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Abstract

Piotr Stȩpień

Placement And Routing For

Reconfigurable Systems

Applications using reconfigurable logic have been widely demonstrated to

offer better performance over software-based solutions. However, good

performance rating is often destroyed by poor reconfiguration latency - time

required to reconfigure hardware to perform the new task. Recent research

focus on design automation techniques to address reconfiguration latency

bottleneck.

The contribution to novelty of this thesis is in new placement and routing

techniques resulting in minimising reconfiguration latency of reconfigurable

systems. This presents a part of design process concerned with positioning

and connecting design blocks in a logic gate array. The aim of the research

is to optimise the placement and interconnect strategy such that dynamic

changes in system functionality can be achieved with minimum delay.

A review of previous work in the field is given and the relevant theoretical

framework developed. The dynamic reconfiguration problem is analysed

for various reconfigurable technologies. Several algorithms are developed

and evaluated using a representative set of problem domains to assess their

effectiveness.

Results obtained with novel placement and routing techniques

demonstrate configuration data size reduction leading to significant

reconfiguration latency improvements.
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Chapter 1

Introduction

In recent years, Field Programmable Gate Arrays (FPGAs) have become one

of the most popular implementation technologies for digital circuits. Initially,

being just a mesh of programmable logic units and interconnections, they

have rapidly evolved to become complex System–on–Chip (SoC) solutions

offering dedicated processing, storage and communication blocks to satisfy

an ever increasing demand for configurable platforms that can be realised

with minimum time to market.

The benefits gained from using FPGAs have been demonstrated across

different, often computationally heavy application domains:

Various video processing algorithms have been successfully implemented

in FPGAs, (Kulmala et al. (2006); Note et al. (2006); Agostini et al. (2006);

Gorgon et al. (2005); Hormati et al. (2008), Kirischian et al. (2008)) often

outperforming purely software implementations. A video decoder presented

by Mignolet et al. (2003) implemented on reconfigurable hardware, was four

times faster than its software implementation.

FPGAs have also proven to be an efficient platform for various image

processing algorithms, (Garcia and Navarro (2006); Fahmy et al. (2006);

Fahmy et al. (2005); Canto et al. (2009)) especially for the ever increasing

image resolutions, and the growing popularity of image recognition based
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systems.

The wireless communications application domain has also benefited from

using FPGAs (Ahmed and Arslan (2006); Berthelot et al. (2006);

Herrero et al. (2006); Esquiagola et al. (2005); Subramanian et al. (2009);

Vogt and Wehn (2008)) to efficiently implement a variety of communication

modules.

Examples from Mentens et al. (2006); Michalski and Buell (2006),

Legat et al. (2009), Glas et al. (2008) and Huffmire et al. (2008) show

that data security and cryptology have successfully used FPGAs in order to

provide data security.

Yamaguchi et al. (2002) present results from using FPGAs

in Reconfigurable Systems (RS) for a high–speed homologycal search. Their

study found that the hardware approach was 330 times faster than

an equivalent algorithm optimised for software implementation. Other

examples from Arteaga et al. (2008), Koch et al. (2009) and Vogt and

Wehn (2008) show, that FPGAs offer better performance for many algorithms

previously reserved for microcontrollers.

As SRAM-based FPGAs can be programmed to perform different

functionalities, they can also support reconfiguration, where the same

hardware infrastructure can be reused to perform different functionality at

different times. For this reason SRAM-based FPGA technologies can be

considered as Reconfigurable Systems.

1.1 The Demand for Reconfigurable Systems

The demand for reconfigurable digital hardware is increasing as manufacturers

realise the benefits of reconfiguration, for example:

• Increased functionality without additional hardware.

• Dynamic modification and upgrading of systems with no or minimal

16



system downtime.

• Realisation of adaptive systems.

• Remote hardware upgrade.

Several approaches have been proposed for reconfigurable systems.

A Seamless Communication Platform presented in Vasilko et al. (2001)

describes a multi–standard communication system with ‘over the air’

reconfiguration. Reconfiguration provides platform adaptability to different

communication protocols and data coding requirements. Other examples

of platforms for reconfigurable designs have been described by Rissa and

Niittylahti (2000), Sedcole et al. (2003) and Marescaux et al. (2003).

Wireless communication is a good example of an application area that

can benefit from reconfigurable functionality. At the present time, a change

in communication protocol or introduction of a new network service often

necessitates a user purchasing an upgraded device that supports

new protocols. With reconfigurable devices an upgrade can be done in

milliseconds (Rana et al., 2009) that is transparent to the user. Examples

presented by Herrero et al. (2006), Ahmed and Arslan (2006),

Subramanian et al. (2009) and Vogt and Wehn (2008) show that FPGAs can

satisfy performance requirements specified by the wireless communication

domain.

Apart from end–user devices, mobile base station or satellite transmission

systems can also benefit from dynamic hardware reconfiguration. New

network services can be introduced rapidly without expensive modifications

to network infrastructure. It is especially important in satellite systems,

where physical modification of existing satellites in space is usually protracted

and costly. With reconfigurable hardware on board, a satellite can be

reprogrammed from the control centre to provide new protocols and services.

Examples presented by Vladimirova and Wu (2007) and Fiethe et al. (2007)
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Figure 1: Example of a multi–context design using a single reconfigurable
platform.

show that FPGAs can satisfy performance requirements specified by the

satellite communication domain.

Another application area of notable interest is multimedia portable devices.

Problems have emerged in relation to the variety of data coding/decoding

methods and lack of well established standards. Consequently, many devices

are limited in respect of the data protocols they can support. Extending

support for new data protocols requires hardware modifications which cannot

be done through software.

The example a smartphone implemented on FPGA-based reconfigurable

system has been presented on Figure 1.

Single context presented on the Figure 1 refers to a portion of configuration

data required to program FPGA to perform desired functionality. It is an

equivalent of a single application loaded to the smartphone to switch it into

desired functionality (e.g. multimedia player, GPS receiver, etc.).

In many situations reconfiguration of system functionality on a scale of a

milliseconds (Resano et al., 2008) would not impose a significant burden

on system usability and further improvement is not justified. However,

in specific application areas, such as, reconfigurable computing, minimising

reconfiguration delay is essential to maximise throughput. For example, real
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time image processing requires a sequence of processing operations applied

in parallel to image blocks. In this type of application optimal throughput is

achieved if the images are stored locally in the processing matrix and local

hardware reconfigured at each processing step. This overcomes the delay

imposed by conventional hardware or sequential processors in moving large

amounts of data between different elements of the functional architecture

e.g. memory swapping. Moreover, minimalisation of data transfers can lead

to significant reduction in power consumption. An example presented by

Wang et al. (2006) showed that FPGA dynamic power consumption can be

reduced when a modified set of design constrains is used at FPGA placement

and routing.

Smit et al. (2002) identified the potential for dynamically reconfigurable

mobile communication systems that operate in differing communication

environments. In this type of application, additional functionality is limited

by the requirement to minimise the physical size of the system to ensure

portability and low battery power consumption. By using reconfigurable

techniques the system functionality can be extended without adversely

affecting these requirements. Similar arguments are presented

by Helmschmidt et al. (2003) in their consideration of the realisation of

the UMTS rake receiver.

Examples from different application domains illustrate the benefits of

using dynamically reconfigurable hardware. An FPGA–based implementation

of public–key cryptography algorithm developed by Mazzeo et al. (2003)

benefited from a reduced design area and significantly increased performance.

Gause et al. (2000) presented two reconfigurable design approaches for

two–dimensional Shape–Adaptive Discrete Cosine Transform: one static

where configuration does not change during algorithm execution and the

second with dynamic reconfiguration enabled. They concluded that the

dynamic approach significantly reduced the required FPGA are utilisation,

however it was noted reconfiguration latency overhead did not significantly
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improve. Vissers (2003) describes parallel processing architectures as

a network of ALU–like structures with a corresponding set of instructions and

recognises the opportunity for rapid dynamic reconfiguration and instruction

multiplexing.

1.2 Limitations of Reconfigurable Hardware

Although FPGAs offers high performace and flexibility, there are a number

of limitations that have prevented them from being widely exploited as

reconfigurable systems. Rana et al. (2009) addressed reconfiguration latency

– time required to switch configuration – as the key issue undermining

performance improvements. As modern FPGAs configuration files size is of

MBytes due to their complexity it adds a significant reconfiguration overhead.

This impose reconfiguration latency and data storage penalty especially in

multi-context designs.

Furthermore, configuration data size becomes an issue especially in battery

operated, mobile devices, where configuration data storage and its transfer to

the FPGA array contribute to the overall power consumption.

The significance of this issue has been recently exemplified by the rapid

increase in portable systems, such as MP3 players and mobile phones.

1.3 Design Support For Reconfigurable Systems

Efficient use of reconfigurable hardware could be impossible without design

tools. They offer fully automated design flow mostly for a single content

solutions, able to satisfy variety of design goals, like: routability, meeting

timing constraints or power consumption requirements. Typically designs for

FPGAs have been described using Hardware Description Language (HDL),

proven to be an efficient way to describe hardware. However such an approach

20



is technology dependant.

Multi-context design as presented in Figure 1 can be processed using

currently available design tools as a set of individual contexts. However

such an approach is unable to benefit from any configuration overlapping

mainly because each context is processed separately. Lack of feasible tools

for efficient multi-context design has been addressed by Canto et al. (2009).

1.4 Scope and Objectives

This thesis evaluates the problem of placement and routing (P&R)

for reconfigurable system. The reason to focus on placement and routing

comes from the fact, that FPGA configuration data content depends on P&R

results. Analysis of the current state of design tools for reconfigurable systems

presented in Sections 1.1 through 1.3 allows a statement of the principal aim

of the thesis which is the development and characterisation of novel placement

and routing strategies for FPGAs that reduce reconfiguration latency and

minimise reconfiguration data storage requirements.

The principal objective is to develop a method of minimising configuration

data size by re–using parts of configuration data from previously loaded

contexts. Novel algorithms will be developed and characterised

for representative design applications. The results will be analysed

to establish if generalised design rules can be established.

Partial result of this research inluding author’s novel placement

and routing approach has been published in (Stepien and Vasilko, 2006).

1.5 Thesis outline

The current chapter presents an introduction to the field of research and

identifies the principal aim of the research project.
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Chapter 2 provides a critical review of related literature and relevant

background information on reconfigurable systems. Evaluation of state-of-

the-art hardware, design methodologies, tools and conceptual approaches

have been presented. Several technological approaches to reconfigurable

systems together with reconfigurable logic architecture have been examined

together with reconfiguration methods in order to demonstrate how the

technology–specific features influence the design considerations during

reconfigurable system design.

Chapter 3 discusses the methodology used to achieve design goals. It

describes details about development framework, testing environment and

quality measures used to evaluate the novel placement and routing algorithms.

The benchmarking tests used to validate the solutions are also discussed.

Chapter 4 discusses the development of a novel bitstream size reduction

methodology for placement and routing of a single context design and its

optimisation. It describes how a configuration architecture interface can be

incorporated into the placement and routing stage in order to address design

goals. Critical evaluation of experimental results has also been presented in

this chapter.

Chapter 5 discusses the enhancements introduced for a novel simultaneous

multi-context placement and routing methodology. Details of configuration

data sharing and its impact on the quality of delivered placement and routing

results are also discussed there together with their impact on different FPGA

technologies.

Chapter 6 presents the conclusions of the study with the directions of

further research.
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Chapter 2

Literature review

This chapter provides critical review of reconfigurable systems focusing on

FPGAs as a leading technology. To describe the complexity of configuration

bottleneck problem FPGA technologies have been discussed leading to the

critical evaluation of methodologies used to improve reconfiguration. This

chapter also provides critical evaluation of FPGA Computer Aided Design

(CAD) tools with a focus on reconfiguration improvement.

2.1 Reconfigurable System Definition

Reconfigurable systems combine features previously existing individually in

either software or hardware systems. Consequently, they provide the flexibility

of processor–based software systems with performance approaching that of

custom hardware circuits (Shirazi et al., 2000). Typical RS architecture

contains a Reconfigurable Logic Unit (RLU), Reconfiguration Controller Unit

(RCU), and Configuration Data Store (CDS). The RCU manages the RLU

reconfiguration. Typically, the RCU is implemented as a micro–controller

or microprocessor. It operates the task of reconfiguration control as well as

data transfers to and from RLU. Sometimes, the RCU can be an integral
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part of the RLU. The CDS unit provides memory for configuration data

and application specific data. It can be organised as two separate memory

blocks (one for each type of data) or one single memory block shared between

configuration and application specific data.

2.2 Reconfigurable Systems Implementation

In the past reconfigurable system required several components:

microcontroller, FPGA, DSP, storage. With submicron technology currently

available FPGAs from Xilinx, Altera or Actel contain not only the array

of configurable blocks but also dedicated microcontroller, DSP, storage and

high-speed I/O interace (Xilinx, 2009b; Canto et al., 2009; Lewis et al.,

2009; Actel, 2009).

There has been considerable research into possible reconfigurable

computing architectures. Alternatives range from systems constructed using

standard FPGAs to systems constructed using custom–designed chips. Some

technologies like Xilinx XC6200 (Brebner, 1996; Luk et al., 1996; Brebner,

1997a) were introduced to support research on reconfiguration. A review

on existing RS architecture approaches by Hauck and DeHon (2008) include

discussion of a range of research and commercial technologies including Garp,

PipeRench, RaPiD, Chimaera together with FPGA–based PAM, VCC,

Splash, Prism and XC6200 architectures.

The variety of hardware solutions arises from the fact, that there is no

single universal architecture that fulfils requirements of different applications.

SoC has become very application specific in terms of size, available resources

and reconfiguration technique, in order to avoid penalties in design speed

and efficiency.
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Figure 2: Example of island-style configurable logic architecture based on
Betz (1999).

2.3 FPGA Architecture

The popularity of static RAM–based technology pushed forward

the development of reconfigurable logic. Modern FPGAs offer not only the

equivalent of several millions of logic gates but also dedicated microcontrollers,

DSP modules, storage and high-speed I/O interface able to accommodate

very complex digital designs (Xilinx, 2009b; Canto et al., 2009; Lewis et al.,

2009; Actel, 2009).

A typical example of reconfigurable logic architecture is presented

in Figure 2. It contains logic blocks (for logic functions) surrounded by

the routing wires to provide connections between logic blocks. Wires are

connected together via configurable switches controlled by individual memory

cells. During the configuration process appropriate switches are set into

on/off position to provide connectivity between logic blocks.

As has been described in Betz et al. (1999) all FPGAs are composed of

three fundamental components: logic blocks, I/O blocks and programmable

routing. A circuit is implemented in an FPGA by programming each of the

logic blocks to hold a portion of a circuit’s functionality, and each of the I/O
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blocks to provide connectivity with the PCB. The programmable routing is

configured to provide necessary connections between logic blocks and I/O

blocks.

2.3.1 FPGA Programming Technologies

According to Betz et al. (1999) there are three different approaches to

making an FPGA programmable:

• SRAM cells, controlling pass transistors, multiplexers and tri–state

buffers.

• Antifuses.

• Floating gate devices.

While antifuse and floating gate devices represent OTP class of devices,

SRAM–based FPGAs became the most popular reconfigurable technology

used today.

2.3.2 FPGA Logic Block Architecture

The complexity of logic block used in an FPGA is a trade-off between

flexibility, performance and has an impact of reconfiguration latency. While

many different logic blocks have been used in FPGAs, most commercial

FPGAs use logic blocks based on a look–up table (LUT) (Xilinx, 2009b;

Canto et al., 2009; Lewis et al., 2009; Actel, 2009). An example

of a LUT–based logic block is presented in Figure 3.

LUT example presented in Figure 3 contains 16 to 1 demultiplexer

controlled by four LUT inputs. Depending on combination of LUT inputs

selected memory cell is connected to the LUT output. Four bit LUT can

perform any four input combinatorial function. Output register R is used

to implement sequential logic functions. LUT inputs resolution has been
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Figure 3: FPGA logic block with 4–input LUT and register.

investigated by various research groups to establish the optimal logic structure.

These studies identified a trade–off between area efficiency and the number

of LUT inputs. Eventually, the four input LUT became a standard for

commercial FPGAs, although recently with silicon technology going into

deep–submicron area 6–input LUTs have been used Xilinx (2009b).

In most of the modern FPGAs LUTs are grouped into clusters in order to

host more complex functions inside a single logic block. Often LUTs within

a single logic block are locally interconnected to enable them to host more

complex functions. In Xilinx Virtex-6 4 LUTs form a slice and 2 slices are

grouped into a single Configurable Logic Blocks (CLB) (Xilinx, 2001).

2.3.3 FPGA Routing Architecture

According to (Betz et al., 1999) FPGAs can be classified by routing

architecture into the following groups:

• Island–style.
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Figure 4: Example of island–style routing based FPGA based on Hauck
(2008).

• Row–based.

• Hierarchical.

Island–style routing architecture where a logic block is surrounded by

routing resources, can be found in Xilinx and Lucent devices (Xilinx, 2001;

Xilinx, 2009b), while Actel’s devices are row–based (Actel, 2009), and Altera’s

devices are based on hierarchical routing architecture (Lewis et al., 2009).

Island–style routing architecture is the most popular approach and is

widely employed in commercial FPGAs and research devices. An example

of an island–style routing architecture based FPGA has been presented in

Figure 4.

As indicated in Figure 4 routing resources are grouped into channels

spanning horizontally and vertically alongside logic block locations. Basic

routing resources of unit length (i.e. they terminate at the next block

location) are used to provide connectivity between logic blocks. Longer
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connections can be built–up using a combination of single length routing

wires, or long wires (spanning more than a single logic block), or a mixture

of both, depending on the distance between logic blocks to be connected.

2.4 Design Automation

The advent of complex configurable devices with more than a million logic

gates, made manual circuit design impractical, if systems were to be realised

within the time constraints imposed by market forces. To support the design

process, numerous design automation tools and methodologies have been

proposed.

2.4.1 Design Techniques for One Time Programmable

Systems

One Time Programmable (OTP) systems refer to the case when

the configuration is loaded at startup and it does not change while the

system is active. Single context programmed FPGA is a good example of

OTP system. The methodology described in this section describes the design

automation associated with this type of architecture. It is included as a basis

for understanding several of the challenges associated with the current study.

Figure 5 presents the typical design flow for non–reconfigurable system.

During behavioural synthesis an abstract behavioural design model is

translated into one of several possible architectural design models, whilst

attempting to meet the stipulated design constraints. An architectural design

model is often referred to as a ‘register–transfer level’ (RTL) architecture,

because it indicates data transfers between register blocks (Vasilko, 2000a).

Subsequently, a logic synthesis process translates the RTL architecture

description into a gate–level architecture resulting in a gate and
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interconnection netlist. This description is generic and a technology mapping

process is necessary to map the gate–level netlist onto a specific target

technology. The last process is known as the placement and routing (P&R)

stage and involves placement of the target technology cells and their routing.

Collectively the steps outlined above form the Electronic Design

Automation (EDA) process. Many EDA algorithms and methodologies have

been proposed for automatic translation between the various design

abstraction levels. For detailed information on these techniques the reader

is referred to the literature, Gajski et al. (1992); Sherwani (1995); Gerez

(1999) offer comprehensive discussion on these topics.

2.5 Configuration Interface Architecture

Configuration architecture is the underlying physical circuitry that loads

the configuration data onto the chip and stores it at the correct location.

Configuration architectures can range from a simple serial shift chain to

addressable structures that can manipulate configuration information after

it is loaded (Hauck and DeHon, 2008).

The process of FPGA configuration is a two stage process involving

data transfer from external memory to the FPGA and data distribution

to each programmable resource on the chip. The efficiency of the method

used to transfer and distribute configuration data determines reconfiguration

performance.

2.5.1 Serial Configuration Data Distribution

The simplest way to manage configuration memory cells in the FPGA is to

group them into a single shift–register spanning across entire chip. Data are

loaded serially to this register. Once data loading is completed configuration

can be activated. Example of serial configuration interface is presented in
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Figure 6.

Serial configuration approach is quite fast when the entire chip needs to be

reconfigured. It is also silicon area efficient due to minimal resources having

to be dedicated to control configuration process. However, in situations where

only a part of the configuration needs to be changed, entire chip has to be

reconfigured due to the constraints of the configuration interface architecture.

The Xilinx XC4000 family is an example of this type and incorporates a single

serial configuration data distribution interface (Xilinx, 1999).

2.5.2 Parallel Configuration Data Distribution

The need for a faster and more direct access to the FPGA configuration

registers was identified by Kean (1988). In response, parallel configuration

data interfaces were implemented by Xilinx in their XC6200 family. With a

memory like distribution architecture, single routing switches became directly

accessible, and the configuration could be changed without the need to

reconfigure other parts of the device. However, a parallel interface requires

much more robust circuitry and is still too slow in many applications where

a significant portion of the FPGA needs to be reconfigured. An example of
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a parallel configuration data interface is presented in the Figure 7.

2.6 Support for Reconfiguration

2.6.1 Partial Reconfiguration

During the early development of FPGAs, reconfiguration was performed at

start–up only. Consequently, the serial configuration data interface was a

very convenient solution due to its simplicity. With further development

of reconfigurable computing, demand for the capability to reconfigure parts

of FPGA while other parts continue to operate (dynamic reconfiguration)

increased. Lysaght and Dunlop (1994) classify an FPGA as dynamically

reconfigurable if it can be partially reconfigured while active. To achieve

partial reconfiguration capability, configuration data has been organised into

clusters each controlling different parts of the device. Such an approach,

allows reconfiguration of a part of a FPGA without interfering with other

previously implemented or operational elements of the design.
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2.6.2 Reconfiguration Latency

Different reconfiguration mechanisms demonstrate a tradeoff between the

configuration throughput and the area overhead required for the

implementation of the reconfiguration subsystem. The time needed for the

configuration of a design module will vary with the technology. For partially

reconfigurable technologies, the required configuration time will also vary

with the current contents of the configuration memory in terms of number

of frames which need to be reloaded. A frame in this context denotes the

smallest sub–division of the device that can be independently reconfigured.

To accelerate the speed of reconfiguration, a cascade technique involving

the connection of several configuration cells to one configurable resource was

proposed by Brown et al. (1994) and later refined by Trimberger et al.

(1997). These systems provide a configuration memory containing more than

one configuration data store so that multiple–contexts can be preloaded. The

configuration memory for each context is termed a context layer as presented

on Figure 1 in section 1.3. Once the configuration data has been preloaded

into the context layers, the desired configuration can be activated by selecting

the appropriate configuration cells. This process is illustrated in Figure 8.
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The main advantage of this approach is in the speed of reconfiguration.

In current technologies entire device configurations can be changed within a

few nanoseconds (Vasilko, 2000a). However, fast reconfiguration is achieved

at the expense of the large silicon area overhead required for the configuration

context memory and its control logic. Power consumption during

reconfiguration is also difficult to estimate, which is an important requirement

in the design of multi–function portable devices (Trimberger et al., 1997).

Vasilko and Ait-Boudaoud (1996b), investigated an alternate approach

to fast reconfiguration which exploited integrated optoelectronics on silicon.

Embedded photo–detectors can be used to configure switches and logic block

contents instead of memory cells. Such an approach can benefit from faster

reconfiguration without the overheads associated with the multi–context

approach previously described. However, the ability to integrate high density

optoelectronic detectors on silicon remains a challenge and commercial

realisation of optically reconfigured FPGAs has not yet materialised.

Another basic approach to resolving the reconfiguration problem is to

reduce the amount of data required to configure an FPGA. Modern FPGA

architecture offers millions of simple logic blocks to host all sorts of algorithms.

To provide connectivity between these logic blocks routing resources are also

increasing exponentially. This gives the designer freedom and flexibility, but

comes at the price of an increasing the amount of configuration data that

needs to be loaded into an FPGA. For example, a typical configuration data

file for the Xilinx XCV1000 which offers the equivalent of one million logic

gates requires about 770kB of configuration data. Whilst the quantity of

data is not high by today’s standards the time to load this data serially even

at the highest throughput rates is on the order of milliseconds. This is too

slow for reconfigurable computing applications where reconfigurations times

on the order of a few nanoseconds are required to sustain typical programme

execution and data throughput rates.

Several approaches have been proposed to minimise configuration data
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size. Dyer et al. (2002) proposed an architecture in which some of the

routing, particularly of data buses is fixed. Thus only a part of the routing

switches can be reconfigured which significantly decreases configuration data

size.

An alternate approach utilises a different architectural paradigm, where

logic blocks are much more complex structures e.g. PACT XPP Technologies

(2003). This type of architecture decreases the level of flexibility offered by

an FPGA although it benefits from a faster reconfiguration time and reduced

configuration data size.

2.7 Dynamic Reconfiguration Implementation

The technique of partial reconfiguration subsequently led to the concept

of dynamically reconfigurable systems. According to Lysaght and Dunlop

(1994), an FPGA is classified as dynamically reconfigurable if it can be

partially reconfigured whilst active. With Internal Configuration Access Port

(ICAP) introduced on Xilinx Virtex-II FPGAs fabric can be reprogrammed

by an internal microcontroller (Eto, 2007). This feature pushed forward

research on fault-tolerant and self-reconfiguring design methodologies

described in details in (Legat et al., 2009; Sterpone et al., 2008; Pilotto et al.,

2008; Hu et al., 2008).

2.8 Design Techniques for Reconfigurable Systems

The introduction of reconfigurable systems brought a whole new set

of challenges into design automation. The difficulties with the design of

reconfigurable systems have been highlighted by Hadley and Hutchings (1995).

As modern FPGAs contain a mixture of programmable hardware and

microcontrollers (Hadley and Hutchings, 1995) emerged better support of
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hardware/software design tools.

2.8.1 Hardware/Software Design

Introduction of microcontrollers as a part of FPGA fabric emerged the need

for new tools linking together two different design methodologies for hardware

and software.

Resano et al. (2008) have developed a hybrid design-time/runtime

reconfiguration scheduling heuristic that generates its final schedule

at runtime but carries out most computations at design-time. They

demonstrated that the PowerPC 405 processor embedded on a FPGA

generates a very small runtime penalty while providing almost as good

schedule as a full runtime approach.

So and Brodersen (2008) explored the design and implementation of

BORPH, an operating system designed for FPGA-based reconfigurable

computers. Hardware designs execute as normal UNIX processes under

BORPH, having access to standard OS services, such as file system support.

Hardware and software components of user designs may, therefore, run as

communicating processes within BORPH’s runtime environment.

Deledda et al. (2008) presented the architecture and associated

development tools of an heterogeneous reconfigurable SoC focusing on the

chosen communication infrastructure. The SOC integrated units of various

sizes of reconfiguration granularity. The included SoC approach

demonstrated the scalability for actual and future SoC design.

Huang and Vahid (2008) explored the problem of operating system

controlled dynamic management of the loading of coprocessors into the

FPGAs for best overall performance or energy.

Bauer et al. (2009) addressed the problem of reconfiguration latency in

reconfigurable systems. Comparisons with the most-prominent replacement

policies show a speedup of up to 2.26. A parallel hardware implementation of
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their MinDeg algorithm demands only 4,440 gate equivalents, which

corresponds to 64% of the average requirements of one real-world

reconfigurable accelerator.

2.8.2 Temporal Partitioning Problem

Initially temporal partitioning has been introduced to split complex deigns

between multiple FPGAs. The temporal partitioning for reconfigurable

systems is different from that of multiple FPGA devices (when a design is too

complex to be mapped onto a single FPGA). While both problems address

the partitioning of design computational and storage elements, temporal

partitioning must also consider the temporal relationships between the

individual design partitions to ensure that no dependency violations or

conflicts occur during execution (Vasilko, 2000a). Temporal partitioning can

be performed at different levels within the design automation process flow.

2.8.3 Temporal Partitioning at the Behavioural Level

Starting from a behavioural design model and set of constraints, the temporal

partitioning is performed directly on the behavioural model. The product

of such a temporal partitioning after the behavioural synthesis is a set of

reconfigurable system partitions and a configuration controller for the design

(Vasilko, 2000a).

Temporal partitioning at behavioural level makes it possible to explore

tradeoffs between different architectural implementation options. Temporal

partitioning at behavioural level is also referred to as ‘task scheduling’.

Several automatic techniques addressing temporal partitioning have been

reported and will now be considered in detail.

A list of scheduling based synthesis techniques which support synthesis for

partially reconfigurable systems was presented in Vasilko and Ait-Boudaoud
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(1996a). The technique assumes a constant reconfiguration time and a simple

approach is used for the high–level estimation of the available reconfigurable

device area.

The ‘online’ scheduling technique proposed byWalder and Platzner (2003)

is based upon the concept of allocating tasks to a block–partitioned

reconfigurable device. Results obtained using this method benefit from a

smaller configuration data size and lower reconfiguration latency.

Dynamic reconfiguration is also associated with the problem of on–line

resource management. It involves resource allocation to make enough space

for incoming tasks. Gericota et al. (2002) present a novel active replication

mechanism for configurable logic blocks, able to implement on–line

rearrangements without disturbing currently running functions.

ElGindy et al. (2000) also studied the problem of tasks rearrangement on

partially reconfigurable FPGAs.

2.8.4 Temporal Partitioning at Gate–Level

Once a gate–level design model has been generated, it is not possible to

modify the architecture or execution schedule of a design. Temporal

partitioning at gate–level becomes attractive if the final gate–level model

cannot fit into the target device. One possibility is to ‘fold’ the

implementation of the gate–level model over multiple design configurations

(Vasilko, 2000a).

A solution presented in Shirazi et al. (1998) describes an optimisation

technique based on graph bi–partitioning, capable of optimising the layout

of two configurations. The algorithm maximises the overlap of similar blocks

in two configurations in order to minimise the overhead associated with the

reconfiguration of the partitions.

A solution proposed by Kielbik et al. (2002) presents a temporal

partitioning algorithm based upon splitting a design into two, area balanced,
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time independent sub–designs. These sub–designs can be mapped onto a

target device with two configuration context layers.

The limitation of this approach is that the architectural implementation

of the system, as captured in the gate–level model, cannot be changed.

Temporal partitioning at gate–level cannot guarantee that

system requirements such as reconfiguration latency dependencies will be

satisfied.

2.9 Reconfigurable System Framework

The problems and differences raised in Section 2.8 identified the need for new

design frameworks. Brebner (1997b) introduced the Swappable Logic Unit

(SLU) as a new computing paradigm to support dynamic reconfiguration

and placement in reconfigurable computer systems. This approach was also

advocated by Luk et al. (1996).

From this diverse array of reconfigurable hardware platform architectures

emerged the need for an architecture independent framework which could

provide the designer with sufficient information about system performance

across different platforms (Dyer et al., 2002). Several such frameworks

have been proposed. A Prototyping Framework proposed by Sawitzki et al.

(2001) focuses on design capture, testing and debugging of reconfigurable

processor cores.

The DYNASTY framework proposed by Vasilko (2000b) focuses on design

visualisation for dynamically reconfigurable systems. The DYNASTY

approach to the design offers the advantage of being technology independent.

The idea of keeping the design specification separate from a particular

technology enables performance comparison across different technologies and

platforms enabling further optimisation. Such a solution enables system

designers a basis for comparison of design performance on different
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technologies and provides reconfigurable hardware developers with improved

feedback to assist refinement of the underlying technology.

2.10 Placement Algorithms Background

Placement & routing are the final steps in the design automation flow as

illustrated previously in Figure 5. During placement and routing the gate–

level model is transformed into final configuration data. Configuration data

can then be loaded into the device to configure it. Target technology needs

to be defined before placement and routing as these processes are always

technology dependent.

2.10.1 Placement

Placement algorithms determine which logic block within an FPGA should

implement each of the logic blocks required by a circuit. In general each

placement algorithm starts from an initial placement and performs a series

of placement iterations to find optimal results according to the placement

schedule. Cost function is used to determine the quality of the placement

iteration.

2.10.1.1 Initial Placement

The initial placement procedure determines blocks allocation at the beginning

of the search for a satisfactory placement solution. It can be done either by

random allocation or using deterministic methods to allocate each individual

block to a physical location within the device.

Depending on the placement algorithm used, initial placement can

influence the quality of the final placement especially when deterministic

search based algorithms are employed.
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2.10.1.2 Placement Cost Function

A cost function is used by the placement algorithm to determine the quality

of a proposed solution. It represents a trade–off between algorithm speed and

efficiency, as the cost function needs to be recalculated after each iteration

of the placement algorithm. A typical placement cost function depends on

either a net bounding box or net wire length as the fastest way to evaluate

the quality of the proposed solution.

2.10.1.3 Next Step and Placement Scheduling

Placement scheduling determines placement algorithm mechanisms used to

deliver an optimum design placement solution. It controls algorithm

performance, solution acceptance criteria, and the next step proposed solution.

The next–step determines the way in which a new proposed placement solution

will be refined in order to deliver a satisfactory placement result.

2.10.2 Placement Algorithms Overview

The common optimisation goals are to place connected logic blocks close

together to minimise the required wiring (wirelength–driven placement), to

place blocks to balance the wiring density across the FPGA (routability–

driven placement), or to maximise circuit speed (timing–driven placement)

(Betz et al., 1999).

Placement algorithms can be divided into two categories:

• Constructive placement – once the location of a block has been

determined it remains fixed.

• Iterative placement – all blocks have randomly assigned initial locations

and blocks are moved around or swapped in order to get a new

configuration.
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Most placement algorithms comprise a combination of both approaches:

an initial placement is obtained in a constructive way and attempts are made

to increase the quality of the placement by iterative improvement (Gerez,

1999).

Constructive placement is represented by the min–cut method. The idea

of min–cut placement is to split the circuit into two sub–circuits of more

or less equal size while minimising the number of connections between sub–

circuits. Two sub–circuits obtained in this way will be placed into separate

halves of the FPGA. This type of bi–partitioning is recursively applied to

the sub–circuits until further partitioning yields no further benefit against

quantifiable criteria. Min–cut placement is based on Fiduccia–Mattheyes

algorithm (Fiduccia and Mattheyses, 1984) and respresents a top–down

method: it starts with whole circuits and ends with small elementary sub–

circuits. The opposite approach to min–cut is clustering which is effectively

a bottom–up approach. Clustering starts with single elementary sub–circuits

and finds one or more sub–circuits that share nets with it. These sub–circuits

are then taken together to form a cluster. The cluster is then placed. The

process is repeated until the cluster contains the entire circuit.

Another example of constructive placement is represented by

Force-directed algorithm (Shahookar and Mazumder, 1991). Starting from an

initial random placement, each logic block is moved to its best location. Best

location for each block is determined as the closest available location to the

centroid of all the other blocks to which this block is connected. If destination

location is occupied, the two blocks are swapped. After moving to the best

location the block is locked and its location is considered unavailable. Single

placement iteration lasts until all the blocks are locked. If the exit condition

has not been met, all the blocks are unlocked and next placement iteration

begins.

Iterative placement is based on iterative improvement strategy which

perturbs a given placement by changing the position of one or more blocks
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and evaluates the result. If the evaluated cost is lower (i.e. the placement

is improving) then the new placement replaces the old one and the process

continues. Conversely, if the evaluated cost is higher, the modification can

still be accepted under certain circumstances to avoid failed convergence

arising from being stuck in a local minima of the solution space.

The most popular method of iterative placement is Simulated Annealing

(SA). It mimics the annealing process used to gradually cool molten metal to

produce high–quality metal objects where crystal structure is very regular.

An initial placement is created by assigning logic blocks randomly to the

available locations in the FPGA. A large number of moves, or local

improvements, are then made to gradually improve the placement

(Betz et al., 1999). Following each iteration the cost function is recalculated

to determine whether to accept or decline the new placement location.

Mulpuri and Hauck (2001) compared several placement algorithms

demonstrating tradeoff between runtime and quality. Results presented by

Mulpuri and Hauck (2001) show that Simulated Annealing dominates other

placement algorithms.

2.11 Routing

Once locations for all logic blocks in the circuit have been chosen, the router

determines which programmable switches should be turned on, to connect

all the logic block inputs and outputs defined in the netlist. An example of

routing is shown in Figure 9.

As FPGA routing resources are fixed, the routing problem can actually

be represented as finding shortest path through a routing–resource graph. In

this type of analytical model the graph nodes represent the logic block pins to

be connected. Furthermore, the interconnect switches are represented by the

vertices and wires are represented by edges. Each wire has a cost attached
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block A

block B block C

block D

switch boxswitch

routing channel

Figure 9: FPGA routing example.

to drive router to find the best way to provide connectivity between selected

points. An example is illustrated in Figure 10 for the trivial case of a six

node representation.

In the example shown in Figure 10 the cheapest path between v1 and v6

goes through v4 and v5. As the main goal of the FPGA router is to route the

design using the shortest possible paths, Dijkstra’s algorithm is used (Gerez,

1999; Betz et al., 1999; Hauck and DeHon, 2008). The algorithm determines

the shortest path between a source node and sink node in a routing resource

graph using the cost associated with each routing wire.

In general, there have been two types of search: (i) breadth-first and (ii)

depth-first. Breadth-first search begins at the root node and explores all the

neighboring nodes. Then for each of those nearest nodes, it explores their

unexplored neighbour nodes, and so on, until it finds the goal. Depth-first

search starts at the root and explores as far as possible along each branch

before backtracking.

FPGA routers can be divided into two groups. Combined global–detailed
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Figure 10: Example of edge–weighted directed graph.

routers determine a complete routing path in a single step. Two–step routing

algorithms perform global routing first, to determine which logic block pins

and channel routing segments each net will use, and then performs detailed

routing to determine which physical wire a net will be allocated to within

a specified routing channel segment. The task of an FPGA detailed router

is often complicated by limited FPGA routing flexibility and a dependency

on decisions made by the global router. For this reason, combined global–

detailed routers offer improved potential to fully optimise the routing

(Betz et al., 1999).

2.11.1 Pathfinder Router Algorithm

To address the problem of routing bias, arising from the order in which

the nets are processed, Betz et al. (1999) introduced Pathfinder router.

The Pathfinder is a negotiation–based router, which allows routing resource

overuse during the initial routing passes, and then re–routes nets until

resource overuse is completely resolved.
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2.11.1.1 Initial Routing

During initial routing each net is routed with unconstrained access to routing

resources to find the shortest path for each net. Wherever a single routing

resource has been claimed by more than one net, routing resource overuse

occurs. If at the end of this process illegal routing remains, further iterations

are attempted until illegal routing is eliminated.

2.11.2 Congestion Avoidance Schemes

To resolve the routing resource overuse problem, Pathfinder uses a congestion

avoidance scheme based on negotiation, where each routing resource has an

overuse cost attached. After a routing iteration overusing, an increased cost

on a particular net necessitates rerouting of that net.

2.11.3 Delay modelling

To ensure design timing constraints are met, FPGA routers need to determine

the delay of each net and ensure all of them are within design timing

constraints.

The most common way to model timing of the net has been based on

the Elmore delay, which defines each net as a resistance and capacitance tree

(RC). The Elmore delay of a source – sink path can be described (Betz et al.,

1999) as:

∑
i∈source−sinkpath

Ri · C(subtreei) + Td,i (2.1)

Where Td,i is the intrinsic delay of a buffer, if it is used as routing element

i, Ri represents the resistance of routing element i and C(subtree)i is the total

capacitance of the subtree routed from the routing element i.

47



2.12 Placement & Routing Methodologies

The problem of automated placement and routing has been widely addressed

in PCB and later in VLSI design automation. Work in this area has been

reviewed by Gerez (1999); Sherwani (1995). However, P&R for FPGA is

significantly different to that of P&R for PCB or VLSI due to the constraints

imposed by the fixed location of blocks and routing resources in circuit board

and full custom technologies.

With PCB or VLSI placement and routing, the focus is on delivering

an optimal solution usually in terms of the smallest PCB or silicon area

respectively. In contrast, the main goal of FPGA P&R is to fit the circuit

into the FPGA, and to satisfy design timing requirements. In this context,

once a satisfactory solution has been derived, further optimisation is usually

unnecessary. This fact has resulted in development of heuristic methods

of placement and routing for FPGA rather than adaptation of well proven

algorithms from the PCB and VLSI CAD domains.

To find an optimal FPGA placement solution, combinatorial optimisation

methods can be applied. This is possible as placement can be represented

as a problem of allocating a finite number of objects to a finite number of

FPGA blocks. A solution presented in Emmert and Bhatia (1999) uses Tabu

search to find optimal placement. Tabu search is a heuristic approach to solve

optimisation problems that approaches near optimal solutions in a relatively

short time. Results of placement using Tabu search optimisation show up to

a factor of 20 times improvement in placement execution time compared to

the standard Xilinx M1 tool.

Mulpuri and Hauck (2001) researched the problem of runtime and quality

tradeoffs in placement and routing. Results demonstrated clearly show the

benefits of using Simulated Annealing over other existing methods. Also

Betz et al. (1999); Anderson et al. (2000); Abke and Barke (2001)

successfully used Simulated Annealing in their P&R frameworks. Simulated
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Annealing was also used by Ebeling et al. (1995) used as a placement

algorithm for the Triptych FPGA.

In order to support development of P&R algorithms a set of benchmark

circuits have been established to determine the quality of proposed solutions

in P&R. Several benchmarks have been established – the most popular

benchmark reference circuits are those from MCNC (Microelectronics Centre

of North Carolina), which have been widely used for the development and

refinement of many P&R algorithms (Anderson et al., 2000; Kannan and

Bhatia, 2001; Kannan et al., 2001; Abke and Barke, 2001; Kannan et al.,

2002).

A very comprehensive solution has been developed by Betz et al. (1999).

Their Versalite Place and Route (VPR) is a place and route tool offering

several execution options. Placement can be wire–length driven or path–

timing driven with different parameters of simulated annealing optimisation.

The routing algorithm can be timing–driven or routing–driven with a user

defined number of iterations. Targeted architecture is also user defined

and allows comparison between different architectures and different P&R

methodologies. VPR has been widely used due to the benefits offered by

its flexible approach (Anderson et al., 2000; Kannan and Bhatia, 2001;

Kannan et al., 2001; Abke and Barke, 2001; Kannan et al., 2002).

Historically, Placement and Routing (P&R) has been considered as a

single unified process because of the strong interdependency of the goals of

each subprocess (Kannan and Bhatia, 2001). However, through separation

placement can be independently controlled in such a way that the subsequent

routing can be improved compared to a unified approach.

As an example, Fast Generic Routing Demand Estimation for Placed

FPGA Circuits (fGREP) presented in Kannan et al. (2002) speeds up

placement and routing process using routing demand estimation in order

to measure quality of placement. Extensive routing estimation provides

additional information for the placer which results in improved design routing.
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Conversely, Gambit, a proof–of–concept presented in Karro and Cohoon

(2001) suggested a need for simultaneous P&R as a means of providing better

results than sequential routers.

Another solution for improved router performance has been proposed

in McCulloch and Cohoon (2003) and is based on negotiation–based routing.

Each net is given an ‘initial fund’ for biding in ‘pin–auctions’. A net is

considered to have a complete detailed route if the set of pin–auctions that

it is currently winning comprise a path that would be a legal detailed route

for the net.

2.13 Summary

Methodologies and algorithms developed for placement and routing for FPGA,

even though constantly improving, are still generally optimised for one time

configuration rather then reconfiguration.

At the present time, multi–context designs are realised by designing each

configuration layer separately using conventional P&R tools. With this

approach any optimisation across configuration layers can only be achieved

manually by the designer. This manual process is time consuming and does

not guarantee improvement.

Typically, each configuration layer is designed separately and existing

P&R methodologies optimise the design only in terms of occupied area or

timing constraints within a single configuration layer.

Existing P&R methodologies do not take into account reconfiguration

interface architecture and the way in which reconfiguration is performed.

Evaluation of a variety of different reconfiguration interfaces and different

FPGA architectures by the author has confirmed the need for new P&R

methodologies which can place and route designs so that they are optimised

for reconfiguration.
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Automated placement and routing for reconfigurable systems can speedup

reconfigurable systems design. Successful P&R for RS methodologies and

algorithms with a focus on configuration overlapping will benefit from smaller

reconfiguration latency, smaller configuration memory size and decreased

power consumption. These benefits will be realised through a reduction in the

quantity of configuration data that needs to be transferred during a change

of operational context. Such new methodologies will provide the required

process continuity in frameworks targeted for reconfigurable systems. In

the broader application context this will enable the development of portable

devices offering limitless flexibility while providing high performance at low

power.
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Chapter 3

Design Goal and Research

Methodology

This chapter provides detailed description of the methodology used to achieve

design scopes and objectives.

3.1 Configuration Data Optimisation Problem

To demonstrate how placement contributes to frames utilisation, a simple

FPGA placement in two variants has been presented in Figure 11. It presents

an example of a different implementation of the same design resulting in a

very different number of frames required for configuration.

Figure 12 presents an example of reconfigurable platform supporting

partial reconfiguration with two designs to be performed on the platform

– one at a time.

Shared configuration represents the case, where FPGA resources

controlled by the shared frames are configured exactly the same in two

or more designs. In this way it can be assumed, that there is a group of

blocks of the same content and/or nets of the same topology in each of the
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Figure 11: Two design implementations with different configuration data
sizes: Scenario A = 12 frames, Scenario B = 4 frames.

designs. Furthermore, it can be assumed, that these shared blocks and/or

nets represent sub–functionality identical in every design.

Bitstream content depends on the placement and routing decisions taken,

therefore to obtain specific frames content, placement and routing needs to be

modified. The question which then arises is how to determine the maximum

similarity of two functionally different designs?

Solving the generic problem of reconfiguration latency optimisation at the

placement and routing stage is difficult for a number of reasons:

• Lack of standardisation in FPGA reconfiguration procedures.

• Lack of configuration interface architecture models.

• Unavailability of configuration interface architecture and data structure

details.

As described in Section 2.5 each FPGA family uses different configuration

interface therefore different reconfiguration techniques apply to each of them.

FPGAs offering partial reconfiguration come with different configuration data

structures, which make it difficult to build a universal configuration model
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shared frames
Context A

Context B

Figure 12: Example of multi–design project using the same platform.
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for placement and routing purposes. Such a model has to be created for the

purpose of this project.

3.2 Design Goal

The goal of this project was to provide solutions to minimise reconfiguration

latency and storage for a specified FPGA technology given a set of design

contexts. This was achieved by introducing new placement and routing

optimisation techniques. Placement and routing optimisation focused on

re–using parts of configuration data between designs in order to minimise

reconfiguration latency and configuration data storage overhead. A proposed

solution was required to demonstrate its practicality and needed to be

applicable to different reconfigurable architectures.

As has been demonstrated in the section 2.3, currently used placement

and routing algorithms and methodologies use models, which do not include

configuration interface architecture information. They are therefore unable

to deliver configuration data sets with the content necessary to address the

configuration data sharing problem.

To achieve the design goal, the FPGA architectural model used during

placement and routing has to include configuration interface architecture

information, and be able to deliver configuration data with the desired

content. Any new model therefore, has to be evaluated to investigate its

impact on existing placement and routing optimisation goals such as

performance and complexity as well as optimisation for reconfiguration.

3.3 Research Methodology

The entire research problem presented in section 3.2 was divided into two

subproblems: (i) automated single-context bitstream size reduction during
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placement and routing and, (ii) automated multi–context bitstream sharing

during placement and routing.

Bitstream size reduction at the placement and routing stage demonstrates

the impact of placement and routing algorithms on configuration data content.

Solving the bitstream size reduction subproblem provided a modified FPGA

P&R technique that enabled development of a multi–context placement and

routing algorithm for dynamic reconfiguration.

Since an FPGA bitstream results from mapping of a design netlist onto

s specific FPGA technology the unique architectural features of the target

device has to be known in advance.

3.3.1 Development Framework

In many earlier projects in the area of FPGA placement and routing Versalite

Place and Route (VPR) was used (Abke and Barke, 2001); (Kannan et al.,

2001); (Kannan et al., 2002); (McCulloch and Cohoon, 2003); (Barreiros

and Costa, 2003).

Although VPR represents a framework suitable for placement and routing

algorithms evaluation, its placement and routing algorithms do not include

support for configuration interface architecture and bitstream generation as

required in the present study. It proved difficult to build a new FPGA

architecture model which included configuration interface architecture and

bitstream protocol support as (i) FPGA vendors were unwilling to provide the

required interface specification in order to protect their intellectual property

and, (ii) Given that the bitstream is the final output from the design tools

the need for further modification was not a requirement.

However, a solution to the preceding problem was available from Xilinx

with its JBits (Xilinx, 2009a) product developed to support the reconfigurable

FPGA research community. JBits is a set of Java classes supporting bit–

level bitstream manipulation on Xilinx Virtex FPGA devices. JBits was
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considered a suitable post–processing optimisation tools for the proposed

study as it offered full flexibility to change the bitstream content according

to specific optimisation requirements.

3.3.1.1 Target Architecture

To demonstrate applicability of the new placement and routing methodology

development has been based on the real-world FPGA architecture. The

choice of bitstream manipulation tools required for the development is limited

only to Xilinx JBits (Xilinx, 2009a) as the only available bitstream

manipulation tool. JBits version 2.8 used in this research project supports

Xilinx Virtex technology only. Although Xilinx Virtex FPGA family has

been replaced by more advanced architectures, it is still a good example of

well documented partially reconfigurable technology.

To simplify the process of evaluating new placement and routing methods

development was targeted to the XCV50 – the smallest device in the Xilinx

Virtex family (Xilinx, 2001). The XCV50 has an 16 x 24 array of CLBs

controlled by 1152 configuration frames, each containing 324 configuration

bits (Xilinx, 2002; Xilinx, 2000; Xilinx, 2001).

The Xilinx Virtex FPGA is an example of an island–style FPGA. A

single Virtex Combinatorial Logic Block (CLB) cell contains two slices – each

containing a four bit LUT and routing switch matrix. Figure 13 illustrates

a Xilinx Virtex programmable cell.

Configuration of a single Xilinx Virtex CLB cell is controlled by 864 bits

(Xilinx, 2002; Xilinx, 2000). Half of these bits are used to configure the

routing switch matrix itself, whilst the other half control LUT configuration,

CLB input and the output switch matrix.

From the configuration architecture point of view the same cell can be

represeted as an array of registers, each controlling configuration of a part of

the programmable cell, as presented in Figure 14.
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SLICE0
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CLB configuration area

single length routing wireslong routing wires

Figure 13: Example of Xilinx Virtex single programmable cell.
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configuration register

configuration frame

Figure 14: Example of Xilinx Virtex configuration architecture controlling a
single programmable cell.
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CLB configuration

IO pad configuration

routing configuration

IOB configuration columnCLB configuration column

bitstream loading

Figure 15: Example of Xilinx Virtex FPGA configuration columns of frames
architecture.

Access to a single configuration register requires complex configuration

interface circuitry, therefore single configuration registers are grouped into

clusters called configuration frames. A single configuration frame is the

smallest amount of configuration data loaded into an FPGA at a time. In the

Xilinx Virtex FPGA, the smallest configuration data block is represended by

a configuration frame spanning through an entire CLB column. An example

of the distribution of the configuration data in a Xilinx Virtex FPGA is given

in Figure 15.

To configure a single FPGA programmable cell, all the frames covering

the particular cell need to be loaded into the FPGA. A detailed register

mapping depends on the cell configuration which describes the logic/routing

resources that need to be configured. Therefore the content of an FPGA

configuration data, bitstream, is dependent on placement and routing results

and can vary.

To illustrate the complexity of the single CLB column configuration

process for a Xilinx Virtex FPGAs, summary of configuration data for the
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Table 1: Xilinx Virtex FPGA configuration data size summary.

Device name CLB Array size Frame size column size
XCV50 16 x 24 324 15,552
XCV1000 64 x 96 1,188 57,024
XCV3200E 104 x 156 1,908 91,584

Xilinx Virtex FPGA family is presented in Table 1.

As demonstrated in Table 1 an increase of CLB columns requires more

data to be transferred during the configuration process even if the design

complexity remains unchanged. Thus, if placement is not optimised to a

single column there can be a significant increase in storage size and

configuration latency.

To configure the entire FPGA all frames need to be loaded. Design

reconfiguration can be performed by either re–loading the entire bitstream

or by re–loading only those frames which contain data different from that of

a previous design (using partial reconfiguration).

It is the partial configuration which offers the opportunity to reduce the

size of configuration data, even more so if the design can be placed and routed

so that it uses minimal number of frames.

Figure 16 demonstrates how placement and routing determine

configuration bitstream content. From the configuration architecture point

of view, an FPGA can be considered as a two–dimensional array of CLB

locations as described in Figure 16.

Following the approach of Figure 16 each individually implemented design

can be described as a two–dimensional array of free/taken CLB locations as

shown in Figure 17.

A CLB cell is considered as free when any of the resources controlled by

configuration registers within this cell are not part of an implemented design.

Any CLB cell which does not fulfil this requirement is considered as taken.

Each CLB contains four look–up tables (LUTs) organised into two slices.
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configuration column

CLB configuration

IO pad configuration

routing configuration

Figure 16: Example of an FPGA CLB array seen from the configuration data
architecture point of view.
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Figure 17: Example of implemented design considered as taken/free CLB
cells.
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Each CLB column is controlled by 48 configuration frames. Each

configuration frame controls part of top and bottom IO blocks and part

of each CLB within the column. Left and right IO blocks are controlled by

a dedicated set of configuration frames similar to distributed RAM blocks.

Full details of Xilinx Virtex XCV50 can be found in the data sheet (Xilinx,

2001).

3.3.1.2 Bitstream Comparison Tool

To determine the frames utilisation characteristic of each XCV50 bitstream,

a Bitstream Comparison Tool (BCT) was developed in C using Kdevelop

(KDevelop, n.d.) running under Mandrake Linux OS on dual Xeon

2GHz/512kB 1GB RAM Dell PC. BCT takes two bitstreams, scans through

their content and and performs frame to frame comparison. BTC delivers set

of statistics showing percentage of similar frames and distribution of frames

differences categorised into difference groups, each covering a range of ten

bits difference. See Appendix for main.c

3.3.1.3 Java Place and Route

Using the Xilinx Virtex FPGA architecture together with the JBits tools a

new placement and routing framework was developed with JBuilder compiler

running on dual Xeon 2GHz/512kB 1GB RAM Dell PC with Debian Linux

operating system. The developed process takes a Xilinx Virtex bitstream as

a design source and extracts the netlist to perform placement and routing

according to the designer specified rules. Placement and routing results are

saved as a new output bitstream. In this way the original and modified

bitstreams can be compared to measure the size reduction ratio. The detailed

framework architecture is presented in Figure 18.

After loading a bitstream JBits routines are used to scan through all the

routing resources to identify the nets. Any net terminal is identified as a
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Load input bitstream

Extract netlist from bitstream

Analyse netlist

Simulated Annealing placement

Perform frames−optimised

Perform frames−optimised

Pathfinder−based routing

Generate output bitstream

Figure 18: Java Placement and Routing framework data flow.

block.

As JBits does not provide any placement and routing routines, these have

been implemented based on VPR (Betz et al., 1999) as a reference algorithms

before implementing frames optimised placement and routing.

3.4 Simulated Annealing Placement

As described in the section 2.10.2 simulated annealing has been successfully

adapted to FPGA placement. Simulated annealing placement has been

described by the pseudo–code of Figure 19.

3.4.1 Initial Placement

Initial placement determines allocation of blocks on the FPGA layout at

the beginning of simulated annealing placement. According to the approach

64



Figure 19: Pseudo–code of a simulated annealing placer from

(Betz et al., 1999).

65



used, initial placement can be based on a random block allocation or based

on a deterministic method of assigning block locations according to the set

of rules applied. It can also be based on the existing placement if simulated

annealing placement is applied to existing placement results. The best results

have been achieved with random block allocation (Betz et al., 1999).

3.4.2 Placement Cost Function

A cost function is used to evaluate the quality of logic block placement. A

typical simulated annealing placement cost function is based on the concept

of a net bounding box. The placement cost function proposed by Betz et al.

(1999) represents a combination of bounding box and routing channel capacity

to determine quality of placement:

Cost =
Nnets∑
i=1

q(i)

[
bbx(i)

Cav,x(i)
β +

bby(i)

Cav,y(i)
β

]
(3.1)

Where bbx and bby denote horizontal and vertical spans of net’s bounding

box, Cav,x(i) and Cav,y(i) are the average channel routing capacities. For the

standard bounding box β = 0.

The new placement iteration is done by swapping two randomly selected

blocks. Freedom of movement depends on the current annealing temperature

and is determined by the following equation:

Rnew
limit = Rold

limit · (1− 0.44 + α) (3.2)

Where α represents the fraction of moves accepted, and

1 ≤ Rlimit ≤ maxFPGAdimensions.

Following (Betz et al., 1999) the number of placement iterations within

the same annealing temperature is defined by:

MovesPerTemperature = InnerNum · (Nblocks)
4/3 (3.3)
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Where the value of InnerNum has been set to 10 (Betz et al., 1999).

Once the number of moves within temperature reaches

MovesPerTemperature the temperature changes according to the following

formula:

Tnew = γ · Told (3.4)

Where the value of γ is a function of α and depends on the fraction of

accepted moves at Told. Betz et al. (1999) determined values of γ following

series of experiments. Results has been presented in Table 2.

Table 2: Temperature update schedule.

α γ
α > 0.96 0.5

0.8 < α ≤ 0.96 0.9
0.15 < α ≤ 0.8 0.95

α ≤ 0.15 0.8

The annealing process terminates when:

T < ε · Cost

Nnets

(3.5)

Where the value of ε is set to 0.0005 based on (Betz et al., 1999).

3.5 Pathfinder Routing

As described in the previous chapter the Pathfinder router has been

successfully adopted to FPGA routing. The Pathfinder routing algorithm

can be described by the pseudo–code presented in Figure 20.
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Figure 20: Pseudo–code of the Pathfinder routing algorithm.
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3.5.1 Routability–driven Routing Cost

When the routability–driven routing algorithm is used, the cost of using

routing resource n when it is reached by routing resource m has been

calculated according to the following formula:

Cost(n) = b(n) · h(n) · p(n) +BendCost(n,m) (3.6)

Where b(n) is a base cost, h(n) is a historical congestion and p(n)

represents present congestion and BendCost(n,m) penalises bends when

global routing is performed.

Congestion is calculated according to the following equations:

p(n) = 1 +max(0, [occupancy(n) + 1− capacity(n)] · pfac) (3.7)

h(n)i = 1, i = 1 (3.8)

h(n)i = h(n)i−1 +max(0, [occupancy(n)− capacity(n)] · hfac), i > 1 (3.9)

Where occupancy(n) is a number of nets claiming to use routing resource

n and capacity(n) represents maximum number of nets that can legally use

resource n. The values of hfac and pfac define routing schedule and according

to Betz et al. (1999) the best router performance has been achieved for

0.2 < hfac < 1 and pfac = 0.5 during the first routing iteration, and then 1.5

to 2 times its previous value in each subsequent iteration.

Routing resource base cost values used by Betz et al. (1999) are presented

in Table 3.

3.5.2 Timing–driven Routing Cost

When the timing–driven routing algorithm is used, the cost of using routing

resource n when is reached by routing resource m has been calculated
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Routing resource type b(n)
wire segment 1

logic block output pin 1
logic block input pin 0.95

net source 1
net sink 0

Table 3: Base costs of different types of routing resource.

according to the following formula:

Cost(n) = Crit(i, j)·delayElmore(n, topology)+[1−Crit(i, j)]·b(n)·h(n)·p(n)
(3.10)

Where Crit(i, j) has been defined as:

Crit(i, j) = max

(
[MaxCrit− slack(i, j)

Dmax

]η, 0

)
(3.11)

and delayElmore(n, topology) has been defined as:

delayElmore(n, topology) = Td,intrinsic(switch) +R(n) · Ctotal(n) (3.12)

Where Td,intrinsic(switch) represents the delay of a routing switch and

R(n) · Ctotal(n) represents the delay of a routing segment (wire) based on its

physical electrical parameters.

According to (Betz et al., 1999) the best algorithm performance has been

achieved for η equal to 1 and MaxCrit equal to 0.99.

The routing algorithm described above, although very successful at solving

the FPGA routing problem is unable to deliver particular configuration data

content. This is due to the fact that switch configuration bits location are

not taken into account when searching for the route between the net’s source

and the sink, as illustrated in Figure 21.

Reference Simulated Annealing placement starts with random blocks

allocation and then performs series of block swaps to find optimal solution.
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Figure 21: Routing implementation and its impact on configuration data
content.

After each iteration the cost is calculated based on each net bounding box.

Depending on the cost function change and acceptance probability, the current

placement can accepted or rejected. Number of moves per temperature has

been based on the equation used by Betz et al. (1999). As the temperature

cools down blocks freedom movement changes from FPGA boundary at the

beginning upto just a neighbouring location at the end of the annealing

process. Annealing is completed when temperature reaches exit temperature.

With a typical simulated annealing placement algorithm the candidate

for relocation is randomly selected. Then its destination location is selected

within the area determined by the ‘movement freedom factor’ – a function of

the annealing temperature. At the beginning of the annealing process, this

freedom factor allows relocation within the entire FPGA area, and gradually

shrinks to allow moves only to neighbouring locations at the end of the

annealing process.
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In order to find optimal placement each combination of placement

algorithm evaluated the cost function to determine the quality of proposed

placement.

Bounding box base cost function used initially in JPR has been based on

VPR’s bounding box based cost function (Betz et al., 1999) and has been

presented below:

Cost =
Nnets∑
i=1

[bbx(i) + bby(i)] (3.13)

where bbx and bby denote horizontal and vertical spans of net’s bounding

box. The cost function from Equation 3.13 when applied to the example from

Figure 11, will give the same bounding box, therefore it cannot be directly

applied for shape–oriented placement.

3.5.3 Benchmarks Suite

To determine the quality of proposed placement and routing approaches

representative test circuits were collected. As a consequence of the selected

technology, benchmarks had to be compatible with the Xilinx Virtex XCV50

bitstream structure and cover different sizes. Size selection was based on

the number of CLB slices used by the circuit. Benchmark design sizes were

divided into ten size categories (1% to 10%, 11% to 20% and so on upto

91% to 99%). Each size category was represented by at least five circuits to

cover different block/routing ratios and different I/O pins requirements. A

set of real–world FPGA benchmarks was developed using Verilog and VHDL

sources available from ITC99 benchmark suite and free IP cores available at

www.opencores.com. The LeonardoSpectrum compiler (Mentor Graphics)

was deployed to compile circuit sources to Xilinx Virtex XCV50 netlists.

Bitstreams were generated for each netlist using Xilinx ISE, executing on

a dual Intel Xeon 2GHz/512k Dell PC under MS Windows 2000 SP4. In

both packages default settings were used (e.g. commercial temperature).
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coreAcoreA

Figure 22: Example of serial cores implementation: coreA chain x2.

Each circuit was assigned to the appropriate size category according to the

number of CLB slices used. As the aim was to have at least five circuits

in each of the size category, a group of custom circuits were created using

multiple instances of smaller circuits to fill up certain size categories. Base

circuits with a similar number of inputs and outputs were connected as in

a serial mode, where output of the first core is feeding input of the second

core, while others were connected in parallel mode, where single cores are

only sharing ENABLE and RESET signals, where appropriate. An example

of the topology utilised is presented in Figure 22 and 23.

The list of benchmark prototypes used based on those described by

Corno et al. (2000) are presented in Table 4.

The list of benchmark prototypes used from http://www.asics.ws (2005)

is presented in Table 5.

The list of benchmark prototypes used from Opencores (2005) is presented

in Table 6.

The list of benchmark prototypes from HLSynth95 is presented in Table 7.
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coreAcoreA

Figure 23: Example of parallel cores implementation: coreA coreA.

Table 4: FPGA Benchmark Prototypes from ITC99 Benchmark Suite.

Name Size [%] Description
b01 1 FSM comparing serial flows
b02 1 FSM that recognises BCD numbers
b06 1 Interrupt handler
b03 2 Resource arbiter
b09 2 Serial to serial converter
b08 3 Find inclusions in a sequence of numbers
b10 4 Voting System
b07 6 Count points on a straight line
b13 6 Interface to meteo sensors
b11 8 Scramble string with variable cipher
b04 11 Compute min and max
b05 15 Elaborate the content of a memory
b12 30 1 Player Game (guess a sequence)
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Table 5: FPGA Benchmark Prototypes from www.asics.com

Name Size [%] Description
wbif 68 1 Motorola DragonBall/68K Wishbone
sasc 2 Simple Asynchronous Serial Controller

ss pcm 6 Single Slot PCM Controller
usb phy 10 USB 1.1 PHY

i2c 15 I2C Master Controller
ata 30 ATA/ATAPI Controller

Table 6: FPGA Benchmark Prototypes from www.opencores.com

Name Size [%] Description
cf ldpc 9 Low Density Parity Check

cf fp mul c 3 4 10 Floating Point Multiplier
cf interleaver 6 8 13 Memory Interleaver

cf fir 3 8 8 23 FIR Filter
cf fp mul c 5 10 34 Floating Point Multiplier
cf fp mul p 5 10 43 Floating Point Multiplier
cf fir 7 16 8 86 FIR Filter

cf interleaver 6 64 86 Memory Interleaver

Table 7: FPGA Benchmark Prototypes from HLSynth95.

Name Size [%] Description
barcode 8 Barcode Reader
fmu 91 Multiplier
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As a part of the developed benchmark suite, an empty bitstream for a

blank design has been created using ‘-bitgen’ option in the FPGA

Floorplanner (part of Xilinx ISE 5.1). Such an empty bitstream represents

the FPGA registers state after power–up, with default SRAM configuration

memory content.

3.5.4 Bitstream Size Reduction at P&R

Once the JPR framework had been developed and the set of suitable

benchmark designs established evaluation of bitstream size reduction during

placement and routing became possible. As both placement and routing

contribute to the bitstream content, and routing also depends on the results of

placement the entire problem needed to be split into two separate subproblems:

(i) bitstream size reduction during placement and, (ii) bitstream size reduction

during routing. Each is described in detail in the following sections.

3.5.4.1 Bitstream Size Reduction During Placement Approach

Before the evaluation of any developed algorithms was possible it was

necessary to define the measurement criteria that would be used to assess

their performance.

With the selected technology and framework established it was apparent

that column–based (frames-optimised) placement was the best choice, due to

the fact, that configuration frames in Xilinx Virtex FPGA span horizontally

through entire CLB columns. To calculate the minimum number of columns

required to place the design, equation 3.14 was used.

Columnsmin =
NCLB slices

CLBcolumn capacity

(3.14)

Where NCLB slices represents number of CLB slices involved in the design

and CLBcolumn capacity is the capacity of a single column of CLB slices in the
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FPGA. For the selected Xilinx Virtex XCV50 the value of CLBcolumn capacity

is 16.

To achieve column–based placement several modifications to the simulated

annealing placement algorithm were evaluated, first using a simplified FPGA

model, and then tested on JPR with the selected benchmark designs.

Modifications included different initial placement rules, selection of placement

cost functions and next step rules. Initial evaluation allowed maximum

algorithm freedom by focusing on optimising the number of CLB columns

used. Thus, IO pins were set to floating to allow the placement algorithm

to place them in any appropriate location. For each algorithm variation the

number of configuration columns was determined by calculation to justify

the quality of the approach tested.

3.5.4.2 Bitstream Size Reduction and Routing Problem

Once successful placement had been achieved each design was routed using

the standard Pathfinder–based routing algorithm incorporated to JPR from

VPR. The main task for the router was to validate placement results by

providing successful routing. As a result of successful routing an output

bitstream was then generated. Using a net tracing facility available in Xilinx

JBits, a search for the longest path was performed on the set of input and

output bitstreams to compare timing performance. The achieved bitstream

size reduction ratio was then defined by equation 3.15.

SizeReductionRatio =
NSTD

NFO

(3.15)

where NFO and NSTD represent the number of frames obtained using

Frames Optimised Placement and Routing (FO) and using standard simulated

annealing Placement and Routing (STD), respectively. In both cases, the

number of frames used was established with BTC by comparing the relevant

bitstream against an empty bitstream representing an empty design reference.
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A simple timing model for the FPGA architecture was used in the

experiments, which represents the delay of each net as the number of

configuration switches used by the net. This simplification was considered

reasonable as the delay introduced by a routing wire is significantly smaller

when compared to a routing switch delay. Based on this assumption the

following equation has been used to calculate the Critical Path Change:

CriticalPathChange = (
TFO

TSTD

− 1) · 100%, (3.16)

where TFO and TSTD represent the number of routing switches on the

critical path after FO P&R and VPR P&R respectively.

3.5.4.3 Placement and Routing Algorithms Critical Evaluation

Results obtained from the previous stage, subsequently led to determination

of further size reduction–oriented placement and routing algorithm

improvement. It was evident that the development should proceed along

two main directions: (i) improving performance by minimising the number

of placement iterations and, (ii) improving routing by reducing the longest

path whilst keeping the design routable.

Further algorithm improvements were evaluated using the same JPR

framework and using BCT to determine the quality of size reduction ratio

achieved.

3.5.4.4 Problem of IO Pins Allocation

To determine the affect of IO pin allocation on the bitstream size reduction

ratio a set of benchmarks were evaluated using JPR with fixed and floating

IO pins.
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3.5.4.5 Scalability and Feasibility for Other Technologies

Once the developed placement and routing solution had been successfully

validated with Xilinx Virtex technology, the scalability of the solution and its

feasibility across different FPGA technologies was considered. This included

possible changes to configuration interface architecture in order to further

improve bitstream size reduction, during placement and routing.

3.5.5 The Context Similarity Optimisation Problem

The vast majority of currently available EDA tools and methodologies focus

on a single context optimisation, therefore they are unable to benefit from

multi-context similarities.

To resolve this problem, placement and routing for reconfigurable systems

should process multiple contexts together. One such approach employs a

master/slave arrangement also termed semi–parallel P&R. In master/slave

approach, the master context has to be selected and placed and routed first.

Any other context will have to be placed and routed in such a way, that they

share a subset of the bitstream of the master context.

The decision as to which context should be the master is crucial to the

overall bitstream sharing ratio, so the decision criteria have to be carefully

specified. Furthermore, the placement and routing cost function has to

be based on bitstream comparison in order to determine the quality of

the solution. Consequently, a single placement iteration will include fully–

detailed routing information and bitstream generation. However, as typically

thousands of iterations are performed during placement, such a method is

unacceptable due to the massive compilation time overhead.

An alternative proposed solution is to perform placement and routing on

multiple contexts at the same time, and measure similarities during P&R

iterations as a part of an overall cost function. To obtain the exact similarity

figure based on bitstream comparison after each placement iteration all
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Figure 24: Placement of the design using shared and non–shared area
approach.

contexts would have to be routed. This would make the approach unsuitable

due to problem complexity.

Alternatively, the placer can utilise additional infomation about block

similarity and divide an FPGA array into shared and non–shared area. The

shared area will host only the blocks shared between contexts, whilst all the

remaining blocks will be placed in the non–shared area. Within the shared

area it is important to place the same blocks in each design in exactly the

same location in each implementation so the entire column configuration can

remain the same. An example of such an approach is presented in Figure 24
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3.6 Designs Similarity Problem

As multi-context design can be implemented in such a way that contexts

share a portion of common configuration, a key idea is to split each context

into shared and non–shared parts. The place and route implementation can

then benefit from design similarities.

Standard single–context placement and routing algorithms operate a list

of blocks and nets, treating all the blocks the same way. In order to obtain

partially shared bitstreams P&R algorithms need extra information to

distinguish between shared and unshared sections of the circuitry. This

requires that earlier steps in the design flow need additional processing steps

to obtain an overall optimisation that results in maximally shared logic and

routing infrastructure.

3.6.1 Multi-Context Placement and Routing Approach

A solution to the problem of multi–context placement and routing was

developed based on the lessons learned during the bitstream size reduction

study.

Initially the entire problem was reduced to the placement and routing of

two unrelated design contexts oriented purely on configuration data sharing.

To indicate the problem and the need for improvement, benchmark bitstreams

were grouped into pairs and compared. As expected the level of similarity

was very low on the order of a few percent.

3.6.2 Multi-context Benchmarks

To test the feasibility of the developed solution for bitstream size reduction a

selection of circuits were collected. The selection criteria for these circuits was

not constrained and real–world circuits, covering a spectrum of different CLB

sizes, representing different functionalities, and different similarity ratios were
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used. They were compiled as XCV50 bitstreams using the author’s JPR tool.

Selected circuits were coupled into pairs to simulate run–time

reconfiguration from one circuit to another. As run–time reconfiguration

can be applied to any two circuits design similarity and size were selected as

the primary focus to get pairs covering the most common cases.

Using the JPR bitstream extraction feature, netlists from each bitstream

pair were compared against each other to find and identify CLB blocks with

the same configuration. Designs similarity was the key criteria for placement

and routing quality measurement. It was assumed that shared CLB blocks

would share configuration data.

3.6.3 Methodology

A set of experiments were performed to evaluate the feasibility of simultaneous

multi–context placement and routing. The number of frames in the bitstream

delivered by JPR have been compared with an empty bitstream (configuration

data for blank design) provided by JBits in order to establish the number of

frames required to implement the design.

To determine the quality of delivered frames improvement ratio the

following equation has been used:

F =
(
FSSMC − FSSA

FTOTAL

)
· 100%, (3.17)

where F represents Frames Improvement Ratio, FSSA and FSSMC

represent the number of shared frames between two designs using Single–

Context Placement and Routing (SC) and Simultaneous Multi–Context

Placement and Routing (SMC) respectively, and FTOTAL the total number

of frames.

An important parameter quantifying any placement and routing approach

is critical path delay, which represents the longest path between two logic

blocks on the FPGA. Critical path determines maximum frequency of a
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design. As precise timing requirements were not available for each benchmark

circuit, the impact of FO P&R on timing was established by comparing

critical path delays of the circuit placed and routed using both FO P&R and

VPR P&R.

The simplest way to compare two nets is to count the number of routing

switches involved. This is possible as the delay introduced by a routing

wire is significantly smaller than that of a routing switch delay and can

therefore be ignored. The critical path delay was then represented as the

number of routing switches required to connect a critical path net. Under

this assumption the Critical Path Change was determined using equation

3.18.

CP =
(

TSMC

TSC − 1

)
· 100% (3.18)

where CP represents Critical Path Change, and TSMC and TSC represent

the number of routing switches on the critical path using SA and SMC

respectively.

3.6.3.1 Multi-context Placement Approach

The problem of multi-context placement refers not only to the placement

algorithm itself, but also to the way designs are dealt with, whether they

are processed separately in master/slave mode, or simultaneously. In the

master/slave approach bitstream size reduction can be utilised during

placement and routing for a single design, although final results depend

significantly on which design is selected as master. When simultaneous

placement is used, such a decision is not required, therefore simultaneous

placement was selected for ease of evaluation.

A placement algorithm was developed based on Simulated Annealing

with enhancements added during bitstream size reduction development. A

selection of different initial placements, cost functions and next steps were
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tested to achieve an initial multi-context placement algorithm.

3.7 Multi-context Placement Algorithm Evaluation

The placement algorithm required information about cross–design block

similarities in order to deliver sharing–optimised placement. If only a netlist

is provided, then it is down to the placer to cross–compare designs netlists

to distinguish between shared and non–shared blocks.

The number of shared blocks is required to calculate the minimum area

to host shared blocks. This decision depends on the configuration interface

architecture, as the shared area requires a minimum number of configuration

frames. When a column–based configuration interface is used such as that

of the Xilinx Virtex technology the placer needs to calculate the minimum

number of columns to host shared blocks. In similarity with row–based

configuration interface architectures the minimum number of rows had to

be determined.

Once the FPGA was divided into two different areas the simulated

annealing placement algorithm was applied. In the more general case of

multiple designs (n > 2) further modifications are likely to be required to

ensure optimal results.

3.7.1 Multi-context Initial Placement

With the FPGA divided into two different areas completely random initial

placement was inappropriate. However, it can be still used as a two phase

process: random placement of shared blocks within a shared area, and random

placement of non–shared blocks in the non–shared area. If random placement

is applied to the shared area, it can be done only once for an entire project

and replicated for every design, to keep the shared area layout exactly the

same. Otherwise this area will not be able to share configuration data, as
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only an entire column of the same blocks can share configuration – for a

column–based configuration architecture FPGA technology.

3.7.2 Multi-context Next Step Criteria

Modifications proposed by the placer should be oriented on bringing

improvements to timing and should not interfere with shared and non–shared

area division. Simulated annealing was again found to be the most suitable

algorithm for placement. Again random selection of the location of the

master block was found to be unacceptable due to the placement restrictions

imposed by the technology.

As the placement area had been divided into two different sub–areas,

different modification rules were applied to each one. Blocks located in

a shared area could still be swapped or moved, but they had to fulfil the

following requirements:

• any placement modification had to be applied to all designs,

• blocks from shared area could only be swapped with the blocks from a

non–shared area only if they both had got exactly the same content.

Blocks located in the non–shared area were relocatable within an entire

non–shared are. However, by using bitstream size reduction placement

methods the number of frames required to implement a non–shared part

of the design was minimised.

3.7.2.1 Multi-context Routing Approach

To validate the placement results obtained from the developed tool, the

standard Pathfinder–based router was used to route each design. Both input

and output bitstreams were then compared for each approach to find the

level of similarity and quantify the longest path delay.
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3.8 Multi-context Routing Algorithm Evaluation

As presented in the previous chapter, the aim of routing is to find a path

through FPGA routing resources, to provide connectivity for every design

net. The location of a net’s terminals is specified by the placement procedure.

Subsequently, the router has to prove, that every design can be successfully

routed with the specific placement given. Therefore routing can be performed

either by routing each design separately, or by routing multiple designs

simultaneously.

3.8.1 Multi-context Routing Algorithm Criteria

From the router’s point of view nets can be divided into three categories

depending on their terminal allocation. Figure 24 illustrates typical placement

for different net examples. Nets belonging entirely to the non–shared area

can be routed using a router used for a single design routing such as a frame–

optimised Pathfinder router.

Nets which belong entirely to a shared area and cross–area nets can

potentially improve frame sharing if routed in such a way, that they overlap

each other as shown in the example of Figure 24.

3.8.2 Multi-context Routing Cost Function

Similar to the routing algorithm described in the previous chapter, the cost

function used while traversing the routing resource tree should include the

cost of switches used, try to utilise any frames already allocated and avoid

using empty frames. To test the performance of the developed placement and

routing methodology, a framework based on JBits was created as described

in the following section.
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3.8.3 Framework Description

To demonstrate the feasibility of bitstream sharing at the placement and

routing level, Simulatenous Multi–Context Java Placement and Routing tool

(SMC JPR) was developed. This was based on an earlier system produced

by the author and discussed in detail in Stepien and Vasilko (2006). SMC

JPR performs simultaneous placement and routing on two designs, based

on design information extracted from a Xilinx Virtex bitstream using JBits.

The SMC JPR design flow is presented on Figure 25.

Placement and routing algorithm have been incorporated from the VPR

placement and routing tool developed by (Betz et al., 1999). Of the

algorithms available in VPR, the Simulated Annealing placement algorithm

and Pathfinder maze–router were selected as the best algorithms used for

investigating novel placement and routing strategies for the present study.

The developed Multi–Design Java Place and Route software takes two

bitstreams as a design entry and performs a series of comparisons to extract

design similarities. Based on these results, the placement space is divided into

two areas: one for shared design blocks and the other for all the remaining

designs blocks. During initial placement similar blocks were placed in exactly

the same location in both designs. The reason for this was that by having an

entire column of the same blocks in both designs, the probability that frames

of the column with shared blocks would be similar was maximised. Block

swaps or moves within a shared area were allowed only if it did not influence

the content of shared columns.

The router was also modified to avoid using empty frames but to use any

area which had already been used by the placer.

3.8.3.1 Placement & Routing Algorithms Critical Evaluation

Results obtained in the previous stage resulted in identification of further

potential placement and routing algorithm improvement, such as: increased
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Figure 25: Simultaneous Multi–Design Placement and Routing – Design
Flow.
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performance by minimising the number of placement iterations; an improving

level of similarity utilisation by the algorithm; and optimal routing by

minimising longest path length whilst keeping the design routable. Further

algorithm improvements were evaluated using the same JPR framework and

using BCT to determine the quality of the developed multi-context placement

and routing technique.

3.8.3.2 Problem of IO Pins Allocation

Separate consideration has been given to the issue of IO pin allocation.

As the proposed P&R solution needs to demonstrate its practicality IO

pin allocation is usually determined by PCB design prior to FPGA design

development. To determine IO pin allocation on the bitstream size reduction

ratio, a set of benchmark designs have been placed using JPR with fixed and

floating IO pins respectively. Results obtained were used to inform IO pins

allocation on multi-context placement and routing.

3.8.3.3 Scalability and Feasibility for Other Technologies

Once the developed multi-context placement and routing solution had been

successfully validated on the Xilinx Virtex technology, the scalability of the

solution and its feasibility across different FPGA technologies was evaluated.

These included possible changes to configuration interface architecture so

as to further improve bitstream size reduction during placement and routing.

3.9 Summary

Due to the lack of available tools and methodologies to investigate placement

and routing impact on configuration data size, new complete placement and

routing framework has been develop. Based on JBits it offers placement and

routing environment for Xilinx Virtex FPGAs. Reference placement and
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routing algorithms (Simulated Annealing placer and Pathfinder router) has

been implemented based on the work of Betz et al. (1999) and their VPR

solution.

As these algorithms are not supporting configuration data size reduction,

new placement and routing methodology has been introduced to deliver

configuration data size reduction. Quality measure criteria have also been

established to determine the quality of proposed methodology.

For better understanding of the impact of placement and routing on

reconfiguration latency the problem has been divided into two sub-problems:

(i) configuration data size reduction for single-context design and

(ii) configuration data sharing for multi-context design. The aim is to

investigate impact of placement and routing on configuration data size first

and then use the results in multi-context placement and routing.
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Chapter 4

Bitstream Size Reduction

Implementation

This chapter describes detailed benchmark bitsreams characteristics to verify

the need for improvement. Series of modifications applied to the JPR to

achieve desired bitstream size reduction have been described in detail to

4.1 Benchmark Bitstreams Analysis

Benchmark bitstreams have been placed and routed using JPR with standard

placement and routing algorithms described in the section 3.4 and section 3.5.

Each bitstream generated by JPR has been compared against an empty

bitstream to establish number of frames used by each bitstream. Results

are presented in Tables 8 and 9.

The results presented in Table 8 and Table 9 indicate that circuits

representing CLB size from 40% upwards, are using 100% of bitstream frames.

Also circuit b04 representing 11% CLB size requires 57% of configuration

frames to be loaded.

To illustrate the problem of bitstream redundancy detailed analysis of
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Table 8: FPGA Benchmarks Summary – size 1% – 40%.

CLB Frames Summary [%]
Name Size [%] Free Used
b01 1 81 19

b01 b02 1 78 22
b02 1 92 8
b06 1 81 19

wbif 68 1 29 71
b03 2 81 19
b09 2 75 25
sasc 2 71 29
b08 3 66 34
b10 4 60 40
b07 6 80 20
b13 6 42 58

ss pcm 6 46 54
b11 8 55 45

barcode 8 33 67
cf ldpc 9 24 76

cf fp mul c 3 4 10 50 50
usb phy 10 29 71
b04 11 43 57

cf interleaver 6 8 13 42 58
b05 15 30 70
i2c 15 13 87

b10 chain x4 17 51 49
b04 chain x2 22 33 67
b10 chain x5 22 33 67
cf fir 3 8 8 23 12 88
b10 chain x6 26 32 68

ata 30 12 88
b10 chain x7 30 26 74

b12 30 10 31
b11 chain x4 32 1 99
b04 chain x3 33 13 87

cf fp mul c 5 10 34 4 96
b10 chain x8 35 16 84
b10 chain x9 39 16 84
b11 chain x5 40 4 96
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Table 9: FPGA Benchmarks Summary – size 41% – 99%.

CLB Frames Summary [%]
Name Size [%] Free Used

cf fp mul p 5 10 43 4 96
b10 chain x10 44 4 96
b04 chain x4 45 0 100

b05 b12 45 0 100
b10 chain x11 47 0 100
b11 chain x6 48 0 100
b10 chain x12 51 0 100
b04 b05 b12 55 0 100
b04 chain x5 56 0 100
b10 chain x13 56 0 100
b11 chain x7 57 0 100

b05 b05 b05 b05 59 0 100
b10 chain x14 61 0 100
b12 chain x2 61 0 100
b10 chain x15 64 0 100
b04 chain x6 67 0 100

b12 chain x2 b11 68 0 100
b11 chain x9 73 0 100

b12 chain x2 b11 b07 73 0 100
b12 chain x2 b05 75 0 100
b10 chain x18 77 0 100
b04 chain x7 79 0 100
b11 chain x10 81 0 100
b10 chain x19 82 0 100
b10 chain x20 86 0 100
cf fir 7 16 8 86 0 100

cf interleaver 6 64 86 0 100
b04 chain x8 90 0 100
b10 chain x21 91 0 100

fmu 91 0 100
b10 chain x22 95 0 100
b10 chain x23 99 0 100
b11 chain x12 99 0 100
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Table 10: FPGA Benchmarks Frames Utilisation Summary – size 1% – 20%.

CLB Used Bits per Frame [%]
Name Size [%] 0 1–10 11–20 21–30 31–40 over 41
b01 1 81 19 0 0 0 0

b01 b02 1 78 21 1 0 0 0
b02 1 92 8 0 0 0 0
b06 1 81 18 1 0 0 0

wbif 68 1 29 71 0 0 0 0
b03 2 81 14 5 0 0 0
b09 2 75 22 3 0 0 0
sasc 2 71 23 5 1 0 0
b08 3 66 30 4 0 0 0
b10 4 60 31 9 0 0 0
b07 6 80 13 2 2 1 2
b13 6 42 52 6 0 0 0

ss pcm 6 46 45 7 2 0 0
b11 8 55 33 4 6 2 0

barcode 8 33 55 11 1 0 0
cf ldpc 9 24 57 17 2 0 0

cf fp mul c 3 4 10 50 31 16 3 0 0
usb phy 10 29 51 19 1 0 0
b04 11 43 40 14 3 0 0

cf interleaver 6 8 13 42 37 19 2 0 0
b05 15 30 40 25 5 0 0
i2c 15 13 54 26 6 1 0

b10 chain x4 17 51 14 17 13 5 0

bitstream frames content were obtained running BTC on the benchmark

bitstreams. Comparison results are presented in Tables 10 through to 12.

The results presented in Tables 10 to 12 indicate that small and medium

size circuits are configured mostly by frames carrying only few configuration

bits. Circuit b04 representing 11% CLB size requires 57% of configuration

frames to be loaded, whereas almost half of of all configuration frames contain

only 1 – 10 configuration bits as presented in Figure 26.

Using JPR, a map of final blocks placement allocation results for b04

circuit was obtained and is presented in Figure 27.
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Table 11: FPGA Benchmarks Frames Utilisation Summary – size 21% – 60%.

CLB Used Bits per Frame [%]
Name Size [%] 0 1–10 11–20 21–30 31–40 over 41

b04 chain x2 22 33 27 24 11 4 1
b10 chain x5 22 33 25 22 14 6 0
cf fir 3 8 8 23 12 45 27 11 4 1
b10 chain x6 26 32 13 25 25 5 0

ata 30 12 36 21 20 7 4
b10 chain x7 30 26 20 17 22 12 3

b12 30 10 31 34 21 4 0
b11 chain x4 32 1 31 39 24 5 0
b04 chain x3 33 13 33 30 17 7 2

cf fp mul c 5 10 34 4 29 42 19 7 1
b10 chain x8 35 16 17 25 29 12 1
b10 chain x9 39 16 17 25 29 12 1
b11 chain x5 40 4 14 42 27 11 2

cf fp mul p 5 10 43 4 20 37 24 9 6
b10 chain x10 44 4 12 35 33 12 4
b04 chain x4 45 0 22 41 29 7 1

b05 b12 45 0 15 42 26 13 4
b10 chain x11 47 0 7 36 35 16 5
b11 chain x6 48 0 11 31 32 17 8
b10 chain x12 51 0 4 28 41 24 4
b04 b05 b12 55 0 6 30 35 20 9
b04 chain x5 56 0 10 33 35 17 5
b10 chain x13 56 0 6 26 30 23 15
b11 chain x7 57 0 7 22 35 23 13

b05 b05 b05 b05 59 0 4 24 29 26 17
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Table 12: FPGA Benchmarks Frames Utilisation Summary – size 61% – 99%

CLB Used Bits per Frame [%]
Name Size [%] 0 1–10 11–20 21–30 31–40 over 41

b10 chain x14 61 0 4 15 36 29 15
b12 chain x2 61 0 7 24 37 19 13
b10 chain x15 64 0 2 14 31 32 21
b04 chain x6 67 0 5 23 37 25 10

b12 chain x2 b11 68 0 2 20 35 25 18
b11 chain x9 73 0 0 10 26 33 30

b12 chain x2 b11 b07 73 0 1 13 30 32 24
b12 chain x2 b05 75 0 1 12 27 34 26
b10 chain x18 77 0 0 7 20 36 37
b04 chain x7 79 0 2 13 31 32 22
b11 chain x10 81 0 0 4 21 32 43
b10 chain x19 82 0 0 5 19 33 43
b10 chain x20 86 0 0 4 16 28 53
cf fir 7 16 8 86 0 4 12 24 28 32

cf interleaver 6 64 86 0 0 5 25 36 33
b04 chain x8 90 0 1 8 27 33 31
b10 chain x21 91 0 0 3 13 26 59

fmu 91 0 0 1 12 24 64
b10 chain x22 95 0 0 2 11 22 65
b10 chain x23 99 0 0 1 8 22 69
b11 chain x12 99 0 0 1 6 20 73

Figure 26: Frames utilisation for a design implementation occupying 45% of
device CLBs.
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Figure 27: b04 Placement Results.

As presented in Figure 27 b04 circuit occupies 41 CLB columns therefore

frames controlling each used column have to be loaded. Looking at frames

utilisation chart presented in Figure 26, it is evident, that the majority of

frames carry only between 1 and 40 bits to configure the design.

The remaining 284–323 bits are not used, but they still need to be stored

and loaded onto the FPGA. This suggests that it should be possible to

increase the utilisation of frames while concentrating the design

implementation bits into a smaller number of frames. This will, however,

require the placement and routing process to be modified to optimise the

frame utilisation in addition to other existing design constraints, for example,

timing and area utilisation.

4.1.1 Bitstream Size Reduction Implementation

Bitstream analysis presented in section 4.1 proved that placement and routing

algorithms used are unable to deliver frames-optimised solution. Using JPR

and BCT series of experiments have been performed to find a new set of

algorithms modifications able to deliver frames-optimised solution.
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4.2 Placement Algorithm Evaluation

At first the placement and routing have been separated in order to obtain

column-aligned blocks assignment.

4.2.1 Placement Algorithm Criteria

To obtain an implementation which considers column–based structure of

the configuration distribution (Figure 11), the placement algorithm needs

to evaluate locations which are more likely to lead to a reduced number

of configuration frames. Furthermore, the placement cost evaluation for

each iteration should include a factor determining quality in terms of frames

utilisation.

4.2.2 Dynamic Location Cost Schedule

To address the problem of column–oriented placement, a new placement

algorithm feature has been introduced – Dynamic Location Cost (DLC).

DLC determines the cost of each placement location. This cost is based on

ColumnUtilisationCost calculated after each placement iteration according

to the following equation:

ColumnUtilisationCost = 1− NumOfLocsOccupied

ColumnCapacity
(4.1)

where NumOfLocsOccupied is a number of locations occupied by CLB/IOB

blocks within a single column and ColumnCapacity is a maximum number

of CLB/IOB blocks which can be placed within a single column. For Xilinx

XCV50 ColumnCapacity equals to 18 (16 CLBs and 2 IOBs) (Xilinx, 2000).

The cost of all the locations within a single column is the same and equals

to ColumnUtilisationCost. As blocks allocation changes every placement

iteration, ColumnUtilisationCost needs to be re-calculated every time the

placement changed.
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The initial cost for each location is calculated based on column utilisation

after the initial placement. Then after each placement iteration has been

accepted, the cost of each location is re–calculated. Placement algorithm

should keep the cost of a column low or equal to 1. If ColumnUtilisationCost

equals to 1 the column is considered empty and therefore all frames controlling

that column do not need to be loaded during FPGA reconfiguration. Any

empty columns are excluded from overall column utilisation cost.

4.2.3 Placement Cost Function

An initial modification of the cost function was found to be necessary to

penalise a horizontal bounding box span for column–based placement. The

following equation proved to deliver column–oriented nets:

Cost =
Nnets∑
i=1

[PenaltyFactor · bbx(i) + bby(i)] (4.2)

where the PenaltyFactor has been empirically set to 10 following a series of

experiments, and bbx and bby denote horizontal and vertical spans of net’s

bounding box.

Applying cost function from Equation 4.2 to the example from Figure 11

delivers two different costs for scenario A and scenario B.

Evaluation of this modified cost function suggests that it can force the

placement algorithm to realise all nets as column–oriented. However, the

entire design will still be occupying most of the FPGA as presented by the

example shown in Figure 28.

To address the problem presented in Figure 28 the cost function should

be factorised by the overall bounding box, in which the horizontal span will

be penalised. This indicates that a placement strategy that uses less columns

is preferable.
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(0, 0)

(4, 6)

overall bounding boxsingle net bounding box

Figure 28: Example of placement result with modified cost function used.

Cost = NumOfColumnsUsed ·
Nnets∑
i=1

[PenaltyFactor · bbx(i) + bby(i)] (4.3)

where PenaltyFactor has been set to 10, bbx(i) and bby(i) denote bounding

box length for a single net i and NumOfColumnsUsed denotes the total

number of CLB columns used to place the circuit. Adding new constraint to

the cost function resulted in prioritising column–based nets with minimum

number of columns necessary to obtain frames–optimised placement.

4.2.4 Next Step Criteria

For column–based placement out of any possible moves there is only a limited

number which can improve frames utilisation. As the aim of any placement

algorithm is to find an acceptable solution within a minimum number of

iterations it is important to perform only those moves which offer the
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(0, 0)

(4, 6)

CLB blocks swap CLB block move

Figure 29: Example of placement with next step move resulting in net
wirelength penalty.

reduction possibility in placement cost.

As simulated annealing allows acceptance of moves in a less optimal

placement (with a certain probability), it was found to be beneficial to

keep this freedom in column–oriented placement strategy. That is why the

placement modification step needed to be divided into two types: block move

and block swap. A block move determines column utilisation while block

swap determines timing constraints via the net bounding box.

During the block move, the block is relocated into an empty location.

Using placement DLC, the block on the most expensive location is moved to

the cheapest empty location. Such a step was found to improve the overall

location cost and drive an algorithm to place blocks closer to each other in

the column–shaped order.

Using only this type of move will introduce a net wirelength penalty, as

it allows cases like the one presented in Figure 29.
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The reason for this is that once the block is not located at the most

expensive location it will not be moved.

Block swap is similar to the typical simulated annealing next step iteration,

as it does not change columns utilisation, although it has an impact on a net

bounding box.

4.3 Routing Algorithm Evaluation

Once placement has been completed, the aim of frames–optimised router is to

successfully route the design using minimum number of configuration frames.

4.3.1 Routing Algorithm Criteria

Any routing algorithm suitable for bitstream size reduction needs to be aware

of which switches need to be configured to implement each net. As each

switch is associated with a configuration frame, and each frame has a cost

depending on its utilisation after placement, the router should use ‘cheaper’

switches when looking for the cheapest connection. Figure 30 shows an

example of how routing influences the number of frames and bitstream size.

4.3.2 Routing Cost Function

The Dijkstra algorithm which is used in a search for the best connection

between blocks needs a cost associated with every routing resource to find

the shortest path. This cost is usually calculated based on the wirelength or

delay caused by the single routing resource. The cost of each path represents

the sum of all routing resources building up the path. To incorporate frames

utilisation to the routing process new connection cost function has been

introduced according to the equation 4.4.
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routing switchconfiguration frame

Figure 30: Example of routing search and its impact on bitstreams size.
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Figure 31: Example of routing search and its impact on bitstreams size.

ConnectionCost(A,B) =
i=B∑
i=A

[Costwire(i) + Costswitch(i, i+ 1)] (4.4)

where Costwire for each routing resource is calculated using equation 3.10

and Costswitch connecting two routing resources i and i+ 1 i based of the

current frames utilisation cost associated with this switch. Frame utilisation

cost has been calculated according to the equation 4.5:

FrameUtilisationCost(i) =

[
1− NumOfBitsSet

FrameLength

]
(4.5)

where NumOfBitsSet denotes number of bits set within the frame and

FrameLength denotes total number of configuration bits available within

the frame. For XCV50 FrameLength equals 324 (Xilinx, 2001).

With the cost function from equation 4.4 the cost of two paths presented

on Figure 31 is different.

4.4 Timing Analysis

As benchmark circuits are not characterised by any timing constraints a

timing comparison can be done by comparing the longest nets between the
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Figure 32: Size Reduction Ratio: FO vs STD routability–driven P&R.

original (STD) and frame–optimised (FO) bitstreams.

4.5 Experimental Results

To test feasibility of the new approach FO P&R was performed on the set

of benchmarks with maximum flexibility given to the algorithm and no pin

constraints. Cost functions used in placement and routing were purely frame

optimisation oriented without any other constraints. Figure 32 presents

bitstream size reduction ratio as a function of design complexity represented

as percentage of FPGA CLB size. FO P&R and STD P&R were both

routability driven with floating pins option enabled.

The results presented in Figure 32 show, that it is possible to obtain

a frame–optimised bitstream that is better than that offered by currently

available P&R approaches. Not surprisingly, the achieved size reduction ratio
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Figure 33: Critical Path:FO vs STD routability–driven P&R.

is considerable for small circuits. In this case up to 5.5 times less frames can

be used to implement the design. However, the results also demonstrate that

an approach using configuration frame–based optimisation during placement

and routing can provide significant benefits for circuits up to 60% FPGA

usability.

To check the impact of FO P&R on the circuits timing, the change in

critical path has been calculated. Results are presented in Figure 33.

Further analysis indicated that the critical path in a frame optimised

design is longer than when using STD P&R. An average decrease of 8%

was obtained with a maximum timing decrease of up to 20% for very small

circuits.

To improve timing performance of FO P&R timing–driven algorithms

have been employed. Results for varying size reduction ratios as presented

in Figure 34 and Figure 35 indicate the critical path change obtained over

the range of circuit complexity.

Results for the timing–driven version of FO P&R show, that a size

reduction ratio up to 4.8 can be achieved, although not as high as for

routability–driven FO P&R. Critical path delay analysis presented in
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Figure 34: Size Reduction Ratio: FO timing–driven vs STD timing–driven
P&R.

Figure 35 shows, that critical path delay increased on average 15% with

a maximum increase up to 33% for small circuits.

4.6 Pins allocation

Analysis of the results presented in Figures 32 to 34 suggests that for small

designs (up to 40% FPGA usability) size reduction ratio varies from 1.2 to

2.8 and in the smallest size circuits group, the range is even bigger from 1.4

to 5.5. The reason for some of the circuits having low size reduction ratios

relates to the problem of pin allocation and the Xilinx Virtex configuration

architecture. Each FPGA IO pin is controlled by an IO block. IO blocks

located on the left and right side of Xilinx Virtex FPGA are controlled by

a separate set of 96 frames (Xilinx, 2000). IO blocks located on the top

and bottom size of the FPGA chip are controlled by the same frames which

107



Figure 35: Critical Path: FO vs STD timing–driven P&R.

control CLB content and routing. For small circuits if the ratio of IO blocks

to CLB blocks is close to unity and IO pins are allocated to the top and the

bottom of the FPGA situation presented in Figure 36 was found to occur.

The situation shown in Figure 36 (top diagram) presents placement result

for pins fixed to the top and bottom locations. Consequently, all 52 columns

(single column representing 24 frames per FPGA location) have to be

configured despite any CLBs relocation. The same circuit placed and routed

with the floating pins option enabled (i.e it is left to the placement algorithm

to determine suitable IO allocation) requires only 8 columns to configure the

FPGA.

4.7 Summary

Novel placement and routing approach presented in this chapter demonstrated

its ability to deliver frames optimised solution. The size of the configuration

bitstream can be reduced considerably. As a result of bitstream size reduction,

storage requirements, reconfiguration latency and power consumption can be

improved. The size reduction ratio depends on the complexity of the design
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Figure 36: Placement result for fixed and floating pins: # – used IO block,
X – used CLB block.
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implementation, which was expected.

Frames optimised placement and routing can be applied to multi–context

designs, where contexts are not equally size–balanced and the size of the

FPGA is usually selected to accommodate the biggest context. In this time

of scenario FO P&R can significantly improve switching between small and

medium size contexts.

Although FO P&R has been implemented for Xilinx Virtex technology

only, presented approach can be easily modified to support other

reconfigurable technologies. Novel DLC introduced at placement can be

applied to any FPGA array as long as FPGA technology supports partial

reconfiguration and configuration data follow regular patterns (vertical

spanning frames, horizontal spanning frames, etc.).

Bitstream size reduction comes at the cost of timing deterioration. In

Xilinx Virtex technology long routing resources can only be accessed from

certain locations only therefore with highly compacted placement router is

forced to use single length resources. That is the reason why longest paths

after FO P&R use more switches. With different FPGA technology this

limitation might be removed.

The fact, that in Xilinx Virtex CLB frames control top and bottom

IOBs makes FO P&R reduction efficiency sensitive to IO pins allocation.

Bitstream size reduction for high I/O pins count designs might be impossible

as number of frames to load is determined by I/O pin allocation. Yet again

this limitation is a feature of Xilinx Virtex architecture and might not occur

with different FPGA technology.
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Chapter 5

Multi–Context Placement and

Routing Implementation

This chapter presents details about the implementation of multi–content

placement and routing. New framework is described together with the results.

5.1 Designs Similarity Analysis

Using BCT collection of benchmarks has been analysed to derive initial

level of similarity between members of each design pair. These similarities

were used as a starting point to determine the quality of the novel multi–

context simulatenous placement and routing approach. Results from this

cross–comparison are presented in Table 13.

The results summarised in Table 13 show, that although there are pairs

of circuits with certain number of similar CLBs, their overall bitstreams

similarity is less then 1%. This is due to the fact, that they have all been

placed and routed individually.
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Table 13: Designs similarity summary.
Design Size Shared Shared
pair [%] blocks frames

b04 out.bit 11
tb 04 chain x02.bit 22 25 239

b12 out.bit 30
tb 12 chain x2.bit 60 63 4

tb 05 12.bit 45
tb 04 chain x4.bit 45 58 0

cf fp mul c 5 10 out.bit 34
cf fp mul p 5 10 out.bit 43 113 0
cf interleaver 6 8 out.bit 13
cf interleaver 6 64 out.bit 86 74 0

tb 10 chain x20.bit 86
tb 11 chain x6.bit 48 21 0

5.2 Placement Algorithm Evaluation

Unlike traditional placement which starts from initial placement, novel

approach has been applied based on placing similar blocks in the same

location in both placements. Simultaneous placer needs first to determine

the size for shared and non–shared blocks. This is done by cross–comparing

the netlists to get the number of shared slices (set of two LUT within the

same location).

5.2.1 Placement Algorithm Criteria

With the FPGA area divided into shared and non–shared areas, random

initial placement is performed on the shared area and then on each non–

shared area separately.

To obtain an implementation which considers column–based structuring,

the configuration distribution set of modifications developed during bitstream

size reduction described in section 4.2 placement have been used.
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5.2.2 Dynamic Location Cost Schedule

To address the problem of column–oriented placement, Dynamic Location

Cost (DLC), developed for bitstream size reduction was used. Any change

to the cost of shared locations has to be applied to both netlists, while any

change to the non–shared area applies only to the currently processed netlist.

5.2.3 Placement Cost Function

Following the bitstream size reduction placement methodology, the simulated

annealing placement cost function based on column–oriented net bounding

box was used. Placement iteration cost is calculated to all blocks within the

design regardless of their assignment to a shared or non–shared area. Similar

to bitstream compression placement, this cost function penalises horizontally

spanned nets.

5.2.4 Next Step Criteria

Because of the processors sequential execution, only one context can be

processed at a time. Therefore at the beginning of every placement iteration,

selection of which design is going to be modified is based on a random number

generator.

Once the design has been selected, there is another selection to be made

between those areas where a proposed change will be applied. Similar to the

previous selection case, this one is based on the random based function as

well. Within the area selected, modification is done either by block swap or

block move similar to the previously described in section 4.2.4 bitstream size

reduction placement.

As a result of the FPGA area being divided into shared and non–shared

areas, block manipulations are only allowed within the same area. However,

there is an exception for the shared area: the block in the shared area can
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still be swapped with the block in the non–shared area if their LUT content

is exactly the same. Such a swap does not influence the content of shared

columns (as the LUT content remains unchanged) but it has an impact on

the net bounding box, and potentially influences the net’s routing.

5.3 Routing Algorithm Evaluation

The main goal of the routing algorithm, is to validate placement by providing

connectivity between specified block input and output while using a minimum

number of configuration frames.

5.3.1 Routing Algorithm Criteria

Based on the results of bitstream size reduction routing, the same method

has been selected to perform detailed routing. Because of the nets sharing

complexity problem, each design has been routed independently.

5.3.2 Routing Cost Function

In order to keep the number of frames to a minimum, the cost function used

during the search for the shortest–path has been modified to include the cost

of the routing switch location. In this way the router will try to use routing

switches, whose configuration is driven by the frames with higher utilisation.

5.4 Experimental Results

5.4.1 Simultaneous Placement and Routing Results

To test the feasibility of the proposed approach Simultaneous Multi–Context

(SMC) P&R was performed on the set of benchmark designs. Cost functions
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Figure 37: Example of SMC P&R performed on two-contexts design.

used by placement and routing algorithm were purely frame–sharing oriented

without any other constraints. Experimental results are presented in Table 14,

and an example of placement layout after SMC P&R is presented in Figure 37.

5.5 Frames Sharing Analysis

Results presented in Table 14 show, that it is possible to increase the number

of shared frames compared to currently used P&R approaches. Not surprisingly

the achieved improvement ratio is considerable for small circuits (51% for 20–

30% circuits size category). However, the results also demonstrate that the

approach is also beneficial for the bigger circuits (33% for upto 60% circuit

size category).
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Table 14: FPGA Multi–design benchmarks summary.
Design Size SB SFSA SFSMC F CPSA CPSMC CP
pair [%] [%] [%]

A1 11 9 12 -25
A2 22 25 239 821 51 12 14 -14
B1 30 10 13 -23
B2 60 63 4 382 33 12 14 -14
C1 45 9 10 -10
C2 45 58 0 527 46 8 11 -27
D1 34 9 12 -25
D2 43 113 0 518 45 9 11 -27
E1 13 8 11 -25
E2 86 74 0 102 9 9 11 -18
F1 86 8 10 -20
F2 48 21 0 65 6 7 9 -22

Design pair filename

A1 b04 out.bit
A2 tb 04 chain x02.bit
B1 b12 out.bit
B2 tb 12 chain x2.bit
C1 tb 05 12.bit
C2 tb 04 chain x4.bit
D1 cf fp mul c 5 10 out.bit
D2 cf fp mul p 5 10 out.bit
E1 cf interleaver 6 8 out.bit
E2 cf interleaver 6 64 out.bit
F1 tb 10 chain x20.bit
F2 tb 11 chain x6.bit
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5.6 Timing Analysis

The results of the timing analysis demonstrated, that the critical path used

on average 25% more routing resources despite using the Pathfinder routing

algorithm, which aims to find the shortest path for each net. This situation

is a result of additional restrictions applied to the block allocation during

placement, and the fact, that long wire connections are only available for

certain block allocation combinations.

Additional constraints applied to the placement algorithm, where shared

and non–shared blocks are assigned to the different FPGA areas were likely

to contribute to the net bounding box size and therefore increase the number

of routing resources required to successfully route the net.

The timing results presented describe a worst–case scenario, where

placement and routing is purely compression and frames sharing oriented.

As a result of the configuration interface architecture used (where all the

blocks within the shared CLB column have to be exactly the same) any

linear trade–off between timing and sharing might be difficult to achieve in

practice.

5.6.1 CLB Blocks Sharing

Results of CLB block sharing between two designs are presented in Table 14

and suggest that there are a number of blocks with the same content (up to

15%). This is despite the fact that all the benchmark designs were compiled

separately without any intention of sharing resources. Thus, the number

of shared CLB blocks can be further improved by using resource–sharing

methodologies developed in previous steps of the design flow.
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5.7 Pins Allocation

As both designs are targeting the same FPGA platform, IO pin allocation will

be determined by the PCB layout. However due to the unique nature of IO

pin configuration (top and bottom IO pins are configured by CLB frames) IO

pins have been left floating, to allow the algorithm to derive column–oriented

placement.

5.8 Scalability Of The Approach

The presented SMC JPR approach has been tested for the limited case of two-

context designs, but it can easily be scaled to handle three and more designs.

The overall frame sharing ratio will then depend on the netlist similarity

factor and it is likely to decrease as the number of designs increases.

5.9 Frames Overlapping Problem

Unlike bitstream size reduction, SMD P&R distinguishes between two types

of shared frames: shared empty frames and shared design frames. Shared

design frames represent non–empty frames with the same content. The

detailed contribution of both types into the total number of shared frames

has been presented in Table 15.

Results presented in Table 15 clearly show that the majority of shared

frames are empty frames. Despite CLB similarity and their specific placement,

the content of the configuration frames covering that area is still different.

This is caused by the specific configuration frame structure, where a single

frame is in control of a part of the CLB content as well as routing in that

area. Although sharing LUT content can be arranged during placement, any

constraints applied to the way the design is routed could result in unroutable

nets.
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Table 15: Summary of shared empty and design frames.
Shared Shared

Design filename empty frames design frames

b04 out.bit
tb 04 chain x02.bit 821 2

b12 out.bit
tb 12 chain x2.bit 380 4

tb 05 12.bit
tb 04 chain x4.bit 523 4

cf fp mul c 5 10 out.bit
cf fp mul p 5 10 out.bit 516 2
cf interleaver 6 8 out.bit
cf interleaver 6 64 out.bit 92 10

tb 10 chain x20.bit
tb 11 chain x6.bit 64 1

5.10 Configuration Interface Analysis

To demonstrate the impact of configuration interface architecture on

bitstream sharing in a multi–design approach, simulation of a selection of

different configuration interface architectures was performed. Because

developed framework is based on JBits supporting only Xilinx Virtex FPGA

technology, selection of different frames allocation patterns was used to

emulate different reconfigurable architectures.

5.10.1 LUT Specific Frames

A single CLB column in XCV50 is configured by 48 frames. 18 bits in each

frame are used to hold a part of the configuration of a single CLB location.

Currently at least 32 frames are required to configure LUT, as a single CLB

frame holds only two LUT bits per location. To configure LUTs within

a single CLB location 64 bits are required. Therefore, if there are LUT–

dedicated frames, to configure a LUT in entire CLB column requires four

frames. An example of a proposed configuration interface architecture is
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Table 16: Summary of shared empty and design frames for CLB specified
frames.

Shared Shared
Design filename empty frames design frames

b04 out.bit
tb 04 chain x02.bit 821 10

b12 out.bit
tb 12 chain x2.bit 380 20

tb 05 12.bit
tb 04 chain x4.bit 523 20

cf fp mul c 5 10 out.bit
cf fp mul p 5 10 out.bit 516 34
cf interleaver 6 8 out.bit
cf interleaver 6 64 out.bit 92 30

tb 10 chain x20.bit
tb 11 chain x6.bit 64 8

presented in Figure 38.

It can be assumed that shared CLB column will have at least four frames

similar, and it will not depend on the routing results. Bitstream sharing after

using modified frames distribution has been presented in Table 16.

5.10.2 Single Block Configuration

In the Xilinx Virtex XCV50 single configuration frame has 384 bits and each

CLB location is configured by 864 bits. Therefore, to configure an entire CLB

location (LUT and surrounding routing switches), 2.25 frames are required.

The main advantage of this architecture was that shared blocks do not have

to be placed within a column. They only need to be similar within a single

location. Use of this approach would therefore result in better routing, as

blocks are not forced into columns, which relaxes routing congestion.

Using smaller configuration frames can further improve the configuration

data sharing ratio. As illustrated in Figure 39 a single CLB location has

been configured using nine horizontally spanning configuration frames. Such
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Figure 38: Example of Xilinx Virtex single programmable cell.
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Figure 39: Example of proposed configuration interface architecture for single
Xilinx Virtex programmable cell.

a frame alignment allows separate configuration of LUT content and related

I/O routing from external routing. Also if the CLB is used for routing only,

the LUT part can be still shared with other empty LUTs.

Based on the placement and routing results of the benchmark circuits

an estimate for configuration data sharing was obtained and is presented in

Table 17.

Smaller configuration frames will increase configuration architecture

complexity, but offer on average 10% improvement compared to a column

based configuration interface architecture. It also does not require similar

CLB blocks to be placed together, as similarity is done purely on a one–

to–one basis. A further advantage comes from the routing improvements as

CLB block allocation is less constrained.

An additional post–processing run can be applied to the netlist in order

to increase the number of shared LUTs. Content of the single LUT can be

modified as indicated in Figure 40.

With fine grain configuration interface architecture ‘wildcarding’ can be

an option especially for the big CLB arrays, as the number of similar LUT

blocks is likely to increase due to a limited combination of 16–bit wide LUT
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Table 17: Designs similarity summary.
Design Shared design Shared empty Shared SF
pair blocks blocks frames [%]

b04 out.bit
tb 04 chain x02.bit 25 597 5398 78

b12 out.bit
tb 12 chain x2.bit 63 306 2637 38

tb 05 12.bit
tb 04 chain x4.bit 58 412 3766 54

cf fp mul c 5 10 out.bit
cf fp mul p 5 10 out.bit 113 406 3767 54
cf interleaver 6 8 out.bit
cf interleaver 6 64 out.bit 74 107 1037 15

tb 10 chain x20.bit
tb 11 chain x6.bit 21 102 939 14

content.

5.11 Summary

The novel simultaneous placement and routing methodology for

multi–context designs presented in this chapter demonstrates the feasibility

of increasing the number of shared configuration data frames to improve the

speed of the FPGA reconfiguration process.

The achieved improvement ratio is considerable for small circuits (51%

for 20–30% circuits size category). However, the results also demonstrate

that the approach is also beneficial for the bigger circuits (33% for upto 60%

circuit size category). This is beneficial especially in multi-context designs

where single contexts differ is size and complexity.

The results of the timing analysis demonstrated, that the critical path

used on average 25% more routing resources despite using the Pathfinder

routing algorithm, which aims to find the shortest path for each net. This

situation is a result of additional restrictions applied to the block allocation
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Figure 40: Example of Xilinx Virtex single programmable cell.

during placement, and the fact, that long wire connections are only available

for certain block allocation combinations.

Additional constraints applied to the placement algorithm, where shared

and non–shared blocks are assigned to the different FPGA areas were likely

to contribute to the net bounding box size and therefore increase the number

of routing resources required to successfully route the net.

The timing results presented describe a worst–case scenario, where

placement and routing is purely compression and frames sharing oriented.

As a result of the configuration interface architecture used (where all the

blocks within the shared CLB column have to be exactly the same) any

linear trade–off between timing and sharing might be difficult to achieve in

practice.

The ability to transform netlist similarities into configuration data

similarities works well for the difficult case, where configuration data frame
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consists of bits controlling parts of different FPGA resources (e.g. IOB, CLB,

routing), as any modification to placement or routing applies to a number of

configuration frames at once. In similarity to single–context placement and

routing methodology, additional restrictions to the placement algorithm were

found to increase the critical path net delay, although developed methodology

can be still attractive for non–timing critical, power supply limited application

domains.

The presented placement and routing methodology has been tested for

the limited case of two-context designs, but it can easily be scaled to handle

three and more context designs. The overall frame sharing ratio depends

on the netlist similarity factor and it is likely to decrease as the number of

designs increases.

The limited information available on alternative configuration interface

architectures make it difficult to evaluate the proposed methodology, although

simulation of alternative configuration interface architectures demonstrate

even better improvement in configuration data sharing and timing.

Newly developed multi-context placement and routing methodology

proved to work with real-world Xilinx Virtex FPGA - challenging technology

due to its configuration frames architecture. Simulation of different frames

arrangement demonstrate impact of configuration interface architecture on

bitstream sharing and as such can be valid test methodology in the search

for better configuration interface architecture.
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Chapter 6

Conclusions and Future Work

The thesis are concluded in this chapter together with summary of future

areas of development.

6.1 Summary of the Contribution

The work presented in this thesis has explored the area of placement and

routing for FPGAs in the search for improvements to the FPGA

reconfiguration problem bottleneck – one of the main obstacles towards wider

popularity of FPGAs as reconfigurable systems.

It has been demonstrated, that currently available placement and routing

methodologies, although delivering quality solutions, especially in the timing

optimisation domain, suffer a significant overhead in utilising FPGA

configuration data resources, which contribute towards reconfiguration

latency and storage penalties.

6.1.1 Single Context Approach

It has been demonstrated, that by incorporating configuration data

architecture into placement and routing, the configuration data utilisation
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can be improved by using up to five times less configuration data resources

to implement the design over traditional approaches. Such an improvement is

an important contribution towards minimising FPGA reconfiguration storage

and latency overhead, and also power consumption, which is very important

especially for battery–operated devices.

A placement and routing framework presented in this thesis has been

validated with commercial Xilinx Virtex FPGA technology to show its

practicality for real–world applications.

The developed novel bitstream size reduction placement and routing for

FPGAs when applied to the Xilinx Virtex FPGAs, demonstrates a trade–

off between compression and design timing. It has been demonstrated,

that compression data utilisation improvement comes with design timing

degradation of up to 30% more routing switches used by the net on the critical

path, due to the higher block concentration within the placement area, which

limits router flexibility. For highly timing–constrained designs this method

might be not applicable, although there are other application domains like

battery operated mobile devices, where the benefits of using hardware design

implementation is the key to power saving by lowering operating frequency

– a key element in determining power consumption.

6.1.2 Multi–Context Approach

The contribution from bitstream size reduction placement and routing

provided essential background for development of a more generic placement

and routing methodology optimising configuration data sharing between

contexts compiled for a particular reconfigurable platform.

Critical evaluation of currently available placement and routing

methodologies deliver bitstreams with very low level of configuration data

similarity, making re–using of configuration data almost impossible. Analysis

of the design flow of these methodologies indicated areas of possible
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improvement to increase levels of configuration data sharing.

It has been demonstrated, that using simultaneous placement and routing

of two contexts provides upto five times more shared configuration data

frames, which contributes towards reconfiguration latency and storage

overhead improvement.

The developed multi–context simultaneous placement and routing for

FPGAs, when applied to the Xilinx Virtex FPGAs, demonstrates trade–off

between configuration data sharing and design timing improvement. It has

been demonstrated, that configuration data sharing improvement comes with

design timing degradation up to 30%. This problem arises as more routing

switches are used by the net on the critical path, due to the additional

placement constraints, which limits router flexibility. For highly timing–

constrained designs this method might be not applicable, although there

are other application domains like battery operated mobile devices, where

savings in power consumption during the process of reconfiguration are highly

desirable.

6.2 Solution Scalability

The developed placement and routing methodology optimised for

configuration data utilisation, successfully tested with Xilinx Virtex FPGA

technology, can be applied to any island–style FPGA with regular

configuration interface architecture (row–based, diagonal–based).

The Dynamic Location Cost developed for placement methodology is a key

element linking FPGA configuration interface architecture with FPGA

placement methodology.

Multi–context methodology has been based on design netlist similarity

and as such can be applied to an unlimited number of designs, known at

compile time. The overlapping ability will depend on netlist similarity, and
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in the worst case scenario (when no similarities can be picked up) it will

deliver a set of individually compressed bitstreams, able to share part of the

unassigned FPGA area.

Following the current trends where FPGAs are becoming stand–alone

Systems–on–Chip offering much more then just configurable logic, the

developed methodology can still be applied to minimise the size of

configuration data required to implement IP cores in the FPGA configurable

logic area.

6.3 Areas of Improvement and Future Directions

The configuration data optimised placement and routing methodology

presented in this thesis represents an alternative approach to EDA, and

research in this area can deliver further improvements to the problem of

FPGA reconfiguration bottleneck. Research should be done in several

directions:

• placement and routing algorithm optimisation,

• configuration data architectures,

• high–level design synthesis.

The trend to incorporate configuration interface architecture into

placement and routing can be expanded onto any available FPGA architecture,

subject to detailed FPGA architectural information being available.

As it has been demonstrated, the achieved configuration data sharing

ratio depends on the configuration data architecture. There is a need for more

research to evaluate the most feasible configuration interface architecture for

dynamically reconfigurable FPGAs, so that the entire reconfiguration process

including placement and routing can be improved even further.
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Analysis of multi–context placement and routing show that the quality of

the delivered solution is strongly dependent on netlist similarity. As design

netlists are a result of design compilation process, the area of simultaneous

design compilation is one of the key areas for future research in order to

improve netlist similarity and therefore bring further improvements in

configuration data sharing.
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Appendix A

Appendix

A.1 Bitstream Comparison Tool

Code size: 1070 lines

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
main . c − d e s c r i p t i o n

−−−−−−−−−−−−−−−−−−−
beg in : Tue Feb 3 12 :39 :42 GMT 2004

copy r i g h t : (C) 2004 by Pio t r S tep ien

emai l : pstepien@bournemouth . ac . uk

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ This program i s f r e e so f tware ; ∗
∗ you can r e d i s t r i b u t e i t and/or modify ∗
∗ i t under the terms o f the GNU General ∗
∗ Pub l i c License as pub l i s h ed by ∗
∗ the Free Sof tware Foundation ; ∗
∗ e i t h e r ve r s i on 2 o f the License , or ∗
∗ ( a t your opt ion ) any l a t e r ve r s i on . ∗
∗ ∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#ifde f HAVE CONFIG H

#include <c on f i g . h>

#endif

#include <s t d i o . h>

#include <s t d l i b . h>

#define XCV50

#i f de f ined (XCV1000)

#de f i n e ROWS 64

#de f i n e CLB COLUMNS 96

#de f i n e WORDSPERFRAME 39

#de f i n e STREAM SIZE 766047

#endif

#i f de f ined (XCV50)

#de f i n e ROWS 16

#de f i n e CLB COLUMNS 24

#de f i n e WORDSPERFRAME 12

#de f i n e STREAM SIZE 69970

#endif

#define CLB FRAMES 48

unsigned char b i t s t r eam data [ 2 ] [ STREAM SIZE ] ;

unsigned int

f r ame s ta r t addr [ 2 ] [ 4 ] ,
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number of words [ 2 ] [ 4 ] ;

unsigned int

subb locks data [ 2 ] [CLB COLUMNS] [ 4 8 ] [ROWS+3] ,

c l k da ta [ 2 ] [ 1 ] [ 8 ] [ROWS+3] ,

c l b da ta [ 2 ] [CLB COLUMNS] [ 4 8 ] [ROWS+3] ,

i ob data [ 2 ] [ 2 ] [ 5 4 ] [ROWS+3] ,

bsramint data [ 2 ] [ 2 ] [ 2 7 ] [ROWS+3] ,

bsramcontent data [ 2 ] [ 2 ] [ 6 4 ] [ROWS+3] ;

#include ” f u n c t i o n s c o l l e c t i o n . h”

int main ( )

{
/∗ Var iab l e s d e f i n i t i o n ∗/

unsigned char b i t f i l e n ame [ 2 5 5 ] , d e c i s i o n ;

unsigned int

words rom [ 3 7 ] ,

read word [ 3 7 ] ,

passed Bytes ,

word index ,

i n t word s c t r ,

b i t s t r eam f i l e number ,

b i t s t r eam byte index ;

FILE ∗ b i t s t r e am f i l e P t r ; /∗ Bitstream f i l e po in t e r ∗/

/∗ Bitstream Header and Conf i gura t ion Options (XAPP138v2 .7

Table 8) ∗/
words rom [ 0 ] = 0 x f f f f f f f f ; /∗ Dummy word f o l l ow i n g b i t s t r eam

∗/
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words rom [ 1 ] = 0xaa995566 ; /∗ Synchron i sa t ion word ∗/
words rom [ 2 ] = 0x30008001 ; /∗ Packet Header : Write to SMD

r e g i s t e r ∗/
words rom [ 3 ] = 0x00000007 ; /∗ Packet Data : RCPC ∗/
words rom [ 4 ] = 0x30016001 ; /∗ Packet Header : Write to FLR

r e g i s t e r ∗/
words rom [ 5 ] = ’ z ’ ; /∗ Packet Data : Frame Length f o r XCV1000

∗/
words rom [ 6 ] = 0x30012001 ; /∗Packet Header : Write to COR ∗/
words rom [ 7 ] = ’ z ’ ; /∗ Packet Data : Conf i gura t ion Options ∗/
words rom [ 8 ] = 0x3000c001 ; /∗ Packet Header : Write to MASK ∗/
words rom [ 9 ] = ’ z ’ ; /∗ Pocket Data : CTL mask ∗/
words rom [ 1 0 ] = 0x30008001 ; /∗ Packet Header : Write to CMD

r e g i s t e r ∗/
words rom [ 1 1 ] = 0x00000009 ; /∗ Packet Data : SWITCH ∗/
words rom [ 1 2 ] = 0x30002001 ; /∗ Packet Header : Write to FAR

r e g i s t e r ∗/
words rom [ 1 3 ] = 0x00000000 ; /∗ Packet Data : Frame address ∗/
words rom [ 1 4 ] = 0x30008001 ; /∗ Packet Header : Write to CMD

r e g i s t e r ∗/
words rom [ 1 5 ] = 0x00000001 ; /∗ Packet Data : WCFG ∗/

/∗ Bitstream Data Frames and CRC (XAPP138v2 .7 Table 9) ∗/
words rom [ 1 6 ] = 0x30004000 ; /∗ Packet Header : Write to FDRI ∗/
words rom [ 1 7 ] = ’ z ’ ; /∗ Pocket Header Type 2 : Data Words ∗/

/∗ Continuing a f t e r frames l oad ing ∗/
words rom [ 1 8 ] = 0x30002001 ; /∗ Pocket Header : Write to FAR

r e g i s t e r ∗/
words rom [ 1 9 ] = ’ z ’ ; /∗ Pocket Data : Next frame address ∗/
words rom [ 2 0 ] = ’ z ’ ; /∗ Write to FDRI ∗/
words rom [ 2 1 ] = ’ z ’ ; /∗ Packet Header Type 2 : Data words ∗/
words rom [ 2 2 ] = 0x30002001 ; /∗ Packet Header : Write to FAR

r e g i s t e r ∗/
words rom [ 2 3 ] = ’ z ’ ; /∗ Pocket Data : Next frame address ∗/
words rom [ 2 4 ] = ’ z ’ ; /∗ Packet Header : Write to FDRI ∗/
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words rom [ 2 5 ] = ’ z ’ ; /∗ Pocket Header Type 2 : Data Words ∗/
words rom [ 2 6 ] = 0x30008001 ; /∗ Packet Header : Write to CRC ∗/
words rom [ 2 7 ] = ’ z ’ ; /∗ Packet Data : CRC va lue ∗/
words rom [ 2 8 ] = 0x30008001 ; /∗ Packet Header : Write to CMD

r e g i s t e r ∗/
words rom [ 2 9 ] = 0x00000003 ; /∗ Packet Data : LFRM ∗/
words rom [ 3 0 ] = ’ z ’ ; /∗ Packet Header : Write to FDRI ∗/

/∗ Fina l CRC and Star t−up ∗/
words rom [ 3 1 ] = 0x30008001 ; /∗ Packet Header : Write to CMD

r e g i s t e r ∗/
words rom [ 3 2 ] = 0x00000005 ; /∗ Packet Data : START ∗/
words rom [ 3 3 ] = 0x3000a001 ; /∗ Packet Header : Write to CTL ∗/
words rom [ 3 4 ] = ’ z ’ ; /∗ Packet Data : Contro l commands ∗/
words rom [ 3 5 ] = 0x30000001 ; /∗ Packet Header : Write to CRC ∗/
words rom [ 3 6 ] = ’ z ’ ; /∗ Packet Data : CRC va lue ∗/

/∗ Welcome message ∗/

p r i n t f ( ”Bitstream ana lyze r \n” ) ;
p r i n t f ( ”Vers ion 2 .0\n” ) ;
p r i n t f ( ”Autor : P io t r Step ien \n\n” ) ;

/∗ Loading Bits treams ∗/

b i t s t r e am f i l e numbe r = 0 ;

i f ( ( b i t s t r e am f i l e P t r = fopen ( ”null50GCLK0 . b i t ” , ” r ” ) ) ==

NULL)

{
p r i n t f ( ” F i l e could not be opened .\n” ) ;
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return 0 ;

}//end i f

else

{
f r ead ( b i t s t r eam data [ b i t s t r e am f i l e numbe r ] , s izeof (

unsigned char ) ,

STREAM SIZE, b i t s t r e am f i l e P t r ) ;

f c l o s e ( b i t s t r e am f i l e P t r ) ;

}//end e l s e

p r i n t f ( ”Bits t ream %d loaded s u c c e s s f u l l y .\n\n” ,

b i t s t r e am f i l e numbe r ) ;

b i t s t r e am f i l e numbe r++;

i f ( ( b i t s t r e am f i l e P t r = fopen ( ”xcv50GCLK0 route . b i t ” , ” r ” ) )

== NULL)

{
p r i n t f ( ” F i l e could not be opened .\n” ) ;
return 0 ;

}//end i f

else

{
f r ead ( b i t s t r eam data [ b i t s t r e am f i l e numbe r ] , s izeof (

unsigned char ) ,

STREAM SIZE, b i t s t r e am f i l e P t r ) ;

f c l o s e ( b i t s t r e am f i l e P t r ) ;

}//end e l s e

p r i n t f ( ”Bits t ream %d loaded s u c c e s s f u l l y .\n\n” ,

b i t s t r e am f i l e numbe r ) ;

b i t s t r e am f i l e numbe r = 0 ;

p r i n t f ( ”Reading v e r i f i c a t i o n :\n” ) ;
p r i n t f ( ”Bitstream 1 %d\n” , b i t s t r eam data [ 0 ] [ 1 ] ) ;

p r i n t f ( ”Bitstream 2 %d\n” , b i t s t r eam data [ 1 ] [ 1 ] ) ;
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/∗ p r i n t f (” Locate frames? ( y/n) ”) ;

scan f (”%s ” , &dec i s i on ) ;

i f ( d e c i s i on == ’n ’)

{
re turn 0 ;

}//end i f

∗/

/∗ Extrac t frames from the Bits tream ∗/

b i t s t r e am f i l e numbe r = 0 ;

do

{
p r i n t f ( ”Frames ex t r a c t i on from Bitst ream %d .\n\n” ,

b i t s t r e am f i l e numbe r ) ;

b i t s t r eam byte index = 0 ;

/∗ Locate Dummy word in the f i l e ∗/
passed Bytes = F indSpe c i f i c ( b i t s t r eam f i l e number ,

b i t s t r eam byte index , words rom [ 0 ] ) ;

read word [ 0 ] = words rom [ 0 ] ;

word index = 1 ;

i n t wo rd s c t r = 0 ;

p r i n t f ( ”Dummy word l o ca t ed .\n” ) ;
b i t s t r eam byte index = passed Bytes ;

p r i n t f ( ”The number o f Bytes passed i s : %d\n” , passed Bytes )

;

/∗ Check i f words o f b l o c k 1 are in the r i g h t p o s i t i o n ∗/
do

{
i n t wo rd s c t r++;

read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;
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b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

i f ( ( words rom [ word index ] ) != ’ z ’ )

{
i f ( read word [ word index ] == words rom [ word index ] )

{
p r i n t f ( ”Word %d 0x%x” , word index , words rom [

word index ] ) ;

p r i n t f ( ” in the po s i t i o n .\n” ) ;
word index++;

}//end i f

else

{
p r i n t f ( ”ERROR! ! ! − Word %d 0x%x” , word index ,

words rom [ word index ] ) ;

p r i n t f ( ” not found . \n” ) ;
return 0 ;

}//end e l s e

}//end i f

else

{
p r i n t f ( ”Word %d 0x%x” , word index , read word [ word index

] ) ;

p r i n t f ( ” read from the b i t s t ream .\n” ) ;
word index++;

}//end e l s e

}//end do

while ( i n t wo rd s c t r < 16) ;

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
/∗ F i r s t b l o c k o f frames ∗/
/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/

/∗ Read Packet Header Type 2 : Data words ∗/
read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;
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b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

number of words [ b i t s t r e am f i l e numbe r ] [ 0 ] = read word [

word index ] ;

word index++;

f r ame s ta r t addr [ b i t s t r e am f i l e numbe r ] [ 0 ] =

b i t s t r eam byte index ;

number of words [ b i t s t r e am f i l e numbe r ][0]<<=5;

number of words [ b i t s t r e am f i l e numbe r ][0]>>=5;

p r i n t f ( ” Star t address o f the f i r s t b lock o f frames : %d\n” ,

f r ame s ta r t addr [ 0 ] [ b i t s t r e am f i l e numbe r ] ) ;

p r i n t f ( ”Number o f words to read : %d\n” ,

number of words [ b i t s t r e am f i l e numbe r ] [ 0 ] ) ;

p r i n t f ( ”Number o f frames to read : %d\n” ,

( number of words [ b i t s t r e am f i l e numbe r ] [ 0 ] ) /

WORDSPERFRAME) ;

p r i n t f ( ”Bits t ream %d Header 1 loaded s u c c e s s f u l l y \n\n” ,

b i t s t r e am f i l e numbe r ) ;

/∗ Check i f words o f b l o c k 2 r i g h t p o s i t i o n ∗/

i n t wo rd s c t r = 0 ;

b i t s t r eam byte index = b i t s t r eam byte index +

(4 ∗ number of words [ b i t s t r e am f i l e numbe r ] [ 0 ] ) ;

do

{
i n t wo rd s c t r++;

read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;

b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

i f ( ( words rom [ word index ] ) != ’ z ’ )

{
i f ( read word [ word index ] == words rom [ word index ] )

{
p r i n t f ( ”Word %d 0x%x” , word index , words rom [

word index ] ) ;
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p r i n t f ( ” in the po s i t i o n .\n” ) ;
word index++;

}//end i f

else

{
p r i n t f ( ”ERROR! ! ! − Word %d 0x%x” , word index ,

words rom [ word index ] ) ;

p r i n t f ( ” not found . \n” ) ;
return 0 ;

}//end e l s e

}//end i f

else

{
p r i n t f ( ”Word %d 0x%x” , word index , read word [ word index

] ) ;

p r i n t f ( ” read from the b i t s t ream .\n” ) ;
word index++;

}//end e l s e

}//end do

while ( i n t wo rd s c t r < 2) ;

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
/∗ Second b l o c k o f frames ∗/
/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/

/∗ Read Packet Header Type 2 : Data words ∗/
read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;

b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

number of words [ b i t s t r e am f i l e numbe r ] [ 1 ] = read word [

word index ] ;

word index++;

f r ame s ta r t addr [ b i t s t r e am f i l e numbe r ] [ 1 ] =

b i t s t r eam byte index ;

number of words [ b i t s t r e am f i l e numbe r ][1]<<=21;
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number of words [ b i t s t r e am f i l e numbe r ][1]>>=21;

i f ( number of words [ b i t s t r e am f i l e numbe r ] [ 1 ] == 0)

{
read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;

b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

number of words [ b i t s t r e am f i l e numbe r ] [ 1 ] = read word [

word index ] ;

word index++;

f r ame s ta r t addr [ b i t s t r e am f i l e numbe r ] [ 1 ] =

b i t s t r eam byte index ;

number of words [ b i t s t r e am f i l e numbe r ][1]<<=5;

number of words [ b i t s t r e am f i l e numbe r ][1]>>=5;

}//end i f

else

{
word index++;

}//end e l s e

p r i n t f ( ” Star t address o f the second block o f frames : %d\n” ,

f r ame s ta r t addr [ b i t s t r e am f i l e numbe r ] [ 1 ] ) ;

p r i n t f ( ”Number o f words to read : %d\n” ,

number of words [ b i t s t r e am f i l e numbe r ] [ 1 ] ) ;

p r i n t f ( ”Number o f frames to read : %d\n” ,

( number of words [ b i t s t r e am f i l e numbe r ] [ 1 ] ) /

WORDSPERFRAME) ;

p r i n t f ( ”Bits t ream %d Header 2 loaded s u c c e s s f u l l y \n\n” ,

b i t s t r e am f i l e numbe r ) ;

/∗ Check i f words o f b l o c k 3 r i g h t p o s i t i o n ∗/

i n t wo rd s c t r = 0 ;

b i t s t r eam byte index = b i t s t r eam byte index +

(4 ∗ number of words [ b i t s t r e am f i l e numbe r ] [ 1 ] ) ;
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do

{
i n t wo rd s c t r++;

read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;

b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

i f ( ( words rom [ word index ] ) != ’ z ’ )

{
i f ( read word [ word index ] == words rom [ word index ] )

{
p r i n t f ( ”Word %d 0x%x” , word index , words rom [

word index ] ) ;

p r i n t f ( ” in the po s i t i o n .\n” ) ;
word index++;

}//end i f

else

{
p r i n t f ( ”ERROR! ! ! − Word %d 0x%x” , word index ,

words rom [ word index ] ) ;

p r i n t f ( ” not found . \n” ) ;
return 0 ;

}//end e l s e

}//end i f

else

{
p r i n t f ( ”Word %d 0x%x” , word index , read word [ word index

] ) ;

p r i n t f ( ” read from the b i t s t ream .\n” ) ;
word index++;

}//end e l s e

}//end do

while ( i n t wo rd s c t r < 2) ;

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
/∗ Third b l o c k o f frames ∗/
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/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/

/∗ Read Packet Header Type 2 : Data words ∗/
read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;

b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

number of words [ b i t s t r e am f i l e numbe r ] [ 2 ] = read word [

word index ] ;

word index++;

f r ame s ta r t addr [ b i t s t r e am f i l e numbe r ] [ 2 ] =

b i t s t r eam byte index ;

number of words [ b i t s t r e am f i l e numbe r ][2]<<=21;

number of words [ b i t s t r e am f i l e numbe r ][2]>>=21;

i f ( number of words [ b i t s t r e am f i l e numbe r ] [ 2 ] == 0)

{
read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;

b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

number of words [ b i t s t r e am f i l e numbe r ] [ 2 ] = read word [

word index ] ;

word index++;

f r ame s ta r t addr [ b i t s t r e am f i l e numbe r ] [ 2 ] =

b i t s t r eam byte index ;

number of words [ b i t s t r e am f i l e numbe r ][2]<<=5;

number of words [ b i t s t r e am f i l e numbe r ][2]>>=5;

}//end i f

else

{
word index++;

}//end e l s e

p r i n t f ( ” Star t address o f the th i rd block o f frames : %d\n” ,

f r ame s ta r t addr [ b i t s t r e am f i l e numbe r ] [ 2 ] ) ;
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p r i n t f ( ”Number o f words to read : %d\n” ,

number of words [ b i t s t r e am f i l e numbe r ] [ 2 ] ) ;

p r i n t f ( ”Number o f frames to read : %d\n” ,

( number of words [ b i t s t r e am f i l e numbe r ] [ 2 ] ) /

WORDSPERFRAME) ;

p r i n t f ( ”Bits t ream %d Header 3 loaded s u c c e s s f u l l y \n\n” ,

b i t s t r e am f i l e numbe r ) ;

i n t wo rd s c t r = 0 ;

b i t s t r eam byte index = b i t s t r eam byte index +

(4 ∗ number of words [ b i t s t r e am f i l e numbe r ] [ 2 ] ) ;

do

{
i n t wo rd s c t r++;

read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;

b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

i f ( ( words rom [ word index ] ) != ’ z ’ )

{
i f ( read word [ word index ] == words rom [ word index ] )

{
p r i n t f ( ”Word %d 0x%x” , word index , words rom [

word index ] ) ;

p r i n t f ( ” in the po s i t i o n .\n” ) ;
word index++;

}//end i f

else

{
p r i n t f ( ”ERROR! ! ! − Word %d 0x%x” , word index ,

words rom [ word index ] ) ;

p r i n t f ( ” not found . \n” ) ;
return 0 ;

}//end e l s e

}//end i f

else
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{
p r i n t f ( ”Word %d 0x%x” , word index , read word [ word index

] ) ;

p r i n t f ( ” read from the b i t s t ream .\n” ) ;
word index++;

}//end e l s e

}//end do

while ( i n t wo rd s c t r < 4) ;

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
/∗ Fourth b l o c k o f frames ∗/
/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/

/∗ Read Packet Header Type 2 : Data words ∗/
read word [ word index ] = Read 32BitWord (

b i t s t r eam f i l e number ,

b i t s t r eam byte index ) ;

b i t s t r eam byte index = b i t s t r eam byte index + 4 ;

number of words [ b i t s t r e am f i l e numbe r ] [ 3 ] = read word [

word index ] ;

word index++;

f r ame s ta r t addr [ b i t s t r e am f i l e numbe r ] [ 3 ] =

b i t s t r eam byte index ;

number of words [ b i t s t r e am f i l e numbe r ][3]<<=21;

number of words [ b i t s t r e am f i l e numbe r ][3]>>=21;

p r i n t f ( ” Star t address o f the f o r th block o f frames : %d\n” ,

f r ame s ta r t addr [ b i t s t r e am f i l e numbe r ] [ 3 ] ) ;

p r i n t f ( ”Number o f words to read : %d\n” ,

number of words [ b i t s t r e am f i l e numbe r ] [ 3 ] ) ;

p r i n t f ( ”Number o f frames to read : %d\n” ,

( number of words [ b i t s t r e am f i l e numbe r ] [ 3 ] ) /

WORDSPERFRAME) ;

p r i n t f ( ”Bits t ream %d Header 4 loaded s u c c e s s f u l l y \n\n” ,

b i t s t r e am f i l e numbe r ) ;

p r i n t f ( ”Frames in Bits t ream %d loca t ed s u c c e s s f u l l y .\n\n” ,
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b i t s t r e am f i l e numbe r ) ;

/∗ p r i n t f (” Continue ( y/n) ?\n”) ;
scan f (”%s ” , &dec i s i on ) ;

i f ( d e c i s i on == ’n ’)

{
re turn 0 ;

}// enf i f

∗/
b i t s t r e am f i l e numbe r++;

}//end do

while ( b i t s t r eam f i l e number <2) ;

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
/∗ Save s e l e c t e d columns content ∗/
/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
FramesStats ( ) ;

ConvertBitstreamToBlocks ( ) ;

PrintCLBColumns ( ) ;

CompareCLBFrames ( ) ;

CompareCLBBlocks ( ) ;

CompareCLBFrames octave ( ) ;

CompareCLBBlocks octave ( ) ;

CompareCLBSubBlocks octave ( ) ;

PrintGCLKColumn ( ) ;

CompareGCLKFrames ( ) ;

CompareGCLKBlocks ( ) ;

CompareGCLKSubBlocks ( ) ;

CompareGCLKFrames octave ( ) ;

CompareGCLKBlocks octave ( ) ;

CompareGCLKSubBlocks octave ( ) ;

CompareCLBSubBlocks ( ) ;

return 0 ;

}
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A.2 Java Place and Route

Code size: 15 082 lines

package dualPR ;

/∗∗
∗ <p>T i t l e : Simultaneous Placement and Routing f o r 2 b i t s t r eams

</p>

∗
∗ <p>Descr ip t i on : </p>

∗
∗ <p>Copyright : Copyright ( c ) 2005</p>

∗
∗ <p>Company : </p>

∗
∗ @author Pio t r S tep ien

∗ @version 1.0

∗/

import java . i o . ∗ ;
import java . u t i l . ∗ ;

public class Modi f i ca to r {

Framework framework ; // keeps a l l parameters r equ i r ed f o r

placement and rou t ing

Designs de s i gn s ; // keeps a l l d e s i gn s − n e t l i s t and b l o c k l i s t

o f each c i r c u i t

PrintStream ps ; // f o r ”Modi f i ca tor . t x t ”

public Modi f i ca to r (Framework frameworkLoaded , Designs

des ignsLoaded ) {

framework = frameworkLoaded ;

de s i gn s = designsLoaded ;
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i n i t i a l i s eP r i n t S t r e am ( ) ;

i f ( ps != null )

{
ps . p r i n t l n ( ”Welcome to de s i gn s mod i f i c a to r . ” ) ;

}
}

private void printClbFramesStats ( )

{
I t e r a t o r i t r ;

S ing l eDes ign des ign ;

i f ( ps != null )

{
i t r = ( I t e r a t o r ) de s i gn s . g e tDe s i gn s I t e r a t o r ( ) ;

while ( i t r . hasNext ( ) == true )

{
des ign = ( S ing l eDes ign ) i t r . next ( ) ;

ps . p r i n t ( des ign . getName ( ) + ” ” + des ign .

getBitst ream ( ) . getClbFrames ( ) .

getNumberOfEmptyClbFrames ( ) + ”/” + des ign .

getBitst ream ( ) . getClbFrames ( ) .

getNumberOfSharedClbFrames ( ) + ” ” ) ;

}
ps . p r i n t l n ( ) ;

}

}

private void i n i t i a l i s eP r i n t S t r e am ( ) {
St r ing f i l ename ;
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ps = null ;

f i l ename = des i gn s . getMasterDesignsPath ( ) + ”/

Modi f i ca to r . txt ” ;

i f ( framework . getVerboseLeve l ( ) > 0) {
try {

ps = new PrintStream (new

FileOutputStream ( f i l ename ) ) ;

} catch ( FileNotFoundException f n f e ) {
System . out . p r i n t l n ( ”Exception : ” + f n f e )

;

}

}

}

public void proce s sDes igns ( )

{
i f ( ps != null )

{
ps . p r i n t l n ( ”Welcome to Dual Bitstream Modi f i ca to r . ” )

;

}

de s i gn s . p ro c e s sOr i g i na lB i t s t r e ams ( ) ;

i f ( ps != null )

{
ps . p r i n t l n ( ” I n i t i a l frames s t a t i s t i c s : ” ) ;

}

de s i gn s . ana lyseBi t s t r eams ( ) ;

i f ( ps != null )

{
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ps . p r i n t l n ( ”Best Frames Search completed . ” ) ;

}

de s i gn s . a n a l y s e S im i l a r i t i e s ( ) ;

d e s i gn s . ana lyseTimingSeparate ly ( ) ;

System . out . p r i n t l n ( ” Proce s s ing s t a r t ed . ” ) ;

de s i gn s . p laceDes igns ( ) ;

System . out . p r i n t l n ( ”Placement completed . ” ) ;

de s i gn s . pr intCurrentPlacement ( ) ; // p r i n t s out placement

r e s u l t s f o r each des i gn

de s i gn s . opt imisePlacementSeparate ly ( ) ;

d e s i gn s . pr intCurrentPlacement ( ) ;

de s i gn s . r ou teSepara t e l y ( ) ;

d e s i gn s . implementDesigns ( ) ;

d e s i gn s . generateBi t s t r eams ( ) ;

de s i gn s . p roce s sB i t s t r eams ( ) ;

i f ( ps != null )

{
ps . p r i n t l n ( ”Random placement and rout ing frames

s t a t i s t i c s : ” ) ;

}

de s i gn s . ana lyseBi t s t r eams ( ) ;

de s i gn s . ana lyseTimingSeparate ly ( ) ;

i f ( ps != null )

{
ps . p r i n t l n ( ”Best Frames Search completed . ” ) ;

}

de s i gn s . placeRandomly ( ) ; // random a l l o c a t i o n o f b l o c k s

in each des i gn
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de s i gn s . pr intCurrentPlacement ( ) ; // p r i n t s out placement

r e s u l t s f o r each des i gn

de s i gn s . r ou teSepara t e l y ( ) ; // route each des i gn

de s i gn s . implementDesigns ( ) ; // saves c l b b l o c k s s e t t i n g s

to j b i t s

de s i gn s . generateBi t s t r eams ( ) ; // genera te modi f ied

b i t s t r e ams

de s i gn s . p roce s sB i t s t r eams ( ) ;

i f ( ps != null )

{
ps . p r i n t l n ( ”Random placement and rout ing frames

s t a t i s t i c s : ” ) ;

}

de s i gn s . ana lyseBi t s t r eams ( ) ;

i f ( ps != null )

{
ps . p r i n t l n ( ”Best Frames Search completed . ” ) ;

}

de s i gn s . placeRandomly ( ) ; // random a l l o c a t i o n o f b l o c k s

in each des i gn

de s i gn s . pr intCurrentPlacement ( ) ; // p r i n t s out placement

r e s u l t s f o r each des i gn

de s i gn s . r ou teSepara t e l y ( ) ; // route each des i gn −
t emporar i l y d i s a b l e d

de s i gn s . implementDesigns ( ) ; // saves c l b b l o c k s s e t t i n g s

to j b i t s

de s i gn s . generateBi t s t r eams ( ) ; // genera te modi f ied

b i t s t r e ams

de s i gn s . p roce s sB i t s t r eams ( ) ;
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i f ( ps != null )

{
ps . p r i n t l n ( ”Random placement and rout ing frames

s t a t i s t i c s : ” ) ;

}

de s i gn s . ana lyseBi t s t r eams ( ) ;

i f ( ps != null )

{
ps . p r i n t l n ( ”Best Frames Search completed . ” ) ;

}

de s i gn s . g ene ra t eOr i g ina lB i t s t r eams ( ) ;

de s i gn s . p roce s sB i t s t r eams ( ) ;

de s i gn s . compareClbFrames ( ) ;

pr intClbFramesStats ( ) ;

d e s i gn s . placeRandomly ( ) ;

de s i gn s . r ou teSepara t e l y ( ) ;

d e s i gn s . implementDesigns ( ) ;

d e s i gn s . generateBi t s t r eams ( ) ;

de s i gn s . p roce s sB i t s t r eams ( ) ;

de s i gn s . compareClbFrames ( ) ;

pr intClbFramesStats ( ) ;

}
}
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