for
modern FPGA CAD flow design.

Keywords: FPGA backend flow; machine learning; CAD design steps; synthesis; placement; routing

1. Introduction

Industrial Revolution 5.0 [1] holds the promise to elevate the overall quality of life,
by using technology tools that create the infrastructure between systems and technologies.
Today’s sophisticated smart phones, autonomous vehicles, drones, FinTech applications,
farming equipment and many other consumer applications are interconnected and involve
massive data collection and processing using smart sensors. Each of these applications
contain a System on Chip (SoC) with enormous computational capabilities. This enor-
mous computational capability can be attributed to the improved design techniques that
incorporate artificial intelligence, deep learning, augmented reality and digital twins.
Field-Programmable Gate Arrays (FPGAs)—used for SoC prototyping—are at the core of
this technology-driven revolution as they play a key role in sensor fusion and incoming
data stream merging, thereby enhancing the overall productivity and efficiency. Figure 1
demonstrates the market growth rate of such consumer devices over the past few years [2].
However, FPGA designers face the challenge of long Computer-Aided Design (CAD) flow
time required to map an application on the target FPGA. There are two reasons for this:

1. The increasing capacity of FPGA that could contain 10 million logic cells and 40 billion
transistors [3];
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2. The increased complexity of the target applications, e.g., autonomous vehicles and
medical surgery equipment with increased computation requirements, which adds
further implementation delays in the CAD flow process.

There have been reported cases where the application mapping on FPGAs gave
inconclusive results despite long delays and multiple iterations [4]. Therefore, FPGA CAD
tools need to be evolved to incorporate more intelligent algorithms. This intelligence can
be incorporated by applying machine learning techniques during the CAD flow steps on
target FPGA architecture [1]. The steps include high-level synthesis, logic synthesis, netlist
creation placement, routing, bit stream generation and in-circuit testing. The high level
synthesis converts from high-level language (C/C++) to hardware description language
(Verilog/VHDL), to create a combination of data paths and control elements. This Register
Transfer Level (RTL) description is independent of the hardware. The data paths are
then mapped to dedicated hardware structures of the FPGA logic elements (multipliers,
adders, memories). This logic mapping ensures that the corresponding logic equations
are optimized to fit the available logic elements. These synthesised netlist components
are assigned to specified positions on the chip layout to optimize area, time and route to
enhance the overall performance. This is accomplished by efficient placement and routing
algorithms that respectively take care of the final position of the various elements of the
netlist and map the interconnections between them to the routing resources available on the
FPGA. The placement step receives circuit netlist after synthesis that contains various types
of logic blocks, and the output of the placement step is the mapping of these blocks on the
physical resources that considers constraints such as total wire length. Routing connects
the chip’s blocks according to design rules, while ensuring that the timing, performance
and total wirelength requirements are met. Testing is required before manufacturing to
ensure the design correctness. Finally, the bitstream file containing the FPGA configuration
information is generated in the last step. We review each of these steps in more detail in
Section 2.

Figure 1. Consumer device growth rates over last five years. * covers only Internet connection portion
of the systems.

Machine learning (ML) is a part of artificial intelligence (AI) technology that enables
the meaningful pattern learning backed by large amounts of data, unlike traditional means
of problem solving without knowledge accumulation. The application of machine learning
algorithms to the problems in FPGA CAD design is receiving increased attention. This
is due to the computational efficiency of such algorithms, facilitating the learning and
generalization process, which significantly improves the solution quality when compared
with the traditional CAD solution methods. Conventional machine learning algorithms
have been studied to leverage the CAD design potential [5]. The recent advances in efficient
processing of big data using machine learning techniques enable the successful applications
of machine learning in various complex tasks to accelerate modern chip designs, ranging
from pre-silicon verification to post-silicon validation. The machine learning and deep
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learning algorithms employed across various CAD steps include classical regression models,
which operate by constructing a multitude of decision trees and random forest. Decision
trees [6] are computationally inexpensive algorithms since they do not require arithmetic
calculations. They follow a supervised strategy to identify the best attribute in the data set,
such as a specific placement or routing goal. Decision trees are prone to overfitting, and
this problem is resolved by random forests [7] that combine numerous decision trees to
reduce overfitting and achieve better regression results. Other supervised machine learning
algorithms employed in FPGA backend flow include K-nearest neighbor (KNN) [8] and
Support Vector Machine (SVM), which are used in the placement step [9,10]. The former is
suitable for CAD software flow steps where similarities exist within proximity, whereas the
latter is known to perform well in tasks with a limited amount of training data. The fuzzy
reasoning algorithms such as intuitionistic fuzzy entropy-derived symmetric implicational
(IFESI) algorithm [11] are also proposed. Their characteristic of considering logic system
together with the inference model makes them an attractive choice for designing fuzzy
controllers, to help across various CAD design flow by appropriate fuzzifier/defuzzifier
incorporation. There are numerous types of Artificial Neural Networks (ANN) [12] such
as Convolutional Neural Network (CNN) and Multi-Layer Perception (MLP) at the heart
of deep learning mechanisms, involving supervised, unsupervised and reinforcement
learning (RL). For example, Convolutional Neural Network has been used in CAD software
flow steps of placement or routing after formulating the steps as an image processing
problem [13], as CNN is known to generate superior results while analyzing visual imagery.
MLP is a feed-forward neural network well suited for binary classification problems. For
example, deciding on a particular placement in FPGA block. Reinforcement learning and
Generative Adversarial Network (GAN) have also been proposed to solve the backend
flow problems. However, the proposals are at a very preliminary stage and require further
investigation. The mentioned algorithms can be mixed with other boosting techniques to
build more customized models suited to the specific CAD workflow step. For example, tree
boosting technique is used to develop XGBoost [14] which is often used in multiple CAD
workflow steps. While the mentioned ML techniques have shown promising results in
individual CAD flow steps [15–17], there are no actual use cases of end-to-end application
of these techniques across FPGA CAD flow. We inspect the efforts for each CAD flow
step in Section 3 of this paper, which sheds some light on the dearth of actual end-to-end
use cases for ML algorithms dedicated to FPGA CAD flow. We discuss the identified six
research opportunities and envision the same as future research directions.

The stated machine learning models applied to solving FPGA CAD problems have
achieved promising results, and this work summarizes the recent efforts to incorporate
cutting-edge machine learning algorithms deployed during CAD workflow steps and
identifies the research gaps towards using machine learning algorithms for an efficient
FPGA CAD design. The following is a summary of the contributions made by this research:

• We review the FPGA CAD flow steps with a special emphasis on the employed
machine learning algorithms to achieve the desired outcome in the respective backend
flow step—HLS, Logic Synthesis, Placement and Routing;

• Based on our review of the little work done in the paradigm of ML algorithms deploy-
ment for CAD work flow steps, we analyze six implementation challenges that—if
addressed—have the potential to overcome the bottleneck(s) associated with ML
algorithms deployment in the CAD workflow steps;

• We discuss the novel cloud computing trends in CAD workflow which is a hot research
spot and could assist in active persuasion of the identified research challenges.

The rest of the paper is organized as follows: Section 2 reviews the conventional FPGA
CAD workflow steps. Section 3 details the efforts towards employing machine learning
algorithms used in the CAD workflow steps, which helps us to pinpoint the associated
research challenges detailed in Section 4. We present our discussions in Section 5 and finally
conclude the paper in Section 6.
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2. Conventional CAD Flow for FPGAs

The effectiveness and quality of an FPGA architecture relies on the backend flow
provided with an FPGA. Figure 2 provides an overview of conventional FPGA backend
flow. It can be seen from this figure that the FPGA flow starts with the description of
design in a high-level language and after passing through various complex steps, it ends
with the bitstream generation of the design which is finally loaded onto FPGA. In this
section, we summarize the important steps of the conventional FPGA backend, as they are
instrumental to understand the following sections.

Figure 2. An overview of the conventional FPGA backend flow.

2.1. High-Level Synthesis

High-level synthesis (HLS) is usually the first step in the FPGA backend flow. This
step translates from untimed behavioral description such as C/C++ based specifications to
hardware description language such as Verilog/VHDL. A typical example of HLS process
is shown in Figure 3. In accordance with a Cadence estimate of the effect of its own
HLS product line, the HLS design automation tools designed for hardware verification
have the potential to reduce design time and verification costs by 25–50%. Therefore,
industry giants such as Synopsys, Mentor, Intel and Xilinx also have their own HLS design-
automation packages [18,19], to troubleshoot power or timing problems, thereby improving
productivity in customized hardware design. This automatic conversion from behavior
to hardware description has the advantage of the design re-usability by generating micro-
architectures of different characteristics simply by changing the synthesis options. HLS
Design Space Exploration (DSE) is used to automatically set the different synthesis options
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to find a trade-off of Pareto-optimal designs—finding micro-architecture of specific power,
performance and area. As the number of synthesis options increases, the design space
exploration search space grows supralinearly. However, it is found that a large number
of synthesis options combinations will not lead to a Pareto-optimal design [20], resulting
in drastically reducing the search space. This calls for efficient design space exploration
options. While the options of design space exploration lie beyond the topic of this study,
the readers are encouraged to refer to [21] for a detailed survey summarizing the efforts in
HLS design space exploration.

Figure 3. Conventional High-Level Synthesis (HLS) process.

2.2. Logic Synthesis

The logic synthesis [22] of the design to transform a hardware description language,
such as verilog into Boolean gates, can be accomplished using numerous technology-
independent techniques, with the ultimate objective of optimizing the Boolean network.
The technology-dependent optimizations follow the logic synthesis, where Boolean network
is transformed into a network of gates in the given set of blocks of the technology library.
Traditionally, this transformation comprises of Look-Up Tables (LUTs) and Flip-Flops,
considering different objective functions such as area and power. Heuristics such as
Genetic algorithms have been employed to achieve this objective [23]. The FlowMap
algorithm [24], and its later versions [25–27], is a popular traditional way of performing
this FPGA technology mapping. Multiple versions cited above are known to optimize the
parameters of depth, area and runtime of the Boolean network, ultimately resulting in the
efficient mapping of a network comprising of I/Os, LUTs and Flip-Flops. The efficient
mapping facilitates the network creation of I/Os and Configurable Logic Blocks (CLBs) in
such a way that minimizes the inter cluster communication, with each cluster constituting
the LUTs, Flip-Flops and other Basic Logic Elements. Opensourse frameworks such as
Yosys [28] provide a basic set of synthesis algorithms, but have the limitation of accepting
invalid code without reporting errors. Figure 4 shows the typical process of mapping and
packing that is usually used in FPGA backend flow.
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Figure 4. A typical example of mapping and packing process used in FPGA backend flow.

2.3. Placement

The next step in the FPGA backend flow, placement, is meant to optimize the routing
resources when routing the connection between multiple connected blocks. Those con-
nected blocks are placed near each other to further optimize the FPGA architecture by
balancing the wire density. Traditionally, the placement algorithms are placed in one of the
following three categories.

2.3.1. Partitioning-Based Approach

This approach is suitable for tree-based or hierarchical FPGA architectures. The netlist
instances are distributed between clusters in such a way that merges highly connected
instances within the same cluster. This results in the reduction of hyperedges that span
more than one partition. Different heuristic algorithms [29,30] are developed to accomplish
following objectives:

1. Clustering, where hierarchy of clustered hypergraphs is formed by combining hyper-
graph vertices based on connectivity;

2. Top-level partitioning, where the smallest hypergraph is partitioned using a fast initial
solution generator and improved repeatedly by employing heuristics such as FM
algorithm [29], and the process is repeated for the next smallest hypergraph;

3. Refinement, where solutions are improved iteratively by projecting from smaller
levels to the next.

Figure 5 shows these steps where coarsening/clustering is followed by initial parti-
tioning and refinement steps. Refinement algorithms allowing for high correlation between
refined and initial hypergraphs are abundant in literature. These three steps ultimately
result in reducing the number of overlaps iteratively, eventually producing a placement of
logic blocks with legitimate possibility of the least overlaps. Several research efforts [31–33]
have been made to improve the partitioning-based algorithms with the main aim to merge
highly connected instances in the same cluster, thereby minimizing total interconnect length
and maximizing the cut between two adjacent layers. For example, in [34], a partitioning-
based algorithm is proposed that results in a decrease in power consumption, area and
delay when compared with SA-based placement algorithm. This performance decline can
be attributed to the cut size not being an exact function of wire length, timing or routability.
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Figure 5. An example of multilevel partitioning approach.

2.3.2. Analytical Placement Approach

This approach starts with the fixed placement of I/O objects, and then the logic block
final placement is computed iteratively—much like partitioning-based approach—using a
mathematical function to minimize the squared wire length. To this effect, this placement
category is sometimes treated as a subset of partitioning-based approach. The mathematical
objective function used is quadratic [35], which is an indirect measure of the wire length.
The quadratic objective is followed by an iterative improvement technique, to optimize
the results given by the quadratic function, as it does not link directly to the wire length.
The Xilinx commercial placer uses this technique. The Analytical Placement approach is
applied in the real-valued domain so its placement results need to be snapped onto the
discrete placement slots on the FPGA grid.

2.3.3. Simulated Annealing Placement Approach

This placement approach is suitable for island style/mesh-based routing architectures
and it uses a cost function to move the logic blocks to an optimized location in a limited
amount of time. The cost function explores the solution space to optimize the run time.
Traditionally, the optimization is accomplished by either of the two approaches: parallel
move generation [36] and directed search of solution space [37]. Simulated Annealing
(SA)-based placement is an extremely flexible approach and accommodates any objective
such as wirelength of current placement [38] or speed performance. This is accomplished
by assigning an objective function randomly that reflects the constraints meant to optimize,
with weights assigned to each constraint according to its importance. The objective function
is then optimized for the placement by random perturbations, and for each attempt, a
change in cost, ∆C, is calculated. Each perturbation causes the logic block to move to a new
location until the desired optimized placement is achieved. Perturbations can be either
always accepted or accepted with a probability depending on the desired improvement in
the objective function. The latter case is referred to as hill climbing, and it is important to
accommodate although the corresponding perturbation worsens the cost function. There
are occurrences when taking a few uphill steps that lead to the overall objective function
optimization in the placement. As this technique is extremely flexible to accommodate
any cost placement constraint, it is used in numerous popular CAD tools, such as Versatile
Place and Route (VPR) [39,40]. Figure 6 shows the simulated annealing approach that uses
wirelength as the optimization objective. Since SA is a metaheuristic approach itself, it
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holds a few challenges as well such as significant placement impact of the precision of
numbers used in the objective function and the tuning of all the parameters resulting in
multiple optimization points.

Figure 6. Placement using simulated annealing approach.

2.4. Routing

After the netlist instances are placed, connections are routed between them using
the limited routing resources, with the objective of each signal using a unique routing
resource. For this purpose, the resources of FPGA are represented as a directed graph and
an example of this representation is shown in Figure 7. Since the FPGA routing resources
are limited, routing is deemed to be the most time-consuming phase of the CAD Flow
requiring days for the largest commercial designs. Traditionally PathFinder [41] routing
algorithm is employed, which uses an iterative, negotiation-based approach to successfully
route all the signals in a netlist. The first pass of the PathFider approach employs Dijkstra’s
shortest path algorithm, and then subsequently, signals are made to negotiate for routing
resources. This interprets to a single metal wire being shared by multiple different signals in
the initial steps of routing, which are then detached progressively by a rip-up and re-route
mechanism. This results in a conflict-free solution as the signals eventually find the less
congested nodes to meet their objective. The optimality of the objective is verified via
a binary search algorithm. The routing process comes to a halt when the resources are
not improving any more, eventually producing a viable routing. Several variations of
PathFinder have been proposed—in [42], Swartz enhanced the PathFinder by reducing
the router’s search during runtime. We note that the two largest FPGAs vendors, Xilinx
and Altera, both use variations of PathFinder in their commercial routers. PathFinder
stochastic routing models [43] have also been proposed, however, such models rely on
estimated probability of connection lengths, as opposed to having accurate information of
connection geometry.

Figure 7. Routing resources of FPGA expressed in the form of directed graph.
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The routing information of the netlist is used to program the SRAM bits of Look Up
Tables. This bitstream information for the netlist is programmed on the FPGA using a
bitstream loader and finally, the bitstream generator reads the mapping, packing, placement
and routing information.

3. CAD Flow for FPGAs: Machine Learning Perspective

Machine learning techniques have been applied in electronic design automation
(EDA) since the 1990s [44], however, the recent exponential growth in semiconductor
integrated circuits (IC) calls for a novel way of exploring the large design space with low
latency. The tasks in each EDA step—design space exploration, simulation, verification and
manufacturing preparation—can be modeled as an NP-complete problem, known to be
tackled efficiently by modern machine learning techniques, as ML algorithms can manage
large amounts of data quickly [1], thereby reaching the optimized state with minimum
resource and time consumption. Such NP problems are common occurrences in EDA tasks,
and several algorithms leading to the optimized state of EDA step being tackled have been
proposed. Ryan proposes an algorithm, STAGE [45] that explores the design space of many
core systems in two stages. Local search guided by a cost function, followed by meta search
that exploits the search trajectories of local search to predict the outcome of a local search
procedure from a given starting point. For lithography hot spot detection, Ding [46] uses
SVM, whereas Yang [47] uses a deep CNN that targets representative feature learning. Both
ML tools show promising results. Addressing topology selection, Matsuba [48] employs a
deep CNN classifier to decide for the optimal topology from the circuit characteristics, with
complete success for four registered topologies. Wang [49] addresses the device sizing by
employing a multistep reinforcement learning framework that automatically optimizes the
circuit parameters. Both the local and global status of the corresponding transistor is taken
into account to outperform the random search, as well as Bayesian optimization and even
human experts. The point insertion between two modules to observe the output of former
module and control the input of later module is called point insertion problem, which plays
a key role in verification by reducing test complexity. Ma [50] uses Graph Convolutional
Network (GCN) for point insertion. The netlist is first mapped to a directed graph, then
nodes are labeled as per their difficulty to observe, and finally, a GCN classifier is trained,
resulting in a reduction of observation points by 11%.

The above-mentioned examples of EDA tasks being modeled as NP-complete prob-
lems and then applying the machine learning to reach the optimized state demonstrate
that it is high time that we integrate the sophisticated machine learning paradigms into
FPGA CAD design, which would result in a time-efficient and effective FPGA backend
flow steps. This section reviews the little work that has been completed in that regard.
We dedicate each subsection to the relevant CAD flow step, i.e., HLS, Logic Synthesis,
Placement and Routing.

3.1. High-Level Synthesis Using Machine Learning

High-Level Synthesis (HLS) is seeing a renewed popularity, driven by its ability to
evaluate efficiently the machine learning-based matrices. For example, Flex Logix has a
neural network infrastructure around its eFPGA capabilities to tailor some units on the
chip [51]. One of the objectives of ML algorithms in HLS is to estimate the performance
results in terms of resource and time optimization. In that regard, Makrani [52] modeled
the time optimization as a regression problem, and then used the deep learning training
platform Minerva [53] to evaluate the clock frequency of the HLS tool’s output code. The
flow used by [52] is also shown in Figure 8. The work was further improved by incorpo-
rating neural networks, SVM and random forests, to obtain HLS timing accuracy of 95%.
Another application of machine learning in HLS is to explore the design space. There are
certain efforts demonstrating that combining the ML algorithms with traditional heuristics
such as SA overcomes the limitation of these heuristics of not being able to learn empirical
information from the design to be explored. For example, Pingakshya [54] presents a
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machine learning-based HLS design space explorer that predicts very accurate results when
combined with heuristics such as SA. Low-Level Virtual Machine (LLVM) is employed to
generate the features which are then given as input to a regression algorithm. Schaefer [55]
combines SA with decision trees to reduce the design space, thereby speeding up the design
space exploration time, showing promising results. Machine learning techniques are likely
to become more popular for HLS design, creating a good resource for chip makers in the
design process. Already, a lot is happening in medical detection and telecommunications
domains. Huawei, Qualcomm and other mobile chip companies are opening APIs on their
phones to facilitate developers in HLS optimization [56].

Figure 8. High-Level Synthesis using machine learning.

3.2. Logic Synthesis

After the high-level software is synthesized into an HDL model, an HLS report is
generated along the model to estimate the expected performance, resource usage and
timing. This HLS report then undergoes logic synthesis. The report estimates are almost
always inaccurate and can be improved significantly using ML-based algorithms. The
report estimates almost always have deviations between measured and actual values.
These inaccuracies can be improved significantly using ML-based algorithms, such as
clustering methods proposed in [57] based on Fuzzy Logic. The proposed algorithms
take into account the neighbor information to estimate the deviations beforehand with a
significant estimation performance increase.

The authors of [58] use 87 features extracted from the HLS report to train a set of
machine learning models—linear regression model, neural network and gradient tree
boosting—that reduce the HLS estimation errors by up to 138%. For HLS, Dong [59] lever-
ages an ML method inspired from Rival Penalized Competitive Learning (RPCL) to classify
which designs need to be synthesized for a true Pareto-optimal solution, thereby reducing
the design candidates that need to run through the downstream implementation flow. For
accurate resource estimation in the HLS report, Koeplinger [60] proposes a three-layered
Artificial Neural Network (ANN)-based framework that predicts resource usage from
pre-characterized area models of a small set of architectural templates. A new parame-
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terizable HDL is introduced that generates efficient FPGA designs automatically from a
high-level description based on parallel patterns. Another challenge in FPGA synthesis
is the slow timing of CAD runs, which could take days of runtime on modern designs.
Yanghua [61] addresses this challenge of timing convergence by combining the predictions
of multiple classification algorithms, which ultimately results in the improved predictive
accuracy of InTime, which is an automated timing plugin for Xilinx and Altera CAD
tools [62]. The classification algorithms used for improving timing convergence include
logistic regression, random forest, SVM, and ANN. ML has been applied to autotune frame-
works facilitating the large multi-scale space exploration of tool-specific parameters, critical
during FPGA synthesis phase, and such efforts are funded by numerous organizations,
including DARPA [63]. To predict an accurate mapping, Ustun [64] constructs and trains a
Graph Neural Network (GNN) to infer the mapping choices about hardened blocks, with
the ultimate objective of capturing the association between operations from the dataflow
graph. A reduction in root mean square error (RMSE) by 72% was observed.

All these ML techniques are used to ensure that the FPGA Synthesis approximation is
close to final prototyped design. Once this task is accomplished, the design is deemed to be
technology-mapped and packed, as per the resource requirements of target FPGA, and is
considered to be ready for the next steps of FPGA flow.

3.3. Placement

Placement is deemed to be one of the most time consuming steps in CAD flow and
it aims to obtain an evaluation of two objectives: congestion estimation and routability
prediction. As detailed in Section 2, the evaluation criteria are meant to achieve wire
length and timing optimization. Several ML techniques have been used to achieve accurate
congestion and routability evaluations. Elgammal [65] leverages traditional SA technique
by proposing seven directed moves with a reinforcement learning agent controlling the
proposed moves throughout the anneal, achieving 5% less wirelength and 1% critical path
delay gains at high runtime budgets. Pui [66] proposes a probabilistic framework called
RippleFPGA which can handle only single clock design, which is not pragmatic nowadays.
He improves this shortcoming in [67] by proposing three supervised ML models with
underlying processing achieved by SVM for clock-aware placement in modern heteroge-
neous FPGAs. However, the shorter training time combined with most data usage for
training (70%) might result in overfitting. Additionally, the proposed congestion model
only considers the congestion levels between SLICEs. In another work, an SVM-based Lin-
ear Regression model achieved 90% accuracy on FPGA Placement contest benchmark [68]
when compared with the congestion estimates of Vivado Design Suite. However, when
tested to predict real congestion, the accuracy dropped by a staggering 60%. The work was
further improved and tested by Maarouf [69], achieving an accuracy of 85% and a runtime
291 times faster in a real-world congestion scenario, outperforming the other methods in
terms of accuracy and runtime. Al-Hyari [15] further builds on [69] to propose MLCong,
a nine-step congestion estimation framework that implements and compares placement
prediction models: linear regression, K-Nearest Neighbor, ANN and Random Decision
Forests, and a test on 360 benchmarks—ranging from 0.1 to 1.1 million gates—provided
directly by Xilinx. The approach used by [15] is also shown in Figure 9. For this work, the
random forest algorithm yielded the best results due to having the shortest testing time
required. The proposed ML model reduced the average router runtimes by 19% compared
with the global router, while accurately capturing the characteristics of congestion in the
placed circuit. In an effort to obtain the correlation between congestion locations at global
routing and cell placement, a deep learning CNN model, DLRoute [70], is proposed that
determines whether it is possible to route a placement solution without the overhead of
a conventional router. The output is a binary (True/False) label indicating whether the
placement can be successfully routed. Despite achieving a high prediction accuracy (i.e.,
96%) and the inference times in milliseconds, it has some shortcomings, such as requiring
larger training sets, more training time, being computationally expensive and being less
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transparent than ML models. Martin [71] addresses these challenges by introducing the
ensembles techniques that merge multiple ML techniques into a single predictive model,
which outperforms DLRoute [70] in terms of accuracy, precision, sensitivity and specificity,
thereby further improving the prediction accuracy.

Figure 9. Placement using machine learning.

With regards to ML-based routability prediction, Qi [72] proposes a regression tech-
nique global routing model that reduces design rule violation at the cost of runtime over-
head. Zhou [16] proposes a detailed routability prediction model based on supervised
learning. Multivariate adaptive regression is performed to train the connection between
placement and detailed routing, achieving an average prediction accuracy of 79.8%. There
are proposed algorithms using Fuzzy C-Means [57] that consider the constraint of neighbor
information and have shown good performance on various types of images. The considera-
tion of neighborhood information makes them an attractive candidate for proposing an
effective placement strategy that would connect the blocks placed to each other, thereby
optimizing the wire density. Building on such algorithms to come up with an optimized
Placement strategy is yet another promising research direction.

3.4. Routing

The placed netlist is the input to the routing step. The routing link and placed netlist
can be modeled as a directed routing resource graph (RRG), thereby transforming the
routing problem into finding the shortest path in a graph theory, which has been solved
using several machine learning solutions [73,74]. However, very few of the proposed
solutions to find the shortest path have been applied to the FPGA CAD routing paradigm,
and they have their own sets of limitations. For example, the routing step has been
formulated as a deep reinforcement learning problem by employing a Deep Q-network that
conjointly routes the nets and the pins [75] in a simulated environment, which might not be
scalable to the actual routing environment. Farooq [76] proposed a reinforcement learning-
based solution to the routing problem by transforming the classical routing iterative process
into the training process of reinforcement learning. While moving from one node to another,
a reward (or penalty) is associated with the agent’s experience, which is taken into account
for the subsequent moves. The reinforcement learning scenario is depicted in Figure 10. The
results demonstrate a reduction in execution time by 30%. The work is further elaborated
in [77] by experimenting with the parameter ε in the proposed ε-greedy approach. The
ε value at 0.001 maintains a balance between a purely greedy and purely exploratory
approach and helps in exploring the solution space more efficiently, as shown by the results
on the two sets of open-source heterogeneous benchmarks used.



Electronics 2023, 12, 935 13 of 23

Figure 10. Learning problem explained through reinforcement learning.

We have cited some work at the placement stage that predicts the routing congestion
estimation, however, it is difficult to obtain a precise estimation of the routing information
at the placement step. Despite routing being a time-consuming and important step in
FPGA back-end flow, we have observed a dearth of machine learning solutions dedicated
to the task. However, there are some efforts worth adapting. Jain [73] models routing in
ICs as a binary segmentation problem and uses a CNN to classify pixels in each layout
layer—eight in total—to be on or off. The encoded layouts containing spatial locations of
pins to be routed are the inputs to the CNN. However, the usage of simplistic design rules
to assess CNN learnability together with the testing on the authors’ own designed datasets
does not give an accurate performance estimation of the approach. The authors of [74]
model the circuit routing as a sequential decision-making problem to solve it by Monte
Carlo tree search with deep neural network-guided rollout. Experiments on randomly
generated single-layer circuits might not be reflective of the routing needs for today’s
heterogeneous FPGAs. Another approach that can be exploited is formulating the routing
problem into a classical image processing problem and tackling the problem by machine
learning techniques. For example, Utyamishev [78] models the global routing problem
as an imaging problem that autonomously routes unseen layouts using a deep learning
system. Although there have been some efforts in utilizing machine learning algorithms to
route the placed netlists in FPGA, the work is still in the preliminary phase and it requires
significant effort from the research community. As the scale of FPGA circuits continues to
increase, without machine learning mechanisms, the time requirement for efficient routing
will also increase. Therefore, it is high time to explore machine learning-based solutions
that could improve the routing efficiency.

4. Research Challenges and Opportunities

It is critical to integrate ML algorithms in CAD for FPGAs, as this would reduce
the time to market by significantly improving the compiling time. Moreover, the ever-
increasing demand for performance and energy efficiency for Industry 5.0 applications
would require a dedicated effort towards the identified limitations in previous section. As
we identify in Table 1, there are several gaps in employing machine learning techniques
across FPGA CAD backend flow. This section is aimed at discussing the identified gaps in
Table 1 that will eventually improve the existing state of the domain. We observe that the
work cited in Section 3 has helped us identify the following six research opportunities:

• Lack of open-source benchmarks;
• Absence of machine learning-based complete backend flow;
• Multi FPGA-prototyping using machine learning;
• Domain-specific flow;
• Federated learning for FPGAs;
• Lack of explainability in ML-based flow.
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Table 1. Research opportunities identified to realize ML-based FPGA backend flow.

S. No CAD Step Objective ML Algorithm Limitations Opportunities

1 HLS

1. Estimate the
performance
evaluation with
respect to
time [51,52];

2. Design space
exploration [52,53];

1. Ensemble
regression model
(comprising
artificial neural
network, support
vector machine
and random
forest);

2. SA heuristic
combined with
regression
algorithm or
decision trees.

1. The high data dimensions
corresponding to numerous
features each corresponding to
different ML algorithm results
in computationally complex
model, longer training time,
overfitting and difficulties in
interpretation;

2. Removing some of the
correlated features to address
the above limitation resulted in
lower accuracy of respective
ML estimators;

3. Trade-off between quality of
results and running time as a
result of having 200+ generated
attributes.

1. Absence of
ML-based
complete
backend flow;

2. Lack of
explainability.

2 Logic
Synthesis

1. Approximate the
FPGA resource and
timing synthesis [55].

2. Predict accurate
mapping
patterns [62].

1. Linear regression,
neural network
and gradient tree
boosting.

2. Graph Neural
Network.

1. While the dataset leverages
some popular HLS benchmark
suites, it can be further
extended and improved by
incorporating additional
designs and data;

2. Arithmetic-intensive operation
mapping patterns have limited
estimation accuracy, as some of
the operation mapping patterns
are extremely challenging to
capture.

1. Multi-FPGA
prototyping
using ML;

2. Federated
learning-based
decentralized
approach for
model training.

3 Placement

1. Congestion
estimation (T/F
correlation between
global routing and
cell placement) [68];

2. Routing prediction
(reduces design rule
violation) [70].

1. Deep CNN;
2. Supervised

regression
technique.

1. Requires larger training sets,
more training time,
computationally expensive and
less transparent;

2. Longer run time overhead;
3. More memory usage.

1. Lack of
open-source
benchmarks that
could test the
entire training
test;

2. Lack of
explainability.

4 Routing

1. Conjointly routing
the nets and
pins [73];

2. Transforming the
iterative routing
process into
reinforcement
learning [74,75].

1. Deep
reinforcement
learning;

2. Reinforcement
learning

1. Simulated scenarios are not
scalable to the actual routing
environment;

2. Routing requirements might
differ for multiple FPGA, each
corresponding to a specific
domain;

3. The benchmarks used for
testing are not optimized for
ML algorithms.

1. Lack of
domain-specific
flow;

2. Decentralized
approach using
federated
learning for each
target platform.

Each of the identified opportunities represents a promising vision for the future re-
search direction. Active pursuit of these challenges will address the bottlenecks associated
with FPGA backend flow: inaccuracy, longer time to market, undesired manual inter-
vention, to name a few. This in turn will make it possible to link things with each other
and with people, as visualized in Industry 5.0 [1]. We explain each of these research
opportunities next.

4.1. Lack of Open-Source Benchmarks

Standard benchmarking practices are critical in order to evaluate FPGA systems and
determine their potential to support target applications. As evident from the previous
section, the FPGA industry is expanding to support Industry 5.0 applications and machine
learning and deep learning are at the core of it. The FPGA CAD metrics—logic capacity,
performance speed, resource utilization, power consumption, area required for placing
designs, etc.—only have meaning when measured using dedicated benchmarks. There is
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currently no existing opensource benchmark suite that consists of deep learning workloads.
Therefore, the lack of machine learning benchmark circuits to measure the deep learning
workloads is an important challenge. While MLSBench [79] was proposed recently, it
covers high-level synthesis only, which is technology-independent step of FPGA CAD flow.
The benchmarks relying on experimental flow, such as VTR [80] which maps the CAD
flow to map suites of designs to the target FPGA architecture, are difficult to rely upon
when evaluating FPGAs optimized for machine learning applications. This difficulty can
be attributed to two reasons:

1. Publicly available benchmarks such as Titan [80] lack the machine learning accelera-
tion examples;

2. Mapping algorithms in multiplication/addition operations in ML context requires
significant functionality implementation and such mapping algorithms are not trivial
to create, e.g., for AI tensor blocks [81] which require a great amount of multiplica-
tion/addition.

There have been some efforts to add dedicated ML blocks to the FPGA fabric to ef-
ficiently perform tensor operations. For example, Arora [82] proposes adding hardened
blocks to perform tensor operations such as matrix multiplication or element-wise compu-
tations. Intel’s AI Tensor Blocks are arranged in columns as well. However, such efforts
evaluate performance using a set of small matrix multiplication micro-benchmarks, written
by hand to target the hardware, which are insufficient. Recently, Roorda [17] discussed
the FPGA architectures in the context of deep neural networks and proposed a blueprint
benchmark to address the lack of suitable benchmark circuits. However, the proposed
blueprint benchmark has several limitations:

1. Not all embedded blocks are represented;
2. Not all aspects of deep neural network-based architecture are covered;
3. Benchmark is highly dependent on assumptions about critical metrics such as timing

delays and baseline architectures.

4.2. Machine Learning-Based Complete Backend Flow

As discussed in Section 3 of the paper, the work in [58] suggests a machine learning-
based synthesis solution for FPGA backend flow. They report an improvement of 138%
in performance and the results have greatly improved accuracy. Similarly, The authors
of [65] present machine learning-based solutions for FPGA placement. The authors report
a 5% improvement over conventional placement solutions in terms of wirelength and 1%
improvement in terms of critical path delay, while significantly improving the runtime.
They also report an accuracy of more than 85%. Additionally, the work in [76] uses a
reinforcement learning-based solution to speed up the routing and find a solution in a
short amount of time while not compromising the quality of solution. Optimization of the
FPGA CAD tool for one specific step—packing—is discussed in [83]. It is evident from the
work cited above that there exist individual solutions in the state of the art that provide
machine learning-based solutions for individual steps of the backend flow of FPGAs. These
solutions use a mixture of machine learning algorithms for different steps of FPGA backend
flow. Some of these algorithms are random forest, SVM and reinforcement learning, among
others. Although these solutions give good results for individual steps, they fail to provide
complete experience of the entire FPGA end-to-end flow. A lot of work has been done in
the conventional FPGA backend flow domain and there exist different flows that give an
end-to-end experience to the user for conventional backend flow [84]. However, to the
best of our knowledge, there is no FPGA backend flow that is based on machine learning
algorithms and that gives a complete experience from synthesis to routing. As discussed
in [84], having a complete flow is really important if we want to benefit from the efficiency
of modern machine learning algorithms. Otherwise, the time and efficiency gain achieved
in individual steps might be lost in moving from one tool to another, especially when each
tool is provided by separate contributors. From our point of view, this is a big opportunity
for researchers to devise a complete backend flow that provides an end-to-end experience



Electronics 2023, 12, 935 16 of 23

and that can be used to significantly speed up the FPGA backend flow and do so without
loosing the advantage of time and speed.

4.3. Multi-FPGA Prototyping Using Machine Learning

FPGAs were introduced to the consumer market a few years ago. Today, they are a
multi-billion-dollar market. Among many applications of FPGAs is prototyping of complex
Application-Specific Integrated Circuit (ASIC) applications. The prototype of an ASIC on
FPGA requires a multi-FPGA platform and along comes the backend flow for multiple
FPGAs. The steps for multi-FPGA prototyping are different from those of single FPGA
backend flow. They involve different algorithms and optimization objectives. For example,
a multi-FPGA prototyping flow requires inter-FPGA partitioning [85] whose main objective
is to minimize the cut-net count between different FPGAs. Similarly, the routing problem for
multi-FPGA prototyping is rather based on finding a feasible solution for tracks between
the FPGAs rather than finding a solution for intra-FPGA routing. There is significant
work that has been dedicated to multi-FPGA prototyping backend flow. However, all
of it is oerformed using conventional algorithms. For example, for partitioning, usually,
a min-cut-based partitioning approach is used [85]. For routing, usually, a negotiated
congestion-driven-based routing approach is used [86]. None of the existing solutions
use a machine learning-based approach for the backend flow of multi-FPGA prototyping
platforms. The backend flow of multi FPGA prototyping requires a considerable amount of
time. That time can be minimized by incorporating machine learning algorithms in multi-
FPGA prototyping platforms and this could be a big research opportunity for researchers
working in the FPGA backend flow domain.

4.4. Domain-Specific Flow

FPGA could be an efficient candidate solution for the implementation of domain-
specific accelerators such as Google’s TensorFlow. The availability of FPGAs in the public
clouds—Amazon AWS F1 [19] and Nimbix [87]—has made it possible to create a customized
application specific domain-specific accelerator. However, the unavailability of dedicated
FPGAs on-premise is a barrier that can be addressed by a domain-specific backend flow. The
backend flow should be tailored to the dedicated application, e.g., computer vision, speech
recognition, facial expression identification, image processing, natural language processing,
autonomous driving, etc., and the design of application-specific backend flow will be a
critical step towards the customized computing application design on the programmable
fabric of FPGA. For example, for autonomous vehicles requiring quick and rational decision
making, deep neural networks-based architecture seems to be the logical choice. In the case
of deep neural networks comprising of several layers, the FPGA processing units should
be placed as close to the training/testing data as possible. In existing CAD tools, each
application needs to achieve a dedicated design closure that requires manual intervention
in calibrating and configuring a large set of design parameters to achieve the desired QoS.
This manual effort in the existing CAD tools could require days for larger circuits. On
the contrary, the machine learning techniques used in multiple CAD flow steps, reviewed
in Section 3, are employed to achieve the results in an intelligent self-guided way. This
discrepancy is a major challenge requiring more research effort, and holds promise for the
domain-specific FPGA design while maintaining the reconfigurability.

4.5. Federated Learning for FPGA

The massive personalized data of Industry 5.0 applications implemented on SoC need
to be secured as it might contain sensitive information, pertaining to personal finances or
health. It has been demonstrated recently that both commercial and open-source FPGA
CAD tools are susceptible to various attacks. For example, authors in [88] demonstrate
how the original logic function can be tampered in Xilinx ISE. While introducing machine
learning algorithms in the FGPA backend flow, we are indirectly integrating the third-
party IP cores and data-analysis software, thereby compromising on the trustworthiness of
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CAD tools. Federated learning-based [89] methods have the potential to overcome such
security challenges as they take a decentralized approach to train the model for appropriate
CAD flow step, without anyone seeing or touching the complete training data set. This
could address the privacy and security concerns. However, federated learning comes
at the cost of increased computational complexity, which is exacerbated in the case of
heterogeneous platforms like FPGA. The increased computational cost is attributed to the
usage of algorithms such as FedAvg [89] to process the cryptographic and aggregation
security features inherent in federated learning. Recent studies show that while federated
learning is efficient for one specific algorithm [90], more research is required to address the
limitation of using federated learning for variable and flexible circuits, to make the most of
the reconfigurability associated with FPGAs. One such research effort is Microsoft’s Project
Brainwave [91] which is a high-performance distributed system rendered with Intel’s
Stratix FPGAs that use low-latency artificial intelligence algorithms. Another important
federated learning limitation that would require more focus is end-to-end training speed
of machine learning-based CAD algorithms, as model parameters are shared between
multiple participating nodes to keep the training data private. There is also a paradox
associated with federated learning-based methods. Despite their successful applications
towards users’ privacy, they introduce privacy challenges of their own. For example, a
malicious user can infer the FPGA’s training algorithm from the local learning model during
the communication with aggregation server, which could result in longer convergence time
of the employed CAD algorithm.

4.6. Lack of Explainability in ML-Based Flow

Section 3 provided a detailed discussion on the role of machine learning algorithms in
the FPGA backend flow. The studies cited in that section indicate that different machine
learning algorithms give efficient results for different steps of FPGA CAD flow. For example,
for HLS, SVM and random forest algorithms give good results, for logic synthesis, the use
of GNN is a good choice and for placement and routing SVM, KNN and RL algorithms
give good results. It is important to note here that a single machine learning algorithm
does not always give the optimal results for every step of the FPGA CAD flow. Moreover,
it is also interesting to note that the authors od those studies present the results, however,
the discussion behind the comparison of why one algorithm is better than the other is
usually missing.

This is mainly because of the complex nature of machine learning algorithms and as the
complexity of the algorithms grows, it becomes more difficult to explain or reconstruct the
underlying thought process [92]. Some of the most complex algorithms are so complicated
that even the engineers or researchers who designed them cannot explain how these
algorithms arrive at their conclusions. Under such circumstances, it is very important to
add some explainability to the ’black box’ nature of machine learning algorithms. This will
make the conclusions derived from an algorithm more understandable and add greater
explanation to their intended uses and possible biases. In this regard, some work has been
presented in explainable artificial intelligence (XAI) [93,94]. However, no work is available
on explainable machine learning from a FPGA CAD perspective. The goal of explainable
ML would be to add some reasoning to the findings and conclusion of machine learning
algorithms that are being used for FPGA backend flow. This transparency would render the
backend flow behavior more comprehensible and reliable for the end users and engineers
who use backend flow on a daily basis to implement new applications on FPGAs.

5. Discussion

The breakthroughs in the development of modern ML algorithms have provided a
significant opportunity to optimize the CAD flow process and maximize the value from
FPGA-based prototyping, which is an important step in the pre-silicon validation of next-
generation SoCs. However, each target SoC possesses unique needs and requires a wide
variety of chip designs being prototyped, with massive data processing requirement. The
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reprogrammable nature of FPGA together with custom parallelism guarantees the flexibil-
ity and variety required in the chip designs. The extensive data processing required can
be addressed by novel types of CAD platforms such as CAD as Adaptive OpenPlatform
Service (CAOS) [95], which heavily automates the development flow steps, while ensur-
ing usability, modularity and interactivity—three essential features to run and compute
intensive ML algorithms. The framework is hosted by novel architectures that provide
a complete integrated development experience, while accelerating an application on re-
configurable hardware. CAOS is conceived to provide interfaces that could enhance the
functionalities and services that result in adapting reconfigurable hardware in hard proces-
sor system (HPS). Such functionalities could include Acceleration-as-a-Service, which will
enable the CAD developers to materialize the end-user requirements of greater application
performance by exploiting new computationally intensive applications that would other-
wise be unfeasible or impractical. The FPGA manufacturing giants are already working
with industry partners to implement the cloud-based FPGAs for Industry 5.0 applications
requiring compute intensive SoCs. For example, Intel collaboration with Alibaba Cloud
offers two popular software development flows, RTL and OpenCL, to developers using
FPGA-based accelerator capabilities, as they work on large and intense computing work-
loads [96]. The SDAccel is a Xilinx environment that eases the process of accelerating
compute intensive algorithm employing sophisticated ML algorithms using FPGAs. The
algorithm design is optimized before downloading and running the design on acceleration
boards, thereby making it a viable choice for developers targeting FPGA-as-a-Service offer-
ings. The SDAccel environment offers tools and reports to analyze the host application’s
performance and identify potential areas for acceleration. In order to monitor hardware
performance in real time, the SDAccel tools also offer automated runtime instrumentation
of cache, memory and bus utilization. The same environment is used to create and run the
algorithms on the available FPGAs in Amazon Web Services (AWS) EC2 F1, which is one of
the first attempts to introduce high-performance reconfigurable computing systems to the
cloud [97]. In addition to a runtime based on the OpenCL APIs that may be used by the
host-side software to communicate with the accelerator, SDAccel offers the user a toolchain
for programming and optimizing the application on Xilinx FPGAs using a high-level lan-
guage (C, C++ or OpenCL). The cloud-based development environments, such as Alibaba
clouds [97], have testing benchmarks, such as Vivado, that the CAD user can benefit from,
while emulating and simulating the target design, comprising deep learning algorithms
for computing-intensive designs requiring data encryption, video compression, hardware
emulation, etc.

Figure 11 depicts the high-level architecture where the SoC applications for farming,
healthcare, FinTech, transport, drones, etc., could be developed at a higher abstraction
level, without worrying about the memory or other resource requirements. Despite being a
relatively new idea, we believe that this is a promising research spot that requires more
effort by the researchers in developing such cloud-based environments, so that they can
be an efficient solution of the research challenges discussed in Section 4. The dedicated
areas that will ease the path towards a smoother FPGA-as-a-Service (FaaS) will include
development of open-source benchmarks optimized for ML algorithms, an end-to-end-
consistent experience that covers all the steps of CAD flow, multi-FPGA prototyping tools
with the objective of intra FPGA optimization, engineering domain-specific accelerators
available on-premise and in-cloud for dedicated application development, engineering
explainable ML algorithms dedicated to CAD backend flow, and federated learning incor-
poration within the development process to ensure data security. Currently, handcrafted
solutions created by skilled designers outperform implementations created by the auto-
mated cloud-based frameworks such as CAOS. However, moving forward, with the advent
of computationally expensive ML algorithms, the big data processing volume will restrict
human involvement in CAD flow steps decision making, while these algorithmic decisions
will be used in the SoC applications, which are becoming more and more consequential
to society. For example, the United Nations Sustainable Development Goals [98] mention
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Industry, Innovation and Infrastructure, and SoCs are the basic building block of the all
innovative infrastructure, be it healthcare devices, sophisticated farming equipment or a
smart building constructed via 3D printing. The timeline to meet the SDG by 2030 indicates
that the modern trends identified in this work within FPGA CAD flow are a major research
opportunity for the international chip manufacturing industry that holds the promise of
actualizing Industrial Revolution 5.0.

Figure 11. High-level architecture of SDAccel IDE.

6. Conclusions and Future Work

The backend flow of FPGAs involves complicated and time-consuming steps and
the performance of the final design greatly depends upon the quality of the tools and the
experience and expertise of the designer using those tools. Recently, machine learning
algorithms have found their way into almost all stages of the FPGA backend flow. The main
objective of these algorithms is to minimize the implementation time without compromising
the quality of the final design and at the same time decrease dependence on the design
engineers. In this paper, we provide a comprehensive review of various machine learning
techniques and their usage at different stages of the FPGA backend flow. The review of
state-of-the-art work suggests that incorporation of machine learning algorithms such as
random forest, SVM, CNN, RL, etc., has greatly improved the implementation time without
compromising the quality of the design.

However, the usage of machine learning algorithms in the FPGA backend flow is still
in its infancy and a lot needs to be done. For example, most of the studies reviewed in this
paper use only a small set of benchmarks which is not available as an open-source resource
for academic research purposes. To rapidly advance research in this domain, it is important
to have a set of open-source and complicated benchmarks just like the conventional CAD
flow of FPGAs. Moreover, different studies address only a particular stage of the backend
flow and an end-to-end flow employing machine learning techniques from HLS to routing
does not exist. Furthermore, the complex nature of machine learning techniques often
renders the results produced through them inexplicable. This limits their application in
a particular domain and a lot of work is required to make them vastly usable in EDA in
general and FPGA CAD flow in particular. The cloud-based solutions, e.g., CAOS, seem
promising and require further exploration in the framework of the challenges discussed in
this work. In order to address the gaps in FPGA backend flow, the research community
needs to focus more on the aforementioned challenges and opportunities.
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