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Abstract 
Many applications of FPGAs, especially logic emulation and custom 
computing, require the quick placement and routing of circuit 
designs. In these applications, the advantages FPGA-based systems 
have over software simulation are diminished by the long run-times 
of current CAD software used to map the circuit onto FPGAs. To 
improve the run-time advantage of FPGA systems, users may be 
willing to trade some mapping quality for a reduction in CAD tool 
runtimes. In this paper, we seek to establish how much quality 
degradation is necessary to achieve a given runtime improvement. 
For this purpose, we implemented and investigated numerous 
placement and routing algorithms for FPGAs. We also developed 
new tradeoff-oriented algorithms, where a tuning parameter can be 
used to control this quality vs. runtime tradeoff. We show how 
different algorithms can achieve different points within this tradeoff 
spectrum, as well as how a single algorithm can be tuned to form a 
curve in the spectrum. We demonstrate that the algorithms vary 
widely in their tradeoffs, with the fastest algorithm being 8x faster 
than the slowest, and the highest quality algorithm being 5x better 
than the least quality algorithm. Compared to the commercial Xilinx 
CAD tools, we can achieve a 3x speed-up by allowing 1.27x 
degradation in quality, and a factor of 1.6x quality improvement with 
2x slowdown.  
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1. Introduction 
Most CAD development efforts have focused on the creation of as 
efficient a mapping as possible for a given computation. The 
application of complex optimization techniques, for the solving of 
multiple NP-Hard problems, has yielded efficient mapping tools that 
can take hours to produce an implementation. 

For the design of ASIC circuits, producing the highest quality 
results at the cost of significant runtimes is justified by the long 
fabrication times and large costs. However the development of 
FPGAs, where a new computation can be realized in hardware in 
milliseconds, may require the re-evaluation of this tradeoff. 

New FPGA-based systems push the issue of CAD tool runtimes into 
the spotlight. In custom-computing systems, the FPGA hardware is 
often used as a form of software accelerator, where designers expect 
fast turnaround from specification to implementation. In some 
systems the runtimes can even become part of the execution time of 
the system, where slow CAD performance directly impacts the 
utility provided to the user. For example, in logic emulation a circuit 
under development may need to be remapped to the accelerator on a 
weekly, daily, or even hourly basis, as modifications are made to the 
circuit while it is debugged. The longer the CAD tools take to 
operate, the smaller the advantage the emulation system has over 
software simulation, since simulators typically do not require such 
sophisticated pre-processing. 

Emulation is in fact one example of problem-specific compilation in 
custom-computing devices. In such systems the execution of the 
system involves first creating an FPGA (or multiple FPGA) 
configuration(s) from a specification for a given problem instance, 
and then executing the configuration on the FPGA hardware. 

In many FPGA-based systems the CAD tool performance can thus 
be a critical concern. In fact, users may be willing to trade some 
mapping quality (typically measured in critical path length and/or 
device capacity) for a reduction in CAD tool runtimes. For example, 
users may have excess FPGA capacity available to accelerate the 
mapping process. Alternatively, a slowing down of the FPGA 
execution because of lengthened critical paths may be more than 
balanced by the decrease in CAD runtimes, yielding an overall 
performance increase. However, what is unclear is how much 
quality must be yielded for a significant improvement in runtimes. 

What is allowable in tradeoff depends on the applications. For some 
systems no reduction in mapping quality is acceptable (and in fact, 
for some systems only hand-design yields the required mapping 
quality). For others, larger quality reductions may be justified. 

While there is no one rule for what is acceptable, there are some 
applications, like logic emulation where such allowable tradeoffs are 
evident.  For example Quickturn has simultaneously sold two 
different commercially viable emulation technologies, the CoBALT 
and Mercury systems. While each of these systems are capable of 
supporting roughly equivalent circuit complexities, and have 
equivalent system costs, the CoBALT system provides more than an 
order of magnitude reduction in mapping time (days to hours) at the 
cost of 1-2 orders of magnitude increase in system delay (MHz to 
100 KHz performance). The fact that both systems were 
simultaneously commercially viable indicates that, at least for some 
applications, users are willing to accept huge quality losses for 
significant CAD runtime improvements. 
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In some instances, the slow runtimes of current CAD tools 
completely eliminate some opportunities for FPGA-based systems. 
For example, there has been much interest in problem-specific 
custom-computing for Boolean Satisfiability, where the inherent 
parallelism of FPGAs provides high-performance hardware to 
finding solutions to arbitrary Boolean equations. In [1] a comparison 
of software runtimes and total solution time using FPGAs for SAT 
solver circuits reveals that while there is 94.8x speedup that could be 
achieved over software in solving a200_6_0_y1_1 problem, large 
compilation times using a commercial CAD tool resulted in a 781x 
slowdown for the FPGA based solution. As the complexities of 
target circuits and FPGAs increase, the effectiveness and efficiency 
of these CAD tools become even more important in such 
applications. Techniques that accelerate core CAD algorithms can 
bring about important changes in product design times for these 
applications. 

Though several works like VPR [2], Ultra Fast Placer [3], and 
Parallel Pathfinder [4] have concentrated on speeding up the 
individual CAD processes, not much has been documented in the 
way of actual trade-offs involved in choosing different algorithms 
for different CAD processes. In this paper we consider the tradeoff 
between the runtimes of CAD algorithms and the resulting critical 
path lengths of the resulting mappings. We seek to establish how 
much quality degradation is necessary to achieve a given runtime 
increase. As part of this process we investigate multiple placement 
and routing algorithms for FPGAs. We also develop new tradeoff-
oriented physical design tools, where a tuning parameter can be used 
to control this balance. As part of these efforts we show both how 
different algorithms can achieve different points within this tradeoff 
spectrum, as well as how a single algorithm can be broadened in its 
applicability. 

The rest of the paper is organized as follows. Section 2 briefly 
describes the experimental setup and the evaluation methodology 
for different algorithms. Section 3 describes the various placement 
algorithms implemented, and how these different place algorithms 
compare in terms of run-times and quality of the solution. Section 4 
describes all the route algorithms implemented and compares their 
performances. Section 5 analyzes the trade-offs within different 
combinations of place and route algorithms. Section 6 looks at the 
dependence of the performance of algorithms on benchmarks and 
the sizes of the target FPGAs. 

2. Implementation details  
In order to quantify the tradeoff between CAD tool runtimes and the 
resulting quality, we implemented multiple placement and routing 
algorithms. Our algorithms are targeted to the Xilinx XC4000E 
family of FPGAs [5]. For representing the exact logic and routing 
resources in this FPGA architecture, as well as for the LCA format 
file input and output, we utilized the routines developed at the 
University of California, Santa Cruz for their implementation of 
parallel pathfinder [4]. These routines were originally developed for 
the XC4000 family of FPGAs. We retargeted them to the XC4000E 
series of FPGAs. 

Our results were obtained by running the algorithms on SUN 
UltraSparc 5 workstations with 512 MB of memory. Twelve 
combinatorial benchmarks were used from the MCNC benchmark 
circuits [6], and range in size from 189 logic blocks to 1020 logic 
blocks. The properties of the benchmarks we used are summarized 
in the following table. 

Benchmark FPGA 
device 

Number 
of 

nets 

Number 
of  

CLBs 
k2 4005E 261 189 

misex3 4005E 244 192 
alu4 4005E 276 194 
seq 4008E 629 300 

apex4 4010E 1235 388 
tseng 4013E 1099 542 
ex5p 4013E 1072 570 
diffeq 4020E 946 751 
dsip 4020E 1093 780 
s298 4025E 1304 1002 
des 4025E 1360 1013 

bigkey 4025E 1501 1020 

The algorithms were evaluated based on the comparison of their 
run-times to the delay of the mapped circuit. The critical path delay 
results were obtained by using Xdelay, which is part of the 
commercial Xilinx CAD tools. 

3. Placement 
The logic circuit that is to be placed and routed is specified in terms 
of configurable logic blocks, which are the basic logic elements that 
make up the array architecture of the FPGA. Placement is 
essentially assigning a unique position inside the FPGA to each of 
the circuit’s configurable logic blocks.  

We have implemented four different algorithms for placement, and 
a fifth placer was obtained from Xilinx. Our aim was to compare 
each of these placers in terms of their run-time vs. quality 
characteristics. 

As part of this work we have developed runtime-adaptive versions 
of Simulated Annealing and Force-directed placement. In these 
algorithms, a balance parameter is introduced which can apply more 
or less effort, trading runtimes for resulting quality. These 
algorithms therefore are represented on the run-time vs. quality 
graph not by a single point, but by a set of points corresponding to 
different values of the tuning parameter. The placement algorithms 
we used are briefly explained below. 

3.1 Placement Algorithms 
3.1.1. Fiduccia-Mattheyses 
This implementation is based on the Fiduccia-Mattheyses algorithm 
[7]. The FPGA is divided into two halves, and the Fiduccia-
Mattheyses algorithm is applied to determine which logic block 
goes into which half. These two halves of the FPGA are further 
partitioned into two halves each, and this recursive process is 
applied on each FPGA partition until the partitions become small 
(contain less than nine CLBs). A greedy algorithm then determines 
the exact placement of the logic blocks corresponding to each of the 
small partitions. During the bipartitioning, the logic blocks in both 
partitions are arranged in a decreasing order of the gain obtained if 
they were to be moved across the partition. This gain is computed 
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using the “Terminal Propagation” technique [8], which considers 
nets connected to logic blocks from other partitions as well. Once a 
logic block is moved across the partition, it is locked and the gains 
are updated for the rest of the logic blocks. This process is repeated 
until there is no further cost improvement.  

3.1.2. Force-directed 

This implementation is based on the Force-directed algorithm [9]. 
From an initial random placement, each logic block is moved to its 
“best location”, which is determined as the closest available location 
to the centroid of all the other logic blocks to which it is connected. 
If another logic block already exists at this location, the two logic 
blocks are interchanged. After this move, the logic block in 
consideration is “locked”, and the location is considered unavailable 
for other logic blocks. Once all the logic blocks are locked, they are 
unlocked and the process is repeated until a terminating condition is 
met. 

The terminating condition dictates the per-iteration percent change 
in cost at which the algorithm will halt. If this percentage is small, 
the algorithm will perform significant optimization, with a 
commensurate increase in runtimes. With a large percentage change 
(including only performing a single iteration regardless of change in 
cost) the algorithm will perform a much lower quality optimization, 
but with much faster runtimes. We therefore use the stopping 
criteria as a tuning parameter for the Force-directed Placement 
algorithm. 

3.1.3. Scatter 

The fastest possible legal placement algorithm would simply 
randomly scatter the logic blocks across the chip area. For circuits 
that are fairly small, or with very easy requirements, such an 
algorithm might achieve usable results with very fast runtimes. 
However, if the logic blocks are placed very close together, the 
resultant congestion will affect the route times for the worse. The 
Scatter algorithm therefore does arbitrary placement, but ensures 
that logic blocks are placed reasonably far apart. 

3.1.4. Simulated Annealing  

The Simulated Annealing implementation is based on the VPR 
placer [2]. The various simulated annealing parameters that define 
the algorithm are explained below: 

Cost function: This cost function is described by the equation: 
                                  Nnets 

Cost = ∑ q(n) [ bbx(n) + bby(n) ] 
                                n = 1 
The summation is over all the nets in the circuit. For each net, bbx 
and bby denote the horizontal and vertical spans of its bounding box 
respectively. The q(n) factor is a value used to compensate for the 
underestimation of cost when nets have more than 3 terminals, and 
is obtained from a lookup table.  

Initial Temperature: Let Nblocks be the total number of logic blocks 
and I/O pads in the circuit. From an initial random placement, Nblocks 
random pairwise swaps of logic blocks or I/O pads are performed, 
and the standard deviation of the cost is computed. The initial 
temperature is set to 20 times this standard deviation. 

Cooling Schedule: The new temperature is computed as Tnew = α 
Told, where the value of α depends on the fraction of attempted 
moves that were accepted (Raccept) at Told, as shown: 

Fraction of moves accepted (Raccept) α 
Raccept > 0.96 0.5 

0.8 < Raccept ≤ 0.96 0.9 
0.15 < Raccept ≤ 0.8 0.95 

Raccept ≤ 0.15 0.8 
Since it is desirable to keep Raccept near 0.44 for as long as possible 
[10], the algorithm uses a range limiter which swaps blocks that are 
less than Dlimit units apart in either the horizontal or vertical 
direction. If Raccept were less than 0.44, Dlimit would be reduced 
thereby forcing moves over a smaller range and hence greater 
acceptance. This Dlimit is updated across temperatures according to:
  
Dnew

limit = Dold
limit * ( 1 – 0.44 + Rold

accept )  
and then clamped to 1 ≤ Dlimit ≤ maximum FPGA dimension. 
Final Temperature: The annealing is terminated when the 
temperature is less than 0.5% of the average cost per net. 

Number of moves at each temperature: In the original VPR 
placer, at each temperature 10*(Nblocks)1.33 moves are evaluated. 
However, the number of moves evaluated at each temperature 
directly controls the amount of time Annealing spends in searching 
for a good solution. Increasing or decreasing this number will 
directly increase or decrease the run-time, and will therefore affect 
the quality of the solution. Hence we can perform a tradeoff between 
CAD runtimes and resulting quality by using C*(Nblocks)1.33 moves, 
where increasing C results in higher quality results at the expense of 
longer runtimes. 

3.1.5. Xilinx Placer 

This placement tool is part of the commercially available Xilinx 
Alliance Software Series 2.1i for Solaris. The placement is run at 
different effort levels (1-5), which indicate the amount of time the 
tool spends searching for a better quality solution. An effort level of 
1 indicates that the tool terminates when it finds a low quality 
placement and an effort level of 5 indicates that the tool searches for 
a high quality placement. 

3.2 Placement Results 
For our initial comparison all the placement outputs were routed 
using the Xilinx router with effort level set to 5. Figure 1 shows the 
placement run-times vs. critical path delay graph. The results we 
obtained were normalized with the average values for each 
benchmark across the algorithms. The graph represents the 
geometric mean of these normalized values for all the benchmarks. 
If any of the placement results failed to route with the Xilinx router, 
they were placed again with the Xilinx placement tool with the 
effort level set to 5, and the runtimes of both Xilinx router and the 
Xilinx placement tool were added to the corresponding placement 
runtimes as a failure penalty. 

Figure 1 demonstrates the tradeoff between the runtimes of 
algorithms and the quality of the results achieved. The height of 
each graph represents the critical path delay achieved, with a higher 
value representing a worse result. Horizontally we move from the 
fastest algorithms (at left) to the slowest (at right). Because of the 
structure of the graph, any point “dominates” all others that lie 
above and to the right of that point. This is because the given point 
gives equal or better results in equal or lower runtimes. 
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Figure 1. Critical path delays vs. runtimes for placement 
algorithms. 

While the Scatter and Fiduccia-Mattheyses algorithms are depicted 
as single points the Xilinx placer as well as Annealing and Force-
Directed algorithms are shown as curves. This is because the latter 
algorithms were run a number of times while varying the tuning 
parameter of each algorithm. For the Xilinx placer this tuning 
parameter was the effort level, which was varied from 1 to 5. For 
Annealing, this tuning parameter was the number of moves 
attempted at each temperature, ranging from 1*(Nblocks)1.33 to 
20*(Nblocks)1.33. For the Force-directed algorithm, this tuning 
parameter was the terminating condition. We varied it from <20% 
cost decrease across iterations to <0.5% cost decrease across 
iterations. Also, we used an ultra-fast version of Force-directed 
algorithm that runs for only a single iteration. 

There are several striking features of these graphs. First is the 
comparison between the Force-directed and Simulated Annealing 
algorithms. For relatively fast runtimes the Force-directed algorithm 
produces mappings with equivalent critical path delays to the 
Simulated Annealing algorithm. Although the Scatter algorithm run 
extremely fast for certain benchmarks, it fails to produce a routable 
design for certain large benchmarks. This adds a huge failure 
penalty to the runtimes and thereby brings down the overall 
performance of Scatter algorithm. Thus, at least for placement 
runtimes, achieving the best tradeoff between quality and runtimes 
may require different algorithms at different points in the spectrum. 

A second observation is that several of the algorithms simply are not 
competitive when only placement performance is considered. The 
partitioning-based (FM) placer and the Xilinx placer provide 
significantly worse results than the other approaches.  

From this data we can quantify the overall tradeoff between 
runtimes and quality for FPGA placement. For example, when we 
compare the fastest to the slowest competitive algorithms, we can 
achieve a speedup of 20x with a degradation of a factor of 2.3x in 
critical path delay. Also, compared to the VPR placer, if we allow a 
factor of 1.34x degradation in quality we can achieve 2.5x speedup 
in placement times, and a factor of 5.2x speedup if we allow 1.9x 
degradation in quality. 

4. Routing 
While the previous comparisons have considered only placement, 
the physical design process includes both placement and routing. In 
this section we present a similar algorithm development and 
comparison for FPGA routing. 

All the routing algorithms we implemented represent the 
architecture of the XC4000 series FPGA as a directed resource 
graph G = (N, E). A node n ∈ N represents a routing resource such 
as a wire or terminal, and an edge e ∈ E represents a switch or a 
feasible connection between two nodes. Each net consists of one 
Source node, and a set of Sink nodes. Routing a signal is essentially 
assigning routing resources such that all sinks are connected to the 
source.  

We have 5 different routers, including the standard commercial 
router from Xilinx. Our aim is to compare each of these routers in 
terms of their run-time vs. quality characteristic. As in the case of 
placement, some of the routers have tuning parameters with which 
they can be forced to spend more time searching for, and therefore 
potentially arrive at, a better quality solution. The following sub-
sections detail the various routing algorithms implemented. 

4.1 Routing Algorithms 
4.1.1. Original Pathfinder 
The original pathfinder algorithm was developed at the University 
of Washington [11], and has showed very high quality results. For 
our work we utilized an implementation of this algorithm that was 
developed at the University of California, Santa Cruz [4]. This is a 
negotiation-based router in which each net negotiates the use of 
shared resources with other nets until none of the resources are 
shared. Congestion costs are assigned to the shared resources and 
are increased with each iteration, thereby forcing some signals to 
explore alternate routes. The cost of using a node n is given by 

cn = ( dn + hn ) * ( pn + 1 ) 
where dn is the basic delay cost for using the node. The first order 
congestion term pn, is the number of signals that currently share the 
node. The second order congestion term hn grows monotonically 
with each iteration in which the node is shared. In order to minimize 
both congestion and delay, the actual cost function for using a 
resource when routing a net joining Source ns to Sink tij, is defined 
as 

Cn = Aijdn + ( 1 – Aij ) cn 
where cn is the cost as defined earlier. The slack ratio Aij is the ratio 
of the delay of the longest path containing the edge (ns, tij) to the 
maximum delay over all paths. This slack ratio becomes 1 if the 
source-sink pair lies on the critical path, thereby reducing the cost to 
just the delay term. If the source-sink pair lies on a totally non-
critical path, the congestion term will dominate, resulting in a route 
that avoids congestion at the expense of extra delay. 

4.1.2. Modified Pathfinder 
This version of the Pathfinder algorithm has two modifications over 
the Original Pathfinder, both intended to decrease the run-time of 
the algorithm. 

The first modification is based on VPRs router [2]. It aids in routing 
multi-terminal nets more efficiently and has no tradeoff associated 
with it. The Original Pathfinder algorithm uses the maze router to 
route between a given Source and a Sink. For multi-terminal nets, 
this means that the wavefront generated while routing between the 

32



 

 

source and kth sink will be discarded and a whole new wavefront 
will be generated to route the source to the (k+1)th sink. This 
requires considerable CPU time for high-fanout nets, since the 
partial routing used as the net source will be very large. Instead, in 
this implementation, we just update the wavefront around the newly 
found path until it reaches the same expansion level as the rest of the 
wavefront, and then proceed to find the next sink. Since the path 
from the existing wavefront to the newly found sink is fairly small, 
it will take little time to add this to the wavefront, and the next sink 
will be reached quicker than if the whole wavefront was to be 
generated again.  

The second modification provides a decrease in the routing runtime 
at a small cost in quality. During each iteration, the Original 
Pathfinder algorithm rips up and reroutes all the nets so as to 
eliminate dependencies on the order of the nets. In our 
implementation, only those nets that are routed through congested 
resources are ripped up and rerouted. This may adversely affect the 
net delays, but considerably speeds up the algorithm. 

One of the parameters of all versions of Pathfinder, the history cost 
for a node, indirectly influences the run-time of the algorithm. If we 
raise the per iteration history cost increase, the algorithm will more 
quickly resolve node sharing. While this may increase the 
corresponding net delays, because of the reduced number of 
iterations, the algorithm tends to run faster. Hence, by varying this 
history cost, we obtain several versions of the Modified Pathfinder 
algorithm that exhibit different run-time vs. quality characteristics.  

We varied this history cost parameter in two different ways. One is 
by assigning fixed values to the history cost, which represents 
multiplying the standard pathfinder history cost by a scaling factor. 
Different history cost settings were considered across a wide range 
of workable assignments. The second approach was taken to 
determine if there is any dependence of the history cost of a node on 
its basic delay. Hence, in this approach, the history cost of a node 
equals its basic delay multiplied by a scaling factor. This scaling 
factor was again varied till the algorithm either fails to converge on 
a solution, or fails to route the given placement. 

4.1.3. Xilinx Router 
This routing tool is part of the commercially available Xilinx 
Alliance Software Series 2.1i for Solaris. The tool is run at different 
effort levels (1-5), which indicate the amount of time the tool spends 
searching for a better quality solution. An effort level of 1 indicates 
that the tool terminates when it finds a low quality routing and an 
effort level of 5 indicates that the tool searches for a high quality 
routing. 

4.1.4. Hierarchical Router 
This routing algorithm is partly based on the Timing-Driven Router 
developed in [12]. Starting with the entire FPGA, a cut line is 
chosen to divide the FPGA into 2 parts. Across the cut line there are 
routing sections that represent routing spaces on the chip. A routing 
section is a group of tracks in a channel with the same segment 
length. Each net crossing the cut line is assigned a cost similar to the 
pathfinder cost function with congestion considered at a segment 
level rather than at the track level. At each hierarchical level, the 
algorithm assigns routing sections to the nets crossing the cut line. 
After finishing routing at this hierarchical level, both parts separated 
by the cut line are independently routed by the same method 
recursively. When the parts become small enough, a simple greedy 

algorithm determines all the tracks in the routing sections that are 
assigned to each net. 

4.1.5. Simple Router 
This is a fast router based on the maze running algorithm [13]. Each 
net is routed once, with no rip-up-and-retry or other technique for 
avoiding congestion. It simply seeks the shortest available route 
from source to destination(s), avoiding resources used by previous 
signals. If the maze runner fails to find any unshared paths from the 
source to the sink, the router declares the placement as unroutable 
and exits. 

4.2 Routing Results 
For all the routers, we used the placement obtained from the VPR-
based Annealer. Figure 2 shows the routing run-times vs. critical 
path delay graph. Similar to placement, for each benchmark the 
results were normalized with average values across all algorithms 
and a geometric mean of these normalized values is indicated in the 
graph.  

While the Original Pathfinder, Hierarchical Router and Simple 
Router appear as single points on the figures, Xilinx router and 
Modified Pathfinder are shown as curves. This is because the Xilinx 
router was run with different effort levels (1-5) with effort level 1 
indicating a low quality routing and an effort level 5 indicating a 
high quality routing. The Modified Pathfinder was run a number of 
times while varying the history congestion cost from 0.7 to 5 as a 
fixed value, and from dn / 2 to 2*dn as a delay dependent value, and 
these two variations are shown as two different curves. 

The graph features some interesting results. Firstly, the Original 
Pathfinder algorithm gives the best quality and the Simple Router 
runs the fastest. However, the simple router fails on some circuits, 
and thus may not be useable in all situations. In such cases, the 
placement was rerouted using the Xilinx router with an effort level 
of 5, and this run-time was added to the Simple routers runtime as a 
failure penalty. 
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Figure 2. Critical path delay vs. runtimes for routing 
algorithms. 
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Secondly, the fact that the Modified Pathfinder curves never give a 
better quality than the Original Pathfinder algorithm suggests that 
there is a permanent quality loss associated with ripping up and re-
routing only congested nets instead of all the nets. At values of 
history cost greater than 5, the Modified Pathfinders failed to route 
the given placement, and for values less than 0.7, they failed to 
converge on a possible route. 

A third observation is that, for lower runtimes, Modified Pathfinder 
algorithms with delay based history congestion costs outperformed 
those with fixed-value history costs. However, at longer runtimes, 
this situation is exactly reversed, with fixed value history cost based 
algorithms giving better qualities. One more important observation 
from the graph is that the Xilinx Router outperforms certain 
Pathfinders.  

Finally, we can quantify the overall tradeoff between runtimes and 
quality for FPGA routing. For example, when we compare the 
fastest to the slowest routing algorithms, we can achieve a speedup 
of 6x with a degradation of a factor of 1.6x in critical path delay. 
Also, compared to Original pathfinder, if we allow 1.25x 
degradation in quality, we can achieve a factor of 2.5x speedup in 
routing times. 

However, the runtimes of the routers are dependent on the quality of 
the placement that is input to them. For example, choosing a faster 
placement algorithm may make the routers job harder because of 
less efficient placement and hence increase the runtimes of the 
router. Quantifying this increase would help us decide on a specific 
combination of placement and routing algorithms for a particular 
total runtime constraint. 

 
Figure 3. Router runtimes for different choices of Placement. 

Figure 3 demonstrates how the routing run-times vary with different 
choices for placement. For each of the routers, the least runtime and 
best quality was obtained when Annealer was used as the placer and 
least quality and longest runtime was obtained when Scatter 
algorithm was used for placement. The only exception to this is the 
Hierarchical router, which gave comparable results with both 
Annealer and FM Placer. Also, the effect of the placement is much 
more drastic on the Simple Router compared to the Original 
pathfinder as can be seen from the increased slopes of the curves. 

This clearly demonstrates that tradeoffs in placement will have 
correspondingly opposite tradeoffs in routing. 

5. Combined Place and Route  
While the previous results demonstrate that trade-offs exist among 
different placement algorithms and routing algorithms, they do not 
address the critical question of deciding which set of algorithms 
should be chosen for a specified trade-off. In other words, given that 
the user is willing to trade-off some quality for an improved run-
time, should a faster placement algorithm and a slower route 
algorithm be chosen, or a slower placement algorithm and a faster 
route algorithm? This choice not only reflects the balancing criteria 
that the overall runtime should be optimized for a given quality 
level, but also the fact that the choice of a faster, but less efficient, 
placement algorithm may increase the runtimes of the router, as it 
must accommodate a more difficult placement. In other words, 
tradeoffs made in placement or routing individually may not 
necessarily translate into corresponding tradeoffs overall.  

Figure 4. Critical path delay vs. Total runtimes for 
combinations of placement and routing algorithms. 

We therefore compared all combinations of place and route 
algorithms mentioned (note that the Xilinx Placer was only run with 
the Xilinx router because we could not read the intermediate 
format). The results are depicted in Figure 4. In this figure, we chose 
a single representative of the tunable placement and routing 
algorithms. Hence, Annealer represents the VPR-based annealing 
algorithm with 10 * (Nblocks)1.33 number of moves at each 
temperature, Force-directed placement represents the Force-directed 
algorithm with <5% cost decrease across iterations as the 
terminating condition, Modified Pathfinder router represents the 
Modified Pathfinder algorithm with history cost hn = 1 which is the 
same value as for the Original Pathfinder, and Coarsened Pathfinder 
router represents the Modified Pathfinder algorithm with history 
cost hn = dn / 1.35. The Xilinx algorithms were run at an effort level 
of 5. 
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The graph demonstrates the tradeoff between the overall runtimes 
and the quality of the results achieved by the different combinations 
of placement and routing algorithms. As in the earlier graphs, the 
height of each graph represents the quality of the result decreasing 
as we move up. Horizontally, the runtimes increase as we move to 
the right. Because of the structure of the graph, any point 
“dominates” all others that lie above and to the right of that point. 
This is because the given point gives equal or better results in equal 
or lower runtimes. 

One noticeable feature of this graph is that, in combination with any 
router, the VPR-based Annealing algorithm always dominates the 
other placement algorithms. However, the Force-directed algorithm 
performs almost as well as Annealer. This illustrates an interesting 
point that any trade-off to be made in run-time vs. quality is better 
made in route algorithms, while the Annealer algorithm should be 
used as the placer. This is primarily due to the fact that for most of 
our algorithm combinations the routing time dominates the 
placement time. Also, consistent with the results for routing 
algorithms, for each placement the Original Pathfinder algorithm 
always gives the best quality mapping and the Simple Router always 
gives the fastest solution (when it actually succeeds in routing). 

One more important observation is that the combination of Xilinx 
Placer and Xilinx Router performs much better than we observed in 
the earlier results for individual placement or routing.  

Finally, we can quantify the overall tradeoff between total runtimes 
and quality for FPGA CAD tools. For example, when we compare 
the fastest to the slowest algorithms, we can achieve a speedup of 8x 
with a quality loss of just 1.1x in critical path delays. However, the 
combinations vary very widely, from speed-ups up to 8x, and up to 
4.5x quality degradation. Also, compared to the Xilinx CAD tool, if 
we allow 1.15x degradation in quality, we can achieve a 3x speedup 
in total runtime.  Compared against the VPR-based Annealer, and 
Original Pathfinder (two of the most successful research CAD 
tools), we can achieve a factor of 5x speedup if we allow a factor of 
2.5x degradation in quality, and a factor of 2.2x speedup if we allow 
1.8x degradation in quality. 

6. Effect of FPGA sizes on the algorithms 
The results obtained so far assume the user to be resource 
constrained, in that all the benchmarks were fitted into the smallest 
real FPGA possible. However, if the user were to have no such 
constraint, the algorithms will have more freedom in dealing with 
congestion and hence might result in a better quality of solutions. In 
order to investigate this dependence of algorithms on the amount of 
FPGA resources utilized, we ran a set of place and route algorithms 
on three benchmarks for five different FPGA sizes. This set of 
algorithms was chosen from the dominant set from the previous 
section. Hence, they contain all router combinations with Annealer 
as the placer, and the combination of Force-directed placement and 
Original Pathfinder. While three of these sizes correspond to real 
FPGAs, two of the sizes correspond to hypothetical FPGAs whose 
sizes are one step immediately above and below the originally 
targeted FPGA. Figure 5 illustrates the results obtained in graph 
form. The vertical axis of the graph represents the critical path 
delays obtained, and the horizontal axis represents the runtimes for 
placement and routing. The results were normalized with average 
values across the algorithms and a geometric mean of these 
normalized values are represented in the graph. Each point in the 
graph denotes the mean result of all the algorithms used for a 

particular FPGA size. The percentages next to these points denote 
the amount of resources occupied in the FPGA.  
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Figure 5. Effect of Resource Usage on the performance of 
algorithms. 

We did not observe any appreciable deviance in the behavior of 
individual algorithms as opposed to the mean behavior, which is 
what is represented in the graph. While the runtimes of the 
algorithms keep increasing with size, which is to be expected with 
the increase in available resources, the quality of the solutions keep 
increasing too. However, for the lowest size the quality as well as 
the runtimes are adversely affected due to an increase in congestion. 

Unfortunately, these results indicate that one cannot simply throw 
more resources at the problem to increase the performance of the 
CAD tools – adding more space in the FPGA slows the runtimes, 
even though (or perhaps precisely because) the placement and 
routing are less constrained. Thus, performance improvements come 
from algorithm changes, not the easing of FPGA resource 
constraints. 

7. Conclusions 
The results we obtained demonstrate that the CAD algorithms are 
dispersed widely in the quality vs. runtimes tradeoff spectrum from 
a speedup of 8x to a 4.5x quality degradation. However, compared 
to the slowest combination of algorithms (Scatter and Original 
Pathfinder), the fastest combination (Annealer and Simple Router) 
produces only 1.2x degradation in the quality of the solution with 8x 
speedup in total runtime. 

Apart from implementing a variety of placement and routing 
algorithms, we developed tradeoff-oriented algorithms for both 
placement and routing. These algorithms can be tuned to obtain 
different tradeoffs by varying a single parameter. This tuning helps 
in broadening the applicability of individual algorithms. For 
example, Force-directed placer can be tuned to run 9x faster with 
only a 1.3x quality degradation. 

Achieving the best results requires varying different algorithms as 
well as varying the tuning parameters of these algorithms. Also, for 
the best results, both place and route times need to be considered 
since a faster (but lower quality) placement can slow down the 
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router. In fact, using Annealing algorithm for placement in 
combination with other routers gives the best quality solutions for a 
given run-time. Thus, the advantages of a faster, but lower-quality, 
placement must be balanced against the runtime and quality 
degradations this will cause in the router. 

In order to take advantage of these opportunities, it is critical to 
develop methodologies for automatically choosing the best 
combination of placer and router, as well as the correct tuning 
parameter setting, to get the desired result in the best time. In our 
future work we will seek to quantify the tradeoffs involved, and 
automatically seek the best combination of CAD algorithms on a 
problem-by-problem basis. Most importantly, we will seek to meet 
requirements on the critical path delay set by the user or the 
available resources, while performing placement and routing as 
quickly as possible. 
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