
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Efficient quadratic placement for FPGAs. Efficient quadratic placement for FPGAs.

Yonghong Xu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Xu, Yonghong, "Efficient quadratic placement for FPGAs." (2005). Electronic Theses and Dissertations.
1882.
https://scholar.uwindsor.ca/etd/1882

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72772589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1882&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1882?utm_source=scholar.uwindsor.ca%2Fetd%2F1882&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient Quadratic Placement for FPGAs

By

Yonghong Xu

A Thesis

Submitted to the Faculty o f Graduate Studies and Research through the

Department o f Electrical and Computer Engineering in Partial Fulfillment

o f the Requirements for the Degree o f Master o f Applied Science at

The University o f Windsor

Windsor, Ontario, Canada

2005

© 2005 Yonghong Xu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-11520-3
Our file Notre reference
ISBN: 0-494-11520-3

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Field Programmable Gate Arrays (FPGAs) are widely used in industry because they

can implement any digital circuit on site simply by specifying programmable logic and

their interconnections. However, this rapid prototyping advantage may be adversely

affected because o f the long compile time, which is dominated by placement and routing.

This issue is o f great importance, especially as the logic capacities o f FPGAs continue to

grow.

This thesis focuses on the placement phase o f FPGA Computer Aided Design (CAD)

flow and presents a fast, high quality, wirelength-driven placement algorithm for FPGAs

that is based on the quadratic placement approach.

In this thesis, multiple iterations o f equation solving process together with a linear

wirelength reduction technique are introduced. The proposed algorithm efficiently handles

the main problems with the quadratic placement algorithm and produces a fast and high

quality placement. Experimental results, using twenty benchmark circuits, show that this

algorithm can achieve comparable total wirelength and, on average, 5X faster run time

when compared to an existing, state-of-the-art placement tool.

This thesis also shows that the proposed algorithm delivers promising preliminary

results in minimizing the critical path delay while maintaining high placement quality.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to express my sincere appreciation to my supervisor Dr. Mohammed A. S.

Khalid for his guidance and encouragement. He introduced me to this interesting research

area and guided me throughout my thesis with great patience. I would like to thank the

members o f my thesis committee, Dr. C. Chen and Dr. W. Altenhof for their advice

regarding the research process and their assistance in the preparation o f this thesis. Here, I

would also like to thank Dr. S. Erfani and Dr. K. Tepe for their help during my Masters

program at the University o f Windsor.

I am grateful to my wife who accompanied me all these years. Her understanding and

support made things easier for me. I am indebted to my parents. They gave me the

opportunity to pursue my own life. I would not have reached this milestone in my life

without their continuous encouragement and support.

The financial support provided by the Ontario Graduate Scholarship Program (OGS) is

gratefully acknowledged.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents

Abstract...iii
Acknowledgements.. iv
List o f Figures.. vii
List o f Tables...ix
Abbreviations..x

Chapter 1: Introduction...1
1.1 VLSI Design Styles.. 1
1.2 Motivation.. 3
1.3 Research Approach..4
1.4 Thesis Organization...4

Chapter 2: Background and Previous W ork..6
2.1 FPGA Architecture...6
2.2 FPGA Design F low ..9
2.3 Definition o f FPGA Placement Problem... 10

2.3.1 Half-Perimeter Bounding Box Wirelength M odel.................................. 11
2.4 Placement Algorithms for FPG A s... 13

2.4.1 VPR Placement Algorithm... 15
2.4.2 PPFF: Partitioning-based Placement for FPG As.....................................19
2.4.3 Ultra-Fast Placement... 21

2.5 Quadratic Placement Techniques... 22
2.5.1 Essentials o f Quadratic Placement... 23
2.5.2 Linear Equation Solver.. 24

2.6 Quadratic Placement Algorithm Examples.. 27
2.6.1 GORDLAN.. 27
2.6.2 GORDIAN-L...28
2.6.3 FastPlace... 29

2.7 Summary... 30
Chapter 3: A Quadratic Placement Algorithm for FPG A s..................................31

3.1 Two Main Problems in Quadratic Placement... 31
3.2 Overview o f the QPF Algorithm.. 33
3.3 The Node Mapping Process.. 35
3.4 The Expansion Process.. 38

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Linear Adjustment.. 41
3.6 Low Temperature Simulated Annealing.. 43
3.7 Computational Complexity... 45
3.8 Summary..47

Chapter 4: Experimental Results and Analysis...48
4.1 Experimental Evaluation Environment.. 48
4.2 Effects o f Key Parameters and Techniques on Placement Quality... 49

4.2.1 Compensation Factor...49
4.2.2 Expansion..50
4.2.3 Linear Adjustment..50
4.2.4 Starting Temperature... 50

4.3 Comparison Between QPF and V P R .. 56
4.4 Quality and Time Tradeoff... 60
4.5 Critical Path Delay Comparison with V P R .. 61
4.6 Summary... 63

Chapter 5: Conclusions and Future Work.. 64
5.1 Conclusions and Contributions.. 64
5.2 Future W ork... 65

Reference.. 67
Appendix A: Basic Data Structures.. 72
VITA AUCTORIS... 74

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

Number Page

Figure 1.1 VLSI Design Styles..2

Figure 2.1 FPGA Architecture..7

Figure 2.2 Programmable Connection Box and Switch B o x 8

Figure 2.3 Structures o f (a) Basic Logic Element and (b) Cluster

Logic Block..8

Figure 2.4 FPGA Design Flow..9

Figure 2.5 Half-Perimeter WireLength M odel..12

Figure 2.6 Pseudo-codes for Basic Simulated Annealing

Placement-based Algorithm... 15

Figure 2.7 Illustration o f The Terminal Alignment Technique....................20

Figure 2.8 Abstract View o f Multi Level Clustering..................................... 21

Figure 2.9 Pseudo-codes o f Preconditioned Conjugated Gradient

M ethod...26

Figure 3.1 Illustration o f Overlap Problem for Quadratic Placement.........32

Figure 3.2 Linear vs. Squared Wirelength: a) Squared Objective Model.

b) Linear Objective M odel.. 33

Figure 3.3 Overview o f QPF Algorithm.. 34

Figure 3.4 Over o f Mapping... 36

Figure 3.5 Balance Sequence...37

Figure 3.6 Pseudo-codes o f Node Mapping Process(P)................................37

Figure 3.7 Overview o f Expansion Process...38

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.8 Add a Dummy Node a) Origin Node Position & Dummy

Node b) Reference Node Position After Mapping

c) Result o f One Iteration o f Expansion.................................... 40

Figure 3.9 Wirelength Contribution o f One Node Connected to

Three N ets..42

Figure 3.10 Linear Adjustment Used in a) Stage 1, b) Stage 2 43

Figure 4.1 CPU Time Comparison vs. Number o f Blocks........................... 58

Figure 4.2 The Relationship between Normalized Wirelength Penalty

and Time Consumption in QFP Algorithm 59

Figure 4.3 Quality vs. Time Tradeoff Comparisons between QPF

and V PR ...61

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Number Page

Table 2.1 Compensation Factors for Net with Less Than 50 Terminals ... 13

Table 2.2 VPR Temperature Update Schedule..18

Table 4.1 The Wirelength Comparison o f Original Quadratic

Placement Before and After the Compensation

Factor is Applied..52

Table 4.2 The Effect o f One Iteration o f Expansion Process

on Placement Quality..53

Table 4.3 Effect o f One Linear Adjustment Step on Placement Quality... 54

Table 4.4 Effect o f Different Starting Temperatures

on Placement Quality..55

Table 4.5 Comparison o f Placement Results Obtained

by QPF and V PR ... 57

Table 4.6 Comparison between QPF with Timing-driven Refinement

and Timing-driven VPR... 62

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abbreviations

ASIC: Application-Specific Integrated Circuit

BLE: Basic Logic Element

CAD: Computer-Aided Design

CG: Conjugated Gradient

CLB: Configurable Logic Block

CPLD: Complex Programmable Logic Device

FPGA: Field-Programmable Gate Arrays

HDL: Hardware Description Language

HPWL: Half-Perimeter WireLength

LUT: Look Up Table

MCNC: Microelectronics Centre o f North Carolina

MPGA: Mask-Programmed Gate Arrays

NP: Non-deterministic Polynomial-time

PLD: Programmable Logic Device

QPF Quadratic Placement for FPGAs

VLSI: Very Large Scale Integration

VPR: Versatile Placement and Routing tool for FPGAs

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Advances in microelectronics and VLSI (Very Large Scale Integration) circuits have

contributed to the tremendous growth and pervasiveness o f the global electronics industry

in the past few decades. One rapidly growing area o f microelectronics is Field

Programmable Gate Arrays (FPGAs). FPGAs are widely used for implementing digital

circuits because they offer moderately high levels integration and the ability to program

and reprogram the chip in the field by the end user. A Computer Aided Design (CAD) tool

suite is needed for mapping user designs on to the FPGA chip. This mapping CAD flow

consists o f a series o f steps: logic synthesis, technology mapping, placement and routing.

This subject o f this thesis is efficient quadratic placement for FPGAs.

1.1 VLSI Design Styles

Usually there are several design styles that can be considered for implementing a

digital system. As is illustrated in Figure 1.1, each design style has its own merits and

shortcomings [1].

In Full Custom design, major parts o f chip layout are designed from scratch without

utilizing any cell libraries. This can create compact and power/area efficient chips.

However, the development cost o f such a design style is becoming prohibitively high and

this is usually used only for the design o f high-volume products such as memory chips,

high- performance microprocessors and FPGA masters.

l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Standard Cell and Masked Programmed Gate Arrays (MPGA) are semi-custom

designs. Users work one some pre-developed cells to implement their circuits. In Standard

Cell design, all o f the commonly used logic cells are developed, characterized, and stored

in a standard cell library. Once the circuit is mapped, these cells are arranged in horizontal

rows within the chip boundary. The spaces between these rows are used to implement the

interconnections between the cells. An MPGA device consist o f an array o f uncommitted

elements (usually rows o f transistors), and most o f the mask layers are pre-defined by the

manufacturer. Users define the final metal layers to connect the transistors in the array, so

as to implement their designs.

CPLD FPGAM C A

Full Custom Semi-Custom

Standard Ce

VLSI Design

Programmabl e Logic
Device (PLD)

Figure 1.1 VLSI Design Styles

Programmable Logic Device (PLD) design style provides users with pre-fabricated

array o f programmable logic and interconnections [2]. Users can configure the final logic

structure o f the device by themselves so that no fabrication step is need in this design style.

The difference between Complex Programmable Logic Devices (CPLDs) and Field

Programmable Gate Arrays (FPGAs) is their structure and logic resources. CPLDs mainly

consist o f two levels o f programmable logic; an AND plane and an OR plane, and a wide

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number o f inputs. While FPGAs have a more general structure that allows high logic

capacity and flexibility (details o f FPGA architectures are presented in Chapter 2).

Since no physical manufacturing step is necessary for customizing the FPGA chip, a

functional sample can be obtained almost as soon as the design is mapped into a specific

FPGAs chip. This gives FPGAs significant advantages over the custom designs.

1.2 Motivation

To implement a digital circuit with FPGAs, a set o f CAD tools are needed to map a

user design into bitstream file that are required to configure the FPGA chip. These tools

first transform the circuit description (expressed using hardware description language such

as VHDL or Verilog) into a netlist o f technology-mapped logic blocks and their

connections. Then placement and routing steps are done so that these logic blocks are

assigned to physical locations on the FPGA and interconnected correctly. Finally this

location and connection information is transformed in to bitstream file that is downloadable

for FPGAs. This thesis focuses on the placement part o f this process.

Quality and speed are two key metrics for evaluating the goodness o f a CAD tool. Now

that recently announced FPGAs contain the equivalent o f 40-million gates, the compile

time is more important than ever. For some large circuits, this CPU compile time, which is

dominated by placement and routing, can be in the order o f tens o f CPU hours.

For a placement tool, high quality means that we can implement more digital logic in

an FPGA chip and may also achieve a better circuit performance by utilizing the placement

tool. Fast speed means we can get the desired placement within shorter time so that the turn

around time o f our products will be reduced as well. Unfortunately, the current placement

tools that provide high quality solutions require a large amount o f CPU time. While other

tools with fast speed give poor quality. There is a great need for placement tool that run in a

reasonable amount o f CPU time while still generating high quality solutions.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Research Approach

Our research goal was to find a fast algorithm for placement that produces high quality

result. We create a fast placement tool based on quadratic technique and integrate it into

Versatile Placement and Routing tool for FPGAs (VPR) [3][4], which is a well known,
t

high quality placement and routing tool for FPGAs. We evaluate our placement tool with

respect to VPlace (the placement part o f VPR) based on both runtime and placement

quality by running both algorithms on the same computation platform with the same suite

o f benchmark circuits and the same FPGA architecture.

VPlace is based on the simulated-annealing based algorithm that is widely used in

academia and industry. It starts with a random initial placement and improves it by large

number o f swaps and moves o f nodes. This algorithm can achieve the best placement

quality with a large amount o f time. It spends a lot o f time on examining the poor initial

placement, which does not contribute significantly to the final result.

Our efficient placement algorithm uses the quadratic technique to create a reasonably

good placement within a very short time, and only uses simulated annealing algorithm to

refine the final placement. It combines the fast speed o f quadratic based placement

algorithm and the high quality o f simulated annealing based algorithm.

1.4 Thesis Organization

The thesis is organized as follows:

Chapter 2 contains an introduction to FPGA architectures, generic CAD procedure for

FPGA-based designs. Then we give the definition o f FPGA placement problem. In this

chapter we also describe the previous works on FPGA placement, as well as some related

topics o f quadratic technique.

In chapter 3, we first describe the common problems with the quadratic placement

method. Then we introduce our proposed placement algorithm and explain how we deal

with these problems in details. We also give a time complexity analysis o f our proposed

algorithm.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 presents the results obtained from running our tool on a suite o f large

benchmark circuits, using a simple and general FPGA architecture. We show the effects o f

key techniques in our proposed algorithm on placement quality, by presenting and

analyzing relevant experimental data. We also provide a comparison between our tool and

VPR, which is a well-known, high-quality placement and routing tool for FPGAs.

Chapter 5 highlights the key results from our research, and proposes possible

directions for future research in this area.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background and Previous Work

This chapter presents the background o f placement for FPGAs and the previous work

done in this area. The FPGA architecture is described in section 2.1. The general FPGA

design flow is discussed in Section 2.2 and the definition o f FPGA placement problem is

given in Section 2.3. Some placement algorithms developed for FPGAs are summarized in

section 2.4. Essentials o f quadratic placement and related techniques are discussed in

section 2.5. Finally section 2.6 gives an overview o f well-known quadratic algorithms used

in ASIC placement.

2.1 FPGA Architecture

An FPGA is a completely re-configurable logic chip. Similar to traditional hardwired

gate arrays, the chip consists o f an array o f logic elements. In the traditional gate arrays,

these gates are specified and interconnected at the manufacturing stage. The FPGA differs

in that it can be programmed, and re-programmed by the users. Although there are a wide

variety o f architectures for commercial FPGAs, all FPGAs are composed o f three

fundamental components: logic blocks, I/O blocks and programmable routing resources. A

circuit is implemented in an FPGA by programming each o f the logic blocks to implement

a small part o f the logic o f the circuit, and the I/O blocks serve as the input and output pads

o f the circuit. The programmable routing resources are used to connect these logic blocks

and I/O blocks together as required by the circuit. Figure 2.1 shows the FPGA architecture

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model used in this thesis. This FPGA architecture is also used by VPR. And many

researchers and CAD tools also employ this model as their prototype [3][5].

/(> Pad

S Swi tch Box

C C o n n e c t io n Box

Routing Channe

Figure 2.1 FPGA Architecture

As illustrated in Figure 2.1, the I/O blocks are assigned around the chip edges. And the

logic blocks are scattered on the chip region like islands. Between the logic blocks, are the

routing resources, which include switch box, connection box and routing segments. A

connection box can be programmed to connect to a CLB to routing channels. A switch box

is a switch matrix that is used to connect wires in one channel to the wire in another

channel. Figure 2.2 shows how the connection box and switch box are used to connect the

logic blocks as required by the circuit.

Logic blocks are constructed by using Look Up Tables (LUTs) and D flip-flops.

Usually, we refer to a LUT and a D flip-flop combination as a Basic Logic Element (BLE)

and a logic block can contain one or more such BLEs. Figure 2.3 shows the structure o f

logic blocks. In this thesis, we will use logic blocks that contain one BLE.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r
. { Switch
- J Block

Connection
Bl ockJ T" ""

Figure 2.2 Programmable Connection Box and Switch Box

I n puls K-input
1.11 D IT

Clock — ► >

N
Out

(a) Bsic logic element

/
Inputs

Clock

O utputsBLEs

BLE

BLE

FPG A
(b) Cluster logic block

Figure 2.3 Structures o f (a) Basic Logic Element and (b) Cluster Logic Block

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 FPGA Design Flow

To implement a circuit in a modem FPGA chip, a sequence o f mapping steps are

needed. Typically users o f FPGAs describe the circuit using a hardware description

language or schematic input. The CAD tools take this description and compile it into a

bitstream file programs the FPGA chip to implement the desired circuit. The FPGA design

flow is shown in Figure 2.4.

Design Entry

FPGA bit-stream file

Routing

Placement

Logic BlockPacking

Synthesis & Logic optimization(SIS)

Technology map to LUT(Flowmap)

Figure 2.4 FPGA Design Flow

The design entry is the input circuit that the users developed by using a hardware

description language (HDL) such as VHDL or Verilog. Other methods are using a state

machine description language or a schematic.

The first stage o f the design flow first converts the circuit description into a netlist o f

basic gates. Technology-independent logic optimization removes the redundant logic

wherever is possible [6]. Then the optimized netlist o f basic gates is mapped to look-up

tables.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Logic block packing combines the LUTs and registers into Configurable Logic blocks

(CLBs). In this phase, connected LUTs are packed together so that the number o f signals to

be routed between CLBs is minimized. A CLB might contain one or more BLEs depending

on the architecture o f the FPGA [3].

The placement process determines the physical location that every logic block o f the

circuit should be assigned to. The optimization goals o f placement are to place the

connected logic block close together so that the required wire length is minimized.

Sometimes other objectives such as wiring density [7] and circuit delay [8][4] are also

considered.

Routing process determines how the routing resources are programmed to connect all

the logic blocks as required by the circuit. FPGA routers can be divided into combined

global-detailed routers [9], witch determines a complete routing path in one step, and two

step routers, which first perform global routing and then detailed routing.

Once the routing process is completed, a CAD tool will create a bitstream file

according to the target FPGA architecture. When this file is downloaded to the target

FPGA, it configures the logic blocks and routing resources o f the target FPGA to

implement the desired digital circuit.

2.3 Definition of FPGA Placement Problem

Placement problems can be formulated as optimization and constraint satisfaction

problems. The input netlist that represents the nodes and their interconnections in a logic

circuit is described by a hyper-graph. The vertices o f the hyper-graph represent circuit

elements (logic blocks for FPGAs). Placement can be defined as follows [10]:

Given an electrical circuit consisting o f modules (logic blocks) with predefined input

and output terminals and interconnected in a predefined way, construct a layout (physical

location) indicating the position o f the modules so that the estimated wire length and layout

area are minimized or other constraints are met.

More formally, the placement problem can be expressed as [11]:

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Given: A hyper-graph G = (V, E) representing the circuit, where V is the set o f

vertices (logic blocks), and E is the set o f edges (nets), with edge weight

w(e) e (0,+oo) for each e e E ; an FPGA grid o f s iz e r x s , where r ,s e N ,

and r x s > 4 n , n is the number o f nodes.

• Find: All placement mappings p : V —> [l, r] x [1, 5] o f blocks to physical locations

on the FPGA grid.

• Minimize: A cost function c(p).

The most commonly used cost function for FPGA placement is the total wire length

required to complete the routing. Because the cost o f the device is proportional to the

amount o f silicon required to implement it. If we can minimize total wire length used to

route the circuit, the area required for the circuit will be minimized. Hence we can use a

smaller (and cheaper) FPGA to implement the circuit. A placement that strives to minimize

the total wire length is referred to as wirelength-driven placement. There are also other

objectives that can be added to the cost function. For example, placement can be done to

minimize the length o f a critical path to meet some timing constraints, referred to as

timing-driven placement [8] [4]. Or to balance the wire density across the FPGA device,

referred to as routability-driven placement [7].

In this thesis, we use the wirelength minimization as our cost function. This is the first

step in FPGA placement research. Timing-driven placement and routability-driven

placement algorithm also strive to minimize the total wirelength as well.

2.3.1 Half-Perimeter Bounding Box Wirelength Model

As we described earlier, placement stage only tries to determine the physical location

for every logic element o f the circuit. We do not have any ideas about how these elements

are to be connected in the routing stage. That means that we do not know the actual total

wirelength o f the current placement. We have to use some approximations to estimate the

total wirelength and use this as a metric to evaluate any given placement. There are various

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approximation techniques available [12][13][14][15] and the Half-Perimeter Wire Length

(HPWL) model is the most widely used method [10].

Figure 2.5 shows how the half-perimeter wirelength model works. In Figure 2.5, Net(i)

has 8 terminals and is placed on a FPGA chip. The bounding box is defined as the smallest

rectangle that covers the net.

Bounding Rectangle

The half-perimeter wire length is defined as:

HPWLnel(i) = {Max(xb) - Min(xh) +1) + M ax{yb) - M in(yb) +1}, b e net(i)

In this case, a 5x4 bounding box covers the 8-terminal Net(i), the HPWL=(5+4)=9.

When the number o f terminals o f the net is less than or equal to three, HPWL is an

accurate estimation o f the actual wire length. Otherwise, HPWL underestimates the wire

length required to connect all terminals o f the net. A q(i) factor [16][3] is introduced to

compensate for the fact that the HPWL model underestimates wirelength in case number o f

net terminals is greater than three. For nets with three or fewer terminals, q(i) is 1. It slowly

N c t (i) _
8 t e r m i n a l s

Figure 2.5 Half-Perimeter WireLength Model

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

increases to 2.79 for nets with 50 terminals, as shown in table 2.1. For nets that have more

than 20 terminals, the value o f q(i) linearly increases as:

q(i) = 2.7933 + 0.02616x(NumOfTerminals - 50) [3] (2.1)

Table 2.1 Compensation Factors for Net with Less than 50 Terminals

#Term q(i) #Term q(i) #Term q(i) #Term q(i) #Term q(0

1 1.0 11 1.4974 21 1.9288 31 2.2646 41 2.5610

2 1.0 12 1.5455 22 1.9652 32 2.2958 42 2.5864

3 1.0 13 1.5937 23 2.0015 33 2.3271 43 2.6117

4 1.0828 14 1.6418 24 2.0379 34 2.3583 44 2.6371

5 1.1536 15 1.6899 25 2.0743 35 2.3895 45 2.6625

6 1.2206 16 1.7304 26 2.1061 36 2.4187 46 2.6887

7 1.2823 17 1.7709 27 2.1379 37 2.4479 47 2.7148

8 1.3385 18 1.8114 28 2.1698 38 2.4772 48 2.7410

9 1.3991 19 1.8519 29 2.2016 39 2.5064 49 2.7671

10 1.4493 20 1.8924 30 2.2334 40 2.5356 50 2.7933

In this thesis, we use HPWL model to estimate the wirelength and the total wirelength

is computed as

N

Total _ Wirelength — Y , ‘l(‘) x H P W l„ ln (2.2)
(= 1

2.4 Placement Algorithms for FPGAs

Placement is a Non-deterministic Polynomial-time (NP) complete [38] optimization

problem. If given the right information, the exact solution o f placement problem cannot be

verified in polynomial time. The time complexity for obtaining an optimal solution for

placement o f n modules is 0(n!). Except for very small circuits, there is no efficient way to

compute an exact solution using a computer program. Approximation methods, also

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

referred to as heuristics, are used to obtain a good solution in reasonable time. Currently

popular placement algorithms can be divided into three major classes: partitioning based

placement, quadratic placement, and simulated annealing based algorithm.

Partitioning based algorithms [17] [18] repeatedly divide the given circuit into densely

connected sub circuits by applying partitioning techniques, such as Kemighan-Lin (KL)

[19] and Fiduccia-Mattheyses (FM) [20] partitioning algorithms. These algorithms

partition the given circuits into sub circuits and minimize the interconnection between the

different partitions. Since the interconnection usually means the wiring in the circuit, the

partitioning algorithms minimize the total wirelength as well. Recently, more

partitioning-based placement algorithms were introduced to solve the placement problem

[21][22][23],

In quadratic placement algorithms, we build up linear equations from the

interconnectivity o f the input circuits and try to minimize the objective function by solving

the equations. This technique reduces the placement problem to the solution o f a system of

linear equations and is widely used for ASIC placement.

Simulated annealing based placement algorithms start with an initial (legal) placement

and repeatedly modify it in search o f a cost reduction. If a modification results in a

reduction in cost, the modification is accepted; otherwise it is accepted or rejected based on

a number o f factors.

Initially most o f these algorithms were developed for ASIC placement. After the

emergence o f FPGAs in mid-1980s, some o f these algorithms were modified for FPGA

placement. In the following sections, we will introduce three o f these algorithms. They are:

the VPR placement algorithm [3] [4] which is based on simulated annealing; PPFF

placement algorithm [23] which is based on partitioning algorithm; and Ultra-Fast

Placement algorithm [5] which is a placement algorithm that uses a combination o f

simulated annealing and clustering techniques.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.1 VPR Placement Algorithm

As we mentioned above, the VPR placement algorithm [3][4] is based on simulated

annealing algorithm. Simulated annealing is a well-developed and widely used algorithm

for solving combinatorial optimization problems, including those used in CAD for VLSI

physical design automation. As the name suggests, this algorithm mimics the annealing

process used to gradually cool molten metal to produce high quality metal structures. An

ideally annealed crystal should be in the lowest energy state, which corresponds to an

optimum configuration in a combinatorial optimization problem.

X = Initial_Random_Placement();
T = Set_Initial_Temperature(); /* T=T0 */
Dlimit = Set_Initial_Range_Limit(); /* Dlimit = whole chip */
while (Exit_Criterion() == false) { /* annealing not done yet */

while (Inner_Loop_Criterion() == false) {/*work per temperature not done yet*/
Xnew = Generate_Move(X, Dlimit);
/* return a new configuration generated incrementally from previous one */
/* by random pairwise exchange or translation within range limit */
AC = Cost(Xnew) - Cost(X); /* calculate change in cost */
r = Get_Random_Number(0,l);
/* r = random number uniformly distributed between 0 and 1 */
if (r < e -AC/T)
X = Xnew; /* update current placement */
/* always accept move (p=l) if it improves placement (AC < 0) */
/* accept “bad” moves (AC > 0) with probability p = e -AC/T */
/* when T is large, all bad moves likely to be accepted, */
/* when T is small, only bad moves with small AC likely to be accepted */

} /* end inner loop */
/* exploration at current temperature complete */
T = Update_Temperature(a, T); /* T = aT */
Dlimit = Update_Range_Limit(D limit);

} /* end outer loop */
/* annealing complete, X = final placement solution */

Figure 2.6 Pseudo-codes for Basic Simulated Annealing Placement-based Algorithm

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.6 shows the pseudo-code for the simulated annealing algorithm. The

reference [24] contains a detailed description o f the basic algorithm and the various cost

functions used for the different types o f placement problems.

A simulated annealing based placement algorithm initially places logic blocks and I/Os

o f the circuit randomly on the FPGA chip. The temperature (T) is used to determine the

probability o f whether configurations that reduce the quality o f the placement will be

accepted. Parameter D controls the distance that a logic block is to be moved. Initially D is

set such that a logic block can be moved to any location in the entire chip area. This

indicates that initially all the logic blocks can be selected and moved to any other place

even if the moves deteriorate the quality o f placement. Given this random initial placement,

a source logic block is chosen randomly. Then, a target location is chosen at random for this

logic block within the displacement range specified by D. If the target location is occupied,

then the target logic block is swapped with the source logic block and the cost o f the swap is

evaluated. And if the target location is empty, the source logic block is placed in the target

location and the new placement is evaluated. If the new cost is less than the cost o f the

previous placement, the move or swap is accepted. Otherwise, the move or swap is only

accepted with probability e ~&c/T, where AC is the change in placement cost duce to the

move or swap, and T is the current temperature. As the placement quality improves, the

temperature is gradually reduced, make it less likely for bad moves and swaps that degrade

the placement will be accepted. Eventually, the value o f T will be reduced to a low value

such that only the moves and swaps that improve the placement quality will be accepted,

making the heuristic greedy at that point. The parameter T is what permits probabilistic hill

climbing to take place and helps the placement solution avoid being trapped in local

minima.

As we can see from Figure 2.6, besides the cost function that defines the basic way to

evaluate a placement, there are also some crucial details that affect the annealing process.

They are: the rate at which the temperature is reduced (called the temperature update

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

factor), the number o f configurations to explore at each temperature (known as the inner

loop criterion, or InnerNum), the exit criterion by which the annealing algorithm

terminates, and the behavior o f the range limiting mechanism These parameters, together

with the cost function, determine the quality o f the simulated annealing algorithm. When

VPR employs the simulated annealing algorithm for FPGA placement, a new cost function

and a dynamic adaptive annealing schedule is introduced [3]. It includes some o f the

features from the work done on annealing schedules by Huang et al. [25], Lam and Delssme

[26], and Swartz and Sechen [27]. It also implements a novel temperature update scheme

and stopping criterion, together with a bounding box wirelength cost function.

In VPR placement algorithm, the initial temperature T0 is set to 20 times the standard

deviation in cost after a set o f N blocks pair-wise moves have been attempted, where N blocks

is the total number o f logic blocks and I/O pads in the circuit. The temperature T0 is high

enough to ensure that almost all early moves and swaps are accepted. The number o f new

configurations evaluated at each temperature T is set to:

MovesPerT = InnerNum x (Nblocks)4 3 (2.3)

where the scaling factor InnerNum, is set to 10 by default, give a best quality at reasonable

CPU run time.

VPR placement algorithm uses a dynamic adaptive annealing schedule. Most o f the

annealing parameters are updated according the acceptance rate o f the moves and swaps at

the current temperature. Table 2.2 shows the how the temperature update factor, C is

automatically determined according to the acceptance rate ate the current temperature

stage. The temperature is reduced in a way such that if there is little change in cost, the

temperature is reduced by a larger fraction. Tnew = a ■ Told Initially, when the temperature

is very high and almost all moves are accepted, these moves and swaps do not make much

difference. The temperature update factor, a, is set to a very low value, which makes the

temperature drops very fast in this stage. When the annealing process goes on, some moves

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are accepted and some are not. In this case, the temperature update factor, a, is set to a

larger value so that the placement can be thoroughly explored at the temperature. In final

stage, since most moves are rejected and the placement does not change a lot, the

temperature will again reduce quickly.

Table 2.2 VPR Temperature Update Schedule

Fraction o f Moves Accepted

(R a c c e p t)

Temperature Update Factor (a)

R a c c e p t >0.96 0.5

0.8<RaCcept<=0.96 0.9

0.15<Raccept<=0.08 0.95

R a c c e p t < -= 0 - 1 5 0.8

It is shown in [27] [26] that the most desirable annealing schedule is one that keeps the

acceptance rate o f moves near 0.44 as long as possible. VPR placement algorithm also

employs this by utilizing the value o f the acceptance rate to control the range limiter

as:

0 ; Z = D ^ , x (l - 0.44 + « „ „ „) (2.4)

and D lmut <= [1, max_ FPGA _ width}

If the acceptance rate is less than 44%, the range will be shrunk. Otherwise it is

expanded. Typically, this range limit covers the whole chip at the beginning, and gradually

shrinks tol at the end o f the annealing.

The VPR placement simulated annealing schedule exits when the temperature falls

below a certain fraction o f the average cost per net.

^ 0.005 x Cost n ^
h < ^ ^

nets

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Even with a good annealing schedule, a large number o f potential swaps will be

evaluated during the placement. And the most computationally expensive part o f

evaluating a swap is computing the change o f cost A C . VPR placement algorithm also

developed an incremental bounding box evaluation technique to speed up this computation.

For each net, a data structure is designed not only contain the coordinates o f the o f the four

sides o f the net bounding box, but also the number o f logic blocks that lie on each side. This

information is used to determine the new net bounding box after a swap by only examining

the logic blocks that moved. The net cost is recomputed only when the terminal moved is

the only net terminal on a side o f the bounding box and it is moved toward the bounding

box center. This technique, on average, yields a five-fold speedup over ten large MCNC

benchmark circuits.

2.4.2 PPFF: Partitioning-based Placement for FPGAs

Partitioning-based placement algorithms are based on graph partitioning algorithms

such as FM and KL. An FPGA is divided into two or more sub-regions, and a circuit

partitioning algorithm is applied to determine which logic block should go to which

sub-region to minimize the number o f cuts in the nets that connect the blocks between

partitions, and leave the highly connected blocks in one partition. This recursive process is

repeated until each partition is small enough to be finally placed. The partitioning based

placement algorithms are referred to as top-down algorithms. B y partitioning the problem

into sub regions, a drastic reduction in search space can be achieved so that they can

achieve very high speed. However, cut size is an indirect approach to wirelength, the

placement quality is not guaranteed. Other techniques are required to further improve the

quality.

PPFF [23] is a partitioning based placement algorithm that employs both hMetis [28]

partitioning program and VPR simulated annealing techniques to achieve a final placement

for FPGAs.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PPFF placement is done by recursively partitioning the circuit by using hMetis while

maintaining a tight connection between the circuit graph and the placement. Recursive

partitioning is done when each leaf in the hierarchical partition tree contains less than a

constant number o f logic blocks (e.g. six). If some o f the partitions may have more logic

blocks than they can accommodate after the partitioning, the overlaps are removed by using

a greedy technique that moves the logic blocks to the closest available partition. Finally,

simulated annealing is applied to refine the placement.

The key idea o f PPFF is that it applies a net terminal alignment technique during the

partitioning process. Since partitioning algorithms partitioning the circuit into sub-circuit

only according to the interconnection o f the circuit and do not care about the actual position

o f the logic blocks, it will results in a fact that after the placement is done, although the cut

size o f each level o f partitioning is minimized, the total wirelength is not. The net terminal

alignment technique is used to solve this problem. When partitioning one part into

sub-parts, the logic blocks in other partitions is considered so that one logic block tends to

stay in the partition that minimize the wirelength o f the nets to which it is connected. Figure

2.7 illustrates this technique.

A

B

Figure 2.7 Illustration o f The Terminal Alignment Technique

In Figure 2.7, the logic block X is in the current partition that is to be further partitioned

into parts A and B. Y is another logic block that is connected to X and was previously

placed in the upper part (aligned with A). In this case, the partitioning algorithm does not

really care about the target position X will go as long as the cut size between A and B is

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

minimized. The net terminal alignment technique will tell the partitioning algorithm to

place logic block X in partition A to minimize the wirelength.

2.4.3 Ultra-Fast Placement

Unlike partitioning based algorithm, ultra-fast placement [5] is a bottom up algorithm.

It reduces the complexity o f placement problem by clustering closely connected logic

blocks into multiple levels o f clusters.

Figure 2.8 illustrates the abstract view o f multi-level clustering. In level 0, the logic

blocks in the input circuit are clustered into a according to their interconnections in the

circuit. And in the each upper level, clusters at the previous level are grouped together into

a larger cluster.

Level 0 Level 1 Level 2

Eh*''

Level 2 _ Level 1 _ Level 0

n_o
lie blocklogic

I/O pad
Multi-level Clustering C oarse p lacem en t of d u s te r s

Figure 2.8 Abstract View o f Multi Level Clustering

The number o f clustering levels, and the size o f the cluster at each level can be varied

to allow the tradeoff o f compile time and quality. As the size o f the clusters increases, the

placement problems become simpler because more is hidden, but there is lees accurate

representation o f the netlist and therefore lower quality may result.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ultra fast placement algorithm is relative simple: It begins with a multi-level,

bottom-up clustering o f logic blocks based on their connectivity. Once all the required

clustering is done, a two-level placement is performed at each level o f the hierarchy: an

initial constructive placement followed by an iterative improvement step using simulated

annealing. After the placement finishes in the current level, the clusters at the current level

are decomposed. This process is repeated for the next level until all levels are placed.

2.5 Quadratic Placement Techniques

As we discussed in Section 2.4, quadratic placement is one o f the main algorithms used

for ASIC placement. Unlike other algorithms, quadratic algorithm has not been

investigated for FPGA placement.

Quadratic placement algorithms use squared wire length as the objective function and

try to minimize it by solving linear equations. Although quadratic wire length is only an

indirect measure o f the linear wire length, quadratic placement can minimize the quadratic

wire length efficiently. As a result, it is widely used in ASIC placement [29][30][31][32].

The use o f quadratic assignment in many applied areas can be traced to the paper [33]. The

main concern with quadratic placement is that the positions o f the nodes we get from the

linear equation solver tends to locate in the center o f the placement area with a large

amount o f overlap among nodes. To deal with this overlap problem, a bisection technique

is used in [30] to recursively divide the circuit and adds more linear constraints to pull the

nodes into center o f corresponding partitions. Repelling forces are added in [34] for nodes

sharing a net to maintain a target distance between them, and attractive forces are also

introduced to pull nodes from the center to the sparse regions by some fixed dummy nodes.

In [35], spreading forces are added to pull the nodes out o f the dense regions. Another

concern with the quadratic placement is its quality. Because the objective function o f the

quadratic placement is squared wire length, not linear wire length, its quality is not

optimized. To alleviate this problem, [32] adds some linear aspects when building up the

quadratic model to improve its quality and [35] uses half perimeter adjustment to improve

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its result. But since its main concern is to speed up the equation solving process o f the

quadratic placement, this technique is not well discussed. All the quadratic algorithms

discussed above target standard cell ASIC placement.

2.5.1 Essentials of Quadratic Placement

A quadratic placer takes a hyper-graph netlist as its input and produces a placement o f

nodes on target chip such that the total squared wire length is minimized. Quadratic

placement uses the following objective function

Where x, y are the coordinates o f a logic block o f the netlist. Wy is the weight o f the

edge that connects node (x,,y,) and node (xj,yj). Since the input o f the quadratic placer is

usually represented by a hypergraph, and two nodes can be connected by more than one net,

we have to convert the hypergraph into a weighted graph first. Two models are used to

convert the hypergraph into a graph. Clique model introduces an edge o f weight 2/p

between every pair o f nodes incident to a p-pin net. While Star model created a new node in

the center o f its net. [35] has shown that the total squared wire length will be the same for

any placement under either the star model or the clique model.

The objective function can be rewritten in matrix notation as:

Where Q is an n x n symmetric matrix and dx dy are n-dimensional vectors.

Since the objective function can be separated into x y dimensions. Only one dimension is

considered. Then we get

To find the minimum value o f this objective function, we perform V®(x) = 0 and get

the matrix equation:

(2 .6)

® (x,y) = — x TQx + d x x + — y TQy + d Ty y + const (2.7)

®(x) = —x TQx + d Txx + const (2 .8)

Q • x + d x = 0 (2.9)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is the quadratic equation that minimizes the total squared wire length o f the

placement. To obtain the matrix Q and vector d, let qy be the entry in row i and column j o f

matrix Q, and d, be the ith element o f vector d. For two movable nodes, the cost can be

rewritten as — Wi . [xf + x) - 2xtx ,]. The first and second terms contribute Wg to q,i and qjj
2

respectively. The third term contributes Wg to qy and qy. For a connection between a

movable node and a fixed node the cost is ~ W i f [xj + x 2f - 2xix f] . The first term

contributes Wjf to q,i, the third term contributes to -WjfXf to the vector dx at row i, and the

second term becomes the constant part o f expression (2.5) after derivative operation.

The matrix Q is positive definite if all movable nodes are connected to fixed nodes, i.e.

TO (Input/Output) pads, either directly or indirectly. This condition holds for all real

circuits since each node o f the circuit should be accessible from the outside o f the circuit.

So the matrix equation can be solved by non-stationary iterative methods [36].

2.5.2 Linear Equation Solver

Quadratic placement algorithm produces large sparse linear equations [29] [46], These

large linear equations can be solved through the iterative methods, which use successive

approximations to obtain more accurate solutions to the linear system at each step. There

are two main types o f iterative methods: stationary methods and non-stationary methods.

The stationary methods can be expressed in the simple form x(k)=Bx(k'l-l+c, where B and c

are constant coefficient, neither o f them depend on the iteration count k. The stationary

methods are older, simpler to understand and implement, but usually not as effective, like

the Jacobi method, the Gauss-Seidel method, the Successive Overrelaxation (SOR) method

and the Symmetric Successive Overelaxation (SSOR) method [36].

Non-stationary methods differ from stationary methods in that the computations

involve information that changes at each iteration. Typically coefficients are computed by

taking inner products o f residuals or other vectors arising form the iterative method.

Non-stationary methods are a relatively recent development; their analysis is usually harder

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to understand and implement, but they can be highly effective, like Conjugated Gradient

method, Generalized Minimal Residual (GMR) method, Quasi-Minimal Residual (QMR)

method, etc [36].

For a real digital circuit, all the nodes o f the circuit are connected to, directly or

indirectly, I/O pads and matrix Q generated through quadratic model is positive definite

[30]. The linear equations can be solved by some non-stationary methods. In our thesis, we

apply Conjugated Gradient method, which is also used by many other quadratic based

placement tools [30][29][45],

The Conjugate Gradient method is an effective method for symmetric positive definite

systems. It is one o f the oldest and best known o f the non-stationary methods. The method

proceeds by generating vector sequences o f iterates {i.e., successive approximations to the

solution), residuals corresponding to the iterates, and search directions used in updating the

iterates and residuals. Although the length o f these sequences can become large, only a

small number o f vectors need to be kept in memory. In every iteration o f the method, two

inner products are performed in order to compute update scalars that are defined to make

the sequences satisfy certain orthogonal conditions. In a symmetric positive definite linear

system these conditions imply that the distance to the true solution is minimized in some

norm.

The pseudo-code o f Conjugated Gradient method is illustrated in Figure 2.9. The

iterates x(l> are updated in each iteration by a multiple (a/) o f the search direction vector

P (0

(2 .10)

Correspondingly the residuals r U) = b - Ax(,) is updated as

r (0 = r (w > _ a q (i) w h e r e q d) = A p d) (2 .11)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The choice a = a, = (r (‘ X)) Tr (' 1} / (p U)) T A p (,) minimizes (r 0)) T A ' r 0) over all

possible choices for a in equation (2.11).

The search directions are updated using the residuals

p (o = r(o + p . y - v (2.12)

where the choice = (r (,)) Tr (l) l {r(,~x)) Tr'~X) ensures that p (l) and Ap(‘~l) or

equivalently, r u) and r lVI) are orthogonal. In fact, one can show that this choice o f fJi

makes p (l) and r u> orthogonal to all previous A p (J> and r <J> respectively.

Compute r (0)= b - A x (0) for some initial guess x'— u — s i a . iu i owmvw i i i i n a i ^

for i = 1 ,2
Solve Mz(M) = r (M)

P i - i = (r (M))r z (M)

if i = 1

p m = z (0)

else

A - l = P i - X I P i - 2

p m = za-» + pixpn-1)

endif

q (,) = Ap (l)

<*i = P i-x q (i)

x (i) = jc(w) + a iq (i)

r d) - a 0

check convergence: continue if necessary
end

Figure 2.9 Pseudo-codes o f Preconditioned Conjugated Gradient Method

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Figure 2.9, a preconditioner M is used. Preconditioner is a matrix that transforms

the linear equations into one equivalent form but has better convergence rate. Since

preconditioner cause some additional computation, it is also a trade o ff on whether we use a

preconditioner and what preconditioner we use. For M = I in Figure 2.9, we can obtain

the unpreconditioned version o f the Conjugate Gradient Algorithm. In that case, we cam

further simplify the algorithm by skipping the “solve” line, and replacing z u~X) by r (l~x)

(and z (0) by r ((>)). In our thesis, we choose to use Jacobi Preconditioner [36], the simplest

one, as our preconditioner since it is not our primitive consideration.

2.6 Quadratic Placement Algorithm Examples

To our knowledge, the quadratic placement algorithm has not been used for FPGAs.

The quadratic technique has been used in ASIC placement algorithms. In this section we

will present some well-known ASIC placement algorithms based on the quadratic

technique.

2.6.1 GORDIAN

Kleinhans et al. [30] describe a placement algorithm named GORDIAN that combines

quadratic placement and partitioning to handle the ASIC placement problem. The acronym

GORDIAN comes from the two main parts o f the method: global optimization and

rectangle dissection, which is based on improved partitioning schemes. With GORDIAN,

the placement problem is formulated as a sequence o f quadratic programming problems

derived from the entire connectivity information o f the circuit. An increasing number o f

constraints restricting the freedom of movement o f the modules are imposed; reflecting the

results o f successively refined partitioning.

The GORDIAN algorithm is formed by an iteration o f global optimization and

partitioning steps. The global optimization starts with an initial region that comprises the

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

whole chip and contains all modules to be placed. One constraint is added to fix all these

modules to the center o f the chip. In each partitioning step, the modules are divided and the

placement regions are dissected into sub-region accordingly. New constraints are

established to fix the modules in each sub-region to the center o f the corresponding

sub-region. This loop o f global optimization and partitioning steps is repeated until each

region contains less than a predefined number k (e.g. k=10) o f modules

GORDIAN introduced a global placement that can refine all modules in the circuit

simultaneously, which avoided any dependence on a processing sequence.

2.6.2 GORDIAN-L

GORDIAN-L [32] is an improved version o f GORDIAN, which optimizes the linear

wirelength objective. Since the linear wirelength objective cannot be addressed directly by

the quadratic methods, GORDIAN-L approximates the linear objective by a quadratic

objective. It then executes the following loop: first minimize the current objective to yield

some approximate solution, and then use this solution to find a better approximation o f the

linear objective.

The GORDIAN-L is based on the observation that the linear objective can be rewritten

as:

Z i j Z i , j \X i X j \ & i , j

If the approximation o f g i . is set, the linear objective can be converted to the squared

objective and the problem is solved. If g tj is constant, GORDIAN-L reduces to

GORDIAN. Based on this observation, GORDIAN-L first solves the quadratic problem

and gets a reasonable approximation for each g i .. It then performs successive operations

to improve it. Each time it uses the coordinates in last iteration to approximate g i } until

no more improvement can be achieved.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GORDIAN-L can achieve up to 20 per cent reduction in area than GORDIAN at the

price o f significant increase in CPU execution time.

2.6.3 FastPlace

FastPlace [35] is a quadratic based standard cell placement algorithm using cell

shifting and iterative refinement and hybrid net model. The basic idea o f FastPlace is cell

shifting and addition o f spreading forces. Chip region is divided into an array o f bins

structure. The size o f these bins is recomputed in both x and y direction so that the

utilization o f adjacent bins is averaged. By this technique, the cells in the dense area is

gradually be pushed to bins around it. And additional spreading forces are added

accordingly so that the spread cells do not collapse back to their previous positions during

the next step. Half perimeter wire length is also employed to refine the placement based on

the bin structure.

The FastPlace algorithm is divided into global placement stage, wirelength

improvement stage and detailed placement stage. The first stage mainly deals with cell

spreading problem based on quadratic programming. The second stage moves the cells

around different bins to reduce the wire length. And the third stage legalizes the placement

by assigning cells to pre-defined rows in the placement region and removing overlap

among them. It also consists o f further reducing the wirelength by a greedy heuristic.

The FastPlace algorithm uses a hybrid net model that combines the clique model and

star model when converting the input circuit for quadratic programming, which makes

linear sparse system sparser. And it also applies an Incomplete Cholesky Factorization

preconditioner to help solve the matrix equations. As a result, this algorithm turns out to be

faster than other algorithms.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Summary

In this chapter, we provided all the background information that is related to our

research work. We first introduced the general FPGA design flow together with the FPGA

architecture that is used in this thesis. Then we gave a clear definition o f the placement

problem for FPGAs. Wire length estimation technique was discussed since our work

focuses on wire length minimization objective. The previous work done in FPGA

placement area was presented next. Finally, we presented the essentials o f the quadratic

technique and related algorithms in ASIC placement. Our quadratic based FPGA

placement algorithm will be described in the next chapter.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

A Quadratic Placement Algorithm for FPGAs

In this chapter, we present the Quadratic Placement algorithm for FPGAs (QPF),

which was developed during this thesis work. We start with a discussion o f two main

problems o f the quadratic placement technique in Section 3.1. Then we present our

proposed QPF algorithm and explain how we overcome these problems. In subsequent

sections, the heuristics used are described in detail, including the pseudo codes and

parameter settings.

3.1 Two Main Problems in Quadratic Placement

As we discussed before, squared wirelength objective is used in quadratic placement.

This squared wirelength objective is applied only because it allows the one-dimensional

placement problem to be reduced to the solution o f a system o f linear equations. It reduces

the computation, but at the same time it also causes some problems. There are two main

problems: one is the overlap problem that modules trend to overlap in a dense area, the

other is quality problem that squared wirelength objective does not accurately represent the

good quality o f a placement.

The first problem comes from the lack o f legal position information in quadratic

placement model. In an FPGA chip (recall from Section 2.1) the legal positions that can

accommodate circuit elements are fixed. But in quadratic placement model, it does not

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consider this information when building up linear equations. This results in an overlapped

mathematical solution, as illustrated in Figure 3.1.

Figure 3.1 Illustration o f Overlap Problem for Quadratic Placement

Figure 3.1 shows a 5x5 array o f in an FPGA chip. The gray squares are the legal

positions in which the logic blocks can be placed. The tiny circles are the positions that a

linear equations solution actually produces. A good quadratic based placer must handle this

problem efficiently so that the overlap is resolved with a minimum deterioration in

placement quality..

The second problem comes from the squared wirelength objective in the quadratic

model. To convert the placement problem into a system o f linear equations, it uses a

squared wirelength objective function, not a linear wirelength function. [31] compared the

linear and squared wirelength objectives and concluded that the linear wirelength is

superior. Quadratic wire length is an indirect measure o f linear wire length. Usually

reduction in quadratic wire length leads to reduction in linear wire length. But in some

cases the minimization o f quadratic wire length does not mean the linear wire length is

minimized. Figure 3.2 illustrates the difference between linear and squared wirelength

objective. A circuit consists o f four nodes A, B, C and D. Nodes A, B, C are fixed, and node

D is movable. The distance between A (or B) and C is L. When quadratic wire length model

is applied, the optimized position o f node D will be in d = (1/3) L. When linear wire length

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is applied, the position will be d =0, which means node D will be placed as close to A and B

as possible.

L

4 ^

Figure 3.2 Linear vs. Squared Wirelength: a) Squared Objective Model, b) Linear
Objective Model

Furthermore, placement with minimum squared wirelength objective has a unique

solution that can be found by solving the corresponding linear equations. But placement

with linear wirelength objective can have multiple optimal solutions. For example, a single

movable logic block connected to two fixed I/O pads by edges o f equal weight can be

optimally placed anywhere between the two I/O pads. A good quadratic based placer must

also handle this problem efficiently so as to achieve the minimum linear wirelength.

3.2 Overview of the QPF Algorithm

An overview o f the QPF algorithm (using pseudo code) is given in Figure 3.3. It

consists o f three stages, where input to the first stage is a technology mapped and packed

circuit to be placed [6] [3].

The goal o f the first stage is to obtain a good initial placement. As we discussed before,

the solution o f linear equations tends to overlap in a dense area, as shown in Figure 3. l.In

this stage, we try to expand the solution to the entire chip area while attempting to minimize

the wirelength. This is achieved by repeatedly building up, modifying and solving linear

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

equations to get a progressively better placement. Each iteration contains four steps: First

we build up the linear equations and solve them to get the coordinates o f every node o f the

circuit. In the first iteration, w e build our equations according to the connectivity o f the

input circuit. In subsequent iterations, we modify the linear equations according to the new

dummy nodes added in the previous iteration. Second, we map the nodes into the entire

chip area according to their current coordinates. This mapping process is performed every

time we get a new coordinates for the nodes in the circuit. After mapping process, we will

have legal placement and can evaluate our placement using half perimeter wire length

estimate. Third, we use these new positions as reference and add extra dummy nodes to the

circuit. These new nodes are used to modify the coefficient matrix in the next iteration.

QPF Algorithm
Stage 1

- Build and solve linear equations
- Map the circuit to the FPGA chip
- Add dummy nodes and expand the placement
- Refinement for minimizing linear wire length
- Repeat above steps until there is no significant improvement

Stage 2
- Refinement for minimizing linear wire length based on legal placement until
there is no more improvement
- Re-map the circuit to the FPGA chip

Stage 3
- Low temperature Simulated Annealing to refine the final placement

Figure 3.3 Overview o f QPF Algorithm

The first three steps in stage one is used for expansion o f the logic blocks. Fourth,

during each iteration, we also perform linear adjustment to minimize the linear wire length

as well as the squared wire length. This step is relatively independent o f the previous three

steps. It has nothing to do with the expansion purpose. It is inserted here to ensure that

linear wirelength improvement is also considered during the expansion process. This is also

achieved by modifying the coefficient matrix o f quadratic equation. The difference is that

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in this step, we modify the coefficient matrix to reduce wirelength, not to expand the nodes

in dense area. Stage one is performed until no significant improvement can be achieved.

When we leave stage one, we already have a reasonably good legal placement. In stage

two, we try to further improve this placement. In this stage, since the nodes are already

evenly distributed among the chip area, we concentrate on improving the linear wirelength.

This is achieved by using the similar linear wire length reduction technique described in

step four o f stage one. The difference is that we do not build and solve the linear equations

in this stage. Instead we move the nodes directly (by changing the coordinates o f the nodes)

to reduce the total linear wire length. Since no equation solver is needed in this stage, this

process is much faster than the linear adjustment in stage one and we can perform more

iteration and get a better refinement.

Finally, in stage three the placement is refined by low temperature simulated annealing

algorithm to further minimize the wire length.

The QPF algorithm uses a heuristic approach that achieves the final placement

gradually. Different t techniques are used in different stages. In the following sections, we

will discuss these techniques and explain how we get a good placement by utilizing these

techniques.

3.3 The Node Mapping Process

The node mapping process maps the nodes o f the input circuit to the target FPGA chip

area based on the current node coordinates. The solution o f quadratic linear equations

provides the coordinates o f all nodes in the circuit. These coordinates do not give a legal

placement; therefore, they are mapped to the physical location o f the FPGA chip using

mapping process. The mapping process is widely used both in stage one and two.

Whenever the coordinates o f the nodes in the circuit are updated, we perform this mapping

process on the circuit and a new placement is obtained.

The mapping process is done in a partitioning-like way. But unlike typical partitioning

algorithms that partition the circuit, we partition the chip area, not the circuit, into four

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parts. The Figure 3.4 illustrates how the mapping process works. For clarity, we omit the

gray squares in Figure 3.1.

1 c

© o-•-O —V" -
%
V

0
O €
0

0

0

Figure 3.4 Over o f Mapping

The basic idea o f mapping is as follows: Firstly, we divide the whole chip into four

parts and each part has integer number o f rows and columns. For example, in Figure 3.4 a

5x5 FPGA is divided into four parts, 2x2 2x3,3x2 and 3x3 each. Secondly, we check all the

four parts for overflow. A part is said to overflow when the number o f nodes in that part is

greater than the number o f physical positions in the part. In Figure 3.4, the left-bottom part

is overflowed since the part can only accommodates 6 nodes, far less than number o f nodes

in this part. All the overflowed nodes must be removed to other parts. Thirdly, we try to

balance the chip so that extra nodes on the edges o f the overflowed parts are removed from

the overflowed parts into other parts. Since the original FPGA chip selected is large enough

to hold all the nodes, there can be 1-3 overflowed parts. Depending on the number o f

overflowed parts, the balance sequence is shown in Figure 3.5.

The overflowed parts are shown in gray. The balance sequence in a) and c) o f Figure

3.5 is obvious.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P I -
I

P 2
1

4
P 3 -

4
-► P 4

y / p l
i

* P 2
• - i

i
P 3 -

4
-► P 4

P I - P 2
.'.■•■■■'VP ' A

▼ : : j .

P 3 « ~ - P 4

P I - -► P
i
2
k

k R 3 ; t : p 4

a ,1 d)b) c)
Figure 3.5 Balance Sequence

We remove the extra nodes in the overflowed parts to its adjacent parts. For example

the balance sequence for a) is: 1. P1->P2&P3, 2. P2->P4, 3. P3->P4. Forb), we start from

the denser one in the two overflowed parts, and for d) we always start from the overflowed

part that is in the middle and push the extra nodes to the other parts, as the arrows show in

Figure 3.5. When nodes in one dense part are to be moved to both adjacent parts (e.g., the

overflowed nodes in PI are to be moved to both P2 and P3 in Fig3.5 a), the number o f

nodes moved to each adjacent part should be carefully chosen so that they make the two

adjacent parts equally overflowed.

P = n x n FPGA CLB array;
Repeat:

Partition P into four parts. PI, P2, P3, P4;
Check overflow for all parts P1-P4;
If (overflow) {

Find all overflowed parts;
Find balance sequence;
Remove all overflowed nodes to appropriate parts;

}
mapping(Pl);
mapping(P2);
mapping(P3);
mapping(P4);

Until all parts are small enough

Figure 3.6 Pseudo-codes for Node Mapping Process(P)

The pseudo code o f the mapping process is shown is Figure 3.6. By recursively

partitioning and mapping, all the nodes will be fixed to a small local area. And within that

small area we can find the exact physical location for them with ease. Mapping process is

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the basic operation is our placement algorithm, both the expansion and linear adjustment

use mapping process to legalize and evaluate their placement.

3.4 The Expansion Process

As discussed in Section 3.1, one o f the main problems with quadratic placement is that

the nodes o f the input circuit tend to overlap in some dense area o f the chip. One o f the

challenges for quadratic placement is how to solve this problem efficiently. In the QPF

algorithm, we developed an iterative expansion technique that expands the nodes

gradually, while satisfying the wirelength minimization objective as well.

Input circuit

Build/modify
equations

Equation solverAdd dummy nodes

Linear adjustment

.......
Mapping

Exit if no significant
^ i m p r ov em e n t ^

Figure 3.7 Overview o f Expansion Process

The overview o f our expansion process is shown in Figure 3.7. The input to the

expansion process is the circuit to be placed, which is used to build up the original linear

equations. The equation solver solves the linear equation by Conjugated Gradient method

as discussed in Section 2.6. The mapping process maps the nodes to the entire chip area

according to the current node coordinates as discussed in the previous section. Then one

dummy node is added to every node in the circuit according to the mapping result. These

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dummy nodes help to modify the coefficient o f linear equations and get a better result in the

next iteration. The linear adjustment stage here is used to reduce the linear wirelength

during the expansion process, which will be discussed in the next section. In every

iteration, we check the placement quality after the mapping process. We exit the loop when

no significant reduction in placement cost is obtained in that loop.

The basic intuition behind this expansion process is as follows: according to the input

circuit, we can build up a matrix equation, in x dimension for example, Ax = b . And

suppose we have already got the ideal placement x = [x , , x 2 ... x ,.... x n \ , this ideal

placement vector can be a solution o f a similar matrix equation A' x'= b ' . So if we can

modify our origin matrix A and vector b to make them approach the ideal matrix A' and

vector b' , the solution will approach the ideal solution as well. In short,

The main challenge o f this expansion process is how we set the dummy nodes in

Figure 3.7. The dummy-node-setting process must accomplish two goals. One is that the

is the main goal o f expansion process. The other is that these dummy nodes must not

greatly change the relative position o f the nodes obtained by solving linear equations. In

our algorithm, we use the mapping result in the current iteration as a reference placement to

set the dummy nodes. It is shown in Figure 3.8.

Figure 3.8 a) shows the original node position that we get from previous iteration in

expansion process. Figure 3.8 b) shows the node position after mapping process. One node

in the circuit is marked as a square, and we call it node A. This node A is in the center near

position (3,3) in Figure 3.8 a) and is mapped to the right side (4, 2) as in Figure 3.8 b). This

tells us that based on the current information node A should be placed in (4, 2). So we add a

dummy node at this place and connect node A (and only node A) to the dummy node. The

dummy nodes must be set so that they help to pull the nodes in the dense area apart, which

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weight between nodes A and the dummy node is set according to the average weight

connected to node A.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
a) b) c)

Figure 3.8 Add a Dummy Node a) Origin Node Position & Dummy Node b)
Reference Node Position After Mapping c) Result o f One Iteration o f Expansion

The information about the dummy node added for node A will be used to modify the

coefficient o f the linear equations and w ill pull node A to itself in the next iteration o f

expansion process. It will also affect the other nodes in the circuit, which are connected to

node A directly or indirectly, through node A. After we add a dummy node for every node

in the circuit and modify the linear equation accordingly, we will get a better placement by

solving the equations in the next iteration. As we can see in Figure 3.8 c), the nodes in

dense area in Figure 3.8 a) are expanded to a larger space. Note that the dense area in Figure

3.8 c) is not just a direct expansion o f that Figure 3.8 a). The relative position among the

circuit nodes has been changed during the convergence o f equation solver. The equation

solver also guarantees the minimization o f squared wirelength.

The weights between circuit nodes and the dummy nodes are set by their average

weight. Based on the fact that the weight needed for expansion increase significantly as the

expansion process goes on, we start with a small portion o f average weight, like 1/10 o f the

average weight o f each node, and gradually increase the weight o f dummy nodes in later

expansion process.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although dummy nodes are necessary for expansion, they also have side effects.

Dummy nodes with small weights work well without causing much interference to the

original circuit. But when the expansion process goes on, the effect o f those dummy nodes

accumulates. With enough number o f iterations the weight added by dummy nodes will

become dominant. At that time, although we can still expand our circuit, the squared

wirelength minimization objective o f quadratic model will not hold any more. Usually, we

terminate this expansion process after several iterations, when the improvement rate o f one

iteration is not significant (e.g. less than 10%).

3.5 Linear Adjustment

Beside the overlap problem we discussed above, another big concern about quadratic

placement algorithm is the quality. As w e mentioned in Section 3.1, quadratic placement

algorithm is based on the squared wirelength model. Squared wirelength is only an indirect

approach and not always proportional to linear wirelength. Further reduction o f linear

wirelength is a key problem for all algorithms based on the quadratic model.

Recall from Section 2.3.1, Half-Perimeter Wire Length (HPWL) is an efficient way to

estimate the wirelength needed to connect the circuit nodes. Our linear adjustment

technique is based on the difference between linear wirelength and squared wirelength

under Half-Perimeter Wire Length (HPWL) model.

Figure 3.2 shows the basic difference between linear and squared wirelength. In real

circuits, it is more complicated. A general case is presented in Figure 3.9. It comes from the

result we get from quadratic placement model. Node A is connected to net 1, net 2, and

net3. The nodes in these three nets are represented by rectangle, circle, and triangle

respectively. In this example node A is on the right edge o f net 2, bottom edge o f net 3 and

is in the middle o f net 1.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Net 1

Figure 3.9 Wirelength Contribution o f One Node Connected to Three Nets

Under Half-Perimeter Wire Length model, only the nodes on the edges o f each net

contribute to the total wirelength. As in Figure 3.9, node A contributes to the total

wirelength through net 2 and net3. So if we move node A to the left, it will reduce the

wirelength o f net 2 while not increasing the wirelength o f other two nets before it reaches

the edge o f net 3. The same scenario results if it is moved upwards.

In real circuits, a node might be on the different edges o f two or more nets, e.g. a node

can be on the left edge o f a net and the right edge o f another net at the same time. In these

cases, the weight o f all involved nets is considered so that the node is moved to the

direction that reduces the total wirelength.

Every time we perform linear adjustment, we first check the circuit to find all such

movable nodes and their target positions. Then if this technique is used in stage one o f our

algorithm, we add extra dummy nodes at the target positions and this technique will take

effect by modifying the coefficient matrix and re-solving the equations. When it is used in

stage two, we modify the coordinates o f the node directly so that the relative position o f the

nodes is changed, and it will take effect in the next mapping process, as shown in Figure

3.10.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Improvement ?

Mapping in stage one

Stage 3

Mapping all nodes

Find all movable nodes
and their target position

Find all movable nodes
and their position

Change the coordinates
to the target position

Add dummy nodes at
the target position

Modify equations and
re-solve them

a) b)

Figure 3.10 Linear Adjustment Used in a) Stage 1, b) Stage 2

3.6 Low Temperature Simulated Annealing

In stage three, we finally improve the placement quality using low temperature

simulated annealing-based [3 7] [24] iterative improvement. Refer to Chapter 2 for a

description o f the basic simulated annealing method as it is applied to placement. We have

adapted the annealing implementation in VPR described in [3].

The key parameters that control the quality and time for simulated annealing are: the

starting temperature T0, the rate at which the temperature is reduced represented as “a”, the

number o f configurations to explore at each temperature called “InnerNum”, the behavior

o f the range limiting mechanism as Dijmit, and the exit criterion by which the annealing

algorithm terminates.

1. The starting temperature T0

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The starting temperature T0 is a crucial parameter for our refinement because it

determines the initial probability that a bad move or swap is accepted. If the starting

temperature is set too high, the subsequent annealing will destroy the placement we

have developed in the previous stages. Otherwise, i f it is set too low, then insufficient

optimization will be performed, the placement might get trapped in some local

minimum and the quality will not be good enough.

In our program we set the starting temperature in a way that a bad move or swap that

causes 0.1% degradation in quality still has 0.1% probability to be accepted.

According to the simulated annealing schedule, a bad move or swap is only accepted

with probability r < e~&CIT, where r is a random value in range [0,1], AC is the

quality difference caused by the move. We get,

A C = C - A C / C = C 0.001 = C
ln(r) ’ ln(r) ln(0.001) 6907

where C is the cost o f the current placement.

2. The number o f moves per temperature

The basic annealing algorithm o f VPR makes InnerNum ■ N ^ cks moves at each

temperature, where N blocks is the total number o f logic blocks and I/O pads and the

InnerNum is set to 10 by default. Since we have already had a good placement from the

first two stages o f our algorithm, we find by experiments that it does not make much

difference for InnerNum greater than 3. In our program we set it to 4.

3. The move limit

In VPR, the move limit Dijmjt is the distance that a node is free to move during the

annealing process. It always starts with the largest number, Dlimit covers whole chip.

In our algorithm, the placement we get from the previous stages is good enough so that

it is unlikely that a node should be moved such a long distance to improve the quality.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By observing the annealing procedure, we set this value to one-fifths o f the whole chip

range.

4. Other parameters

The modification on other parameters such as exit criterion, temperature update factor

also slightly affects the annealing process. We did not change these parameters.

3.7 Computational Complexity

To evaluate the computational complexity o f our QPF algorithm, we have to consider

all the based operations used by our algorithm. They are: the mapping process, the linear

adjustment process, the linear equations building and solving operation and the low

temperature simulated annealing process.

The time complexity o f simulated annealing is quite obvious. Since the number o f
4 4

moves per temperature is InnerNum ■ N^locks, the complexity o f stage three is 0(Nf)loch.)

[3],

In the mapping process, we map the circuit by recursively partitioning the circuit into

four parts. So the computational complexity o f mapping process is 0 (N a g) +

N , N N
4 x 0 (——) + 4 x 0 (—^P-) + ... +4" x 0 (——). And the total level o f partitioning is

4 4 4"

n = , where y]NCLB is the width o f CLB array o f the FPGA. So the computational

complexity o f mapping process becomes

0(N a ,) + 4 x 0 (^ S «) + 4 2 O (^ p -) . . . =0(NaJ,-U>gf^) = 0 (Na J -ln NCLB)

For linear adjustment, we check every node for better position. Since in real circuit, the

average fanin and fanout o f a node are limited, we only need to search limited number o f

other nodes to determine the new position o f the current node. This operation is about

0 (k - N CLB) = 0 (N CLB)

To determine the computational complexity o f the quadratic placement, we must

consider both the computational work o f building and solving the linear equations.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Building the linear equation is simple. We check all nodes in the circuit and compute

the weight for the nodes connected to them. The complexity is 0(n n z) . Where nnz means

the Number o f Non Zero element in the matrix. When we modify the coefficient matrix, we

only add one dummy node to each node, the complexity is N CLB.

The complexity o f the equation solver is more complicated.. Basically, one iteration o f

the Conjugated Gradients method contains 3 N CLB -dimension vector additions, 2

N clb -dimension vector multiplications and 1 Matrix vector multiplication. The complexity

o f one iteration is 0 (N CLB) + 0 (N CLB) + 0(nnz) = 0 (n n z) . The problem is the convergence

rate o f conjugated Gradients method is not well studied. In [36] the convergence rate o f

Conjugated Gradients method without preconditioning is 0(h~]) , where h is the

discretization mesh width [39] and depending on the spectrum o f the coefficient matrix

involved [40]. So the total complexity o f the quadratic equation solver is 0(nnz) ■ 0 (h ~') .

For a real circuit, 0 (N CLB) = 0 { N blocks) = Oinnz) s O(N) since the number o f I/O pads

and the average fanout are usually limited and independent on the circuit size. In [41] it is

said that the computational work o f unpreconditioned Conjugate Gradients is from

4 3

0 (N 3) to 0 (N 2) , depending on the uniform grid used. With the help o f a preconditioner,

an additional matrix to transform the original system to an equivalent one with an improved

spectrum, the convergence rate o f the Conjugated Gradients method can be accelerated. So

we believe that the complexity o f our algorithm is in a way less than the range

4 3 4

[0 (iV 3) , 0 (7 W)]. It is comparable to VPR, whose complexity is 0 (N 3).

Based on the discussion above, the linear equation solver is the most computationally

expensive operation. The overall computational complexity o f our placement algorithm is

same as the equation solver, whose computational complexity is comparable to VPR.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the computational complexity only shows the potential performance o f the

algorithm when the scale o f input circuit increases, it does not directly determine the speed

of the algorithm. In this case, VPR performs swaps and moves at a large number o f

4

temperatures, each temperature is an 0 (N 3) operation, while the proposed algorithm

only needs several iterations o f such operation. So the proposed algorithm can run much

faster than VPR does although both algorithms have similar computational complexity.

3.8 Summary

In this chapter, we first examined the problems with the general quadratic placement

algorithm. Then we presented QPF, our proposed placement algorithm for FPGAs and

explained how we handled these problems. The QPF placement algorithm consists three

stages. It begins in stage 1 with a normal quadratic placement method and gradually

expands the initial placement by a loop o f equation modifying and solving process. During

the expansion process, special cares is taken to ensure that linear wirelength is minimized

while satisfying squared wirelength objective as well. Then linear wirelength reduction

technique is applied in stage 2 to improve the quality o f the previous result. Low

temperature Simulated Annealing is used to finally refine the placement in stage 3. Details

about all three stages are discussed in sections 3.3 to 3.6. Finally the computational

complexity o f the QPF algorithm is discussed in section 3.7. The QPF algorithm was

evaluated and compared to the state-of-the-art VPR placement tool using 20 benchmark

circuits. The experimental results are presented in the next chapter.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Experimental Results and Analysis

In this chapter, we will present the experiment results that demonstrate the quality and

efficiency o f the QPF placement algorithm. We first present experimental results showing

the effects o f different techniques employed in our algorithm on the quality o f placement

obtained. These techniques were discussed in detail in Chapter 3. Then a comparison is

made between QPF and VPR, a well-known high-quality FPGA placement tool. The

quality versus run time trade off for QPF is presented later in this chapter. We also describe

our attempt at enhancing QPF to make it a timing-driven placement tool and present

encouraging preliminary results. We first describe the experiment evaluation environment

that was used to obtain the results.

4.1 Experimental Evaluation Environment

All the experiments were performed under identical hardware environment. We tested

both our QPF placement tool and VPR on a Pentium 2.5GHz based computer with no other

application program running.

The benchmark circuits we used in our experiments were obtained from two sources:

fifteen o f the circuits originate from the Microelectronics Centre o f North Carolina

(MCNC) suite [42], five circuits were generated by GEN [43], which is a synthetic

benchmark circuit generation tool that has been used in FPGA research. All circuits were

originally in the b lif format. They were optimized by SIS [44] and technology mapped into

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4-LUTs using Flowmap [6]. Then w e used VPACK [3] to pack the netlist o f 4-LUTs and

flip-flops into basic logic blocks. The sizes o f benchmark circuits range from 2000 to

20,000 logic blocks.

We have implemented our QPF placement tool within the framework o f VPR using the

most recent version 4.30 o f VPR code. We also use exactly the same function to estimate

the bounding box wirelength. Time consumption is measured by using the CPU clock and

then converted it to seconds. The run time o f both tools is measured from the very

beginning to the end o f placement, including the initial input file reading time. Since our

algorithm is written within the framework o f VPR, extra time is used to convert the data

structure from VPR’s to ours. If only the time for placement is considered, QPF placement

tool can run slightly faster than what has been reported in this chapter.

4.2 Effects of Key Parameters and Techniques on Placement

Quality

Recall that in Chapter 3, we explained the techniques used in QPF to handle the

overlap problem and also how the wirelength minimization was achieved by using

expansion and linear adjustment techniques. In this section, we present experimental

results obtained using these techniques and show how they affect the placement quality.

4.2.1 Compensation Factor

As we discussed in Chapter 2, compensation factor q(i) is used to compensate the

under-estimated linear wirelength o f half perimeter wirelength model for large nets. Table

4.1 shows the improvement in wirelength when q(i) is applied in the quadratic model over

the original quadratic placement. To prevent the extreme situation that most nodes are

overlapped together in a very small region, we do not increase the compensation factor for

nets larger than 50 terminals when building linear equations. This is done by setting all q(i)

= q(49) for all i >= 50.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first column shows the circuit name. The second and third column shows the

number o f blocks and number o f CLBs in the circuit respectively. The bounding box

wirelength is shown in column 5,and 6. Finally the wirelength reduction is shown in

column 6.

We can observe from Table 4.1 that after the compensation factor is applied to the

quadratic model, we have a better estimation for the wirelength for all nets and we can get

about 20% reduction in total linear wirelength.

4.2.2 Expansion

In the QPF algorithm, we deal with the overlap problem o f quadratic placement by

performing expansion process in stage 1, as shown in Figure 3.3. We applied an iterative

process discussed in section 3.4 so that we spread all the nodes out gradually, while at the

same time achieving the wirelength minimization objective as well.

To show the exact effect o f the expansion technique, we perform one iteration o f

expansion process based on the basic quadratic placement with modification o f

compensation factor. The result is shown in table 4.2. We can achieve about 21%

improvement o f quality out o f the first iteration o f expansion process. When we perform

more such iterations, the rate o f improvement falls off.

4.2.3 Linear Adjustment

Similarly, we show the effect o f the linear adjustment by employing one linear

adjustment step to the previous result.

The experimental results are shown in Table 4.3. We can see that the first linear

adjustment step can achieve about 15% improvement based on the previous result. Since

this linear adjustment is performed on a legal placement and does not need to modify or

solve the matrix equation, it runs very fast. We can try this as long as more improvement is

possible.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.4 Starting Temperature

We perform low temperature simulated annealing to finally refine the placement in

QPF algorithm. As we discussed in Chapter 3, the starting temperature should be carefully

selected. We only want to accept reasonable number o f bad moves during the annealing

process so that enough optimization is tried while making sure that w e do not destroy the

placement we get in previous stages.

A high starting temperature can produce a high quality placement. But at the same time

it will take a long time to finish the annealing process. Because at high temperature, the

annealing process accepts many bad moves so that it almost breaks the existing placement

and re-places it again. At extreme cases, the high starting temperature destroys everything

and treats the placement we get from the previous stages as a random one. In this section

we compare our adaptive starting temperature with a fixed but lower starting temperature.

We run our placement tool with T0=C/6907 as discussed in Chapter 3 and T0=0.01, a fixed

and lower starting temperature. The results are presented in Table 4.4 and show that the

fixed starting temperature works well for some circuits. On the whole the adaptive starting

temperature produces about 7% wirelength reduction over all 20 benchmark circuits.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1. The Wirelength Comparison o f Original Quadratic Placement
Before and After the Compensation Factor is Applied

Circuit
Name

Number
of

blocks

Number
of

CLBs

Bounding box wirelength
Wirelength
Reduction

Without
compensation

factor

With
compensation

factor

alu4 1544 1522 405.86 278.00 46.0%

Apex2 1919 1878 557.42 504.11 10.6%

Apex4 1290 1262 340.98 312.06 9.3%

Bigkey 2133 1707 458.95 370.18 24.0%

Clma 8527 8383 3560.04 3183.64 11.8%

Des 2092 1591 562.82 563.25 -0.1%

Elliptic 3849 3735 1106.72 875.60 26.4%

ExlOlO 4618 4598 2201.81 1420.31 55.0%

Ex5p 1135 1064 280.77 259.44 8.2%

Frisc 3692 3556 1235.92 1138.92 8.5%

Misex3 1425 1397 375.26 321.53 16.7%

Pdc 4631 4575 1833.91 1646.49 11.4%

S38417 6541 6406 2127.30 1258.72 69.0%

S38584 6789 6447 2155.01 1449.24 48.7%

Spla 3752 3690 1376.16 1219.26 12.9%

Fcoml 10307 9986 6445.90 6020.18 7.1%

Fcom2 11426 10984 6479.99 5396.21 20.1%

Fsm5 12104 11852 6793.37 6790.22 0%

Fcom3 13063 12962 5065.75 4446.27 13.9%

Fsm6 20051 19903 14779.78 13117.56 12.7%

Average 20.6%

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2 The Effect of One Iteration of Expansion Process on Placement Quality

Circuit
Name

Number
of

blocks

Number
of

CLBs

Bounding box
wirelength

Wirelength
reductionOriginal

Quadratic
placement

After one
iteration

o f
expansion

Alu4 1544 1522 278.24 249.43 11.6%

Apex2 1919 1878 504.22 445.82 13.1%

Apex4 1290 1262 312.06 268.90 16.1%

Bigkey 2133 1707 370.18 368.67 0.4%

Clma 8527 8383 3183.64 2374.73 34.1%

Des 2092 1591 563.25 543.83 3.6%

Elliptic 3849 3735 875.60 819.62 6.8%

ExlOlO 4618 4598 1420.31 976.48 45.5%

Ex5p 1135 1064 259.44 238.80 8.6%

Frisc 3692 3556 1138.92 1004.54 13.4%

Misex3 1425 1397 321.53 283.83 13.3%

Pdc 4631 4575 1646.49 1425.79 15.5%

S38417 6541 6406 1258.72 993.94 26.6%

S38584 6789 6447 1449.24 1166.55 24.2%

Spla 3752 3690 1219.26 1021.25 19.4%

Fcoml 10307 9986 6020.18 4288.48 40.4%

Fcom2 11426 10984 5396.21 4023.05 34.1%

Fsm5 12104 11852 6790.22 4707.32 44.2%

Fcom3 13063 12962 4446.27 3498.13 27.1%

Fsm6 20051 19903 13117.56 10285.94 27.5%

Average 21.3%

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3 Effect o f One Linear Adjustment Step on Placement Quality

Circuit
Name

Number
of

blocks

Number
of

CLBs

Bounding box
wirelength

Wirelength
reduction

Without
linear

wirelength
adjustment

With
linear

wirelength
adjustment

Alu4 1544 1522 249.43 227.64 9.6%

Apex2 1919 1878 445.82 397.57 12.1%

Apex4 1290 1262 268.90 238.01 13.0%

Bigkey 2133 1707 368.67 351.91 4.8%

Clma 8527 8383 2374.73 2027.23 17.1%

Des 2092 1591 543.83 466.62 16.5%

Elliptic 3849 3735 819.62 717.72 14.2%

ExlOlO 4618 4598 976.48 855.84 14.1%

Ex5p 1135 1064 238.80 212.38 12.4%

Frisc 3692 3556 1004.54 815.03 23.3%

Misex3 1425 1397 283.83 248.22 14.3%

Pdc 4631 4575 1425.79 1212.01 17.6%

S38417 6541 6406 993.94 889.13 11.8%

S38584 6789 6447 1166.55 1018.39 14.5%

Spla 3752 3690 1021.25 837.14 22.0%

Fcoml 10307 9986 4288.48 3499.59 22.5%

Fcom2 11426 10984 4023.05 3371.54 19.3%

Fsm5 12104 11852 4707.32 3921.53 20.0%

Fcom3 13063 12962 3498.13 2940.22 19.0%

Fsm6 20051 19903 10285.94 8837.39 16.4%

Average 15.7%

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.4 Effect o f Different Starting Temperatures on Placement Quality

Circuit
Name

Number
of

blocks

Number
o f

CLBs

Bounding box
wirelength Wirelength

reduction
T0=0.01 T0=C/6907

Alu4 1544 1522 198.16 195.72 1.2%

Apex2 1919 1878 315.43 277.22 13.8%

Apex4 1290 1262 195.84 186.96 4.7%

Bigkey 2133 1707 324.09 317.75 2.0%

Clma 8527 8383 1629.29 1491.26 9.3%

Des 2092 1591 401.43 390.33 2.8%

Elliptic 3849 3735 596.40 551.65 8.1%

ExlOlO 4618 4598 702.65 665.03 5.7%

Ex5p 1135 1064 178.31 173.87 2.6%

Frisc 3692 3556 628.39 564.03 11.4%

Misex3 1425 1397 206.51 196.72 5.0%

Pdc 4631 4575 975.73 914.00 6.8%

S38417 6541 6406 755.07 699.87 7.9%

S38584 6789 6447 867.37 823.58 5.3%

Spla 3752 3690 698.25 641.88 8.8%

Fcoml 10307 9986 2770.53 2491.26 11.2%

Fcom2 11426 10984 2671.69 2440.23 9.5%

Fsm5 12104 11852 3171.18 2850.71 11.2%

Fcom3 13063 12962 2392.17 2113.42 13.2%

Fsm6 20051 19903 7317.3 6799.44 7.6%

Average 7.4%

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Comparison Between QPF and VPR

In this section we present the placement results obtained using QPF and compare them

to placement results obtained using VPR. Since quadratic placement uses fixed I/O pads

when building the linear equations, we randomly place the I/O pads o f the benchmark

circuits first and then feed these I/O pads physical locations to both QPF and VPR.

We ran the VPR placer using the default mode, which is well tuned to give the best

result. Since we only compare the wirelength, the VPR placer was set to run in wirelength

driven-mode so that it achieves better wirelength quality. We ran QPF with default

parameter settings that were discussed in Chapter 3. The placement wirelength and the

CPU runtime are compared between these two tools. A comparison o f results obtained

using QPF and VPR is shown in Table 4.5.

The first column is shows the circuit name. The second column shows the wirelength

obtained for each circuit by QPF and VPR. And similarly the column 3 and 6 present the

wirelength and CPU time for VPR placer. The wirelength ratio o f QPF and VPR is shown

in the third column. Similarly columns four and five show the run time (given in seconds)

and the run time ratio o f QPF and VPR.

From Table 4.5 we can observe that, for each circuit, the wire length obtained by QPF

is very close to that obtained by VPR. On average, across 20 benchmark circuits, the

wirelength obtained by QPF is only 0.8% longer than VPR. But QPF gives better runtime

as evidenced by Table 4.5. On average, across 20 benchmark circuits QPF runs about 5X

faster than VPR. Thus we were able to achieve the goal that motivated our work, i.e. to

achieve equal or better placement quality while improving the placement run time.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.5 Comparison of Placement Results Obtained by QPF and VPR

Circuit
Bounding box

wirelength Ratio
QPF/VPR

Time Consumption(s) Ratio
VPR
/QPFName

QPF VPR QPF VPR

alu4 195.72 193.41 1.012 6.53 33.32 5.10

Apex2 277.22 275.99 1.004 7.87 50.57 6.43

Apex4 186.96 183.47 1.019 4.12 27.01 6.56

Bigkey 317.75 311.14 1.021 9.90 49.35 4.98

Clma 1491.26 1465.18 1.018 255.45 1113.07 4.36

Des 390.33 385.31 1.013 7.96 49. 12 6.17

Elliptic 551.65 547.41 1.008 63.40 164.89 2.60

ExlOlO 665.03 661.88 1.005 55.67 281.21 5.05

Ex5p 173.87 173.96 0.999 3.21 23.32 7.26

Frisc 564.03 552.89 1.020 37.53 162.78 4.34

Misex3 196.72 193.13 1.019 4.50 29.53 6.56

Pdc 914.00 905.91 1.009 60.65 292.85 4.83

S38417 699.87 722.71 0.968 158.92 680.84 4.28

S38584 823.58 802.43 1.026 218.29 716.60 3.28

Spla 641.88 635.32 1.010 33.25 167.42 5.04

Fcoml 2491.26 2481.15 1.004 433.34 1946.9 4.49

Fcom2 2440.23 2425.86 1.006 481.81 2209.25 4.59

Fsm5 2850.71 2871.94 0.993 629.90 2736.96 4.35

Fcom3 2113.42 2111.55 1.001 642.23 3101.96 4.83

Fsm6 6799.44 6763.13 1.005 1959.39 6922.34 3.53

Average 1.0081 4.932

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Speed Comparison

8

7

6

5

4

3

2

1

0
1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 00 5 0 0 0

Number ofblocks o f benchmark circuits

Figure 4.1 CPU Time Comparison vs. Number o f Blocks

To further analyze the performance o f our placement tool, we plotted the normalized

(with respect to VPR) CPU time against circuit size, given by the number ofblocks in the

circuit. The plot is shown Figure 4.1. We notice that speed decreases as the size o f the input

circuit increases. Nevertheless, we get significant speedup even for the largest circuit (more

than 3X). In order to know what exactly affects speed, we first analyze the time and quality

relationship o f the three stages in our QPF placement tool. The comparison o f placement

quality versus run time o f QPF is shown in Figure 4.2. The values for this plot were

obtained by averaging across 20 benchmark circuits. We select four typical points in our

algorithm, they are: The first legal placement we get by the quadratic model, the output o f

stage 1 in our algorithm, the output placement o f stage 2 and the final placement. In Figure

4.1, we also show the random placement for comparison. The random placement almost

takes no time, but the wirelength is about 300% worse than the final placement. It takes

about 8% of the total time to finish the initial placement based on the modified quadratic

model and the wirelength is reduced to about 65%. Then the expansion technique improves

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the quality to about 45% with another 9% o f total time. The linear adjustment o f stage 2 in

our algorithm spends another 11% o f total time to further improve the wirelength to about

18% longer than the final placement. Finally, rest o f the 72% o f total time is used to get rid

o f the last 18% wirelength by the low temperature simulated annealing process.

Q u a l i t y Vs Time Comsumpt s ion i n QPF

350%
300% Stage 1

Basic QP250%
Stage 1
Iterate Improvement£ 200 %

S 150% Stage 2
Linear Adjustm ent

100%

Stage 3
Low T emperature SA50%

8% 17% 28%

50% 100%
Time Comsumpt ion

Figure 4.2. The Relationship between Normalized Wirelength Penalty and Time
Consumption in QPF Algorithm

From Figure 4.2, we find that the most o f the run time o f our placement tool is used by

the last refinement stage, which is the low temperature simulated annealing process. We

believe the last refinement step is the reason that our placement tool becomes a little slower

for larger circuits in Figure 4.1. As discussed earlier, the last refinement step uses simulated

annealing technique, and the most important parameter is starting temperature T0. Recall

C
that we set it as T0 = in Chapter 3. For larger circuits, the cost C here usually is

larger and the starting temperature is larger for these circuits. This results in more time in

the last step. Although, by experiments, we can add some factor in our algorithm to make it

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work better for larger circuits, this factor should be carefully selected by testing large

C
amount o f circuits. In our algorithm we still u sero = ^ as the starting temperature and

all the experimental data is based it.

4.4 Quality and Time Tradeoff

In this section, we present the quality versus run time tradeoff o f for QPF and compare

it with the VPR placement tool.

It is straightforward to perform the tradeoff test for VPR because both the time and

quality are determined by InnerNum, which is the number o f moves per temperature. For

our placement tool, it is different. As discussed in Section 4.3, the performance o f our

placement tool is determined by three sages, and each stage uses a different technique. It is

not likely to have an exact quality and time tradeoff over all these stages. Since the last

stage o f our algorithm also requires most o f the run time, as shown in Figure 4.2, we test the

quality versus time tradeoff based on the last stage. By setting different InnerNum for the

simulated annealing part o f our placement algorithm, we obtained a similar quality versus

run time tradeoff for QPF and compared it with VPR, as shown in Figure 4.3.

Both algorithms can achieve faster speed at the some percentages o f quality penalties.

But VPR has a better tradeoff curve than QPF. When we focus on the better quality, QPF

can achieve the same quality with much faster speed than VPR. When both algorithms are

about 10 times fast, these two tools almost have the same performance. If we want to run

faster, VPR is a better choice.

The reason is that we are doing the tradeoff only in the last stage o f our algorithm and

the maximum speed we can achieve is about 15 times faster, which means we do not use

stage 3 at all. And the deeper reason behind this is in the quadratic model. For any

placement tools based on quadratic technique, the basic operation is the equation solver.

We have to modify and solve the linear equations to get a better placement. This basic

operation takes a lot o f time. While for simulated annealing based algorithms, the basic

operation is one move o f a node, and it can be done in negligible time.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Quaity Time Tradeoff Comparison

12.000

10.000

8.000
T 3

g, 6.000
u i

VPR
QPF

4.000

2. 000

0.000
0.040.01 0.02 0.03

Quality Penally

0.05

Figure 4.3 Quality vs. Time Tradeoff Comparisons between QPF and VPR

4.5 Critical Path Delay Comparison with VPR

Although we are mainly focusing on the wirelength minimization objective in our

thesis, we also wanted to have an idea about the timing performance o f our placement tool.

Through experiments, we found that the maximum critical path delay obtained by

QPF is almost same as VPR in wirelength driven mode. Both are about 25% longer than the

timing driven VPR (TVPR). We used 20 MCNC circuits for comparison.

We enhanced QPF by apply a timing driven refinement in stage 3 o f our placement tool

(we call it TQPF) and compared the critical path delay with timing driven VPR. The results

for wirelength, critical path delay and runtime are shown in table 4.6. We find that with a

timing-driven refinement in stage 3, our placement tool can achieve about 5%

improvement in critical path delay than TVPR at the penalty o f only 1.4% longer

wirelength. TQPF still gives significant run time speedup over VPR (about 3X).

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.6 Comparisons between QPF with Timing-driven Refinement and Timing-driven
VPR

Critical Path
Delay (ns)

Ratio
Total wire

length
Ratio Time

Rati
0

Circuit
TQPF TVPR

TQPF/
TVPR

TQPF TVPR
TQPF/
TVPR

T
QPF

T
VPR

TQP
F/T

VPR

Alu4 101.67 94.75 1.073 202.00 201.41 1.003 24 68 2.83

Apex2 105.98 127.00 0.835 285.52 281.13 1.016 39 125 3.21

Apex4 100.24 105.70 0.948 197.51 194.13 1.017 16 47 2.94

Bigkey 82.17 83.88 0.980 317.58 318.31 0.998 48 132 2.75

Clma 199.75 238.04 0.839
1563.2

7
1544.2 1.012 952 2697 2.83

Des 119.45 115.35 1.035 400.01 395.66 1.011 44 124 2.82

Diffeq 62.44 70.40 0.887 180.83 180.40 1.002 29 82 2.83

Dsip 70.98 81.56 0.870 312.25 310.61 1.005 33 89 2.70

Elliptic 116.57 116.21 1.003 617.49 614.85 1.004 215 555 2.58

ExlOlO 199.21 201.08 0.991 681.21 678.30 1.004 288 868 3.01

Ex5p 103.68 100.31 1.034 189.24 186.66 1.014 13 39 3.00

Frisc 134.85 136.89 0.985 654.05 627.49 1.042 205 585 2.85

Misex3 98.08 100.96 0.971 201.91 199.47 1.012 19 56 2.95

Pdc 183.36 217.89 0.842 986.73 955.37 1.033 323 975 3.02

S298 132.51 142.73 0.928 233.32 229.07 1.019 43 107 2.49

S38417 100.63 99.46 1.012 763.44 725.79 1.052 591 1540 2.61

S38584.
1

183.92 193.19 0.952 856.33 852.81 1.004 607 1716 2.83

Seq 105.19 116.54 0.903 281.19 274.22 1.025 37 103 2.78

Spla 158.65 179.39 0.884 671.72 681.63 0.985 187 615 3.29

Tseng 59.09 56.73 1.042 126.95 124.94 1.016 13 40 3.08

Average 0.9506 1.014 2.87

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The reason for this also comes from the quadratic model. As w e discussed in Chapter

3, quadratic model tends to suppress very long and very short wires as in Figure 3.2. This

property gives a good timing feature to the coarse placement that is obtained in stage 1 o f

QPF. When we use the timing driven simulated annealing refinement in stage 3, this

characteristic is preserved. More discussion about timing driven quadratic placement is

presented in the next chapter.

4.6 Summary

In this chapter, we presented the experimental results obtained from our QPF

placement algorithm. We first described the experimental evaluation environment in

Section 4.1. Then the experimental data was presented and analyzed that showed the effects

o f different techniques used in QPF on placement quality. A comparison o f QPF with VPR

and related analysis was presented in Section 4.3. The tradeoff o f quality versus run time

was discussed and compared with VPR in Section 4.4. This was followed by the critical

circuit path delay comparison between TQPF and TVPR in Section 4.5. The experimental

results show that QPF runs faster for wirelength driven placement while providing

comparable quality and TQPF also gives better critical path delay and faster run time

compared to TVPR.

In the next chapter, we will summarize the main contributions o f this thesis work and

discuss open problems that need to be explored in future research on this topic.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

5.1 Conclusions and Contributions

In this thesis we presented QPF, an efficient placement algorithm for FPGAs. It

combines the quadratic placement algorithm and the simulated annealing placement

algorithm to achieve both high quality and fast speed. We incorporated multiple iterations

o f equation solving process together with linear wirelength reduction techniques in our

algorithm, which help to alleviate the problems caused by quadratic model. We refine our

placement with low temperature simulated annealing technique, which help to produce a

high quality result. By applying these techniques intelligently, our placement algorithm

takes the advantages o f quadratic and simulated annealing placement algorithms and

produces a fast and high quality placement for FPGAs.

The first contribution o f this work is the exploration o f quadratic technique in the

FPGA placement area. We know that quadratic placement technique has been used in

ASIC area for a long time. But because o f the different architectures, ASIC placement tool

cannot be directly used in FPGA placement. To our knowledge, our work is the first

investigation o f quadratic placement in the area o f FPGAs.

The second contribution o f this work is the use o f compensation factor in quadratic

model. Half perimeter wire length is an efficient model to estimate the wirelength o f the

placement, but it usually underestimates the large nets. The old quadratic model does not

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consider this situation. By applying the compensation factor when building the linear

equations, the solution o f the linear equations carries the information o f bounding box

wirelength and is closer to the ideal placement.

The third contribution of this work is the iterative expansion technique. One o f the

main problems with quadratic placement is the node overlap problem o f linear equations

solution. We handle this problem with an iterative approach. Each iteration removes the

overlap a little bit according to the reference placement we got in the previous iteration.

This technique avoids adding artificial information to the circuit and preserves original

nodes relationship. In each iteration, since w e get new coordinates information by

re-building and re-solving the linear equations, the original squared wirelength objective is

always minimized as well.

We also give a linear adjustment technique to reduce the wirelength based on the half

perimeter wire length model. The minimization o f total linear wirelength is the final

objective for wirelength driven placement algorithm. Even for timing driven placement,

linear wirelength is also an important factor. We studied the node distribution in practical

placements and proposed the linear wirelength reduction technique. It is very fast, and

since it only uses the position information o f the circuit nodes it can be applied to any

existing placement.

Finally, an attempt was made to extend our wirelength driven placement algorithm to a

timing driven placement algorithm. Preliminary results are very promising.

5.2 Future Work

Our work is the first attempt to apply quadratic placement technique in FPGA

placement area. There are a lot o f things within this topic that need to be explored

thoroughly.

The most interesting topic that should be studied is the timing driven placement based

on quadratic technique because the circuit delay is another important objective for

placement algorithm, and much work remains to be done in this area. A direct approach that

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be done based our work is to add the timing information in our linear adjustment

technique. In our work, we further reduce the wirelength by searching all nodes o f the input

circuit and trying to find the movable nodes and move them to better position. In current

algorithm we do this only focusing on the wirelength reduction. If we perform timing

analysis before this and take the timing information into account, it is possible to reduce the

wirelength as well as the circuit delay during this process. More research is needed to find

out how to incorporate the timing information into the quadratic model.

Another interesting area to pursue is to further improve quality o f quadratic placement

technique. Since quadratic model use indirect approach to minimize the wirelength

objective, how to improve the quality o f the placement is always the main problem.

Although researchers have proposed different techniques, when compared with simulated

annealing based algorithm, the quality obtained is not as good. If we can achieve similar

quality without simulated annealing process, the runtime can be further reduced.

Finally, since quadratic placement technique involves linear equation solver,

mathematical techniques [29][36] can be employed to further reduce the program runtime.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] Steven M. Rubin, “Computer Aids for VLSI Design”, Addison-Wesley

Publishing Company, 1994.

[2] Daniel Mlynek, “Design o f VLSI System”, Integrated Systems Center, Swiss

Federal Institute o f Technology, 1998.

[3] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for

FPGAs”, FPL 1997, pp. 213 - 222.

[4] A.Marquardt, V. Betz, and J. Jose, “Timing-Driven Placement for FPGAs”,
Intl. Symposium on FPGA February 2000, pp. 203 - 213.

[5] Y. Sankar and J. Rose, “Trading Quality for Compile Time: Ultra-Fast

Placement for FPGAs”, Proc. o f 7th ACM/SIGDA Intl. Symposium on

FPGAs, 1999, pp. 157-166.

[6] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Based FPGA Designs”, IEEE
Trans on CAD, January 1994, pp. 1-13.

[7] G. Parthasarathy, M. Marek-Sadowska, A. Mukherjee, and A. Singh,

“Interconnect Complexity-aware FPGA Placement Using Rent’s Rule”, Proc.

o f System Level Interconnect Prediction, March 2001.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[8] W. Swartz and C. Sechen, “Timing-Driven Placement for Large Standard Cell
Circuits”, DAC 1995, pp. 211-215.

[9] C. Ebeling, L. McMurchie, S. A. Hauck and S. Bums, “Placement and
Routing Tools for the Triptych FPGA,” IEEE Trans, on VLSI, 1995, pp.
473-482.

[10] K. Shahookar and P. Mazumder, “VLSI Cell Placement Techniques,” ACM
Computing Surveys, vol. 23, no. 2, 1991, pp. 143-220.

[11] T. Lengauer, “Combinatorial Algorithms for Integrated Circuit Layout”,
Chichester: John Wiley & Sons, 1990.

[12] S. M. Sait and H. Youssef, “VLSI Physical Design Automation”, IEEE Press,
New Jersey, 1995.

[13] S. Areibi, M. Xie, and A. Vannelli, “An Efficient Rectilinear Steiner Tree
Algorithm for VLSI Global Routing”, Canadian Conference on Electrical and
Computer Engineering, May 2001.

[14] J. B. Kruskal, “On the Shortest Spanning Tree o f a Graph and The Traveling
Salesman Problem”, Proc. o f The American Mathematical Society 7, 1956,
pp. 48-50.

[15] R. Prim, “Shortest connection networks and some generalizations”, Bell
System Technical Journal, pp. 36:1389-1401, 1957.

[16] C. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling”,
Proc. o f ICCAD, 1994, pp. 690-695

[17] A. E. Dunlop and B. W. Kemighan, “A Procedure for Placement o f
Standard-Cell VLSI Circuit”, IEEE Trans, on CAD, vol.4, no.l 1985, pp.
92-98

[18] A. Caldwell, A. Kahng and I. Markov, “ Can Recursive Bisection Produce
Routable Placement?”, Proc. o f DAC’ 00, 2000. pp. 477-482.

[19] B. W. Kemighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs,” Bell System Technical Journal, Vol. 49, Feb 1970. pp.
291-307.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[20] C. M. Fiducia, R. M. Mattheyses, “A Linear Time Heuristic for Imporving
network Partitions”, Proc. o f 19th IEEE/DAC, pp. 175-181.

[21] D. J-H. Huang and A.B. Kahng, “Partitioning-based Standard-cell Global
Placement with an Exact Objective”, Proc. o f ACM/IEEE ISPD, 1997, pp.
18-25

[22] M. Wang, X. Yang and M. Sarrafzadeh, “ DRAGON2000: Standard-Cell
Placement Tool for Large Industry Circuits”, Proc. o f ACM/IEEE ICCAD,
2000, pp. 260-263.

[23] P. Maidee, C. Ababei and K Bazargan, “Fast Timing-driven
Partitioning-based Placement for Island Style FPGAs”, Proc. o f DAC 2003,
pp. 598-603.

[24] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Placement and
Routing Package,” IEEE Journal o f Solid-State Circuits, vol. 20, no. 2, Apr.
1985, pp. 510-522.

[25] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, “An Efficient General
Cooling Schedule for Simulated Annealing,” Proc. o f ICCAD, 1986, pp.
381-384.

[26] J. Lam and J. Delosme, “Performance o f a New Annealing Schedule,” Proc.
ACM/IEEE DAC, 1988, pp. 306-311.

[27] W. Swartz and C. Sechen, “New Algorithms for Placement and Routing o f
Macro Cells,” Proc. Intl. Conference on Computer-Aided Design, 1990, pp.
336-339.

[28] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel Hypergraph
Partitioning: Application in VLSI domain”, Proc. o f ACM/IEEE DAC, 1997,
pp. 526-529.

[29] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov, and K. Yan, “Quadratic
Placement Revisited”, Proc. o f ACM/IEEE DAC 1997, pp. 752-757.

[30] J. M. Kleinhans, G. Sigl, F.M. Johannes, “Gordian: A New Global
Optimization/ Rectangle Dissection Method for Cell Placement”, Proc. o f
ICCAD,1988, pp. 506-509, 1988

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[31] I.I. Mahmoud, K. Asakura, T. Nishibu and T. Ohtsuki, “Experimental
Appraisal o f Linear and Quadratic Objective Functions Effect on Force
Directed Method for Analog Placement”, IEICE Trans, on Fundamentals o f
Electronics, Communications and Computer Sciences, E77-A(4). April 1994,
pp. 719-725

[32] G. Sigl, K. Doll, F. M. Johannes, “Analytical Placement: A Linear or a
Quadratic Objective Function?”, ACM/IEEE DAC 1991, pp. 427-432.

[33] K.M. Hall, “An r-dimensional Quadratic Placement Algorithm,”
Management Science 17 (1970), pp. 219-229.

[34] H. Etawil, S. Arebi, and A. Vannelli. “Attrctor-repeller Approach for Global
Placement” In Proc. IEEE/ACM ICCAD, 1999. pp. 20-24.

[35] N. Viswanathan, C. Chu, “FastPlace: Efficient Analytical Placement Using
Cell Shifting, Iterative Local Refinement and a Hybrid Net Mode”, Proc. o f
ISPD 2004. pp. 26-33.

[36] R. Barrett, M. Berry, and et al. “Templates for The Solution o f Linear
Systems: Building Blocks for Iterative Methods”, SIAM, 1994

[37] S. Kirkpatrick, C. D. Gelatt, and M. P. Yecchi, “Optimization by Simulated
Annealing”, Science, vol. 220, no.4589, May 13, 1983, pp. 671-680

[38] Garey, M.R. and Johnson, D.S. “Computers and Intractability: A Guide to the
Theory o f NP-Completeness”. New York: W.H. Freeman, 1983.

[39] O. Axelsson, A. Barker, “Finite Element Solution o f Boundary Value
Problems. Theory and Computation”, Academic Press, Orlando, FL. 1984

[40] W. Hackbush, “Iterative Solution o f Large Sparse Systems”, Springer Verlag,
1994.

[41] A. Ramage, “An Introduction to Iterative Solvers and Preconditioning
Techniques”, PIMS Workshop 2003.

[42] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0”,
Tech. Report, Microelectronics Centre o f North Carolina, 1991.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[43] M. Hutton, J. Rose, and D. Comeil, “Generation o f Synthetic Sequential
Benchmark Circuits”, Proc. o f 5th ACM/SIGDA Intl. Symposium on FPGAs,
1997, pp. 149-155.

[44] E. M. Sentovich et al., “SIS: A System for Sequential Circuit Analysis”, Tech.
Report No. UCB/ERL M92/41, University o f California, Berkeley, 1992.

[45] C. J. Alpert, T. F. Chan, D. J.-H. Huang, A. B. Kahng, I. L. Markov, P. Mulet
and K. Yan, “Faster Minimization o f Linear Wirelength for Global
Placement”, Proc. o f ISPD 1997, pp. 4-11.

[46] R. Tsay, E, Kur and C. Hsu, “Module Placement for Large Chips Based on
Sparse Linear Equations”, Int. J. Circuit Theory Appl 16, pp. 411-423

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Basic Data Structures

Structure s_net and s_block are the main data structures used by VPR. They contain all

the connectivity information o f the input circuit. VPR parses the input circuit and saves the

connectivity information in these two data structures by using hash table.

struct s_net {char *name; int num_pins; int *blocks; int *blk_pin;};

/* name: ASCII net name for informative annotations in the output. */
/* num_pins: Number o f pins on this net. */
/* blocks: [0..num_pins-l]. Contains the blocks to which the pins o f this */
/* net connect. Output in pins[0], inputs in other entries. */
/* blk_pin: [0..num_pins-l]. Contains the number o f the pin (on a block) to */
/* which each net terminal connects. Since I/O pads have only one */
/* pin, I set blk_pin to OPEN for them (it should only be used for */
/* clb pins). For clbs, it is the block pin number, as expected. */

struct s_block {char *name; enum e_block_types type; int *nets; int x; int y;};

/* name: Taken from the net which it drives. */
/* type: CLB, INPAD or OUTPAD */
/* nets[]: List o f nets connected to this block. If nets[i] = OPEN */
/* no net is connected to pin i. */
/* x,y: physical location o f the placed block. */

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Structure q_block is the main data structure used by QPF to store the connectivity

information o f the circuit. We initialize this data structure by searching through the two

data structures o f VPR and converting the hyper-graph into graph by clique net model.

struct q_block {char* name; int orig_blk_num; int x, y; int edge_num; int clb_edge_num;
int io_edge_num; int* q_blk_list; float* q_blk_weight; float av_weight;

};

/* name: Block nam. */
/* orig_blk num: the origin block number in VPR */
/* x,y: physical location o f the placed block. */
/* edge_num: number o f edge o f this node */
/* clb_edge_num: number o f edges connected to CLBs */
/* io edge num: number o f edges connected to 10 pads */
/* q_blk_list[]: nodes connected to this node */
/* q_blk_weight[]: weight o f the nodes connected to this node */
/* av_weight: average weight o f this node */

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Yonghong Xu graduated from Zhejiang University in P.R.China, where he obtained B.Sc
in June 1995 and M.Sc in March 1998 in Electrical Engineering. And afterward he worked
for Alctel Shanghai Bell till 2002. He is currently a candidate for the Master’s degree in
Electrical and Computer Engineering department at the University o f Windsor and hopes to
graduate in June 2005.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Efficient quadratic placement for FPGAs.
	Recommended Citation

	tmp.1615935540.pdf.cbNmP

