

Runtime and Quality Tradeoffs in
FPGA Placement and Routing

Chandra Mulpuri

Department of Electrical Engineering
University of Washington, Seattle, WA 98195, USA

chandi@ee.washington.edu

Scott Hauck
Department of Electrical Engineering

University of Washington, Seattle, WA 98195, USA
hauck@ee.washington.edu

Abstract
Many applications of FPGAs, especially logic emulation and custom
computing, require the quick placement and routing of circuit
designs. In these applications, the advantages FPGA-based systems
have over software simulation are diminished by the long run-times
of current CAD software used to map the circuit onto FPGAs. To
improve the run-time advantage of FPGA systems, users may be
willing to trade some mapping quality for a reduction in CAD tool
runtimes. In this paper, we seek to establish how much quality
degradation is necessary to achieve a given runtime improvement.
For this purpose, we implemented and investigated numerous
placement and routing algorithms for FPGAs. We also developed
new tradeoff-oriented algorithms, where a tuning parameter can be
used to control this quality vs. runtime tradeoff. We show how
different algorithms can achieve different points within this tradeoff
spectrum, as well as how a single algorithm can be tuned to form a
curve in the spectrum. We demonstrate that the algorithms vary
widely in their tradeoffs, with the fastest algorithm being 8x faster
than the slowest, and the highest quality algorithm being 5x better
than the least quality algorithm. Compared to the commercial Xilinx
CAD tools, we can achieve a 3x speed-up by allowing 1.27x
degradation in quality, and a factor of 1.6x quality improvement with
2x slowdown.

Keywords
FPGAs, Computer-aided Design, Placement, Routing, Fast CAD for
FPGAs

1. Introduction
Most CAD development efforts have focused on the creation of as
efficient a mapping as possible for a given computation. The
application of complex optimization techniques, for the solving of
multiple NP-Hard problems, has yielded efficient mapping tools that
can take hours to produce an implementation.

For the design of ASIC circuits, producing the highest quality
results at the cost of significant runtimes is justified by the long
fabrication times and large costs. However the development of
FPGAs, where a new computation can be realized in hardware in
milliseconds, may require the re-evaluation of this tradeoff.

New FPGA-based systems push the issue of CAD tool runtimes into
the spotlight. In custom-computing systems, the FPGA hardware is
often used as a form of software accelerator, where designers expect
fast turnaround from specification to implementation. In some
systems the runtimes can even become part of the execution time of
the system, where slow CAD performance directly impacts the
utility provided to the user. For example, in logic emulation a circuit
under development may need to be remapped to the accelerator on a
weekly, daily, or even hourly basis, as modifications are made to the
circuit while it is debugged. The longer the CAD tools take to
operate, the smaller the advantage the emulation system has over
software simulation, since simulators typically do not require such
sophisticated pre-processing.

Emulation is in fact one example of problem-specific compilation in
custom-computing devices. In such systems the execution of the
system involves first creating an FPGA (or multiple FPGA)
configuration(s) from a specification for a given problem instance,
and then executing the configuration on the FPGA hardware.

In many FPGA-based systems the CAD tool performance can thus
be a critical concern. In fact, users may be willing to trade some
mapping quality (typically measured in critical path length and/or
device capacity) for a reduction in CAD tool runtimes. For example,
users may have excess FPGA capacity available to accelerate the
mapping process. Alternatively, a slowing down of the FPGA
execution because of lengthened critical paths may be more than
balanced by the decrease in CAD runtimes, yielding an overall
performance increase. However, what is unclear is how much
quality must be yielded for a significant improvement in runtimes.

What is allowable in tradeoff depends on the applications. For some
systems no reduction in mapping quality is acceptable (and in fact,
for some systems only hand-design yields the required mapping
quality). For others, larger quality reductions may be justified.

While there is no one rule for what is acceptable, there are some
applications, like logic emulation where such allowable tradeoffs are
evident. For example Quickturn has simultaneously sold two
different commercially viable emulation technologies, the CoBALT
and Mercury systems. While each of these systems are capable of
supporting roughly equivalent circuit complexities, and have
equivalent system costs, the CoBALT system provides more than an
order of magnitude reduction in mapping time (days to hours) at the
cost of 1-2 orders of magnitude increase in system delay (MHz to
100 KHz performance). The fact that both systems were
simultaneously commercially viable indicates that, at least for some
applications, users are willing to accept huge quality losses for
significant CAD runtime improvements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA 2001, February 11-13, 2001, Monterey, California, USA.
Copyright 2001 ACM 1-58113-341-3/01/0002…$5.00.

29

In some instances, the slow runtimes of current CAD tools
completely eliminate some opportunities for FPGA-based systems.
For example, there has been much interest in problem-specific
custom-computing for Boolean Satisfiability, where the inherent
parallelism of FPGAs provides high-performance hardware to
finding solutions to arbitrary Boolean equations. In [1] a comparison
of software runtimes and total solution time using FPGAs for SAT
solver circuits reveals that while there is 94.8x speedup that could be
achieved over software in solving a200_6_0_y1_1 problem, large
compilation times using a commercial CAD tool resulted in a 781x
slowdown for the FPGA based solution. As the complexities of
target circuits and FPGAs increase, the effectiveness and efficiency
of these CAD tools become even more important in such
applications. Techniques that accelerate core CAD algorithms can
bring about important changes in product design times for these
applications.

Though several works like VPR [2], Ultra Fast Placer [3], and
Parallel Pathfinder [4] have concentrated on speeding up the
individual CAD processes, not much has been documented in the
way of actual trade-offs involved in choosing different algorithms
for different CAD processes. In this paper we consider the tradeoff
between the runtimes of CAD algorithms and the resulting critical
path lengths of the resulting mappings. We seek to establish how
much quality degradation is necessary to achieve a given runtime
increase. As part of this process we investigate multiple placement
and routing algorithms for FPGAs. We also develop new tradeoff-
oriented physical design tools, where a tuning parameter can be used
to control this balance. As part of these efforts we show both how
different algorithms can achieve different points within this tradeoff
spectrum, as well as how a single algorithm can be broadened in its
applicability.

The rest of the paper is organized as follows. Section 2 briefly
describes the experimental setup and the evaluation methodology
for different algorithms. Section 3 describes the various placement
algorithms implemented, and how these different place algorithms
compare in terms of run-times and quality of the solution. Section 4
describes all the route algorithms implemented and compares their
performances. Section 5 analyzes the trade-offs within different
combinations of place and route algorithms. Section 6 looks at the
dependence of the performance of algorithms on benchmarks and
the sizes of the target FPGAs.

2. Implementation details
In order to quantify the tradeoff between CAD tool runtimes and the
resulting quality, we implemented multiple placement and routing
algorithms. Our algorithms are targeted to the Xilinx XC4000E
family of FPGAs [5]. For representing the exact logic and routing
resources in this FPGA architecture, as well as for the LCA format
file input and output, we utilized the routines developed at the
University of California, Santa Cruz for their implementation of
parallel pathfinder [4]. These routines were originally developed for
the XC4000 family of FPGAs. We retargeted them to the XC4000E
series of FPGAs.

Our results were obtained by running the algorithms on SUN
UltraSparc 5 workstations with 512 MB of memory. Twelve
combinatorial benchmarks were used from the MCNC benchmark
circuits [6], and range in size from 189 logic blocks to 1020 logic
blocks. The properties of the benchmarks we used are summarized
in the following table.

Benchmark FPGA
device

Number
of

nets

Number
of

CLBs
k2 4005E 261 189

misex3 4005E 244 192
alu4 4005E 276 194
seq 4008E 629 300

apex4 4010E 1235 388
tseng 4013E 1099 542
ex5p 4013E 1072 570
diffeq 4020E 946 751
dsip 4020E 1093 780
s298 4025E 1304 1002
des 4025E 1360 1013

bigkey 4025E 1501 1020

The algorithms were evaluated based on the comparison of their
run-times to the delay of the mapped circuit. The critical path delay
results were obtained by using Xdelay, which is part of the
commercial Xilinx CAD tools.

3. Placement
The logic circuit that is to be placed and routed is specified in terms
of configurable logic blocks, which are the basic logic elements that
make up the array architecture of the FPGA. Placement is
essentially assigning a unique position inside the FPGA to each of
the circuit’s configurable logic blocks.

We have implemented four different algorithms for placement, and
a fifth placer was obtained from Xilinx. Our aim was to compare
each of these placers in terms of their run-time vs. quality
characteristics.

As part of this work we have developed runtime-adaptive versions
of Simulated Annealing and Force-directed placement. In these
algorithms, a balance parameter is introduced which can apply more
or less effort, trading runtimes for resulting quality. These
algorithms therefore are represented on the run-time vs. quality
graph not by a single point, but by a set of points corresponding to
different values of the tuning parameter. The placement algorithms
we used are briefly explained below.

3.1 Placement Algorithms
3.1.1. Fiduccia-Mattheyses
This implementation is based on the Fiduccia-Mattheyses algorithm
[7]. The FPGA is divided into two halves, and the Fiduccia-
Mattheyses algorithm is applied to determine which logic block
goes into which half. These two halves of the FPGA are further
partitioned into two halves each, and this recursive process is
applied on each FPGA partition until the partitions become small
(contain less than nine CLBs). A greedy algorithm then determines
the exact placement of the logic blocks corresponding to each of the
small partitions. During the bipartitioning, the logic blocks in both
partitions are arranged in a decreasing order of the gain obtained if
they were to be moved across the partition. This gain is computed

30

using the “Terminal Propagation” technique [8], which considers
nets connected to logic blocks from other partitions as well. Once a
logic block is moved across the partition, it is locked and the gains
are updated for the rest of the logic blocks. This process is repeated
until there is no further cost improvement.

3.1.2. Force-directed

This implementation is based on the Force-directed algorithm [9].
From an initial random placement, each logic block is moved to its
“best location”, which is determined as the closest available location
to the centroid of all the other logic blocks to which it is connected.
If another logic block already exists at this location, the two logic
blocks are interchanged. After this move, the logic block in
consideration is “locked”, and the location is considered unavailable
for other logic blocks. Once all the logic blocks are locked, they are
unlocked and the process is repeated until a terminating condition is
met.

The terminating condition dictates the per-iteration percent change
in cost at which the algorithm will halt. If this percentage is small,
the algorithm will perform significant optimization, with a
commensurate increase in runtimes. With a large percentage change
(including only performing a single iteration regardless of change in
cost) the algorithm will perform a much lower quality optimization,
but with much faster runtimes. We therefore use the stopping
criteria as a tuning parameter for the Force-directed Placement
algorithm.

3.1.3. Scatter

The fastest possible legal placement algorithm would simply
randomly scatter the logic blocks across the chip area. For circuits
that are fairly small, or with very easy requirements, such an
algorithm might achieve usable results with very fast runtimes.
However, if the logic blocks are placed very close together, the
resultant congestion will affect the route times for the worse. The
Scatter algorithm therefore does arbitrary placement, but ensures
that logic blocks are placed reasonably far apart.

3.1.4. Simulated Annealing

The Simulated Annealing implementation is based on the VPR
placer [2]. The various simulated annealing parameters that define
the algorithm are explained below:

Cost function: This cost function is described by the equation:
 Nnets

Cost = ∑ q(n) [bbx(n) + bby(n)]
 n = 1
The summation is over all the nets in the circuit. For each net, bbx
and bby denote the horizontal and vertical spans of its bounding box
respectively. The q(n) factor is a value used to compensate for the
underestimation of cost when nets have more than 3 terminals, and
is obtained from a lookup table.

Initial Temperature: Let Nblocks be the total number of logic blocks
and I/O pads in the circuit. From an initial random placement, Nblocks
random pairwise swaps of logic blocks or I/O pads are performed,
and the standard deviation of the cost is computed. The initial
temperature is set to 20 times this standard deviation.

Cooling Schedule: The new temperature is computed as Tnew = α
Told, where the value of α depends on the fraction of attempted
moves that were accepted (Raccept) at Told, as shown:

Fraction of moves accepted (Raccept) α
Raccept > 0.96 0.5

0.8 < Raccept ≤ 0.96 0.9
0.15 < Raccept ≤ 0.8 0.95

Raccept ≤ 0.15 0.8
Since it is desirable to keep Raccept near 0.44 for as long as possible
[10], the algorithm uses a range limiter which swaps blocks that are
less than Dlimit units apart in either the horizontal or vertical
direction. If Raccept were less than 0.44, Dlimit would be reduced
thereby forcing moves over a smaller range and hence greater
acceptance. This Dlimit is updated across temperatures according to:

Dnew

limit = Dold
limit * (1 – 0.44 + Rold

accept)
and then clamped to 1 ≤ Dlimit ≤ maximum FPGA dimension.
Final Temperature: The annealing is terminated when the
temperature is less than 0.5% of the average cost per net.

Number of moves at each temperature: In the original VPR
placer, at each temperature 10*(Nblocks)1.33 moves are evaluated.
However, the number of moves evaluated at each temperature
directly controls the amount of time Annealing spends in searching
for a good solution. Increasing or decreasing this number will
directly increase or decrease the run-time, and will therefore affect
the quality of the solution. Hence we can perform a tradeoff between
CAD runtimes and resulting quality by using C*(Nblocks)1.33 moves,
where increasing C results in higher quality results at the expense of
longer runtimes.

3.1.5. Xilinx Placer

This placement tool is part of the commercially available Xilinx
Alliance Software Series 2.1i for Solaris. The placement is run at
different effort levels (1-5), which indicate the amount of time the
tool spends searching for a better quality solution. An effort level of
1 indicates that the tool terminates when it finds a low quality
placement and an effort level of 5 indicates that the tool searches for
a high quality placement.

3.2 Placement Results
For our initial comparison all the placement outputs were routed
using the Xilinx router with effort level set to 5. Figure 1 shows the
placement run-times vs. critical path delay graph. The results we
obtained were normalized with the average values for each
benchmark across the algorithms. The graph represents the
geometric mean of these normalized values for all the benchmarks.
If any of the placement results failed to route with the Xilinx router,
they were placed again with the Xilinx placement tool with the
effort level set to 5, and the runtimes of both Xilinx router and the
Xilinx placement tool were added to the corresponding placement
runtimes as a failure penalty.

Figure 1 demonstrates the tradeoff between the runtimes of
algorithms and the quality of the results achieved. The height of
each graph represents the critical path delay achieved, with a higher
value representing a worse result. Horizontally we move from the
fastest algorithms (at left) to the slowest (at right). Because of the
structure of the graph, any point “dominates” all others that lie
above and to the right of that point. This is because the given point
gives equal or better results in equal or lower runtimes.

31

0.8

1.3

1.8

2.3

2.8

0 5 10 15 20
Placer runtimes

C
ri

ti
ca

l p
at

h
 d

el
ay

Scatter

Annealer

FM

Xilinx

Force-directed

VPR-based

Figure 1. Critical path delays vs. runtimes for placement
algorithms.

While the Scatter and Fiduccia-Mattheyses algorithms are depicted
as single points the Xilinx placer as well as Annealing and Force-
Directed algorithms are shown as curves. This is because the latter
algorithms were run a number of times while varying the tuning
parameter of each algorithm. For the Xilinx placer this tuning
parameter was the effort level, which was varied from 1 to 5. For
Annealing, this tuning parameter was the number of moves
attempted at each temperature, ranging from 1*(Nblocks)1.33 to
20*(Nblocks)1.33. For the Force-directed algorithm, this tuning
parameter was the terminating condition. We varied it from <20%
cost decrease across iterations to <0.5% cost decrease across
iterations. Also, we used an ultra-fast version of Force-directed
algorithm that runs for only a single iteration.

There are several striking features of these graphs. First is the
comparison between the Force-directed and Simulated Annealing
algorithms. For relatively fast runtimes the Force-directed algorithm
produces mappings with equivalent critical path delays to the
Simulated Annealing algorithm. Although the Scatter algorithm run
extremely fast for certain benchmarks, it fails to produce a routable
design for certain large benchmarks. This adds a huge failure
penalty to the runtimes and thereby brings down the overall
performance of Scatter algorithm. Thus, at least for placement
runtimes, achieving the best tradeoff between quality and runtimes
may require different algorithms at different points in the spectrum.

A second observation is that several of the algorithms simply are not
competitive when only placement performance is considered. The
partitioning-based (FM) placer and the Xilinx placer provide
significantly worse results than the other approaches.

From this data we can quantify the overall tradeoff between
runtimes and quality for FPGA placement. For example, when we
compare the fastest to the slowest competitive algorithms, we can
achieve a speedup of 20x with a degradation of a factor of 2.3x in
critical path delay. Also, compared to the VPR placer, if we allow a
factor of 1.34x degradation in quality we can achieve 2.5x speedup
in placement times, and a factor of 5.2x speedup if we allow 1.9x
degradation in quality.

4. Routing
While the previous comparisons have considered only placement,
the physical design process includes both placement and routing. In
this section we present a similar algorithm development and
comparison for FPGA routing.

All the routing algorithms we implemented represent the
architecture of the XC4000 series FPGA as a directed resource
graph G = (N, E). A node n ∈ N represents a routing resource such
as a wire or terminal, and an edge e ∈ E represents a switch or a
feasible connection between two nodes. Each net consists of one
Source node, and a set of Sink nodes. Routing a signal is essentially
assigning routing resources such that all sinks are connected to the
source.

We have 5 different routers, including the standard commercial
router from Xilinx. Our aim is to compare each of these routers in
terms of their run-time vs. quality characteristic. As in the case of
placement, some of the routers have tuning parameters with which
they can be forced to spend more time searching for, and therefore
potentially arrive at, a better quality solution. The following sub-
sections detail the various routing algorithms implemented.

4.1 Routing Algorithms
4.1.1. Original Pathfinder
The original pathfinder algorithm was developed at the University
of Washington [11], and has showed very high quality results. For
our work we utilized an implementation of this algorithm that was
developed at the University of California, Santa Cruz [4]. This is a
negotiation-based router in which each net negotiates the use of
shared resources with other nets until none of the resources are
shared. Congestion costs are assigned to the shared resources and
are increased with each iteration, thereby forcing some signals to
explore alternate routes. The cost of using a node n is given by

cn = (dn + hn) * (pn + 1)
where dn is the basic delay cost for using the node. The first order
congestion term pn, is the number of signals that currently share the
node. The second order congestion term hn grows monotonically
with each iteration in which the node is shared. In order to minimize
both congestion and delay, the actual cost function for using a
resource when routing a net joining Source ns to Sink tij, is defined
as

Cn = Aijdn + (1 – Aij) cn
where cn is the cost as defined earlier. The slack ratio Aij is the ratio
of the delay of the longest path containing the edge (ns, tij) to the
maximum delay over all paths. This slack ratio becomes 1 if the
source-sink pair lies on the critical path, thereby reducing the cost to
just the delay term. If the source-sink pair lies on a totally non-
critical path, the congestion term will dominate, resulting in a route
that avoids congestion at the expense of extra delay.

4.1.2. Modified Pathfinder
This version of the Pathfinder algorithm has two modifications over
the Original Pathfinder, both intended to decrease the run-time of
the algorithm.

The first modification is based on VPRs router [2]. It aids in routing
multi-terminal nets more efficiently and has no tradeoff associated
with it. The Original Pathfinder algorithm uses the maze router to
route between a given Source and a Sink. For multi-terminal nets,
this means that the wavefront generated while routing between the

32

source and kth sink will be discarded and a whole new wavefront
will be generated to route the source to the (k+1)th sink. This
requires considerable CPU time for high-fanout nets, since the
partial routing used as the net source will be very large. Instead, in
this implementation, we just update the wavefront around the newly
found path until it reaches the same expansion level as the rest of the
wavefront, and then proceed to find the next sink. Since the path
from the existing wavefront to the newly found sink is fairly small,
it will take little time to add this to the wavefront, and the next sink
will be reached quicker than if the whole wavefront was to be
generated again.

The second modification provides a decrease in the routing runtime
at a small cost in quality. During each iteration, the Original
Pathfinder algorithm rips up and reroutes all the nets so as to
eliminate dependencies on the order of the nets. In our
implementation, only those nets that are routed through congested
resources are ripped up and rerouted. This may adversely affect the
net delays, but considerably speeds up the algorithm.

One of the parameters of all versions of Pathfinder, the history cost
for a node, indirectly influences the run-time of the algorithm. If we
raise the per iteration history cost increase, the algorithm will more
quickly resolve node sharing. While this may increase the
corresponding net delays, because of the reduced number of
iterations, the algorithm tends to run faster. Hence, by varying this
history cost, we obtain several versions of the Modified Pathfinder
algorithm that exhibit different run-time vs. quality characteristics.

We varied this history cost parameter in two different ways. One is
by assigning fixed values to the history cost, which represents
multiplying the standard pathfinder history cost by a scaling factor.
Different history cost settings were considered across a wide range
of workable assignments. The second approach was taken to
determine if there is any dependence of the history cost of a node on
its basic delay. Hence, in this approach, the history cost of a node
equals its basic delay multiplied by a scaling factor. This scaling
factor was again varied till the algorithm either fails to converge on
a solution, or fails to route the given placement.

4.1.3. Xilinx Router
This routing tool is part of the commercially available Xilinx
Alliance Software Series 2.1i for Solaris. The tool is run at different
effort levels (1-5), which indicate the amount of time the tool spends
searching for a better quality solution. An effort level of 1 indicates
that the tool terminates when it finds a low quality routing and an
effort level of 5 indicates that the tool searches for a high quality
routing.

4.1.4. Hierarchical Router
This routing algorithm is partly based on the Timing-Driven Router
developed in [12]. Starting with the entire FPGA, a cut line is
chosen to divide the FPGA into 2 parts. Across the cut line there are
routing sections that represent routing spaces on the chip. A routing
section is a group of tracks in a channel with the same segment
length. Each net crossing the cut line is assigned a cost similar to the
pathfinder cost function with congestion considered at a segment
level rather than at the track level. At each hierarchical level, the
algorithm assigns routing sections to the nets crossing the cut line.
After finishing routing at this hierarchical level, both parts separated
by the cut line are independently routed by the same method
recursively. When the parts become small enough, a simple greedy

algorithm determines all the tracks in the routing sections that are
assigned to each net.

4.1.5. Simple Router
This is a fast router based on the maze running algorithm [13]. Each
net is routed once, with no rip-up-and-retry or other technique for
avoiding congestion. It simply seeks the shortest available route
from source to destination(s), avoiding resources used by previous
signals. If the maze runner fails to find any unshared paths from the
source to the sink, the router declares the placement as unroutable
and exits.

4.2 Routing Results
For all the routers, we used the placement obtained from the VPR-
based Annealer. Figure 2 shows the routing run-times vs. critical
path delay graph. Similar to placement, for each benchmark the
results were normalized with average values across all algorithms
and a geometric mean of these normalized values is indicated in the
graph.

While the Original Pathfinder, Hierarchical Router and Simple
Router appear as single points on the figures, Xilinx router and
Modified Pathfinder are shown as curves. This is because the Xilinx
router was run with different effort levels (1-5) with effort level 1
indicating a low quality routing and an effort level 5 indicating a
high quality routing. The Modified Pathfinder was run a number of
times while varying the history congestion cost from 0.7 to 5 as a
fixed value, and from dn / 2 to 2*dn as a delay dependent value, and
these two variations are shown as two different curves.

The graph features some interesting results. Firstly, the Original
Pathfinder algorithm gives the best quality and the Simple Router
runs the fastest. However, the simple router fails on some circuits,
and thus may not be useable in all situations. In such cases, the
placement was rerouted using the Xilinx router with an effort level
of 5, and this run-time was added to the Simple routers runtime as a
failure penalty.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

0.8 1.8 2.8 3.8 4.8

Router runtimes

C
ri

ti
ca

l p
at

h
 d

el
ay

Original Pathfinder

Simple

fixed cost

Xilinx

delay
based

cost

Hierarchical

Figure 2. Critical path delay vs. runtimes for routing
algorithms.

33

Secondly, the fact that the Modified Pathfinder curves never give a
better quality than the Original Pathfinder algorithm suggests that
there is a permanent quality loss associated with ripping up and re-
routing only congested nets instead of all the nets. At values of
history cost greater than 5, the Modified Pathfinders failed to route
the given placement, and for values less than 0.7, they failed to
converge on a possible route.

A third observation is that, for lower runtimes, Modified Pathfinder
algorithms with delay based history congestion costs outperformed
those with fixed-value history costs. However, at longer runtimes,
this situation is exactly reversed, with fixed value history cost based
algorithms giving better qualities. One more important observation
from the graph is that the Xilinx Router outperforms certain
Pathfinders.

Finally, we can quantify the overall tradeoff between runtimes and
quality for FPGA routing. For example, when we compare the
fastest to the slowest routing algorithms, we can achieve a speedup
of 6x with a degradation of a factor of 1.6x in critical path delay.
Also, compared to Original pathfinder, if we allow 1.25x
degradation in quality, we can achieve a factor of 2.5x speedup in
routing times.

However, the runtimes of the routers are dependent on the quality of
the placement that is input to them. For example, choosing a faster
placement algorithm may make the routers job harder because of
less efficient placement and hence increase the runtimes of the
router. Quantifying this increase would help us decide on a specific
combination of placement and routing algorithms for a particular
total runtime constraint.

Figure 3. Router runtimes for different choices of Placement.

Figure 3 demonstrates how the routing run-times vary with different
choices for placement. For each of the routers, the least runtime and
best quality was obtained when Annealer was used as the placer and
least quality and longest runtime was obtained when Scatter
algorithm was used for placement. The only exception to this is the
Hierarchical router, which gave comparable results with both
Annealer and FM Placer. Also, the effect of the placement is much
more drastic on the Simple Router compared to the Original
pathfinder as can be seen from the increased slopes of the curves.

This clearly demonstrates that tradeoffs in placement will have
correspondingly opposite tradeoffs in routing.

5. Combined Place and Route
While the previous results demonstrate that trade-offs exist among
different placement algorithms and routing algorithms, they do not
address the critical question of deciding which set of algorithms
should be chosen for a specified trade-off. In other words, given that
the user is willing to trade-off some quality for an improved run-
time, should a faster placement algorithm and a slower route
algorithm be chosen, or a slower placement algorithm and a faster
route algorithm? This choice not only reflects the balancing criteria
that the overall runtime should be optimized for a given quality
level, but also the fact that the choice of a faster, but less efficient,
placement algorithm may increase the runtimes of the router, as it
must accommodate a more difficult placement. In other words,
tradeoffs made in placement or routing individually may not
necessarily translate into corresponding tradeoffs overall.

Figure 4. Critical path delay vs. Total runtimes for
combinations of placement and routing algorithms.

We therefore compared all combinations of place and route
algorithms mentioned (note that the Xilinx Placer was only run with
the Xilinx router because we could not read the intermediate
format). The results are depicted in Figure 4. In this figure, we chose
a single representative of the tunable placement and routing
algorithms. Hence, Annealer represents the VPR-based annealing
algorithm with 10 * (Nblocks)1.33 number of moves at each
temperature, Force-directed placement represents the Force-directed
algorithm with <5% cost decrease across iterations as the
terminating condition, Modified Pathfinder router represents the
Modified Pathfinder algorithm with history cost hn = 1 which is the
same value as for the Original Pathfinder, and Coarsened Pathfinder
router represents the Modified Pathfinder algorithm with history
cost hn = dn / 1.35. The Xilinx algorithms were run at an effort level
of 5.

0.8

1.3

1.8

2.3

2.8

3.3

3.8

4.3

4.8

0 5 10 15 20 25

Router runtimes

C
rit

ic
al

 p
at

h
de

la
y

Original Pathfinder

Modified Pathfinder

Coarsened Pathfinder

Xilinx Router

Simple Router

Hierarchical Router

 Annealer
 Force-directed
 Xilinx
 FM
 Scatter

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5

Total runtimes

C
ri

ti
ca

l p
at

h
 d

el
ay

Annealing

Force-directed

Fiduccia-Mattheyses

Scatter

Xilinx

 Simple
 Hierarchical
 Xilinx Router
 Coarsened Pathfinder
 Modified Pathfinder
 Original Pathfinder

34

The graph demonstrates the tradeoff between the overall runtimes
and the quality of the results achieved by the different combinations
of placement and routing algorithms. As in the earlier graphs, the
height of each graph represents the quality of the result decreasing
as we move up. Horizontally, the runtimes increase as we move to
the right. Because of the structure of the graph, any point
“dominates” all others that lie above and to the right of that point.
This is because the given point gives equal or better results in equal
or lower runtimes.

One noticeable feature of this graph is that, in combination with any
router, the VPR-based Annealing algorithm always dominates the
other placement algorithms. However, the Force-directed algorithm
performs almost as well as Annealer. This illustrates an interesting
point that any trade-off to be made in run-time vs. quality is better
made in route algorithms, while the Annealer algorithm should be
used as the placer. This is primarily due to the fact that for most of
our algorithm combinations the routing time dominates the
placement time. Also, consistent with the results for routing
algorithms, for each placement the Original Pathfinder algorithm
always gives the best quality mapping and the Simple Router always
gives the fastest solution (when it actually succeeds in routing).

One more important observation is that the combination of Xilinx
Placer and Xilinx Router performs much better than we observed in
the earlier results for individual placement or routing.

Finally, we can quantify the overall tradeoff between total runtimes
and quality for FPGA CAD tools. For example, when we compare
the fastest to the slowest algorithms, we can achieve a speedup of 8x
with a quality loss of just 1.1x in critical path delays. However, the
combinations vary very widely, from speed-ups up to 8x, and up to
4.5x quality degradation. Also, compared to the Xilinx CAD tool, if
we allow 1.15x degradation in quality, we can achieve a 3x speedup
in total runtime. Compared against the VPR-based Annealer, and
Original Pathfinder (two of the most successful research CAD
tools), we can achieve a factor of 5x speedup if we allow a factor of
2.5x degradation in quality, and a factor of 2.2x speedup if we allow
1.8x degradation in quality.

6. Effect of FPGA sizes on the algorithms
The results obtained so far assume the user to be resource
constrained, in that all the benchmarks were fitted into the smallest
real FPGA possible. However, if the user were to have no such
constraint, the algorithms will have more freedom in dealing with
congestion and hence might result in a better quality of solutions. In
order to investigate this dependence of algorithms on the amount of
FPGA resources utilized, we ran a set of place and route algorithms
on three benchmarks for five different FPGA sizes. This set of
algorithms was chosen from the dominant set from the previous
section. Hence, they contain all router combinations with Annealer
as the placer, and the combination of Force-directed placement and
Original Pathfinder. While three of these sizes correspond to real
FPGAs, two of the sizes correspond to hypothetical FPGAs whose
sizes are one step immediately above and below the originally
targeted FPGA. Figure 5 illustrates the results obtained in graph
form. The vertical axis of the graph represents the critical path
delays obtained, and the horizontal axis represents the runtimes for
placement and routing. The results were normalized with average
values across the algorithms and a geometric mean of these
normalized values are represented in the graph. Each point in the
graph denotes the mean result of all the algorithms used for a

particular FPGA size. The percentages next to these points denote
the amount of resources occupied in the FPGA.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.6 1.1 1.6 2.1 2.6

Runtimes

C
ri

ti
ca

l p
at

h
 d

el
ay

s

87%

75%

65%

57%

37%

Figure 5. Effect of Resource Usage on the performance of
algorithms.

We did not observe any appreciable deviance in the behavior of
individual algorithms as opposed to the mean behavior, which is
what is represented in the graph. While the runtimes of the
algorithms keep increasing with size, which is to be expected with
the increase in available resources, the quality of the solutions keep
increasing too. However, for the lowest size the quality as well as
the runtimes are adversely affected due to an increase in congestion.

Unfortunately, these results indicate that one cannot simply throw
more resources at the problem to increase the performance of the
CAD tools – adding more space in the FPGA slows the runtimes,
even though (or perhaps precisely because) the placement and
routing are less constrained. Thus, performance improvements come
from algorithm changes, not the easing of FPGA resource
constraints.

7. Conclusions
The results we obtained demonstrate that the CAD algorithms are
dispersed widely in the quality vs. runtimes tradeoff spectrum from
a speedup of 8x to a 4.5x quality degradation. However, compared
to the slowest combination of algorithms (Scatter and Original
Pathfinder), the fastest combination (Annealer and Simple Router)
produces only 1.2x degradation in the quality of the solution with 8x
speedup in total runtime.

Apart from implementing a variety of placement and routing
algorithms, we developed tradeoff-oriented algorithms for both
placement and routing. These algorithms can be tuned to obtain
different tradeoffs by varying a single parameter. This tuning helps
in broadening the applicability of individual algorithms. For
example, Force-directed placer can be tuned to run 9x faster with
only a 1.3x quality degradation.

Achieving the best results requires varying different algorithms as
well as varying the tuning parameters of these algorithms. Also, for
the best results, both place and route times need to be considered
since a faster (but lower quality) placement can slow down the

35

router. In fact, using Annealing algorithm for placement in
combination with other routers gives the best quality solutions for a
given run-time. Thus, the advantages of a faster, but lower-quality,
placement must be balanced against the runtime and quality
degradations this will cause in the router.

In order to take advantage of these opportunities, it is critical to
develop methodologies for automatically choosing the best
combination of placer and router, as well as the correct tuning
parameter setting, to get the desired result in the best time. In our
future work we will seek to quantify the tradeoffs involved, and
automatically seek the best combination of CAD algorithms on a
problem-by-problem basis. Most importantly, we will seek to meet
requirements on the critical path delay set by the user or the
available resources, while performing placement and routing as
quickly as possible.

8. Acknowledgements
We are grateful to Prof. Pak K. Chan at the University of California,
Santa Cruz for letting us use their implementation of Pathfinder
algorithm, and for providing us with some of the benchmarks we
used. We thank Prof. Jonathan Rose at the University of Toronto for
providing us with some of the benchmarks we used and the VPR
CAD tool. We are also indebted to Larry McMurchie for helping us
understand the Pathfinder algorithm. This research is funded in part
by the National Science Foundation (NSF) and the Defense
Advanced Research Projects Agency (DARPA).

9. References
[1] Peixin Zhong, Margaret Martonosi, Pranav Ashar, and

Sharad Malik. “Accelerating Boolean Satisfiability
with Configurable Hardware”. IEEE Symposium on
FPGAs for Custom Computing Machines, April.
1998, pp. 186—195.

[2] Vaughn Betz and Jonathan Rose, “VPR: A New
Packing, Placement and Routing Tool for FPGA
Research”, International Workshop on Field
Programmable Logic and Applications, 1997, pp.213-
222.

[3] Yaska Sankar and Jonathan Rose, “Trading Quality
for Compile Time: Ultra-Fast Placement for FPGAs”,
International ACM/SIGDA Symposium on Field-
Programmable Gate Arrays, Feb. 1999, pp.157-166.

[4] Pak K. Chan and Martine D.F.Schlag, “New
Parallelization and Convergence Results for NC: A
Negotiation-Based FPGA Router”, ACM/SIGDA
International Symposium on Field-Programmable
Gate Arrays, Feb. 2000.

[5] Xilinx, “The Programmable Logic Data Book”, 1996,
pp.4.5-4.106.

[6] S.Yang, “Logic Synthesis and Optimization
Benchmarks, Version 3.0”, Tech. Report,
Microelectronics center of North Carolina, 1991.

[7] C.M.Fiduccia and R.M.Mattheyses, “A Linear Time
Heuristic for Improving Network Partitions”, Design
Automation Conference, May 1984, pp.175-181.

[8] A.E.Dunlop and B.W.Kernighan, “A Procedure for
Placement of Standard Cell VLSI Circuits”, IEEE
Transactions on Computer-Aided Design, Vol. 4, No.
1, 1985, pp.92-98.

[9] K. Shahookar and P. Mazumder, “VLSI Cell
Placement Techniques”, ACM Computing Surveys,
vol.23, No.2, June 1991, pp.143-220.

[10] J. Lam and J. Delosme, “Performance of a New
Annealing Schedule”, Design Automation
Conference, 1988, pp.306 – 311.

[11] L.McMurchie and C.Ebeling, “Pathfinder: a
negotiation-based performance-driven router for
FPGAs”, Proceedings of 3rd International
ACM/SIGDA Symposium on Field-Programmable
Gate Arrays, Feb. 1995, pp.111-117.

[12] Timing-Driven Routing for Symmetrical Array-Based
FPGAs, ACM Transactions on Design Automation of
Electronic Systems, Vol. 5, No. 3, July 2000, pp. 433-
450.

[13] K.W. Lee and C. Sechen, “A New Global Router for
Row-Based Layout”, International Conference on
Computer-Aided Design, IEEE, 1988, pp.180-183.

36

	Main Page
	FPGA'01
	Front Matter
	Table of Contents
	Author Index

