

Nieuwe FPGA-ontwerptools en -architecturen

New FPGA Design Tools and Architectures

Elias Vansteenkiste

Promotor: prof. dr. ir. D. Stroobandt
Proefschrift ingediend tot het behalen van de graad van
Doctor in de ingenieurswetenschappen: elektrotechniek

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2016 - 2017

ISBN 978-90-8578-960-4
NUR 959
Wettelijk depot: D/2016/10.500/92

Examination Commission

prof. dr. ir. Gert De Cooman
Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture
Ghent University

prof. dr. ir. Joni Dambre, secretary
Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture
Ghent University

prof. dr. ir. Steve Wilton
SoC Research Group
Department of Electrical and Computer Engineering
The University of British Columbia

prof. dr. ir. Nele Mentens
Department of Electrical Engineering - ESAT
Faculty of Engineering Technology
KU Leuven

prof. dr. ir. Pieter Simoens
Department of Information Technology - INTEC
Faculty of Engineering and Architecture
Ghent University

prof. dr. ir. Guy Torfs
Department of Information Technology - INTEC
Faculty of Engineering and Architecture
Ghent University

em. prof. dr. ir. Erik D’Hollander
Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture
Ghent University

prof. dr. ir. Dirk Stroobandt, advisor
Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture
Ghent University

i

ii

Dankwoord

Eerst en vooral wil ik Karel Bruneel bedanken voor het overdragen van
zijn enthousiasme waarmee hij over zijn - op het eerste gezicht - exo-
tische technieken vertelde. Hij heeft me warm gemaakt voor een the-
sis rond dynamische herconfiguratie van FPGAs en later ook voor een
doctoraat. Tijdens mijn doctoraat spendeerde hij soms meer tijd in mijn
kantoor dan in het zijne. Karel Bruneel, samen met Tom en Brahim,
leerden Karel Heyse en mij de kneepjes van het vak kennen. Ik appre-
cieer ook de beschikbaarheid van Karel Heyse als collega-student. Hij
was altijd bereid om klankbord te spelen. Ik wil ook Dries bedanken
voor de goeie samenwerking en de steun op het einde van mijn doc-
toraat. Hij was er al bij als masterstudent toen hij een project deed aan
onze onderzoeksgroep, daarna als thesisstudent en nu ook als doctor-
aatsstudent. Karel Heyse en Dries hebben ook geholpen bij het nalezen
van deze thesis. Graag wil ook de rest van het Hardware and Embed-
ded System team bedanken voor de discussies en samenwerking. Ik
apprecieer ook enorm de vrijheid die mijn promoter Dirk mij gegeven
heeft tijdens mijn doctoraat. Ook ben ik erg dankbaar voor de tijd
en moeite die de leden van de examencomissie besteed hebben in het
nalezen van een eerdere versie van mijn boek. Het heeft de kwaliteit
van deze thesis verhoogd.

I am especially grateful towards professor Steve Wilton for making the trip
from Vancouver to Ghent to be in my examination board.

De mensen uit het reslab wil ik ook bedanken, waaronder Aaron,
Sander, Francis, Pieter, Tim, Jonas, Lio, Jeroen, Ira, Tom, ... Ik keek
altijd uit naar de avonden die we gevuld hebben met spelletjes, van
Age of Empires II tot Game of Thrones. Daarnaast waren er ook de
geanimeerde discussies tijdens de lunch. Het begon altijd met de jacht
op goed eten in centrum Gent, waar de nodige onderhandelingen op
zijn plaats waren. In het bijzonder bedank ik Aaron. Hij is een goede
vriend en was een compagnon de route sinds de beginjaren van onze
studies aan de Universiteit. We vertrokken samen op uitwisseling naar
Taiwan, begonnen na onze studies een doctoraatsstudie en liepen bijna
gelijktijdig een stage in Silicon Valley.

My gratitude also goes to Alireza Kaviani for the chance he gave me to do

iii

an internship at Xilinx’ CTO Lab in San José. I learned a lot about FPGAs
during my stay. I also want to thank my two other colleagues at Xilinx. Henri
Fraissé and Pongstorn Maidee accepted me in their team and helped me guide
through Vivado’s source code, which is a complex maze.

Zo wil ik ook Karel Bruneel bedanken omdat hij mij onderdak heeft
verschaft in San Francisco.

Voor de rest wil ik ook mijn trouwe vrienden bedanken, waaronder
Stijn, Elke, Benjamin, Sofie, Dries, ... De vrienden van de zwemclub
en de waterpolo, Brecht, Jorley, Willem, Dirk, Jens, Fien, Tim zorgden
altijd voor geanimeerde gesprekken na training.

Een speciaal plaatsje wil ik hier reserveren voor mijn vriendin Kaat.
Zij is mijn nummer 1. Alhoewel ze de afgelopen maanden af en toe
heeft moeten plaats maken voor mijn nummer 2, mijn macbook, hoop
ik dat ze me dat niet al te kwalijk zal nemen. Ze was altijd bereid in
de bres te springen als ik een deadline had. Ik neem er ook graag de
luidruchtige schoonzussen, Sara, Liesbet en Hanne bij en de rest van de
gezellige schoonfamilie.

Last but not least, dank aan mijn ouders voor alle kansen die ik
gekregen heb, en hun onvoorwaardelijke steun. Ze staan samen met
mijn zus en broer altijd voor mij klaar, hoe hectisch het soms ook is.

Elias Vansteenkiste
December 19, 2016

iv

Samenvatting

Field-Programmable Gate Arrays (FPGA’s) zijn programmeerbare, di-
gitale chips die ingezet kunnen worden voor verschillende doelein-
den. Ze worden gebruikt voor toepassingen waarbij hogere prestaties
vereist zijn dan de prestaties die door de goedkopere microprocessors
geleverd kunnen worden. Typische vereisten zijn een hoge doorvoer,
korte wachttijden en een laag stroomverbruik. Een voorbeeld van een
toepassing die vaak wordt uitgevoerd met een FPGA is het routeren
en filteren van pakketjes in de internet-infrastructuur. In de internet-
infrastructuur moeten de pakketjes verwerkt worden aan hoge door-
voersnelheden en met een minimale vertraging. Om dit te kunnen rea-
liseren bestaan FPGA’s uit een groot aantal blokken die georganiseerd
zijn in een rooster. Sommige blokken zijn flexibel, anderen zijn gespe-
cialiseerd in het uitvoeren van een specifieke functie. Al deze blokken
kunnen verbonden worden om een grotere functionaliteit uit te voeren.

De ontwerper beschrijft de versneller op een hoog niveau. Een
FPGA-configuratie wordt dan gecompileerd door gespecialiseerde
software. Zodra de configuratie gecompileerd is, kan de ontwerper
controleren of de configuratie aan de applicatie-eisen voldoet. Als de
configuratie aan de vereisten voldoet, dan is het ontwerp klaar. In het
geval dat de vereisten niet voldaan zijn, moet de ontwerper zijn be-
schrijving veranderen zodat de eigenschappen van het ontwerp ver-
beteren. Daarna moet de FPGA-configuratie andermaal gecompileerd
worden en moet de ontwerper opnieuw controleren als aan de eisen
van de applicatie voldaan is. Dit langzame proces heet de FPGA-
ontwerpcyclus en wordt typisch vele keren doorlopen. Een belang-
rijk knelpunt in de ontwerpcyclus is de uitvoeringstijd van de FPGA-
compilatie. FPGA-ontwerpen zijn steeds groter (of complexer) gewor-
den volgens de wet van Moore. Grotere ontwerpen hebben meerdere
uren nodig om gecompileerd te worden. Een belangrijk doel van het
werk in dit proefschrift is het verkorten van de ontwerpcyclus door
de FPGA-compilatie te versnellen.

FPGA-compilatie is opgedeeld in verschillende deelproblemen:
synthese, packing, plaatsing en routering. Elk deelprobleem wordt be-
handeld door een ander ontwerptool. De ontwerpbeschrijving wordt

v

eerst gesynthetiseerd en afgebeeld op de primitieve blokken die be-
schikbaar zijn op de FPGA. Het resultaat is een netwerk van primitieve
blokken. Tijdens packing worden de primitieve blokken geclusterd,
waardoor we een netwerk van complexe blokken verkrijgen. De com-
plexe blokken in het netwerk worden toegewezen aan een fysieke loca-
tie op de FPGA tijdens plaatsing terwijl de schakeling op de FPGA ge-
optimaliseerd wordt voor de toepassingsvereisten. Na plaatsing wor-
den de connecties tussen de blokken gerouteerd.

Plaatsing en routering zijn de meest tijdrovende stappen van de
FPGA-compilatiecyclus. De uitvoeringstijd van de packing stap is min-
der kritisch, maar het beı̈nvloedt de uitvoeringstijd en de kwaliteit van
de plaatsing en routering, daarom hebben we ons gefocust op het ver-
snellen en verbeteren van de packing, plaatsing en routering. De tradi-
tionele algoritmes ontwikkeld voor deze problemen zijn niet geschikt
voor processors met meerdere kernen, die in het afgelopen decennium
de norm geworden zijn in computersystemen. We introduceren nieuwe
packing- en plaatsingtechnieken die ontwikkeld zijn voor het uitvoeren
op processors met meerdere kernen.

De Packing stap is geı̈ntroduceerd voor het compileren van ont-
werpen die geı̈mplementeerd moeten worden op moderne FPGAs
met een hiërarchische architectuur. Er zijn twee populaire technie-
ken voor packing: kiem-gebaseerd en partitionering-gebaseerd. Een
kiem-gebaseerd algoritme clustert het ontwerp in één keer en kan daar-
door gemakkelijker verzeild geraken in een lokaal minimum. Het
is ook moeilijk om te implementeren zodat het gebruik kan maken
van meerdere processorkernen. Een kiem-gebaseerd algoritme is wel
goed in het opleggen van architectuurbeperkingen. Partitionering-
gebaseerde algoritmes produceren een hogere kwaliteit omdat ze de
natuurlijke hiërarchie van het ontwerp behouden. Het is ook gemakke-
lijker een meerdradige implementatie te maken van een partitionering-
gebaseerde algoritme. In tegenstelling tot de kiem-gebaseerde algo-
ritmes is het echter wel moeilijk om de architectuurbeperkingen op te
leggen. We combineerden deze twee benaderingen om het beste van
beide werelden te krijgen.

Bij plaatsing van de blokken in het ontwerp wordt voor ieder blok
een fysieke bloklocatie op de FPGA toegewezen. Conventionele ana-
lytische methodes plaatsen een ontwerp door het minimaliseren van
een kostfunctie die een schatting van de post-routeringprestatie voor-
stelt. Helaas is het niet mogelijk om alle architectuurbeperkingen door
een analytisch oplosbare kostfunctie te beschrijven, daarom wordt het
probleem opgelost in meerdere iteraties. In elke iteratie wordt een kost-
functie aangepast aan het resultaat van de vorige iteraties en de archi-

vi

tectuurbeperkingen. Daarna wordt de functie opnieuw geminimali-
seerd. De minimalisering omvat een tijdrovend proces: het oplossen
van een lineair systeem. Experimenten tonen aan dat het niet nodig is
om een hoge nauwkeurigheid te hebben voor de tussentijdse resulta-
ten. In onze nieuwe plaatsingstechniek volgen we de snelst afdalende
gradient. Dit is sneller dan het oplossen van een lineair systeem. Het
maakt het ook mogelijk om blokniveauparallellisme toe te passen.

In de routeringsstap vindt de router een pad voor elk net in het
ontwerp. Een net bestaat uit meerdere verbindingen vanuit dezelfde
signaalbron, dit is typisch een uitgangspin van een blok. Paden voor
verschillende netten kunnen geen draden delen of dit zou leiden tot een
kortsluiting. Conventionele routeringsalgoritmen lossen dit probleem
op door een mechanisme toe te passen waarbij netten meermaals wor-
den opgebroken en opnieuw gerouteerd, terwijl de kost van draden
verhoogd wordt als die door meerdere netten gebruikt worden. Hier-
door lost de congestie geleidelijk op en krijgen we een routering zonder
kortsluitingen. In onze aanpak herrouteren we connecties in plaats van
netten. Dit stelt ons in staat om enkel connecties die gecongesteerde
draden gebruiken opnieuw te routeren (in plaats van volledige netten)
wat veel tijd bespaart, zeker voor de netten met veel connecties.

Tijdens het ontwikkelen van de nieuwe ontwerptools ontdekten we
een ander belangrijk probleem in de academische FPGA-gemeenschap.
Onderzoek naar FPGA-ontwerptools of -architecturen wordt meestal
uitgevoerd met behulp van een academisch raamwerk waarvan de
broncode vrij te verkrijgen is, omdat academici geen toegang hebben
tot de broncode van commerciële FPGA-ontwerptools en -ontwerpen.
We hebben een populair academisch raamwerk met een commercieel
raamwerk van één van de belangrijke FPGA-fabrikanten vergeleken.
We hebben het verschil in resultaten gemeten en we vonden een grote
kloof op het vlak van compilatietijd en kwaliteit van het eindresultaat.
De snelheidsprestaties van de ontwerpen gecompileerd door het acade-
misch raamwerk waren 2x slechter dan wanneer ze werden gecompi-
leerd door het commercieel raamwerk. Een tweede doel van dit proef-
schrift is het bewust maken van de kloof tussen commerciële en aca-
demische resultaten en die kloof proberen te verkleinen.

Om de kloof te verkleinen introduceren we nieuwe technieken om
de runtime en de kwaliteit van de FPGA-ontwerptools te verbeteren,
in lijn met onze eerste doelstelling. Een groot deel van het verschil is
te verklaren door de geavanceerdere commerciële FPGA-architectuur.
Daarom onderzochten we nieuwe FPGA-architecturen met kleine lo-
gische poorten in het interconnectienetwerk. We dimensioneerden de
transistoren in deze architecturen en we hebben nieuwe ontwerptools

vii

ontwikkeld voor deze architecturen om de prestaties te evalueren.
Een derde doelstelling is het verhogen van de efficiëntie van

FPGA-ontwerpen. De efficiëntie van FPGA-ontwerpen kan verhoogd
worden door gebruik te maken van de runtime-herconfigureerbaarheid
van FPGA’s. Een FPGA-configuratie kan gespecialiseerd worden voor
de eisen van de applicatie terwijl de applicatie op de FPGA uitgevoerd
wordt. Gespecialiseerde configuraties zijn sneller en kleiner. We heb-
ben bijgedragen aan een automatische toolflow die geparametriseerde
configuraties produceert. Tijdens de uitvoering worden deze gepara-
metriseerde configuraties geëvalueerd om gespecialiseerde configura-
ties te verkrijgen zonder de tijdrovende compilatie van het ontwerp
opnieuw uit te voeren. We hebben nieuwe plaatsings- en routerings-
technieken ontworpen die de herconfigureerbaarheid van de intercon-
nectieschakelaars in de FPGA uitbuiten.

In het kort: deze thesis draagt bij tot nieuwe ontwerptools, architecturen en
het verkleinen van de kloof tussen commerciële and academische ontwerptools.

viii

Summary

Field-Programmable Gate Arrays (FPGAs) are programmable, multi-
purpose digital chips. They are used to accelerate applications in case a
higher performance is required than the performance delivered by the
cheaper microprocessors. Typical requirements are high throughput,
low latency and low power consumption. An example of an applica-
tion that is often implemented with an FPGA is packet routing and fil-
tering in the internet infrastructure where packets have to be processed
at high throughputs and with a low latency. To realize this functional-
ity, the FPGA consists of an array of blocks. Some blocks are flexible,
others are specialized in executing a specific function. All these blocks
can be connected which each other to form a more complex functional-
ity.

The designer describes the accelerator in a high level description
language and is compiled by specialized software to an FPGA con-
figuration. Once compiled the designer checks if the application re-
quirements are satisfied. If the requirements are met, the design is fin-
ished. If the requirements are not satisfied, the designer has to change
his description and recompile the design to recheck the constraints.
This slow process is called the FPGA design cycle. It is typically per-
formed multiple times. An important bottleneck in the design cycle is
the FPGA compilation runtime. FPGA design sizes have grown follow-
ing Moore’s law. Large designs take multiple hours to be compiled. An
important goal of the work in this thesis is to shorten the design cycle
by speeding up FPGA compilation.

FPGA compilation software is divided in several subproblems: syn-
thesis, packing, placement and routing. Each subproblem is handled
by a different design tool. The design description is first synthesized
and mapped to the primitive blocks available on the FPGA. The result
is a network of primitive blocks. During packing the primitive blocks
are packed into more complex blocks. The complex blocks in the net-
work are assigned to a physical location on the FPGA during placement
while optimizing the circuit on the FPGA for the application require-
ments. After placement the connections between the blocks are routed
by setting switches in the interconnection network of the FPGA.

ix

Placement and routing are the most time consuming steps of the
FPGA compilation flow. Packing requires less runtime but it influ-
ences the runtime and quality of the placement and routing process.
So to reduce the compilation runtime we focused on new techniques to
improve packing, placement and routing. The traditional algorithms
designed for these problems are not suited to exploit processors with
multiple cores, which have become a commodity in the last decade.
We introduce new packing and placement techniques that have been
developed with a multi-core environment in mind.

Our new packing technique observes that modern FPGAs have a
hierarchical structure to improve area (cost) and delay. On each hi-
erarchical level there are a number of equivalent blocks which can be
connected by a routing network. This hierarchical structure is the main
reason why a packing phase has been introduced in the compilation
flow. In our approach we want to better take the natural hierarchy of
the design into account during packing. There are two common ap-
proaches to the packing problem: seed-based packing and partitioning-
based packing. Seed-based packing packs the design in a single pass.
It is prone to local minima and difficult to adapt to be able to exploit
multiple processor cores, but it handles architectural constraints well.
Partitioning-based packing produces better quality designs because it
preserves the natural hierarchy of the design. It is also easy to execute
in multiple threads. However it is difficult to handle architectural con-
straints. We combined these two packing approaches to get the best of
both worlds.

In placement the packed blocks in the design are assigned to a phys-
ical block onto the FPGA. Conventional analytical placement places
a design by analytically solving the minimization of a cost function,
which represents an estimate of the post-route performance. Unfortu-
nately it is not possible to put all the architectural constraints in one
analytically solvable cost function. So the problem is divided in multi-
ple iterations. In each iteration the cost function is adapted to the result
of the previous iterations and is minimized again. The minimization
encompasses the runtime intensive solving of a linear system. Exper-
iments show that it is not necessary to have the high accuracy of the
intermediate solutions. In our approach we use a steepest gradient de-
scent based optimization which is faster than solving a linear system
and still produces the same quality placements. It also allows to ex-
ploit block level parallelism.

In the routing step the router finds a path for each net in the de-
sign. A net consists of several connections coming from the same signal
source. Paths for different nets cannot share wires or this would lead

x

to a short circuit. Regions where paths want to share wires but can’t
are called congested regions. Conventional routing algorithms solve
this problem by a negotiated congestion mechanism in which nets are
ripped up and rerouted multiple times while increasing the cost of con-
gested wires. In this way the congestion is gradually solved. In our
approach we rip up and reroute connections instead of nets. This al-
lows us to only reroute the congested connections which saves a lot of
runtime, certainly for the nets with a lot of connections.

In the process of improving the design tools, we discovered an-
other important problem in the academic FPGA community. Research
on FPGA design tools or architectures is typically performed with an
open source framework, because the commercial FPGA design tools
are proprietary and closed source. We compared the popular academic
framework with the commercial framework of one of the important
FPGA vendors. We measured the gap and found it to be significant in
terms of compilation runtime and quality of the end result. The speed-
performance of the designs compiled by the academic framework were
2x slower than if they were compiled by the commercial framework.
So another goal of this thesis is to raise awareness and reduce the gap
between commercial and academic results.

To reduce the gap we introduced new techniques to improve the
runtime and quality of the FPGA design tools, which aligns with our
first objective (to shorten the design cycle by speeding up FPGA com-
pilation). A large part of the gap is also because of a more advanced
commercial FPGA architecture. We investigated new FPGA architec-
tures that have small logic gates in the routing network. We sized the
transistors in these architectures, developed new compilation tools for
these architectures and evaluated their performance.

A third objective of this thesis was improving the efficiency of
FPGA designs. The efficiency of FPGA designs can be improved by
exploiting the runtime reconfigurability of FPGAs. An FPGA config-
uration can be specialized for the runtime needs of the application
while the FPGA is executing. Specialized configurations are faster and
smaller. We contributed to an automatic flow that produces parameter-
ized configurations. These parameterized configurations are evaluated
at runtime to get a specialized configuration without the runtime inten-
sive recompilation of the design. We developed placement and routing
tools that exploit the reconfigurability of the routing switches in the
FPGA.

We conclude with emphasizing that this thesis contributes to new
design tools, new architectures, and the reduction of the gap between
commercial and academic tools.

xi

Contents

Examination Commission i

Dankwoord ii

Samenvatting (Dutch) v

Summary (English) ix

Contents xiii

List of Acronyms xix

1 Introduction 1
1.1 Introduction to FPGAs . 1
1.2 Introduction to the Research 7

1.2.1 The Slow FPGA Design Cycle 8
1.2.2 The Gap between Academic and Commercial Re-

sults . 10
1.2.3 Improving the Efficiency of FPGAs 10

1.3 Contributions . 11
1.4 Structure of the Thesis . 14
1.5 Publications . 14

2 Background 17
2.1 FPGA Architecture . 17

2.1.1 Low Level Building Blocks 17
2.1.2 Basic Logic Element (BLE) 23
2.1.3 Soft Blocks . 23
2.1.4 Hard Blocks . 25
2.1.5 Input/Output Blocks 26
2.1.6 High-level Overview 26
2.1.7 Programmable Interconnection Network 28

2.2 FPGA CAD Tool Flow . 30
2.2.1 Optimization Goals 31

xiii

2.2.2 Overview of the Tools 32
2.2.3 Compilation Runtime 34
2.2.4 Related Work . 36

2.3 The History of the FPGA 37
2.3.1 FPGA versus ASIC 37
2.3.2 Age of Invention (1984-1991) 38
2.3.3 Age of Expansion (1992-1999) 39
2.3.4 Age of Accumulation (2000-2007) 40
2.3.5 Current Age . 41
2.3.6 Current State of FPGA Vendors 42

3 The Divide between FPGA Academic and Commercial Results 43
3.1 Introduction . 43
3.2 Background and Related Work 44
3.3 Commercial and Academic Tool Comparison 46

3.3.1 Evaluation frameworks 46
3.3.2 Speed-performance 47
3.3.3 Area-efficiency . 49
3.3.4 Runtime . 50
3.3.5 Using VTR for a Commercial Target Device 52
3.3.6 The Reasons for the Divide 53

3.4 Hybrid Commercial and Academic Evaluation Flow . . . 54
3.4.1 Benchmark Design Suites 57

3.5 Concluding Remarks . 60

4 Preserving Design Hierarchy to Improve Packing Performance 63
4.1 Introduction . 63
4.2 Related Work . 65
4.3 Heterogeneous Circuit Partitioning 67

4.3.1 Balanced Area Partitioning 67
4.3.2 Pre-packing . 68
4.3.3 Hard Block Balancing 69

4.4 Timing-driven Recursive Partitioning 71
4.4.1 Introduction to Static Timing Analysis 71
4.4.2 Timing Edges in Partitioning 72

4.5 PARTSA . 73
4.5.1 Introduction to Simulated annealing 73
4.5.2 Cost Function . 75
4.5.3 Fast Partitioning 76
4.5.4 Parallel Annealing 78
4.5.5 Problems with PARTSA 80

4.6 MULTIPART . 80
4.6.1 Optimal Number of Subcircuits 81

xiv

4.6.2 Passing Timing Information via Constraint Files . 82
4.7 Experiments . 83

4.7.1 Optimal Number of Threads 83
4.7.2 An Architecture with Complete Crossbars 84
4.7.3 An Architecture with Sparse Crossbars 86
4.7.4 A Commercial Architecture 87

4.8 Conclusion and Future Work 88

5 Steepest Gradient Descent Based Placement 91
5.1 Introduction . 91
5.2 FPGA Placement . 93

5.2.1 Wire-length Estimation 95
5.2.2 Timing Cost . 96

5.3 Simulated Annealing . 97
5.3.1 The Basic Algorithm 98
5.3.2 Fast and Low Effort Simulated Annealing 99

5.4 Analytical Placement . 100
5.4.1 High level overview 101
5.4.2 Building the linear system 102
5.4.3 Bound-to-bound Net Model 104
5.4.4 Runtime Breakdown 105
5.4.5 Timing-Driven Analytical Placement 106

5.5 Liquid . 106
5.5.1 The Basic Algorithm 106
5.5.2 Modeling the Problem 107
5.5.3 Momentum Update 111
5.5.4 Optimizations . 113
5.5.5 Runtime Breakdown Comparison 115

5.6 Legalization . 116
5.7 Experiments . 117

5.7.1 Methodology . 117
5.7.2 Runtime versus Quality 118
5.7.3 Runtime Speedup 120
5.7.4 The Best Achievable Quality 122
5.7.5 Comparison with Simulated Annealing 122
5.7.6 Post-route Quality 123

5.8 Future Work . 123
5.9 Conclusion . 124

6 A Connection-based Routing Mechanism 125
6.1 Introduction . 125
6.2 The Routing Resource Graph 127
6.3 The Routing Problem . 128

xv

6.3.1 PATHFINDER: A Negotiated Congestion Mecha-
nism . 129

6.4 CROUTE: The Connection Router 132
6.4.1 Ripping up and Rerouting Connections 132
6.4.2 The Change in Node Cost 133

6.5 Negotiated Sharing Mechanism 136
6.5.1 The Negotiated Sharing Mechanism Inherent to

CROUTE . 136
6.5.2 Trunk Bias . 137

6.6 Partial Rerouting Strategies 137
6.7 Experiments and Results 138

6.7.1 Methodology . 138
6.7.2 Results . 139

6.8 Conclusion and Future Work 141

7 Place and Route tools for the Dynamic Reconfiguration of the
Routing Network 143
7.1 Overview of Dynamic Partial Reconfiguration 143

7.1.1 Introduction to Dynamic Circuit Specialization . . 144
7.1.2 Contributions . 145

7.2 Background . 145
7.2.1 Configuration Swapping 145
7.2.2 Dynamic Circuit Specialization 147
7.2.3 TLUT Tool Flow . 149

7.3 The TCON tool flow . 149
7.3.1 Synthesis . 150
7.3.2 Technology Mapping 150
7.3.3 TPACK and TPLACE 152
7.3.4 TROUTE . 153
7.3.5 Limitations . 155

7.4 TPACK . 155
7.5 TPLACE . 157

7.5.1 Wire Length Estimation for Nets in Static Circuits 158
7.5.2 Wire Length Estimation for Tuneable Circuits . . 159
7.5.3 Evaluation of the Wire Length Estimation 163

7.6 TROUTE . 164
7.6.1 The TCON Routing Problem 165
7.6.2 Modifications to the Negotiated Congestion Loop 165
7.6.3 Resource sharing extension 166

7.7 Applications and Experiments 168
7.7.1 FPGA Architecture 168
7.7.2 Methodology . 169

xvi

7.7.3 Virtual Coarse Grained Reconfigurable Arrays . . 170
7.7.4 Clos Networks . 172
7.7.5 Runtime comparison 174
7.7.6 Specialization Overhead 175

7.8 Conclusion . 176

8 Logic Gates in the Routing Nodes of the FPGA 177
8.1 Overview . 177
8.2 FPGA Architecture . 178

8.2.1 High-level Overview 178
8.2.2 Baseline Architecture 179
8.2.3 Routing Node . 181

8.3 Transistor-level Design . 182
8.3.1 Selecting the Type of Logic Gate 183
8.3.2 The N:2 Multiplexer 184
8.3.3 Level Restoring Tactics 187
8.3.4 Routing Nodes in Different Locations 189
8.3.5 Concluding Remarks on the Sizing Results 189

8.4 Conventional Technology Mapping 190
8.4.1 Optimisation Criteria 190
8.4.2 Definitions . 192
8.4.3 Conventional Technology Mapping Algorithm . . 193

8.5 Mapping to LUTs and AND Gates 198
8.5.1 Cut Enumeration and Cut Ranking 199
8.5.2 Cut Selection and Area Recovery 201
8.5.3 Area and Depth . 202
8.5.4 AND Gate Chains 204

8.6 Packing . 205
8.6.1 Modeling the Architecture 205
8.6.2 Conventional Packing 208
8.6.3 Resynthesis during Cluster Feasibility Check . . . 209
8.6.4 Performance Improvement 211

8.7 Post-route Performance 212
8.8 Concluding Remarks . 214

9 Conclusions and Future Work 217
9.1 Conclusions . 217

9.1.1 The Gap between the Academic and Commercial
Results . 217

9.1.2 New FPGA Compilation Techniques 218
9.1.3 Dynamic Reconfiguration of the Routing Network 218
9.1.4 FPGA Architectures with Logic Gates in the

Routing Network 219

xvii

9.2 Future Work . 219
9.2.1 Further Acceleration of the FPGA Compilation . . 220
9.2.2 Generic Method to Investigate New FPGA Archi-

tectures . 221

Bibliography 223

xviii

List of Acronyms

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

AIG And-Inverter Graph

AP Analytical Placement

ARM Advanced RISC Machines

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

BDD Binary Decision Diagram

BLE Basic Logic Element

BLIF Berkeley Logic Interchange Format

BRAM Block RAM

CAD Computer-Aided Design

CAM Content-addressable Memory

CGRA Coarse-Grained Reconfigurable Array

CLB Configurable Logic Block

CM Configuration Manager

CMOS Complementary Metal–Oxide–Semiconductor

CPD Critical Path Delay

CPU Central Processing Unit

CTO Chief Technology Officer

CV Computer Vision

CW Channel Width

xix

DAO Depth-optimal Area Optimization

DCS Dynamic Circuit Specialisation

DDR SDRAM Double data rate synchronous dynamic random-access memory

DPR Dynamic Partial Reconfiguration

DRAM Distributed RAM

DSP Digital Signal Processing

EDA Electronic Design Automation

FB Functional Block

FET Field-Effect Transistor

FF Flip-Flop

FIFO First In, First Out

FinFET Fin Field Effect Transistor

FIR filter Finite Impulse Response filter

FM Frequency Modulation

FPGA Field-Programmable Gate Array

GB GigaByte

GP General Purpose

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphics Processing Unit

HDL Hardware Description Language

HP High-Performance

HPC High-Performance Computing

HPWL Half-Perimeter Wire Length

HWICAP Hardware ICAP

HLS High-Level Synthesis

IBM International Business Machines Corporation

ICAP Internal Configuration Access Port

IO Input/Output

xx

IOB Input/Output Block

IP Intellectual Property

ISE Xilinx Integrated Synthesis Environment

JIT Just-In-Time

K-LUT K-input LUT

KU Kintex UltraScale

LAB Logic Array Block

LC Logic Cluster

LD Logic Depth

LI Local Interconnect

LIFO Last In, First Out

LVDS Low-Voltage Differential Signaling

LUT LookUp Table

MAC Multiply-Accumulate Unit

MB MegaByte

MM Multi-mode

MCW Minimum Channel Width

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MUX Multiplexer

NFA Non deterministic Finite Automaton

NIDS Network Intrusion Detection System

NMOS N-channel MOSFET

NRE cost Non-Recurring Engineering cost

OS Operating System

PAL Programmable Array Logic

PaR Place and Route

PCIe Peripheral Component Interconnect Express

PE Processing Element

xxi

PI Primary Input

PLL Phase Lock Loop

PMOS P-channel MOSFET

PO Primary Output

PPC Partial Parameterized Configuration

PR Partial Reconfiguration

RAM Random-Access Memory

ROM Read-Only Memory

RCP Representative Critical Path

RRG Routing Resource Graph

RTL Register-Transfer Level

RTR Run-Time Reconfiguration

RTL Register-Transfer Level

SA Simulated Annealing

SB Switch Block

SDC Synopsys Design Constraints format

SRAM Static Random Access Memory

SRL Shift Register LUT

STA Static Timing Analysis

TCAM Ternary Content-Addressable Memory

TCON Tuneable Connection

TH Treshold

TLUT Tuneable LUT

TPaR Tuneable Place and Route

TWL Total Wire Lenght

TRCE The Timing Reporter And Circuit Evaluator tool from Xilinx

VCGRA Virtual CGRA

VHDL Hardware Description Language

xxii

VPR Versatile Place and Route

VTB Verilog-To-Bitstream

VTR Verilog-To-Routing

WL Wire Length

WNS Worst Negative Slack

XDL Xilinx Design Language

xxiii

1
Introduction

This thesis starts with an introduction to the FPGA by answering some
frequently asked questions. Next the fundamental problems related to
FPGA compilation and architectures that are addressed in this thesis
are described. This is followed by our contributions that help towards
solving the problems. In the last sections we describe the structure of
this thesis and list the publications about the work in this dissertation.

1.1 Introduction to FPGAs

What is an FPGA? A Field Programmable Gate Array is a type of
programmable, multi-purpose digital chip. They are programmable in
the ’field’ after they are manufactured. An FPGA essentially consists of
a huge array of gates which can be programmed and reconfigured any
time, anywhere. However, “A huge array of gates” is an oversimplified
description of an FPGA. A modern FPGA consists of an array of pro-
grammable blocks. Some of those blocks are very flexible. They contain
look-up tables which can perform simple Boolean logic operations, reg-
isters to temporarily store results and resources that connect the lookup
tables and registers. Other blocks are specialized in a specific task such
as Digital Signal Processing (DSP) blocks, memory blocks, high speed
communication resources, ... The blocks are embedded in an intercon-
nection network, which can be programmed to connect the blocks to-
gether to make a circuit of your choice.

1

Why would we use an FPGA? An FPGA is used to accelerate an ap-
plication that requires intensive computations, high throughput, low
latency calculations or has a stringent power budget. An FPGA is flexi-
ble and is built to exploit the parallel nature of the problem. How much
parallelism is used to implement the application is completely up to the
designer. The application design architect can tailor a custom processor
to meet the individual needs of the application.

How does it work? How is an FPGA used? The typical work envi-
ronment for an FPGA is depicted in Figure 1.1. The hardware/appli-
cation designer writes his application accelerator or process kernel in
a high level description language such as VHDL, Verilog, OpenCL, ...
Subsequently the design description is compiled by specialized soft-
ware to an FPGA configuration bitstream on the workstation of the
application designer. The compilation software is typically divided in
different steps which are being handled by different tools. The compi-
lation tool flow is also called Computer Aided Design (CAD) or Elec-
tronic Design Automation (EDA) tool flow. We use the former term
in what follows. The software tools in the CAD tool flow are an im-
portant subject in this thesis. The majority of the chapters describe
improvements and speed-up techniques made to the most time con-
suming steps of the compilation tool flow. After the compilation, the
design is then typically tested on a printed circuit board which con-
tains the target FPGA. The FPGA configuration bitstream is sent to the
program interface of the test board and the FPGA is programmed with
the configuration bitstream.

How does it compare to other popular digital chips? Other impor-
tant popular digital chips are microprocessors, Graphical Processing
Units (GPUs) and Application-Specific Integrated Circuits (ASICs):

• Microprocessors perform tasks by splitting them up in small and
simple operations and perform these operations sequentially in
one or more threads, depending on the number of cores in the
microprocessor. Each of these simple operations (instructions) is
executed by specific hardware on the microprocessor chip.

• GPUs contain a large array of processors specialized for multi-
ply and accumulate (MAC) operations and distributed memory
to support this. They are specially designed to support video pro-
cessing and graphics rendering, but they are also used for other
applications that need a lot of MACs, such as training convolu-

2

11010101010101010
10101010000101010
11001010100010001
01010101010101010
10101010101000111

FPGA configuration bitstream

Design description

Printed Circuit Board (PCB) with FPGA chip

Workstation
PC

Compilation software

Figure 1.1: An overview of a work environment for an FPGA

3

Table 1.1: Comparison of typical microprocessor, FPGA, ASIC and GPU
designs. Partly reproduced from [56].

Microprocessor FPGA ASIC GPU

Example ARM Cortex-A9 Virtex Ultrascale 440 Bitfury 16nm Nvidia Titan X

Flexibility during development Medium High Very high Low

Flexibility after development1 High High Low High

Parallelism Low High High Medium

Performance2 Low Medium High Medium

Power consumption High Medium Low High

Development cost Low Medium High Low

Production setup cost3 None None High None

Unit cost4 Medium High Low High

Time-to-market Low Medium High Medium
1E.g. to fix bugs, add new functionality when already in production
2For a sufficiently parallel application
3Cost of producing the first chip
4Cost of producing each chip after the first

tional networks, digital signal processing, ...

• ASICs are single purpose chips. They are manufactured to only
perform one big function. Any digital circuit can be baked into
the silicon during production, but they cannot be reprogrammed.
They are typically fast and low power, like FPGAs, but each chip
can only perform the one function that is baked into the silicon
during production and cannot be reprogrammed.

An overview and comparison of the properties of these chips with
the properties of the FPGA is summarized in Table 1.1

FPGAs are typically used when the application requirements are
not met by the cheaper microprocessors. They have a vastly wider po-
tential to accelerate applications than the microprocessor and they excel
in power consumption. Only ASICs can achieve higher speeds, lower
power consumption and lower unit costs, because they are specially
made for the application and don’t have the overhead sustained by the
programmability of the FPGA. However, for low and medium volumes
ASICs are too expensive, because producing a custom silicon chip has a
large upfront cost due to the high cost of design and production setup
(e.g. photomasks). FPGAs are mainly used for small to medium vol-
ume products and ASICs for very high volume products. ASICs also
lack flexibility, once they are produced they can’t change their function-
ality

During development an ASIC is specialized for the application.
Each wire and transistor is placed specially for the application and it is

4

therefor the most flexible of accelerators. The FPGA is the second most
flexible during development. The application has to be implemented
by connecting low level generic programmable blocks and specialized
blocks on the FPGA. They can be interconnected in various patterns.
Microprocesors are less flexible during development, because the ap-
plication has to be executed by splitting the task up in simple opera-
tions that are executed sequentially in one or a few threads. The de-
velopment of the accelerator is restricted mostly when developing for
GPUs. GPUs typically contain from several hundred up until several
thousand cores. However, each processing core is only capable of exe-
cuting a small subset of basic operations, most notably the multiply and
accumulate operations. GPUs are very specialized accelerators, they
are focused on MAC-heavy applications that require a high through-
put and low latency. In an ASIC and an FPGA the dataflow can be
specialized for the application, in a GPU you are restricted by different
aspects, such as the available memory caches and the 16/32/64 float-
ing point operations. Additionally FPGAs serve a broader spectrum of
applications than the GPU.

FPGAs, GPUs and microprocessors have a lower commercial risk
and a faster time-to-market than ASICs [142]. Mistakes made during
development can easily be fixed after development by reprogramming
the device. There is also the possibility to add new functionality in fu-
ture upgrades. The reprogrammability extends the time a product stays
relevant, because features can be changed according to the changing
demand. For this reason, some products ship with an FPGA/GPU/mi-
croprocessor that is over-dimensioned, to allow for future upgrades.
For ASICs there is almost no flexibility after development. Develop-
ment mistakes that make it into an ASIC require a very expensive sili-
con respin or even a product recall. Microprocessor solutions have the
lowest time-to-market, because of its ubiquity and the well developed
compilation and debug tools. Developing for FPGAs and GPUs is more
complex, which results in a higher time-to-market The ASIC takes the
cake for time-to-market with its complex and slow development pro-
cess.

Microprocessors have only limited capabilities to exploit the paral-
lellism of an application. They typically only have a 1 to 6 cores. GPUs
have typically much more with up to 3840 cores for the recent Nvidia
Quadro P6000 GPU. For FPGAs and ASICs, the number of processing
units is completely up to the designer. It can be adapted to the needs of
the application.

For a same technology node an ASIC will have a higher perfor-
mance compared to the FPGA in terms of area, speed and power con-

5

sumption, because the functionality is hard-wired and there is no pro-
grammability overhead. However, many new ASIC designs do not
use the latest process technology, because they are way more expen-
sive than older ones, whereas FPGA vendors do [1, 4]. Because of this,
the speed, area and power gap is smaller between FPGAs compared to
a functionally equivalent ASIC in an older process technology. For a
MAC heavy application that requires high throughput, the GPU prob-
ably will have the upper hand in comparison to the FPGA, but where
the FPGA excels is the power performance. FPGAs even outperform
the GPU in terms of energy efficiency for the MAC intensive evalua-
tion of convolutional networks [81]. The microprocessor typically has
the lowest performance in terms of area, speed and power consump-
tion.

An ASIC is has the highest development cost. A lot of man hours
and high license costs for the EDA tools. It also has a large production
setup costs, which is the cost to produce the first chip. The FPGA does
not have production setup costs and it has a lower development cost
than an ASIC, but it has a higher development cost than developing an
accelerator for GPU or CPU, because of the license costs and the more
time consuming design cycle. A downside of both the FPGA and the
GPU is the relatively high unit cost, which is typically higer than the
omnipresent microprocessor. An ASIC has relatively the lowest unit
cost.

Who uses FPGAs? What are the important applications of the FPGA?
The most important applications implemented on the FPGA are packet
routing, switching and filtering in the internet infrastructure. Wired
and wireless communication has grown to over half of the FPGA busi-
ness with important customers as Cisco, TE connectivity, Juniper net-
works and many more. With such an important share of the revenue, it
has driven innovation in FPGAs to support this application domain.

Another important application domain is high performance com-
puting, with important customers as IBM for example. Datacenters
prefer FPGAs to perform some tasks over other processing units, be-
cause of their superior performance per power unit and the flexibility
to reprogram the FPGA at any time. Microsoft is a pionier in this aspect.
Other important application domains are video processing and sensor
processing, for example low latency virtual reality rendering and seis-
mic imaging software. FPGAs are also favoured in embedded systems,
because of their low power signature.

FPGAs are also used by engineers in the design of ASICs. The ap-
plication is first prototyped, debugged and tested with the help of an

6

FPGA. Radiation upsets are emulated with an FPGA. Test vectors are
calculated by injecting faults in the design. Possibly the first generation
of a product is sold with an embedded FPGA. Once the major problems
have been ironed out, the hard-wired version of the design is produced
and embedded in the second generation of products. An example is the
Lattice Semiconductor LFXP2-5E low-cost non-volatile FPGA that was
embedded in the motherboard of Apple’s 2011 Macbook pro to switch
the LVDS display signal between the two GPUs. In the 2012 versions
it was replaced by the Texas Instrument’s dedicated ASIC, HD3SS212.
Another company using the same strategy is Nokia.

New application fields are being unlocked as we write. One ex-
ample is accelerating inference by evaluating convolutional nets on the
FPGA.

Who produces FPGAs? The main FPGA vendors are Xilinx and Al-
tera, now part of Intel. They are both based in Silicon Valley. They de-
sign and sell FPGAs, but they outsource the manufacturing to special-
ized silicon foundries, such as Taiwan Semiconductor Manufacturing
Company, Limited (TSMC) or Intel. Other smaller FPGA companies
focus on niche markets, such as Lattice with its low power and low
cost FPGAs and Microsemi with its non-volatile low power FPGAs.

How much does an FPGA cost? The cost of an FPGA is largely de-
pendent on the size of the chip, i.e. how many programmable blocks
and input/output interfaces are available on it. The price range of one
FPGA unit varies a lot between 1 EUR for low end, smaller and older
FPGAs to a few 10,000 EUR for the high end, large flagship devices of
the newest technology node.

The second aspect of an implementation that affects its cost is the
clock frequency. The clock frequency is the drum beat that defines the
rate at which computations are performed. It is determined by the elec-
tric delay of the hardware and depends on the configuration of the
FPGA. If a design does not meet minimal performance requirements,
this can be solved by redesigning it using more resources (e.g. more
parallelism or pipelining) or choosing a more expensive FPGA with
lower electric delay (higher speedgrade or newer technology node).

1.2 Introduction to the Research

There are a few fundamental problems and opportunities we try to ad-
dress in this thesis. We will mainly discuss the problems in this section,

7

Design cycle

(Re-)designing
accelerator

Compilation

Check constraints

Synthesis

Placement

Routing

28 %

31 %

41 %

Runtime breakdown
Vivado - VTR benchmark designs

Chapter V

Chapter VI

Chapter IV

Figure 1.2: The FPGA design cycle and the runtime breakdown of the
FPGA compilation.

the solutions we investigated are described in the next section.

1.2.1 The Slow FPGA Design Cycle

The design cycle for FPGA design is illustrated in Figure 1.2. The hard-
ware engineer designs the accelerator by describing the different mod-
ules of the accelerator. Once the design has been described, the design
is compiled to an FPGA configuration. The compiler tries to meet the
design constraints. However, it is possible that the design constraints
are too stringent for the given design description and FPGA architec-
ture. So after the compilation is finished, the designer has to check
if the FPGA configuration meets all the application constraints. Typ-
ical constraints are maintaining a certain throughput, an upper limit
for latency, lowest cost (area) and a small power budget. In case the
compiled design meets the constraints, the cycle is finished. In case
it doesn’t meet the constraints, the engineer has to change his design
to obtain different characteristics after compilation. Depending on the
gap between the obtained performance and the goal, there a number
of options: make fundamental changes to the algorithm, target a dif-
ferent FPGA or make smaller changes, such as properly pipelining for
example. The design has to be recompiled and the constraints have to
be rechecked. This cycle typically has to be performed numerous times.
We want to shorten the design cycle as much as possible, because a slow
design cycle means high engineering costs and a slow time-to-market.

There are two important approaches for shortening the design cy-

8

cle. On the one hand we can try to increase the productivity of the engi-
neer by increasing the ease of use. For example, an active research field
with this aim is the high-level synthesis efforts. They make it easier for
the designer to describe the application by using a high level language:
C, SystemC or OpenCL. On the other hand the compilation runtime
should be as short as possible. For large designs the compilation is the
bottleneck of the design cycle. It can easily take a few hours to compile
a design. For example the mes noc design from the Titan benchmark
suite with 549K blocks requires 4h to be compiled by the Altera’s Quar-
tus compilation tool flow and 10h with an academic compilation tool
flow for a single threaded execution. The size of commercial designs
easily surpasses 500K blocks.

Reducing the compilation time also improves the ease of use, be-
cause the engineer can use the compilation flow for trial and error ap-
proaches as is common in the software programming domain. In this
thesis we focus on reducing the compilation time by improving the
compilation steps.

FPGA Configuration Compilation

Generating the optimal FPGA configuration is nearly impossible, be-
cause the solution space is very large. To simplify the problem, the
compilation is split up in several steps. In the first step the design de-
scription is synthesized and mapped to the available functional block
types on an FPGA, resulting in a network with functional block in-
stances. We call this step synthesis. Next, each block in the network
is assigned to a physical block location on the FPGA, which is called
the placement step. Finally, the connections between the blocks are
routed by deciding which switches need to be set in the interconnection
network. Even the subproblems in each of the compilation steps are
hard to solve. Generating the optimal solution for one step would take
a very long time. This only worsens for larger designs, so the FPGA
vendors and academic community try to find heuristics that generate
a near optimal solution in a reasonable timeframe. Each compilation
step has its influence on the end result and influences the runtime of the
other steps downstream. The bar chart in Figure 1.2 shows the runtime
breakdown for the different compilation steps. The current synthesis,
placement and routing approaches account for an equal part of the to-
tal compilation runtime. In this thesis we look at each of these steps in
a dedicated chapter and propose new techniques to reduce the runtime
and improve the quality of the result.

9

1.2.2 The Gap between Academic and Commercial Results

It is hard to make conclusions about research work around new FPGA
compilation techniques or new FPGA architectures, because everyone
is working with a different framework. A framework includes the tar-
get FPGA, the compilation tools and the benchmark designs. The FPGA
vendors keep the details of their architecture secret. They specialize
their FPGA compilation tools to their architectures and the compilation
tools are closed source. This makes it hard for academic researchers
to benchmark their new approaches in a commercial framework. There
are academic frameworks available but they lag behind the commercial
frameworks in almost every aspect, which makes it hard to estimate the
value of new techniques.

1.2.3 Improving the Efficiency of FPGAs

As Moore’s law is ending and technology process scaling is slowing
down [4, 119, 139], it is imperative to find new ways to improve the
FPGAs performance. This includes investigating new architectures and
different techniques to use the FPGA more efficiently. The main objec-
tive is to reduce the cost of FPGA design, while improving the perfor-
mance.

Architecture

In the past years the continuous race towards the next smaller tech-
nology node pushed FPGA architects towards designing architectures
that are performing well when scaling down and are easy to adapt to
the new process technology node. Incremental changes to the archi-
tecture and tools were preferred above drastic changes. One example
is changing the ratio between specialized blocks and generic blocks in
the FPGA. Another example is changing the size of specialized memory
blocks.

As the advantage of newer process technology diminishes, newer
more exotic architectures can become more interesting to further push
the performance forward.

Partial Reconfiguration

New techniques are emerging that try to exploit the “hidden” features
of the current FPGAs to improve the efficiency. One example is partial
and runtime reconfiguration. The configuration memory of an FPGA
has to be loaded with a configuration bitstream at start-up before the

10

FPGA can start to execute. Modern FPGAs allow parts of the configu-
ration memory to be rewritten at runtime, thus changing the function
of these resources. This can be done without affecting the operation of
other parts of the FPGA. Two types of reconfiguration can be distin-
guished. They are illustrated in Figure 1.3.

Modular Reconfiguration is a technique in which a region of the
FPGA is reserved to implement several predefined circuits, one at a
time, and it is possible to switch between the predefined circuits on
the fly using partial reconfiguration (Figure 1.3a) [12, 141, 146]. With-
out partial reconfiguration, all of the circuits would have to be imple-
mented in separate regions of the FPGA, each using its own set of re-
sources. This would result in a resource cost that is many times larger.
This type of partial runtime reconfiguration is becoming popular in dat-
acenters. It reduces the cost when larger FPGAs in the cloud can run
two or more independent accelerators concurrently.

Micro Reconfiguration Partial reconfiguration can also be used to re-
configure very small parts of the FPGA, such as a single logic or rout-
ing resource (Figure 1.3b). This is called micro reconfiguration. Micro
reconfiguration is used to slightly tweak a circuit, for example the coef-
ficients of a digital filter or ease the transition between different modes.

Problems The partial and runtime reconfiguration techniques have
not found their way in a lot of commercial applications because the
techniques perform badly in terms of ease of use. There is a lack of good
compilation tools and the process currently requires a lot of manual
work. In this work we mainly focused on micro reconfiguration.

1.3 Contributions

In this dissertation we contributed towards solving the problems men-
tioned in the previous section. These are our main contributions:

Quantifying the Gap between Academic and Commercial Results It
is difficult to assess how the new ideas on compilation tools and ar-
chitectures presented in academic conferences and publications would
perform in a commercial framework. Academic work is benchmarked
against the well known compilation tools, architectures and benchmark
designs in open source frameworks. There is a danger in only using
open source frameworks to evaluate new tool and architectural ideas,

11

FPGA

Static part

Dynamic part

Configuration 0

Configuration 1

Configuration 2

Configuration 3

(a) Modular reconfiguration.

FPGA

Static part

Static template

Configuration 3

Configuration 2

Configuration 1

Configuration 0

(b) Micro reconfiguration

Figure 1.3: The two partial and runtime reconfiguration techniques

12

it creates an academic bias. We measured the gap between academic
and commercial results and found it to be substantial. To reduce the
gap we focused mainly on new FPGA compilation techniques and ar-
chitectures. There are already other academic researcher working on
trying to reduce the gap between commercial and academic benchmark
designs [106].

New FPGA Compilation Techniques Many of the old compilation
techniques are designed for single core processors. It is hard to adapt
these old techniques in order to exploit the acceleration potential of
the multiple cores in the modern workstations. We investigated the
main runtime consuming parts of the old techniques and propose new
compilation techniques that can accelerate these parts by exploiting the
multi-core processor environment. We propose new pack, placement
and routing techniques that improve the runtime and quality. These
efforts contribute to a shorter FPGA design cycle and a smaller di-
vide between the academic and commercial results We also made our
new compilation tools available to the academic community in an open
source project [136]. In contrast to the other open source projects in the
academic community, which are mainly implemented in C [1, 88], the
new compilation tools are implemented in Java. Java is a platform in-
dependent high level programming language. This makes it easier for
other researchers to adapt the compilation tools to suit their research
objective.

Developing New Compilation Techniques for Micro Reconfiguration
To exploit micro reconfiguration, we propose to dynamically specialize
the accelerator for the needs of the application. To make it easier for
the designer we automatically produce a static template and parame-
terized configurations for the micro parts in the configuration. This is
only possible because of the newly proposed dynamic circuit special-
ization compilation flow. We contributed to this compilation flow with
new place and route techniques.

Investigating new FPGA Architectures To improve the efficiency of
FPGAs we investigated a range of new architectures. We focused on
FPGA architectures with small logic gates introduced in their intercon-
nection network. To test these architectures we developed new com-
pilation techniques and sized the architecture with the help of an elec-
tronic circuit simulator.

13

1.4 Structure of the Thesis

This thesis is organized as follows: in the background section (Chap-
ter 2) we give an overview of the current state of the FPGA architec-
ture and describe the different steps in the CAD tool flow that gener-
ate FPGA configurations, synthesis, technology mapping and packing,
placement and routing. A historic context of the FPGA is also described
in this chapter to put the work in this thesis in perspective. In Chap-
ter 3 we investigate the performance gap between the results obtained
by academic and commercial research frameworks. A research frame-
work includes the FPGA CAD tool flow, a target FPGA architecture
and benchmark designs. A research framework allows researchers to
make conclusions about new techniques, algorithms or architectures.
The gap indicates that research conclusions in the academic and com-
mercial world can differ, which negatively impacts the whole FPGA
ecosystem.

In Chapters 4, 5 and 6 we give more detailed background on the
packing, placement and routing problem respectively and describe new
algorithms applied to these problems. A hierarchical multi-threaded
partitioning algorithm for packing is described in Chapter 4. A steepest
gradient descent based algorithm for placement is explained in Chap-
ter 5 and in Chapter 6 we introduce a connection-based routing al-
gorithm with a more fine grained negotiated congestion mechanism
which allows to save routing runtime.

In Chapter 7 we describe the placement and routing algorithms we
developed for compiling parameterized FPGA configurations for the
dynamic reconfiguration of the FPGA’s routing network. We also inves-
tigated a new FPGA architecture with logic gates in the routing nodes
and in Chapter 8 we describe the sizing results, the technology map-
ping and packing algorithms we developed to test the architecture.

1.5 Publications

Journal Papers

• Dries Vercruyce, Elias Vansteenkiste and Dirk Stroobandt. “How
preserving Design Hierarchy during Multi-threaded packing
can improve Post Route Performance”. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, In review.

• Tom Davidson, Elias Vansteenkiste, Karel Heyse, Karel Bruneel
and Dirk Stroobandt. “Identification of Dynamic Circuit Special-
ization Opportunities in RTL Code”. ACM Transactions on Recon-

14

figurable Technology and Systems, Vol. 8, Issue 1, No. 4, 2015, 24
pages

• D. Pnevmatikatos, K. Papadimitriou, T. Becker, P. Böhm, A.
Brokalakis, Karel Bruneel, C. Ciobanu, Tom Davidson, G. Gay-
dadjiev, Karel Heyse, W. Luk, X. Niu, I. Papaefstathiou, D. Pau,
O. Pell, C. Pilato, M.D. Santambrogio, D. Sciuto, Dirk Stroobandt,
T. Todman and Elias Vansteenkiste. “FASTER: Facilitating Anal-
ysis and Synthesis Technologies for Effective Reconfiguration”.
Microprocessors and Microsystems, Volume 39, Issues 4–5, June–July
2015, Pages 321–338.

• Elias Vansteenkiste, Brahim Al Farisi, Karel Bruneel and Dirk
Stroobandt. “TPaR : Place and Route Tools for the Dynamic Re-
configuration of the FPGA’s Interconnect Network”. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 33, Issue 3, 2014, Pages 370–383.

Conference Papers with International Peer Review

• Elias Vansteenkiste, Seppe Lenders and Dirk Stroobandt. “Liq-
uid: Fast Placement Prototyping Through Steepest Gradient De-
scent Movement”. In 26th International Conference on Field Pro-
grammable Logic and Applications, Proceedings (FPL2016), 2016.
Pages 49-52

• Dries Vercruyce, Elias Vansteenkiste and Dirk Stroobandt.
“Runtime-Quality Tradeoff in Partitioning Based Multithreaded
Packing”. In 26th International Conference on Field Programmable
Logic and Applications, Proceedings (FPL2016), 2016. Pages 23-31

• Elias Vansteenkiste, Alireza Kaviani and Henri Fraisse. “Ana-
lyzing the divide between FPGA academic and commercial re-
sults”. In International Conference on Field-Programmable Technol-
ogy, Proceedings (ICFPT2015). Pages 96-103 (nominated for Best
Paper Award)

• Berg Severens, Elias Vansteenkiste and Dirk Stroobandt. “Esti-
mating Circuit Delays in FPGAs after Technology Mapping”. In
25th International Conference on Field Programmable Logic and Appli-
cations, Proceedings (FPL2015), 2015, Pages 380 - 383

• Alexia Kourfali, Elias Vansteenkiste and Dirk Stroobandt. “Pa-
rameterised FPGA Reconfigurations for Efficient Test Set Genera-

15

tion”. In International Conference on ReConFigurable Computing and
FPGAs, Proceedings (ReConFig2014), 2014, 6 Pages

• Brahim Al Farisi, Elias Vansteenkiste, Karel Bruneel and Dirk
Stroobandt. “A Novel Tool Flow for Increased Routing Ronfigu-
ration Similarity in Multi-mode Circuits. In IEEE Computer Soci-
ety Annual Symposium on Very-Large-Scale Integration, Proceedings
(VLSI2013), 2013. Pages 96-101

• Elias Vansteenkiste, Karel Bruneel and Dirk Stroobandt. “A
Connection-based Router for FPGAs”. In International Conference
on Field-Programmable Technology, Proceedings (ICFPT2013), Pages
326 - 329.

• Karel Heyse, Tom Davidson, Elias Vansteenkiste, Karel Bruneel
and Dirk Stroobandt. “Efficient Implementation of Virtual Coarse
Grained Reconfigurable Arrays on FPGAs”. In 23rd International
Conference on Field Programmable Logic and Applications, Proceedings
(FPL2013), 2013, 8 pages

• Karel Heyse, Tom Davidson, Elias Vansteenkiste, Karel Bruneel
and Dirk Stroobandt. “Efficient Implementation of Virtual Coarse
Grained Reconfigurable Arrays on FPGAs”. In 50th Design Au-
tomation Conference (DAC2013), 2013, Pages 1-8

• Elias Vansteenkiste, Karel Bruneel and Dirk Stroobandt. “Max-
imizing the Reuse of Routing Resources in a Reconfiguration-
aware Connection Router”. In 22nd International Conference on
Field Programmable Logic and Applications, Proceedings (FPL2012),
2012, Pages 322 - 329

• Elias Vansteenkiste, Karel Bruneel and Dirk Stroobandt. “A Con-
nection Router for the Dynamic Reconfiguration of FPGAs”. In
Lecture Notes in Computer Science: 8th International Symposium on
Applied Reconfigurable Computing (ARC2012), 2012, Pages 357 - 364

16

2
Background

This chapter contains background information about FPGAs. The ar-
chitecture of an FPGA and the CAD tools that are used to compile a de-
sign to an FPGA configuration are described first. Subsequently the his-
tory of the FPGA is described to put the work in this thesis in perspec-
tive and explain the current state of the FPGA architecture and tools.
The goal of this chapter is to provide a solid foundation for the follow-
ing chapters.Throughout the background you will find references to all
the other chapters in this thesis.

2.1 FPGA Architecture

In this section, a basic overview of a typical FPGA architecture and the
state of commercial FPGA architectures is described. An FPGA consists
of a large number of functional blocks embedded in a programmable
interconnection network. The functional blocks can roughly be divided
into a number of categories: Input/Output blocks, hard blocks and soft
blocks. We start with the low level building blocks of the FPGA and
follow a bottom-up approach to explain the architecture. The descrip-
tion starts with the basic building blocks and ends with the high-level
overview of the FPGA architecture.

2.1.1 Low Level Building Blocks

17

~set

In

Pass gate

Out

NMOS

Inverter
VDD

In Out In Out

set

CMOS
Transmission gate

set

In Out

Symbol

Figure 2.1: The schematics for the pass gate and inverter. Both are basic
building blocks of an FPGA.

Pass Gates are basic switches, with three pins, the input, output and
on/off pin. If it is turned on, it passes the logic level from the input pin
to the output pin. If the switch is turned off, then the input and output
pin are disconnected by a high impedance. It is a basic element used
to build multiplexers and SRAM cells. Pass gates can be implemented
using an n-type MOSFET (NMOS) or p-type MOSFET (PMOS). NMOS
pass gates are good at passing a logic low signal but they are bad at
passing a logic high. Similarly PMOS pass gates are good at passing
a logic high but bad at passing a logic low. This causes problems for
chained pass gates. The logic signal degrades at each stage and needs
to be restored. Instead of restoring the signal, another common solution
is to combine the advantages of the NMOS and PMOS pass gate by
connecting them in parallel. This is called a transmission gate. The
downside here is that two transistors are used to produce a tranmission
gate. Figure 2.1 shows the symbol used for a NMOS pass gate and the
schematic for the transmission gate.

Inverters have only two pins. The inverter outputs the complement
of the input signal. The schematic of an inverter is depicted in Fig-
ure 2.1. The input signal drives the gates of an NMOS and a PMOS.
The NMOS is switched to pass on the logic low level if the input signal
is high and the PMOS passes the logic high level if the input signal is
low. The inverter is the preferred circuit to strengthen signals because
the NMOS and PMOS are switched in the way their advantages are ex-

18

VDD VDD

In
~In

Set Set

Out
~Out

Out

~Out

In

~In

Set

Symbol Simplified Schematic Full Transistor Schematic

Figure 2.2: Schematics for the SRAM cell.

ploited. The PMOS is good at passing a logic high and the NMOS is
good at passing a logic low. Inverters are used to strengthen a weak-
ened signal and reduce the rise/fall times for signals that have to drive
a large downstream capacitance. Typically two or more inverters are
cascaded to form a chain buffer.

Static Random-Access Memory Cells (SRAM cells) are able to store a
single bit. Figure 2.2 shows schematics for an SRAM cell. They consist
of two inverters connected in a ring. Feedback ensures that the value
is stored as long as VDD is high. Two pass gates are used to enforce
the input signal and its inverse to the nodes in-between the inverters.
The drivers of the input signal have to be stronger than the inverters
used in the cell. The nodes in-between the inverters are also used as
the output pins of the SRAM cell. SRAM cells are the basic element
of the configuration memory. The layout of the SRAM cell is highly
optimized because FPGAs contain so many, e.g. Xilinx’ flagship FPGA,
the Virtex UltraScale 440 contains close to one billion SRAM cells. In the
following sections is described how SRAM cells are used to configure
the interconnection network and the soft blocks.

Multiplexers (MUX) select one of their input pins depending on the
selection signal and pass the logic value of the selected input pin to
the output pin. N:1 multiplexers have N input signals, one output sig-
nal and at least dlog2Ne selection signals. Multiplexers are completely
built up by pass gates. In Figure 2.3 the typical symbol of a multiplexer
and two common transistor-level implementations are shown. For the

19

In3 In4 In5

In6 In7 In8

In0 In1 In2

Sel0 Sel1 Sel2

Sel3

Sel4

Sel5

Symbol

Out

In

Sel

1 level implementation
NMOS pass gates

Sel0

2 level implementation
NMOS pass gates

Out

In0

Out

In1
In2
In3
In4
In5
In6
In7
In8

Figure 2.3: Different transistor schematics for multiplexers.

sake of simplicity only NMOS pass gates are used in the schematics,
because of the more compact symbol. For smaller multiplexers the 1-
level implementation is the fastest implementation because the input
signals only have to pass a single NMOS gate. For larger multiplexers,
the capacity and the resistance of the summing node becomes too high,
which makes the 1-level implementation slower. Another downside
of the 1-level implementation is that the number of selection signals is
equal to the number of inputs, which will be an important disadvan-
tage for routing multiplexers, because the selection signals in routing
multiplexers are provided by SRAM cells and consequently more sili-
con area will be required. The 2-level implementation is a good trade-
off. The signal has to pass two NMOS gates and encounters a larger
propagation delay, but the number of selection signals is now between
2 · b
√
Nc and 2 · d

√
Ne, which is much more scalable for larger multi-

plexers. Multiplexers are extensively used in the routing network and
are an important part of the LookUp Table implementation.

LookUp Tables - LUTs implement arbitrary Boolean functions of
their inputs using a truth table stored in configuration memory. The
truth table contains the desired output value for each combination of
the input values. In Figure 2.4 a schematic of a 4-input LUT is depicted.
A LUT is typically built up by a 2:1 multiplexer tree and it acts as a
large 2k : 1 multiplexer with k the number of LUT inputs. The SRAM
cells provide the multiplexer inputs and the LUT input pins provide
the selection signals. Each selection signal is shared between all the 2:1

20

O0

SRAM cells

LUT input pins

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

I0 I1 I2 I3

LUT output pin

O1

Symbol

Full Transistor Schematic

LUT

Inputs Outputs

Figure 2.4: Schematic of a 4-input LUT. The basic building block is a 2:1
multiplexer. The SRAM cells in this example are configured so that the
LUT implements a 4-input AND gate.

21

Clk

Set Reset

VDD

Clk

Symbol Full Transistor Schematic

FF
In Out

In Clk Out

~Reset

Figure 2.5: Symbol and schematic for a positive edge triggered D-type
flip-flop.

MUXes of each stage. Normally the signal is buffered after passing 2
or more pass gates, but the buffers are omitted for clarity. The optimal
position of the buffers and the number of buffer stages depend on the
process technology anyway. The LUT input pins are logically equiv-
alent, but there exist typically faster and slower pins. In our 4-LUT
example, the I0 pin is the slowest input pin and I3 pin is the fastest.

In the example in Fig. 2.4 two 3-inputs LUTs can be combined in
one 4-input LUT if they share two input signals. LUT implementations
that are capable of combining LUTs with shared inputs are called frac-
turable LUTs. The main FPGA vendors introduced LUTs with more
inputs and more sharing options. Altera uses 8-input fracturable LUTs
since the introduction of Stratix II family in 2004. The 8-input frac-
turable LUTs can implement a selection of 7 input functions and two 6
input LUTs with 4 shared signals. Xilinx moved from 4-input LUTs to
6-input LUTs with the introduction of their Virtex 5 architecture in 2006.
The sharing options are more limited since two 5-input LUTs have to
share all inputs to be implemented in the same LUT.

Flip-flops - FFs are memory elements that are designed to transfer the
logic value at the input pin to the output pin after one clock cycle. They
can be used to implement sequential logic. In Figure 2.5 a positive edge
triggered D-type flip-flop is depicted. This is the most common type of
flip-flop used in digital design. The flip-flops in commercial FPGA ar-
chitectures are more versatile. The flip-flop takes the logic value at the
input pin on the positive edge of the clock signal and makes it available

22

at the output pin on the next rising edge of the clock. Flip-flops in com-
mercial devices are more complex. They can be programmed to trigger
on the negative edge by inverting the clock signal, but they can also be
programmed to act as simple set-reset latches. Additionally setting and
resetting can be done synchronously or asynchronously. We refer the
reader to the manuals of the FPGA vendors for more details [147, 13].

2.1.2 Basic Logic Element (BLE)

A basic logic element contains typically one or two LUTs, one or two
Flip-Flops, adder or carry chain logic gates and multiplexers to connect
the blocks. The majority of the BLE inputs are connected directly to
the inputs of the LUT. There is also typically an input that bypasses the
LUT and is directly fed to the FF input MUX. The output of the LUT
is connected to the FF input MUX, in that way the output of the LUT
can be stored. The FF input MUX selects which signal is fed to the FF.
The output of the FF and the LUT are outputs of the BLE. Figure 2.6
shows schematics for the basic logic element architecture used by the
main FPGA vendors.

2.1.3 Soft Blocks

A typical soft block is depicted in Figure 2.7. A soft block is very flexible
and is able to implement almost any function of its inputs. They typi-
cally contain a number of BLEs and a number of MUXes. The MUXes
are switched to form the local interconnect crossbar which can be con-
figured to connect the soft block inputs and BLE outputs to the BLE
inputs. There is a lot of symmetry in this architecture. The position of
BLEs and the LUT input pins can be swapped without changing the
functionality of the soft block. This can be exploited to reduce the con-
nectivity of the local interconnect crossbar, so typically the local inter-
connect crossbar is not a fully connected one. At the moment of writ-
ing FPGAs generally contain 10,000s-100,000s of soft blocks. Soft blocks
are also called Configurable Logic Blocks (CLBs) in Xilinx’ architectures
and Logic Array Blocks (LABs) in Altera’s architectures. In this thesis
we mainly use the CLB abbreviation. Soft blocks commonly contain ex-
tra resources to implement wide multiplexers and carry logic or adders.
Another feature is that the SRAM cells in the LUTs of the soft block can
be configured to implement memories, such as synchronized RAM and
shift registers.

23

(a) Schematic of the Adaptive Logic Module in Altera’s Stratix V architectures.

(b) Schematic of the basic logic element in Xilinx’ UltraScale architectures.

Figure 2.6: Schematic of the Basic Logic Elements in the FPGAs from the
main FPGA vendors. Schematics are taken from the respective manu-
als [13, 147].

24

…

BLE

……………… …

4

…

BLE

……………… …

4

…

BLE

……………… …

4

…

BLE

……………… …

4

…

BLE

……………… …

4

…

BLE

……………… …

4

…

BLE

……………… …

4

…

BLE

……………… …

432

Outputs

InputsBLE Feedbacksignals

32

Local Interconnect Crossbar

Figure 2.7: A simplified schematic of a soft block. Soft blocks are also
called Configurable Logic Blocks (CLBs) in Xilinx’ architectures and
Logic Array Blocks (LABs) in Altera’s architectures.

2.1.4 Hard Blocks

Hard blocks are optimized for a specific function or task that is com-
mon in FPGA designs. They are smaller, faster and consume less en-
ergy compared to their implementation in soft blocks. We describe the
important ones:

DSP Blocks contain one or more adders and multipliers to acceler-
ate the common multiply-accumulate operations heavily used in digi-
tal signal processing applications such as video and audio processing.
The DSP blocks also contain registers for pipelining the input and out-
put. DSP blocks are capable to combine different smaller width multi-
plications/additions. Commonly they can also be used to implement
bitwise logic functions, pattern detection, barrel shifters, wide coun-
ters, wide XOR and wide-bus multiplexing. We refer the reader to the
manuals and white papers of the FPGA vendors for more detailed in-
formation about the architecture and features of the DSP blocks in com-
mercial devices [9, 108, 148].

RAM Blocks are specialized large memories. They have one or more
data ports, address ports and clock inputs. RAM blocks support mem-
ory with different aspect ratios, different data and address widths.
They can be cascaded to form larger memories. Dual port RAM blocks
have two independent data and address ports and two clock inputs.
Both data ports access the same memory. RAM blocks are frequently

25

used to implement FIFO and LIFO buffers and have some extra hard-
ware features to support these use cases. The size of RAM blocks varies
amongst vendors and device families, Xilinx’ UltraScale architecture
has 36 Kb and 288 Kb blocks. Altera has 9 Kb blocks and 144 Kb blocks
in their Stratix IV devices but only 20 Kb blocks in their Stratix V de-
vices. We refer the reader to the manuals of the FPGA vendors for more
detailed information about the features of the RAM blocks in commer-
cial devices [149, 13].

Other Blocks typically found in FPGA devices are clock management
resources and processor blocks. Clock management resources are an es-
sential part of the FPGA. They generate the clock signal with a PLL, dis-
tribute the clock signal to all registers and take care of the clock skew ef-
fect. It additionally allows to use different clock domains. Some FPGAs
contain hard microprocessor blocks. They are more powerful and effi-
cient than soft-core microprocessors implemented on the fabric of the
FPGA. PowerPC processors have been embedded in Xilinx’ Virtex fam-
ilies since the introduction of the Virtex-II Pro family. The fully fledged
ARM processors are embedded in Altera’s System-on-a-Chip (SoC) de-
vices and Xilinx’ Zynq devices.

2.1.5 Input/Output Blocks

The Input/Output Blocks (IOBs) are connected to the external pins of
the chip and thus allow communication with the outside world. It is
difficult to scale the I/O pads and pins down at the same rate as has
been done for transistors. This problem leads to the number of I/O
pins being an important part that determines the area of the die and
consequently influences the price setting of FPGAs. The solutions for
this I/O bandwidth constriction is the introduction of higher speed I/O
transceivers with serializer/deserializer infrastructure. There are also
specialized blocks to implement different IO protocols, such as PCIe,
Ethernet, . . . Some FPGAs have embedded ADC’s to capture analog in-
put signals.

2.1.6 High-level Overview

In the beginning FPGA devices only contained simple soft blocks and
IOBs. FPGA architects designed one tile for the soft block and repli-
cated the tile to make the masks for the whole die. The soft blocks in
these older devices are organized in a large array, hence the ”Array”
in the acronym FPGA. Nowadays an FPGA is a heterogeneous device

26

Figure 2.8: A high level overview of the block organisation of Altera’s
Arria 10 architecture.

Table 2.1: Flagship devices of the latest device families for the main
FPGA vendors.

Property/Device GX 5500 GX 2800 XCVU13P ZU19
FPGA vendor Altera Altera Xilinx Xilinx
Device Family Stratix 10 Stratix 10 Virtex Zynq

UltraScale+ UltraScale+
Technology Proc. 14nm 14nm 16nm 16nm
IO Blocks GP/HiS 1,640/72 1,160/144 832/128 310/572
Total Mem. Size* 166 Mb 244 Mb 503 Mb 80 Mb
Soft Blocks** 187K LABs 93K LABs 216K CLBs 65K CLBs
DSP blocks** 3,960 11,520 12,288 1,968
Embedded µ-proc. yes yes no yes
GP = general purpose
HiS = High Speed
* Total memory size includes distributed memory and RAM blocks
** DSP blocks and Soft blocks are different for each vendor and family. Here follow the
main differences, keep in mind that there are other important differences. DSP blocks in
Altera’s Stratix 10 devices contain 18x19 multipliers. DSP blocks in UltraScale devices
contain 18x27 multipliers. CLBs contain 8 6-LUTs and LABs contain 20 6-LUTs.

27

Figure 2.9: A 9:1 routing multiplexer consisting of 6 SRAM cells, a 2-
level mux and a 2-level buffer.

and contains several types of blocks. Typically flagship FPGA devices
contain an embedded micro processor, several hundreds of IOBs, 100K
or more soft blocks, several thousand DSP blocks, several hundred Mb
of memory spread out in RAM blocks and distributed memory. In Ta-
ble 2.1 the properties are listed for the devices from the main FPGA ven-
dors that we consider flagship devices. The blocks are still organized in
arrays but some columns contain different types of blocks. Figure 2.8
shows an overview of a fabric fragment of Altera’s Arria 10 device fam-
ily, which clearly demonstrates the column based layout.

2.1.7 Programmable Interconnection Network

To execute a larger functionality the functional blocks in an FPGA have
to be able to connect. The inputs and outputs of the functional blocks
can be connected to each other using the FPGA’s routing network.
To provide interconnectivity the routing network is built up of a lot
of routing multiplexers and wiring in-between the routing multiplex-
ers. The wiring is partly realised in the metal layers that run on top
of the functional block tiles. A typical routing multiplexer is shown
in Figure 2.9. A routing multiplexer is a multiplexer with SRAM cells
connected to the selection inputs. The selected signal is then typically
buffered and distributed to other routing multiplexers and input pins
of the functional blocks. The routing multiplexers are the subject of
investigation in Chapter 8. We investigated the performance of the ar-
chitecture if we insert a NAND gate in the buffer after the multiplexer.

28

Vertical routing channels

Connection Block Local interconnect crossbar

BLE

BLE

BLE

Switch Block

Soft Block

Horizontal routing channels

Figure 2.10: The routing network fragment of one tile.

At a higher level, the routing network is typically organized in con-
nection blocks, switch blocks and routing channels, as depicted in Fig-
ure 2.10. The wiring is bundled in vertical and horizontal routing chan-
nels. The width of the routing channel indicates the number of wires in
the channel, which can easily surpass 200 in commercial devices. A ma-
jority of the wires span multiple blocks. The length of wires typically
varies and spans between 1 and 24 functional block tiles. In commercial
devices the routing network also has diagonal wires. Switch blocks are
located at the intersection of vertical and horizontal routing channels
and provide a limited crossbar functionality. Switch block routing mul-
tiplexers are configured to select a signal from one of the wires in the
other channels or from the outputs of the functional block. The selected
signals are strengthened and driven onto the wires. Connection blocks
hook the functional block up to the routing network by routing multi-
plexers that connect the wires inside the routing channels to the inputs
of the functional block. A functional block tile typically contains a part
of the routing network, such as its connection block, a switch block and
wires going to other tiles. In that way the routing network can be built
up by stitching tiles together. The local interconnect crossbar of the
soft logic block is typically also considered to be routing infrastructure.
The clock signal however is distrubuted to the flip-flops in the CLBs
by a dedicated routing tree network. They are different from regular

29

HDL description
of the design

Synthesis

Gate-level
netlist

Technology
Mapping

Elementary
block netlist

Packing

Functional
block netlist

Placement

 netlist +
placement

Routing

netlist +
placement +

routing

Bitstream
compiler

FPGA
configuration

bitstream

Figure 2.11: Tool flow for FPGA configuration compilation.

routing resources because they are optimised for clock signals, e.g. to
minimize clock skew.

The routing network constitutes a very significant part of the silicon
area of an FPGA. We sized a soft logic block tile of the basic architecture
used in [30] and the switch block contributes 34% of the area, the con-
nection block 20 % and the local interconnect crossbar 15%. Together
these account for 69% of the soft block tile area.

The collection of SRAM cells from the routing network and the func-
tional blocks form the configuration memory. In our explanation we
ommitted the special infrastructure to read and write the configuration
memory. SRAM cells are volatile and, they have to be configured again
every time at boot-up.

2.2 FPGA CAD Tool Flow

The functionality of an FPGA is not fixed during the production process
and can be changed by writing a different configuration to the config-
uration memory. This flexibility leads to a substantial reduction of the
economic risk of developing hardware accelerators. Unfortunately the
flexibility of the FPGA comes at a price. Each time the application de-
veloper wants to test his design, a new FPGA configuration has to be
compiled. Finding the configuration bits that define the FPGA’s func-
tionality is done in an automated way by the FPGA CAD tool flow. The
compilation/translation of a high-level description of the application to
an FPGA configuration is typically divided in several steps: synthesis,
technology mapping, packing, placement and routing (Figure 2.11). A
short description of each step is given in the following sections. In each
step NP-hard problems have to be solved. The main FPGA device man-
ufacturers and the academic community have developed heuristics to
approximate an optimal solution, unfortunately it remains a compu-
tationally intensive process. The most time-consuming steps are the
placement and routing steps. Murray et al. report a placement runtime
of 7 hours for the one million block sized bitcoin miner design, which is
part of the Titan23 benchmark suite [106].

30

Table 2.2: Density and cost scaling of low cost Kintex UltraScale FPGAs.
Prices in EUR were obtained from Octopart for one item of the cheapest
edition of each FPGA (August 2016).

Device Price CLBs IOBs DSP Slices Total Mem.(Mb)
KU025 850 1818 456 1152 17
KU035 977 25391 760 1700 25
KU040 1270 30300 760 1920 28
KU060 2290 41460 912 2760 47
KU085 3480 62190 996 4100 71
KU095 4243 67200 1014 768 64
KU0115 5175 82920 1216 5520 94

2.2.1 Optimization Goals

In each compilation step the tools can pursue different optimization
goals. Depending on the constraints given by the designer the tools op-
timize the FPGA configuration for the application. The most important
optimization goals are listed here.

Power Consumption Low power applications such as wearable de-
vices, space satellites, ... have stringent power consumption require-
ments. The CAD tools can optimize the FPGA configuration for lower
power consumption by reducing the switching activity in the design
based on typical design usage. Making frequently used connections
shorter helps reducing the power consumption of the design. Reduc-
ing the size of the device also helps because smaller FPGAs typically
consume less energy. Lowering the clock frequency or partially switch
off unused parts of the design can also help but that is considered to be
the area of the designer. The designer can adapt the design or constraint
file respectively if the applications allow it.

Speed High speed applications in the area of wired/wireless commu-
nication, high performance computing and real time applications ben-
efit from achieving high clock frequencies and high throughput. The
CAD tools optimize the FPGA configuration to be run at higher clock
frequencies. To increase the maximal clock frequency the CAD tools try
to shorten the critical path, which is the slowest combinational path in
the design from one sequential block to another. A sequential block is
a Flip-flop or register in the DSP/RAM blocks.

31

Cost (Area) Cost is a factor that impacts every application imple-
mented on FPGAs. A smaller FPGA is always cheaper, this applies
to each FPGA family. An FPGA family is a series of FPGA devices from
the same company, made in the same technology node and typically
optimized for the purpose (High performance/Low Cost/Low power
consumption). As a demonstration the prices for Xilinx’ Kintex Ultra-
Scale devices are listed in Table 2.2. Depending on the application the
critical resource usage may be the soft, IO, RAM or DSP block usage.
Tools are typically trying to reduce soft and hard block usage as much
as possible.

Since the routing infrastructure is a major part of the chip, minimiz-
ing the routing resource usage of a design can greatly reduce the FPGA
production cost. Efficient compilation tools can help to reduce the sili-
con area and the number of metal layers needed to produce the FPGA.
The routing resource usage metrics used by the tools are the total wire-
length and routing channel width.

2.2.2 Overview of the Tools

In the following paragraphs we introduce each of the steps in a typical
FPGA tool flow.

Synthesis

In the synthesis step the design, described in an HDL (Hardware De-
scription Language), is translated to a gate-level logic circuit (Fig-
ure 2.12a), which means a Boolean network of simple logic gates (AND,
NOT, flip-flop, . . .) (Figure 2.12b). Some optimisation steps can be ap-
plied to the resulting Boolean network to improve the quality of the
result of the next step, technology mapping. These steps try to reduce
the number of simple logic gates in the Boolean network or reduce its
logic depth. Some specific structures such as multipliers or adders may
directly be synthesised into predefined implementations obtained from
a library using LUTs, carry chains, DSP blocks or RAM blocks.

Technology Mapping

During technology mapping, the Boolean network generated by the
synthesis step is mapped onto the resource primitives available in the
target FPGA architecture. The basic primitives of most FPGAs are con-
sidered to be the LUT and the FF. The LUT is limited by the number
of inputs it has. Other primitives, such as DSPs, are typically inferred
directly from HDL and not mapped during technology mapping.

32

The result of this step is a netlist with elementary blocks (LUTs, FFs,
DSPs, etc.) (Figure 2.12c). The technology mapper tries to minimize
the depth, i.e. the number of LUTs on the longest path from input to
output, and area, i.e. the total number of LUTs, of the netlist.

Packing

During the packing step, LUT primitives, flip-flops, memory slices and
DSP slices from the mapped netlist are clustered into functional blocks,
taking the connectivity possibilities of the functional block and the de-
sign constraints into account. The packing algorithms try to pack the
primitives with critical connections together in one block, because intra
block connections are typically faster. In order to minimize the rout-
ing congestion, packing tools also try to pack closely connected prim-
itives together. This minimizes the number of connections between
functional blocks that have to be realised by the routing network. Ad-
ditional constraints may have to be taken into account: e.g. on Xilinx
FPGAs only one set of clock, clock enable and reset signals is allowed
per CLB. The result of the packing step is a netlist of functional blocks
(Figure 2.12d). In Xilinx’ latest FPGA tool flow, Vivado, this step is be-
ing merged with the placement step [145]. In Chapter 4 we propose
a new multi-threaded packing algorithm in which the netlist of func-
tional blocks is partitioned while trying to preserve the design hierar-
chy.

Placement

During the placement step, functional block sites on the FPGA are as-
signed to implement the instances of the functional block primitives
in the packed netlist (Figure 2.12e). Placement takes into account the
timing, wirelength and congestion of the design [145], e.g. by plac-
ing strongly connected blocks or blocks with critical connections in-
between closer together. The placement problem is a NP-complete
problem. Approximate solutions are found by placement heuristics.
Simulated annealing is the conventional heuristic used to produce
placements. Simulated annealing for the larger designs can take sev-
eral hours. In the last decade analytical placement techniques have be-
come more popular to speed up the FPGA placement process. Analyt-
ical placement techniques produce a placement in two steps, a global
placement prototyping step and a refinement step. In Chapter 5 we
propose a new Steepest Gradient Descent based technique for global
placement prototyping.

33

Routing

During the subsequent routing step, the routing resources are assigned
to realise each net as described in the mapped circuit netlist without
causing short-circuits, see Figure 2.12f. The FPGA’s interconnection
network not only requires the larger portion of the total silicon area
in comparison to the logic available on the FPGA, it also contributes
to the majority of the delay and power consumption. Therefore it is
essential that routing algorithms assign the routing resources as effi-
ciently as possible. Additionaly the routing solution of the design de-
termines the maximum clock frequency of the circuit. Routing therefore
has to take into account the timing constraints and the contributions of
all nets to the critical path, but also the availability of the scarce routing
resources. Unfortunately the routing problem is a NP-complete prob-
lem and in most cases the most time-consuming physical design step.
Routing for the larger designs can easily take multiple hours. For a
given architecture and design it is not always sure if a routing solu-
tion can be found. If a routing solution is found, the routing infras-
tructure settings are extracted and used to compile a FPGA configura-
tion bitstream. The conventional methods to solve the routing problem
are based on the PATHFINDER algorithm [100]. The PATHFINDER al-
gorithm rips up and reroutes nets iteratively until no more congestion
exists. The cost of overused routing resource is increased in each itera-
tion. To reduce the routing runtime, only the congested nets are ripped
up and rerouted. In Chapter 6 we propose a more refined version of
the PATHFINDER algorithm, which is called the connection router. The
connection router is able to reduce the runtime by partially rerouting
nets. To achieve this, the main congestion loop of the connection router
rips up and reroutes only the congested and critical connections, which
allows the router to skip congestion free parts of large fanout nets and
consequently converges much faster to a solution.

2.2.3 Compilation Runtime

Since the introduction of high-level synthesis [2] and the emergence
of new markets [123], more and more engineers with a software back-
ground attempt to accelerate applications with an FPGA. They are
used to gcc-like compilation times and their design methodologies are
adapted to these short compilation times. In order to fix bugs and mea-
sure the performance of their design, the compilation is performed nu-
merous times to evaluate if the design meets the constraints of the ap-
plication. Hence, they cannot accept the long compilation times that
are common in FPGA design. This is an important reason for research

34

e n t i t y crossbar i s
port (

s e l : in s t d l o g i c v e c t o r (1 downto
0) ;

i : in s t d l o g i c v e c t o r (1 downto 0)
;

o : out s t d l o g i c v e c t o r (1 downto 0) ;
) ;
end crossbar ;

a r c h i t e c t u r e behavior of crossbar i s
begin

o (0) <= i (t o i n t e g e r (s e l (0))) ;
o (1) <= i (t o i n t e g e r (s e l (1))) ;

end behavior ;

(a) HDL design.

A	 A	 A	A	

O	O	

i0	sel0	

o0

N	

o1

sel1	

N	

i1	

(b) After Synthesis.

o1

L1	

L0 = sel0.i0 + sel0.i1
L1 = sel1.i0 + sel1.i1

L0	

i0	sel0	 sel1	 i1	

o0

(c) After Technology Mapping.

CLB1	CLB0	

i0	sel0	 sel1	 i1	

o0

IOB	

o1

IOB	

IOB	 IOB	 IOB	 IOB	

(d) After Packing.

	
	

		 		 		 		

	
	

	
	

	
	

	
	

	 		 		 	

	
	

	
	

	
	

		 		

	
	

	
	

		 		

	
	

	
	

	
	

	
	

	 		 		 		 	

	
	

	
	

	
	

i0	 o0	

i1	 o1	

	 	

	
	

	
	

	
	

sel0	

sel1	
IOB IOB IOB IOB

IOB

IOB

IOB
CLB

IOB

IOB

IOB

IOB

IOB IOB IOB IOB

CLB

CLB

CLB

(e) After Placement.

	
	

		 		 		 		

	
	

	
	

	
	

	
	

	 		 		 	

	
	

	
	

	
	

		 		

	
	

	
	

		 		

	
	

	
	

	
	

	
	

	 		 		 		 	

	
	

	
	

	
	

i0	

o0	

i1	 o1	

	 	

	
	

	
	

	
	

sel0	

sel1	
IOB IOB IOB IOB

IOB

IOB

IOB
CLB

IOB

IOB

IOB

IOB

IOB IOB IOB IOB

IOB
CLB

CLB CLB

(f) After Routing.

Figure 2.12: Intermediate results of the different steps of the FPGA tool
flow.

35

into speeding up the CAD algorithms. The most problematic runtime
consuming steps of the FPGA design compilation are placement and
routing.

Additionally we still observe an increase in both the size of appli-
cations and target devices following Moore’s law [117]. Moore’s law
states that for integrated circuits the density of transistors at which the
cost per transistor is the lowest increases at a rate of factor two per year.
The increase in size for designs and target FPGAs makes it hard to keep
the CAD tools scalable in terms of runtime and memory requirements.
To overcome this problem, device manufacturers and academics de-
veloped multi-threaded versions of the previously serial implemented
algorithms [18, 51, 63, 85]. Although seemingly successful, the algo-
rithms cope with problems such as serial equivalence, being determin-
istic and the fact that algorithms are not designed to scale in terms of
number of threads.

In this thesis we describe novel concepts and improvements for
packing, placement and routing algorithms in Chapters 4, 5 and 6 that
improve the compilation runtime - solution quality tradeoff.

2.2.4 Related Work

Open-source projects such as VTR [88] and RapidSmith [77] aim to
build academic FPGA tool flows. VTR consists of the ODIN II synthe-
sis tool, the ABC logic optimization and technology mapping frame-
work and VPR the Versatile Place and Route framework. VPR was de-
signed to investigate FPGA architectures and tools. VPR has shown
some flexibility to investigate architectures, but it serves less for pro-
totyping CAD algorithms because it is implemented in C and is only
recently being ported to C++. C/C++ are low level languages, making
it easier to build faster tools, but it requires more work and time to pro-
totype new CAD algorithms. The algorithmic improvements described
in Chapters 4, 5 and 6 to the packing, placement and routing steps are
implemented in an abstract and heavily object-oriented fashion in Java,
making it easier to try out new algorithms. In the future we plan to
combine the tools and release them in one framework [136], making it
easier for academics to try out new CAD algorithms.

In Chapter 3 we describe a considerable gap between the quality
of results obtained by the VTR framework and the Xilinx’ framework,
which influences research conclusions made in the academic commu-
nity.

36

Figure 2.13: Initial chip design cost, by process node, worldwide [62]
The design cost is the cost to design the chip in the specific technology
process node.

2.3 The History of the FPGA

In this section we give a historic context of the FPGA that allows to
put the work in this thesis in a larger timescale perspective. We largely
follow the three ages of FPGA as suggested by Steve Trimberger in [127,
128]. Steve Trimberger is a research fellow at Xilinx and an important
voice in the academic community on reconfigurable architectures.

2.3.1 FPGA versus ASIC

An application-specific integrated circuit (ASIC) is a chip customized
for a particular application, rather than intended for a general-purpose
use. In the 1980s FPGAs performed poorly on all important aspects in
comparison with ASICs, such as price per unit, low power, high capac-
ity and high speed. Despite the poor performance they were still be-
coming popular because of the high non-recurring engineering (NRE)
cost involved with producing an ASIC. Producing an ASIC requires to
not only design the transistor level circuit, but also design the masks
required to produce the silicon wafers. The NRE cost is a huge thresh-
old for new companies that want to accelerate their application. The
FPGA vendors can amortize the NRE costs of the ASIC development
over all their FPGA customers. Additionally FPGAs allow a faster time-
to-market, because the FPGA customers save time by avoiding the low
level engineering work involved with producing an ASIC.

The bar chart in Figure 2.13 shows that the NRE cost for ASICs in-
creased as the process technology scaled down, which pushed the cost
crossover point favourably towards FPGAs. Today, ASIC customers
use an older process technology, which reduces the NRE cost but also

37

decreases the gap in performance and per unit cost gain. Addition-
ally the FPGA vendors reduce the risk for developing a hardware ac-
celerator by raising the abstraction level for designing hardware and
eliminating low level design problems. Bugs could be corrected by re-
configuring the FPGA in contrast to ASICs, for which new masks need
to be produced, making it a costly and timing intensive design cycle.

2.3.2 Age of Invention (1984-1991)

In the age of invention of FPGAs cost containment was critical and the
most important parameter determining the cost was silicon area. Ev-
ery advantage in process technology and architecture was exploited
to reduce the area of the die. FPGAs are more scalable in size than
other programmable architectures such as Programmable Array Logic
(PALs). A PAL is a programmable AND array which generate product
terms and a fixed OR gate that combines the terms. The number of pro-
grammable points of a PAL architecture grows with the square of the
number of inputs which puts PALs at a big disadvantage.

Cost efficient programming technologies such as antifuse architec-
tures were popular with the largest FPGA at the time being an antifuse
device, the Actel 1280. They only used one transistor, but could only be
programmed once. SRAM cells based architectures were at a disadvan-
tage, because SRAM cells require 6 transistors and are volatile. Xilinx
used 4-input LUTs but FPGA architects looked at finer grained archi-
tectures to increase the efficiency with smaller LUTs or NAND/XOR
gates.

As cost was really the number one issue and consequently silicon
area too, the interconnect wiring was designed as efficient as possible
with only short wires. Early FPGAs were starved for interconnect and
consequently notoriously hard to route.

The Rise of FPGA design Tools

Automated design tools such as placement and routing were not yet
considered essential in the age of invention, but each FPGA vendor had
his own architecture, which prevented universal FPGA design tools.
For customers it was hard to tell if a function would fit the FPGA. The
performance of the design was hard to predict and dependent on the
placement of the logic and routing of the inter-block connections. To
aid the customer to get the most out of the FPGA, the FPGA vendors
started developing their own CAD tools. Here lays an important rea-
son for the gap between commercial and academic research results de-
scribed in Chapter 3.

38

2.3.3 Age of Expansion (1992-1999)

FPGA startup companies were fabless manufacturers, they designed
and sold FPGAs but outsourced the fabrication of the FPGAs to spe-
cialized manufacturers, the semiconductor foundries. As a result they
could not use the leading edge process technology, but in the 1990s they
became the process leaders as foundries realized the value of using the
FPGA as a process-driven application. Foundries were able to build
SRAM FPGAs as soon as they could yield transistors and wires in the
new technology. So FPGA companies caught up on the recent technol-
ogy process and could ride the technology wave fuelled by Moore’s
law. Additionally the introduction of chemical-mechanical polishing
allowed stacking more metal layers on the die, which made intercon-
nect much cheaper. This had several effects. The area became less pre-
cious. The device capacity of the FPGA increased exponentially and
applications became too large for manual design, so FPGA CAD tools
became the main way to program FPGAs. The FPGA vendors choose
automation-friendly architectures with regular and plentiful intercon-
nect resources to simplify algorithmic decision-making.

Cheaper wire also admitted longer wire segmentation, intercon-
nect wires that spanned multiple logic blocks. Wires spanning many
blocks effectively make physically distant logic logically closer, which
improved performance.

The survivors in the FPGA business were those that leveraged pro-
cess technology advancement to enable automation. An important ex-
ample is the emergence of LUT as logic cell of choice. A LUT imple-
ments any function of its inputs which made technology mapping eas-
ier and the LUT’s logic equivalent pins reduced the complexity of the
placement and routing problem.

The FPGA vendors were/are locked in a race to the next process
technology node. Only architectures that were the easiest to adopt to
the next process technology survived. An example is the emergence of
SRAM as technology of choice. It contains more transistors than anti-
fuse, flash, ... but it can be built with only transistors and wires. The
other technologies were only qualified months or years later, after the
first introduction of the process technology node.

FPGA Capacity Bell Curve

The bell curve in Figure 2.14 shows the histogram of distribution of
sizes of ASIC applications. In the age of expansion FPGA capacity grew
following Moore’s law. The growth in FPGA capacity was faster than
the FPGA application size, which allowed FPGA vendors to address

39

1992	 1997	 2004	

Size	FPGA	Applica4on	

The	number	of	
applica4ons	

Figure 2.14: The growth of the FPGA addressable market. Reproduced
from [128]. The size of the bell curve changes over time, but the shape
stays constant. The vertical lines indicate the year when the FPGA be-
came large enough to cover the left part of the bell curve starting from
the line.

customers with larger applications. A small increase in capacity ad-
mitted a large number of new applications which further fuelled the
growth of FPGA business. Until the end of the age of expansion the
FPGA vendors successfully absorbed nearly the entire low-end of the
ASIC business.

2.3.4 Age of Accumulation (2000-2007)

In the 2000s FPGAs became larger than the typical problem size, which
put them over the top of the bell curve of the typical applications size
and this leads to diminished returns for the number of new applications
that could be implemented by increasing the FPGA capacity. FPGAs
could contain large designs which implemented complete subsystems.
The cost and power became more important.

The winning application of the FPGA was found in the communi-
cations industry, with customers as Cisco. The sales to the communi-
cation industry amount to half of the total FPGA business. This large
market segment drives FPGA vendors to customize their FPGAs for
the communication industry, which lead to the introduction of high-
speed flexible IO and source-synchronous transceivers, thousands of
dedicated high performance multipliers, the ability to make wide data
paths and deep pipelines for switching large amounts of data with-

40

out sacrificing throughput. Soft logic IP was developed to save design
effort, most notably the communication standard protocols, bus proto-
cols, microprocessors and other function generators.

The Dennard scaling states that power density stays constant as
transistors get smaller. The Dennard scaling ended in the mid 2000’s.
A new technology generation still gave improvements in capacity and
cost. Power also improved but with a clear tradeoff against speed per-
formance. To increase the performance the FPGA vendors relied more
on hardening commonly used functions.

The high capacity FPGAs were too expensive for the customer that
only needed a low capacity low cost device. So new FPGA families
were dedicated to this market segment, with low cost and low capacity
FPGAs, such as the Xilinx’ Spartan and Altera’s Cyclone family.

2.3.5 Current Age

In the current age ASICs are only feasible for the very high volume
products, which are microprocessors, memories, cell phone processors
and FPGAs.

The slowing process technology improvements push the FPGA ar-
chitects to investigate the viability of novel FPGA circuits and architec-
ture, without degrading the ease of use. In Chapter 8 we investigate a
new architecture for the routing switches.

FPGAs are becoming complete systems-on-a-chip, but suffer from
programming complexity. They require a large design effort to be used
effectively. Designers looking for hardware acceleration are attracted
to multicore systems, such as Graphics Processing Units and software
programmable Application Specific Standard Products (ASSPs), that
provide pre-engineered systems with software to simplify the mapping
problems onto them, e.g. Lasagne and TensorFlow simplify mapping
neural network training procedures to GPUs [41, 72]. The designers
sacrifice some of the flexibility, performance and power efficiency for
ease-of-use and fast prototyping.

Two important directions can help to ease the design effort. The first
one is the elevation of the abstraction level of programming hardware.
New High-Level Synthesis (HLS) tools are released by the main FPGA
vendors [10, 144]. Xilinx introduced a python library called PYNQ to
program their SoC Zynq devices [92]. The second one is speeding up
the design cycle. Large designs can take up to hours to compile, which
makes it hard for the designer to apply trial and error approaches for
meeting the design constraints. In Chapters 4, 5 and 6 we present new

41

techniques to improve the runtime of the most time consuming compi-
lation steps of the FPGA tool flow.

FPGAs still have an important edge over GPUs. They are much
more flexible and they serve a broader range of applications. They excel
in the speed performance versus power consumption metric, which is a
big advantage in datacenter and wearable application domains. A con-
volutional neural network showcase in a Microsoft research whitepa-
per shows that an Nvidia Tesla K20 GPU consumes 235 W to evaluate a
seven layer network on the Imagenet 1K dataset at 376 images per sec-
ond. Using FPGAs the power consumption is reduced with an order of
magnitude to 25 W at a slightly reduced throughput of 233 images per
second [109].

The inclusion of ADCs in the Xilinx’ Virtex 7 family and the new
Xilinx Ultrascale+ Zynq SoC devices with embedded GPUs suggests
that the FPGA SoCs move from a pure hardware accelerator to a proto-
typing platform.

2.3.6 Current State of FPGA Vendors

The current FPGA market can be considered dominated by a duopoly.
Xilinx and Altera have product lines which are similar. They, respec-
tively, hold 50% and 39% of the market share [105]. Intel bought Altera
in 2015 for 16.7 billion USD. The press release states that the two main
reasons were datacenter integration and a better market position in re-
spect with Xilinx because Intel has its own semiconductor device fab-
rication division. The remaining market share is divided by Microsemi
and Lattice. Both companies focus on low power and low cost. Mi-
crosemi focuses on FPGAs with non-volatile configuration memory.

42

3
The Divide between FPGA

Academic and Commercial Results

The pinnacle of success for academic work is achieved by having im-
pact on commercial products. In order to have a successful transfer
bridge, academic evaluation flows need to provide representative re-
sults of similar quality to commercial flows. A majority of publications
in FPGA research use the same set of known academic CAD tools and
benchmarks to evaluate new architecture and tool ideas. However, it
is not clear whether the claims in academic publications based on these
tools and benchmarks translate to real benefits in commercial products.

In this chapter we compare the latest Xilinx commercial tools and
products with these well-known academic tools to identify the gap in
the major figures of merit.

3.1 Introduction

Commercial Field-Programmable Gate Arrays (FPGAs) have been
rapidly growing in both capacity and performance, opening the door
to a large number of applications. Advances in process technology
along with FPGA CAD tools and architecture have enabled this growth.
Further advances in both tools and architecture are required to sustain
this growth. Potentially, academic research efforts in these areas could
contribute to this success by identifying promising tool or architecture
ideas. This is especially important as FPGAs serve a wider range of ap-

43

plications compared to ASIC or ASSP counterparts in semiconductor
business. FPGA architecture and tool ideas that are seeded from the
FPGA academic community have decreased significantly over the last
decade.

The few that are proposed do not offer significant benefits when in-
corporated and evaluated in a commercial framework. If this trend con-
tinues, the academic work in this area might become irrelevant. This
will adversely impact both FPGA industry and academic community,
as the products can no longer leverage the broader academic ecosys-
tem. We claim one of the main reasons of this trend to be the signif-
icant performance gap between the academic and commercial frame-
work. We try to examine this claim by comparing the most prevalent
academic architecture tools with Xilinx Vivado used for UltraScale de-
vices [150, 89]. When academic tools lag behind the state of the art by a
large amount, it is easy to show improvement, but those improvements
do not translate to any benefits for commercial tools and devices. After
identifying the gap, we investigate the historical reasons for how the
divide came to be, we try to provide guidance on how to reduce it and
also provide a few rules of thumb for assessing the merits of academic
work.

The work described in this chapter is largely done at the CTO Re-
search lab of Xilinx during a six month internship. The research was
done in close collaboration with Alireza Kaviani, principal engineer at
Xilinx and head of the next generation FPGA architectures group and
Henri Fraisse, senior staff software engineer at Xilinx. The work was
presented at ICFPT2015 and is described in [134].

3.2 Background and Related Work

The most popular academic open source tools used for FPGAs are Ver-
satile Place and Route (VPR) [89] and ABC logic optimization and tech-
nology mapping [1]. There is also a front-end synthesis tool, called
ODIN II [110], which takes a Verilog design and performs RTL elabora-
tion. A recent academic framework, called Verilog-To-Routing (VTR),
combines ODIN II, ABC and VPR to offer a complete unified flow for
FPGA compilation [61]. We chose this well-known academic frame-
work as our academic reference because it is the most flexible frame-
work available. It gives researchers control over every part of the
framework from architecture to tools and benchmark designs. The
front-end synthesis step produces a Berkeley Logic Interchange Format
(BLIF) file, which is read by ABC to perform logic optimizations and
technology mapping to LUTs. VPR then packs the LUTs and FFs into

44

CLBs, places the CLBs and routes the whole design. There are three
main components in an evaluation framework: the target FPGA archi-
tecture, the CAD tools and the benchmark designs.

There are two works that have also raised the issue of the gap be-
tween commercial and academic results. The first one provides the abil-
ity to compile designs for commercial devices using a VTR-to-Bitstream
(VTB) flow presented in [61]. The VTB flow translates the mapped and
placed circuits to an XDL description, a format provided by Xilinx ISE
tools. These XDL text descriptions are translated to binary files and
subsequently the design is routed with Xilinx ISE’s PAR. VTR supports
FPGA routing but is unable to model complex routing structures that
exist in Xilinx FPGAs. New advances in the VTB project [60] enables
routing designs on Xilinx’ older architectures, such as the Virtex 6. The
routed designs are analysed by Xilinx ISE’s TRCE static timing anal-
yser to get reliable timing information. Our analysis is different in sev-
eral aspects: we use the most recent commercial and academic tools (in
contrast with a decade old commercial tools) and show that the divide
is actually much wider now. The focus of VTB is to realize a design
on a commercial device and they achieved that goal. However, XDL
and the relevant flow are no longer supported by Xilinx and the pro-
posed flow will unfortunately not work with the latest products, such
as UltraScale. A second work [106] focuses on addressing the mismatch
in benchmark designs by providing larger designs for the open source
community. They contributed 23 large benchmark designs and 20 mid-
size designs. They identify the critical path delay gap as 50%, but they
use a commercial tool for synthesis providing a hybrid evaluation flow
and this gap is only measured on the benchmarks that did not fail.
Their hybrid flow was only able to place and route 13 of the 23 large
designs. They are also comparing to older 40nm products from Altera.
This framework can easily be used to test advancements in place and
route tools. In contrast to previous work, we focus on a new compari-
son to identify the gap for the most recent products and tools and show
that it is much wider than stated in the literature. If the quality of aca-
demic tools is inadequate such that the required figures of merit are
not met, there is little value in implementing those designs on commer-
cial products using the VTB flow. We also address the area-efficiency
and runtime scaling gaps. We then take a deeper dive in one of the
academic tools, ABC logic optimization, to show that it is possible to
achieve quality results on par with commercial tools with some effort.

45

Framework 1

Commercial Arch. UltraScale xcku035

Commercial Flow Vivado

Academic VTR benchmark suite

Framework 2

Academic Arch.
 k6_frac_2ripple_N8_22nm

Academic Flow VTR

Academic VTR benchmark suite

Framework 3

Commercial Arch. Virtex 7 330t

Commercial Flow Vivado

Academic VTR benchmark suite

Framework 4

Academic Flow VTR

Academic VTR benchmark suite

Commercial Arch. Virtex 7 330t

Figure 3.1: The four frameworks used to compare commercial and aca-
demic flows

3.3 Commercial and Academic Tool Comparison

In order to make a fair comparison, we should use the same bench-
mark designs and the same target architecture. Unfortunately, VTR is
not designed to compile for commercial architectures. First, we com-
pare Vivado and VTR for the architectures available for the latest com-
parable process technology nodes, Framework 1 vs Framework 2 in
Figure 3.1. Later, we will use the VTB flow to target a commercial archi-
tecture and assess if the gap diminishes, Framework 3 vs Framework 4
in Figure 3.1.

3.3.1 Evaluation frameworks

We selected the smallest 20nm Ultrascale Kintex device (xcku035) with
the largest package (ffva1156) and the fastest speed grade to match that
of academic architectures. Together with the Vivado 2014.3 tool flow,
we call this the commercial implementation. The academic target de-
vice is the most advanced architecture closest to 20nm available in VTR.
We choose k6 frac 2ripple N8 22nm, because it performed best in terms
of speed-performance of all the architectures available in VTR. We will
call this architecture VTR-22nm from here on. The original architec-
ture was sized for a 22nm high performance process and we needed to
resize the transistor-level circuit for this architecture so that both com-

46

mercial and academic devices are optimized for the same nominal op-
erating voltage (0.95V). We used an automatic transistor sizing tool [30]
and 22nm predictive technology models optimized for high perfor-
mance [155]. It is worth noting that the process technology for xcku035
is a low power process technology, and hence our speed-performance
results for the academic flow will be somewhat optimistic. The VTR-
22nm architecture contains carry chains, fracturable 36x36 multiplier
blocks, and fracturable 32Kb memory blocks. Each CLB contains 8
fracturable LUTs similar to that of the xcku035, but contains only one
flip-flop per LUT and no distributed memory capabilities. The routing
architecture was kept simple with only length-four wires. We refer to
the VTR-22nm architecture together with VTR tool flow revision 4591
as the academic implementation and use it as a reference in this sec-
tion. As benchmark suite we used the 19 designs available in the VTR
framework. The results for the most important figures of merit (area,
maximum clock frequency) are listed in Table 3.1 and will be discussed
in the following subsections.

3.3.2 Speed-performance

Vivado is designed to compile a design for a set of known constraints
and not to find the highest possible operating frequency for a given de-
sign. To find the maximum clock frequency we started with constrain-
ing the designs with a clock period that could be easily met. Subse-
quently the data path delay of the most critical path in the clock domain
was used as a new constraint for the clock period. We repeated this pro-
cess until Vivado just failed the constraint with a violation of less than
1ns. Another approach could be to constrain the design with an un-
realistic clock period like in VTR, for example 1ns, but Vivado would
recognize that it could never meet the constraint and it would exit early.
Therefore the latter approach is not an option for the commercial flow.
As noted in Table 3.1, the maximum clock frequency for all benchmark
designs is higher for the commercial implementations compared to the
academic implementations. The geomean of the maximum clock fre-
quencies of the commercial implementations is 2.24 times higher than
that of the academic implementations. We believe this 2.24X divide
in quality of results is an important result. It indicates why many aca-
demic FPGA architecture and tool improvements cannot translate to re-
alistic benefits for FPGA industry. This wide gap includes architecture
and tool differences, but excludes differences caused by benchmark de-
signs and process technology. Referring to previous work [60], we may
also estimate that 50% of this divide is due to synthesis and the rest is

47

Table
3.1:O

verview
ofthe

post-routing
results

for
the

V
TR

benchm
arks

A
cadem

ic
(V

T
R

-k6
frac

2ripple
N

8
22nm

)
C

om
m

ercial(V
ivado

–
U

ltraScale)
A

rea
Fm

ax
R

untim
e

A
rea

Fm
ax

R
untim

e
B

enchm
arks

C
LB

M
ult

M
em

N
orm

*
(M

hz)
(m

in)
C

LB
D

SP
BR

A
M

N
orm

*
rel

(M
hz)

rel
(m

in)
rel

bgm
4259

11
0

4424
52

10.4
2150

22
0

2260
0,51

183
3,52

6.3
0.61

blob
m

erge
717

0
0

717
96

4.7
1437

0
0

1199
1,67

364
3.79

2.8
0.60

boundtop
280

0
1

300
146

4.5
813

0
1

836
2,79

367
2,52

2.8
0.63

diffeq1
33

5
0

108
64

4.3
78

9
0

123
1,14

135
2,11

1.6
0.36

diffeq2
21

5
0

96
81

4.3
34

9
0

79
0,82

149
1,84

1.5
0.35

LU
8PEEng

2645
8

45
3665

16
8.5

2534
16

23
3143

0,86
24

1,51
5.2

0.61
LU

32PEEng
8794

32
168

12634
16

25.1
8867

64
136

12315
0,97

23
1,46

9.2
0.37

LU
64PEEng

17028
64

340
24788

16
59.4

15574
128

188
20538

0,83
26

1,63
18.5

0.31
m

cm
l

8137
27

159
11722

27
32.1

6988
104

154
11050

0,94
55

2,01
13.2

0.41
m

kD
elayW

∼
755

0
43

1615
117

5.2
140

0
27

761
0,47

645
5,51

1.9
0.37

m
kSM

A
da∼

210
0

5
310

158
4.6

193
0

3
262

0,85
491

3,11
2.3

0.50
or1200

308
1

2
363

102
4.7

365
4

1
408

1,12
176

1,73
1.9

0.40
raygentop

266
7

1
391

148
4.6

390
9

0,5
446,5

1,14
469

3,18
1.9

0.41
sha

244
0

0
244

179
4.6

212
0

0
212

0,87
299

1,68
2.2

0.47
stereovision0

1195
0

0
1195

245
4.9

1013
0

0
1013

0,85
635

2,59
2.6

0.52
stereovision1

1916
46

0
2606

149
5.6

2511
0

0
2511

0,96
337

2,27
4.1

0.73
stereovision2

3290
201

0
6305

100
7.9

2213
270

0
3563

0,57
136

1,36
4.6

0.58
stereovision3

22
0

0
22

270
4.4

30
0

0
30

1,36
474

1,76
1.3

0.29
G

eom
ean

0.95
2.24

0.46
G

eo.Std.D
ev.

1.52
1.45

1.30
Total

199.8
83.9

*
N

orm
alized

A
rea:the

totalarea
expressed

in
term

s
ofC

LB
tiles,itincludes

the
D

SP/M
ultand

M
em

/BR
A

M
usage,see

equation
(1)and

(2)

48

from the place and route portion of the flow and the architecture differ-
ence. We will discuss this further in the following sections.

3.3.3 Area-efficiency

Comparing the area-efficiency between commercial and academic im-
plementations is more difficult because of the different hard blocks
in the target architectures. The VTR-22nm architecture contains frac-
turable 36x36 multiplier blocks and fracturable 32 Kb memory blocks.
The Ultrascale fabric has versatile DSP48E2 blocks that can implement
27x18 multiplications, 48-bit addition/subtraction, XOR, and some ad-
ditional functionality. It also contains fracturable 36Kb block RAMs.
Comparing the multiplier logic consumption for the academic and
commercial implementations, we find the commercial DSP usage to be
about twice the amount of academic multiplier block usage. This corre-
sponds with the size of the respective multipliers. The only exception
is stereovision1. The default behaviour of Vivado is to implement the di-
visions in stereovision1 without DSP blocks in contrast with VTR. This
leads, however, to an increased LUT count for Vivado, but a faster cir-
cuit. Vivado chooses the most delay-optimal implementation if there
are enough resources available. Academic implementations typically
use more memory blocks than the commercial ones. The Ultrascale fab-
ric has slightly larger memory blocks, but that is not the main reason.
The VTR benchmark designs contain a lot of shallow memories and
Vivado implements these shallow memories with distributed memory.
To overcome the issue of comparing resource usage for different types
of hard blocks, we define a normalized area measure. The measure is
expressed in terms of CLB tiles and encompasses the CLB count and all
hard block occurrences:

Areanorm,academic = nCLB + kmult · nmult + kmem · nmem (3.1)

Areanorm,commercial = nCLB + kDSP · nDSP + kBRAM · nBRAM (3.2)

For the academic area constants kmult and kmem, we use the mini-
mum transistor width count as reported in the architecture description
for each type of hard block. We compare it to the area used for one
CLB tile in the newly sized academic architecture [88]. Taking the in-
terconnect area into consideration, we set the constants to kmult = 15
and kmem = 20. For the commercial area constants kDSP and kBRAM a
similar approach to the academic calculations is used, but we scale the
block areas based on multiplier bits and memory bits. Each DSP pair
and memory block pair has a height of 5 CLBs, as seen in Figure 3.2

49

DSP48E2

DSP48E2

BRAM
CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

RAMB18

RAMB18

Figure 3.2: RAMB and DSP height vs CLB height, image taken from
Vivado Design Editor

0

0.5

1

1.5

2

2.5

3

3.5

4

Academic Commercial
1 thread

Commercial
8 threads

 Runtime in
hours Synthesis

Place

Route

69%

27% 41%

31%
28%

39%

36%

Figure 3.3: Total Runtime for compiling the VTR benchmark designs
for a single run

from Vivado design editor. This results in the following area constants,
kDSP = 5 and kBRAM = 23. The hard block occurrences and nor-
malized area is reported for each design in Table 3.1. The commercial
implementations use on average 96% of the normalized area used by
academic implementations. This gap is significant, but not a showstop-
per in contrast with the other figures of merit we investigated.

3.3.4 Runtime

The benchmark designs were compiled on a workstation with a 3.4
GHz quad-core Intel Core i7-3770 processor and 32 GB memory. In Ta-
ble 3.1, the runtime for each benchmark design is reported for the com-
mercial and academic flow. VTR can only operate in a single-threaded

50

y = 0.0159x1.015
R² = 0.97798

y = 0.112x0.7742
R² = 0.94315

200

400

800

1600

3200

10000 40000 160000

Runtime (s)

Area (LUTs)

Academic

Commercial

Power (Academic)

Power (Commercial)

Figure 3.4: Runtime scalability of the Academica and Commercial CAD
tools with respect to the size of the design

mode, so to be fair we compare it to Vivado restricted to only run a
single thread. Even in single-threaded mode Vivado is on average 2.2X
faster than VTR. This runtime gap is consistent with a geometric stan-
dard deviation of 1.3. All benchmark designs compile faster when us-
ing Vivado with runtimes ranging from 73% to 35% of the runtime of
VTR. Figure 3.3 shows the total runtime to compile all VTR benchmark
designs for both the commercial and academic flow and a breakdown
for each major step in the compilation. As a reference we also included
a run in which we let Vivado run unrestricted. On our test machine this
mode used 8-threads, which decreased the total runtime from 1.45h to
1.1h. This is not a huge decrease mainly because we only deal with
smaller benchmarks for which the runtime is so small that Vivado can-
not fully take advantage of multithreading. Overall we see the same
picture for the total runtime as for the separate benchmark designs.
The total runtime for Vivado is a little under one hour and half and a
little over three hours for VTR. So Vivado compiles the benchmarks in
less than half the time VTR does. In Vivado the runtime is more equally
divided between the three major steps, synthesis, placement, and rout-
ing than in VTR. In VTR, synthesis takes only 4% of the total runtime.
The placer in VTR is responsible for biggest chunk of runtime (69%)
followed by the routing step (27%).

We also considered the runtime scalability with respect to the size
of the benchmark designs. We choose the LUT count as area figure and
we only selected the designs with more than 20K LUTs to minimize the
impact of the nonrecurring runtime cost. The runtime for smaller de-

51

signs is often dominated by fixed portions, such as reading or writing
the files. The fixed portions don’t have a significant impact on scala-
bility. The data points for each flow are plotted in Figure 3.4 and fitted
using a power regression model. The runtime scaling gap widens pro-
portional to the equation 0.14 · x0.24, where x represents the number of
LUTs, so for each 60K LUT increase the runtime gap doubles. We pre-
dict that the runtime gap will increase in the same fashion beyond the
160K mark. This makes the compile time of academic flows imprac-
tical for today’s FPGA application sizes, because they easily surpass
the 160K LUT mark. The small number of designs shown in Figure 3.4
might not be sufficient for calculating a statistically valid scaling factor.
However, the trend of growing runtime gap, which is the main mes-
sage of this section, will hold as we add larger and more designs to the
graph. Out of this comparison, placement is clearly a main cause of the
gap in runtime scalability. At its core, the VTR placer still uses simu-
lated annealing which is more runtime intensive and does not scale as
well as the analytical placement techniques used in the Vivado placer.
The academic framework could benefit greatly from an open-source an-
alytical placer. We built an open source analytical placement tool and
designed a new fast placement prototyping algorithm. They are de-
scribed in Chapter 5. The academic framework also spends little time
on synthesis in comparison with the commercial framework. Hung has
investigated and reported his findings in [60]. His results indicated that
a large part of the quality gap is caused because by the academic syn-
thesis tools.

3.3.5 Using VTR for a Commercial Target Device

VTR is not designed to map to commercial devices but we made an at-
tempt to use the VTB flow introduced in the previous work. In [61],
the authors present a VTR-to-Bitstream (VTB) flow that enables users
to map to Virtex 6 devices. Vivado does not support the older Virtex
6 devices. We extended VTB to target the Virtex 7 vx330t device with
the help of the authors of [61]. We compared the frameworks 3 and
4 as shown in Figure 3.1. VTB and Vivado target the same commer-
cial device. We choose to target the fastest speed grade and the largest
footprint. This resulted in Vivado implementations that consume 25%
less area and are able to operate at 2.1X higher operating frequencies
on average than VTB implementations. This is more or less in line
with the gap reported for the commercial versus academic comparison.
The only major difference was that the VTB was remarkably slower
than Vivado by a factor of 5.5X. There is only a very slight reduction

52

Synthesis

RTL Elaboration

Technology Independent Optimization

Technology Mapping

Combinational
Gate-level circuit

ABC

LUT-mapped circuit

Script
Balancing
Restructuring
Resynthesizing

Integration

Figure 3.5: Hybrid flow for logic optimization

in speed-performance gap if we compare Vivado versus VTB targeting
a commercial device (2.1X) and the commercial versus fully academic
comparison (2X). We attribute this reduction in the gap to a better archi-
tecture, but conclusions are difficult here because VTB is not designed
to fully exploit this commercial architecture, so the actual architecture
gap could be much wider. Our initial intention for using VTB was to
identify which part of the gap can be attributed to the architecture and
which part to the tools. We believe the large quality gap in the tools
may be misleading and hence we defer making solid conclusions on
the architecture gap to future work.

3.3.6 The Reasons for the Divide

In Chapter 2 we described the three ages of the FPGA. During the first
age, the age of invention, architecture efficiency was the highest good.
There was no uniformity in FPGA architectures. This forced the FPGA
vendors to own their own tools, because research into new architec-
tural ideas is faster if you have in-house tools. The advantage was
that it prevented the commoditization of FPGAs. A big disadvantage
of the closed source tools is that the academic researchers could not
build on the advances made in the industry. Additionally commercial
designs are proprietary and difficult to access for common academic
researchers, which makes it hard for academics to benchmark new in-
novative architecture and tool ideas. This leads to a one way street in
which the industry cherry picks the advances in academic research, but
academics have to start from scratch every time again. This is the his-
torical reason for the growing divide between the academic and com-
mercial results. Nowadays the closed source nature of commercial tools
is further promoted by the protection of vendor’s IP design cores. IP

53

design cores are common basic building blocks for a design which en-
ables hardware designers to faster prototype their design.

3.4 Hybrid Commercial and Academic Evaluation
Flow

We described the gap between academic and commercial tools for
FPGA design implementation in Section 3.3. However, the main advan-
tage of open-source academic tools is that they are easier to change and
augment toward a research goal. The tools are often data-driven and
skip unnecessary detail, helping the researcher conclude faster. The
question we are trying to answer in this section is how to combine the
credibility of commercial tools with the flexibility of academic tools to
reach pragmatic architectural or tool conclusions. In contrast to the pre-
vious section, we use commercial tools as our baseline for assessing a
new tool flow. We created a hybrid evaluation flow using Vivado and
ABC [1], which is a well-known academic tool for logic optimization
and technology mapping. The advantages of such a hybrid flow are
two-fold: 1) we can accurately quantify the quality of logic optimiza-
tion; 2) we can quickly evaluate architecture ideas or opportunities in
commercial tool optimization. Even if such evaluation flow helps us
detect failures for certain ideas, it will prevent researchers from invest-
ing unnecessary additional time. Figure 3.5 summarizes the hybrid
flow that we created. The key to creating such a flow is identifying
the best interception points to exit and re-enter the commercial Vivado
flow. The Vivado synthesis tool processes the design in three steps:
elaboration, architecture-independent optimizations, and technology
mapping. During RTL elaboration, common data path operations such
as additions and storage elements such as memory blocks are identified
and inferred. Architecture-independent optimizations include constant
propagation, operation sharing, strength reduction; expression opti-
mization, finite state machine encoding/minimization, generic restruc-
turing and don’t-care optimizations. During technology mapping the
optimized design is mapped onto target architecture structures, such
as DSP blocks, adders with dedicated carry-chains, BRAMs, LUTs and
FFs. In the new hybrid flow, the combinational portion of the logic
gate network is cut out and written to a BLIF file. ABC reads in the
BLIF file and performs logic optimizations and mapping as stated in
the script given by the user. The script may contain commands to re-
structure and balance the logic network and to perform different map-
ping algorithms. After ABC optimizations, the circuit mapped to LUTs

54

0.8$

0.85$

0.9$

0.95$

1$

1.05$

1.1$

1.15$

1.2$

1.25$

1$ 11$ 21$ 31$ 41$ 51$ 61$ 71$ 81$

Fm
ax

 r
at

io

Designs

Figure 3.6: Maximum clock frequency ratio for the hybrid flow versus
the Vivado baseline

is stitched back into the design in Vivado. This new flow replaces the
commercial technology mapping and optimization with that of the aca-
demic flow. Initially, this new hybrid flow with ABC performed worse
than the baseline Vivado flow in all figures of merits: performance, area
and runtime. However, the differences were all within 2% except for
runtime. This indicates that the significant performance gap we noted
earlier is not due to the logic optimization and technology mapping
portion of the flow. After a number of iterations and modifications to
both ABC and the script, we managed to show some improvements
compared to baseline Vivado. According to our results 2.5% increase
in maximum clock frequency along with 1.8% decrease in area was
achieved on average for more than 80 commercial benchmark designs,
as summarized in Table 3.2. These modest average improvements com-
pared to Vivado were achieved at the expense of additional runtime in
ABC.

Figure 3.6 depicts the maximum clock frequency ratio for each de-
sign in the commercial suite, providing a more detailed view. Fmax
improved for roughly 70% of the designs and up to 20% in the best
cases. The main reason for improving the quality was less emphasis on
early depth reduction. Initial scripts aggressively reduced the depth of
the deepest paths in the designs, which led to worse post routing re-
sults. This is expected because at the time of technology mapping there
is too much uncertainty to predict the real critical path after routing.
The critical path could be dominated by routing and aggressive depth
reduction will adversely affect the final results. The ABC script that
produced the best results is available in [129]. It contains multiple LUT
mapping iterations interleaved with sum-of-product balancing.

55

Table 3.2: Summary for the hybrid flow vs vivado results. The percent-
ages indicate relative improvement for the geomean of the ratios.

Early depth Fmax Area (CLBs)
Whole suite -16 % +2.5 % -1.8 %
High depth -24 % + 5 % -3 %
Low Depth -13.5 % +0.4 % -1 %
Arithmetic -7 % +1.1 % -1 %

The hybrid flow helped us find the right balance between the area
and depth reduction by focusing on average depth reduction and ob-
serving post-routing results from the commercial tool. It is worthwhile
to note that even the initial results from the hybrid flow (before our op-
timizations) were within a few percentages of the baseline Vivado flow.
This indicates that the synthesis gap observed in previous work is not
due to logic optimization portion of the academic flows. We can make
two high level observations using our hybrid flow. First, the fact that
we could reach the quality of commercial tools and even improve the
results for some designs shows the potential for academic tools if used
in a correct framework. The second high level conclusion from this
exercise was that depth reduction does not translate to post routing im-
provement directly. A good rule of thumb to estimate post-routing ben-
efits of the academic work that claim improvements by reporting depth
reduction is to divide the gain by an order of magnitude. We further
investigated this by focusing on depth-oriented designs and confirmed
that ABC indeed improves the results by 5% on average on these de-
signs. This is a significant improvement even for commercial products
and we will elaborate on this classification more in the next section. We
also used this evaluation flow to dismiss some of the published archi-
tecture ideas and tool optimizations quickly without additional expen-
sive investments in changing the commercial flow. For example, pre-
vious work has suggested using cascaded LUTs [115, 101] as potential
FPGA architecture improvements, because they improved area and the
depth of the circuit. Since these ideas are often implemented in ABC
framework we used our hybrid flow to evaluate some of them. We
found that conclusions that are mainly based on early depth reduction
will not hold after routing the designs. Another example is the and-
inverter cones [111]. In this case the authors further investigated their
claims in a second publication [154] and came to the conclusion that the
observed benefits after technology mapping did not translate to post-
routing improvements. We experienced it ourselves in the work done
on logic in routing nodes explained in Chapter 8.

56

3.4.1 Benchmark Design Suites

An important aspect of any evaluation framework is the benchmark de-
signs. In this section we focus on highlighting the differences between
academic and commercial benchmark suites.

Academic benchmark designs Unfortunately it is hard to separate
benchmark designs from the framework they were written for, so we in-
spect the benchmark designs with their framework in mind. Typically
used in academia are the well-known evaluation frameworks such as
the VPR framework [89], the VTR framework [88] and the recent Titan
framework [106]. The Versatile Place and Route (VPR) framework con-
sists of 20 large benchmark designs synthesized by the Microelectronics
Centre of North Carolina (MCNC). VPR is used as place and route tool
and a homogeneous LUT-only architecture at 48nm technology node
as a target architecture. The MCNC benchmarks are still quite popu-
lar [5, 40, 50, 116] and the VPR framework is still maintained as part
of the VTR framework. The Verilog-To-Routing framework (VTR) [88]
includes several benchmark designs described in Verilog. There is a
range of architectures that can be targeted in VTR and researchers can
add or tweak their own architecture. We used the most advanced ar-
chitecture available, called k6 frac 2ripple N8 22nm. Researchers work-
ing on applications or tools will probably not change the default archi-
tectures provided in the VTR framework. The Titan framework [106]
consists of 23 large benchmarks and 20 mid-sized benchmarks. They
are synthesized with Quartus II and VPR is used for backend of the
flow to map to an architecture closely matching the Altera Stratix-IV
architecture [38]. They used identical hard blocks, but the routing ar-
chitecture was only modelled approximately. Unfortunately VPR does
not succeed at routing 13 of the 23 large designs because of memory
requirements or routing congestion as also reported by Murray et al. in
[106].

Comparing with commercial benchmark designs We profiled more
than 80 industry benchmark designs in order to understand the differ-
ences with academic designs. The commercial benchmark designs were
part of the Xilinx Quality of Results benchmark design suite. They are
proprietary designs from Xilinx’ most important customers. The aca-
demic designs are much smaller compared to the industry benchmark
designs we used, which typically have more than 100k LUTs. The other
noticeable difference is that the majority of VTR benchmark designs
are I/O-bound. They also have fewer memory and DSP components

57

0"

20"

40"

60"

80"

100"

Po
rt

io
n

of
 b

en
ch

m
ar

k
de

si
gn

s (
%

)

LUT_HD
LUD_LD
Arithmetic

Benchmark suite MCNC20 VTR Titan Xilinx QoR

CAD tool flow VPR VTR QuartusII &
VPR Vivado

Target Architecture Homogeneous
48nm VTR-22nm Stratix IV* Ultrascale

*hybrid architecture

Figure 3.7: Benchmark Suite Profiles. For each framework, the bench-
mark designs are classified in three categories depending on the paths
and the type of instances in the critical zone of the circuit, LUT dom-
inant and High Depth (LUT HD), LUT dominant and Low Depth
(LUT LD) and Arithmetic dominant.

compared to industrial designs. All these differences may contribute to
misleading academic conclusions in the academic frameworks. Some
of these differences such as size of the benchmark designs are already
highlighted in previous work [106].

In this work, we highlight and analyse another subtle, yet impor-
tant difference that may skew the academic conclusions. Figure 3.7 de-
picts how the depth profile differs for various academic and industrial
designs compiled within their respective framework. For each frame-
work, the benchmark designs are classified in three categories depend-
ing on the paths and the type of instances in the critical zone of the
routed circuit. For the commercial framework, each benchmark cate-
gory contains around the same number of designs. For the VTR and Ti-
tan benchmark designs, the category of designs with a LUT dominant
and shallow critical zone is under-represented. Lastly, the MCNC20
benchmark suite contains only LUT dominant designs with deep criti-
cal zones. It is clear from this comparison that the academic benchmark
suites contain relatively much more designs with a high depth critical
zone than the industrial benchmark suite.

We have a certain bias because we only looked at important bench-
mark designs Xilinx obtained from his customers. Analyzing bench-

58

mark designs from other important FPGA vendors such as Altera is
difficult without working at the company. However, Xilinx is the mar-
ket leader and accounts for more than the half of the total FPGA busi-
ness, so we think our results can be generalized.

A large number of academic publications, especially those that use
ABC, make conclusions based on depth improvement after technology
mapping. Therefore, it is important to understand how depth reduc-
tion correlates to the end performance improvement after routing. In
the next subsection we dig deeper into this depth profiling to under-
stand the trends.

Depth Classification of the Benchmark Designs: Discussion and
Trends Our depth classification is based on the profile of the critical
zone in the commercial benchmark designs. We define the critical zone
as all the paths in the design with 5% worst negative slack. The slack
indicates whether timing is met along a timing path. A positive slack
indicates that the signal can get from the startpoint to the endpoint of
the timing path fast enough for the circuit to operate correctly. A nega-
tive slack means that the signal is unable to traverse the combinational
path fast enough to ensure correct circuit operation. The worst negative
slack is the most negative slacks of the design.

Taking into account the type of instances in the critical zone, we
observe that for 68% of the designs the critical zone is dominated by
LUT instances. The most occurring instance type is CARRY blocks
for 20% of the designs. The DSP blocks dominate the critical zone
for the 12% remaining designs. The average logic depth of the DSP
dominated designs is typically lower than the carry dominated designs.
We group both CARRY and DSP dominated designs in the same class,
the arithmetic designs, because they show similar behaviour regarding
our analysis. The remaining designs with a critical zone dominated
by LUTs are further divided into 2 groups. We take into account the
average depth of the paths in the critical zone for the LUT dominant
circuits. 29% of the designs have an average logic depth smaller than
or equal to 2. This class contains heavily pipelined designs with critical
zone dominated by routing and net delays. We also refer to this group
of applications as low depth. The other group contains benchmark de-
signs with an average logic depth higher than 2. We now revisit the
results of our hybrid flow explained in Section 3.4 in the context of this
logic depth classification. The results are summarized in Table 3.2. The
hybrid flow augmented with ABC has an average 5% higher maximum
clock frequency and uses on average 3% less CLBs for the high depth,
LUT-dominant designs. LUT-dominant, low depth designs show no

59

significant improvement in performance, but they show a 1% area re-
duction. For the arithmetic dominant circuits the new flow produces
solutions with 1.1% higher clock frequency and 1% lower CLB usage.
Our results show that ABC advantages for performance are mostly ap-
plicable to a third of the designs which have critical paths with a lot
of logic levels. This is in line with the academic literature where most
of ABC work is focused on depth reductions. However, the FPGA ap-
plication trends are in the direction of highly pipelined designs with
lower depth. Therefore, these advantages will be less pronounced in
the future. The representativeness of academic benchmark suites could
be improved by adding low-depth designs. Another important obser-
vation is that depth reduction no longer translates to significant post-
routing delay improvement in commercial frameworks.

3.5 Concluding Remarks

We examined the divide between the quality of the FPGA config-
urations produced by the commercial and academic frameworks to
show that it has grown beyond acceptance. For example, the speed-
performance quality gap is more than 2.2X. This makes it hard to as-
sess the merits of academic results, because it is much easier to improve
something that is so far from optimal. On the other hand, we showed
that it is still possible to use academic tools in a credible framework
that is a hybrid with an academic logic optimization and technology
mapping tool and the rest of the commercial Xilinx framework. Our
results showed that close to 5% improvement is possible on average for
designs with high depth paths in the critical zone. This work also high-
lighted a trend in industrial applications towards low depth, highly
pipelined designs. Designs with shallow LUT dominated critical zones
are under-represented in the academic frameworks. This further em-
phasizes the need for updating benchmark designs and suggests that
academic tools need to focus on other optimizations such as retiming
instead of early depth reduction. Academic contributions in the area of
FPGA architecture and tools are still possible, but only if the wide di-
vide highlighted in this work is addressed or academic work is done in
the context of intercepting a commercial framework at the right access
points in the flow. Such effort requires joint cooperation and involve-
ment of academic and commercial interested parties. Commercial par-
ties are often questioning the return of investment on such efforts due
to the significant gap. On the other hand, some academics dismiss the
importance of the quality gap as the responsibility of the industry. This
is leading to a tentative stale-mate and the solution requires contribu-

60

tion from both parties. Industry needs to provide easier interfaces at
appropriate interception points for their tools. Academics need to build
hybrid flows that use commercial frameworks with the exception of the
portion under investigation. In Chapters 4, 5 and 6 we use the hybrid
Titan framework to evaluate our new tool improvements. Other aca-
demic FPGA work in the areas of applications or where commercial
tools are evolving such as high-level synthesis is still relevant if qual-
ity of results is properly maintained. This may also imply combining
them correctly with the relevant commercial framework and collabo-
ration between industry and academic ecosystems. We also encourage
academic researchers to use commercial tool flows and architectures as
a baseline when possible. The evaluation framework we used is avail-
able online on GitHub [129]. It includes the VTR benchmarks partly
rewritten to enable compilation with Vivado and a collection of scripts
to derive the statistics used in this chapter. The gap found in this chap-
ter has grown steadily since the invention of the FPGAs and we tried
to reduce the gap by improving the tools in Chapters 4, 5 and 6. Since
we are aware of the gap, we try to evaluate our innovative tool ideas
with hybrid flows as much as possible, see Chapters 4, 5 and 6. This
is however not always possible as is the case for the architectural re-
search in Chapter 8 and the research in the dynamic reconfiguration
of routing network in Chapter 7. The architectural research requires
changes in technology mapping, packing and the architecture. Archi-
tectures are difficult to change in commercial frameworks. First and
foremost because academic researchers don’t have access to the source
code of the commercial frameworks. However, even for the researchers
at FPGA vendors, it is a time consuming job to test out new architec-
tural ideas, because the commercial frameworks are highly optimized
for a few families of architectures with the same fabric. The dynamic
reconfiguration of the routing network requires changes in the bench-
mark design, all the steps of the compilation tool flow at the same time
and access to lower level details of the architecture. For these two chap-
ters we use academic frameworks to evaluate our results.

61

4
Preserving Design Hierarchy to
Improve Packing Performance

In this chapter we introduce a new superior packing algorithm, which
combines the two most popular approaches in conventional packing.
In the introduction we explain why the packing step is introduced in
the compilation flow and which metrics a packing algorithm should
optimize. The introduction ends with a summary of the most important
results.

4.1 Introduction

The early FPGA architectures have a flat architecture where the func-
tional blocks contain only one programmable lookup table and a flip-
flop. The functional blocks in modern architectures have a hierarchical
structure to improve area and delay [96]. On each hierarchical level
a number of equivalent blocks are available which are connected by a
local interconnection network. The routing pathways on the lowest hi-
erarchical level are short and hence very fast while the top level connec-
tions in the interconnection network are slower. Due to this hierarchical
structure a packing step is introduced in the FPGA CAD tool flow. Dur-
ing packing, all low level primitives in the circuit are packed into the
high level functional block types available in the FPGA architecture.
These clusters are then placed and routed on the highest hierarchical
level.

63

Several optimization criteria are used during packing such as total
wirelength, area, critical path delay and power consumption. They are
evaluated after the design is routed. Total wirelength (TWL) is a good
measure for the number of routing resources required and it is also
closely related to power consumption. The total wirelength is reduced
when less connections are required between the clusters. The area is
determined mainly by the number of high level clusters in the pack-
ing solution. However, if a design is too tightly packed it can lead to
routing problems. Congestion prone designs require extra wire tracks
in the routing channels, that leads to more area and metal layers or
it forces the FPGA designer to move towards a larger more expensive
chip. Minimizing the critical path delay is obtained by using the fast
connections on the low hierarchical levels for the critical connections
in the design. Because these fast connections are short, they also have
a lower capacitance and therefore they should be favoured for connec-
tions with a high switching activity if reducing power consumption is
an objective.

Packing can greatly influence the end result. We introduced two
partitioning based packers that improved the quality of the routed de-
sign by preserving the design hierarchy. The best performing packing
approach, called MULTIPART, reduces the total wirelength with 28%
and the critical path delay with 8% on average compared with the con-
ventional seed-based packing approach in VPR for the Titan23 bench-
mark suite, which targets Altera’s Stratix IV FPGA. This is an important
result, because it closes a major part of the gap between commercial and
academic results in terms of total wirelength. Murray et al. reported a
total wirelength gap of 2.19x. The improvements in MULTIPART reduce
this gap to 1.58x. An additional advantage of partitioning based pack-
ers is the opportunity to implement a multi-threaded version of the al-
gorithm. Our multi-threaded implementation has an average runtime
speedup factor of 3.6 on a CPU with four cores compared with the con-
ventional approach in VPR.

The results are reported in a conference publication [138]. The work
in this chapter is done in collaboration with Dries Vercruyce. At the
moment of writing, he is a Phd. student in our research group, the
Hardware and Embedded Systems group. We start this chapter with
describing related work and defining the fundamental problems in the
current packing approaches.

64

4.2 Related Work

Existing packing approaches can be divided into three main classes,
seed based, depth-optimal, and partitioning based packers. Seed based
packers are fast, because they pack the circuit in a single pass. They pro-
duce tight packings but they are unable to escape from local minima.
They lack a global overview, because they use a bottom up approach.

For each new functional block a seed block is selected with a certain
optimization criterium in mind. An affinity metric between the seed
block and its surrounding blocks is calculated. The block that scores
the highest on this affinity metric is packed into the cluster. This is re-
peated until the cluster is full. Several cost functions for the affinity
metric are proposed to improve the quality for a specific optimization
criterium. A well-known seed based packer is T-VPack [98] and the
newer version AAPack [90] which is used in the VTR tool flow [87].
This packer is used as a baseline in our experiments. The main ob-
jective of this packer is minimizing the critical path delay. A routabil-
ity driven affinity metric is proposed in iRAC [120] and T-RPack [19].
Un/DoPack [126] and T-NDPack [84] try to increase routability with
depopulation based clustering methods. Depopulation resolves con-
gestion problems in the routing network by preventing that functional
blocks are filled to their full capacity, thereby increasing total area be-
cause the functional logic is spread across the FPGA. P-T-VPack [75]
and W-P-T-VPack [44] incorporate switching activities of the nets in the
affinity metric to reduce power consumption at the cost of an increase
in channel width and critical path delay. W-MO-Pack [114] and YAMO-
Pack [74] are multi-objective packers that incorporate several criteria in
the affinity metric to obtain good quality for all optimization criteria.

Due to synchronization problems, it is difficult to apply multi-
threading to the seed based packing approaches. Each thread would
have its own seed and picking blocks from the neighbourhood of that
seed could conflict with the neighbourhood of the seed from other
threads that run concurrently. To our knowledge, no multi-threaded
seed based packer is proposed yet.

Depth-optimal methods such as TLC [37], RCP [39], and MLC [125]
try to duplicate netlist primitives on the critical path to optimize the
depth of all clusters. Although these methods reduce the critical path
delay, they lead to an increase in total area because logic duplication is
hard to control.

Chen et al. [28] proposed a very fast clustering method to pack
the Titan benchmarks in limited time. It uses structure-aware packing
and datapath extraction to handle different structures of heterogeneous

65

components and reduce the critical path delay respectively. Although
Chen et al.’s packing approach obtains good results for runtime and to-
tal wirelength, this method leads to a large increase in the number of
required functional blocks.

In partitioning based packers, the clusters are determined by per-
forming a hierarchical partitioning of the circuit. Hierarchical partition-
ing is a top-down approach. First the circuit is bi-partitioned, the par-
titioning algorithm minimizes the number of connections cut by split-
ting the circuit in two. The two parts of the circuit are then further bi-
partitioned independently. The resulting parts are again bi-partioned
and this repeats itself recursively until the parts contain less primitives
than a predefined limit.

Fully partitioning based packers are proposed in Marrakchi et
al. [99], PPack [47], and PPack2 [48]. These partitioning based methods
obtain good quality results for the total wirelength but still have some
fundamental problems that we solved in our packing approaches. The
first fundamental problem is due to the difficulty to impose constraints
during partitioning. It is not possible to control the number of pins on
each partitioned subcircuit, while functional blocks have a fixed num-
ber of input pins. Partitioning tends to minimize this number, but there
is no guarantee that every subcircuit will have less than the allowable
number of pins. Furthermore, it is hard to control the number of blocks
in each subcircuit. It is likely that there are too many or too few blocks
in a subcircuit compared to the number of available positions in a func-
tional block. Due to these problems a constraints enforcing post pro-
cessing step is required which results into a loss of quality because the
natural hierarchy of the circuit is disturbed. In Marrakchi et al. blocks
are swapped between the clusters until all constraints are met. In PPack
and PPack2 an architecture without an input bandwidth constraint is
used, which is far removed from commercial FPGA devices. But even
with this unrealistic architecture, it is required to swap blocks between
the clusters to limit the number of blocks in each subcircuit. Next to
the difficulty to impose constraints during partitioning, large packing
runtimes are expected because many subcircuits have to be partitioned.
Each time a subcircuit on a certain hierarchy level is cut in half, it leads
to two new subcircuits on the next hierarchical level. In total, the num-
ber of required cuts to fully partition a circuit, is approximately equal to
the number of blocks in that circuit. In PPack2, a runtime overhead of
10x is reported for the MCNC-20 benchmark circuits when compared to
VPR4.3. Luckily partitioning based packing offers an opportunity for
multithreaded parallelism. Once a subcircuit is split in half, then the
two new independent subcircuits on the next hierarchical level can be

66

partitioned concurrently, by spawning a seperate thread for each sub-
circuit.

HDPack [26] solves some of the problems while preserving the
reduction in total wirelength. HDPack uses a seed based clustering
method but incorporates physical information from a global placement
in the affinity metric. This global placement is obtained by partitioning
the circuit to a certain hierarchical level. All blocks in the subcircuits
on this level have a physical location on the architecture assigned. The
physical information leads to a reduction of 20% in total wirelength and
a reduction of 6% in critical path delay when compared to T-VPack for
the MCNC-20 benchmark designs. However, these reductions come at
the cost of additional runtime to partition the circuit.

4.3 Heterogeneous Circuit Partitioning

Digital designs are build-up hierarchically to cope with the increasing
vastness and complexity of applications. The application is divided
into several subproblems, which are in turn divided into smaller sub-
problems. Typically the interconnection complexity of these subprob-
lems is high while there are only a small number of connections be-
tween them. This hierarchical structure of applications is exploited in
our packing tool to improve the properties of the routed design. In
the partitioning phase, the circuit is split into a set of subcircuits. A
design is recursively bi-partitioned while minimizing the number of
connections to be cut. In this way an optimal Rent characteristic [76] is
obtained and the natural hierarchy of the circuit is preserved [48]. This
method works as follows. First the circuit is split into two parts. The
amount of cut edges is minimized and the difference in size between
these parts is limited by an unbalance factor, U:

Sizes1
Sizes2

< U (4.1)

This leads to two subcircuits on the first hierarchy level of the partition
tree. The two subscircuits are further bi-partitioned which results in
subcircuits on the next hierarchy level. The number of hierarchy levels
a circuit has, is approximately equal to log2(N), with N the number of
blocks in the circuit. The hMetis tool [67] is used because it is fast and
able to generate partitions with a high quality.

4.3.1 Balanced Area Partitioning

Rent’s rule states that the relation between the number of terminals, nt,
(cut nets) and the number of internal blocks, nb, is a power law over

67

the hierarchical levels of a recursively partitioned circuit. The circuit
has to be hierarchically partitioned while minimizing the number of
cut nets. Rent’s rule emerges because of the natural hierarchy present in
the circuit. The natural hierarchy is introduced by the human hardware
designers.

nt = t · (nb)rent exponent (4.2)

In the experiments section, we use heterogeneous architectures and
benchmark applications, so the architectures contain different block
types. Different block types have very different sizes in terms of area.
RAM blocks are large in comparison to Flip-flops (FF). It is apparent
that for such large hard blocks the number of block terminals will be
much larger than for a FF, which only has 1 input and 1 output. We
advocate that these large blocks should be seen as blocks on a higher
hierarchical level. Therefore we use the following extension of Rent’s
rule: instead of defining the size of a circuit as the number of internal
blocks, we use the area of these circuits. The area of a FF and a LUT
are based on COFFE simulations [30]. The area of the hard blocks in
the VTR architectures can be found in their description. In our exper-
iments we also use a description of the Stratix IV [80] which is made
publicly available by Murray et al.[106]. The area of the hard blocks in
this architecture is estimated by comparing the area of the hard blocks
in the VTR architecture description and the representative area factors
given in [135].

4.3.2 Pre-packing

In this step, all netlist primitives that should be packed together are
clustered into a molecule. During partitioning a molecule is processed
as a single block, with an area equal to the total area of all its atoms. Ex-
amples of primitives that should be packed together are DSP primitives
and adder primitives that are part of a carry chain.

Carry and Share Chains

Many carry and share chains are part of a long combinational path in
the circuit, leading to a large path delay in the routed design. Therefore
modern architectures have short and fast dedicated connections built-
in for these chains. Blocks that are separated during partitioning are
located in different subcircuits and thus all connections between these
separated blocks are routed with the slow interconnection network. For
this reason connections between blocks that are part of a chain should

68

(a) Without hard block swap (b) With hard block swap

Figure 4.1: Hard block swap during circuit partitioning

not be cut during partitioning. To avoid that such connections are cut,
we generate molecule blocks that contain all atom blocks in a chain.

DSP Primitives

Each DSP element in modern architectures consists of a one or more
multipliers connected to an accumulator. It is possible to pack these
multiplier and accumulator blocks in different DSP hard blocks, but
this leads to an increase in total wirelength and path delay because the
dedicated connections in a DSP block are shorter and faster than the
interconnection network. To prevent that DSP primitives are scattered
and thus part of different subcircuits, we also cluster them into DSP
molecules.

4.3.3 Hard Block Balancing

The hard blocks are typically able to implement multiple netlist prim-
itives. All memory slices that share the same address and control sig-
nals can be packed together in the same memory block. Similarly a DSP
block is able to implement several DSP primitives. If a set of memory
slices that would be packed together into a single memory block are
scattered over different subcircuits after partitioning, then each sub-
circuit requires at least one memory block to implement these slices
because no hard blocks can be shared between the subcircuits. In the
worst case, this leads to a resource requirement withM memory blocks
if M memory slices are scattered over different subcircuits.

The problem is solved by adding a hard block swap during recur-
sive bi-partitioning to balance the hard block primitives between both

69

partitions after each cut. In Figure 4.1 an example is shown for eight
memory slices that share the same address and control signals. Con-
sider an architecture in which the memory hard blocks are able to im-
plement three of these slices. The minimum number of required mem-
ory blocks to implement these slices is equal to three. If there is no hard
block balancing during partitioning, five memory blocks are required.
The first subcircuit requires two blocks, while the others require one.
If hard block balancing is added, memory slices are swapped between
both partitions after partitioning if this reduces the total number of re-
quired memory blocks. In this case, only three memory hard blocks are
required to pack all memory slices.

The difference with the pre-packing step is that the netlist primi-
tives in the pre-packing step are clustered to a molecule prior to parti-
tioning. We do this because there is little or no choice for the blocks we
pack together in the pre-packing step. These blocks have to be packed
into the same functional block. During partitioning, we add hard block
balancing because there are many candidate primitives that fit into a
few hard block instances. Choosing a hard block instance for each of
these hard block primitives before partitioning could disturb the natu-
ral hierarchy of the circuit because the decision can’t be based on the
hierarchy that is only obtained after partitioning.

The hard block swapping algorithm is defined as follows. Before
partitioning we group all hard block slices that can be implemented by
the same hard block type. Let’s assume that one of these groups con-
sists of P hard block primitives and that each hard block of this type
can implement N slices. In total we thus require H = d PN e hard blocks
of this type. When a circuit is partitioned in two parts C1 and C2, both
parts have PC1 and PC2 hard block slices, with PC1 + PC2 = P . Now
a total of H1 + H2 hard blocks are required, with H1 equal to dPC1

N e
and H2 equal to dPC2

N e. If H1 + H2 is larger than the original num-
ber of required hard blocks H then a hard block swap is added after
partitioning to rebalance the hard block primitives in such a way that
H1 +H2 = H . In this swap blocks are moved from C1 to C2 or from C2

to C1. To determine the direction in which hard blocks are moved, we
calculate the number of movesM12 andM21 that are required to ensure
that H = H1 +H2 when blocks are moved in the C1→2 and C2→1 direc-
tion respectively. The best direction is determined by the minimum of
M12 and M21. Once the direction is known, we move blocks between
the subcircuits until H = H1 + H2. Hereby the moved blocks are cho-
sen in such a way that the total number of cut edges is minimized. Each
time a block is moved, the minimum cut increase is chosen by compar-
ing all possible moves.

70

Once the number of hard block primitives in the subcircuit is
smaller than the number of available positions in a hard block, all these
primitives will be packed into a single hard block. In this case, the
primitives are clustered to a molecule to prevent that they are further
partitioned.

4.4 Timing-driven Recursive Partitioning

4.4.1 Introduction to Static Timing Analysis

Before describing the timing-driven version of the hierarchical parti-
tioning method, we describe how timing properties of a circuit are an-
alyzed. The timing properties are typically analyzed statically without
simulating the full circuit. In synchronized systems, the clock signal
conducts the synchronized elements such as flip-flops or latches, which
copy their input to their output at the rising or falling edge of the clock
signal. Logic signals are supposed to move in lockstep, advancing one
stage on each tick of the clock signal. During static timing analysis the
timing constraints are checked. A typical constraint is a lower limit for
the clock frequency. Only two kinds of timing violations are possible:

• Setup time violation: a signal arrives too late at the input pin of a
sequential element

• Hold time violation: an input signal of a sequential element
changes too soon after the clock’s active transition.

To analyze when violations will occur, a timing graph is constructed
in which each node is a pin of a primitive block and each edge a con-
nection between these primitives. After technology mapping little is
known about the routing pathways of the connections so typically each
edge has the same delay. In the packing stage a different delay can be
assigned to the edges because connections on a higher hierarchical level
will be slower than low level connections. The further downstream in
the compilation flow, the more accurate the timing graph will become.

The arrival time of a signal is the time elapsed for a signal to ar-
rive at a certain point, Tarr. The reference, or time 0.0, is often taken
as the arrival time of the clock signal. Calculating the arrival time re-
quires a forward topological traversal through the timing graph. The
required time, Treq, is the latest time at which a signal can arrive at a
node without timing violations. The timing constraints determine the
required times at the sequential inputs. A backward topological traver-
sal is required to calculate the required time at each node. The slack is
the difference between the required time and the arrival time.

71

A positive slack at a node implies that the arrival time at that node
may be increased without affecting the maximum delay in the circuit.
Conversely, negative slack implies that a path is too slow, and the path
must be sped up (or the reference signal delayed) if the timing con-
straints have to be met. The worst negative slack (WNS) indicates the
critical path of the circuit. The timing violations will not improve unless
this path is taken care of. To indicate how critical an edge is a criticality
measure is introduced:

Crit(edge) =
Slack(edge)

WNS
(4.3)

In case the only timing constraint is that the clock frequency should be
as high as possible then the critical path is defined as the path with the
maximum delay, Dmax.

4.4.2 Timing Edges in Partitioning

Edges on the critical or on a near critical path should not be cut on high
hierarchical levels because this leads to longer and slower connections
in the interconnection network. These edges should remain uncut as
long as possible. For this reason weighted timing edges are added to
the circuit graph before it is passed to the partitioning tool. These tim-
ing edges avoid that the critical or a near critical path is cut when a
partition is possible without cutting this path. The amount of timing
edges added and the weight of these edges are important parameters
to obtain good results for both the total wirelength and the critical path
delay. Adding too many timing edges with too large weights results in
partitions that violate the natural hierarchy of the circuit and leads to
an increase in total wirelength.

A timing analysis of the mapped circuit determines where the tim-
ing edges should be added. We optimistically assume that the fastest
possible connection is used between two blocks. A timing edge is
added for each edge in the circuit that has a criticality larger than the
threshold value. However there are two types of designs: designs with
only a few long paths and circuits with a more gradual path delay dis-
tribution.

For the circuits with only a few long paths the process is straight-
forward. A treshold criticality is set to 0.65. All edges with a higher
criticality are added, thereby assuring that they are not cut during par-
titioning. However, many circuits have a more gradual path delay dis-
tribution. Adding every critical connection would lead to too many
timing edges in the circuit. For these circuits we avoid adding too many
edges by considering only the 20% most critical edges.

72

We also add a weight to each timing edge, in order to differentiate
between the critical and near critical edges. The larger the criticality
of an edge, the larger its corresponding weight will be. hMetis only
allows integer values for the weights [68], so the criticality of the edge
is multiplied with a factor M and rounded to the nearest integer value.
We found experimentally that 12 is an optimal value for M .

Timing Edge Weight Update

If a critical or near critical path is cut during recursive bi-partitioning,
then this path should have special attention. Otherwise it could be cut
several times and this would lead to multiple slow connections in the
interconnection network. To prevent this, all timing edges on a crit-
ical or near critical path have a very large weight assigned once it is
cut. This ensures that other uncut critical connections are cut first if a
partition is not possible without cutting critical edges.

4.5 PARTSA

Our first packing algorithm we propose is PARTSA. It is a fully par-
titioning based packer with a simulated annealing based refinement
step instead of the constraints enforcing post processing step that is
common for the partitioning based packers we described in Section 4.2.
In the first phase the circuit is completely partitioned to small sets of
blocks. In existing packing tools, partitioning ends when the size of all
sets is smaller than the available number of positions in a functional
block. In this approach, an additional constraints enforcing step is re-
quired for two reasons. Firstly it is not possible to limit the number of
pins on each subcircuit. Secondly it is very difficult to obtain subcircuits
that exactly fill all empty positions in a functional block.

To remedy this PARTSA uses the distance from the resulting parti-
tion tree as a cost metric in a simulated annealing process. Two advan-
tages are obtained with this method. Firstly it is possible to impose a
bandwidth constraint on each functional block by adding a penalty, rel-
ative to the number of used input pins. Secondly the problem with too
large or too small subcircuits is solved because the simulated annealing
method fills all functional blocks until no more empty positions are left.

4.5.1 Introduction to Simulated annealing

Simulated annealing [70] is a heuristic to find the global minimum of a
cost function inspired by the physical annealing of metals. Physical an-

73

Figure 4.2: Partition tree and distance metric between two blocks

nealing of metals involves heating and controlled cooling of a material
to increase the size of its crystals and reduce their defects. To apply sim-
ulated annealing, each state in the search space should have an easily
calculable cost.

Simulated annealing is an iterative algorithm in which a solution
is repeatedly randomly altered and evaluated. If a proposed alteration
causes the cost of the solution to drop, the newly altered solution is ac-
cepted and used for further alterations in the next iterations. To avoid
getting stuck in local minima, sometimes an alteration causing a higher
cost is accepted as well. The probability of such a solution to get ac-
cepted depends on how much worse the solution is and the value of
the temperature (T) at the current iteration. The alteration is accepted
with a probability of e−

∆C
T , where ∆C is the change in cost due to the

alteration. T , the temperature, controls the probability by which hill-
climbing moves/swaps are accepted. Initially, T is very high so that
most moves are accepted, which allows a thorough exploration of the
solution space. Gradually T is decreased so that the probability by
which hill-climbing moves are accepted decreases and the placement
converges towards a close to optimal solution. The algorithm stops
when the solution does not improve anymore.

Initialization During initialization the primitives are packed in high
level functional blocks without optimization. The blocks are filled with
the sets from the hierarchical partitioning. All available positions in the
high level functional blocks are filled, in that way we avoid the problem
of having too large or too small subcircuits after partitioning.

74

Alterations An alteration is randomly constructed by choosing a ran-
dom primitive and a random primitive block location in one of the high
level functional blocks and different from the location of first randomly
chosen primitive. If there is a primitive assigned to the chosen location,
then the primitives are considered to be swapped. In the other case
the chosen primitive is considered to be moved to the vacant primitive
location. Following an annealing schedule, alterations are performed
until the total cost is minimized.

Annealing Schedule The ensemble of the following parameters is
called the annealing schedule: the initial temperature, the rate at which
the temperature is decreased, the number of moves that are attempted
at each temperature, the way in which potential moves are selected and
the exit criterion. A good annealing schedule is crucial for finding a
good solution in a reasonable amount of time. We used the anneal-
ing schedule proposed in [16]. The annealing schedule is formulated
in Equation (4.4) with an exponential cooling using a variable parame-
ter γ. The goal of the variable parameter γ(β) is to make the algorithm
spend more time in the stage where the algorithm makes the most im-
provement, namely when the fraction of accepted alterations β is be-
tween 15% and 96%.

Tnew = γ(β) · Told (4.4)

γ(β) =

0.5, if 96% < β

0.9, if 80% < β ≤ 96%

0.95, if 15% < β ≤ 80%

0.8, if β ≤ 15%

(4.5)

The initial temperature can be estimated by performing some ran-
dom alterations and calculating the changes in the cost function. The
standard deviation of the delta costs determines the initial tempera-
ture. Both the quality and runtime are not very sensitive to the initial
temperature, because the annealing schedule adapts the temperature
exponentially, if the number of accepted alterations is too high.

A detailed description of the annealing schedule falls out of the
scope of this thesis. We refer the reader to [16] for more details.

4.5.2 Cost Function

The cost function used in simulated annealing is based on the partition
tree distance. Additionally the annealer also imposes an input band-

75

width constraint to each functional block by assigning a cost, relative
to the number of input pins. In this way a post-processing constraints
enforcing step can be avoided.

The cost of each functional block (FB) is a weighted sum of two
elements, a distance cost and a pin cost:

CostFB = α · CostDistance + (1− α) · CostPin (4.6)

The distance cost is the sum of the distance between all pairs of
blocks in the considered functional block Equation (4.7). The distance
between two blocks is defined as the distance of the path between these
blocks in the partition tree. In Figure 4.2, the path between block A and
B is shown and has a distance equal to five. This way, blocks that are
partitioned on a low hierarchy level are preferably put into the same
functional block.

CostDistance =
∑

b1,b2∈FB
distancetree(b1, b2) (4.7)

If a functional block has more input pins, PFB , than the threshold
value, PTH , then a penalty cost is added (4.8). For a PTH value of 35 all
functional blocks typically satisfy an input bandwidth constraint of 40.

CostPin =

{
0 PFB ≤ PTH

(PFB − PTH)2 PFB > PTH
(4.8)

We empirically devised the optimal weight α in Equation (4.6) to be
0.16667.

4.5.3 Fast Partitioning

In PARTSA the circuit is completely partitioned because the informa-
tion from the resulting partition tree is used in the simulated annealing
step. This results in large runtimes because many subcircuits have to
be cut in half. A large gain is obtained by using multithreading and
avoiding partitioning on the lowest hierarchy levels.

In Figure 4.3 the cumulative partitioning runtime over all hierarchi-
cal levels is shown for LU64PEEng. On the high hierarchical levels only
a few large subcircuits have to be partitioned. To speed up this process,
multithreading is used. This is possible because once a circuit is cut in
half, both subcircuits can be partitioned independently.

Firstly the circuit is split into two subcircuits. Then these are parti-
tioned in parallel by using two threads. On the next hierarchical level
four subcircuits are available which are partitioned in four threads. The

76

Figure 4.3: Cumulative partitioning runtime over all hierarchical levels
for LU64PEEng

0	

5	

10	

15	

20	
0	 5	 10	 15	

Hi
er
ar
ch
ic
al
	le
ve
l	

Par,,oning	run,me	[s]	

Figure 4.4: Partitioning runtime per level for a multi-threaded parti-
tioning on a CPU with four cores. For the first four levels, the runtime
decreases because there are unused threads because of the low number
of subcircuits.

maximum number of threads is parameterized and is best adapted to
the number of cores on the used CPU.

A problem occurs on the lower hierarchical levels. On these levels
many small subcircuits have to be partitioned which leads to a large
amount of overhead. For LU64PEEng more than 100000 subcircuits are
partitioned on the lowest two hierarchy levels. This takes around 40%
of the total partitioning time as shown in Figure 4.3. Even if we apply
multi-threading to the partitioning problem, the runtime increase re-
mains because of the sheer amount of subcircuits that have to be parti-
tioned, see Figure 4.4. The solution is to stop partitioning when the size
of a subcircuit is smaller than a certain threshold value Nstop. In this
case, a subcircuit of sizeN withN ≤ Nstop is not further cut with recur-
sive bi-partitioning but instead it is immediately split into N subcircuits
that contain only one block. This means that recursive bi-partitioning
ends when the size of a subcircuit is smaller than the threshold value
resulting in less distance information in the partition tree.

77

(a) Critical path delay (b) Total wirelength

Figure 4.5: Clustering quality in function of Nstop for bgm

Reducing the partitioning depth leads to a disturbance in the nat-
ural hierarchy. There is no detailed distance information available be-
yond the threshold hierarchy level, but it is still possible to obtain high
quality clustering results with the simulated annealing method. In Fig-
ure 4.5 the critical path delay and total wirelength for bgm are shown
in function of Nstop. We observe that this method does not lead to a
large loss in quality when Nstop is small. The total wirelength starts to
increase rapidly when Nstop is larger than the number of available po-
sitions in a functional block. In our experiments we use an Nstop = 4.
This leads to a loss in quality of less than 1% while reducing the parti-
tioning runtime with 40%.

4.5.4 Parallel Annealing

To speed up the process and quality of simulated annealing not all
blocks are packed with one simulated annealing step. Instead anneal
roots are chosen for independent multithreaded annealing. These an-
neal roots are subcircuits on a high hierarchical level in the partition
tree.

In Figure 4.6 a partition tree of a small circuit is shown. If the toy
circuit is packed into functional blocks with two available positions,
then this will result in a solution with four clusters as shown in the fig-
ure. These blocks are the result of the annealing based packer because
in this case the total cost is minimized. If subcircuits S1 and S2 would
have been used as independent subcircuits for simulated annealing, the
same result would have been obtained because blocks from S1 and S2
are not packed into the same functional block. Doing this would in-
crease the total cost because the tree distance between blocks in S1 and
S2 is large. More in general, if two subcircuits on a high hierarchical
level in the partition tree are considered, then the blocks in these sub-

78

Figure 4.6: Anneal roots for fast independent multithreaded annealing

circuits will not be packed into the same functional block because this
would increase the total cost. Therefore it is possible to pack the blocks
from these subcircuits independently with the annealing based packer.

This method reduces the annealing runtime for two reasons. Firstly
the size of the annealing problem is largely reduced because less swaps
are possible in the smaller search domain. Secondly multithreading can
be used because all subcircuits are annealed independently.

The drawback is that lower filling rates for the functional blocks
are obtained because each anneal root possibly leads to unfilled posi-
tions. If the number of available positions in the example of Figure 4.6
would increase to three, then three clusters are required to pack the
eight blocks from the circuit and one position remains unfilled. For
the approach with anneal roots each subcircuit has four blocks and this
leads to functional block with unfilled positions for each anneal root.
For each of these anneal roots two functional blocks are required. The
two functional blocks would provide six positions from which two are
unused.

In Figure 4.7 the total anneal runtime and fill rate are shown in func-
tion of the anneal root size. The anneal root size is the number of primi-
tives that is annealed in one simulated annealing process. The root size
should be as small as possible to reduce the annealing runtime, but if
the root size becomes too small than there is a penalty in terms of area
overhead. For each simulated annealing root, there will be high level
functional blocks that are not completely filled, so the filling rate will
be smaller for smaller root sizes.

We use an anneal root size of 300, this leads to filling rates of 98%
and up to 10x faster anneal runtimes when compared to the case where
no anneal roots are used.

79

(a) Total anneal runtime (b) Fill rate of the functional blocks

Figure 4.7: Total anneal runtime and fill rate of the functional blocks in
function of the anneal root size for LU32PEEng

4.5.5 Problems with PARTSA

A problem occurs when complex architectures with sparse crossbars
are used. Each time two blocks are swapped, a detailed routing would
be required to check if a legal solution is obtained because not all con-
nections can be realized in the local interconnection network. This re-
sults in large runtimes because the detailed routing check would have
to be executed in the kernel of the simulated annealing algorithm that
is swapping blocks. Many swaps have to be performed in a simulated
annealing algorithm to obtain a result with a low wiring cost and it
takes too much time to perform a detailed routing every time.

4.6 MULTIPART

To solve the problems with sparse crossbars, we propose to combine
the advantages of partitioning based and seed based packing in one
algorithm that we call MULTIPART. It consists of two main parts (Fig-
ure 4.8): a partitioning step to partition the circuit hierarchically to a set
of subcircuits and a seed based packing step that packs all these subcir-
cuits concurrently. There are a number of advantages to this approach:

• The natural hierarchy of the circuit is retained in the partitioning
step, so a large reduction in total wirelength is achieved.

• No partitioning is required on the deep hierarchical levels, which
saves runtime.

80

Figure 4.8: Overview of the MULTIPART algorithm. The tool consists
of two steps, a partitioning step to split the circuit into N independent
subcircuits and a seed based packing step to pack these independent
subcircuits concurrently.

• Heterogeneous designs can be packed on architectures with
sparse crossbars, because detailed routing is taking care of by the
seed-based packer backend.

The subcircuits that result from the partitioning step are packed
with a seed based packer. To obtain a maximum gain in total runtime,
all these subcircuits are packed independently on a virtual target with
its own resources. Afterwards all resulting functional blocks are com-
bined into a single netlist and placed onto the target device.

The seed based packer introduces a large runtime overhead to ini-
tialize all modes of the modern and complex architectures. To allow fast
packing on complex architectures, we automatically generate a design
specific architecture in which only the required modes are described.
Otherwise all modes are initialized even if these modes are never used
by the design. This method effectively reduces the runtime overhead
of the seed based packer.

4.6.1 Optimal Number of Subcircuits

To determine the optimal number of subcircuits for multithreaded seed
based packing, there are two conflicting motivations. Firstly the num-

81

ber of subcircuits should be minimized because partitioning results in
an increase in runtime. There should also be enough subcircuits in or-
der to fully exploit the available number of threads available on the
target CPU. This way all threads are used to pack the subcircuits con-
currently during the seed-based packing stage. Secondly packing a cir-
cuit with a partitioning based packer leads to better results for the total
wirelength. The number of subcircuits should be maximized in order
to partition the circuit as much as possible, thereby reducing the total
wirelength.

A maximum cluster size (Nmax) is defined for all subcircuits. If the
size of a subcircuit is smaller than this value, then it is further clustered
with the seed based packer. Because all circuits have a different size N ,
choosing an Nmax value that gives good results for all circuits is diffi-
cult. Therefore anNsub is introduced, which is the minimum number of
subcircuits resulting from the hierarchical partitioning. By making use
of this factor, Nmax is calculated as follows: Nmax = N/Nsub. We found
that a Nsub of 30 leads to a good result for both small and large designs.

4.6.2 Passing Timing Information via Constraint Files

For some circuits it is impossible to avoid that critical edges are cut,
as explained in Section 4.4.2. This problem is more pronounced for
MULTIPART, because a cut critical path results in smaller paths in both
subcircuits that are treated independently by the seed-based packing
phase. In Figure 4.9 the critical path P2 is cut during partitioning, lead-
ing to two subcircuits where the cut critical edge is replaced with an
input/output pin. If these subcircuits are further processed, the path
P2 will not be considered as critical by the seed-based packer because
now it is shorter than in the original circuit. This will lead to an increase
in critical path delay.

To solve this problem, additional timing information is passed on to
the seed-based packer for each subcircuit. We use the Synopsys Design
Constraints (SDC) format in our implementation [103]. In this format,
it is possible to assign a delay to any input and output pin of the circuit.
In MULTIPART these delays are added to all input/output pins that are
the result of cutting a critical edge. This way, the seed based packer
knows the total delay of all critical paths in the circuit and is able to
minimize the maximum delay.

82

Figure 4.9: Partitioning of a circuit with cut and uncut critical path

4.7 Experiments

Post-routing total wirelength and critical path delay are obtained by
placing and routing the packed circuits with VPR 7.07. For PARTSA
an architecture with complete crossbars is used in a 40 nm tech-
nology (k6 N10 40nm). The results of MULTIPART are also anal-
ysed on this architecture to compare both packers. A second more
realistic architecture with sparse crossbars in a 22nm technology
(k6 N10 gate boost 0.2V 22nm) is used to further analyse the MULTI-
PART packer. Finally we also use a commercial architecture, Altera’s
Stratix IV to evaluate MUTLIPART for the heterogenous Titan bench-
mark suite.

The performance of the routed designs produced by VPR can vary.
To account for this variance all experiments are run eight times, each
time with a different seed for placement. The results shown below are
averaged out over these eight experiments.

4.7.1 Optimal Number of Threads

First, we experimentally determine the optimal number of available
threads for the multithreaded algorithms. In all our experiments a
workstation with an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz with
four cores is used. For the PARTSA packer, the partitioning runtime is
shown in function of the number of threads in Figure 4.10(a). When the
number of threads is increased from one till eight, then we maximally

83

(a) PartSA: partitioning based
packing

(k6 N10 40nm)

(b) MultiPart: seed based
packing

(k6 N10 gate boost 0.2V 22nm)

Figure 4.10: Runtime versus available threads for LU64PEEng

obtain a runtime speed up of 4x. This result is expected because the
target CPU has four available cores. For the MULTIPART packer, seed
based packing runtime is shown in function of the number of threads
in Figure 4.10(b). Here the same result is obtained when ten threads are
used. Again multithreading results in 4x faster runtimes. In case the
absolute values for the runtimes are compared between Figure 4.10(a)
and Figure 4.10(b), then we should take into account that a different tar-
get architecture is used. The k6 N10 gate boost 0.2V 22nm architecture
has depopulated local interconnect crossbars, which makes it harder to
pack, because each time a block is packed, the packer has to check if the
local routing is feasible.

4.7.2 An Architecture with Complete Crossbars

In Figure 4.11 the reduction in total wirelength is shown for the 10
largest VTR benchmark circuits when compared to AAPack. PARTSA
leads to the largest reduction in total wirelength for all circuits with a
geomean equal to 26%. For MULTIPART smaller gains are obtained, es-
pecially for circuits where it is difficult to control the critical path delay.
For these circuits, it is hard to find partitions without cutting a criti-
cal path. Each time a critical path is cut, all weights on this path are
increased, leading to worse cuts on the next hierarchical level because
other, less optimal, edges are cut. The geomean of the reduction for this
packer is equal to 12% (Table 4.3).

The large reduction in total wirelength has the benefit that the mini-
mum required channel width to route all connections is smaller. There-
fore it is possible to route these circuits on FPGAs with a smaller chan-
nel width when these packers are used. This is important because less

84

Figure 4.11: Reduction in total wirelength for PARTSA and MULTIPART

when compared to AAPack with the k6 N10 40nm architecture

routing resources are required, and smaller and cheaper FPGAs can be
used to implement the same design. Due to the computational com-
plexity we omitted LU64PEEng. The gain in minimum channel width
of the remaining circuits is shown in Figure 4.12 and has a geomean
equal to 28% when PARTSA is used and equal to 15% for MultiPart.

Figure 4.12: Reduction in minimum channel width for PARTSA and
MULTIPART when compared to AAPack with the k6 N10 40nm archi-
tecture

The total runtime is shown relative to the area in Figure 4.13. On
average a gain of 1.8x is obtained for PARTSA while MULTIPART has a
gain of 2.7x (Table 4.3). The results for the largest circuits are most im-
portant because these require largest packing runtimes. With AAPack
162 seconds are required to pack LU64PEEng. This is reduced to 69
seconds for the PARTSA packer and to 40 seconds for the MULTIPART

packer, which is 4x faster than AAPack for a CPU with four cores.
We notice that larger runtime gains are mainly obtained for the

larger circuits. In Table 4.1 the gain for PARTSA and MULTIPART is
shown for the LU circuits. These are three scalable linear system solvers

85

Figure 4.13: Runtime of AAPack, PARTSA and MULTIPART with the
k6 N10 40nm architecture

with a different size. The larger the size of the circuit, the larger the ob-
tained gain in total runtime.

Table 4.1: Gain in total runtime for LU circuits

Name Area PARTSA MultiPart
LU8PEEng 770K 1.7x 2.6x

LU32PEEng 2.7M 2x 3.3x
LU64PEEng 5.3M 2.3x 4x

The ratio of the critical path delay is shown relative to AAPack in
Table 4.2. For both packers, the geomean of the ratio is smaller than one,
which means that they do not lead to an increase in critical path delay.
Although for some circuits an increase is obtained, especially for the
PARTSA packer. In PARTSA it is difficult to control the cut critical paths
through all hierarchical levels, especially when the circuit has many
critical edges. Therefore, MULTIPART leads to better results, here less
hierarchy levels are partitioned and the seed based packing phase also
uses information of the cut critical edges during seed based packing by
making use of the SDC files.

4.7.3 An Architecture with Sparse Crossbars

MULTIPART is able to pack circuits on an architecture with sparse cross-
bars (k6 N10 gate boost 0.2V 22nm). With this architecture, it is harder
to pack all blocks because detailed routing fails many times. This leads
to longer packing runtimes and an increase in total wirelength because
less connections are implemented inside the functional blocks. When
results from AAPack are compared on both architectures, an increase of
38% in total wirelength is observed. With MULTIPART better clustering

86

Table 4.2: Ratio of the critical path delay relative to AAPack with the
k6 N10 40nm architecture as a target device

Design name PARTSA MultiPart
bgm 0.92 0.97

blob merge 1.07 1.00
LU8PEEng 0.96 0.92

LU32PEEng 0.99 1.01
LU64PEEng 0.99 1.01

mcml 1.11 1.01
mkDelayWorker32B 1.07 1.02

stereovision0 1.04 1.02
stereovision1 0.92 0.91
stereovision2 0.82 0.88

geomean 0.985 0.974
stdev 0.088 0.052

results are obtained, resulting in a smaller increase in total wirelength.
A gain in total wirelength of 20% is achieved when compared to AA-
Pack on this architecture. We thus observe that better results are ob-
tained with MULTIPART if a more complex architecture is used. For the
gain in critical path delay and the gain in total runtime similar results
as with the other architecture are obtained. Runtime speed-ups up to
4x are achieved for the largest circuits with a geomean of 2.9x and the
gain in critical path is equal to 3.7% (Table 4.3).

Table 4.3: Summary of the properties for PARTSA and MULTIPART on
the three target architectures when compared with AAPack on a CPU
core with four cores

Total wirelength Critical path delay Runtime speedup

k6 N10 40nm - VTR benchmark

PARTSA -26% -1.5% 1.8x
MULTIPART -12% -2.6% 2.7x

k6 N10 gate boost 0.2V 22nm - VTR benchmark

MULTIPART -20% -3.7% 2.9x

Stratix IV - Titan benchmark

MULTIPART -28% -8% 3.6x

4.7.4 A Commercial Architecture

MULTIPART is able to handle heterogeneity, so we tested it on a com-

87

Table 4.4: Post-route results for MULTIPART in comparison with AA-
Pack, for the Titan benchmark designs and Stratix IV as a target device

Size Runtime TWL CPD
Design name x1000 Packing Placement Routing
neuron 91 0.31 0.95 0.79 0.66 1.01
sparcT1 core 91 0.34 0.96 0.31 0.72 0.98
stereo vision 92 0.33 0.95 0.82 0.73 0.95
cholesky mc 108 0.32 0.94 0.88 0.81 1.00
des90 110 0.27 0.92 0.34 0.72 0.80
segmentation 168 0.20 1.07 0.11 0.85 0.96
bitonic mesh 192 0.26 0.86 0.05 0.66 0.81
stap qrd 237 0.22 0.96 0.64 0.60 0.89
cholesky bdti 256 0.29 0.91 0.88 0.74 0.93
Geomean ratio 0.28 0.95 0.39 0.72 0.92
Std. Dev. 0.05 0.06 0.34 0.08 0.08

TWL = Total Wirelength
CPD = Critical Path Delay

mercial architecture, the Stratix IV, and used the larger designs in the
Titan suite to benchmark the packer in comparison with AAPack. The
results are listed in Table 4.4. The resulting gains are better for the larger
designs with a 28% reduction in total wirelength and an 8% decrease in
critical path delay while speeding packing with a factor of 3.6x.

An additional advantage of the better packing quality is the reduc-
tion in routing runtime and this becomes apparent for the larger de-
signs in the Titan suite. For the selection of benchmark designs in Ta-
ble 4.4, the routing runtime is reduced with a factor of 2.56x, albeit not
consistent with a high standard deviation of 0.34.

4.8 Conclusion and Future Work

A partitioning based packing method leads to a better quality in terms
of total wirelength but is slower when a single core approach is used.
In contrast to seed based packing, partitioning a circuit offers the op-
purtunity to multithread packing. Once a circuit is split into two parts,
then both parts can be further processed concurrently by two separate
threads. Furthermore, a large reduction in minimum channel width is
obtained, which reduces the required number of metal layers and gen-
erally allows designers to move to a smaller and cheaper target FPGA
if the routing congestion is a bottleneck.

Although obtaining good results, a fully partitioning based
methodology is not suitable for architectures with sparse crossbars.
This is solved by combining the advantages of partitioning based and

88

seed based packing. The end result is 3.6 x shorter packing runtimes
and 2.56 shorter routing runtimes on average, while increasing the
quality of the routed design with 8% shorter critical path delays and
28% less wiring. The improved packing performance substantially re-
duces the gap between the academic and commercial results from the
previous chapter.

In Future work we want to use the intermediate results produced
by the partitioning based packing algorithms during placement. The
partitioning based packers that we described in this chapter build a
partitioning tree in the first phase of their algorithm. The partitioning
tree can be used to guide the placement process by producing an initial
placement based on the partitioning tree for example.

89

5
Steepest Gradient Descent Based

Placement

In this chapter, we introduce a new placement algorithm and compare
it to conventional approaches. In the introduction we start with de-
scribing why we should develop fast placement approaches and sub-
sequently we give an overview of the conventional techniques. We dis-
cuss the problems of conventional techniques and the oppurtunities we
exploited in our new placement tool.

5.1 Introduction

Placing a design on an FPGA encompasses assigning each block in the
mapped input circuit onto a physical block on the FPGA while ensuring
that no two blocks occupy the same physical location. Placement is a
runtime intensive task and easily takes one third of the total runtime
of the FPGA CAD tool flow, as shown in Figure 3.3 and described in
Chapters 1 and 3. Since the FPGA CAD runtime is a bottleneck in the
FPGA design cycle, we want to reduce the placement runtime as much
as possible. Unfortunately the placement problem is NP hard.

Several heuristic approaches have been proposed to solve the place-
ment problem. The oldest is the simulated annealing approach to
FPGA placement. It produces results with a very high quality, but at
the cost of a high runtime. Circuit sizes have grown over the years, and
placing a large circuit with the VPR simulated annealing based placer

91

can now take up to multiple hours. A lot of research has gone into
speeding up simulated annealing. One approach is to parallelize the
simulated annealing algorithm. This approach has yielded speedups of
2.2× on four cores with no quality loss [86] and 10× using GPGPU with
some quality losses [33]. The latter result however was achieved on an
unrealistic homogeneous devices with smaller logic clusters. Highly
heterogeneous devices with larger clusters were introduced in the early
2000’s.

Another class of placement algorithms that shows promising re-
sults, is analytical placement. Analytical placers were first invented
in the 1980s in the field of ASIC design [71] and continue to be widely
used in that field. For FPGAs, Xilinx first started using analytical tech-
niques in 2007 [54]. Academic research on analytical placers is still lag-
ging behind proprietary tools in terms of QoR. Multiple analytical plac-
ers have been proposed in academic literature that are competitive with
the VPR placer, most notably [53, 152, 83, 151]. None of these placers
have publicly available source code and a lot of details are omitted in
the publications, which makes it hard to reproduce the results. The re-
sults are also reported for unrealistic homogeneous FPGA architectures
with smaller logic clusters. We had to develop our own timing-driven
analytical place, which is described in Section 5.4. Our implementation
is largely based on the wirelength-driven placer HeAP [53], which is in
turn based on an analytical placer for ASICs called SimPL [69].

In this chapter we describe a new way to calculate FPGA place-
ments and compare it to analytical placement and simulated anneal-
ing. Analytical placement places a design by minimizing a cost func-
tion. Unfortunately it is not possible to put all the constraints in one
analytical solvable cost function. So the problem is divided in multi-
ple iterations. In each iteration the cost function is adapted to the re-
sult of the previous iterations and minimized again. The minimization
encompasses deriving the cost function and finding the minimum by
solving a linear system. Experiments show that it is not necessary to
have the high accuracy of the analytical solution. In LIQUID we move
all the blocks in the placement in several small steps, instead of mini-
mizing the cost function. The steps are taken in the direction that re-
duces the cost function the most. This is called the steepest gradient
descent (SGD). After each step is taken the cost function is updated.
This SGD optimization is much faster than solving a linear system.

Another big advantage of using SGD optimization is that there is
more freedom in choosing the cost functions. More complex cost func-
tions are possible as long as they are derivable. SGD optimization is
popular in machine learning. It is successfully being used in training

92

deep convolutional networks [66], which are complex non-linear func-
tions. In analytical placement the form of the cost function is restricted.
Minimization of the cost function should lead to system of equations
that are solvable in a reasonable time frame. This forces the cost func-
tion to be a sum of squares. After derivation, a sum of squares can be
represented by a matrix, which can be inverted to find the minimum.

Calculating the SGD move vectors is computationally less intensive
than solving the linear system, which makes LIQUID much faster than
classic analytical placement. Additionally the movement vectors can
be calculated independently, which makes it uniquely suitable for par-
allelisation. The total workload is very fine grained and liquid, hence
the name of the algorithm. It can be divided in arbitrary partitions over
multiple CPU or GPU cores. We describe a single threaded implemen-
tation as a proof-of-concept. Experimental results are already show-
ing superior performance at lower runtime budgets. LIQUID performs
better in the runtime-quality tradeoff at lower runtimes in comparison
with simulated annealing and analytical placement.

The work in this chapter was done in collaboration with Seppe
Lenders. Seppe Lenders was a master thesis student in our research
group in 2015-2016. The work is reported in a conference publica-
tion [49].

5.2 FPGA Placement

An FPGA placement algorithm takes two inputs: the mapped input
circuit and a description of the target FPGA architecture. A placement
algorithm searches a legal placement for the functional blocks of the
input circuit so that circuit wiring and timing are optimised. In a le-
gal placement every functional block is assigned to one of the physi-
cal blocks that is capable of implementing the functional block and no
physical block can be assigned more than one functional block. This
type of optimization problem is called an assignment problem.

The main optimisation goal used by placement tools is to minimize
the total wire length required to route the wires in the given place-
ment. Placers that are only based on this goal are called wire-length-
driven placers. More complex tools such as routability-driven [124] and
timing-driven placers [97] trade some of the wire-length for a more bal-
anced wiring density across the FPGA or a higher maximum clock fre-
quency of the circuit, respectively. The total wirelength leads to more
convex optimization functions and is generally easier to optimize, it
has an impact on power consumption, routability and critical path de-
lay. However optimizing for maximum clock frequency directly is nec-

93

(a) Initial Random Placement.
Cost: 74.5526.

(b) Final Placement.
Cost: 28.5384.

Figure 5.1: Visualization of the placement for the MCNC benchmark
circuit e64.

essary to obtain reasonable timing characteristics. Our new placement
tool, LIQUID can be run in two modi, wirelength-driven and timing-
driven.

Finding a placement with a decent quality is important. Poor qual-
ity placements generally cannot be routed or lead to low operation fre-
quencies and high power consumption. In Figure 5.1 the initial ran-
dom placement and an optimized placement are visualized for the e64
benchmark design from the MCNC suite. We choose this small bench-
mark design because it is still feasible to visualize its placement. For
this design a random placement leads to a critical path delay of 73ns
and a minimal channel width of 22 if we want to implement it on the
4lut sanitized architecture. In case the placement is optimized with the
simulated annealing placement tool in VPR 4.30, the post-routing criti-
cal path delay decreases to 40ns and the minimum channel width drops
to 9. This quality difference increases enormously for larger circuits and
larger target devices. So it is important to find a good placement to re-
duce the wiring on an FPGA which will reduce the silicon area and the
number of metal layers needed to fabricate an FPGA. For FPGA design-
ers the wiring of the design can be a bottleneck that forces them to buy
a larger and therefor more expensive chip.

Additionally, the placement problem is computationally hard, so
there are no known algorithms that can find an optimal solution in a
reasonable time. Therefore, many heuristics have been developed for
the placement problem. Most of these algorithms belong to one of three

94

types of placers: partition-based placers [94], analytical placers [22]
(Section 5.4) and simulated annealing placers [16] (Section 5.3). The
two main commercial FPGA vendors use different techniques. Analyt-
ical placement is the main technique used in Xilinx Vivado’s placement
tool [85] and Altera’s Quartus placer is mainly based on simulated an-
nealing [46]. In the past Xilinx also used simulated annealing in its now
deprecated Integrated Synthesis Environment (ISE) Design Suite.

	
	

	 	 	 	

	
	

	
	

	 	 	 	

	
	

	
	

	
	

	
	
	
	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	

	
	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	 	
	

	
	

	
	 	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	 	
	

	
	

	
	 	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	 	
	

	
	

	
	 	
	

	
	

	
	

	
	

	
	

	
	

	 	 	 	
	
	

	
	

	 	 	 	
	
	

	
	

	
	

	
	
	
	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	

	
	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	 	
	

	
	

	
	 	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	 	
	

	
	

	
	 	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	 	
	

	
	

	
	 	
	

	
	

	
	

	
	

	
	

Figure 5.2: The bounding box (left) and a routing solution (right) for
a net placement. The Half Perimeter Wire Length (HPWL) for this net
placement is 6.

5.2.1 Wire-length Estimation

The only way to exactly calculate the total wire-length of a given place-
ment is to route the wires in a placement and sum the wire-length over
all nets. Since routing is in itself a computationally hard problem, solv-
ing it repeatedly in the inner loop of the placer and in this way exactly
calculating the total wire-length, leads to unacceptably long execution
times for the placer. Therefore, the cost is not exactly calculated but
estimated. A common way of estimating is calculating the sum of the
estimated wire lengths of each net, where the Wire Length of a net is
estimated as the Half-Perimeter of its bounding box (HPWL) weighted
by a factor q(n) which depends on the number of terminals of the net
(taken from [29], see Table 5.1). It is equal to 1 for nets with up to three
terminals because the HPWL is equal to the wirelength of the minimum
Steiner tree routing solution for these nets. It slowly grows to 2.79 for
nets with 50 terminals. An illustration of the bounding box is depicted

95

Table 5.1: The net weight factors to account for the number of net ter-
minals while estimating post-routing wirelength.

n=#sinks q(n)
1 ≤ n ≤ 3 1.000

4 1.0828
5 1.1536
6 1.2206
7 1.2823
8 1.3385
9 1.3991

10 1.4493
10 < n ≤ 15 (n− 10) · (1.6899− 1.4493)/5 + 1.4493

15 < n ≤ 20 (n− 15) · (1.8924− 1.6899)/5 + 1.6899

20 < n ≤ 25 (n− 20) · (2.0743− 1.8924)/5 + 1.8924

25 < n ≤ 30 (n− 25) · (2.2334− 2.0743)/5 + 2.0743

30 < n ≤ 35 (n− 30) · (2.3895− 2.2334)/5 + 2.2334

35 < n ≤ 40 (n− 35) · (2.5356− 2.3895)/5 + 2.3895

40 < n ≤ 45 (n− 40) · (2.6625− 2.5356)/5 + 2.5356

45 < n ≤ 50 (n− 45) · (2.7933− 2.6625)/5 + 2.6625

n > 50 (n− 50) · 0.02616 + 2.7933

in Figure 5.2. The cost of a placement is then calculated as follows:

Cwl =
∑
n∈nets

q(n) ·HPWL(n) (5.1)

As an example the wirelength estimation is applied to the simple exam-
ple in Figure 5.2. With an HPWL = 6 and q(6) = 1.2206, we calculate
the estimated wirelength to be 7.3236 which is very close to the effective
total wirelength which is 7.

5.2.2 Timing Cost

All placement tools compared in this thesis keep track of the critical
paths in a placement by building a timing graph. The timing graph is a
directed acyclic graph. The vertices represent block pins such as CLB,
LUT and FF pins, The edges represent timing arcs and each edge is
assigned a delay depending on the physical delay and position of the

96

blocks on the device. The timing cost is calculated by multiplying the
delay of all the timing edges with their respective criticality:

Ctiming =
∑

e∈edges
Crit(e) · Tdelay(e) (5.2)

To speed up the calculation of Tdelay a delay lookup table is built before
placement by routing connections with a different Manhattan distance
and saving the routing delay. The criticality of an edge is calculated
during a timing graph update as follows:

Crit(e) =

(
Slack(e)

WNS

)ε
(5.3)

with WNS the worst negative slack in the timing graph and ε the crit-
icality exponent. The slack is calculated during static timing analysis,
as explained in section 4.4.1. The routing delay between blocks is op-
timistically estimated as the shortest path between the physical block
locations. Before placement all the possible shortest paths between the
blocks are calculated and kept in a delay lookup table. During static
timing analysis the delay lookup table is then used to calculate the
slacks.

The total placement cost is calculated as a weighted sum of Ctiming
and Cwl with the timing tradeoff factor α;

Ctotal = α · Ctiming,total + (1− α) · Cwl,total (5.4)

C∆ = α ·
Ctiming,∆
Ctiming,total

+ (1− α) ·
Cwl,∆
Cwl,total

(5.5)

The timing and wirelength delta costs are normalized by the total tim-
ing or total wirelength cost of the placement respectively.

5.3 Simulated Annealing

We start with explaining the simulated annealing heuristic approach.
We already introduced simulated annealing in the previous chapter,
but here we repeat the most important basics.

Simulated annealing is an older although still relevant approach
that is still used for FPGA placement by Altera. The algorithm has
been fine tuned over many years and is implemented in the VPR suite.
We also implemented our own version and use it as baseline in our
comparative analysis.

97

Listing 5.1: Pseudo code for a simulated annealing algorithm.
1 function simulatedAnnealing():
2 s = randomSolution()
3 T = T0

4 R = R0

5 while not stopCondition:
6 repeat n times:
7 cprevious = cost(s)
8 sproposed = randomAlteration(s,R)
9 cproposed = cost(sproposed)

10 ∆c = cproposed − cprevious
11 if ∆c < 0 or e−

∆c
T > random([0, 1]):

12 s = sproposed
13 T = nextTemperature(T)
14 R = nextR(R)
15 return s

5.3.1 The Basic Algorithm

The pseudo code of the algorithm is shown in Listing 5.1. The place-
ment starts by randomly, but legally, placing the logic blocks in the
input circuit on physical blocks of the FPGA architecture. Simulated
annealing is an iterative algorithm in which a solution is repeatedly
randomly altered and evaluated.

A random block in the input netlist and a random physical block lo-
cation that is not the location of the random block are chosen. If there is
a block assigned to the chosen physical block location, then the blocks
are considered to be swapped. In the other case the chosen block is
considered to be moved to the vacant physical block location. If the
move/swap causes a decrease in placement cost, it is always accepted.
To avoid getting stuck in local minima, sometimes a move/swap caus-
ing a higher cost is accepted as well. The probability of such a solution
to get accepted depends on how much worse the solution is and the
value of the temperature (T) at the current iteration. The move/swap
is accepted with a probability of e−

∆C
T , where ∆C is the change in cost

due to the move. T , the temperature, controls the probability by which
hill-climbing moves/swaps are accepted. Initially, T is very high so
that most moves are accepted, which allows a thorough exploration of
the solution space. Gradually T is decreased so that the probability by
which hill-climbing moves are accepted decreases and the placement
converges towards a close to optimal solution. The algorithm stops
when the solution does not improve anymore.

98

Annealing Schedule The ensemble of the following parameters is
called the annealing schedule: the initial temperature, the rate at which
the temperature is decreased, the number of moves that are attempted
at each temperature, the way in which potential moves are selected and
the exit criterion. A good annealing schedule is crucial for finding a
good solution in a reasonable amount of time. We used an annealing
schedule (Equation (5.6)) with exponential cooling using a variable pa-
rameter γ. The goal of the variable parameter γ(β) is to make the al-
gorithm spend more time in the stage where the algorithm makes the
most improvement, namely when the fraction of accepted alterations β
is between 15% and 96%.

Tnew = γ(β) · Told (5.6)

γ(β) =

0.5, if 96% < β

0.9, if 80% < β ≤ 96%

0.95, if 15% < β ≤ 80%

0.8, if β ≤ 15%

(5.7)

The same cooling schedule is used in VPR’s simulated annealing
placment tool. The schedule is described in more detail in [16]

During placement the algorithm has to be able to estimate the qual-
ity of the placement at all times, therefore the optimization goals are
estimated based only on the location of the functional blocks on the
device.

Random Alterations The random alterations that are used are a swap
of two blocks and a move of a block to a vacant site. Only alterations
are considered that move a block or swap blocks over a distance smaller
thanR in the x or y direction. The variableR is used to keep the fraction
of accepted solutions, β, close to βtarget = 44% in order to speed up
convergence. It is updated once per temperature iteration according to
the following equations.

R′new = (1− βtarget + β) ·Rold (5.8)
Rnew = max(Rmin,min(R′new, Rmax)) (5.9)

5.3.2 Fast and Low Effort Simulated Annealing

In the comparison in section 5.7 a low effort fast simulated annealing
placement approach is used as a baseline. To achieve a low effort place-
ment we tweaked the two following parameters of the temperature
schedule:

99

• The kernel of an SA based algorithm is finding a move and calcu-
lating the cost difference. The kernel is performed Nmoves times
during each temperature step.

Nmoves = b · (Nblocks)
R (5.10)

In the experiments the effort level b is varied from 0.1 to 5.0. The
value of R is set to a more scalable 1.0 instead of 1.333 as sug-
gested by Sidiropoulos et al. in [118].

• The starting temperature is typically determined by trying to
swap a number of blocks and depending on the swap cost the
initial temperature is calculated as follows

Tinit = M · σ(∆Caccepted) (5.11)

with ∆Caccepted, an array with the cost differences of the accepted
swaps and M , the temperature multiplier. In VPR M = 20 as first
proposed in [59], which is typically too high. In our implementa-
tion we set M = 1 without significant loss of quality of results.

5.4 Analytical Placement

Another common placement technique is analytical placement. Our an-
alytical placement implementation is largely based on HeAP [53]. Un-
fortunately there is no open source analytical placer available and so
we built an analytical placer from scratch and made it publicly avail-
able [136]. The analytical placement implementation was also used as
the foundation for LIQUID. It also serves a baseline in our comparative
analysis in section 5.7.

Build linear
system

LegalizeSolve

Stop condition: solved
placement cost close to legal

placement cost

Figure 5.3: Analytical Placement Cycle

100

Listing 5.2: Pseudo code for our analytical placement implementation.
1 function analyticalPlacement():
2 slegal = randomSolution()
3 clegal = calculateCost(slegal)
4 csol lin sys = 0.000001

5 while Clegal

Csolution
> β:

6 sys = buildLinearSystem(slegal)
7 slin sys = solve(sys)
8 csol lin sys = calculateCost(slin sys)
9 slegal = legalize(slin sys)

10 clegal = calculateCost(slegal)
11 return slegal

5.4.1 High level overview

In Analytical Placement (AP) the placement problem is represented as
a linear system. The linear system is built by taking the partial deriva-
tives of the cost function with respect to the position of the movable
blocks. The linear system is solved and results in the most optimal x-
and y-locations for all movable blocks. However the solution contains
rational numbers and on an FPGA only integer block coordinates coin-
cide with legal placement positions. Furthermore, several blocks might
be placed on the same location. Consequently the solution of the linear
solver cannot be used as a final result. The solution should first be le-
galized. The legalization process will be discussed in section 5.6. After
legalization the placement quality is typically degraded. Kim et al. [69]
proposed a cyclic solve - legalize approach to solve the problem of over-
lapping blocks and degraded quality of the legalized solution. In Fig-
ure 5.3 the cycle is visualized and the pseudocode of the cyclic approach
is listed in Listing 5.2. The placer always keeps track of two solutions:
a non-legal solution obtained by solving the linear system and a legal
solution obtained by legalizing the solution of the linear system. The
algorithm performs multiple iterations. In each iteration one non-legal
solved and one legalized solution are obtained. The amount of over-
lap between blocks is gradually reduced over consecutive iterations by
adding so-called anchor connections to the system. These pseudo con-
nections connect the moveable block to the last legalized position. By
gradually increasing the weights of the pseudo connections the place-
ment is gradually spread and converges closer to the legal placement:

wρ(i) = ρ0 · ρi (5.12)

with ρ0 the initial anchor weight, ρ the anchor weight multiplier
and i the iteration number. In [53] wρ is increased linearly, but we have

101

found that exponential increase produces comparable results in slightly
less iterations.

00

100

200

300

400

500

600

0 5 10 15 20

Placement
Cost

(x1000)

Iteration

Solution linear system

Legalized Placement

Figure 5.4: The evolution of the placement cost of the bitcoin miner
benchmark design for the 20 first iterations of the analytical placement
process (ρ = 1.2)

Over the course of several iterations better legalized solutions are
produced. The placement cost of the solved placement and the legal-
ized solutions will gradually converge towards each other, as can be
seen in Fig. 5.4. When the placement cost of the solved solution reaches
a predefined fraction β of the legalized solution the algorithm stops.

Figure 5.5: A simple netlist

5.4.2 Building the linear system

Let us consider the simple netlist depicted in Figure 5.5. The two red
circles indicate fixed blocks, e.g. fixed IO block positions. We will only
consider the placement problem in the x-direction here, as the solution
in the y-direction is fairly easy to obtain: all blocks should be placed
at the same y-location. The green rectangles indicate movable blocks,
such as CLBs. The placement problem can now be formulated as find-

102

ing the most optimal locations of the movable blocks A and B such that
the total necessary wire-length is minimized.

Let us first consider the sum of the squares of the wire-lengths in
the x-direction.

Cx = (xA − 1)2 + (xA − xB)2 + (xB − 3)2 (5.13)

In order to find the values of xA and xB that minimize Cx;

∂Cx
∂xA

= (xA − 1) + (xA − xB) = 0 (5.14)

∂Cx
∂xB

= −(xA − xB) + (xB − 3) = 0 (5.15)

It is clear that we end up with a linear system of equations. This
linear system of equations can be represented by a matrix and a vector:

A · x = b with A =

[
2 −1
−1 2

]
,x =

[
xA
xB

]
,b =

[
1
3

]
(5.16)

Note that when the problem in the y-direction would not have been
trivial it could be solved in exactly the same way as the problem in
the x-direction. The problems in the x- and y-direction are always com-
pletely independent from each other and can thus be solved at the same
time.

Now we found the placement that minimizes the square wire-
length, but the optimization goal is the wire-length. The square wire-
length is used because it makes ∂Φx

∂x = 0 meaningful equations and it
can be represented by a symmetric and positive definite matrix which
can be solved more efficiently with the conjugate gradient method than
regular linear systems. To target the wirelength instead of the square
wirelength constant weight factors are added for each term:

Cx = w1 · (xA − 1)2 + w2 · (xA − xB)2 + w3 · (xB − 3)2 (5.17)

More generally;

Cx =
∑
i,j

wi,j · (xi − xj)2 (5.18)

In timing-driven analytical placement for example these weight factors
are also used to incorporate timing information in the linear system
formulation.
To trick the system in minimizing the wire-length instead of the square
wire-length the weight factors are chosen as follows:

103

w1 = 1

|x′A−1|

w2 = 1
|x′A−x

′
B |

w3 = 1
|x′B−3|

(5.19)

More generally;

wi,j =
1

|x′i − x′j |
(5.20)

with x′A and x′B the position of the blocks in the current placement. In
case the current positions x′A = 0.5 and x′B = 1.0, then the minimization
of (5.17) results in x = [4

3 ,
5
3] and contains rational numbers. So this

result should be legalized.

Figure 5.6: Bound-to-bound Net model

5.4.3 Bound-to-bound Net Model

In the toy example of Fig. 5.5 only nets with two terminals are con-
sidered. In Fig. 5.6 a net with 5 terminals is depicted. To build a linear
system the higher fanout nets are split up in 1-to-1 connections. It is im-
portant that the number of connections is kept low and the added con-
nections represent the effective cost as good as possible. The bound-to-
bound net model first introduced in [122] represents the HPWL exactly
with 2 · (n− 2) + 1 connections per dimension.1 The weights of (5.19)
are adapted to take into account the number of pins and the number of
times the bound-to-bound model accounts for the HPWL:

wAB =
1

n− 1
· 1

|x′A − x′B|
· q(n) (5.21)

1The number of connections is 2 · (n− 2) + 1 only in case each block inside the
bounding box is a moveable block.

104

with n the number of terminals and a weighting factor q(n) taken from
[25], see Table 5.1.

Figure 5.7: The runtime breakdown for analytical placement
(ρ = 1.1, β = 0.8) in wire-length driven mode to reach a placement cost
of 221.6K for the bitcoin miner design.

5.4.4 Runtime Breakdown

The donut chart in Fig. 5.7 shows the runtime breakdown for the analyt-
ical placement of the bitcoin miner design. The bitcoin miner design is
the largest Titan23 benchmark design that we were able to place on our
32GB workstation. By far the largest runtime consumer is solving the
linear system with 68.5% followed by initializing the data with 16.4%
and building the linear system with 9.5%. In the development of LIQ-
UID we focused on reducing the runtime of solving the linear system,
because it accounts for the majority of the total runtime.

Figure 5.8: The source-sink connections of a net that are added to the
system if the connection’s criticality exceeds the criticality threshold.
The source pin of the net is located in block B.

105

5.4.5 Timing-Driven Analytical Placement

In our timing-driven analytical placement we add a third type of con-
nections to the linear system: source-sink connections. As explained in
5.2.2 every connection corresponds with an edge in the timing graph
and has a criticality (5.3). A connection from block i to block j is added
to the linear system with the weight

wi,j =

0, crit < θc

α · Critεc|x′i−x′j|
, otherwise (5.22)

There are three parameters that determine the weight of the source-
sink connections:

• The criticality threshold θc: Source-sink connections with a criti-
cality lower than θc are not added to the linear system. Increasing
θc speeds up calculations, but only to a certain extent. The run-
time and quality penalty of adding too much connections is small
so the default value is set to 0.8.

• The timing trade-off factor α determines the importance of the
source-sink connections compared to the bound-to-bound con-
nections. Setting the timing tradeoff high does not hurt the qual-
ity of the placement in terms of wirelength much but improves
the critical path delay so the default value is set to 30.

• The criticality exponent ε. A higher criticality exponent puts more
emphasis on minimizing the wirelength of the most critical con-
nections, at the cost of an increased total wirelength. The default
value is set to 1.

5.5 Liquid

5.5.1 The Basic Algorithm

LIQUID is based on the same cyclic approach used in AP. Each iteration
consists of an optimization phase and a legalization phase. The biggest
difference between LIQUID and AP is the linear solving step. AP builds
a linear system and calculates the exact solution to this system. LIQUID

approximates this solution in an iterative way. This iterative procedure
resembles a classical gradient descent solving procedure. In every it-
eration, all the blocks are moved over a small distance. The directions

106

and sizes of these steps are chosen so that the total cost function de-
creases. The steps are calculated for each block individually: there is
no global view of the optimization problem at hand.

5.5.2 Modeling the Problem

The problem is modeled in a slightly different way than is the case for
AP. Every block is connected with extended springs to fixed locations
and other movable blocks. Every one of these springs exerts a pulling
force on the block. The magnitude Fs of this force increases with the
wire length. Every iteration these forces are combined into a single
force with a direction and a magnitude Fc. In that iteration the block
will move in that direction over a distance Fc.

Figure 5.9: The Extremes Net Model.

The Extremes Net Model

The x and y problem are treated separately, as was the case for AP. We
only describe the x problem; the y problem is completely analogous.
The cost function for wirelength-driven placement is the sum of the
half-perimeter wirelengths of all the nets in the circuit. Minimizing the
cost function in the x-dimension is accomplished by minimizing the
widths of all nets simultaneously. The width of a net is determined by
its leftmost and rightmost block: the extreme blocks on the edge of the
bounding box. The positions of the internal blocks do not matter.

For every net in the circuit we only add one spring between the
two extreme blocks. This is the ”extremes net model” as shown in Fig-
ure 5.9. As a result of this single spring the two extreme blocks will be
pulled towards each other without affecting the internal blocks. They
are not important for the cost of the net in question, but they could be

107

Figure 5.10: Hooke’s law and the modified law that has a maximum
force.

relevant to other nets they are attached to and we want to give these
blocks all the freedom in this aspect.

At first sight this rudimentary net model doesn’t seem to work very
well: it does not keep all the blocks in the net together. If an inter-
nal block of the net is also an extreme block in some other net, as is
often the case, it can be pulled away far from the other blocks of the
net. However every linear solving step consists of multiple iterations
(up to fifty for high-quality solutions). Every iteration different blocks
end up at extreme positions. Over the course of multiple iterations the
movement is smoothed and the placement converges to a good solu-
tion. Moreover we have found that this simple net model introduces
some randomness to the blocks’s movements that helps to escape lo-
cal optima. Experiments with the star and bound-to-bound net models
yielded inferior results.

Spring Force

The magnitude of a spring’s pulling force Fs depends on the distance
db1,b2 between the two blocks. If the springs were to obey Hooke’s law,
the force would be proportional to this distance:

Fs = k · db1,b2 (5.23)

where k is the spring stiffness. All springs have the same stiff-
ness: this is a placer-wide parameter that influences the step size of the
blocks. We have found that the solution quality increases if we limit the
maximal force a spring can exert. Otherwise long distance connections
would be represented by a very high force and they would overshadow
the smaller distance connections. We use the following formula:

108

Figure 5.11: A block on which five forces pull

Fs = k ·
db1,b2 × dmax

db1,b2 + dmax/2
(5.24)

where dmax is a placer-wide parameter. Using this formula an in-
finitely long spring will only exert the force that a spring of length dmax

would exert according to Hooke’s law. Figure 5.10 plots Hooke’s law
and our modified law. dmax = 30 is the value that produces the best
results.

Combining the forces

Only the nets attached to the block are under consideration. This is
an important insight that allows us to consider each block separately.
Additionally only the blocks on the edge of the bounding box have a
direct impact on the HPWL cost.

As most blocks are part of a large number of nets, many are an ex-
treme block in more than one net. This results in multiple forces pulling
on a single block, e.g. as shown in Figure 5.11. The most straightfor-
ward way to combine these forces is to simply sum them. In our small
example this would result in a force that points to the right and has
a magnitude of 3. However moving the block in the direction of this
force would not decrease the total cost function: this block is the right-
most block in three nets, and it is the leftmost block in two other nets.
Moving the block to the right over a distance ∆x increases the width
of three nets with ∆x each, and decreases the width of two other nets
with ∆x each. The net cost function increase is equal to ∆x.

To overcome this problem LIQUID always moves blocks in the direc-
tion with the maximum cardinality, the highest number of forces. This
is the direction for which the total wirelength cost function reduces the
most, so the steepest gradient. The step size, ∆x,step, is taken equal to
the average force magnitude in that direction. We do not sum the mag-
nitudes of the forces because we want the step size to be independent
of the number of nets a block is in. In the example of Figure 5.11 this
calculation leads to a step of size 2 to the left.

109

Timing-Driven Springs

The timing-driven version of LIQUID adds a second type of springs:
between the net source and net sinks (see Figure 5.8). The magni-
tude of these forces is calculated in the same way as the wirelength-
driven forces, i.e. according to Equation 5.24. To balance the impor-
tance of wirelength objectives against timing objectives we introduce a
new property for every force: the tradeoff weight.

Every spring in the system is given a weight wt. The weight of
wirelength-driven springs is fixed to 1. Only springs are added for con-
nections with a criticality larger than θc. The weight of timing-driven
springs is closely related to the weight of timing-driven connections in
timing-driven AP (see Equation 5.22):

wt =

{
0, crit < θc

tradeoff × crit εc , otherwise
(5.25)

The placer-wide parameters θc, tradeoff and εc are explained in Sec-
tion 5.4.5.

To determine the direction that a block will move to LIQUID does
not simply count the number of springs on each side anymore: it now
sums the tradeoff weights of the springs attached to the block. The
block will move in the direction that has the highest sum. Once the di-
rection is known, the tradeoff weights do not influence the magnitude
of the step: the step size still equals the average of the force magnitudes,
as explained in Section 5.5.2

Including Legalized Positions

LIQUID follows the same cycle of linear solving and legalization as AP.
In the first linear solving step LIQUID places all movable blocks very
close to each other near the center of the FPGA, much in the same way
that AP does. In all subsequent linear solving steps LIQUID incorpo-
rates the legal positions found in the most recent legalization step.

AP includes legal positions by means of pseudo-connections. These
are forces that pull a movable block to it’s legal position. These
forces are entirely equivalent to the other forces in the linear system.
This approach does not work very well in LIQUID, because it is not
possible to gradually increase the importance of a connection as the
placer progresses. We tried to adopt the ”weight” concept introduced
inSection 5.4.1 for pseudo-springs. In wirelength-driven mode it only
makes sense to increase this weight in steps of 1, because of the steepest
gradient descent procedure. However the number of springs attached

110

to an average block is relatively small, so the effect of increasing the
weight by 1 is large. So we propose the following solution based on
linear interpolation.

Linear Interpolation We call xi the position of a block at the end of
iteration i, and xl the legal position for that block found in the last legal
solving step. If we ignore the legal position of a block, the block move-
ment is only determined by the wirelength- and timing-driven springs.
We calculate a good new position for the block as explained in the pre-
vious paragraphs. We call this position xopt . We combine these two
different positions by interpolating linearly between them:

xi = (1− wρ)xopt + wρxl (5.26)

wρ is a placer-wide variable that indicates the importance of a
block’s legal position while solving linearly. It changes as the place-
ment progresses. In the first linear solving step wρ is equal to 0: the
legal position is not taken into consideration. Every linear solving step
a fixed value wρ,step is added to wρ: the influence of the legal position
increases. The placer stops when wρ reaches a predefined value wρ,stop,
typically chosen below and close to 1.

We have now introduced two new parameters that can be changed
to make a trade-off between the placer speed and quality of the final
placement: wρ,step and wρ,stop. We want to highlight an important con-
sequence of this method: the number of solving steps is determined
only by the pre-defined parameters, and can be calculated prior to start-
ing the placement. In AP algorithms execution is stopped when the
placement quality reaches some satisfactory level. For this the place-
ment quality has to be recalculated every iteration. In LIQUID we never
need to know the current placement quality, this means we can avoid a
lot of time-consuming calculations.

5.5.3 Momentum Update

We introduced an momentum update, because it smoothes out the jit-
tery steepest gradient descent vectors. As an analogy we consider a
particle with speed v = 0 at some random location in a hilly landscape.
Gravity is a conservative force so the particle has a potential energy,
U = mgh and the force can be expressed as F = −∇U. In LIQUID we
try to simulate the particle rolling down to the bottom and apply it to
the linear system representing the FPGA placement problem. In several
steps we update the speed and the location of all the blocks. The blocks

111

are given a certain mass. During simulation, the blocks built up mo-
mentum and can escape local minima. The new location and speed of
the block, xi and vi are updated following Nesterov’s momentum up-
date. Nesterov’s Accelerated Gradient Descent is an optimal method
for smooth convex optimization [107] and is widely used for training
deep convolutional networks [66]. The speed of each block at the be-
ginning of the optimization phase is v0 = 0. The start location of the
blocks, x0, is determined by the previous legalization procedure (or ran-
dom in the first iteration). First the x-location is updated, x′, with the
momentum the block still has from the previous speed vi−1:

x′ = xi−1 + µ · vi−1 (5.27)

Subsequently the velocity is integrated:

vi = µ · vi−1 − γ · ∇C(x′) (5.28)

with∇C(x′) the gradient of the cost function for position x′, calculated
as explained in Section 5.5.2, and µ the coefficient of friction. Friction
dampens the velocity and reduces the kinetic energy of the system, oth-
erwise the block would never come at a stop. γ is the gradient sensitiv-
ity rate and can be compared to the product of the mass of the particle
and the gravitational constant. µ and γ are parameters of the algorithm
that mainly affect the quality of the placement. With the new speed the
new position is found by integrating:

xi = x′ + vi ·∆x,step (5.29)

29	

momentum
step

gradient step

actual step

Regular Momentum Update

momentum
step

“Lookahead”
gradient step

actual step

Nesterov’s Momentum Update

Xi-‐1	 Xi-‐1	

Xi	
Xi	

X’	

Figure 5.12: The Nesterov momentum update versus regular momen-
tum update

The Nesterov’s momentum update converges slightly better than
the regular momentum update and it is theoretically proven that it is
an optimal first order method for convex optimizations [107]. The dif-
ference between Nesterov’s momentum update and the regular mo-
mentum update is clarified in Fig. 5.12. The main difference is that the

112

Listing 5.3: Pseudo code for the inner optimizaton function.
1 function optimize(sys, ninner):
2 for i in range(ninner):
3 for block b in sys:
4 b.x = b.x+ µ · b.v
5 vforce = wρ · (b.ll − b.x) + (1− wρ) · ∇C(b.x)
6 b.v = µ · b.v + γ · vforce
7 return slegal

momentum update is performed first before calculating the steepest
gradient descent vector.

Up until now we neglected the anchor positions in our description.
In order to converge towards a good legalized placement, (5.28) is up-
dated to include a weighted sum of the last legal position of the block
xl and∇C based on the anchor weight wρ as explained in Section 5.5.2;

vi = µ · vi−1 − γ · (wρ · (xl − x′) + (1− wρ) · ∇C(x′)) (5.30)

The new block positions and speeds can be calculated for each block
individually based on the previous positions of other blocks. There is
no global view of the optimization problem at hand. Once all the new
positions and speeds are calculated, the old positions and speeds are
discarded. Next, a new iteration is started in which new positions and
speeds are calculated. The momentum update is summarized in List-
ing 5.3.

5.5.4 Optimizations

Effort Level

Every optimization phase consists of a number of steepest gradient de-
scent block movement iterations. We call the number of iterations in a
solving step the effort level. It is an important parameter to control the
placement quality: a higher effort level leads to a higher QoR.

LIQUID does not stop when the optimised placement cost reaches a
fraction of the legalized placement cost as is the case for our analytical
placer. Instead we empirically devised a fixed schedule in which all
parameters are inferred from the number of outer loop iterationsNouter,
which can be used as a single effort level tuning parameter. An outer
loop iteration contains an optimization phase and a legalizing phase.

We have found that as the algorithm progresses the number of inner
iterations which perform momentum updates can be reduced without

113

compromising placement quality. The number of iterations in a solving
step is interpolated linearly between efirst in the first solving step and
elast in the last step. Normally one would choose these so that elast �
efirst .

The first solving step must start from a random placement. We con-
sidered it likely that the first solving step might require more iterations
to reach a good solution, so we tried to increase the number of itera-
tions for just the first step. Experiments have shown that this did not
improve the runtime-quality trade-off. Linearly decreasing the weights
worked very well.

Let i be the outer loop counter then the anchor weights are calcu-
lated as follows;

wρ(i) = i · wρ,target
Nouter − 1

(5.31)

with wρ,target the final anchor weight with a default value of 0.85. The
number of inner loop iterations (number of momentum updates)Ninner

starts at Nouter and is linearly decreased to end at 1 in the final outer
iteration.

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20

Placement
Cost

(x1000)

Iteration

Optimized Placement

Legalized placement

Figure 5.13: The evolution of the placement cost of the bitcoin miner
benchmark design when placing with LIQUID for the 20 first iterations
of a run with ρ = 1.2

In Figure 5.13, the evolution of the placement cost of the legalized
and optimized placement of the bitcoin miner design is shown for the
first 20 iterations for Nouter = 37. The evolution of the optimized place-
ment cost for LIQUID looks slightly different when comparing with an-
alytical placement in Figure 5.4. The main cause for this difference is
the different way in which the anchor weights are updated. In our

114

analytical placement the weights are updated exponentially, see Equa-
tion (5.12) and in LIQUID they are updated linearly, see Equation (5.31)

Recalculate Criticalities

The timing graph keeps the criticality for each connection. These crit-
icalities depend on the positions of the blocks, and should be updated
as the placement algorithm progresses. Initially we recalculated the
criticalities prior to each optimization step, as shown in Figure 5.14a.
This recalculation is very time consuming. We have found that the
QoR doesn’t deteriorate when the criticalities are only recalculated af-
ter some of the legal solving steps, for example 40% as shown in Fig-
ure 5.14b. How often the criticalities are recalculated can be controlled
using a parameter we call Fc. For values lower than 0.4 the QoR usually
decreases.

We expected that recalculations would be more important near the
beginning of the algorithm. As the algorithm progresses a single step
perturbs the placement less and less, so we assumed changes in the
timing graph would also reduce. This means recalculations would op-
timally be distributed as in Figure 5.14c. Experiments have shown that
this assumption is not true: the QoR for uniform recalculation distri-
bution is comparable to non-uniform distributions. In further experi-
ments we always used a uniform distribution.

5.5.5 Runtime Breakdown Comparison

The runtime breakdown of the analytical placer and LIQUID for the
wirelength-driven mode are charted in Fig. 5.15 for placing the bit-
coin miner benchmark design with a same placement quality with the
total wirelength at 221.6K. Different qualities can be reached by chang-
ing the effort level, which is the anchor multiplier for AP and Nouter,
the number of outer iterations for LIQUID. A total wirelength of 221.6K
is chosen because beyond this point the analytical placer requires much
more time to improve the quality of the design. According to the break-
down we have succeeded in our intent to reduce the time to solve or
optimize the system which is indicated in green in the bar chart. The
gradient descent based approach in Liquid is with 0.1s much faster than
solving the linear system with 79.1s. This leads to an overall 3.9x run-
time speedup.

115

0 5 10 15 20 25 30

solving step

(a) Fc = 1

0 5 10 15 20 25 30

solving step

(b) Fc = 0.4, Pc = 1

0 5 10 15 20 25 30

solving step

(c) Fc = 0.4, Pc = 2

Figure 5.14: Recalculating the criticalities every step as in (a) is not nec-
essary. Fewer recalculations can be spread (b) uniformly or (c) with an
emphasis on the first solving steps.

5.6 Legalization

We describe legalization in a seperate section because it is both used in
LIQUID and our analytical placement implementation. The fundamen-
tals of our legalizer are the same as those of the legalizer described in
HeAP [53]. However the details provided in that publication are scarce
and no source code is publicly available.

Our legalization method legalizes the blocks per type in three steps.
In the first step each block is mapped to the closest legal position. If
there are no overlapping blocks than legalization is finished, but typi-
cally there are blocks occupying the same legal position. These blocks
are spreaded gradually in the next steps. In the second step the legal-
izer builds a set of regions on the FPGA. The regions are rectangular
and should not overlap. Every region should also contain enough po-
sitions for the blocks it contains.

The legalizer starts at the center of the FPGA and then it spirals out-
wards until al positions have been investigated. Positions containing
≤ 1 blocks or positions that are already assigned to a region are ne-
glected. Starting from an overused position a region is grown in search
for more empty block positions. The region is expanded in one direc-
tion at a time in a round robin fashion to keep the region rectangular

116

00

20

40

60

80

100

120

Analytical Placement Liquid

R
un

tim
e

(s
ec

s)
 Update circuit

Legalization

Calculate cost

Solve/optimize system

Build system

Initialize data

Figure 5.15: The runtime breakdown for analytical placement
(ρ = 1.1, β = 0.8) and LIQUID (Nouter = 17), both in wire-length driven
mode to reach a placement cost of 220K for the bitcoin miner design.

and the initial block in the center of the region. The region is expanded
until there are enough legal positions for the blocks it contains. In case
a new expansion contains blocks they are absorbed in the same region.
In case an expansion contains a block that is already assigned to a re-
gion, the two regions are merged. In Fig. 5.16 is illustrated how a region
is grown on a small FPGA fragment.

Once we have a set of disjunct under-utilized regions, the blocks
inside the regions are legalized separately. The blocks and the region
are bi-partitioned recursively and equally until each block in the region
has its own position.

5.7 Experiments

The main purpose of the experiments is investigating the runtime-
quality tradeoff for LIQUID and AP for large heterogeneous designs.
To investigate the runtime-quality tradeoff the effort levels of the place-
ments tools are swept.

5.7.1 Methodology

The Titan23 designs are used for benchmarking. The designs are
packed by VPR 7.07 with default settings. VPR failed packing the
LU Networks benchmark. For gaussianblur and directrf our workstation
ran out of memory [106]. What remains are the 20 benchmark designs
listed in Table 5.2. The target device for the Titan23 designs is Altera’s
Stratix-IV FPGA.

LIQUID and the conventional analytical placer are implemented in
the FPGA placement framework, which is available online [136]. The

117

1

0

1

0

0

1

0

1

1

0

0

2

3

2

1

0

1

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

0

2

3

2

1

0

1

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

0

2

3

2

1

0

1

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

0

2

3

2

1

0

1

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

0

2

3

2

1

0

1

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

0

2

3

2

1

0

1

0

0

0

1

0

0

1

0

Figure 5.16: Growing a region until it is not overutilized anymore. The
number in the rectangles denote the number of blocks assigned to that
position

framework is written in Java and the experiments are performed with
OpenJDK 64-Bit Server VM v24.95 on a workstation with an Intel Core
i7-3770@3.40GHz and with 32GB 1600Mhz DDR3 work memory run-
ning Scientific Linux 6.5.

5.7.2 Runtime versus Quality

To make a fair comparison in the following sections we first give an
overview of the capabilities of both LIQUID and analytical placement.
For both algorithms we looked at the parameter that influenced the
runtime-quality tradeoff the most. For Liquid this is Nouter, the num-
ber of outer iterations. Nouter is varied from 3 to 96. For analytical
placement the most sensitive parameter is ρ, the anchor weight multi-
plier. ρ is varied from 1.005 to 2.4. The placement results in terms of the
critical path delay are charted in Fig. 5.17 and in terms of wirelength
in Fig. 5.18 in respect to the runtime of the placement tool. All met-
rics reported are the geometric mean of the values for the individual
benchmark designs. The results are post-placement estimates, because
routing all the pareto points is computational too intensive. Using esti-
mates also allows us to also use the largest Titan23 benchmark designs

118

24

24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

0 10 20 30 40 50 60 70 80

Geomean
Critical Path
Delay(ns)

Geomean Runtime (s)

td_ap
liquid

Figure 5.17: Pareto front for LIQUID and analytical placement: critical
path delay versus runtime

which VPR is unable to route. In Section 5.7.6 the post route quality for
a few important points is presented and the ratios of post route results
are almost identical to the ratios of the placement estimates. So we ad-
vocate that the placement estimates are very good and can be used to
make conclusions.

We can clearly observe that the placement results of LIQUID are su-
perior to the placement results of analytical placement. All the data
points on the Pareto front of Liquid have either a better runtime or
a better critical path delay and wirelength cost with their respective
counterparts on the Pareto front of the analytical placer. While develop-
ing LIQUID we hypothesized that we can rely on the legalization phase
to disturb the solution enough to keep the placement from crystallising
and converging to a local minimum. It seems that this hypothesis is
correct, because we are able to obtain better quality placement results.

Another observation is that the data points for analytical placement
show more variance. The behaviour of the analytical placement tool
seems more erratic. The main cause is that the initial placement deter-
mines the weights of (5.19) in the first iteration, which in turn influences
the result of the linear system. The analytical placer is set on different
courses depending the initial placement. For LIQUID we see a more
smooth progress, because simulating an accelerated gradient descent
process gradually changes the placement’s structure, which leads to a

119

40000

42000

44000

46000

48000

50000

52000

0 10 20 30 40 50 60 70 80

Geomean
Wirelength Cost

Geomean Runtime (s)

td_ap
Liquid

Figure 5.18: Pareto front for LIQUID and analytical placement: wire-
length versus runtime

more consistent placement improvement.

5.7.3 Runtime Speedup

To investigate the runtime speedup we measure how fast LIQUID is
when trying to achieve the same quality as analytical placement. The
datapoints chosen for the comparison are indicated by the orange
striped line in Fig. 5.17. We choose the datapoint (ρ = 1.11) in the knee
of the analytical placement’s curve, so AP can comfortably achieve this
quality without slowing down too much. We call this modus AP-Fast.
To reach the same quality LIQUID needs 20 outer iterations, this setting
is called Liquid-Fast. The results are reported per benchmark design in
the first two major columns of Table 5.2. The results in the first ma-
jor column Liquid-Fast are reported in real numbers. The other data-
points in Table 5.2 are reported relative to Liquid-Fast. Liquid-Fast and
AP-Fast obtain on average the same quality, but LIQUID is able to pro-
duce the results 1.93x faster. Additionally the total wire-length cost of
LIQUID’s placement is 7% lower. However, we should note that there is
a lot of variability if we look across the different designs for all metrics.
The speedup is clearly visible with almost all runtimes of AP-fast be-
ing slower, but the wire-length and critical path delay results are more
erratic, which can be explained by the fact that we are investigating the

120

Ta
bl

e
5.

2:
R

un
ti

m
e

(R
T

),
w

ir
e-

le
ng

th
(W

L)
an

d
cr

it
ic

al
pa

th
de

la
y

(C
PD

)f
or

an
al

yt
ic

al
pl

ac
em

en
t(

A
P)

an
d

Li
qu

id
.

Th
e

re
su

lt
s

ar
e

re
po

rt
ed

re
la

ti
ve

to
Li

qu
id

-F
as

t

Li
qu

id
-F

as
t

A
P

-F
as

t
Li

qu
id

-H
Q

A
P

-H
Q

SA
-H

Q
Se

tt
in

g
N
o
u
te
r

=
2
0

ρ
=

1
.1

1
N
o
u
te
r

=
8
0

ρ
=

1
.0

1
8

R
=

1
.0
,b

=
6

D
es

ig
n\

M
et

ri
c

R
T

[s
]

W
L[

K
]

C
PD

[n
s]

R
T

W
L

C
PD

R
T

W
L

C
PD

R
T

W
L

C
PD

R
T

W
L

C
PD

bi
tc

oi
n

m
in

er
57

.8
6

21
5.

97
16

.9
0

1.
29

1.
12

1.
03

4.
30

0.
95

0.
95

3.
59

1.
13

1.
01

49
.3

2
1.

23
0.

65
bi

to
ni

c
m

es
h

19
.8

6
66

.7
9

17
.1

0
1.

53
1.

08
1.

07
3.

69
1.

01
1.

05
3.

35
1.

11
1.

06
36

.4
7

1.
11

0.
92

ch
ol

es
ky

bd
ti

11
.3

3
32

.9
3

11
.4

6
1.

61
1.

32
0.

95
5.

26
0.

91
1.

03
2.

48
1.

33
0.

99
58

.6
4

1.
15

0.
81

ch
ol

es
ky

m
c

4.
97

12
.3

5
9.

67
1.

44
1.

05
0.

94
4.

96
1.

02
0.

90
1.

77
1.

06
0.

93
65

.6
6

1.
05

0.
87

da
rt

8.
99

31
.0

2
17

.8
8

2.
84

1.
09

1.
14

5.
56

0.
98

0.
94

6.
26

1.
07

1.
11

49
.2

2
1.

40
0.

88
de

no
is

e
24

.5
9

55
.9

1
14

72
.3

1
8.

22
0.

77
0.

74
5.

66
0.

90
0.

84
41

.4
9

0.
78

0.
75

62
.5

7
0.

92
0.

77
de

s9
0

7.
59

29
.4

1
15

.1
0

3.
94

1.
00

0.
99

4.
85

1.
00

1.
00

11
.2

3
0.

98
1.

02
50

.1
0

1.
08

0.
94

gs
m

sw
it

ch
17

.1
5

10
3.

32
15

.5
2

2.
95

1.
12

1.
15

5.
17

0.
95

0.
93

4.
97

1.
08

1.
12

65
.5

4
1.

09
0.

84
LU

23
0

34
.1

5
28

1.
23

39
.9

3
1.

20
1.

27
0.

71
3.

79
0.

90
0.

69
6.

55
0.

80
0.

70
49

.5
3

0.
78

0.
73

m
es

no
c

37
.1

5
85

.9
2

20
.5

3
1.

98
1.

11
0.

95
3.

88
0.

96
0.

93
1.

90
1.

14
0.

96
40

.3
8

1.
11

0.
76

m
in

re
s

14
.0

8
52

.5
7

10
.5

6
1.

10
0.

91
0.

98
3.

79
0.

92
0.

99
4.

31
0.

85
0.

93
34

.8
1

0.
88

0.
90

ne
ur

on
3.

01
13

.1
2

11
.0

9
0.

39
1.

24
1.

14
5.

40
0.

95
0.

97
0.

38
1.

24
1.

14
49

.0
8

0.
81

0.
97

op
en

C
V

15
.9

6
47

.8
5

12
.6

5
1.

57
1.

36
1.

17
3.

66
0.

93
0.

93
5.

94
1.

08
1.

11
37

.4
1

1.
14

0.
99

se
gm

en
ta

ti
on

15
.4

6
25

.9
6

12
97

.1
2

5.
94

0.
82

0.
85

4.
84

1.
01

0.
87

31
.5

9
0.

83
0.

84
48

.2
7

0.
93

0.
83

SL
A

M
sp

he
ri

c
9.

21
24

.1
1

11
0.

28
6.

80
0.

83
0.

93
5.

02
0.

87
0.

89
37

.7
4

0.
83

0.
93

53
.4

4
0.

90
0.

89
sp

ar
cT

1
ch

ip
2

42
.0

4
12

3.
76

31
.5

1
1.

84
1.

19
1.

17
3.

49
0.

90
1.

02
2.

00
1.

25
1.

18
43

.8
0

0.
97

0.
98

sp
ar

cT
1

co
re

3.
56

12
.4

3
10

.2
4

3.
08

1.
17

1.
20

6.
15

0.
97

0.
98

10
.1

9
1.

12
1.

18
60

.4
8

1.
02

0.
93

sp
ar

cT
2

co
re

17
.4

9
50

.4
5

13
.1

9
2.

93
1.

13
1.

12
3.

95
0.

96
1.

01
3.

76
1.

13
1.

10
46

.5
5

0.
93

0.
90

st
ap

qr
d

14
.4

1
45

.8
4

11
.8

2
1.

02
0.

83
0.

90
3.

56
0.

87
0.

92
4.

33
0.

82
0.

91
58

.5
9

0.
95

0.
76

st
er

eo
vi

si
on

3.
07

10
.6

2
11

.9
0

0.
38

1.
31

1.
05

5.
66

0.
87

0.
97

0.
38

1.
31

1.
05

46
.6

6
0.

89
0.

94
G

eo
m

ea
n

13
.2

2
43

.4
8

26
.0

4
1.

93
1.

07
1.

00
4.

56
0.

94
0.

94
4.

55
1.

03
0.

99
49

.4
9

1.
01

0.
87

St
d.

D
ev

.
2.

13
0.

18
0.

14
0.

85
0.

05
0.

08
12

.3
8

0.
18

0.
13

9.
30

0.
15

0.
09

H
Q

st
an

ds
fo

r
hi

gh
qu

al
it

y

121

low effort modus of both placers.

5.7.4 The Best Achievable Quality

To investigate the best achievable quality we gave both placement tools
more time. We choose a geomean of 60s, because beyond this point the
quality did not improve much for both placers. The datapoints under
investigation are indicated by the green striped line in Fig. 5.17. For
AP this comes down to ρ = 1.018, we call this AP-HQ and for LIQUID

this equates to setting the number of outer iterations to 80. We call this
modus Liquid-HQ. The individual results of the benchmark designs are
reported in the third and fourth major column of Table 5.2. All results
are reported relative to Liquid-Fast. For AP-HQ we don’t observe much
quality improvement compared to AP-Fast, 1% improvement for the
critical path delay and 4% for the wirelength cost. For Liquid-HQ on the
other hand a clear quality improvement compared to Liquid-Fast can
be observed with a 6% improvement for both the critical path delay
and the wirelength cost and clearly a lower variance in the results for
the different benchmark designs. Overall this leads to a gap between
AP-HQ and Liquid-HQ of 5% for the critical path delay and 9% for the
wirelength cost.

5.7.5 Comparison with Simulated Annealing

In Table 5.2 we added the results for a high effort simulated annealing
run, SA-HQ, with the effort set to b = 6 (Equation 5.10). LIQUID in low
effort modus achieves the same quality in terms of wirelength as SA-
HQ in only a fraction of the time, 49x faster. However the critical path
delay of the result is 13% worse. If we take a look at the high quality
modus of LIQUID which is 11x faster than SA-HQ, then the critical path
delay gap reduces to 7% and the wirelength further improves with a
7% decrease in comparison with SA-HQ. We can conclude that the cur-
rent version of LIQUID optimizes for wirelength too aggressively and
should focus more on critical path delay. To achieve this new ways to
incorporate timing information in LIQUID should be investigated, such
as non linear timing cost functions. We also have to point out that our
analytical placement tool is also not able to reach the critical path de-
lay results of SA-HQ. Improvements to our legalizer could help here to
improve the timing results for both LIQUID and AP.

122

Table 5.3: Post-route Quality Results. The geomean ratios for the total
wirelength and critical path delay are reported relative to the post-route
results of Liquid - Fast (Nouter = 20)

Effort Total Wirelength Critical path delay
AP - Fast ρ = 1.11 1.08 1.02
Liquid - HQ Nouter = 80 0.92 0.91
AP- HQ ρ = 1.018 1.05 1.00
SA - HQ b = 6 1.03 0.87

5.7.6 Post-route Quality

In Table 5.3 the post-route results are listed for a subset of the bench-
mark designs that were able to route in the reasonable timespan of 5
hours. The designs are routed with the default settings of the router in
VPR 7.07. The post-route geomean ratios are very similar to the post-
placement quality ratios in Table 5.2. This indicates that the placement
cost estimation is good and makes the conclusions based on placement
quality valid. The wirelength decrease achieved by LIQUID is slightly
more pronounced with 8% compared with AP both in fast modus and
13% both in high quality modus. For the critical path delay the gap be-
tween LIQUID and AP increases. The post-route solutions placed with
Liquid-HQ have a 9% better critical path delay than the solutions placed
by AP- HQ. The critical path delay gap of LIQUID compared with SA-
HQ reduces slightly to 10% with Liquid-fast and 4% with Liquid-HQ.

5.8 Future Work

There are several interesting future research paths around improving
LIQUID:

• Investigating the use of nonlinear functions for the timing cost.
In analytical placement the system has to be solved, so you are
tied to a linear cost function, but for a steepest gradient descent
method there is much more freedom. The only condition for the
function is that it is derivable.

• In our current implementation we gave each block the same mass
in our accelerated gradient descent simulation, but we could dif-
fer the mass for each block type.

• LIQUID calculates the move vectors of the blocks only based on
the location of the attached blocks in the previous iteration. It
could be improved by also taking into account the momentum of
the attached blocks in the previous iteration.

123

• Our legalization method could be improved by adding the ad-
vanced architecture aware techniques described in [27].

• All movement vectors in LIQUID can be calculated independently,
which makes it uniquely suitable for parallelisation, so a straight-
forward path is adapting LIQUID for GPU acceleration.

5.9 Conclusion

The main conclusion of this chapter is that it is not necessary to solve
the linear system built in conventional analytical placement techniques.
It is sufficient to optimize the placement in between legalization phases
by following the steepest gradient descent with a momentum simula-
tion. We implemented this method in our new placer called LIQUID

and achieved a speedup of 1.9 compared to our own conventional ana-
lytical placement implementation for the same quality. Another impor-
tant result is that given more time LIQUID is able to find higher quality
placements in comparison to our analytical placement implementation
with a 9% decrease in critical path delay and 9% decrease in wire-length
cost. We want to help the community by releasing our source code for
both LIQUID and our analytical placer on GitHub [136].

124

6
A Connection-based Routing

Mechanism

In this chapter we introduce a new routing algorithm that is faster than
the conventional routing strategies. In the introduction we discuss the
significance of speeding up the routing process. We describe the con-
ventional routing algorithm and how we developed a faster routing
algorithm.

6.1 Introduction

In most cases the most time consuming step of the FPGA design flow
is the routing step. In Chapter 3 we reported the runtimes for compil-
ing the VTR benchmark designs with Xilinx’ Vivado tool flow targeting
an UltraScale device. Vivado spent 28% in synthesis and technology
mapping, 31% in pack and placement and 41% in routing. Clearly the
largest runtime consumer is the routing process. However, the VTR
benchmark suite contains relatively small benchmarks. In case we con-
sider larger benchmarks, the routing runtime grows more relative to
the other tool runtimes. In [106] Murray et al. report that VPR needs
on average 26 min to pack, 36 min to place and a massive 171 min to
route the Titan benchmark suite. The runtimes for the different tools in
the compilation flow are depicted in Figure 6.1. The routing runtime is
clearly the most problematic and will only worsen if FPGA devices and
designs further continue to increase in size. Therefore, one of the main

125

goals of the work in this chapter is to improve the runtime scalability
of the state-of-the-art routing algorithms.

(a) Vivado targeting the VTR
benchmark suite

(b) VTR targeting the Titan
benchmark suite

Figure 6.1: The runtime breakdown of the compilation runtime. The
routing process is clearly the largest runtime consumer.

Traditionally PATHFINDER-based algorithms are used to route de-
signs [100]. PATHFINDER routes a design in several iterations. In each
iteration all the nets in the circuit are ripped up and rerouted. Af-
ter each iteration the cost of overused routing resources is increased.
PATHFINDER stops if a legal routing solution is found. A Pathfinder-
based router is implemented in VPR [89]. The runtime breakdown in
Fig. 6.2 of the VPR router shows that each routing iteration consumes
about the same amount of runtime. A straightforward speedup method
is to trade some quality for runtime by only ripping up and rerouting
congested nets [51]. This leads to a 1.9x speedup when routing the VTR
benchmark suite. A runtime inspection of the routing process with the
speedup method reveals a new clear culprit. Rerouting high fanout
nets takes up the majority of the runtime, see Figure 6.3. Large fanout
nets typically require a lot of routing resources and they span a large
area of the die and therefore they have more chance to be congested. In
practice they almost always have to be rerouted. To further reduce the
runtime, we propose a new routing mechanism in which only parts of
the routing tree are rerouted. We implemented this mechanism in the
Connection Router (CROUTE) . To achieve a speedup CROUTE reroutes
a connection only if it’s congested or if it’s critical and the delay di-
verges too much from the minimum delay.

We described the connection router mechanism first in [133] and
in this chapter a timing-driven version is described and we focus on
its ability to reduce the routing runtime. The connection router mecha-
nism is orthogonal to a lot of related work on speeding up routing, such
as parallelisation. If we further analyse the runtime of the CROUTE, see

126

0	

2	

4	

6	

8	

10	

12	

14	

16	

1	 6	 11	 16	

Ru
n$

m
e	
(s
)	

Itera$on	

Reroute	 only	 congested	 nets	

Vanilla	 Pathfinder	 (VPR)	

Figure 6.2: Runtime per iteration when routing stereovision1 for the
PATHFINDER-based router in VPR and for an adapted version that only
reroutes congested nets.

Fig. 6.3, the breakdown shows that a large amount of the runtime is
spent in the first routing iteration. Each connection needs to be routed
at least once. Typically in the first iteration the router tries to reduce the
path delay and is therefor congestion-oblivious. So nets can be routed
independent of each other. No synchronization is required during the
first iteration, only at the end of the first iteration. To further reduce
the runtime parallelization techniques can be used that are described
in related work [51, 52]. The negotiated congestion mechanism in itself
is harder to parallelize because the router tends to have convergence
problems and solutions tend to suffer quality loss if the occupation of
the routing resources is not synchronized in time.

6.2 The Routing Resource Graph

The FPGA’s routing infrastructure consists of a network of wires orga-
nized in channels. At the intersections of the channels, multiplexers
interconnect the wires from different channels. Multiplexers also hook
up the functional blocks to the routing network. They connect some
of the wire tracks in the channel to the inputs and outputs of the func-
tional block. The capacity of the routing infrastructure can be regulated
by the number of tracks per channel. The routing infrastructure can be
represented by a Routing Resource Graph (RRG), which is a directed
graph, C = (N,E), used as a model for the routing architecture of an
FPGA. This graph can be constructed for any routing architecture. The

127

Figure 6.3: The average runtime breakdown for the VPR router and
the connection router with partial rerouting strategy for a subset of the
Titan23 benchmark designs.

nodes N represent wires. A directed edge (t, h) represents the possibil-
ity of routing a signal from wire t (the tail of the edge) to wire h (the
head of the edge), by setting a switch. For example, when a unidirec-
tional switch is closed, the logic value of resource i is forced on resource
o, this is modeled as a directed edge (i, o) in the RRG.

6.3 The Routing Problem

After placement, each of the functional blocks in the input circuit is
assigned to a physical block on the FPGA. The router has to determine
which of the switches in the routing architecture need to be closed in
order to connect the physical blocks in accordance with the way their
associated functional blocks are connected in the mapped circuit. The
interconnections between functional blocks are conventionally defined
as a list of nets. Each net is an interconnection between one source and
one or more sinks. The netlist can also be easily defined as a list of
source-sink connections.

When the routing architecture of the FPGA is represented as a
routing-resource graph, the routing problem reduces to finding a sub-
graph of the routing resource graph, called a routing tree, for each net in
the input circuit. The routing trees should be disjoint in order to avoid
short circuits. Each routing tree should contain at least the source node
and sink nodes of its associated net and enough wire nodes so that
source and sink nodes are connected.

This problem definition can also be expressed in terms of connec-
tions, in which a connection is an ordered pair containing a source and

128

a sink. Each net can be seen as a set of connections and thus all in-
terconnection between logic blocks can be defined as a set of connec-
tions. The routing problem then reduces to finding a simple path in
the routing-resource graph for each connection in the circuit. Each path
starts at the source node and ends at the sink node of its associated
connection. These paths should only share nodes if the corresponding
connections have the same source. Allowing other connections to share
nodes would lead to short circuits.

Listing 6.1: Pseudo code for PATHFINDER

1 while (IllegalSharedResourcesExist()) :
2 for each Net n do:
3 ripUpRouting(n)
4 route(n)
5 n.resources() .updatePresentCongestionCost()
6 allResources() .updateHistoryCost()
7 updatePresentCongestionMultiplier()
8 allResources() .updatePresentCongestionCost()

6.3.1 PATHFINDER: A Negotiated Congestion Mechanism

The main structure of PATHFINDER is the negotiated congestion
loop [100]. The pseudo-code is shown in Listing 6.1. In every rout-
ing iteration, the algorithm rips up and reroutes all the nets in the
circuit. These iterations are repeated until no resources are shared il-
legally. This is achieved by gradually increasing the cost of illegally
shared resources. During the first iteration, nets can illegally share re-
sources at little extra cost. In the subsequent iterations, the cost of a
routing resource does not only depend on the current sharing cost but
also on the sharing history of the resource. Resources that were illegally
shared in past routing iterations become more expensive. In this way
a congestion map is built, which enables the router to avoid routing
through heavily congested areas, if possible.

Listing 6.2: Pseudo code of the maze router implemented in VPR
routers as a net router heuristic.
1 function route(Net n):
2 routingTree = {source}
3 for each Sink s of n:
4 path = dijkstra (routingTree, s)
5 routingTree = routingTree∪path

129

B	 B	

C	 C	

A	 A	

(a) A possible solution from Lee’s
maze router (#wires=13)

B	 B	

C	 C	

A	 A	

(b) One of the optimal Steiner tree
solutions (#wires=10)

Figure 6.4: An example of the Lee’s maze router producing a subopti-
mal solution for a net with three terminals

To route one net, the embedded net router tries to find a mini-
mum cost routing tree in the RRG. This problem is called the minimum
steiner tree problem and is NP-complete [65]. To find a solution in a
reasonable time a heuristic is needed. In Listing 6.2 the pseudocode is
shown for a variant of Lee’s maze router [78] as it is implemented in
VPR. For each sink of the net, the heuristic extends the already found
routing tree with the shortest path from the routing tree to the sink un-
der consideration with Dijkstra’s shortest path algorithm [42]. This net
router heuristic is fast but does not always come up with an optimal so-
lution, certainly in case of nets with a high fanout. It forces the router to
extend the routing tree alongside the paths that were previously added
to the routing tree. As an example we show a suboptimal solution pro-
duced by the maze router alongside an optimal Steiner tree solution in
Figure 6.4. If the connection A-B is routed first and Dijkstra finds the
path depicted in Figure 6.4 (a), then the resulting routing tree will not
have any shared wires and will be suboptimal. To overcome this prob-
lem the Connection router has a negotiated sharing mechanism which
is explained in Section 6.5.

Once the nets are routed some of the wires are used by multiple
nets. To solve this congestion, a negotiated congestion mechanism is
used, which is the main contribution of [100]. To achieve a negotiated
congestion mechanism the cost of the node is modulated with conges-
tion penalties and timing factors. The following equation describes
how the cost of a node is calculated. In what follows the equation is
broken down and each factor and penalty explained.

c(n) = cprev + (1− fcrit) · b(n) · h(n) · p(n) + fcrit · Tdel + α · cexp, (6.1)

130

The cost of the node is a weighted sum of the congestion cost and the
timing cost. The weights are determined by the criticality factor. The
criticality factor denotes how critical a connection is.

fcrit = min

(
1− slack

Treq,max
, fcrit,max

)
, (6.2)

The criticality factor is zero in the first routing iteration and is updated
after each iteration following a timing analysis and according to Equa-
tion (6.2). The criticality factor is capped at fcrit,max to prevent dead-
lock in case a congested wire is occupied by several critical connections.
Typically fcrit,max is around 0.99. Treq,max is the maximum of all re-
quired times and it is used to normalize the slack. Together with the
slack it is calculated during the traversals of the timing graph during
the timing analysis. The slack is calculated from the net delay, the ar-
rival time acquired during a forward traversal and the required time
acquired during a backward traversal.

slack = Treq − Tarr − Tdel (6.3)

The congestion cost in Equation (6.1) is the product of b(n), the base
cost of the node, p(n), the present congestion penalty, and h(n), the
historical congestion penalty. If a net is rerouted the present congestion
penalty is updated as follows,

p(n) =

1 if cap(n) > occ(n)
1 + pf ·
(occ(n)− cap(n) + 1) otherwise

, (6.4)

where cap(n) represents the capacity of the node and occ(n) is the occu-
pancy of the node. The occupancy of a node is the number of nets that
are presently using the node. The factor pf is used to increase the illegal
sharing cost as the algorithm progresses. After every routing iteration,
i, the historical congestion penalty is updated as follows,

hi(n) =

1 if i = 1

h(i−1)(n) if cap(n) ≥ occ(n)

h(i−1)(n)+
hf (occ(n)− cap(n)) otherwise

. (6.5)

Again, the factor hf is used to control the impact of the historical con-
gestion penalty on the total resource cost. The way the congestion fac-
tors pf and hf change as the algorithm progresses is called the routing
schedule. In the connection router the same routing schedule is used as
in the VPR router.

The location of the sink node, found in the placement of the circuit,
is used to direct the search and thereby reducing the number of nodes
visited during the search. The nodes that lead to a least-cost path are

131

Listing 6.3: Pseudo code of the Connection Router
1 while (IllegalSharedResourcesExist()) :
2 for each Connection c do:
3 ripUpRouting(c)
4 route(c)
5 c.resources() .updatePresentCongestionCost()
6 allResources() .updateHistoryCost()
7 updatePresentCongestionMultiplier()
8 allResources() .updatePresentCongestionCost()

expanded first. Equation (6.1) is actually the path cost seen in the node
under consideration. This results in a narrow wavefront that expands
in the direction of the target pin to be connected. α is the direction
factor, which determines how aggressively the router explores towards
the target sink, cprev the cost of the previous wire nodes on the path
from the source to this wire node and cexp the expected cost of the path
from this wire node to the sink node. The expected cost heuristic is cal-
culated based on the Manhattan distance, ∆m, from current wire node
to the sink node as follows,

cexp = fcrit ·
(
∆m · tlin + ∆2

m · tquad +Rup ·∆m · Cload
)

+

(1− fcrit) · (∆m · b+ bipin + bsink)
(6.6)

with tlin and tquad the linear respectively quadratic timing weights.
Rup is the sum of all wire resistances of the wires upstream and Cload is
the capacity per wire segment. b is the base cost of a wire segment, bipin
and bsink are the base cost of an input pin and a sink node respectively.

6.4 CROUTE: The Connection Router

In the connection router each connection in the circuit is ripped up and
rerouted seperately. This seems straightforward to implement, but it
requires changes in the node cost and the main congestion loop.

6.4.1 Ripping up and Rerouting Connections

To partially break up and rebuild the routing tree of a net, CROUTE

rips up and reroutes connections in the main congestion loop instead
of nets. The pseudocode is listed in Listing 6.3. There is no netrouter
heuristic necessary in CROUTE. The connection router breaks up a con-
nection, recalculates the occupation of the nodes in the old routing path

132

and updates the present congestion penalty according to Equation (6.4)
if the occupation of a node decreases. Next, Dijkstra’s algorithm is used
to find a path. The occupation of each node in the path is recalcu-
lated. If the occupation of a node increases, then the present congestion
penalty of that node is updated according to Equation (6.4).

The advantage of routing on a connection based routing mechanism
is that the negotiated congestion mechanism is effectively applied on a
finer scale compared to net based routing. First the routing trees of the
nets are only partially broken down and rebuilt to solve congestion.
The nodes in the path of one connection will be reconsidered when
Dijkstra’s algorithm is searching a path for another connection of the
same net. This differs with the mechanism applied by the maze net
heuristic, see Listing 6.2. Once a node is added to a routing tree of a
net, the maze net router is forced to make use of the node, if it is along
the way to the sink of another connection of the same net. Second, the
present congestion penalties are updated along with adding the nodes
to the routing path of a connection. In PATHFINDER, the present con-
gestion penalties are only updated after the whole routing tree is found.

To make ripping up and rerouting connections possible, the node
cost in Equation (6.1) has to be modified to take into account the nodes
that will be shared between connections driven by the same source.

6.4.2 The Change in Node Cost

The cost of a node for a connection should be cheaper in case it is al-
ready being used by other connections of the same net, but it can’t be
zero either, because that would force the router to explore these nodes.
The node cost model should optimise the total wirelength of a circuit.
To derive the node cost for a certain connection, let’s look at the defini-
tion of the total wirelength: The total wirelength is the sum of the base
costs of the different nodes used in the routing solution. This total cost
can be partitioned according to the nets in the circuit. The total wire-
length is the sum of the cost of each net. In a legal routing solution, the
nets are disjoint so no nodes can be shared between nets. So the cost of
a net can be calculated as the sum of the cost of each node used in the
net, see Equation (6.7).

133

Total Wirelength =
∑

Node n ∈ routing solution

b(n)

=
∑

Net k ∈ nets

(∑
n ∈ k

b(n)

)

=
∑

Con c ∈ cons

(∑
n ∈ c

b(n)

share(n)

) (6.7)

In the same way, it is also possible to partition the cost according to
the source-sink connections in the circuit. However, in a legal solution
the connections do not have to be disjoint. Connections can legally
share routing nodes if they are driven by the same source. So if the
total wirelength is partitioned by connections, the cost of a connection
is the sum of the base costs of the nodes that realise the connections, but
if a node is shared between a number of connections, share(n), then the
cost of a node has to be shared by all the connections using it.

In one iteration all the connections are ripped up and rerouted.
Dijkstra’s algorithm searches the lowest cost path between the sink and
the source of the connection. The cost of a node is now calculated as
follows

c(n) = cprev + (1− fcrit) ·
b(n) · h(n) · p(n)

1 + share(n)
+ fcrit · Tdel + α · cexp, (6.8)

The most important difference with Equation (6.1) is that the cost
of the node is now divided by share(n), the number of connections
that legally share the node with the connection that Dijkstra’s algorithm
is currently searching a path for. Note that the definition of share(n)
slightly differs from the definition used in equation 6.7.

The congestion penalties are calculated in the same way as in Equa-
tion (6.4) and (6.5), but the occupancy is now expressed in terms of
connections, occ(n), is now the number of different sources that drive
the connections that use the node n.

To calculate share(n), the routing algorithm keeps a map for each
net. The map contains the used nodes and for each node the number
of connections that use the node. In the rip up method, the values for
share(n) are loaded in into the node data structure and loaded out after
a path is found. This implementation limits the extra data that has to be
kept per node in the routing resource graph, and is therefore scalable
with respect to the size of the FPGA.

cexp = fcrit ·
(
∆m · tlin + ∆2

m · tquad +Rup ·∆m · Cload
)

+

(1− fcrit) ·
(

∆m · b
1 + share(n)

+ bipin + bsink

) (6.9)

134

Iteration i Iteration i+1
Ilegal routing tree

Iteration i+2 Iteration i+3

Congested
node

Congested
node

Congested
node

A B C A B C

A B C A B C

source source

source source

Figure 6.5: Intermediary illegal routing tree

The expected cost heuristic in the connection router needs to change
in order to keep it admissible, as shown in Equation (6.9). The base cost
of the segments has to be divided by the number of connections that
use the node under consideration because it is possible that all the wire
segments up to the input pin of a connection are shared with other
connections that have the same source.

After routing each connection, the timing graph and the delay of
each connection in the net is updated. In case a node is congested, the
router will try to circumvent the congestion, but it is possible that the
routing graph will be temporary illegal in-between iterations. An ex-
ample is given in Figure 6.5. Connections with sink A, B, and C use a
congested node in iteration i and the congestion mechanism is gradu-
ally solving the connection. In iteration i+1 the routing graph is not a
tree. To take into account illegal routing graphs, the calculation of the
net delays is modified. It always assumes the worst case scenario. In
the first iterations, this will happen occasionally, but in almost all cases
the number of occurrences drops to zero as the congestion dissolves. A
minimum delay tree is extracted from the illegal graph in the rare case
there are illegal routing graphs left after all the congestion is solved.

135

B	 B	

C	 C	

A	 A	

(a) After iteration 1

B	 B	

C	 C	

A	 A	

(b) After iteration 2

Figure 6.6: An example of the negotiated share mechanism which im-
proves the routing tree over multiple iterations by encouraging routing
resource reuse.

6.5 Negotiated Sharing Mechanism

In Figure 6.4 a suboptimal routing tree is depicted. The suboptimal
routing tree is the result obtained by the maze router in VPR. The main
cause why VPR generates a suboptimal routing tree in this case, is that
there are a large number of equivalent shortest paths. For example con-
nection A-B has 20 equivalent paths with a minimal cost of 6 wires. The
router arbitrarily chooses one of these shortest paths. In the case of Fig-
ure 6.4 (a) this path does not allow any resource sharing for connection
A-C. There are however other possibilities, that would allow more rout-
ing resource sharing and result in a routing tree closer to a minimum
steiner tree, as depicted in Figure 6.4 (b)

This problem worsens if the manhattan distance between the source
and the sink of a connection increases, because the number of equiva-
lent shortest paths increases exponentially. To overcome this problem,
two mechanisms are built in the connection router.

6.5.1 The Negotiated Sharing Mechanism Inherent to
CROUTE

By ripping up a connection at a time the rest of the routing tree remains
and influences the cost of the nodes via the share(n) division in the cal-
culation of the node cost. This effectively encourages sharing routing
resources over multiple routing iterations. As an example we consider
the situation depicted in Figure 6.6. After one iteration we have no
resource sharing but if connection A-B is ripped up and rerouted the

136

shortest path will be alongside the routing path of connection A-C, be-
cause the cost of these wires will only be half the base cost.

6.5.2 Trunk Bias

The negotiated sharing mechanism only works if one of the other con-
nections is routed on a part of one of the shortest paths. When the
router is routing the first connection of a net with Dijkstra, it is clueless
about the location of the rest of the net’s sinks. In order to help the
router with initially choosing a good path from the equivalent short-
est paths we add a bias towards the geometric center of the net. The
bias must have a smaller influence than the wire cost, because it is only
meant to be a tie breaker. We add the following term to the node cost:

cbias =
b(n)·

2 · fanout
· ∆m,c

HPWL
(6.10)

The minimum wire cost is b(n)/fanout in case a wire is shared by
all of the connections. The bias cost will be maximally half of the min-
imum wire cost. The bias cost depends on the manhattan distance to
the geometric center which is normalized against the Half Perimeter
Wire Length (HWPL). As we close in on the geometric center the effect
reduces.

During the negotiated congestion mechanism the cost of the nodes
can only increase, so the effect of the bias cost becomes smaller towards
the later iterations of the routing algorithm.

6.6 Partial Rerouting Strategies

To speed up the routing process the router could be programmed to
only focus on the congested nets. Right before ripping up the net, the
nodes of the old routing tree are checked and if no nodes are congested,
the net is skipped. This method has an average speedup of 1.9x for the
VTR benchmark suite, but the quality of the result decreases with a 25%
increase in critical path delay. The cause of the critical path detoriation
is that the routing solution converges too quickly. The router focuses
too much on routability with not enough emphasis on optimizing crit-
ical path delay. In the first iteration the router routes the connections
in the circuit congestion-oblivious. Each connection is routed with a
minimum delay. To put more stress on timing, the most critical nets
are rerouted if the delay of one of its connections is higher than the
minimum delay obtained in the first iteration independent of their con-
gestion status. Only nets with one of their pin criticalities above a tim-

137

ing criticality threshold, fcrit,cutoff are rerouted. We experimented with
different values for the criticality threshold and for a value of 0.9 the re-
sulting critical path delays are on average the same as the PATHFINDER

algorithm built in VPR.
In order to further reduce the runtime, the runtime profiling re-

sults in Fig. 6.3 show that the majority of time is spent by rerouting
high-fanout nets. High-fanout nets have more chance to be rerouted
because they typically require a lot of routing resources, span a larger
area of the die and are more critical than their low-fanout counterparts.
Partially rerouting the high-fanout nets would obviously reduce run-
time and the connection-based routing mechanism allows us to only
reroute the congested and the critical connections. Instead of rerout-
ing an entire critical net, only the connections with a criticality above
0.9 are rerouted. Since the connection delays are updated after rout-
ing a connection, we can check if a critical connection is longer than
its minimum after routing. Unfortunately the congestion status of the
connection can be changed after routing the connection, so the router
rechecks the old routing trace for congested nodes before it decides if
the connection will be rerouted.

6.7 Experiments and Results

6.7.1 Methodology

To measure the performance of the connection router with partial
rerouting we compare it to the PATHFINDER router implemented in
VPR [88]. CROUTE is implemented in the VTR framework, which
is mainly written in C. The Titan suite is used to benchmark the
routers [106]. The target architecture is the Stratix-IV based architec-
ture. The architecture has identical functional blocks as in the commer-
cial Stratix-IV, but a simplified routing architecture with 87% wires that
span four logic blocks and 13% wires that span 16 logic blocks. The
wires are fully populated, branching of in each connection block and
switch block they come across. The switch blocks have a Wilton topol-
ogy. The Titan benchmark suite contains 23 small designs and 19 larger
designs that are more challenging to place and route. To prevent over-
fitting the smaller designs were used to fine-tune the routers and search
for optimal parameter values, such as fcrit. The larger designs are used
for the final evaluation. The placements were generated with the VPR
timing-driven placer with default settings. For each benchmark design
the following properties of the routing implementation were measured:

138

• The Runtime is the time the router needs to find a solution for
an FPGA architecture with a given channel width. It does not
include the time to parse the netlist and generate the routing re-
source graph. The routing algorithms were executed on a work-
station with an Intel quad-core i7-3770@3.40GHz and with 32GB
1600Mhz DDR3 memory.

• The Maximum Clock Frequency is determined by the slowest
path delay, also called the critical path delay. In case there are
more clock domains, the geomean of all maximum clock frequen-
cies is used for comparison.

• The Total Wire-length is the number of wires needed to realise
the design.

Table 6.1: Runtime, total wire-length and critical path delay for
CROUTE and the baseline which is the routing algorithm implemented
in VPR slightly adapted to only reroute the congested and critical nets.

Runtime [s] Critical Path Delay [ns] Total Wirelength [x1000]
Benchmark Design baseline Croute ratio baseline Croute ratio baseline Croute ratio
cholesky mc 289 215 0.74 9.3 9.3 1.00 1443 1265 0.88
stereo vision 130 115 0.88 9.3 10.0 0.93 998 982 0.98
sparcT1 core 514 540 1.05 10.1 9.9 1.02 1674 1647 0.98
neuron 179 148 0.83 10.0 9.7 1.03 1275 1252 0.98
segmentation 4456 3475 0.78 894.2 897.3 1.00 3222 3152 0.98
stap qrd 609 437 0.72 9.1 9.9 0.92 4112 3346 0.81
SLAM spheric 3682 3539 0.96 84.8 84.8 1.00 3166 3159 1.00
mes noc 4183 2273 0.54 16.8 16.6 1.01 10955 9678 0.88
des90 894 664 0.74 14.6 13.7 1.07 3522 3333 0.95
bitonic mesh 3464 2286 0.66 16.0 16.9 0.95 7641 7440 0.97
cholesky bdti 502 371 0.74 10.5 11.4 0.92 3575 3161 0.88
Geomean 0.77 0.99 0.92
Std. Dev. 0.13 0.05 0.06

6.7.2 Results

We slightly adapted the router in VPR to reroute only congested and
critical nets, because then we can clearly show the advantage of con-
nection based routing apart from the effect of partial rerouting. Partial
rerouting strategies can be both applied to the net and connection based
router. The modified VPR router will be used as a baseline to compare
to CROUTE and we will refer to this router as the baseline router. The
routers target the Stratix IV architecture with a fixed channel width of

139

300. In what follows the runtime to find a routing solution and quality
of the solutions are compared. The results are summarized in Table 6.1.
We only listed the benchmark designs that we were able to route in the
reasonable timespan of 5 hours.

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	
200	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	

Ru
n$

m
e	
(s
)	

Itera$on	

baseline	

Croute	

original	 VPR	

Figure 6.7: Iteration runtime for the LU32PEEng benchmark design

The connection router is able to find routing solutions on aver-
age 23% faster than the baseline router. Almost all the designs are
routed faster with CROUTE. The main cause for the drop in runtime
is the decrease in runtime for one routing iteration. The routing it-
eration runtime dramatically drops in the first few iterations for both
routers, because the easier to solve congestion is solved and those
parts are not rerouted anymore. For CROUTE this effect is even more
prononounced. However, CROUTE typically needs slightly more itera-
tions. The net effect is a reduction in runtime. To further elaborate the
decrease in routing iteration runtime, we investigate the routing iter-
ation runtime for the benchmark design LU32PEEng implemented on
the k6 frac N10 mem32K 40nm architecture in Figure 6.7. The channel
width is set to 168, which is the minimal channel width for the default
router in VPR, so there is a fair amount of congestion the routers need
to solve to find a solution. We clearly see the initial drop in runtime
both for the baseline and CROUTE, but for CROUTE the drop is more
pronounced. The runtime for one iteration for CROUTE typically stays
lower than an iteration for the baseline router. To highlight the differ-
ence between a router with and without a partial rerouting strategy,
we also included the results for the original VPR router. The runtime
clearly is much higher without partial rerouting strategy and this is
more extreme compared to CROUTE, mainly because the speedup from
partial rerouting is larger when applied on connections, because it is a

140

finer scale.
The quality of CROUTE solutions in terms of critical path delay is

similar as the baseline routing solutions with an average 1% reduc-
tion in critical path delay, but with a standard deviation of 5%. The
total wire-length is consistently better. The total wire-length for each
benchmark design is lower with an average decrease of 8%, albeit with
some variation with a standard deviation of 6%. This improvement
is attributed to CROUTE’s negotiated sharing mechanism which is de-
scribed in section 6.5. The mechanism improves the routing tree of a
net over multiple iterations.

6.8 Conclusion and Future Work

In this chapter we proposed a new routing algorithm called the connec-
tion router, CROUTE. It is a router which applies a more congestion ori-
ented rerouting instead of simply rerouting the whole circuit. CROUTE

rips up and reroutes parts of the routing tree of a net, by ripping up
and rerouting connections instead of nets in the main congestion loop
CROUTE is more runtime efficient than the PATHFINDER-based router
implemented in VPR. Given an FPGA with a certain channel width,
CROUTE is able to find routing solutions 23% faster, the quality of the
routing solutions is slightly better in terms of total wirelength with an
average decrease of 6%. The solutions have a similar critical path delay.

The techniques applied in CROUTE are largely orthogonal to many
advanced routing runtime reduction techniques described in the litera-
ture. They can be applied in tandem with CROUTE, for example selec-
tive routing resource graph expansion [104] and parallel routing [51].

Nevertheless routing remains an important bottleneck in the design
cycle.

141

7
Place and Route tools for the

Dynamic Reconfiguration of the
Routing Network

In this chapter we describe the placement and routing tools that we de-
veloped for the special FPGA technique that exploits the reconfigurabil-
ity of the routing switches in the FPGA. The goal is to improve the cir-
cuit properties by dynamically reconfiguring the routing switches. We
first start with giving an overview of dynamic partial reconfiguration
and clarifying the contributions we made. Subsequently we describe
the modifications made to the conventional placement and routing ap-
proaches to enable the dynamic reconfiguration of the FPGA’s routing
network.

7.1 Overview of Dynamic Partial Reconfiguration

Traditionally, a configuration of a Field Programmable Gate Array
(FPGA) is loaded at the end of the design phase, and it remains the
same throughout the runtime of the application. In order to change
the configuration, the computation is stopped, the new configuration
is written to the configuration memory and then the computation can
start again. The high write speed of SRAM memory cells in SRAM-
based FPGAs opened up the possibility to reconfigure the FPGA be-
tween different stages of computation. In 1996 Xilinx released one of

143

the first dynamically and partially reconfigurable FPGAs, the XC6000
[140]. Dynamic Partial Reconfiguration (DPR) is a technique that allows
reconfiguring only a portion of the FPGA at runtime, while the rest of
the FPGA remains active. In order to change the functionality imple-
mented by certain FPGA resources, the configuration memory bits that
control those resources can be updated by sending a new partial con-
figuration to the FPGA. In 2010 Altera, Xilinx’s main competitor, also
introduced an FPGA that supported DPR, the Stratix V (28 nm) [11].

DPR can be used to build self-reconfiguring systems that write a
configuration to the FPGA’s configuration memory, specialized for the
application specifics at hand. Specialized configurations use fewer
resources, because resources are reused, and therefore less FPGA re-
sources are occupied. Thus, this technique allows larger circuits to be
implemented on smaller and cheaper FPGAs. Additional advantages
are that specialized configurations have a reduced logic depth and re-
quire less power than their generic counterparts. However, the down-
side is that the gain in efficiency can be diminished by the specialization
overhead, because when the problem at hand changes, a new special-
ized configuration is needed. The specialization overhead is the extra
FPGA resources and the extra time needed to obtain a configuration up-
date and write the FPGA’s configuration memory using DPR. Further-
more, the complexity of implementing a design using DPR and the lack
of automatic tools hinder the widespread use of the DPR technique.

7.1.1 Introduction to Dynamic Circuit Specialization

In [21] these problems are addressed by using the Dynamic Circuit Spe-
cialization (DCS) technique. The proposed two-stage tool flow for DCS
starts from an HDL (Hardware Description Languange) description in
which the slowly varying signals, called parameters, are annotated.
The parameters represent the application specifics at the current mo-
ment. Infrequently varying input signals are good choices to consider
as parameter candidates. We don’t want the system to calculate config-
uration updates frequently.

A computational intensive offline stage calculates a parameterized
configuration. This is an FPGA configuration in which the bits are
Boolean functions of the parameters. In the second, online, stage the pa-
rameterized configuration can be quickly evaluated to a configuration
update. The configuration update can be applied using DPR and af-
ter the update the FPGA is running the new specialized configuration.
This rapid evaluation leads to a low specialization overhead. Since the
technique uses an annotated HDL file as input, it enables designers to

144

benefit from DPR without much extra design effort. The only require-
ment to use this tool flow is an FPGA that is capable of dynamic partial
reconfiguration.

The tool flow introduced in [21], is called the TLUT tool flow and is
available online [55]. It was the first tool flow developed for DCS. The
offline stage is quite similar to a conventional FPGA tool flow. Only
the mapping stage differs greatly. However, the TLUT tool flow is lim-
ited because it is only capable of dynamically specialising the values of
the LookUp Tables (LUTs) present in FPGAs. The TCON tool flow, de-
scribed in section 7.3, extends the TLUT tool flow with the possibility to
dynamically specialize the interconnection network of an FPGA. This
specialization has a lot of potential, because reusing routing resources
could drastically reduce the area usage, delay and power consumption.
For the test cases in this chapter, a Clos switch network and a Virtual
Coarse Grain Array, the TCON tool flow generates implementations
that need 50% up to 92% less LUTs and 36% up to 81% less wiring
than conventional implementations. The logic depth decreases with
63% up to 80% in comparison with their corresponding conventional
implementations.

7.1.2 Contributions

To implement the TCON tool flow, major changes were needed, not
only in the mapping, but also in the pack, place and route steps. In [57],
Heyse and Bruneel proposed an altered technology mapping algo-
rithm. We introduced a pack and placement algorithm, called TPACK

and TPLACE. TPACK and TPLACE are described in [130]. We also in-
troduced the routing algorithms for the TCON tool flow. In [131],
[132] and [130] routing algorithms, enhancements and extensions are
described, leading to a honed routing algorithm, called TROUTE.

This work was done in collaboration with Karel Bruneel and Brahim
Al Farisi. At the time, Karel Bruneel was a post-doctoral researcher and
Brahim Al Farisi was a Phd. student in our research group.

7.2 Background

7.2.1 Configuration Swapping

In conventional dynamic reconfiguration tool flows runtime reconfig-
uration is used to have multiple processes timeshare a set of FPGA
resources. The functionality of a part of an FPGA is swapped with
another pre-computed configuration that is loaded from a storage

145

FPGA
Static part

Dynamic part

Configuration 0

Configuration 1

Configuration 2

Configuration 3

Figure 7.1: Conventional Dynamic Reconfiguration: Configuration
swapping, different modules are loaded in

medium. This method is called configuration swapping or modular
reconfiguration. The concept is illustrated in Figure 7.1. Tool support
for configuration swapping can simply be realized by slightly adapting
a conventional tool flow. FPGA manufacturers have adapted their tool
flows for this type of reconfiguration. Xilinx has adapted its modular
design flow [143] and a similar tool flow is available for Altera [12]. The
commercial configuration swapping tool flows are complex and require
a skilled designer. The designer has to prepare one or more parts of the
FPGA for dynamic reconfiguration and he will need to describe all the
functionalities that might be implemented using an HDL. Preparing a
dynamically reconfigurable area encompasses:

• selecting the FPGA resources that are part of that area;

• defining a fixed interface for this area.

In the commercial tool flows the resources are selected by defining a
rectangular area on the FPGA. The area must be large enough so that
the worst case functionality in terms of resource usage fits into it. The
fixed interface is important because whichever functionality is loaded
in the area, it needs to plug into the static part present on the FPGA
in exactly the same way so that the FPGA’s configuration does not get
corrupted.

Next, the tool flow needs to generate the partial configurations for
each of the functionalities. All the functionalities that will be imple-
mented by the same area need to have the same interface and this in-
terface must be mapped on the interface of the associated area. The con-
ventional tool flow is then run for each of the functionalities, with the

146

Figure 7.2: The two-staged tool flow

exception that the placement and routing tools which are constrained
to the defined area and that the signals of the functionality’s interface
are forced to hook up to the area’s interface.

Configuration swapping is only applicable to applications that have
distinct subtasks that are not to be executed simultaneously. The
method is also restricted in the number of different tasks that can be
time multiplexed. Every task must be defined in a different HDL file,
ran by the conventional tool flow and needs to be stored on a storage
medium.

7.2.2 Dynamic Circuit Specialization

As mentioned in the introduction the specialization overhead can
negate the benefits of a self-reconfiguring system. To keep the special-
ization overhead low, new specialized configurations need to be up and
running as quickly as possible, but this is not trivial. For example, the
conventional tool flow can be used to create specialized configurations
at runtime. This would in many cases take minutes to hours, because it
encompasses computationally hard problems, such as placement and
routing. Another solution could be computing all specialized config-
urations in advance and storing them in a database, but this solution
quickly becomes infeasible because of the immense number of possible
configurations. E.g. 232 or ca. 4 billion configurations are needed for a
32-bit multiplier with an infrequently varying coefficient.

To solve this issue the authors in [21] introduced a two-staged
method, called Dynamic Circuit Specialization, to generate specialized
configurations. A simple diagram can be seen in Figure 7.2. The first

147

Pack

Place

Route

Parameterized Configuration

(T)LUTs and Nets

(T)CLBs and Nets

Placed (T)CLBs and Nets

Placed (T)CLBs and Routed Nets

Parameterized HDL design

Synthesis

TLUTMap

Logic ports

Figure 7.3: Generic stage of the TLUT Tool flow

stage, called the generic stage, starts from a parameterized HDL design.
This is a regular HDL design in which some of the input signals are an-
notated as parameters. From this a parameterized configuration (PConf) is
generated. A PConf is a multi-valued Boolean function that expresses a
specialized FPGA configuration bitstream as a function of the parame-
ters. At runtime this Boolean function can be evaluated using a specific
set of parameter values to obtain a regular FPGA configuration (during
the specialization stage). So it is possible to derive specialized config-
urations with different properties and/or functionality from a single
PConf during runtime.

The advantage of generating specialized configurations from a
PConf, instead of directly running the conventional FPGA tool flow,
is the much lower overhead per specialized configuration. Generat-
ing a PConf costs about the same amount of time as generating a reg-
ular configuration, but the evaluation of Boolean functions is several
orders of magnitude faster. An additional advantage is that only one
configuration needs to be stored while the different specialized config-
urations can be generated in milliseconds [21]. For example, a PConf
for an adaptive FIR filter, generated by the TLUT tool flow, described
in section 7.2.3 can be evaluated to a specialized FIR configuration (8-
bit input, 8-bit coefficients and 32 taps) in only 1.3 ms on a PowerPC
405 (PPC405) clocked at 300 MHz (available in the Xilinx Virtex-II pro
FPGAs), while the conventional method needs several minutes to pro-
duce a specialized configuration on a standard desktop PC.

148

7.2.3 TLUT Tool Flow

The tool flow, that generates the PConf in the generic stage, consists of
adapted versions of the tools found in the conventional tool flow. It
takes a parameterized HDL design as input and outputs a PConf. A
first tool flow for DCS, called the TLUT tool flow, is described in [21].
In figure 7.3 an overview of the different steps of this tool flow is given.
In the first step of the tool flow, the parameterized HDL design is syn-
thesized in a conventional way. Next, the design is mapped with a
modified technology mapper, called TLUTMAP. A conventional map-
per maps the design to a LUT circuit, while TLUTMAP maps the design
to a Tunable LUT circuit. A Tunable LUT (TLUT) is a parameterized
abstraction of a LUT. The truth table bits are expressed as functions of
parameter inputs. Since parts of the design functionality depending on
the parameters are incorporated in the parameterized truth table bits of
the TLUTs, the size of the TLUT circuit is much smaller than the regular
LUT circuit for the same design [21]. The next step is to pack, place and
route the TLUT circuit. These steps can be performed by the conven-
tional pack, place and routing tools, because the packing, placement
and routing is independent of the content of the LUTs.

A PConf, produced by the TLUT method, only expresses the truth
tables of the LUTs as a function of the parameters. All the routing be-
tween the LUTs is fixed. This leads to high quality specialized config-
urations. However, it has been shown in [130] that also expressing the
routing configuration as a function of the parameters (TCON tool flow)
leads to specialized configurations with an even better quality. For ex-
ample, a 256 × 256 Clos switch, implemented as described in section
7.7, requires 1792 LUTs when the TLUT method is used, while only 768
LUTs are needed when the TCON method is used.

7.3 The TCON tool flow

The TCON tool flow produces PConf’s following the same principle
concept as the TLUT tool flow. It also starts from an RT level HDL
description and generates a PConf. However, to allow dynamic spe-
cialization of the FPGA’s interconnection network, changes are also
required in the technology mapping, packing, placement and routing
steps of the tool flow. In Figure 7.4 an overview of the different steps
of the generic stage of the TCON tool flow are depicted. The changes
needed in each step are described in the following sections. A simple
2× 2 crossbar is used as an example.

149

TPack	

TPlace	

TRoute	

Parameterized	 Configura6on	

(T)LUTs	 and	 (T)CONs	

(T)CLBs	 and	 (T)CONs	

Placed	 (T)CLBs	 and	 (T)CONs	

Placed	 (T)CLBs	 and	 Routed	 (T)CONs	

TPAR	

Parameterized	 HDL	 design	

Synthesis	

TCONMap	

Logic	 ports	

Figure 7.4: Generic stage of the TCON Tool flow

7.3.1 Synthesis

The synthesis step converts a HDL description in which some inputs
are annotated as parameters into a parameterized Boolean network. In
Listing 7.1 you can find the VHDL description of the 2 × 2 crossbar
switch example. No significant changes need to be made to this step
because parameters can be synthesized just like regular inputs. Except
that parameter inputs in the HDL description do have to be annotated
as parameter inputs in the resulting Boolean network as well. Design-
ers only have to add a comment before and after the parameters in the
description, as can be seen on line 3 and 5 of the VHDL code of the
crossbar switch in Listing 7.1.

7.3.2 Technology Mapping

During technology mapping, the parameterized Boolean network gen-
erated by the synthesis step is not mapped onto the resource primitives
available in the target FPGA architecture, but on abstract primitives
that represent parameterized versions of these resource primitives:

• a Tuneable LookUp Table (TLUT): a LookUp Table with the truth
table expressed in terms of parameters, τ(p) : Bk → B2n , with k
the number of parameters and n the number of inputs LUTs have
on the target FPGA. A TLUT will be implemented by a regular
LUT and the dynamic reconfiguration of its truth table.

150

Listing 7.1: The VHDL code for the 2× 2 crossbar switch example.
1 entity crossbar is
2 port(
3 −− param
4 sel : in std logic vector (1 downto 0);
5 −− param
6 i : in std logic vector (1 downto 0);
7 o : out std logic vector (1 downto 0);
8) ;
9 end crossbar;

10
11 architecture behavior of crossbar is
12 begin
13 o(0) <= i(to integer (sel (0))) ;
14 o(1) <= i(to integer (sel (1))) ;
15 end behavior;

• a Tuneable Connection (TCON): a connection with a connection
condition expressed in terms of parameters. A TCON will be im-
plemented by a set of wires and switches, and the dynamic re-
configuration of some of the switches in the set. A schematic of a
TCON can be found in Figure 7.6.

Analogously to a regular connection, a TCON has a source and a
sink. Additionally, every TCON has a connection condition ζ(p) : Bk →
B, with k the number of parameters. This is a Boolean function of the
parameters that returns true when the design requires the connection
to be active. The connection conditions of the TCONs reflect the fact
that not all connections are needed at the same time. They allow us to
distinguish which connections are mutually exclusive in time. These
connections will be allowed to share FPGA routing resources. TCONs
are abstract concepts generated in the technology mapping step. These
are refined to concrete FPGA resources during packing, placement and
routing. After placement the endpoints of the TCONs are fixed and the
router further refines the TCON by reserving the switches and wires to
realize the connection.

The abstract concepts, TCON and TLUT, also cover static connec-
tions and static LUTs. A static connection is a TCON with a connection
condition equal to 1 and a static LUT is a TLUT with a truth table inde-
pendent of the parameter inputs.

In [57] TCONMap is presented. It is a technology mapping algo-
rithm, able to exploit both the reconfigurable properties of the LUTs
and the interconnect network of the FPGA. For more details on the
TCONMap algorithm, we refer to the Phd. thesis of Karel Heyse [56].

151

Listing 7.2: Netlist for the 2×2 crossbar mapped by a conventional tech-
nology mapper
1 . input i0
2 pinlist : n0
3 . input i1
4 pinlist : n1
5 . input sel0
6 pinlist : n2
7 . input sel1
8 pinlist : n3
9

10 .output o0
11 pinlist : n4
12 .output o1
13 pinlist : n5
14
15 . clb clb a
16 pinlist : n0 n1 n2 open n4 open
17 subblock: n4 0 1 2 3 4 open
18 . clb clb b
19 pinlist : n0 n1 n3 open n5 open
20 subblock: n5 0 1 2 3 4 open

TCONMap produces a tunable circuit. Tuneable circuits contain TLUTs
and TCONs. A schematic of the 2 × 2 crossbar switch and the TCON
netlist, generated after TCONMap can be seen in Figure 7.7. TCON-
Map succeeds at mapping the functionality of the 2×2 crossbar on four
TCONs and four Input/Output Blocks (IOBs). As a reference, conven-
tional technology mapping needs six nets, two CLBs and six IOBs, see
the netlist generated by the conventional technology mapping in List-
ing 7.2.

7.3.3 TPACK and TPLACE

In the packing step, LUTs and FFs are packed into CLBs. Subsequently
the placer chooses a physical CLB on the FPGA for every CLB in-
stance in the circuit. To optimise routability and interconnect delay,
wirelength-driven placers use wire length estimates of the interconnec-
tions between CLBs. Conventional placers have to take into account
that a connection can share wires and switches starting at source end of
the connection. However TROUTE is not only able to let TCONs share
resources at the source end, but also at the sink end, see Figure 7.8.
To better estimate routing resource usage of a placement, new wire
lenght estimation methods for TCONs are introduced for TPLACE, in

152

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	

	 	 	 	 	 	

	
	

	
	

	
	

	 	 	 	

	
	

	
	

	 	 	 	

	
	

	
	

	
	

	
	

	 	 	 	 	 	 	 	
	
	

	
	

	
	

IOB	 IOB	 IOB	 IOB	

IOB	

IOB	

IOB	

IOB	
CLB	 CLB	

IOB	

IOB	

IOB	

IOB	

CLB	 CLB	

IOB	 IOB	 IOB	 IOB	

i0	 o0	

i1	 o1	
	 	

	
	

	
	

	
	

sel0	

sel1	

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	 	 	 	

	
	

	
	

	 	 	 	

	
	

	
	

	
	

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	

	
	

	
	

IOB	 IOB	 IOB	 IOB	

IOB	

IOB	

IOB	

IOB	
CLB	 CLB	

1	 ¬sel1	

¬sel1	

sel0	

sel0	
	

sel1	

sel1	

¬sel0	

¬sel0	

1	

1	 1	

1	 1	
IOB	

IOB	

IOB	

IOB	

CLB	 CLB	

IOB	 IOB	 IOB	 IOB	

i0	 o0	

i1	 o1	

Figure 7.5: The FPGA circuit for the 2×2 crossbar switch example, com-
piled by the conventional tool flow. The target FPGA has 2×2 CLBs.
The thick lines in the schematic represent the wires of the FPGA, the
thin lines the edges. The wires and edges that are used, are accentu-
ated in black. Output pins are open boxes and input pins are filled
boxes.

section 7.5.

7.3.4 TROUTE

In the routing step routing resources are assigned to the TCONs. Im-
portant changes have to be made to the conventional routing algo-
rithms, because the routing problem changes significantly. In the con-
ventional case the router needs to route a set of nets. Each net is an
interconnection between a source and one or more sinks. Nets may not
share resources, otherwise this would lead to shorts. In the TCON tool
flow TROUTE has to route a set of TCONs. TCONs have more than one
resource sharing possibility. TCONs may share resources if they have
the same source (because they carry the same signal) or if they are not
active at the same time. Two TCONs, t1 and t2, with their connection
conditions ζ1 and ζ2 respectively, are not active at the same time, if ζ1

and ζ2 are not simultaneously true for every parameter value:

153

13#

ζ(p)

Source Pin Sink Pin

Figure 7.6: Schematic of a Tuneable Connection (TCON)

Listing 7.3: The TCON netlist for the 2×2 crossbar switch functionality
1 .parameter sel0
2 .parameter sel1
3
4 . input i0
5 pinlist : i0p
6 . input i1
7 pinlist : i1p
8 . input o0
9 pinlist : o0p

10
11 .output o1
12 pinlist : o1p
13
14 . tcon i0p o0p ¬sel0
15 . tcon i0p o1p ¬sel1
16 . tcon i1p o0p sel0
17 . tcon i1p o1p sel1

t1 en t2 not active simultaneously
⇐⇒ ∀p ∈ P : ¬(ζ1(p) ∧ ζ2(p)) (7.1)

This is an important property that can be used to minimize rout-
ing resource usage. In section 7.6 the connection router, first presented
in [132] and [131] is discussed, it is capable of routing TCONs while
stimulating both resource sharing possibilities.

In Figure 7.8, two possible implementations are given for the 2 × 2
crossbar switch example on a FPGA with an array of 2 by 2 CLBs and
a very basic routing architecture. The first routing solution exploits
the first resource sharing possibility, TCONs driven by the same source
may share routing resources. The second routing solution exploits the
second sharing possibility, TCONs not active at the same time may
share resources. Both routing solutions contain 8 wires and 14 switches
and the same number of switches need to be reconfigured when the
value of the control signals of the crossbar change. In this example

154

sel0 sel1 o0 o1

0 0 i0 i0
0 1 i0 i1
1 0 i1 i0
1 1 i1 i1

sel0! sel1! o0! o1!

0! 0! i0! i0!

0! 1! i0! i1!

1! 0! i1! i0!

1! 1! i1! i1!

!
!
!

!
!

!
!

!
!

i0!

i1!

o0!

o1#

Figure 7.7: A schematic and truth table of a 2×2 crossbar switch func-
tionality represented by 4 TCONs

there is no real advantage by choosing one of the two sharing mecha-
nisms. However, practically, one sharing possibility may outperform
the other. Choosing the most economic solutions reduces the required
wiring resources.

7.3.5 Limitations

In academic tool flows, such as VTR, multipliers, block RAMs and other
hard blocks are recognised at the synthesis level. These hard blocks can
not be parameterized, in contrast to LUTs. However, if two hard blocks
of the same type are not used at the same time, the TCON tool flow
could be used to reuse one hard block and thereby reducing the area
used. At this stage, the TCON tool flow does not support heteroge-
neous FPGAs. For applications that benefit from hard blocks, such as
DSP applications, this could lead to considerable area gains.

In the following sections we describe in more detail the packing,
placement and routing algorithms that have to be changed to enable
compiling to configurations with the parameterized routing bits.

7.4 TPACK

TPACK packs the LUTs and FFs of the circuit into Configurable Logic
Blocks (CLBs) (also called Adaptive Logic Modules in Altera devices).
TPACK is similar to conventional packing, more details on conventional
packing can be found in [17]. Some alterations are made to be able to
deal with tuneable circuits. In this section, a CLB architecture with a
two level hierarchy is assumed. The first level is a basic logic element
(BLE), it contains a LUT and a FF. The second level consists of Config-
urable Logic Blocks (CLBs) containing several BLEs and fast internal
routing resources to interconnect them.

155

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	 	 	 	

	
	

	
	

	 	 	 	

	
	

	
	

	
	

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	

	
	

	
	

IOB	 IOB	 IOB	 IOB	

IOB	

IOB	

IOB	

IOB	
CLB	 CLB	

IOB	

IOB	

IOB	

IOB	

CLB	 CLB	

IOB	 IOB	 IOB	 IOB	

1	

sel0	

¬sel1	

¬sel0	

1	

¬sel1	
	

1	

1	

¬sel0	 1	

sel1	 1	

sel1	
	

sel0	

i0	 o0	

i1	 o1	

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	 	 	 	

	
	

	
	

	 	 	 	

	
	

	
	

	
	

	
	

	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	

	
	

	
	

IOB	 IOB	 IOB	 IOB	

IOB	

IOB	

IOB	

IOB	
CLB	 CLB	

1	 ¬sel1	

¬sel1	

sel0	

sel0	
	

sel1	

sel1	

¬sel0	

¬sel0	

1	

1	 1	

1	 1	
IOB	

IOB	

IOB	

IOB	

CLB	 CLB	

IOB	 IOB	 IOB	 IOB	

i0	 o0	

i1	 o1	

Figure 7.8: Two routing solutions for the 2×2 crossbar switch example,
produced by the TCON tool flow. For every switch used in the cir-
cuit, the connection condition is given. The connection condition is a
boolean function of the parameters sel0 and sel1.

156

Accordingly conventional packing is composed of two stages. In
the first stage the LUTs and FFs are packed into LUT-FF pairs via a
pattern matching algorithm. No alterations are needed in the first stage
to pack TLUTs and FFs interconnected via TCONs.

In the second stage the LUT-FF pairs are packed in CLBs. The op-
timization goals are two-fold. The first optimization goal is to fill each
CLB to its capacity. The second optimization goal is to minimize the
number of occupied inputs to each CLB. This is done in order to reduce
the number of connections to be routed between CLBs and thereby ex-
ploiting the fast internal routing resources of the CLBs and enhance the
overall routability of the circuit.

In a similar manner as in the conventional packing algorithm,
TPACK greedily packs the BLEs with highest attraction in CLBs sequen-
tially. The attraction of a BLE and a cluster of BLEs is the number of
inputs and outputs they have in common. A hill-climbing phase is
invoked only if the greedy phase is unable to fill a CLB completely.
However, the problem of packing BLEs connected via TCONs slightly
differs from the problem of packing BLEs connected via nets. TCONs
can share input pins of the CLBs, nets cannot. TCONs driven by the
same source or TCONs not active at the same time can share a CLB in-
put pin. The only modification applied to the conventional packing, is
the way the number of occupied inputs of a CLB is calculated. Given
the set of TCONs that connect the inputs of the BLEs to the routing
interconnect network, the number of occupied inputs is the maximum
number of sources connected to the CLB at the same time.

7.5 TPLACE

This section describes modifications made to the different aspects of
a conventional FPGA placement algorithm to deal with tuneable cir-
cuits. For an introduction on placement algorithms we refer the reader
to Chapter 5. We use the wirelength-driven simulated annealing place-
ment algorithm as a starting point to build TPLACE. TPLACE has two
inputs: a tuneable circuit and a description of the target FPGA archi-
tecture. TPLACE searches a legal placement for the functional blocks of
the input circuit so that the total wire length is minimized. In the future
more complex optimisation goals, such as timing-driven [97] placers,
can be implemented.

The placement problem is computationally hard, so there are no
known algorithms that can find an optimal solution in a reasonable
time. Therefore, many heuristics have been developed for the place-
ment problem. In this chapter we used a simulated annealing algo-

157

rithm to place tuneable circuits, but the same principle can be applied to
more advanced placement techniques like an analytical placement tech-
nique or a gradient descent based placement technique as described in
Chapter 5.

Wirelength-driven simulated annealing placers try to minimize the
total wire length needed to route all wires in a placement. They use the
total wire length as their cost function. The only way to exactly calcu-
late the total wire length for a given placement is to route the connec-
tions in the circuit and to count the used wires. Since routing is in itself
a computationally hard problem, solving it repeatedly for every move
tried in the inner loop of the SA algorithm, leads to very long execution
times. Therefore, the cost is not exactly calculated but estimated.

7.5.1 Wire Length Estimation for Nets in Static Circuits

In this section we partially repeat what we described in Section 5.2.1
to clearly accentuate the difference with the wire length estimation in
tuneable circuits, which is explained in the next section.

In case of a conventional static circuit, a legal routing solution con-
tains a disjoint set of routing resources for each net. A wirelength-
driven placer estimates the total wire length as the sum of the estimated
wire lengths of each net. The wire length of a net is estimated as the
half-perimeter of its bounding box weighted by a factor which depends
on the number of terminals of the net.

Cwl =
∑
n∈nets

q(#terminals(n)) ·HPWL(n) (7.2)

The factor q(.) is taken from [29]. It is equal to 1 for nets with up to
three terminals and slowly grows to 2.79 for nets with 50 terminals.

To evaluate the estimation, the circuits in the Toronto 20 benchmark
suite [15], the 20 largest circuits of the MCNC benchmark suite, were
placed with the wirelength-driven placer and routed with the breadth-
first router in VPR 4.30 with default settings. The channel width had
20% more tracks than the minimum channel width, to allow a relaxed
routing, as recommended in [17]. To evaluate the conventional estima-
tion we calculate the correlation between the estimated and the actual
routing cost of the placed benchmark circuits. The resulting correlation
coëfficient is 0.9705. Further on this correlation coëfficient will be com-
pared with the correlation coëfficient of the newly proposed estimation
method for tuneable circuits to evaluate the quality of the proposed es-
timation.

158

7.5.2 Wire Length Estimation for Tuneable Circuits

This section describes how the routing resource usage of a tuneable
circuit can be estimated. It is important not to make the calculation of
the estimation more complex than the estimation of the nets in static
circuits, because the estimation is needed in the kernel of the simulated
annealing algorithm. Hence the time needed for the estimation should
be reduced to the very minimum.

(a) Sharing of routing resources be-
tween connections with the same
source.

p

!p

(b) Sharing of routing resources be-
tween connections (TCONs) with
the same sink.

Figure 7.9: Sharing of routing resources between connections with the
same source or sink. Shared resources are annotated with a dotted
shape.

A new wirelength estimation method is necessary because in tune-
able circuits, a routing solution does not contain a disjoint routing set
for each of the TCONs. There are two sharing mechanisms. In Fig-
ure 7.9 the two sharing mechanisms are demonstrated on a small ex-
ample routing solution. TCONs can legally share resources with other
TCONs if they carry the same signal or if they are not active at the same
time. The first resource sharing mechanism, TCONs carrying the same
signal, is easily distinguished, because the TCONs are driven by the
same source. The second resource sharing mechanism, TCONs that are
not active at the same time, is harder to recognise. The connection con-
ditions of the TCONs have to be compared. After comparison, each
TCON t has an associated set of TCONs. Each of the TCONs in that set
may share resources with t, but some of the TCONs in the set can be
far away from t and are not interesting to consider as sharing resource
with. For example, two connections that are not active at the same time

159

with the terminals of the connections situated on the other side of the
FPGA. These two connections will most likely not share resources, even
if it is allowed. The most interesting TCONs in the set are the TCONs
that have the same sink as t. They can be distinguished easily and they
are forced to overlap because they have to reach the same sink anyway.
So to simplify the problem we consider only overlap between TCONs
with the same source or TCONs with the same sink.

The estimation is not as straightforward as in case of static circuits.
In case we use the same estimation method that is used for static cir-
cuits, then the second sharing mechanism is neglected and the wire-
lenght is systematically overestimated. Let’s consider the toy example
in Figure 7.10a. The conventional estimation method considers all con-
nections starting from the source as a collection and tracks the bound-
ing boxes of these collections during placement. The estimation for
the toy example is 10 wires, but the post-route solution contains only
9 wires. The number of bounding boxes that are tracked during place-
ment equals the number of sources in the circuit.

To achieve a better estimation, all connections starting from a sink
could also be considered a collection. Each connection would then be
part of a source collection and a sink collection. The estimation method
would than track the bounding boxes of the source and the sink col-
lections. The total wirelength estimate in this case is the half of the
sum of the bounding box estimates. As can be seen in Figure 7.10b,
the estimated wirelength is 9.5, which is slightly better than the con-
ventional estimation, but the number of bounding boxes that needs to
be tracked during placement is the number of sources and sinks in the
circuit, which is typically at least twice the amount of bounding boxes.
The toy circuit has three sources and two sinks, so there are five bound-
ing boxes which need to be tracked.

To reduce the number of bounding boxes that needs to be tracked
and improve the accuracy even more, we propose to partition the
TCONs in the tuneable circuit according to the dominant resource shar-
ing mechanism. After the partitioning process, each TCON is only part
of one collection and the number of collections is typically in the same
ballpark as the conventional estimation and the accuracy is typically
better. The partition-based estimation correctly predicts the number of
wires for our toy example in Figure 7.10c while only needing 2 bound-
ing boxes. This improvement is even more pronounced for tuneable
circuits with larger fanout source collections and/or larger fanin col-
lections.

We define the dominant resource sharing mechanism to be the shar-
ing mechanism that is used by the largest number of connections. Let’s

160

(a) Conventional
Cwl,est = 10, #BB = 3

(b) Both sharing mechanisms
Cwl,est = 9.5, #BB = 5

A B

(c) Partitioning according to the
dominant sharing mechanism

Cwl,est = 9, #BB = 2

A B

(d) Post-route solution
Cwl = 9

Figure 7.10: The wirelength estimation methods for tuneable circuits
applied to a simple toy circuit and the post-route solution

161

Listing 7.4: Pseudocode of the greedy multi-iteration algorithm used to
partition the TCONs
1 while (candidateParts.size > 0):
2 int maxCardinality = 0
3 Set maxPart = 0
4 /* Find the set with the maximum number of TCONs */
5 for each Set s in candidateParts do:
6 if (s . size > maxCardinality || (s . size == maxCardinality && BB(s) > BB(

maxPart)))
7 maxCardinality = s.size
8 maxPart = s
9 partitioning .add(maxPart)

10 /* Remove each TCON of maxPart from its other set */
11 for each TCON t in maxPart do:
12 Set source = candidateParts.getSourceSet(t)
13 Set sink = candidateParts.getSinkSet(t)
14 if (maxPart == source) sink.remove(t)
15 else source.remove(t)

consider the TCON that connects block A and B in the toy circuit de-
picted in Figure 7.10c. The TCON is driven by a source that has a fanout
of two (two connections in the circuit are driven by this source). On the
other hand, the sink of the TCON is also used by two other connections.
In this case the dominant resource sharing mechanism for this TCON
is sharing between TCONs with the same sink.

To partition the TCONs, according to the dominant resource shar-
ing mechanism, we propose a greedy multi-iteration algorithm. In List-
ing 7.4 the pseudocode of the partitioning algorithm is given. Initially,
the TCONs sharing the same sink are part of the same sink set and
TCONs sharing the same source are part of the same source set. Each
TCON is therefore initially part of 2 sets, a source set and a sink set.
All the sets are added to a possibleParts collection. Each iteration of the
partitioning algorithm consists of two steps. It starts with greedily se-
lecting the largest set in the possibleParts collection and in the second
step each TCON in the selected set is removed from the other set of
which they are part of. The loop iterates until all the connections are
covered by the chosen sets. In the end every TCON belongs to only one
set.

The total wire length of the tuneable circuit is then estimated as
shown in Equation (7.3). The estimate is the sum of the estimated wire
lengths of each set in the partition, where the wire length of a set is es-
timated as the half-perimeter of its bounding box weighted by a factor
which depends on the number of terminals of the set.

162

TRoute	

Parameterized	 Configura3on	

…	

Combine	 Modes	

…	

Synthesis	

HDL	 design	 Mode	 1	

Pack	 &	 Place	

Technology	 Mapping	

Synthesis	

HDL	 design	 Mode	 2	

Pack	 &	 Place	

Technology	 Mapping	

…	

…	

…	

Placed	 Tuneable	 Circuits	

Figure 7.11: A tool flow for the compilation of multi-mode circuits, that
increases the routing similarity between modes. The tuneable circuits
and the corresponding placement produced by this tool flow can be
used to evaluate routing cost estimations for tuneable circuits.

Cwl =
∑

∀s ∈ partition
q(#terminals(s)) ·HPWL(s) (7.3)

The same weighting factors q(.) are used as in the conventional esti-
mation of a net, see Equation (7.2). For source sets this is quite straight-
forward, because they are the equivalent to nets in a static circuit, but
the estimation can be generalised for the sink sets. The factor q(.) is in-
dependent of the fact if a set is a source or a sink set. This generalisation
can be justified because the bounding box estimation first proposed in
[29] has as goal to estimate the cost of a minimum Steiner tree. Rout-
ing sink or source sets is in fact the same problem, finding the shortest
interconnect for a given set of terminals, which is the minimum Steiner
tree problem.

7.5.3 Evaluation of the Wire Length Estimation

To evaluate the proposed partition-based estimation, tuneable circuits
generated by the multi-mode tool flow in Figure 7.11 are used as bench-
marks. The tool flow in Figure 7.11 was first proposed in [8]. A multi-
mode circuit implements the functionality of a limited number of cir-
cuits, called mode circuits or modes. For example all the circuits imple-
mented in the dynamic part of modular configuration, see Figure 7.1.
At any given time only one mode circuit needs to be realised. Using

163

DPR all the modes of a multi-mode circuit can be time-multiplexed
on the same FPGA area, requiring only an area that can contain the
biggest mode. This way significant area savings can be realized com-
pared to a static implementation of the multi-mode circuit that uses
space-multiplexing to switch between modes. The tool flow aims at de-
creasing the reconfiguration time when changing modes by increasing
the similarity of routing configurations of the different modes. Given a
number of placed mode circuits, a tuneable circuit is generated where
the parameter indicates the mode. The tuneable circuit is then routed
with TROUTE, which stimulates sharing of routing resources between
the connections of different modes. This results in a factor of 1.5 up
to 5 reduction in reconfiguration time (depending on the number of
nodes and the granularity of reconfiguration) in comparison with con-
ventional methods. The downside is an increase of 10% up to 25% in
total wirelength (depending on the number of modes).

The multi-mode tool flow was used to combine the following cir-
cuits from the MCNC benchmark suite, e64, rd73, s400, alu4, s1238,
s1488 and s1494. The placed tuneable circuits with 2 up to 5 modes were
routed with TROUTE. The wire length usage was first estimated using
the partition-based method and compared with the actual wire length
after routing. In this experiment it turned out that the proposed estima-
tion and the actual routing cost for these multi-mode circuits correlate
strongly, with a correlation coëfficient of 0.9904, which is stronger than
the conventional estimation for the Toronto 20 benchmark suite, which
obtained a correlation coëfficient of 0.9705, see section 7.5.1. This newly
proposed partition-based estimation is used to build TPLACE and en-
able high quality placement for tuneable circuits.

7.6 TROUTE

After placement, there is a physical block on the FPGA assigned for
each of the functional blocks in the tuneable circuit. The router then
needs to determine which of the switches in the routing architecture
need to be closed and which need to be opened in order to connect the
physical blocks in accordance to the way their associated logic blocks
are connected in the tuneable circuit. In a tuneable circuit with TCONs,
the interconnection pattern is dependent upon the value of the parame-
ters. So TROUTE outputs a Boolean function of the parameters for each
switch used in the FPGA’s interconnect network. This Boolean function
indicates the state the switch should be in, dependent on the value of
the parameters. TROUTE is built based on the CROUTE algorithm de-
scribed in Chapter 6. We also refer the reader to Chapter 6 for an intro-

164

Listing 7.5: Pseudo code of the TROUTE algorihm.
1 while (IllegalSharedResourcesExist()) :
2 for each TCON t do:
3 t .ripUpRouting()
4 t . Dijkstra(t .source,t .sink)
5 t .resources() .updateSharingCost()
6 allResources() .updateHistoryCost())

duction on the routing problem and algorithms. This section describes
the alterations made to CROUTE to enable routing tuneable circuits.

7.6.1 The TCON Routing Problem

When the routing architecture of the FPGA is represented as a routing-
resource graph, the routing problem for tuneable circuits reduces to
finding a simple path in the routing-resource graph for each of the
TCONs in the tuneable circuit. These paths should only share nodes if
the corresponding TCONs may legally share resources, otherwise this
would lead to short circuits. Each path starts at the source node and
ends at the sink node of its associated TCON and contains the wires
needed to realise a connection between the sink and the source of the
TCON. Figure 7.8 shows the legal solution of the 2 × 2 crossbar on a
routing resource graph of a simple 2 × 2 island style FPGA with wires
spanning only 1 CLB and bidirectional switches. The wires are repre-
sented by solid black lines, the input pins and output pins by small
squares. The input pins are filled and the output pins are not. For the
sake of clarity the individual edges are not drawn but the thin lines
each represent two edges, one for each direction.

7.6.2 Modifications to the Negotiated Congestion Loop

The main structure of the TROUTE algorithm is the negotiated con-
gestion loop, similar to the CROUTE algorithm from Chapter 6. The
pseudo-code is shown in Listing 7.5. In every routing iteration, the al-
gorithm rips up and reroutes all the TCONs in the tuneable circuit. The
negotiated congestion mechanism determines the cost of the node by
modulating the cost of a node with congestion penalties:

c(n) = cprev + ·b(n) · h(n) · p(n)

1 + share(n)
+ α · cexp, , (7.4)

where b(n) is the base cost, p(n) the present congestion penalty, and
h(n) the historical congestion penalty. The cost of the node is divided

165

by share(n), the number of TCONs that legally share the node with the
TCON that Dijkstra’s algorithm is currently searching a path for.

To explain the main difference with CROUTE, we repeat the equa-
tions 6.4 and 6.5 for the update to the congestion multipliers from
Chapter 6. The present congestion penalty, p(n), is updated whenever
a TCON is rerouted. The update is done as follows

p(n) =

{
1 if cap(n) > occ(n)
1 + pf (occ(n)− cap(n) + 1) otherwise

, (7.5)

The historical congestion penalty is updated after every routing it-
eration i, except for the first iteration. The update is done as follows

hi(n) =

1 if i = 1

h(i−1)(n) if cap(n) ≥ occ(n)

h(i−1)(n)
+hf (occ(n)− cap(n)) otherwise

. (7.6)

cap(n) represents the capacity of the node and occ(n) is the occu-
pancy of the node. The occupancy is a measure for the congestion of
a node. For CROUTE this is straightforward, the number of different
nets that use the node in question. For TROUTE the occupancy of a
wire node is calculated by taking the minimum of the number of dif-
ferent sources and the number of different sinks of the TCONS using
the node in question. In case of source nodes and output pin nodes
the occupancy is calculated as the number of different sources of the
TCONs that are using the resource. In the same manner the occupancy
of sink nodes and input pin nodes is the number of different sinks of
the TCONs that are presently occupying the node. So herein lies the
biggest difference with CROUTE.

The factor pf is used to increase the illegal sharing cost as the algo-
rithm progresses and the hf is used to control the impact of the histori-
cal congestion penalty on the total resource cost. The way the factors pf
and hf change as the algorithm progresses is called the routing sched-
ule. Again the same routing schedule proposed for CROUTE is used.

7.6.3 Resource sharing extension

As explained in section 7.5.2, TPLACE and TROUTE only consider rout-
ing resource sharing between TCONs with the same source or same
sink. A TCON may share resources with another TCON with the same
sink, because they are not active at the same time. However, there is
a possibility that there are other TCONs not active at the same time,
with another sink but with terminals in the vicinity of the terminals of

166

	
	

	 	 	 	

	
	

	
	

	 	 	 	

	
	

	
	

	
	

	
	
	
	 	
	

	 	 	 	

	
	

	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	

	
	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	
	 	

	

	
	 	
	

	
	

	
	 	
	

	
	

	
	

	
	

	
	

	
	

	
	 	

	

	
	 	
	

	
	

	
	 	
	

	
	

	
	

	
	

	
	

	
	

	
	 	

	

	
	 	
	

	
	

	
	 	
	

	
	

	
	

	
	

	
	

Sink
pin A

Sink
pin B

Source 2

Source 1

Source 3

m2

m1

m1

m2

m3

m3

	
	

	 	 	 	

	
	

	
	

	 	 	 	

	
	

	
	

	
	

	
	
	
	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	
	
	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	 	
	

	
	

	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	 	
	

	
	

	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	 	
	

	
	

	
	
	
	

	
	

	
	

	
	

	
	

	
	

	 	 	 	

	
	

	
	

	 	 	 	

	
	

	
	

	
	

	
	
	
	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	

	
	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	
	

	
	

	
	 	
	

	
	

	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	 	
	

	
	

	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	 	
	

	
	

	
	
	
	

	
	

	
	

	
	

	
	

with resource
sharing extension

without resource
sharing extension

Figure 7.12: Two neighboring sink sets of a multi-mode circuit that will
be merged in the resource sharing extension. The modes, in which each
TCON has to be active, are annotated.

the first TCON. These TCONs are interesting to share resources with,
because this can further reduce the total wire length. In this section we
describe an extension to our initial resource sharing mechanism. The
consequences for the total wire length and minimum channel width
are described.

For each sink set, the neighboring sink sets are considered to share
resources. Neighboring sink sets are sink sets that contain at least one
TCON driven by the same source. In Figure 7.12 two sink sets of a
multi-mode circuit are depicted. The set of sink pin A and the set of sink
pin B are neighboring sink sets, because both sink sets have a TCON
from each of the sources emphasized in the figure.

If every TCON in the neighboring sink set may share resources with
all the TCONs in the current sink set, the sink sets can be merged. The
set of sink pin A and the set of sink pin B can be merged, because the
TCONs are driven by the same source or are active in a different mode.
On the right side of figure the wires necessary to realise these sink sets
are given. Without the resource extension 15 wires are needed and with
it only 9 wires. We used a multi-mode circuit because it is intuitive and
easy, but this extension is also applicable to other kinds of tuneable
circuits.

167

Table 7.1: The resource sharing extension tested on the hybrid TCON-
TLUT implementation of the Clos switch networks.

Size without with

16
Min. Channel Width 8 6
Total Wire Length (CWtest = 10) 514 415

64
Min. Channel Width 18 16
Total Wire Length (CWtest = 21) 3921 4055

265
Min. Channel Width 30 28
Total Wire Length (CWtest = 36) 30213 29572

This extension leads to an average decrease in the total wire length
of 7.23% (standard deviation 3.39%) and a decrease in minimum chan-
nel width of 6.41% (standard deviation 4.28%) for the multi-mode cir-
cuits introduced in section 7.5.3. Another application that benefits from
this extension is the TCON implementation of the Clos switch net-
works, described in section 7.7.4, with a modest but significant decrease
of 2 tracks for the minimum channel width, the solutions need about
the same amount of wires, see Table 7.1. To measure the wire length
an FPGA is used with a channel width (CWtest) with 20% more tracks
than the minimum channel width needed to implement the Clos switch
without resource sharing extension.

7.7 Applications and Experiments

This section describes the experiments done with the TCON tool flow.
We demonstrate the usefulness of this flow for two main applications:
a Clos switch network and VCGRAs. This section is divided in 4 sub-
sections. The first subsection describes the properties of the FPGA ar-
chitecture that is used to implement the applications. In the second
subsection an overview is given of the different properties of the im-
plementations that were measured and the circumstances under which
they were measured. The third and the fourth subsection each describe
the Clos switch network and the VCGRAs respectively. The conven-
tional implementation is compared with the TCON implementation.

7.7.1 FPGA Architecture

The FPGA architecture used in this chapter is based on the
4LutSanitized1 architecture. It is a basic architecture, with only three

1A description of this architecture is provided with the VPR tool suite 4.30 in
4lut sanitized.arch.

168

types of functional blocks (inputs, outputs and CLBs) and two types
of physical blocks (IOBs and CLBs). The inputs and the outputs can
be placed on the IOBs while the functional CLBs can be placed on the
physical CLBs. The CLBs contain only one 4-input LUT and one flip-
flop. The logic blocks are connected to the routing network via fully-
connected connection blocks. The wire segments in the interconnec-
tion network only span one logic block. Two modifications were made
to the routing architecture to better resemble the commercial FPGAs.
Wilton switch blocks are used instead of disjoint switch blocks and
unidirectional wires are used instead of bidirectional wires [79]. The
architecture is specified by three parameters: the number of logic ele-
ment columns (cols), rows (rows) and the number of wires in a routing
channel (W).

7.7.2 Methodology

For each application three FPGA implementations were compared,
Conv, TLUT and TCON. They were generated with the conventional,
the TLUT and the TCON tool flow, respectively. The Conv and TLUT
implementations were placed with the wire length driven simulated
annealing placer and router in VPR 4.30 with default settings. For each
implementation, the following properties of the implementation were
measured;

• Area: The number of LUTs in the circuit (#LUTs). To place and
route the implementation a square FPGA was used with 20%
more LUTs than present in the circuit. The dimensions of the
FPGA will be given in the ’Dim’ column.

• Logic Depth (LD): The maximum number of LUTs a signal needs
to travel through to get from the input to the output.

• Minimum Channel Width (CWmin): the minimum number of
tracks the router needs to find a routing solution. The routers
have 30 routing iterations to find a solution.

• Total Wire Length (WL): The number of wires needed to realise
the design. To measure the wire length, the FPGA had a channel
width with 20% more tracks than the minimum channel width
of the implementation with the highest minimum channel width.
This guarantees a relaxed routing [17] for every implementation
and a fair comparison.

• Runtime (RT): The place and route step were executed on a work-
station with a 2.13GHz Intel Core 2 processor and 2GB memory.

169

VCGRA HDL design

Parameterised Configuration

Specialisation Stage

Parameterised Configuration

Application Design

VCGRA Tool Flow

VCGRA Settings

TCON Tool Flow	
 VCGRA Tool Flow

Generic Stage

Figure 7.13: Implementing VCGRAs with the TCON Tool Flow

7.7.3 Virtual Coarse Grained Reconfigurable Arrays

FPGA tool flows need a lot of time to compile a design in a FPGA con-
figuration. To avoid this problem, Virtual Coarse Grained Reconfig-
urable Arrays (VCGRA), or CGRAs implemented on FPGAs, have been
proposed. Conventional implementations of VCGRAs use LookUp Ta-
bles, to implement the virtual switch blocks, registers and other com-
ponents that make the VCGRA configurable. In [58] this large over-
head is avoided by mapping these components directly on TCONs and
TLUTs. An HDL design of the VCGRA, with the settings of the VCGRA
annotated as parameters, is compiled by the TCON tool flow to a pa-
rameterised configuration. An overview of this method is given in Fig-
ure 7.13.

As an example we will describe a VCGRA for regular expression
matching, and show how it can be implemented with a significantly
smaller area. For a full comparison with existing approaches to regular
expression matching, we refer the reader to [58].

Regular expressions are a way of describing patterns of data. They
are extensively used in network intrusion detection and prevention sys-
tems to detect malicious network packets based on content signatures.
These systems need to match network packets against many regular
expressions at extremely high bandwidths of up to several Gbps. This
warrants a hardware based regular expression matching accelerator.

The proposed architecture uses a Nondeterministic Finite Automa-
ton (NFA) type implementation of regular expression matching. This
lends itself very well to parallelisation and implementation in hard-
ware. An NFA-style regular expression matcher basically consists of a
set of states and a set of transitions between them. The matcher pro-

170

cesses an input string at one byte per cycle. During each cycle, every
transition concurrently checks if its input state is active and its transi-
tion condition is satisfied by the input character. If that is the case it
will activate its output state in the next cycle.

Each Processing Element (PE) of the proposed VCGRA contains the
equivalent of one transition and one state in addition to some logic to
allow for efficient implementation of constrained repetitions. The regu-
lar expression matcher in this chapter has a global decoder. The global
decoder is implemented by one or more memory blocks, depending on
the number of PEs in the design. For example, the 18-Kbit RAM Blocks
in the Virtex-5 device family have a maximum read width of 36 bits. So
one 18-Kbit RAM block can drive 36 PEs. Each 8-bit character repre-
sents an address in the memory (256 entries). Each entry contains a bit
for each PE. This bit is 1 if the bit has to be activated for that character.
So one PE has the following functionality:

• A PE can match one input character against an arbitrary character
class.

• A PE can implement repetition (‘?’, ‘∗’, ‘+’ and constrained repe-
tition with an upper bound of at most 255) of a character class.

• A group of PEs can be configured to implement the union,
Kleene-star (‘∗’), at-most-once repetition (‘?’) and at-least-once
repetition (‘+’) of one or more subexpressions.

• A PE can also be configured as pass-through. The input signal is
then routed trough the PE without applying any operation to it.

Every PE has 22 setting bits to configure it. The design of this PE is
based on [43]. Since one PE only implements one state, many PEs have
to be combined to match a complex regular expression. A network
of connections between the PEs is provided for this purpose. The 22
setting bits of each PE and the settings that determine whether or not
to establish a connection between PEs, will be the parameters of the
design.

Using the TCON tool flow to set up this VCGRA for a Regular Ex-
presssion matcher, leads to an area reduction of 50% in comparison
with the conventional tool flow. The properties of the implementation
can be seen in Table 7.2. The total wire length decreases with 31-35%
in comparison with the conventional implementation and 12-16% in
comparison with the TLUT implementations. The downside is the in-
crease in minimum channel width with two tracks for the 8× 8 and for
the 14 × 14 grid, but the channel width increase is relatively low. The

171

Table 7.2: Properties of the Regular Expression Matcher for three differ-
ent grid sizes

Size Impl #LUTs Dim CWmin WL RTplace RTroute

4× 4

Conv 1141 38 6 5989 3.1s 7.3s
TLUT 653 28 6 4446 2.2s 5.0s
TCON 577 27 6 4139 2.2s 4.6s

8× 8

Conv 4581 75 6 26428 1m36s 1m38s
TLUT 2697 57 6 19230 45s 43s
TCON 2305 53 8 16939 48s 56s

14× 14

Conv 14061 130 6 86328 3m11s 4m45
TLUT 8403 101 6 61835 2m28s 2m37s
TCON 7057 93 8 55049 2m19s 2m42s

number of routing resources reduces if we take into account that the
dimensions of the FPGA. The dimensions of the FPGA for the TCON
implementation are further reduced in comparison with the TLUT and
Conv implementations. The logic depth of the expression matcher de-
pends on the settings of the VCGRA and is not considered here, but the
logic depth of one PE decreases from 8 (Conv) to 3 (TCON). The run-
time to route the grids decreases with about 50% in comparison with
the conventional implementation. The runtime to place the implemen-
tations decreases also with about 50% for the 4 × 4 and 8 × 8 grid, but
the decrease drops to 22% for the 14× 14 grid.

7.7.4 Clos Networks

TCONMap maps some functionalities to a tuneable circuit with only
TCONs and no TLUTs [57]. These functionalities are crossbars, multi-
plexers or shifters with low speed/high latency control signals. If the
control signals are selected as parameters, these functionalities will be
completely implemented by the FPGA’s interconnect network. Appli-
cations in which such functionalities are used, benefit from the TCON
tool flow. However, in some cases, the application is built with only
crossbars, shifters or multiplexers. This is not desirable, because there
are not enough routing resources available. This section describes
how it is possible to balance the functionality between TCONs and
TLUTs. As example, a hybrid TCON-TLUT implementation for Clos
Networks [34] is proposed, similar to the implementations in [93, 153].
Since our design is done at the abstract level of tunable circuits, while
theirs is done at the architectural level, our method greatly reduces the
design effort.

Clos networks are multi-stage interconnect networks built up by

172

Table 7.3: Properties of the multi-stage Clos switch network implemen-
tations for three different sizes. The size indicates the number of input-
s/outputs of the Clos switch.

Size Impl #LUTs Dim LD CWmin WL RTplace RTroute

16
Conv 202 20 5 6 2340 1.6s 1.7s
TLUT 48 10 3 6 492 0.5s 0.4s
Hybrid 16 8 1 6 453 0.8s 0.6s

64
Conv 1016 47 9 8 11941 18s 1m43s
TLUT 320 23 5 10 3034 2.4s 2.1s
Hybrid 128 18 2 16 4289 4.9s 8s

256
Conv 6760 114 12 10 98471 9m37s 25m22s
TLUT 1792 53 7 14 23612 52s 2m15s
Hybrid 768 39 3 28 30579 1m32s 4m18s

crossbar switches. In our implementation we use 4×4 crossbars as
building blocks, these can be efficiently implemented with 4 TLUTs or
16 TCONs. The crossbar switches in the even stages are implemented
using TLUTs and the crossbar switches in the odd stages are imple-
mented with TCONs. This results in a good balance between TLUTs
and TCONs. Other balanced solutions can be easily found by simply
changing the choice of TLUTs or TCONs.

The hybrid TCON-TLUT implementation is compared with the
Conv and TLUT implementation for three sizes: 16×16 (3 stages),
64×64 (5 stages) and 256×256 (7 stages). Figure 7.14 shows a schematic
of the TLUT and the hybrid TCON-TLUT implementation of the 16×16
Clos network.

The advantages of the hybrid TCON-TLUT implementation is the
enormous reduction in area and logic depth. The hybrid TCON-TLUT
implementation needs a factor of 8 to 12 less area than the Conv imple-
mentation and a factor of 2.3 to 3 less area than the TLUT implemen-
tation. The logic depth decreases with a factor of 4 to 5 in comparison
with the Conv implementation and a factor of 2.3 to 3 in comparison
with the TLUT implementation.

The downside is the increase in channel width up to a factor of
2.8 in comparison with Conv implementations and up to a factor of
2 in comparison with TLUT implementations. It is possible to give up
some of the area gain to spread out the routing and achieve lower chan-
nel widths, but to fully exploit a routability-driven version of TPLACE

needs to be developed.
The total wire length decreases with a factor 2.8 to 5 in comparison

with Conv implementation but increases with a factor of 1.3 to 1.4 in
comparison with the TLUT implementation for the 64×64 and the 256×

173

256 Clos networks.
The runtime of placement decreases with a factor 2 to 9 in compari-

son with the Conv implementation but increases with a factor of 1.7 to
2.0 in comparison with the TLUT implementation. So TPLACE needs
more time to place the smaller TCON-TLUT circuits than the VPR wire
length driven placer needs to place the larger TLUT circuit. This is be-
cause the hybrid TCON-TLUT implementations have relatively more
interconnections than the TLUT implementations, so during placement
there are more interconnections for which the placer needs to estimate
the routing resource usage. This is also the reason why the total wire
length increases for the hybrid implementation in comparison with the
TLUT implementation. The same applies for TROUTE, but more ex-
treme. The runtime of the routing step decreases with a factor 2.8 to
12 in comparison with the Conv implementation but increases with a
factor of 1.5 to 4 in comparison with the TLUT implementation. The
main reason is that the number of connections per CLB increases and
more congestion occurs at routing time. The increase in runtime rela-
tive to the size of the circuit is acceptable, because the parameterized
configuration generated by TPAR can be used many times to generate
a specialized configuration.

7.7.5 Runtime comparison

The runtime of the place and route tools can be compared on two dif-
ferent levels. The first level is the runtime to place and route the same
functionality but different implementations. The runtime for TPLACE

and TROUTE to place and route the TCON netlist of a TCON imple-
mentation versus the runtime for VPR to place and route the netlist of
a TLUT implementation versus the runtime for VPR to place and route
the netlist of a conventional implementation. This comparison was de-
scribed separately in the Clos Networks section and the section on the
VCGRA for Regular Expression Matching. We can conclude that the
runtime difference of TPLACE and TROUTE greatly depends on the type
of application, and on how dense the functional blocks in the circuit
are interconnected with TCONs. The runtime of TPLACE and TROUTE

scale very well in comparison with the runtimes for the conventional
and TLUT implementation for the Regular Expression matcher, but not
so good for the Clos switch networks. The TCON implementation of
the 4 × 4 grid has 577 LUTs and 1830 connections. The TCON imple-
mentation of the 64 × 64 Clos switch on the other hand has only 128
LUTs, but 2304 connections. So clearly the routing problem for 64× 64
Clos switch is harder than the 4 × 4 grid, which reflects in larger run-

174

times for the place and especially the route step.

TCONs

TCONs

TCONs

TCONs

TLUTs

TLUTs

TLUTs

TLUTs

TCONs

TCONs

TCONs

TCONs

TLUTs

TLUTs

TLUTs

TLUTs

TLUTs

TLUTs

TLUTs

TLUTs

TLUTs

TLUTs

TLUTs

TLUTs

(a)

TCONs

TCONs

TCONs

TCONs

TLUTs

TLUTs

TLUTs

TLUTs

TCONs

TCONs

TCONs

TCONs

(b)

Figure 7.14: The two implementations of the 16×16 Clos network, that
use reconfiguration to control the crossbar switches

7.7.6 Specialization Overhead

The specialization overhead consists of an area overhead and a run-
time overhead. The runtime overhead is defined by how many times
the application needs to be reconfigured and by the reconfiguration
overhead, the time to evaluate the PConf and reconfigure the bits that
changed. The Clos switch needs to be reconfigured when the settings
of the switch, which define what outputs are connected to which in-
puts, change. The VCGRA needs to be reconfigured when the specific
application implemented on it changes. The frequency of reconfigu-
ration therefore greatly depends on the application in which the Clos
switch or VCGRA is used. For example, the generic regular expression
matcher can be used in a Network Intrusion Detection System (NIDS).
It is used to rapidly implement the new regular expressions released in
the last update. Updates for NIDS are typically released with intervals
of a few days to a few hours. If the Clos switch is used in a telecom
application, then the time a connection has to be active ranges between
a few seconds to a few hours. The reconfiguration overhead is typically
a few milliseconds. This is an acceptable overhead in the applications
mentioned here as an example, but could be unacceptable for other ap-
plications.

The online specialization stage of the TCON tool flow also requires
extra processing power to evaluate the Boolean functions in the pa-
rameterized configuration produced by the offline generic stage of the
TCON tool flow. An embedded processor can be used to evaluate the
Boolean functions. The Xilinx’ Virtex family has embedded IBM Pow-
erPC cores. Zynq, a recent Xilinx device family, has ARM multi-cores.
If no processor is available, a softcore can be implemented, such as the
microblaze processor (∼1200 LUTs) or picoblaze (∼200 LUTs). If the

175

processor is only used to evaluate the parameterized configuration, a
faster and smaller customized processor can be designed [6]. To alter
the configuration from within the FPGA fabric, an interface is required.
In Xilinx devices this is called the Internal Configuration Access Port
(ICAP). For example, the Virtex-6 devices offer two ICAPs in the center
of the device, one at the top and one at the bottom. The processor has
to be able to communicate with the ICAP, so a bus has to be provided.
The overhead of this bus is small (∼150 LUTs).

7.8 Conclusion

In this chapter we introduced new placement and routing algorithms,
TPLACE and TROUTE. They are part of the easy-to-use TCON tool flow,
that enables designers to use dynamic partial reconfiguration to spe-
cialize not only the lookup tables, but also the routing infrastructure of
the FPGA for the runtime needs of their designs.

The TCON tool flow generates implementations that need 50% up
to 92% less LUTs and 36% to 81% less wiring than conventional imple-
mentations. The logic depth of the TCON implementations decreases
with 63% up to 80% in comparison with their corresponding conven-
tional implementations. The downside is that the FPGA needs a factor
1.3 to 2.8 more tracks per channel to be able to implement the configu-
rations generated by the TCON tool flow. This could be improved by
giving up some of the area gain to spread the routing.

In the future, we want to investigate the timing behaviour of the
solutions produced by TPLACE and TROUTE. Other optimisation goals
can be implemented, such as a timing-driven placement and routing.

176

8
Logic Gates in the Routing Nodes of

the FPGA

In this chapter we investigate a new kind of FPGA architecture with a
routing network that not only provides interconnections between the
functional blocks but also performs some logic operation. More specif-
ically we replaced the routing multiplexer in the conventional archi-
tecture with an element that can be used as both a two input AND/OR
gate and a multiplexer. The aim of this study is to determine if this kind
of architecture is feasible. We developed a new technology mapping al-
gorithm and sized the transistors in these new architectures to evaluate
the area, delay and power consumption. The mapping results indi-
cated two promising two promising architectures. We implemented
packing algorithms for these architecture to be able to place and route
benchmark designs on these new architectures and to evaluate the net
results.

8.1 Overview

Traditionally, the part of the infrastructure of an FPGA that provides
the functionality is called logic blocks and the part that provides inter-
connections between those blocks is called the routing network. These
parts are considered and optimised separately. Past studies have fo-
cused almost exclusively on the best architecture for the routing net-
work or for the logic blocks [111, 32, 79, 7]. For example, in [79] the au-

177

Tile

Logic
Cluster

Switch
Block

CB

CB

Figure 8.1: The tiled fabric of an FPGA architecture

thors describe the advantage of using a routing architecture with uni-
directional and single-driven wires. Another example is the research
for the optimal size of the LUTs and the optimal number LUTs in a
logic block [7]. These studies never deviate from the paradigm that the
blocks provide functionality and the routing network provides inter-
connection between those blocks.

In this chapter we loosen this assumption and take a look at the cost
and performance of inserting some logic functionality into the routing
network. The routing network is built up by programmable multiplex-
ers (MUXes) and buffers. The buffers drive wires that route the output
signal of the preceding MUX to other MUXes and input pins. Buffers
typically consist of two subsequent inverters. In the new FPGA archi-
tecture the N:1 MUXes are replaced with N:2 MUXes and the first stage
inverter is replaced by a NAND gate. This new routing node architec-
ture can be used either as an AND gate or as a MUX.

The routing network is built up by a large number of routing
MUXes, so in case something is added in each multiplexer the area
overhead could increase enormously. To measure the area, delay and
power consumption overhead of the new routing node architecture,
COFFE [30], an automated transistor-sizing tool, was adapted to be able
to size the new architecture and optimise it for area-delay-power prod-
uct [137].

8.2 FPGA Architecture

8.2.1 High-level Overview

To design an FPGA, the FPGA is divided into tiles [82]. Each tile con-
sists of a functional block and a small part of the routing network.
Those tiles are replicated and stitched together to obtain a complete

178

LC

SBCB

FPGA Tile

Routing Channel

CB

Fig. 1: Tile-based FPGA.

the art topologies for the various subcircuits that make up
the FPGA (LUTs, MUXes, etc.) which we then optimize for
minimal area-delay product using a custom transistor sizing
tool that employs new, more accurate, area and wire load
modeling. Our contributions include:

• A comparison between pass-transistor and transmission
gate FPGAs for various levels of gate boosting.

• A new methodology for FPGA circuit design including
more accurate area and wire load models.

• Detailed circuit designs and VPR architecture files1 that
reflect the complexity of current commercial FPGAs; in-
terestingly, these lead to tile area and critical path delay
breakdowns that differ from oft-quoted maxims.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the chosen FPGA architecture. Section 3
gives details on our circuit designs. Our methodology is
presented in Section 4 and results are given in Section 5.
Section 6 concludes the paper.

2. FPGA ARCHITECTURE

An FPGA consists of an array of tiles that can each im-
plement a small amount of logic and routing. Horizontal
and vertical routing channels run on top of the tiles and al-
low them to be stitched together to perform larger functions.
Figure 1 illustrates FPGA tile architecture at a high-level.
A logic cluster (LC) supplies the tile’s logic functionality.
Connection blocks (CBs) provide connectivity between LC
inputs and routing channels. A switch block (SB) connects
LC outputs to routing channels and provides connectivity
between wires within the routing channels. One replicates
this basic tile to obtain a complete FPGA. Although Figure 1
shows logic and switching functions as distinct sub-blocks,
we assume an interleaved layout in our area, loading and
delay estimates.

Figure 2 shows our logic architecture. Each logic clus-
ter contains N = 10 basic logic elements (BLEs) and each
BLE contains a 6-input LUT (K = 6) as these parameters
have been shown to produce FPGAs with good area-delay

1Available for download at: http://www.eecg.utoronto.ca/
˜vaughn/downloads/FPGA_architecture.html.

6-LUT FF

BLE with internal
details shown

A
B

C

D

E

Logic
Cluster

BLE

BLE

10 BLEs
total

Switch
block
MUX

Vertical routing
channel

10 local
feedback

wires

40 local
wires

6 local
routing
MUXes

per
BLE

Connection
block MUX

Horizontal routing
channel

Fig. 2: Logic cluster architecture.

product [8] and are close to the values used in current com-
mercial FPGAs (Virtex 7: K=6, N=8 and Stratix V: K=6,
N=10). The BLEs of modern commercial FPGAs [9, 10]
contain many more features than the commonly used aca-
demic BLE which consists of a K-input LUT and a FF with
a very limited ability to use both LUT and FF together [1].
To design a more realistic FPGA where the LUT and FF can
be used in concert in many more ways, we add additional 2-
input MUXes to our design which can potentially improve
density and speed. These MUXes are labeled A to E in Fig-
ure 2 and are similar to those used in Stratix [11].

Local routing MUXes select the BLE inputs from the
cluster’s local interconnect. These MUXes are sparsely pop-
ulated (at 50%) as this was shown to be a good choice in
[12]. The local interconnect consists of 10 local feedback
wires from the BLEs and 40 cluster input wires. The num-
ber of cluster inputs is set to 40 based on the relationship
I = K(N +1)/2 given in [8] plus a few extra cluster inputs
required by the sparsely populated local interconnect [12].

The wires in the routing channels are directional, single-
driver wires which means they can only be driven from one
end [13]. All routing wires span 4 tiles (L = 4). To obtain a
practical tile layout, the number of wires in a routing channel
should be a multiple of 2L [13]. The routing channel width
is set to W = 320 by adding 30% more routing tracks to
the minimum channel width required to route our biggest
benchmark circuit. As is common in FPGA research, each
incoming wire can connect to 3 routing multiplexer inputs
in a switch block (Fs = 3).

Cluster input flexibility, Fcin, is set to 0.2W based on
results from [1, 12] for similar N and K. Since the archi-
tecture described thus far is fairly different from prior work
in terms of logic cluster outputs (e.g. two outputs per BLE
and single-driver routing wires), Fcout is determined exper-
imentally. In Section 5.1, we show that for this architecture,
an Fcout = 0.025W produces an FPGA with the best area-
delay product.

Figure 8.2: Logic cluster architecture and interconnectivity provided
by the connection block and switch block multiplexers in the baseline
architecture, figure reproduced from [30].

FPGA. Fig. 8.1 illustrates how the FPGA fabric is divided in tiles. In
this work we focus on a tile that contains a soft block, also called logic
cluster. Each tile is built up by a logic cluster (LC), a connection block
(CB) and a switch block (SB). An LC provides a small amount of logic
functionality and local routing. The connection blocks allow signals to
be routed from the wires within the routing channels to the logic clus-
ter. The switch block allows the output signals of the logic cluster to be
connected with the wires in the routing channels and it also provides
connectivity between wires within the routing channels.

8.2.2 Baseline Architecture

The baseline FPGA architecture used in the experiments is the exam-
ple architecture present in COFFE [30] and depicted in Fig. 8.1. The
routing channel width W is set to 320. COFFE currently only supports
directional, single-driver routing wires and they span 4 logic tiles. In
the switch block, each incoming wire can be programmed to connect to
3 different routing MUX inputs. A logic cluster contains 10 basic logic
entities (BLEs). Each BLE has one 6-input LUT, a FF, several 2-input
MUXes to use the LUT and FF simultaneously and three outputs. Two
outputs are able to connect to 0.025W = 8 routing MUXes in the switch

179

N:1 MUX

2-stage buffer

N:2 MUX

2-input gate buffer

? ?

Figure 8.3: The conventional routing node consists of a N:1 MUX and a
buffer. The new routing architecture has a N:2 MUX, 2-input gate and
a buffer

Level 1 Level 2

2-level multiplexer 2-stage buffer

1st inverter with
level restorer 2nd inverter

SRAM
 cells

Figure 8.4: Transistor-level design of a routing node. A 16:1 two-level
multiplexer and a two-stage buffer.

block, thus output signals from the basic logic entity can be routed to
8 wires in the adjacent channels. The other output drives a feedback
wire. Each logic cluster has 40 inputs and each input can be driven
by signals routed from 0.2W = 64 wires in the adjacent channel. Local
routing MUXes select the BLE inputs from the 40 input and 10 feedback
wires. These MUXes are sparsely populated (at 50%). More informa-
tion on the motivation for the different architectural parameters in the
baseline architecture can be found in [30] and [31].

180

8.2.3 Routing Node

We define a routing node as a many-to-one MUX and a buffer that
drives the subsequent wire. This is one of the basic building blocks
used to build the connection block, switch block and the local intercon-
nect in the logic cluster. In Figure 8.3 a schematic of the routing node is
depicted and in Figure 8.4 the corresponding transistor-level design is
shown. Routing nodes are extensively used to implement FPGAs and
are an interesting point to insert logic.

A MUX in the baseline architecture is built up by NMOS pass gates.
If the gate of an NMOS transistor is driven high, the NMOS transistor
will conduct the signal. These pass gates can be connected in several
different topologies to form a MUX, each of which possesses a different
area-delay trade-off. The MUXes in the example architecture of COFFE
are implemented as two-level MUXes because they have been shown to
give the best area-delay product [24] and are used in commercial archi-
tectures. An important parameter in the design of two-level MUXes is
the size of each level. If SL1 and SL2 are the sizes of the first and second
level respectively, any combination of SL1 and SL2 such that SL1.SL2 =
MUX size is a possible MUX topology. Since SRAM cells occupy 35-40%
of tile area [30], we choose a MUX topology that minimizes the number
of SRAM cells, this leads to SL1 ≈ SL2 as illustrated in the 16:1 MUX
example in Fig. 8.4. Let n be the size of the MUX. The number of SRAM
cells in the MUX is

⌈√
n
⌉

+
⌈
n/
⌈√

n
⌉⌉

and the number of pass gates is
n+

⌈√
n
⌉
. The 16:1 MUX example has 8 SRAM cells and 20 pass gates.

The output of each MUX is driven by a two-stage buffer, built up by
two inverters in series. The buffer enables faster charging of a possible
large downstream capacitance. We optimized the baseline architecture
by investigating the optimal number of inverter stages in the buffers
and the performance in terms of area-delay-power product improved
with 36% in case we added two extra inverter stages in the local inter-
connection routing nodes. See Table 8.1 for more detailed results. Our
motivation to investigate buffer optimizations is that it will lead to a
more fair comparison. Inserting logic gates in the routing nodes will
give more buffering capacity to the routing nodes and this may distort
the results if we do not optimize the buffering strength of the routing
nodes in the baseline architecture.

NMOS pass gates are incapable of passing a full logic-high voltage.
Their output voltage saturates at approximately Vg − Vth, where Vg is
the gate voltage and Vth is the threshold voltage of the transistor. This
gate-source voltage drop causes a static power dissipation in down-
stream inverters. This problem worsens as technology scales because
VDD is lowered more rapidly than Vth to keep the power consump-

181

tion within the limits. To overcome this issue, there are two techniques
that are commonly used, pass gate boosting and PMOS level restorers.
Both have their disadvantage. When applying gate boosting, the out-
put voltage of the SRAM cells that drive the gate of the NMOS pass
transistor is chosen slightly higher than the general voltage source in
the circuit. In this way the voltage drop reduces, but it accelerates de-
vice ageing. In the example architecture NMOS pass gate voltages are
boosted 200mV above the nominal VDD of 0.8V. Another solution is
illustrated in Fig. 8.4, a level-restoring PMOS transistor is connected
across the first-stage inverter of the buffer. It creates a positive feed-
back loop which pulls up the degraded voltage. The main issue with
PMOS level-restorers is robustness. A Vth that is a larger fraction of
VDD means it takes longer for level-restorers to turn on (which increases
short-circuit currents) or, in the extreme case, they might not turn on at
all.

In the following sections we evaluate if it is advantageous to in-
sert basic logic gates in between the MUX and the driver of the rout-
ing nodes, so we are also confronted with the gate-source voltage drop
problem. We also have to note that commercial FPGA designs have
likely moved towards a transmission-gate based implementation for
increased reliability, especially at smaller process nodes operating with
lower voltages as hinted in [112]. In the initial phase of this research
we were biased by the results reported in [31]. Chiasson and Betz re-
ported that transmission gate based FPGAs were 2% worse in terms of
area-delay product for the 22nm process. The results were produced by
using the high performance technology process. However, most ven-
dors use the low power technology process, because the static power
consumption is the lion’s share of the total power consumption for an
FPGA. This changes the results in favor of the transmission gate. Al-
though we consider pass-transistor based FPGAs in this chapter, we
believe that this work can be easily adapted to consider transmission-
gate based FPGAs. Additionally the recent FinFet process technology
advances may allow FPGA vendors to shift back to pass gates [14].

8.3 Transistor-level Design

The schematic in Fig. 8.3 gives an overview of the general idea of the
new routing node architecture. The N:1 MUX in the conventional rout-
ing node architecture is replaced by a N:2 MUX and a gate is introduced
between the multiplexer and the buffer. This section focuses on the
motivations for the different choices made when replacing the routing
node architecture and the effects on the area and delay of the sized tile.

182

Balanced tree structure

Unbalanced tree structure

Figure 8.5: Associativity and commutativity of the AND/OR gate cre-
ates extra degrees of freedom for packing, placement and routing. The
light grey boxes are the logic clusters that have an output that drives
an input of the AND network and the dark grey box is the logic cluster
that has an input pin connected to the output of the AND network.

To size the buffers and the gates in the new FPGA architecture we used
the transistor sizing algorithm implemented in the COFFE tool [30].
COFFE’s transistor sizing algorithm maintains circuit non-linearities
by relying on HSPICE simulations to measure the delay. However,
FPGAs are user programmable and hence they have application de-
pendent critical paths which implies that at the time of designing an
FPGA, there is no clear critical path to optimize. To deal with this is-
sue, a representative critical path is optimised in COFFE. It contains
one of each type of the FPGA’s subcircuits and the delay is taken as a
weighted sum of the delay of each subcircuit. The weighting scheme is
chosen based on the frequency with which each subcircuit was found
on the critical paths of placed and routed benchmark circuits [73]. The
different weights used in COFFE are plotted in Fig. 8.8. The area is es-
timated using the 22nm HP Predictive Technology device Models [3].

Table 8.1 contains the sizing results of all the variations on the new
architecture considered in this work. These results will be used to mo-
tivate different choices.

8.3.1 Selecting the Type of Logic Gate

The tile areas in Table 8.1 indicate that inserting logic gates in the rout-
ing adds an area and in most cases also a delay overhead. In order to
minimize the area and delay overhead only non-reconfigurable 2-input
gates are considered. To facilitate packing, placement and routing, the
choice of gates is further restricted to only associative and commutative

183

gates, because associativity and commutativity leave extra degrees of
freedom for packing, placement and routing. For example in Fig. 8.5, a
four-input AND gate has to be realised in the routing using the smaller
2-input AND gates present in the routing nodes. There are two possi-
bilities depicted in Fig. 8.5: a balanced and an unbalanced tree topol-
ogy. Both are possible because the AND gate has the commutative and
associative property. There are four eligible 2-input gates with the as-
sociative and commutative property, the AND, OR, XOR and XNOR
gate. There are three compelling reasons for not considering XOR and
XNOR gates. The first and most important reason is that mapping the
VTR [88] and the 20 largest MCNC benchmarks to LUTs and X(N)OR
gates showed that there is little to no gain in both area and logic depth
of the mapped circuits compared with LUT-only mapping. Secondly,
the CMOS implementations of the X(N)OR gates are larger and slower
than the AND and OR gates. Thirdly, the X(N)OR gates also have to
support the MUX functionality present in the original routing node.
This is not straightforward, because extra transistors have to be added
to be able to pass a signal. In contrast, passing a signal can be eas-
ily achieved when using AND and OR gates by connecting the supply
voltage or the ground respectively to the unused input.

So the only candidates left are the AND and OR gates. The typi-
cal CMOS AND gate implementation is built up by a NAND gate with
a subsequent inverter, similarly the typical CMOS implementation for
the OR gate is a NOR gate with a subsequent inverter. The NAND gate
in CMOS is smaller and faster because the NOR gate has two PMOS in
series hence it has to be sized larger to have good rise and fall times.
The NAND gate also has less leakage current than the NOR gate while
implemented in CMOS. So in what follows the NAND gate and a sub-
sequent inverter will be used as a basic building block.

8.3.2 The N:2 Multiplexer

In the new routing node all the incoming wires have to be multiplexed
to two inputs of the NAND gate. Let N be the number of incoming
wires of the routing node. In a first attempt we considered a new rout-
ing node architecture with the ability to provide any combination of
two of the incoming signals to the AND gate. We will call this archi-
tecture the “maximum architecture”. To realise the maximum archi-
tecture, all but two of the incoming wires have to be routed to two
different MUXes, as depicted in Fig. 8.6. Two wires are only routed to
one of the MUXes, because it is not necessary to be able to program all
the possible combinations, due to the commutativity of the subsequent

184

Ta
bl

e
8.

1:
Ti

le
A

re
a,

R
ep

re
se

nt
at

iv
e

C
ri

ti
ca

lP
at

h
(R

C
P)

an
d

Po
w

er
C

on
su

m
pt

io
n

(P
C

)
an

d
A

re
a-

D
el

ay
-P

ow
er

pr
od

uc
t

(A
*D

*P
)f

or
th

e
di

ff
er

en
tt

ra
ns

is
to

r
le

ve
ld

es
ig

ns
of

th
e

ti
le

.

D
es

ig
n

Ti
le

A
re

a
R

C
P

PC
A

*D
*P

G
at

e
SB

C
B

LI
C

on
n

(µ
m

2
)

(%
)

(p
s)

(%
)

(µ
W

)
(%

)
(µ
m

2
.n
s.
n
W

)
(%

)
A

N
D

x
x

x
m

ax
15

55
68

14
9

30
26

3
35

60
,9

19
3

A
N

D
x

x
m

ax
11

65
26

14
6

27
26

2
34

44
,6

11
4

A
N

D
x

x
m

ax
13

22
42

12
9

12
25

7
32

43
,8

11
1

A
N

D
x

x
x

m
in

11
61

25
12

6
10

23
5

21
34

,4
65

A
N

D
x

x
m

in
11

04
19

12
5

9
23

8
22

32
,8

58
A

N
D

x
x

m
in

10
92

18
12

3
7

24
1

24
32

,4
56

A
N

D
x

m
in

10
86

17
12

1
5

23
7

22
31

,1
50

A
N

D
x

m
in

10
69

15
11

9
3

22
4

15
28

,5
37

O
R

x
x

x
m

ax
15

65
69

12
8

11
25

3
30

50
,7

14
4

O
R

x
x

m
ax

14
32

54
12

5
9

26
0

33
46

,5
12

4
O

R
x

x
m

ax
12

96
40

12
7

10
25

6
31

42
,1

10
2

O
R

x
x

x
m

in
12

00
29

11
4

-1
22

8
17

31
,2

50
O

R
x

x
m

in
11

34
22

11
2

-3
23

1
18

29
,3

41
O

R
x

x
m

in
10

28
11

11
4

-1
18

9
-3

22
,1

6
O

R
x

m
in

10
48

13
10

0
-1

3
24

2
24

25
,4

22
O

R
x

m
in

10
05

8
11

9
3

22
1

13
26

,4
27

Ba
se

lin
e

C
O

FF
E

ar
ch

.
98

6
6

12
1

5
23

7
22

28
,3

36
Ba

se
lin

e
op

t.
bu

ff
er

s
92

8
11

5
19

5
20

,8

Th
e

re
la

ti
ve

di
ff

er
en

ce
w

it
h

th
e

si
zi

ng
re

su
lt

s
of

th
e

ba
se

lin
e

ar
ch

it
ec

tu
re

w
it

h
op

ti
m

iz
ed

bu
ff

er
s

is
re

po
rt

ed
fo

r
ea

ch
m

ea
su

re
.

185

Figure 8.6: The maximum node architectures. These nodes are able
to select any possible combination of two incoming signals and per-
form a basic logic operation or to let any incoming signal pass through.
The left routing node contains an AND gate in which level restorer is
switched across the NAND gate and the right routing node contains an
OR gate in which the signal is restored before entering the NAND gate.

AND gate. The new routing node also has to provide the ability to pass
any of the incoming signals. To achieve this both MUXes have one in-
put connected to the voltage source. If the logic high input is selected
in the upper MUX, the subsequent AND gate will pass any signal from
the lower MUX and vice versa. The two MUXes have a size ofN , so the
resource usage is doubled compared with a singleN :1 MUX in the orig-
inal node. For example the 16:2 MUX in Fig. 8.6 has 16 SRAM cells and
40 pass gates, but the 16:1 MUX in Fig. 8.4 has only 8 SRAM cells and 20
pass gates. The 16:2 MUX will also create an extra wiring load for the
buffers upstream that drive the incoming wires, compared with the 16:1
MUX in the original node. Taking into account a completely sized tile,
see Table 8.1, the maximum architectures have a large area overhead of
23-65%, a delay overhead of 10-27% and a consistent 30-35% increase
in power consumption compared with the original architecture. This
results in a 2-3x larger area-delay-power product. This overhead is too
high to be compensated by the gain in area and logic depth achieved
by mapping to the new architecture.

To lower the area overhead, the number of combination possibili-
ties could be restricted by only connecting each incoming wire to only
one MUX, as depicted in Fig. 8.7. We call this the “minimum architec-
ture”, because the number of combinations is halved, but it still has the
ability to pass any of the incoming signals. The area overhead would
decrease to 2

(⌈√
N/2 + 1

⌉
+
⌈
(N/2+1)/

⌈√
N/2 + 1

⌉⌉)
SRAM cells and

N + 2 + 2
⌈√

N/2 + 1
⌉

pass gates. For example, in the 16:2 example

186

Figure 8.7: The minimum node architectures. These nodes are able to
perform a basic logic operation of two incoming signals with a minimal
overhead, while still able to multiplex any incoming signal. The left
routing node contains an AND gate in which level restorer is switched
across the NAND gate and the right routing node contains an OR gate
in which the signal is restored before entering the NAND gate.

in Fig. 8.7 the area usage amounts to only 12 SRAM cells and 24 pass
gates in contrast to the maximal configuration with 16 SRAM cells and
40 pass gates. This is also reflected in the sizing results. The tile area
overhead of the sized minimum architectures reduces to 6-25%, as re-
ported in Table 8.1. Another advantage is that the wiring load will not
only decrease compared with the maximal configuration, it will also be
smaller compared with the original routing node. The upstream buffers
will only have to push the transition through MUXes half the size of the
original one. This is also reflected in the representative critical path de-
lays of the sized minimum architectures. The delay ranges from a 10%
increase to a 13% decrease, depending on the level restoring tactic and
the locations where the gates are inserted.

A downside of the minimum architectures is that they can only be
programmed to provide about half of the number of possible combi-
nations, from N2/2−N/2 combinations for the maximum architecture
to N2/4 for the minimum architecture. This will have consequences
for packing and post-routing performance, which is described in Sec-
tion 8.6 and 8.7. In-between these extreme routing node architectures
it is possible to develop architectures in which some of the incoming
wires are connected to both MUXes and some to only one.

8.3.3 Level Restoring Tactics

In the original routing node a level-restoring PMOS transistor is con-
nected across the first-stage inverter of the buffer. This creates a posi-
tive feedback loop which pulls up the degraded voltage. There are two
options to achieve the same effect in the new routing node architecture.
Add two level-restoring PMOS transistors connected across the NAND

187

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0.5	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

SB	 mux	 CB	 mux	 local	 mux	 local	 BLE	
output	

general	 BLE	
output	

LUT	

W
eighing	 Scale	

De
la
y	
(p
s)
	

Subcircuit	

Baseline	
AND	
OR	
Weights	

Figure 8.8: The delays for the subcircuits of an FPGA with the mini-
mum routing node architecture implemented in each routing node. The
relative importance of the different subcircuits is given by the weights
of each subcircuit in the representative critical path

gate, one for each input, as depicted in the left schematics of Fig. 8.6 and
Fig. 8.7. The second option is to restore the two input signals’ logic high
level before they are fed to the NAND gate. To realise this two invert-
ers with accompanying level restorers are added for each input of the
NAND gate. The extra inverters at the inputs change the logic func-
tionality to a NOR gate, and an extra inverter has to be added to keep
the logic functionality associative, as depicted in the right schematics of
Fig. 8.6 and Fig. 8.7. The first option implements a logic AND2 gate and
the second option represents a logic OR2 gate. The level restoring tac-
tic used in the OR2 gate needs three extra inverters in the routing node
compared with the level restoring for the AND2 gate, so the OR2 gate
implementations are supposed to have more area overhead, but they
are more reliable which leads to a similar area overhead between OR2
and AND2 gates. The sized tiles of the minimum OR2 gates architec-
tures are typically faster than the AND2 gate architectures and in most
cases even faster than the baseline with a delay that ranges between
a 3% increase and a 13% decrease, despite adding extra logic into the
nodes. To investigate this we plotted the delays for each subcircuit in
Fig. 8.8 for the minimum OR2 gate architecture alongside the minimum
AND2 architecture and the baseline architecture. A first glance shows
that the different delays are very similar. The delays are slightly lower
for the OR2 gate implementation and slightly higher for the AND2 gate
implementation for the two most important subcircuits, the SB MUX

188

subcircuit and the LUT subcircuit. These are also the circuits where the
wire loads are most relevant.

8.3.4 Routing Nodes in Different Locations

The routing node architecture can be modified in different locations, the
connection block (CB), switch block (SB) and the intra-cluster crossbar
(local interconnect, LI). An FPGA design was sized for any combination
of the locations and the sizing results are tabulated in Table 8.1. Adding
logic gates in every SB, CB and LI creates a large area overhead, 25-29-%
for the minimum architectures, but it has a lot of flexibility to logically
combine signals. For example, a frequently used subcircuit is one in
which an output signal of a BLE in one cluster is routed to an input of
a BLE in another cluster. In this subcircuit the signal traverses at least
three routing nodes. First the routing node in at least one SB, then the
one in a CB and finally the one in the LI that drives the input of the BLE.
So it is possible to have three subsequent gates in-between BLEs for
connections between clusters without having to detour. A three-level
tree of two-input gates allows up to eight different signals processed if
a balanced tree structure is used (see Fig. 8.5 for a balanced tree with
2-input AND gates). Feedback connections inside the logic cluster can
also use the gate in the LI routing node, but this is limited to only one
gate in-between LUTs. Only adding gates to the routing nodes in the
CB and the LI or in the CB and the SB reduces the area overhead with 7-
18% for the minimum architectures, but it will restrict the possibility of
adding gates in-between LUTs. In case gates are only added in the CB
and LI routing nodes, the number of subsequent gates in between BLEs
for inter-cluster connections is restricted to two, so only four different
signals can be processed. In case gates are added only in the CB and SB
routing nodes, feedback connections between BLEs in the same cluster
can’t have a gate in between.

8.3.5 Concluding Remarks on the Sizing Results

The most promising architectures considering the sizing results are the
architectures with the minimum OR routing nodes in the connection
block and/or in the local interconnect multiplexers, because of their
lower area-delay-power product. Additionally conventional place and
route algorithms can be used, because only the routing nodes inside
the CLB are changed. The results of these architectures are highlighted
in green in Table 8.1. In what follows, we focus on these architectures.
Mapping to an FPGA with LUTs and OR gates is in essence the same
problem as mapping to an FPGA with LUTs and AND gates. The OR

189

network in between LUTs can easily be replaced by an AND network if
we invert both the input and outputs of the network and vice versa. Ex-
plaining the technology mapping algorithm for mapping to LUTs and
AND gates is somewhat simpler, because an AIG is built up by AND
gates and inverting edges, so in Section 8.5 we present a novel technol-
ogy mapping algorithm which targets an FPGA with LUTs and AND
gates, but we start with explaining the techniques behind conventional
technology mapping first.

In section 8.6 modifications to the packing algorithm are described
in order to exploit the commutativity and associativity of the gates.

8.4 Conventional Technology Mapping

During technology mapping, the Boolean network generated by the
synthesis step is mapped onto the resource primitives available in the
target FPGA architecture, e.g. LUTs. The result of the technology map-
ping step is a circuit of these primitives that is functionally equivalent
to this Boolean network. We focus on the technology mapping to LUT
primitives, since the other primitives, such as DSPs, are typically di-
rectly inferred from HDL. An example of a LUT circuit can be found in
Figure 8.9.

In this section, we first explain the optimisation criteria of a technol-
ogy mapping algorithm in more detail. Then, we introduce a number
of concepts used in technology mapping algorithms such as Boolean
networks and cuts. Finally, we describe the conventional technology
mapping algorithm.

8.4.1 Optimisation Criteria

A technology mapping algorithm typically tries to find a LUT circuit
with minimal logic depth, i.e. the number of LUTs on the longest com-
binational path from sequential primitive to another. Sequential prim-
itives are flip-flops, Block RAM, in- and outputs (Figure 8.9). As a sec-
ondary optimisation criterion, the area of the circuit, i.e. the total num-
ber of LUTs, is minimized.

The number of LUTs on the longest combinational path is used as an
approximation of the path with the longest propagation delay, which
determines the maximum clock frequency of the implemented design.
Each LUT on this path contributes to the delay of the path. The in-
terconnection between LUTs also contributes significantly to the delay,
but because little is known about it at this stage, the delay is assumed

190

i0 i1 i2 i3 i4

o0 o1

α β Ɣ δ

ζε

ϑ

Figure 8.9: A toy LUT circuit with the functions of the LUTs shown as
Greek letters. The logic depth of this circuit is 3 LUTs and the area is 7
LUTs.

191

to be constant per connection. In this way, the total delay of a com-
binational path is approximated as being proportional to the number
of LUTs on the path, which is why the number of LUTs on the longest
combinational path is minimized.

However, not all combinational paths should be mapped with min-
imal logic depth. Once the longest combinational path in a circuit is
found, all shorter paths can be relaxed and allowed to have an equal
logic depth. This gives the technology mapper more freedom to try to
reduce the area of the circuit by extracting more common LUTs and re-
ducing duplication of logic. When the desired clock frequency can be
achieved with a longer combinational path than the minimal, an even
less stringent logic depth constraint can be used to achieve a lower area
cost.

The number of LUTs, in the context of technology mapping is used
as a measure for area. It correlates strongly with the number of CLBs
used in the final design. Although the number of available LUTs on a
specific FPGA is fixed and the number of different FPGA sizes is lim-
ited, the number of LUTs in a design is typically minimized as much
as possible. Besides maximising the amount of functionality that fits
on the target FPGA, fewer LUTs typically result in fewer connections
and less congestion. Less congestion typically leads to a lower routing
runtime and a higher maximum operating frequency.

8.4.2 Definitions

Boolean network A Boolean network is a directed acyclic graph of
which the nodes represent logic gates and the directed edges the
wires that connect them. For technology mapping, And-Inverter
Graphs (AIG) are used to represent the combinational circuits that
form the output of the synthesis step. AIGs are Boolean networks
containing only 2-input AND gates and inverted or non inverted
edges. AIGs can represent any combinational circuit. Sequential
circuits can also be handled by transforming them into combina-
tional circuits by turning the registers into additional inputs and
outputs of the circuit.

Primary inputs and outputs Primary inputs (PI) and primary outputs
(PO) are the inputs and outputs of the combinational circuit.

Cut A cut with a node n as its root is a set of nodes c = {n1, n2, . . . }
called leaves, so that every path from the PIs to the node n passes
through at least one of the leaves (Figure 8.10). The trivial cut is
the set {n} containing only the root itself.

192

n4 n5 n6

n2 n3

n1

�n,c(n4,n5,n6)=¬(n4�n5)�¬(¬n5�¬n6)

c={n4,n5,n6}

n=n1

out

Figure 8.10: A section of an AIG with a cut (dotted line) and corre-
sponding cone (light grey shape) drawn for root n1. Large circles rep-
resent AND nodes, small circles inverters.

The local function of a cut c = {n1, n2, . . . }with root n is the logic
function that expresses the output of the root of the cut in function
of the leaves: ψn,c(n1, n2, . . .).

The cone corresponding to a cut with root n is the set of all the
nodes on the paths from the leaves to the root, including the root
and excluding the leaves.

8.4.3 Conventional Technology Mapping Algorithm

During technology mapping, the goal is to find a covering of the nodes
of the AIG using cones, so that every cone can be implemented using
one of the FPGA’s combinatorial primitives. The inputs of every cone
have to be available as the roots of other cones or inputs of the AIG. The
result of the conventional technology mapping algorithm is a circuit of
LUTs that is functionally equivalent to the input AIG. The optimisation
criteria described above are used to choose one of the many possible
coverings of the AIG.

The pseudocode of the conventional technology mapping algo-
rithm [25, 35] is listed in Listing 8.1. It consists of 3 main steps: cut
enumeration, cut ranking and node selection. It can be proven that af-
ter these steps a depth-optimal mapping result is found. The proof is
based on mathematical induction and is almost identical to the proof
given in [35]. Additional steps are performed afterwards to optimise
the area of the result without increasing the depth [25]. Many varia-

193

Listing 8.1: Overview of the conventional technology mapping algo-
rithm.
1 // Input: AIG graph
2 // Output: LUT netlist
3 function technologyMapping():
4 foreach node in aigGraph.nodesInTopologicalOrder():
5 node.enumerateAllCuts()
6 foreach node in aigGraph.nodesInTopologicalOrder():
7 node.selectBestCut()
8 foreach node in aigGraph.nodesInReverseTopologicalOrder():
9 node.determineIfSelected()

10 return aigGraph.netlistOfSelectedBestCuts()

tions of the algorithm exist but the main idea of the algorithm can be
described as follows:

Cut Enumeration A cut is called K-feasible if its local function can
be implemented using a K-input LUT, i.e. when the cut has at most K
leaves. In the first step, all K-feasible cuts Φ(n) of every node n in the
AIG are computed using Equations 8.1, 8.2 and 8.3.

Φ(n) =

{{n}}, if n ∈ PI
{{nin1}}, if n ∈ PO
{{n}} ∪M(n), otherwise

(8.1)

M(n) = {c = c1 ∪ c2 | ci ∈ Φ(nini), θ(n, c)} (8.2)
θ(n, c) = |c| ≤ K (8.3)

The function M(n) generates all possibly feasible cuts of n by combin-
ing a feasible cut of each of its inputs nin1 and nin2 . The function θ(n, c)
evaluates if a cut can be mapped to the K-LUT primitive. Cut enumera-
tion is done for every node in topological order from the PIs to the POs,
i.e. in such a way that the inputs of each node are processed before the
node itself.

In Table 8.2 you can find the results of this process applied to the
AIG example in Figure 8.12.

In the cone enumeration process, redundant cuts are generated. A
cut c of node n is redundant if some proper subset of c is also a cut of n
(Equation 8.4, Figure 8.11). These cuts do not contribute to the quality
of the mapping and can therefore be removed.

c is redundant in Φ(n) ⇐⇒ ∃cs ∈ Φ(n) : cs ⊂ c ∧ cs 6= c (8.4)

194

n4 n5 n6

n2 n3

n1

out

redundant cut

Figure 8.11: Cut c1 = {n3, n4, n5, n6}with root n1 is redundant because
of cut c2 = {n4, n5, n6} and can be removed.

Cut Ranking For each node in topological order, the cut with the low-
est depth is selected as the best cut. This ensures an end result with
minimal number of LUTs on the longest path from any output to any
input. The depth of a mapped circuit is the maximum depth of all pri-
mary outputs.

The delay of a non-trivial and non-PO cut is 1, the delay of a LUT.

depth(n, c) =

0, if n ∈ PI
max
m∈c

depth(bestCut(m))

+delay(n, c), otherwise

(8.5)

areaF low(n, c) =

0, if n ∈ PI∑
m∈c

areaflow(bestCut(m))
numFanouts(m)

+area(n, c), otherwise

(8.6)

bestCut(n) =

{n}, if n ∈ PI
argmin
c∈Φ(n)

(depth(n, c), area flow(n, c)) otherwise

(8.7)

With “argmina(f(a), g(a))” the operator that returns the argument a
which minimizes the function f . In case two or more arguments give
the same value for f , then the argument which minimizes the function
g is returned. In case the depth of two cuts is equal, the area flow [95] is
used as a tie breaker. Area flow is a measure for the area of the mapped
circuit. Unfortunately at the moment of ranking the area of the map-
ping solution is unknown. Area flow estimates the area of the subgraph
below it and can be calculated simultaneously with the depth in the
same forward pass of the AIG, because it can be defined recursively.

195

Area flow of the PIs is set to 0. The area of the best cut of the incoming
edges is summed and the area of the current node is added. The sum is
evenly divided among the number of edges (numFanout) flowing out
of the node. This promotes the reuse of signals and gives a measure for
how useful a signal is.

The results of this process for the example in Figure 8.12 can also be
found in Table 8.2.

Node Selection This step starts by selecting the POs and recursively
selecting all nodes in the best cuts of the previously selected nodes until
the PIs are reached (Equation 8.8). The local function of the best cut of
each selected node, except the POs, will be implemented using a LUT.
After this step a depth-optimal mapping has been defined.

S = PO ∪
⋃
n∈S

bestCut(n) (8.8)

Applied to the example in Table 8.2 this gives
S = {o0, o1, a11, a9, a8, a7, a2, a1, a0, i0, i1, i2, i3, i4}. The corresponding
cones are also shown in Figure 8.12.

Additional Steps Additional, heuristic steps can reduce the area
without increasing the depth of the mapped circuit [95], this is called
Area Recovery. Other heuristics try to minimize the number of connec-
tions to improve routability [64].

Complexity

Technology mapping an AIG for minimal logic depth can be done in
polynomial time with reference to the size of the AIG [35]. The above
algorithm guarantees that all feasible cuts will be enumerated and that
those nodes will be selected that result in a covering of the AIG with
minimal logic depth. Note, however, that this does not overall guar-
antee a circuit with minimal logic depth because other, functionally
equivalent AIGs may exist that result in a better mapping. This is
called structural bias [23]. Optimisation for area, on the other hand, is
NP-hard and is therefore always performed using heuristics [45]. Cut
enumeration also has a worst-case complexity that is exponential with
reference to the number of inputs of the LUTs [36].

196

a0 a1 a2 a3 a4

a5 a6 a7 a8

a9 a10

i1 i2 i3 i4

o1

a11

o1

i0

Figure 8.12: AIG of a toy circuit with the resulting cones of conventional
technology mapping to 3-input LUTs. This mapping corresponds to the
LUT circuit in Figure 8.9.

197

Table 8.2: Intermediate results of the conventional technology mapping
of the AIG in Figure 8.12 to 3-input LUTs.

Node K-feasible cuts with best cut in bold Best cut
n Φ(n) depth(n, bc) area flow(n, bc)

a0 {{a0},{i0i1}} 1 1
a1 {{a1},{i0i2}} 1 1
a2 {{a2},{i1i3}} 1 1
a3 {{a3},{i1i3}} 1 1
a4 {{a4},{i3i4}} 1 1
a5 {{a5}, {a0a2}, {a0i1i3}, {a2i0i1},{i0i1i3}} 1 1
a6 {{a6}, {a1a2}, {a1i1i3},{a2i0i2}} 2 4/3
a7 {{a7}, {a1a3},{a1i1i3}, {a3i0i2}} 2 3/2
a8 {{a8}, {a2a4},{i1i3i4}, {a2i3i4}, {a4i1i3}} 1 1
a9 {{a9}, {a5a6},{a5a1a2}, {a6a0a2},{a0a1a2}} 2 17/6
a10 {{a10}, {a7a8}, {a7a2a4},{a8a1a3}} 2 7/2
a11 {{a11}, {a9a10},{a9a7a8}, {a5a6a10}} 3 59/12
o0 {{a9}} 2
o1 {{a11}} 3

8.5 Mapping to LUTs and AND Gates

In case of mapping to LUTs and AND gates, a node in the AIG can be
implemented by a LUT or an AND gate if and only if both input edges
of the node in the AIG are not inverted. In that case one extra cut is
added to the cut set of the node. This cut has a lower depth than a
cut which represents a LUT. This opportunity can be used to reduce
the total depth. However this first approach is not depth-optimal. To
achieve depth-optimal mapping to LUTs and AND gates, an extra de-
gree of freedom should be used: the costless inversion of inputs and
outputs of LUTs. An example AIG is depicted in Figure 8.13. If the im-
plementation of node a2 outputs an inverted signal, then node a6 can be
implemented by an AND gate. However for the AND gate implemen-
tation of node a8, the output of node a2 can’t be inverted. This example
shows that by introducing the inversion of the inputs and outputs of
LUTs more degrees of freedom can be used to optimise the depth of the
circuit, but the mapping problem clearly becomes more complex. We
designed a depth-optimal algorithm with area recovery, which is de-
scribed in the following sections.
In a first attempt we assumed that the extra delay introduced by the
AND gate is negligible compared to the delay of a LUT and the routing
delay of the connection between the output pin of that LUT and the
input pin of the subsequent block. However the modifications to the
mapping algorithm are generic and allow an arbitrary AND gate delay.

198

Listing 8.2: Pseudo code for the Technology Mapping algorithm for
LUTs and AND gates
1 // Input: AIG graph
2 // Output: LUT netlist
3 function technologyMapping():
4 // Cut Enumeration
5 foreach node in aigGraph.nodesInTopologicalOrder():
6 node.enumerateAllCuts()
7 node.addAndCut() // always one cut with two direct inputs
8 // Cut Ranking
9 foreach node in aigGraph.nodesInTopologicalOrder():

10 foreach cut in allLutCuts(node):
11 cut.depth = maxDepthOfLeaves(minDepth(invDepth, nonInvDepth)) + 1
12 node.andCut.depth = maxDepthOfLeaves(appropriateInvOrNonInvDepth)
13 node.bestCutInverted = bestCut(allLutCuts)
14 node.bestCutNonInverted = bestCut(node.bestCutInverted, andCut)
15 // CutSelection
16 foreach node in aigGraph.nodesInReverseTopologicalOrder():
17 if node.determineIfSelected():
18 node.setAppropriateInversionVisible()
19 return aigGraph.netlistOfSelectedBestCuts()

In Listing 8.2, the pseudocode of the mapping algorithm is listed and
in Table 8.2 the intermediate mapping results for the example in Fig-
ure 8.13. The new mapping algorithm keeps a depth for an ‘inverted’
or ‘non inverted’ implementation of each node. By using mathemat-
ical induction, we proved that this method provides a depth-optimal
solution for a given input network. To keep the depth minimal it is
sometimes necessary that nodes are implemented twice (‘inverted’ and
‘non inverted’), because otherwise it would require an extra LUT to
provide the ‘inverted’ or ‘non inverted’ signal. On average only 1.2%
of the nodes are duplicated for this sake.

8.5.1 Cut Enumeration and Cut Ranking

In cut enumeration all possible cuts are enumerated for each node. The
cut that contains the two direct inputs of the current node is copied
and marked as an AND gate. In the new mapping algorithm a dis-
tinction is made whether the implementation of a node has to be in-
verted or not. Therefore a ‘non inverted depth’ and an ‘inverted depth’
is assigned to each node. An ‘inverted implementation’ is only LUT-
feasible, whereas a ‘non inverted implementation’ is not only LUT-
feasible, but also AND-feasible. The depth calculation of a cut is now
as follows: if the cut represents a LUT, the maximal depth of all input

199

a0 a1 a2 a3 a4

a5 a6 a7 a8

a9 a10

i0 i1 i2 i3 i4

o0 o1

a11

Figure 8.13: AIG of the toy circuit from Figure 8.9 with the resulting
cones of technology mapping to AND gates and 3-input LUTs. The
cones drawn with a dashed line are supposed to be implemented by
AND gates and cones drawn with a solid line are to be implemented
by 3-LUTs.

nodes is selected. Here the lowest depth of the node (‘inverted’ or ‘non
inverted’) can be chosen as the inputs of a LUT can be inverted. Then
the maximal depth is incremented. If the cut represents an AND gate,
take the appropriate depth of both inputs: if the input edge is inverted,
the ‘inverted depth’ of the input node is taken. Otherwise, the ‘non
inverted depth’ is considered. We proved that this algorithm yields a
depth-optimal solution. An example of the cut ranking is given in Ta-
ble 8.3. For each node the ‘inverted’ and the ‘non inverted depth’ is
listed.

200

Table 8.3: Intermediate results of the mapping of the AIG to 2-input
AND gates and 3-input LUTs in Figure 8.13.

Node K-feasible cuts with best cut in bold Best cut
n Fanout Φ(n) depth(n, bc) area flow(n, bc)

non-inv inv non-inv inv
a0 1 {{a0},{i0i1}} 1 1 1 1
a1 2 {{a1},{i0i2}} 1 1 1 1
a2 3 {{a2},{i1i3}} 1 1 1 1
a3 1 {{a3},{i1i3}} 1 1 1 1
a4 1 {{a4},{i3i4}} 0 1 0 1
a5 1 {{a5}, {a0a2}, {a0i1i3}, {a2i0i1},{i0i1i3}} 1 1 1 1
a6 1 {{a6}, {a1a2}, {a1i1i3},{a2i0i2}} 1 2 5/6 4/3
a7 1 {{a7}, {a1a3},{a1i1i3}, {a3i0i2}} 1 2 3/2 3/2
a8 1 {{a8}, {a2a4},{i1i3i4}, {a2i3i4}, {a4i1i3}} 1 1 1 1
a9 2 {{a9},{a5a6},{a5a1a2}, {a6a0a2},{a0a1a2}} 2 2 17/6 17/6
a10 1 {{a10},{a7a8}, {a7a2a4},{a8a1a3}} 2 2 7/2 7/2
a11 1 {{a11},{a9a10}, {a9a7a8}, {a5a6a10}} 2 3 59/12 71/12
o0 1 {{a9}} 2
o1 1 {{a11}} 2

The best cut for the non inverted depth is emphasized with a bold font and the best cut
for the inverted depth is underlined.

8.5.2 Cut Selection and Area Recovery

The cut selection decides which nodes are implemented. If a node is
implemented, it is marked ‘visible’. In our case nodes have to be set ‘in-
verted visible’, ‘non inverted visible’ or even both (in 1.2% of the cases
on average). The new algorithm sets the output nodes ‘non inverted
visible’ and traverses the network starting from the outputs towards
the inputs. If a node with an AND gate implementation is visible, the
inputs of the AND gate are set ‘non inverted visible’ or ‘inverted visi-
ble’, based on the inversion of the edges in the AIG. For a node with a
LUT implementation the inputs of the cut are set ‘visible’ without fur-
ther specification. Later on the inversion can be updated to a specific
state.

In conventional depth optimal mapping there is only one imple-
mentation per node. In the case of mapping to LUTs and AND gates it
is possible that a node is implemented twice. We directly adopted the
implementation of the area recovery of [102], neglecting this difference.
Nevertheless the area recovery still has a high performance: the state-
of-the-art area recovery yields a reduction of 17% in number of 6-LUTs
on average for the VTR benchmarks. Area recovery for mapping with
AND gates yields an average reduction of 24% in number of 6-LUTs.

201

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

1	 2	 3	 4	 5	 6	 7	 8	 9	

Re
la
%v

e	
oc
cu
re
nc
es
	

Depth	 in	 terms	 of	 AND	 gates	

(a) Unlimited levels

0	

10	

20	

30	

40	

50	

60	

70	

1	 2	 3	

Re
la
%v

e	
oc
cu
re
nc
es
	

Depth	 in	 terms	 of	 AND	 gates	

(b) Max 3 levels

Figure 8.14: Histogram for the depth of the AND gate network of each
input pin

8.5.3 Area and Depth

Extra low-delay logic is added to the solution space, consequently the
new circuit depth will always be equal or lower than the original cir-
cuit depth. This can be observed in Table 8.4, the geometrical mean of
the depth decreases with 21.3% for the VTR benchmarks [88] for map-
ping to 6-LUTs and AND gates. For the MCNC20 benchmarks an aver-
age depth reduction of 32% is reported. The depth-optimal algorithm
focuses on depth, therefore the area decreases only slightly with a de-
crease in geometrical mean of 5.7% for the number of 6-input LUTs, but
with a standard deviation of 12.2%, there are some benchmark designs
which have an increase in number of LUTs. By implementing AND
cuts, the inputs of the gate must be implemented. It often occurs that
this increases the number of LUTs locally. The area reduction and the
logical depth decrease amounts to an on average 26% decrease in area-
delay product.

The number of AND gates in the mapped circuit is on average 22%
compared with the number of 6-LUTs for the VTR benchmarks. This
low number will result in a relatively low overhead for the FPGA ar-
chitecture. If we consider an FPGA architecture in which all MUXes
in the SB, CB and LI are replaced, then this architecture will have 42
times more candidate routing nodes than LUTs, then only one gate out
of 168 physical gates would be used. We expect that it is possible to
lower the number of routing nodes with an AND gate compared in the
architecture without losing too many degrees of freedom.

202

Table 8.4: The number of #6-luts, AND gates and the logic depth for
mapping the VTR benchmarks to LUTs and AND gates. The number of
AND gates is also reported relative to the number of LUTs in the new
architecture. The area-delay product (A*D) is calculated as the product
of the number of LUTs and the logic depth.

#LUTs #AND2 Logic Depth A*D
Circuit orig. new (%) gates (%) orig. new (%) (%)
bgm 30766 29521 -4 17097 58 34 23 -32,4 -35,1
blob merge 6171 6196 0,4 1138 18 18 15 -16,7 -16,4
boundtop 2911 2216 -23,9 1139 51 9 7 -22,2 -40,8
ch intrinsics 392 286 -27 147 51 3 2 -33,3 -51,3
diffeq1 474 489 3,2 95 19 15 13 -13,3 -10,5
diffeq2 325 329 1,2 93 28 14 13 -7,1 -6
LU8PEEng 22050 23058 4,6 6610 29 158 122 -22,8 -19,2
LU32PEEng 73963 72281 -2,3 14085 19 158 122 -22,8 -24,6
mcml 95886 110383 15,1 14586 13 116 99 -14,7 -1,8
mkDelayWorker 5197 4481 -13,8 1122 25 8 5 -37,5 -46,1
mkPktMerge 225 228 1,3 16 7 3 2 -33,3 -32,4
mkSMAdapter 2066 1642 -20,5 594 36 7 5 -28,6 -43,2
or1200 2916 2887 -1 550 19 27 23 -14,8 -15,7
raygentop 2048 1550 -24,3 754 49 8 7 -12,5 -33,8
sha 2197 2055 -6,5 456 22 21 18 -14,3 -19,9
stereovision0 11212 11220 0,1 1203 11 6 4 -33,3 -33,2
stereovision1 10172 10035 -1,3 794 8 7 7 0 -1,3
stereovision2 28423 32700 15 3836 12 17 15 -11,8 1,4
stereovision3 165 148 -10,3 34 23 4 3 -25 -32,7
Geomean 3768 3552 -5,7 22 15 12 -21,3 -26
Std. Dev 12,2 10,4 16,1

203

8.5.4 AND Gate Chains

Another important metric to consider is the number of subsequent
AND gates between two blocks (LUTs, FFs, IOBs, ...). Fig. 8.14a con-
tains a histogram for the depth of the AND network for each input pin
that is preceded by AND gates. With 41%, the majority of input pins
connected to an AND network have a one level AND network, 35%
have a two level AND network and 15% a three level AND network.
This means the majority of the AND gate networks have a very low
depth and thus chains of AND2 gates rarely occur. The longest chain
of AND2 gates that can be found has 9 subsequent AND2 gates. For
these few longer chains our assumption that AND gates have negli-
gible delay does not hold, because these long chains put more strin-
gent constraints on the pack, placement and routing process. So we
modified the technology mapping algorithm described in the previous
sections to be able to limit the number of subsequent AND gates. Be-
fore we start our explanation we refer the reader to Figure 8.2 from the
background section. The figure has a schematic of the logic cluster tile
and it allows the reader to follow the routing pathways for the con-
nections. The number of subsequent AND gates was set to three, two
and one levels. Three levels because inter-CLB connections in the pro-
posed architectures have to pass through at least three routing nodes
and one level because intra-CLB connections have to pass through one
routing node. In the best case a connection between LUTs in the same
logic cluster will be implemented by the feedback path provided inside
the cluster, so in that case, the connection will be routed through one
LI MUX. A connection between LUTs in different logic clusters will be
routed through at least 3 MUXes, one or more SB MUX, one CB MUX
and one LI MUX. The new architectures have one AND2 gate per MUX,
so AND gate networks with up to three levels could be implemented
without making detours and putting too much constraints on the place-
ment of the design. The results for limiting the number of subsequent
AND2 gates are listed in Table 8.5 and they fit our expectations. Lim-
iting the number of subsequent AND2 gates to 3 only leads to a 2.6%
decrease in logic depth gain. Unfortunately we lose the area gain, we
now have an overhead of 2.5% in terms of number of LUT gates. As
expected the logic depth gain gradually decreases to a 14% decrease
and the area overhead increases to a 3.9% increase if we further limit
the subsequent AND2 gates to 1.

204

Table 8.5: Technology mapping results for restricting the AND2 gates
in a chain.

Max # LD (%) LUTs (%) A*D (%) AND2s (%)
∞ 11.8 -21.3 3552 -5.7 42e3 -25.8 784 22.1
3 12.2 -18.7 3863 +2.5 47e3 -16.6 813 21.0
2 12.3 -18.0 3921 +4.1 48e3 -14.7 667 16.0
1 12.9 -14.0 3916 +3.9 51e3 -10.6 390 10.0
0 15.0 3768 56e3

All results are reported relative to only mapping to LUTs, which is the last row in the table,
except for the percentage AND2 gates in the rightmost column which is reported relative to
the number of LUTs in the circuit. (LD = Logic Depth, A*D = area-delay product)

Listing 8.3: Definition of the new local interconnect routing node in the
architecture description for VPR
1 <pb type name=”mxand” num pb=”6”>
2 <input name=”in” num pins=”2”/>
3 <output name=”out” num pins=”1”/>
4 <mode name=”multiplexer”>
5 <interconnect>
6 <mux name=”mux2and” input=”mxand.in[0] mxand.in[1]” output=”mxand.out”/>
7 </interconnect>
8 </mode>
9 <mode name=”and”>

10 <pb type name=”and” blif model=”.subckt and” num pb=”1”>
11 <input name=”in” num pins=”2”/>
12 <output name=”out” num pins=”1”/>
13 <delay constant max=”50.0e−12” in port=”and.in” out port=”and.out”/>
14 </pb type>
15 <interconnect>
16 <direct name=”inand” input=”liand.in” output=”and.in”/>
17 <direct name=”outand” input=”and.out” output=”liand.out”/>
18 </interconnect>
19 </mode>
20 </pb type>

8.6 Packing

8.6.1 Modeling the Architecture

We use VPR to model the new architecture. VPR is built to handle
very diverse architectures. An architecture is described hierarchically.
Each element of the architecture can be described as a module via the
pb type tag. A module typically contains one or more child modules.
The interconnection between these child modules and the I/O of the
module is described between the interconnection tags. A module can
have different modes. For example a DSP block can have a multiplier
only mode and a multiplier and accumulate mode. Modes are also used

205

CLB

FFLUT

BLE

(a) Baseline

CLB

FFLUT

BLE

(b) New architecture with AND gates after the local interconnect and connec-
tion block multiplexer

Figure 8.15: Schematic of the different blocks described in the architec-
ture file.

to describe a multiplier block that can be fractured in several smaller
width multipliers. Different aspect ratios for RAM modules are also
described via different modes.

In the new architecture a new basic building block is introduced. In
Listing 8.3 the new basic building block is described with VPR’s archi-
tecture description format. The mxand block has two inputs and one
output. The block has two modes. In the first mode the block acts
like a 2:1 multiplexer and in the second mode the block implements an
2-input AND gate. This basic building block is used to build the ar-
chitecture. In Figure 8.15 a schematic is depicted for the baseline and
the new architecture. It shows how the architecture is built up from
basic building blocks. Each rectangle in the schematics correspond to a
module. In the new architecture the mxand block is introduced after the
connection block and local interconnect multiplexers.

Restrictions and Opportunities Since we limit ourselves to AND
gates in the local interconnect and connection block multiplexer

206

A
B

C
D

A
C

B
D

A
D

B
C

Connection
Block

Multiplexer

Local
Interconnect
Multiplexer

A
B

C

Connection
Block

Multiplexer

Local
Interconnect
Multiplexer

A

B
C

A
C

B

3-input network4-input network

A
B

Connection
Block

Multiplexer

Local
Interconnect
Multiplexer

A
B

2-input network

Figure 8.16: The different degrees of freedom for implementing AND
networks in the logic cluster .

A
B

C
D

Connection
Block

Multiplexer

Local
Interconnect
Multiplexer

E

Figure 8.17: Two AND networks can share an intermediate signal,
which leads to fewer pins being used to implement both networks.

207

mapped circuits, the architecture only has 2-level AND gates and LUTs.
The first restriction is that the second level AND gates have to be im-
plemented in the local interconnect routing nodes. These AND gates
can only have a fanout of one, because the output of the local inter-
connect routing nodes is fed directly to the BLE input. Consequently,
second level AND gates with a fanout higher than one in the input cir-
cuit should be duplicated.

Another restriction is that the AND networks with a feedback input
signals need to be implemented in the local interconnect multiplexer.
In case one of the inputs of the AND network is produced by a block
that is already packed in the cluster, then the feedback signal can only
be combined in the local interconnect multiplexers. A 2-input AND
network with one or two feedback input signals has to be implemented
in the local interconnect multiplexer. A 3-input AND network can only
have one feedback input signal and a 4-input AND network should
not have a feedback input signal, because the local interconnect and
connection block routing nodes are necessary to implement the 4-input
AND gate.

Next to these restrictions, there are also a few opportunities to op-
timize the input circuit. The associative and commutative property of
the AND gate networks allows some flexibility on how to implement
AND networks and decide which signals are combined in the first level.
In Figure 8.16 the different ways to implement 4, 3 and 2-input AND
networks are depicted.

Another opportunity is intermediate signal sharing. In Figure 8.17
a 4-input and a 3-input AND network are depicted. They share the
intermediate signal after the AND gate that combines input C and D.
In that way signal sharing can lead to tighter packing results.

To be able to handle these restrictions and opportunities, we slightly
modified the packing algorithm. The AND networks are resynthesized
during the cluster feasibility check in order to produce tighter packing
results. We used a greedy algorithm to resynthesize the AND networks,
because the cluster feasibility check is part of the inner loop of the pack-
ing algorithm. In order to explain our modification we start with a brief
description of the conventional packing algorithms.

8.6.2 Conventional Packing

Conventional packing algorithms can be divided into two main classes,
seed based and partitioning based packers. The packer implemented in
VPR is based on the seed based packer AAPack, which was described

208

first in [91]. We focus on AAPack, because we use VPR to model our
new architecture.

Seed-based Packing Seed based packing is a greedy algorithm. It
starts with an unpacked elementary block called the seed. In AAPack
this seed is the unpacked block with the highest number of nets at-
tached. Subsequently an affinity metric between the seed block and its
surrounding blocks is calculated. Several cost functions for the affinity
metric are proposed by various authors [88, 20, 121] and are designed
to improve the quality for a specific optimisation criterium. The block
that scores the highest on this affinity metric is considered as a candi-
date to be packed into the cluster. Next the block is checked if it can be
legally packed into the cluster. Once the cluster is full, the algorithm
“closes” that cluster and opens up a new cluster to be filled by select-
ing a new seed block. In AAPack, for example, the new seed is the
unpacked block with the most nets attached. Packing finishes when all
blocks in the netlist have been packed into clusters.

Cluster Feasibility Check All elementary blocks in the cluster are
placed and the intra cluster connections are routed in order to check
if an elementary block can be legally packed in a cluster. This part of
the packing algorithm will be slightly modified to enable VPR to pack
circuits with AND gates more efficiently.

Speculative Packing In the process of filling the cluster, the packer
does not do a complete feasibility check, but only a fast check based on
the easy to calculate feasibility statistics, such as the number of cluster
inputs/outputs and the number of blocks of each type. Once a cluster
is completely filled the extensive feasibility check is performed. If it
succeeds, a lot of runtime is saved. In case the final feasibility check
fails, the cluster is repacked with the extensive cluster feasibility check
for each addition.

8.6.3 Resynthesis during Cluster Feasibility Check

For the new architecture we extended the cluster feasibility check with
a resynthesis step. Each time a block is considered as candidate to add
to the cluster, the AND networks attached to the blocks inside the clus-
ter are resynthesized in order to maximize signal sharing. In order
to decide which intermediate signals are chosen to be implemented,
a greedy algorithm is used. We will first give a high level overview
of the algorithm and then apply it to an example. In the first step of

209

the resynthesis algorithm a histogram of all the possible intermediate
signals is built. For each input AND network several different interme-
diate signals can be used to implement the network. The intermediate
signals for the example networks from Figure 8.16 are listed here:

• 4-input AND network with inputs A,B,C,D:
AB, AC, AD, BC, BD, CD

• 3-input AND networks with inputs A, B, C:
A, BC, B, AC, AB, C

• 2-input networks with inputs A, B:
A, B, AB

The second step of the algorithm consists of a decision loop. In each it-
eration all the possibilities for each AND input network are ranked and
the highest scoring option is chosen and implemented. Subsequently
the histogram is adapted accordingly. All the possibilities for each of
the example networks in Figure 8.16 are listed here:

• 4-input AND networks: AB-CD, AC-BD, AD-BC

• 3-input AND networks: A-BC, AB-C, AC-B

• 2-input networks: A-B, AB

The decision loop ends when for each network a possibility is chosen
and no decisions need to be made anymore.

The resynthesis algorithm is applied to the example in Table 8.6.
The example consists of a cluster with 3 LUTs. The AND networks for
each LUT input are listed in the first column of Table 8.6. Each net or
signal is represented by a single character. There are 9 different nets
from a to i. In Table 8.7 the histogram with all the possible interme-
diate signals and their ranking scores are listed. Before the iteration
loop starts, there are a few preliminary decisions that have to be made.
The preliminary decisions are shown in the second column of Table 8.6,
marked with the decision loop number 0 as a header. There are two
types of preliminary decisions. The first type is input networks that
only have one signal, they are implemented as intermediary signals.
These are regular inputs to the cluster and they have to be available to
the local interconnect multiplexers. Examples in Table 8.6 are net a and
c as inputs to LUT 0 and net i to LUT 2. The second type of decisions
are forced by the fact that feedback paths are only connected to the lo-
cal interconnect multiplexers. Examples in Table 8.6 are k-o for LUT 1
and ij-k, k-ef, im-k for LUT 2, because signal k is an output of LUT 0 and
o of LUT 2.

210

Table 8.6: Decision table for the resynthesis of a cluster with 3 LUTs.
The input networks for each LUT are listed in the first column. This
table corresponds with the histogram in Table 8.7.

Decision loop # 0 1 2 3 4 5 6 7
Input Netwerk
LUT0 - output net: k
a a - - - - - - -
c c - - - - - - -
abcd 5|2|3 5|2|3 5|2|3 5|2|3 ab-cd - - -
ad 7|2 6|2 5|2 4|2 4|1 4|1 a-d -
LUT1 - output net: n
cde 5|6|5 4|6|5 cd-e - - - - -
cdf 5|7|5 cd-f - - - - - -
aef 5|4|3 5|4|3 5|4|3 5|4|3 5|4|3 a-ef - -
fgh 4|2|2 4|2|2 4|2|2 4|2|2 4|2|2 3|2|2 3|2|2 f-gh
ko k-o - - - - - -
LUT2 - output net: o
ijk ij-k - - - - - - -
kef k-ef - - - - - - -
imk im-k - - - - - - -
i i - - - - - - -
cdi 5|6|5 4|6|4 3|6|3 cd-i - - - -

Next the decision loop is started. The highest ranking possibilities
in iteration 1 are a-d and cd-f with a score of seven. cd-f is chosen be-
cause it has the highest number of inputs. The histogram in Table 8.7
is adapted by subtracting the counter for the intermediary signals that
are not implemented by taking this decision, which is c, d, cf and df in
our case. In the second iteration we have three intermediary signals
and of these three signals cd-e and cd-i are ranked highest and have the
same number of inputs. In this case we just implement the first one.
The subsequent decisions are made in a similar manner. The algorithm
ends after the implementation for each AND network in the cluster is
decided. The resulting cluster uses 6 regular inputs and 12 inputs to
realize 6 AND gates in the connection block multiplexers

8.6.4 Performance Improvement

Without resynthesis during clustering, the post route performance is
worse than the baseline for the architecture with AND2 gates in the lo-
cal interconnect and connection block routing nodes. The critical path
delay is similar with a 1% improvement, but there is a 25% area over-
head in terms of CLBs on average. Resynthesizing AND networks dur-
ing packing allows us to recover some of the area overhead, but a con-
siderable area overhead remains. The area overhead reduces to 11%.
The average critical path delay improves greatly to a 9% decrease. In

211

Table 8.7: The changes made to the histogram of intermediate signals
during the decision loop of the resynthesis algorithm applied on the
example from Table 8.6

Decision loop # 0 1 2 3 4 5 6 7
Intermediate signal
a 3 = = = = = = =
c 4 3 2 1 = = = =
ab 1 = = = = = = =
ac 1 = = = 0 - - -
ad 2 = = = 1 = 0 -
bc 1 = = = 0 - - -
bd 1 = = = 0 - - -
cd 4 = = = = = = =
d 4 3 2 1 = = = =
e 2 = = = = 1 = =
ce 1 = 0 - - - - -
de 1 = 0 - - - - -
f 3 = = = = 2 = =
cf 1 0 - - - - - -
df 1 0 - - - - - -
ae 1 = = = = 0 - -
af 1 = = = = 0 - -
ef 2 = = = = = = =
g 1 = = = = = = 0
h 1 = = = = = = 0
fg 1 = = = = = = 0
fh 1 = = = = = = 0
gh 1 = = = = = = =
ij 1 = = = = = = =
im 1 = = = = = = =
i 2 = = = = = = =
ci 1 = = 0 - - - -
di 1 = = 0 - - - -
Number of regular inputs: 6
Number of AND2: 6

An equal sign indicates that the count for the specific intermediate
signal is not changed in this iteration.

the next section the results with the modified pack algorithm are dis-
cussed in more detail.

8.7 Post-route Performance

The VTR benchmark designs are mapped while restricting the mapping
algorithm from Section 8.5 to only one or two AND2 gates. The result-
ing netlists are packed by the modified packing algorithm described
in the previous section. Subsequently, the packed designs are placed
and routed with the default settings in VPR. The architecture used in
COFFE [30] is used as a baseline. See Section 8.2.2 for a more detailed

212

Table 8.8: Post route performance of the new architectures

LI Muxes only LI and CB Muxes
Circuit CPD Area (#CLBs) CPD Area (#CLBs)
bgm 1,02 1,40 0,96 1,48
blob merge 0,93 1,00 0,81 1,02
boundtop 0,96 1,05 0,88 1,08
ch intrinsics 1,12 0,91 1,06 0,96
diffeq1 0,89 1,20 0,86 1,29
diffeq2 1,03 1,36 0,99 1,41
LU8PEEng 1,05 1,04 0,95 1,09
LU32PEEng 1,03 1,08 1,02 1,16
mcml 0,99 1,29 0,97 1,30
mkDelayWorker32B 0,81 0,99 0,78 1,03
mkPktMerge 0,83 0,99 0,81 1,01
mkSMAdapter4B 0,74 1,06 0,63 1,13
or1200 0,84 1,04 0,82 1,10
raygentop 0,86 1,14 0,76 1,15
sha 0,96 1,19 0,94 1,22
stereovision0 0,87 1,02 0,79 0,98
stereovision1 1,00 0,96 1,00 0,96
stereovision2 0,96 1,05 0,87 1,07
stereovision3 1,88 0,84 1,86 0,86
Geomean 0,97 1,08 0,91 1,11
Std. Dev. 0,06 0,02 0,06 0,03

CPD = Critical Path Delay
All results are reported relative to the baseline architecture without extra gates
in the routing nodes

213

description. The description is available in the VTR project [88] under
the name k6 N10 gate boost 0,2V 22nm. New descriptions were made
for the new architectures with new blocks, see Listing 8.3 and the delays
are taken from the sizing results, see Section 8.3. The final post-routing
results are reported relative to the baseline. The ratios are listed in Ta-
ble 8.8.

The results show a clear trend. The new architecture performs
slightly better in terms of speed-performance at the cost of a larger area
overhead. For the architecture with the AND2 gates in LI routing nodes
only the critical path delay improves with 3% on average and the num-
ber of CLBs increases with 8%. The same applies to the architecture
with AND2 gates in the LI and SB routing nodes, but more pronounced.
The critical path delay improves with 9% at an area overhead cost of
11%. For both architectures the standard deviation is similar. The crit-
ical path delay improves for the majority of the benchmarks, but for
some designs the critical path delay worsens. This is reflected in the
standard deviation of 6% for the critical path delay. The area overhead
is more consistent with a standard deviation of 2-3%

In section 8.3.2 we described that the maximum architectures are
not feasible, because of the large tile area overhead. The minimum
architectures have less tile area overhead, but less flexibililty to com-
bine signals. Using the minimum architectures instead of the max-
imum architectures comes at a cost and that is clearly observable if
we look at the post route area overhead. There is a higher area over-
head in terms of number of CLBs than in terms of LUTs, see Table 8.5
and 8.8. For restricting the AND2 gates in series to only one AND2 gate
the technology mapping algorithm achieved solutions with a 3.9% in-
crease in LUTs on average, but the post routing area overhead in terms
of CLBs increases to 7%. For restricting the AND2 gates in series to
two AND2 gates the technology mapping algorithm achieved solutions
with a 4.1% increase in LUTs on average, but the post routing area over-
head in terms of CLBs increases to 11%.

8.8 Concluding Remarks

We investigated a new kind of FPGA architecture with routing nodes
that contain N:2 instead of N:1 multiplexers, and an AND or OR gate.
The new routing nodes have two modi. They are able to pass through
signals like a conventional routing node or apply an AND or OR op-
eration on two signals. By sizing the tile of the new architectures and
developing a new technology mapping algorithm for the new architec-
ture we are able to estimate the performance of the new architecture.

214

Adding gates to the routing nodes increased the area of the tile but the
gates in the routing nodes are used to reduce the logic levels in the
circuits. The minimum architecture with OR gates in the local intercon-
nect and/or connection block routing nodes leads to the most promis-
ing result. To further investigate these architectures we used VPR to
model these architectures and pack, place and route the benchmark de-
signs. The post-route performance of the designs on the new architec-
ture improves in term of critical path delay with a 3-9% decrease in
post-route critical path delay. Unfortunately the large depth reduction
of 14-18% achieved during technology mapping doesn’t completely
translate post-routing. Additionally the downside of these architec-
tures is the large area overhead with a 7-11% increase in number of
CLBs and a 8-11% increase in tile area.

For the main FPGA manufacturers, the relatively small increase
in maximum clock frequency probably will not justify the larger area
overhead, but this technique may be applicable for niche products in
which speed performance is the highest good. To decrease the area
overhead of the logic gates, we would like to investigate depopulation
in the future. The architecture does not need extra gates in every local
interconnect block and connection block multiplexer.

We think improvements are possible if we would implement a hier-
archical packing algorithm for these architectures. Seed-based packing
greedily selects the most attracted neighbour as a candidate to include
in the cluster, which leads to suboptimal solutions because the solu-
tion is easily stuck in a local minimum. The new architecture suffers
more from seed based packing, because the clusters are more difficult
to pack. In the future we want to apply hierarchical packing strate-
gies discussed in Chapter 4 to improve performance. At the moment of
writing we are still improving our hierarchical packing algorithms.

We are also interested in how the results would change if we con-
sider Altera’s Stratix 10 fabric. Altera has inserted simple latches in the
routing network of the Stratix 10 FPGAs

Lastly, we noticed that investigating new architectures requires a
lot of engineering work. The CAD tool flow has to be modified and
optimised for the new target architecture. The new architectures have
to be sized to extract wire delays and area usage. An additional hurdle
is the computational intensity involved with sizing new architectures.
This is a significant problem and in future work we want to investigate
how we can shorten this hardware design cycle.

215

9
Conclusions and Future Work

We start with repeating the fundamental problems we described in the
introduction and the goals we proposed. The first problem is the slow
FPGA design cycle. The bottleneck of the design cycle is FPGA compi-
lation. To shorten the design cycle the goal is to introduce new compi-
lation techniques to speed up FPGA compilation. The second problem
is the gap between the academic and commercial results. The goal was
to investigate the gap and find out what we can do to reduce it as much
as possible. We also tried to improve the efficiency of FPGA devices by
investigating new architectures and micro-reconfiguration.

9.1 Conclusions

In this section, I present the overall conclusions of this dissertation and
summarise how the goals of this dissertation were achieved. The con-
clusions of each chapter separately can be found at the end of the re-
spective chapters.

9.1.1 The Gap between the Academic and Commercial Re-
sults

We measured the gap between academic and commercial results and
found it considerably large. Certainly for speed-performance and run-
time there is more than a factor of 2x difference in results. We hope

217

by measuring and publishing about this divide that we increase the
awareness amongst other academic researchers.

By introducing new compilation techniques we effectively reduced
the gap, but we did not close it and we predict that the gap will never
close completely. Academics will always lag behind and there are clear
causes for this statement. FPGA vendors have capital for hiring more
research engineers to investigate new tool and architecture ideas. They
also have access to sensitive information that researchers don’t have.
The designs of their customers and the parameters and characteris-
tics of the latest process technologies are sensitive information FPGA
vendors have at their disposal, but can’t share with the academic com-
munity because they don’t own it. Nevertheless we have to strive to
keep the academic work relevant in this area. We suggest to try to use
hybrid evaluation frameworks as much as possible. We used hybrid
frameworks in Chapter 4, Chapter 5 and Chapter 6.

9.1.2 New FPGA Compilation Techniques

We successfully shortened the design cycle by speeding up the compi-
lation. We described new techniques for the packing, placement and
routing steps of the compilation flow. The hierarchical multi-threaded
packing approach from Chapter 4 reached speedup factors of 3.6 on a
four core CPU while reducing wiring and reducing routing runtime by
half. We reduced the placement time by half with our steepest gradi-
ent descent placement technique, LIQUID from Chapter 5. The rout-
ing runtime is further reduced by 23% by the connection-based routing
mechanism from Chapter 5.

9.1.3 Dynamic Reconfiguration of the Routing Network

We designed place and route techniques for the dynamic reconfigura-
tion of the routing network. In this way we contributed to an easy
to use compilation flow for micro-reconfiguration. The flow exploits
both the reconfigurablility of the LUTs and the routing network in an
automatic fashion by compiling parameterized configurations. The de-
signer only has to annotate which input signals in his design should be
processed as parameters. By doing so, we hope to unlock the potential
of dynamically reconfiguring the routing network of the FPGA. The
main problems that remain are the limited commercial tool support.
There is no public information about the low level configuration de-
tails and timing characteristics of commercial devices, which prevents
us to generate competitive solutions.

218

Compilation

Architecture
definition

Change
compilation tools

Sizing
architecture

Characteristics

Results

Benchmark
designs

Figure 9.1: The FPGA architecture design cycle.

9.1.4 FPGA Architectures with Logic Gates in the Routing
Network

Although mapping results seemed very promising at first glance, an
architecture with logic gates in the routing network is not unilaterally
better. It performs slightly better in speed-performance and power con-
sumption at the cost of a substantial area increase. It is therefore not a
cost effective architecture. The most important takeaway from the ar-
chitecture investigation was the observation that the investigation pro-
cess is slow and tedious. We observed the FPGA architecture design
cycle, which is illustrated in Figure 9.1 and not to be confused with
the FPGA design cycle. An architecture definition is where the cycle
starts. The architecture needs to be sized with the help of several elec-
tronic circuit simulations. Several characteristics are extracted, such as
delay, area and power consumption of the basic blocks. The compila-
tion tools need to be changed to be able to compile designs to the new
architectures. Once these two steps are finished the architecture can be
tested by compiling benchmark designs. The results will indicate the
performance of the new architecture and suggest what to change in the
architecture to improve performance. Almost all steps in this cycle are
time consuming and prohibit a wide exploration.

9.2 Future Work

I finish this chapter with a number of suggestions for the future of re-
search on FPGA compilation techniques and architectures.

219

9.2.1 Further Acceleration of the FPGA Compilation

The new compilation techniques proposed in this thesis are in their in-
fancy and are not completely fine-tuned in comparison with the con-
ventional compilation techniques which have been refined for many
years. There are also some opportunities in better integrating the com-
pilation steps. One example is using the partitioning tree informa-
tion from the hierarchical partitioning based packer from Chapter 4 to
quickly build a placement prototype and use the placement algorithm
from Chapter 5, LIQUID, to further optimize the placement prototype.
Another example is soft packing. Soft packing is a technique in which
the placer is allowed to move primitives from one packed cluster to
another if it improves the placement.

To achieve very short compilation runtimes researchers try to use
GPU acceleration. LIQUID is an excellent candidate for GPU accelera-
tion, but now that routing becomes the main bottleneck it is paramount
that we investigate how we can accelerate the routing process. Speed-
ing up routing is not straightforward on a GPU because it is not de-
signed to accelerate the pointer chasing operations that are common in
routing algorithms.

We also predict that FPGA compilation will be performed mainly
in the cloud in the near future. Setting up workstations for compila-
tion is a hassle and a costly diversion for a lot of small companies, it
is not their core business. A startup pioneer in this field is Plunify.
The business model of this provider allows to design specific accelera-
tors for the compilation techniques, because they have more interest in
speeding up the compilation. It is more closely related to their prod-
uct. There have already been articles published about machine learn-
ing techniques used to speed up the search for optimal compilation
parameter values [113]. Now Plunify is a small player that still has
to gain trust before the incumbent FPGA design companies will come
on board. In case Xilinx or Intel Altera start with cloud services this
could gain traction much faster, because the important customers al-
ready trust Altera/Xilinx to let them use their design to benchmark
their tool flow and architecture. At the last moment of writing, Xilinx
together with Amazon Web Services introduced a cloud instance with
UltraScale+ VU9P FPGAs, instant access to the Xilinx’ design tools and
a web store to sell FPGA designs. This allows startups to avoid the high
hardware setup cost and the high license costs for the design tools.

220

9.2.2 Generic Method to Investigate New FPGA Architectures

In the future we want to investigate how we can shorten the FPGA ar-
chitecture design cycle, as schematized in Figure 9.1. This was the main
motivation for developing the partitioning based packer. We wanted to
investigate the natural hierarchy levels in the benchmark circuits and
map this natural hierarchy to our architecture automatically. In this
way we don’t follow the traditional cycle for the prototype of the archi-
tecture. The partitioning based packer turned out to be a more qualita-
tive packing tool and it could be easily adapted to exploit the multi-core
environment in commodity hardware. We plan to get back to our initial
goal.

221

Bibliography

[1] ABC: A System for Sequential Synthesis and Verification. [On-
line] http://www.eecs.berkeley.edu/˜alanmi/abc.

[2] AutoESL Acquisition a Great Move for Xilinx. http://www.

eetimes.com/author.asp?section_id=36&doc_id=1284904,
Jan. 2011. Accessed: 2016-01-10.

[3] Predictive Technology Model (PTM). http://ptm.asu.edu/,
2014.

[4] Technology Quarterly: After Moore’s Law, March 2016. last ac-
cessed on 2 November 2016.

[5] A. M. A. Petkovska, D. Novo and P. Ienne. Constrained inter-
polation for guided logic synthesis. In IEEE/ACM International
Conference on Computer-Aided Design, 2014.

[6] F. Abouelella, T. Davidson, W. Meeus, K. Bruneel, and
D. Stroobandt. How to Efficiently Implement Dynamic Circuit
Specialization Systems. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 18(3):35:1–35:38, 2013.

[7] E. Ahmed and J. Rose. The effect of LUT and cluster size on
deep-submicron FPGA performance and density. IEEE TVLSI,
12(3):288–298, March 2004.

[8] B. Al Farisi, E. Vansteenkiste, K. Bruneel, and D. Stroobandt. A
novel tool flow for increased routing configuration similarity in
multi-mode circuits. Proceedings of the 50th Annual Design Automa-
tion Conference, page to appear, 2013.

[9] Altera. Enabling High-Performance DSP Applications with
Stratix V Variable-Precision DSP Blocks. White Paper, May 2011.

[10] Altera. White Paper: Implementing FPGA Design with
the OpenCL Standard. https://www.altera.com/en_US/pdfs/
literature/wp/wp-01173-opencl.pdf, November 2013.

223

http://www.eecs.berkeley.edu/~alanmi/abc
http://www.eetimes.com/author.asp?section_id=36&doc_id=1284904
http://www.eetimes.com/author.asp?section_id=36&doc_id=1284904
http://ptm.asu.edu/
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf

[11] Altera Corporation. Increasing Design Functionality with Partial
and Dynamic Reconfiguration in 28-nm FPGAs, 2010.

[12] Altera Corporation. Design Planning for Partial Reconfiguration.
2013.

[13] Altera Corporation. Stratix V Device Handbook Volume 1: Device
Interfaces and Integration, January 2016.

[14] R. Arunya, S. Ranjith, P. Umarani, A. Ramya, and T. Ravi. Energy
Efficient Multiplexer and De-multiplexer Using FINFET Technol-
ogy. Research Journal of Applied Sciences, Engineering and Technol-
ogy, 10(8):923–931, 2015.

[15] V. Betz. The FPGA Place-and-Route Challenge, Aug. 2011.

[16] V. Betz and J. Rose. VPR: A New Packing, Placement and Rout-
ing Tool for FPGA Research. In International Conference on Field-
Programmable Logic and Applications (FPL), Proceedings of the, pages
1–10, London, UK, 1997. Springer-Verlag.

[17] V. Betz, J. Rose, and A. Marquardt, editors. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers, Nor-
well, MA, USA, 1999.

[18] V. Betz, J. Swartz, and V. Gouterman. Method and apparatus
for performing parallel routing using a multi-threaded routing
procedure, Sept. 10 2013. US Patent 8,533,652.

[19] E. Bozorgzadeh, S. O. Memik, X. Yang, and M. Sarrafzadeh.
Routability-driven packing: Metrics and algorithms for cluster-
based FPGAs. Journal of Circuits, Systems, and Computers,
13(01):77–100, 2004.

[20] E. Bozorgzadeh, S. Ogrenci-Memik, and M. Sarrafzadeh. RPack:
routability-driven packing for cluster-based FPGAs. In Proceed-
ings of the 2001 Asia and South Pacific Design Automation Conference,
pages 629–634. ACM, 2001.

[21] K. Bruneel, W. Heirman, and D. Stroobandt. Dynamic Data Fold-
ing with Parameterizable FPGA Configurations. ACM Trans-
actions on Design Automation of Electronic Systems (TODAES),
16(4):43:1–43:29, 2011.

[22] P. K. Chan and M. D. F. Schlag. Parallel Placement for Field
Programmable Gate Arrays. In FPGA ’03: Proceedings of the

224

2003 ACM/SIGDA eleventh international symposium on Field pro-
grammable gate arrays, pages 43–50, New York, NY, USA, 2003.
ACM.

[23] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam.
Reducing Structural Bias in Technology Mapping. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 25(12):2894–2903, Dec. 2006.

[24] C. Chen, R. Parsa, N. Patil, S. Chong, K. Akarvardar, J. Provine,
D. Lewis, J. Watt, R. T. Howe, H.-S. P. Wong, et al. Efficient FPGAs
using nanoelectromechanical relays. In FPGA, pages 273–282.
ACM/SIGDA, 2010.

[25] D. Chen and J. Cong. DAOmap: A depth-optimal area optimiza-
tion mapping algorithm for FPGA designs. In ICCAD, pages 752–
759. IEEE, 2004.

[26] D. T. Chen, K. Vorwerk, and A. Kennings. Improving timing-
driven FPGA packing with physical information. In 2007 Inter-
national Conference on Field Programmable Logic and Applications,
pages 117–123. IEEE, 2007.

[27] S.-Y. Chen and Y.-W. Chang. Routing-architecture-aware analyti-
cal placement for heterogeneous fpgas. In Proceedings of the 52Nd
Annual Design Automation Conference, DAC ’15, pages 27:1–27:6,
New York, NY, USA, 2015. ACM.

[28] Y.-C. Chen, S.-Y. Chen, and Y.-W. Chang. Efficient and effective
packing and analytical placement for large-scale heterogeneous
FPGAs. In Proceedings of the 2014 IEEE/ACM International Confer-
ence on Computer-Aided Design, pages 647–654. IEEE Press, 2014.

[29] C.-L. E. Cheng. RISA: Accurate And Efficient Placement
Routability Modeling. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Proceedings of the, pages 690–695,
Los Alamitos, CA, USA, 1994.

[30] C. Chiasson and V. Betz. COFFE: Fully-automated transistor siz-
ing for FPGAs. In ICFPT, pages 34–41. IEEE, Dec 2013.

[31] C. Chiasson and V. Betz. Should FPGAs abandon the pass-gate?
In FPL, pages 1–8. IEEE, 2013.

[32] S. A. Chin and J. H. Anderson. A case for hardened multiplex-
ers in fpgas. In Field-Programmable Technology (FPT), 2013 Interna-
tional Conference on, pages 42–49. IEEE, 2013.

225

[33] A. Choong, R. Beidas, and J. Zhu. Parallelizing simulated
annealing-based placement using GPGPU. In Field Programmable
Logic and Applications (FPL), 2010 International Conference on,
pages 31–34. IEEE, 2010.

[34] C. Clos. A study of non-blocking switching networks. The Bell
System Technical Journal, XXXII:406–424, 1953.

[35] J. Cong and Y. Ding. FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA de-
signs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 13(1):1–12, 1994.

[36] J. Cong and Y. Ding. On Area/Depth Trade-off in LUT-based
FPGA Technology Mapping. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2(2):137–148, 1994.

[37] J. Cong and M. Romesis. Performance-driven multi-level cluster-
ing with application to hierarchical FPGA mapping. In Design
Automation Conference, 2001. Proceedings, pages 389–394. IEEE,
2001.

[38] A. Corporation. Stratix IV Device Handbook. Altera Corporation,
2008. Available online: https://www.altera.com/en_US/pdfs/
literature/hb/stratix-iv/stratix4_handbook.pdf.

[39] M. E. Dehkordi and S. D. Brown. Performance-driven recursive
multi-level clustering. In Field-Programmable Technology (FPT),
2003. Proceedings. 2003 IEEE International Conference on, pages
262–269. IEEE, 2003.

[40] A. DeHon and N. Mehta. Exploiting partially defective luts: Why
you don’t need perfect fabrication. In IEEE International Confer-
ence on Field-Programmable Technology (FPT), pages 12–19, 2013.

[41] S. Dieleman, J. Schlueter, and D. Nouri. Lasagne: Lightweight
library to build and train neural networks in Theano. https:
//github.ugent.be/Lasagne, 2014-2016.

[42] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959. 10.1007/BF01386390.

[43] J. Divyasree, H. Rajashekar, and K. Varghese. Dynamically Re-
configurable Regular Expression Matching Architecture. Interna-
tional Conference on Application-Specific Systems, Architectures and
Processors, pages 120–125, July 2008.

226

https://www.altera.com/en_US/pdfs/literature/hb/stratix-iv/stratix4_handbook.pdf
https://www.altera.com/en_US/pdfs/literature/hb/stratix-iv/stratix4_handbook.pdf
https://github.ugent.be/Lasagne
https://github.ugent.be/Lasagne

[44] L. Easwaran and A. Akoglu. Net-length-based routability-driven
power-aware clustering. ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), 4(4):38, 2011.

[45] A. Farrahi and M. Sarrafzadeh. Complexity of the Lookup-Table
Minimization Problem for FPGA Technology Mapping. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 13(11):1319–1332, Nov 1994.

[46] T. Feist. Vivado design suite. White Paper, 5, 2012.

[47] W. Feng. K-way partitioning based packing for FPGA
logic blocks without input bandwidth constraint. In Field-
Programmable Technology (FPT), 2012 International Conference on,
pages 8–15. IEEE, 2012.

[48] W. Feng, J. Greene, K. Vorwerk, V. Pevzner, and A. Kundu. Rent’s
rule based FPGA packing for routability optimization. In Pro-
ceedings of the 2014 ACM/SIGDA international symposium on Field-
programmable gate arrays, pages 31–34. ACM, 2014.

[49] C. Fobel, G. Grewal, and D. Stacey. A scalable, serially-
equivalent, high-quality parallel placement methodology suit-
able for modern multicore and gpu architectures. In Field Pro-
grammable Logic and Applications (FPL), 2014 24th International
Conference on, pages 1–8. IEEE, 2014.

[50] P.-E. Gaillardon, X. Tang, G. Kim, and G. De Micheli. A novel
fpga architecture based on ultrafine grain reconfigurable logic
cells. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 23(10):2187–2197, 2015.

[51] M. Gort and J. Anderson. Accelerating FPGA Routing Through
Parallelization and Engineering Enhancements Special Section
on PAR-CAD 2010. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 31(1):61–74, Jan 2012.

[52] M. Gort and J. H. Anderson. Deterministic multi-core parallel
routing for FPGAs. In Field-Programmable Technology (FPT), 2010
International Conference on, pages 78–86. IEEE, 2010.

[53] M. Gort and J. H. Anderson. Analytical placement for heteroge-
neous fpgas. In D. Koch, S. Singh, and J. Torresen, editors, FPL,
pages 143–150. IEEE, 2012.

227

[54] S. Gupta, J. H. Anderson, L. Farragher, and Q. Wang. CAD tech-
niques for power optimization in Virtex-5 FPGAs. In CICC, pages
85–88. Citeseer, 2007.

[55] Hardware and E. S. group Computer Systems Lab ELIS depart-
ment Ghent University. The TLUT tool flow, Oct. 2012.

[56] K. Heyse. Improving the Gain and Reducing the Overhead of Dy-
namic Circuit Specialisation and Micro-reconfiguration. PhD thesis,
University of Ghent, Faculty of Engineering Science, 2015.

[57] K. Heyse, K. Bruneel, and D. Stroobandt. Mapping logic to recon-
figurable FPGA routing. In Field Programmable Logic and Applica-
tions (FPL), 2012 22nd International Conference on, pages 315 –321,
aug. 2012.

[58] K. Heyse, T. Davidson, E. Vansteenkiste, K. Bruneel, and
D. Stroobandt. Efficient implementation of virtual coarse grained
reconfigurable arrays on FPGAs. Proceedings of the 50th Annual
Design Automation Conference, page to appear, 2013.

[59] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli. An effi-
cient general cooling schedule for simulated annealing. In IC-
CAD, pages 381–384, 1986.

[60] E. Hung. Mind The (Synthesis) Gap: Examining Where Aca-
demic FPGA Tools Lag Behind Industry. In 25th International Con-
ference on Field Programmable Logic and Applications (FPL), 2015.

[61] E. Hung, F. Eslami, and S. J. E. Wilton. Escaping the academic
sandbox: Realizing VPR circuits on Xilinx devices. In Field-
Programmable Custom Computing Machines (FCCM), 2013 IEEE
21th Annual International Symposium on. IEEE, 2013.

[62] International Business Strategies, Inc. Rising design costs. Xcell
Journal, 88(3):10, 2014.

[63] J. Jain, V. Verma, T. Ahmed, S. Kalman, S. Kwatra, C. Kingsley,
J. Anderson, and S. Das. Multi-threaded deterministic router,
Mar. 11 2014. US Patent 8,671,379.

[64] S. Jang, B. Chan, K. Chung, and A. Mishchenko. WireMap: FPGA
Technology Mapping for Improved Routability and Enhanced
LUT Merging. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 2(2):1–24, 2009.

228

[65] R. Karp. Reducibility among combinatorial problems. In
R. Miller and J. Thatcher, editors, Complexity of Computer Com-
putations, pages 85–103. Plenum Press, 1972.

[66] A. Karpathy and F.-F. Li. CS231n Convolutional Neu-
ral Networks for Visual Recognition. cs231n.github.io/

neural-networks-3/#sgd, 2015.

[67] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel
hypergraph partitioning: applications in VLSI domain. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 7(1):69–
79, 1999.

[68] G. Karypis and V. Kumar. hMETIS 1.5: A hypergraph partition-
ing package. Technical report, Technical report, Department of
Computer Science, University of Minnesota, 1998. Available on
the WWW at URL http://www. cs. umn. edu/metis, 1998.

[69] M.-C. Kim, D. Lee, and I. L. Markov. Simpl: An effective place-
ment algorithm. IEEE Trans. on CAD of Integrated Circuits and Sys-
tems, 31(1):50–60, 2012.

[70] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by
Simulated Annealing. Science, 220:671–680, 1983.

[71] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich. GOR-
DIAN: VLSI placement by quadratic programming and slicing
optimization. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, 10(3):356–365, 1991.

[72] M. Kudlur, V. Vasudevan, and I. Polosukhin. TensorFlow: Com-
putation using data flow graphs for scalable machine learn-
ing. https://github.ugent.be/tensorFlow and https://www.
tensorflow.org/, 2015-2016.

[73] I. Kuon and J. Rose. Exploring area and delay tradeoffs in fpgas
with architecture and automated transistor design. IEEE VLSI,
19(1):71–84, 2011.

[74] M. Y. J. Lai and J. Tong. Yet another many-objective clustering
(YAMO-Pack) for FPGA CAD. In 2013 23rd International Confer-
ence on Field programmable Logic and Applications, pages 1–4. IEEE,
2013.

[75] J. Lamoureux and S. J. Wilton. On the interaction between
power-aware FPGA CAD algorithms. In Proceedings of the 2003

229

cs231n.github.io/neural-networks-3/#sgd
cs231n.github.io/neural-networks-3/#sgd
https://github.ugent.be/tensorFlow
https://www.tensorflow.org/
https://www.tensorflow.org/

IEEE/ACM international conference on Computer-aided design, page
701. IEEE Computer Society, 2003.

[76] B. S. Landman and R. L. Russo. On a pin versus block relation-
ship for partitions of logic graphs. IEEE Transactions on computers,
100(12):1469–1479, 1971.

[77] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings. RapidSmith: Do-It-Yourself CAD Tools for Xil-
inx FPGAs. In 21st International Conference on Field-Programmable
Logic and Applications (FPL), Proceedings of the, pages 349–355,
sept. 2011.

[78] C. Y. Lee. An algorithm for path connections and its applications.
Electronic Computers, IRE Transactions on, EC-10(3):346–365, Sept.
1961.

[79] G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional and Single-
Driver Wires in FPGA Interconnect. In International Conference on
Field-Programmable Technology (FPT), Proceedings of the, pages 41 –
48. IEEE, dec. 2004.

[80] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane,
A. Lee, and P. Pan. Architectural enhancements in Stratix-III™
and Stratix-IV™. In Proceedings of the ACM/SIGDA international
symposium on Field programmable gate arrays, pages 33–42. ACM,
2009.

[81] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang. A high
performance fpga-based accelerator for large-scale convolutional
neural network. In 2016 International Conference on Field Pro-
grammable Logic and Applications, pages 69–77. IEEE, 2016.

[82] J. Lien, S. Feng, E. Huang, C. Sun, T. Liu, and N. Liao. Tileable
field-programmable gate array architecture, Nov. 2002. US Patent
6,476,636.

[83] T.-H. Lin, P. Banerjee, and Y.-W. Chang. An efficient and effec-
tive analytical placer for FPGAs. In Proceedings of the 50th Annual
Design Automation Conference, page 10. ACM, 2013.

[84] H. Liu and A. Akoglu. Timing-driven nonuniform depopulation-
based clustering. International Journal of Reconfigurable Computing,
2010:3, 2010.

230

[85] A. Ludwin and V. Betz. Efficient and Deterministic Parallel
Placement for FPGAs. ACM Trans. Des. Autom. Electron. Syst.,
16(3):22:1–22:23, June 2011.

[86] A. Ludwin, V. Betz, and K. Padalia. High-quality, deterministic
parallel placement for FPGAs on commodity hardware. In Pro-
ceedings of the 16th international ACM/SIGDA symposium on Field
programmable gate arrays, pages 14–23. ACM, 2008.

[87] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu,
K. Nasartschuk, M. Nasr, S. Wang, T. Liu, N. Ahmed, et al.
VTR 7.0: Next generation architecture and CAD system for
FPGAs. ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS), 7(2):6, 2014.

[88] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu,
K. Nasartschuk, M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent,
J. Anderson, J. Rose, and V. Betz. VTR 7.0: Next Generation Ar-
chitecture and CAD System for FPGAs. volume 7, pages 6:1–6:30,
June 2014.

[89] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang,
K. Kent, and J. Rose. VPR 5.0: FPGA CAD and architecture explo-
ration tools with single-driver routing, heterogeneity and process
scaling. ACM Trans. Reconfigurable Technol. Syst., 4(4):32:1–32:23,
Dec. 2011.

[90] J. Luu, J. Rose, and J. Anderson. Towards interconnect-adaptive
packing for FPGAs. In Proceedings of the 2014 ACM/SIGDA inter-
national symposium on Field-programmable gate arrays, pages 21–30.
ACM, 2014.

[91] J. Luu, J. Rose, and J. Anderson. Towards interconnect-adaptive
packing for fpgas. In Proceedings of the 2014 ACM/SIGDA inter-
national symposium on Field-programmable gate arrays, pages 21–30.
ACM, 2014.

[92] P. Lysaght. Python on Zynq (Pynq) Documentation. Xilinx, release
1.0 edition, July 5, 2016.

[93] P. Lysaght and D. Levi. Of gates and wires. Parallel and Distributed
Processing Symposium, International, 4:132a, 2004.

[94] P. Maidee, C. Ababei, and K. Bazargan. Timing-driven
partitioning-based placement for island style FPGAs. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 24(3):395 – 406, march 2005.

231

[95] V. Manohararajah, S. D. Brown, and Z. G. Vranesic. Heuristics for
Area Minimization in LUT-Based FPGA Technology Mapping.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 25(11):2331 –2340, Nov. 2006.

[96] A. Marquardt, V. Betz, and J. Rose. Speed and area tradeoffs in
cluster-based FPGA architectures. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(1):84–93, 2000.

[97] A. Marquardt, V. Betz, and J. Rose. Timing-Driven Placement for
FPGAs. In ACM/SIGDA Eighth International Symposium on Field-
Programmable Gate Arrays (FPGA), Proceedings of the, volume 313,
pages 203–213, New York, NY, USA, 2000. ACM.

[98] A. S. Marquardt, V. Betz, and J. Rose. Using cluster-based logic
blocks and timing-driven packing to improve FPGA speed and
density. In Proceedings of the 1999 ACM/SIGDA seventh interna-
tional symposium on Field programmable gate arrays, pages 37–46.
ACM, 1999.

[99] Z. Marrakchi, H. Mrabet, and H. Mehrez. Hierarchical FPGA
clustering based on a multilevel partitioning approach to im-
prove routability and reduce power dissapation. In null, page 25.
IEEE, 2005.

[100] L. McMurchie and C. Ebeling. Pathfinder: a negotiation-based
performance-driven router for FPGAs. In Proceedings of the 1995
ACM third international symposium on Field-programmable gate ar-
rays, FPGA ’95, pages 111–117, New York, NY, USA, 1995. ACM.

[101] A. Mishchenko. Enumeration of irredundant circuit structures. In
Proceedings of International Workshop on Logic and Synthesis, 2014.

[102] A. Mishchenko, S. Chatterjee, and R. Brayton. Improvements
to technology mapping for LUT-based FPGAs. IEEE TCAD,
26(2):240–253, Feb 2007.

[103] J. Mistry. VSLI Basic: SDC (Synopsys Design Con-
straints). http://vlsibasic.blogspot.be/2014/10/

sdc-synopsys-design-constraints.html, 2014.

[104] Y. Moctar, G. Lemieux, and P. Brisk. Routing algorithms for
FPGAs with sparse intra-cluster routing crossbars. In Field Pro-
grammable Logic and Applications (FPL), 2012 22nd International
Conference on, pages 91–98, 2012.

232

http://vlsibasic.blogspot.be/2014/10/sdc-synopsys-design-constraints.html
http://vlsibasic.blogspot.be/2014/10/sdc-synopsys-design-constraints.html

[105] Morningstar. Xilinx is a Key Player in the PLD Seg-
ment of the Semiconductor Industry. [Online] http:
//analysisreport.morningstar.com/stock/research?t=

XLNX®ion=USA&culture=en-US&productcode=MLE, July 2014.
Accessed: 08/05/2015.

[106] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz. Timing-Driven
Titan: Enabling Large Benchmarks and Exploring the Gap be-
tween Academic and Commercial CAD. ACM Transactions on Re-
configurable Technology and Systems (TRETS), 8(2):10, 2015.

[107] Y. Nesterov. A method of solving a convex programming prob-
lem with convergence rate o (1/k2). In Soviet Mathematics Dok-
lady, volume 27, pages 372–376, 1983.

[108] B. New and S. Young. Method and apparatus for incorporating a
multiplier into an FPGA, Mar. 26 2002. US Patent 6,362,650.

[109] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and
E. S. Chung. Accelerating deep convolutional neural networks
using specialized hardware. Microsoft Research Whitepaper, 2,
2015.

[110] F. G. P. Jamieson, K. B. Kent and L. Shannon. ODIN II: An Open-
source Verilog HDL Synthesis Tool for CAD Research. In Field-
Programmable Custom Computing Machines (FCCM), pages 149–
156, 2010.

[111] H. Parandeh-Afshar, H. Benbihi, D. Novo, and P. Ienne. Rethink-
ing fpgas: elude the flexibility excess of luts with and-inverter
cones. In Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays, pages 119–128. ACM, 2012.

[112] T. Pi and P. Crotty. FPGA lookup table with transmission gate
structure for reliable low-voltage operation, Dec. 2003. US Patent
6,667,635.

[113] H. N. Que Yanghua1, Nachiket Kapre. Boosting convergence of
timing closure using feature selection in a learning-driven ap-
proach. In 2016 International Conference on Field Programmable
Logic and Applications, pages 69–77. IEEE, 2016.

[114] S. T. Rajavel and A. Akoglu. MO-Pack: Many-objective cluster-
ing for FPGA CAD. In Proceedings of the 48th Design Automation
Conference, pages 818–823. ACM, 2011.

233

http://analysisreport.morningstar.com/stock/research?t=XLNX®ion=USA&culture=en-US&productcode=MLE
http://analysisreport.morningstar.com/stock/research?t=XLNX®ion=USA&culture=en-US&productcode=MLE
http://analysisreport.morningstar.com/stock/research?t=XLNX®ion=USA&culture=en-US&productcode=MLE

[115] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen.
Mapping into lut structures. In Proceedings of the Conference on De-
sign, Automation and Test in Europe, pages 1579–1584. EDA Con-
sortium, 2012.

[116] S. U. Rehman, A. Blanchardon, A. Ben Dhia, M. Benabdenbi,
R. Chotin-Avot, L. Naviner, L. Anghel, H. Mehrez, E. Amouri,
and Z. Marrakchi. Impact of cluster size on routability, testabil-
ity and robustness of a cluster in a mesh fpga. In VLSI (ISVLSI),
2014 IEEE Computer Society Annual Symposium on, pages 553–558.
IEEE, 2014.

[117] L. Shannon, V. Cojocaru, C. N. Dao, and P. H. Leong. Technol-
ogy Scaling in FPGAs: Trends in Applications and Architectures.
In Field-Programmable Custom Computing Machines (FCCM), 2015
IEEE 23rd Annual International Symposium on, pages 1–8. IEEE,
2015.

[118] H. Sidiropoulos, K. Siozios, P. Figuli, D. Soudris, M. Hübner, and
J. Becker. Jitpr: A framework for supporting fast application’s
implementation onto fpgas. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 6(2):7, 2013.

[119] T. Simonite. Intel Puts the Brakes on Moore’s Law, March 2016.
last accessed on 2 November 2016.

[120] A. Singh, G. Parthasarathy, and M. Marek-Sadowska. Efficient
circuit clustering for area and power reduction in FPGAs. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
7(4):643–663, 2002.

[121] A. Singh, G. Parthasarathy, and M. Marek-Sadowska. Efficient
circuit clustering for area and power reduction in FPGAs. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
7(4):643–663, 2002.

[122] P. Spindler, U. Schlichtmann, and F. M. Johannes. Kraftwerk - a
fast force-directed quadratic placement approach using an accu-
rate net model. Trans. Comp.-Aided Des. Integ. Cir. Sys., 27(8):1398–
1411, Aug. 2008.

[123] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrud-
hula, J.-s. Seo, and Y. Cao. Throughput-Optimized OpenCL-
based FPGA Accelerator for Large-Scale Convolutional Neural
Networks. In Proceedings of the 2016 ACM/SIGDA International

234

Symposium on Field-Programmable Gate Arrays, FPGA ’16, pages
16–25, New York, NY, USA, 2016. ACM.

[124] J. S. Swartz, V. Betz, and J. Rose. A Fast Routability-Driven Router
for FPGAs. In ACM/SIGDA Sixth International Symposium on Field-
Programmable Gate Arrays (FPGA), Proceedings of the, pages 140–
149, 1998.

[125] C. Sze, T.-C. Wang, and L.-C. Wang. Multilevel circuit cluster-
ing for delay minimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 23(7):1073–1085, 2004.

[126] M. Tom, D. Leong, and G. Lemieux. Un/DoPack: re-clustering
of large system-on-chip designs with interconnect variation for
low-cost FPGAs. In Proceedings of the 2006 IEEE/ACM international
conference on Computer-aided design, pages 680–687. ACM, 2006.

[127] S. Trimberger. Three Ages of FPGA. http://www.eecg.toronto.
edu/˜jayar/FPGAseminar/2014-2/the-three-ages-of-fpga.

html.

[128] S. Trimberger. Three Ages of FPGA: A Retrospective on the
First Thirty Years of FPGA Technology. Proceedings of the IEEE,
103:318–331, 2015.

[129] E. Vansteenkiste. An evaluation framework
for an academic and commercial comparison.
github.com/EliasVansteenkiste/EvaluationFramework, De-
cember 2015.

[130] E. Vansteenkiste, B. Al Farisi, K. Bruneel, and D. Stroobandt.
TPaR: Place and Route Tools for the Dynamic Reconfiguration of
the FPGA’s Interconnect Network. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 33(3):370–
383, Mar. 2014.

[131] E. Vansteenkiste, K. Bruneel, and D. Stroobandt. A Connection
Router for the Dynamic Reconfiguration of FPGAs. In LECTURE
NOTES IN COMPUTER SCIENCE, volume 7199, pages 357–365,
Berlin, Germany, 2012. Springer Verlag Berlin.

[132] E. Vansteenkiste, K. Bruneel, and D. Stroobandt. Maximizing the
reuse of routing resources in a reconfiguration-aware connection
router. In Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on, pages 322–329, 2012.

235

http://www.eecg.toronto.edu/~jayar/FPGAseminar/2014-2/the-three-ages-of-fpga.html
http://www.eecg.toronto.edu/~jayar/FPGAseminar/2014-2/the-three-ages-of-fpga.html
http://www.eecg.toronto.edu/~jayar/FPGAseminar/2014-2/the-three-ages-of-fpga.html

[133] E. Vansteenkiste, K. Bruneel, and D. Stroobandt. A Connection-
based Router for FPGAs. In Field-Programmable Technology (FPT),
2013 International Conference on, pages 326–329. IEEE, 2013.

[134] E. Vansteenkiste, H. Fraisse, and A. Kaviani. Analyzing the Di-
vide between FPGA Academic and Commercial Results. In Inter-
national Conference on Field Programmable Technology (ICFPT), Pro-
ceedings of the, 2015.

[135] E. Vansteenkiste, A. Kaviani, and H. Fraisse. Analyzing the di-
vide between fpga academic and commercial results. In Field
Programmable Technology (FPT), 2015 International Conference on,
pages 96–103. IEEE, 2015.

[136] E. Vansteenkiste and S. Lenders. Liquid: Fast FPGA Place-
ment Via Steepest Gradient Descent Movement. github.com/
EliasVansteenkiste/The-Java-FPGA-Placement-Framework,
2016.

[137] E. Vansteenkiste and J. Rommens. COFFE with cream: Extension
for an automatic transistor sizing tool. https://github.ugent.
be/UGent-HES/COFFE_WITH_CREAM, 2016.

[138] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt. Runtime-
Quality Tradeoff in Partitioning Based Multithreaded Packing. In
26st International Conference on Field-Programmable Logic and Appli-
cations (FPL), Proceedings of the, page 8, Lausanne, Swiss, 2016.

[139] M. M. Waldrop. The chips are down for Moore’s law, February
2016. last accessed on 2 November 2016.

[140] K. Weiss, R. Kistner, A. Kunzmann, and W. Rosenstiel. Analy-
sis of the XC6000 architecture for embedded system design. In
FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE
Symposium on, pages 245 –252, apr 1998.

[141] Xilinx. Two Flows for Partial Reconfiguration : Module Based or Small
Bit Manipulations, 2002. UG290.

[142] Xilinx. Comparing and Contrasting FPGA and Microprocessor, 2004.
WP213.

[143] Xilinx. Partial Reconfiguration User Guide, 2010. UG702.

[144] Xilinx. Backgrounder: The Xilinx SDAccel Development En-
vironment. http://www.xilinx.com/support/documentation/
backgrounders/sdaccel-backgrounder.pdf, 2014.

236

github.com/EliasVansteenkiste/The-Java-FPGA-Placement-Framework
github.com/EliasVansteenkiste/The-Java-FPGA-Placement-Framework
https://github.ugent.be/UGent-HES/COFFE_WITH_CREAM
https://github.ugent.be/UGent-HES/COFFE_WITH_CREAM
http://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf
http://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf

[145] Xilinx. Vivado Design Suite User Guide: Implementation, 2014.
UG892.

[146] Xilinx. Vivado Design Suite User Guide: Partial Reconfiguration,
2014. UG909.

[147] Xilinx. UltraScale Architecture Configurable Logic Block User Guide
UG574, November 2015.

[148] Xilinx. UltraScale Architecture DSP Slice User Guide UG579,
November 2015.

[149] Xilinx. UltraScale Architecture Memory Resources UG573, Novem-
ber 2015.

[150] Xilinx. Vivado Design Suite User Guide 910. Xilinx
Inc., Apr. 2015. Available online: http://www.xilinx.

com/support/documentation/sw_manuals/xilinx2015_1/

ug910-vivado-getting-started.pdf.

[151] M. Xu, G. Grewal, and S. Areibi. Starplace: A new analytic
method for {FPGA} placement. Integration, the {VLSI} Journal,
44(3):192 – 204, 2011.

[152] Y. Xu and M. A. S. Khalid. Qpf: Efficient quadratic placement for
fpgas. In T. Rissa, S. J. E. Wilton, and P. H. W. Leong, editors, FPL,
pages 555–558. IEEE, 2005.

[153] S. Young, P. Alfke, C. Fewer, S. McMillan, B. Blodget, and D. Levi.
A high I/O reconfigurable crossbar switch. In FCCM ’03: Pro-
ceedings of the 11th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. IEEE Computer Society, 2003.

[154] G. Zgheib, L. Yang, Z. Huang, D. Novo, H. Parandeh-Afshar,
H. Yang, and P. Ienne. Revisiting and-inverter cones. In Pro-
ceedings of the 2014 ACM/SIGDA international symposium on Field-
programmable gate arrays, pages 45–54. ACM, 2014.

[155] W. Zhao and Y. Cao. New generation of predictive technology
model for sub-45nm early design exploration. IEEE Transactions
on Electron Devices, 53(11):2816–2823, Nov. 2006.

237

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug910-vivado-getting-started.pdf

	Examination Commission
	Dankwoord
	Samenvatting (Dutch)
	Summary (English)
	Contents
	List of Acronyms
	1 Introduction
	1.1 Introduction to FPGAs
	1.2 Introduction to the Research
	1.2.1 The Slow FPGA Design Cycle
	1.2.2 The Gap between Academic and Commercial Results
	1.2.3 Improving the Efficiency of FPGAs

	1.3 Contributions
	1.4 Structure of the Thesis
	1.5 Publications

	2 Background
	2.1 FPGA Architecture
	2.1.1 Low Level Building Blocks
	2.1.2 Basic Logic Element (BLE)
	2.1.3 Soft Blocks
	2.1.4 Hard Blocks
	2.1.5 Input/Output Blocks
	2.1.6 High-level Overview
	2.1.7 Programmable Interconnection Network

	2.2 FPGA CAD Tool Flow
	2.2.1 Optimization Goals
	2.2.2 Overview of the Tools
	2.2.3 Compilation Runtime
	2.2.4 Related Work

	2.3 The History of the FPGA
	2.3.1 FPGA versus ASIC
	2.3.2 Age of Invention (1984-1991)
	2.3.3 Age of Expansion (1992-1999)
	2.3.4 Age of Accumulation (2000-2007)
	2.3.5 Current Age
	2.3.6 Current State of FPGA Vendors

	3 The Divide between FPGA Academic and Commercial Results
	3.1 Introduction
	3.2 Background and Related Work
	3.3 Commercial and Academic Tool Comparison
	3.3.1 Evaluation frameworks
	3.3.2 Speed-performance
	3.3.3 Area-efficiency
	3.3.4 Runtime
	3.3.5 Using VTR for a Commercial Target Device
	3.3.6 The Reasons for the Divide

	3.4 Hybrid Commercial and Academic Evaluation Flow
	3.4.1 Benchmark Design Suites

	3.5 Concluding Remarks

	4 Preserving Design Hierarchy to Improve Packing Performance
	4.1 Introduction
	4.2 Related Work
	4.3 Heterogeneous Circuit Partitioning
	4.3.1 Balanced Area Partitioning
	4.3.2 Pre-packing
	4.3.3 Hard Block Balancing

	4.4 Timing-driven Recursive Partitioning
	4.4.1 Introduction to Static Timing Analysis
	4.4.2 Timing Edges in Partitioning

	4.5 PartSA
	4.5.1 Introduction to Simulated annealing
	4.5.2 Cost Function
	4.5.3 Fast Partitioning
	4.5.4 Parallel Annealing
	4.5.5 Problems with PartSA

	4.6 MultiPart
	4.6.1 Optimal Number of Subcircuits
	4.6.2 Passing Timing Information via Constraint Files

	4.7 Experiments
	4.7.1 Optimal Number of Threads
	4.7.2 An Architecture with Complete Crossbars
	4.7.3 An Architecture with Sparse Crossbars
	4.7.4 A Commercial Architecture

	4.8 Conclusion and Future Work

	5 Steepest Gradient Descent Based Placement
	5.1 Introduction
	5.2 FPGA Placement
	5.2.1 Wire-length Estimation
	5.2.2 Timing Cost

	5.3 Simulated Annealing
	5.3.1 The Basic Algorithm
	5.3.2 Fast and Low Effort Simulated Annealing

	5.4 Analytical Placement
	5.4.1 High level overview
	5.4.2 Building the linear system
	5.4.3 Bound-to-bound Net Model
	5.4.4 Runtime Breakdown
	5.4.5 Timing-Driven Analytical Placement

	5.5 Liquid
	5.5.1 The Basic Algorithm
	5.5.2 Modeling the Problem
	5.5.3 Momentum Update
	5.5.4 Optimizations
	5.5.5 Runtime Breakdown Comparison

	5.6 Legalization
	5.7 Experiments
	5.7.1 Methodology
	5.7.2 Runtime versus Quality
	5.7.3 Runtime Speedup
	5.7.4 The Best Achievable Quality
	5.7.5 Comparison with Simulated Annealing
	5.7.6 Post-route Quality

	5.8 Future Work
	5.9 Conclusion

	6 A Connection-based Routing Mechanism
	6.1 Introduction
	6.2 The Routing Resource Graph
	6.3 The Routing Problem
	6.3.1 Pathfinder: A Negotiated Congestion Mechanism

	6.4 Croute: The Connection Router
	6.4.1 Ripping up and Rerouting Connections
	6.4.2 The Change in Node Cost

	6.5 Negotiated Sharing Mechanism
	6.5.1 The Negotiated Sharing Mechanism Inherent to Croute
	6.5.2 Trunk Bias

	6.6 Partial Rerouting Strategies
	6.7 Experiments and Results
	6.7.1 Methodology
	6.7.2 Results

	6.8 Conclusion and Future Work

	7 Place and Route tools for the Dynamic Reconfiguration of the Routing Network
	7.1 Overview of Dynamic Partial Reconfiguration
	7.1.1 Introduction to Dynamic Circuit Specialization
	7.1.2 Contributions

	7.2 Background
	7.2.1 Configuration Swapping
	7.2.2 Dynamic Circuit Specialization
	7.2.3 TLUT Tool Flow

	7.3 The TCON tool flow
	7.3.1 Synthesis
	7.3.2 Technology Mapping
	7.3.3 Tpack and Tplace
	7.3.4 Troute
	7.3.5 Limitations

	7.4 Tpack
	7.5 Tplace
	7.5.1 Wire Length Estimation for Nets in Static Circuits
	7.5.2 Wire Length Estimation for Tuneable Circuits
	7.5.3 Evaluation of the Wire Length Estimation

	7.6 Troute
	7.6.1 The TCON Routing Problem
	7.6.2 Modifications to the Negotiated Congestion Loop
	7.6.3 Resource sharing extension

	7.7 Applications and Experiments
	7.7.1 FPGA Architecture
	7.7.2 Methodology
	7.7.3 Virtual Coarse Grained Reconfigurable Arrays
	7.7.4 Clos Networks
	7.7.5 Runtime comparison
	7.7.6 Specialization Overhead

	7.8 Conclusion

	8 Logic Gates in the Routing Nodes of the FPGA
	8.1 Overview
	8.2 FPGA Architecture
	8.2.1 High-level Overview
	8.2.2 Baseline Architecture
	8.2.3 Routing Node

	8.3 Transistor-level Design
	8.3.1 Selecting the Type of Logic Gate
	8.3.2 The N:2 Multiplexer
	8.3.3 Level Restoring Tactics
	8.3.4 Routing Nodes in Different Locations
	8.3.5 Concluding Remarks on the Sizing Results

	8.4 Conventional Technology Mapping
	8.4.1 Optimisation Criteria
	8.4.2 Definitions
	8.4.3 Conventional Technology Mapping Algorithm

	8.5 Mapping to LUTs and AND Gates
	8.5.1 Cut Enumeration and Cut Ranking
	8.5.2 Cut Selection and Area Recovery
	8.5.3 Area and Depth
	8.5.4 AND Gate Chains

	8.6 Packing
	8.6.1 Modeling the Architecture
	8.6.2 Conventional Packing
	8.6.3 Resynthesis during Cluster Feasibility Check
	8.6.4 Performance Improvement

	8.7 Post-route Performance
	8.8 Concluding Remarks

	9 Conclusions and Future Work
	9.1 Conclusions
	9.1.1 The Gap between the Academic and Commercial Results
	9.1.2 New FPGA Compilation Techniques
	9.1.3 Dynamic Reconfiguration of the Routing Network
	9.1.4 FPGA Architectures with Logic Gates in the Routing Network

	9.2 Future Work
	9.2.1 Further Acceleration of the FPGA Compilation
	9.2.2 Generic Method to Investigate New FPGA Architectures

	Bibliography

