1,471 research outputs found

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    PSO-SVM hybrid system for melanoma detection from histo-pathological images

    Get PDF
    This paper introduces an automated system for skin cancer (melanoma) detection from Histo-pathological images sampled from microscopic slides of skin biopsy. The proposed system is a hybrid system based on Particle Swarm Optimization and Support Vector Machine (PSO-SVM). The features used are extracted from the grayscale image histogram, the co-occurrence matrix and the energy of the wavelet coefficients resulting from the wavelet packet decomposition. The PSO-SVM system selects the best feature set and the best values for the SVM parameters (C and γ) that optimize the performance of the SVM classifier.   The system performance is tested on a real dataset obtained from the Southern Pathology Laboratory in Wollongong NSW, Australia. Evaluation results show a classification accuracy of 87.13%, a sensitivity of 94.1% and a specificity of 80.22%.The sensitivity and specificity results are comparable to those obtained by dermatologists

    Comparative Analysis of Neuronal Segmentation Methods for Single Cell Signal Extraction

    Get PDF
    In the Molecular Signaling Laboratory (MSLab), when working with neuronal cells that have been treated with a dye agent, a parameter extraction protocol is followed, mainly the intensity of the image, which requires advanced knowledge in programming languages and tools, as well as a prudent time to extract the information. The investigator, on most occasions, is limited by its researcher background. In this work, the master degree student has developed a tool that offers the extraction of the results, without necessitating the knowledge in image processing languages, and exposes them in plots that make it easier the interpretation for the investigator. This software also allows the export of the results in an Excel file. On this project, a method has been implemented that performs cellular segmentation and extracts the information in an image processing language, and desktop software that uses that method, transparently to the researcher, and exposes the results in graphs

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    Structural adaptive anisotropic recursive filter for blind medical image deconvolution

    Get PDF
    Performance of radiographic diagnosis and therapeutic intervention heavily depends on the quality of acquired images. Over decades, a range of pre-processing for image enhancement has been explored. Among the most recent proposals is iterative blinded image deconvolution, which aims to identify the inheritant point spread function, degrading images during acquisition. Thus far, the technique has been known for its poor convergence and stability and was recently superseded by non-negativity and support constraints recursive image filtering. However, the latter requires a priori on intrinsic properties of imaging sensor, e.g., distribution, noise floor and field of view. Most importantly, since homogeneity assumption was implied by deconvolution, recovered degrading function was global, disregarding fidelity of underlying objects. This paper proposes a modified recursive filtering with similar non-negativity constraints, but also taking into account local anisotropic structure of content. The experiment reported herein demonstrates its superior convergence property, while also preserving crucial image feature

    Machine learning methods for sign language recognition: a critical review and analysis.

    Get PDF
    Sign language is an essential tool to bridge the communication gap between normal and hearing-impaired people. However, the diversity of over 7000 present-day sign languages with variability in motion position, hand shape, and position of body parts making automatic sign language recognition (ASLR) a complex system. In order to overcome such complexity, researchers are investigating better ways of developing ASLR systems to seek intelligent solutions and have demonstrated remarkable success. This paper aims to analyse the research published on intelligent systems in sign language recognition over the past two decades. A total of 649 publications related to decision support and intelligent systems on sign language recognition (SLR) are extracted from the Scopus database and analysed. The extracted publications are analysed using bibliometric VOSViewer software to (1) obtain the publications temporal and regional distributions, (2) create the cooperation networks between affiliations and authors and identify productive institutions in this context. Moreover, reviews of techniques for vision-based sign language recognition are presented. Various features extraction and classification techniques used in SLR to achieve good results are discussed. The literature review presented in this paper shows the importance of incorporating intelligent solutions into the sign language recognition systems and reveals that perfect intelligent systems for sign language recognition are still an open problem. Overall, it is expected that this study will facilitate knowledge accumulation and creation of intelligent-based SLR and provide readers, researchers, and practitioners a roadmap to guide future direction

    Performance analysis of image transmission with various channel conditions/modulation techniques

    Get PDF
    This paper investigates the impact of different modulation techniques for digital communication systems that employ quadrature phase shift keying (QPSK) and quadrature amplitude modulation (16-QAM and 64-QAM) to transmit images over AWGN and Rayleigh fading channels for the cellular mobile networks. In the further steps, wiener and median filters has been adopted to the simulation are used at the receiver side to remove the impulsive noise present in the received image. This work is performed to evaluate the transmission of two dimensional (2D) gray-scale and color-scale (RGB) images with different values from signal to noise ratios (SNR), such as; (5, 10 and 15) dB over different channels. The correct conclusions are made by comparing many of the observed Matlab simulation results. This was carried out through the results that measure the quality of received image, which is analyzes in terms of SNRimage peak signal to noise ratio (PSNR) and mean square error (MSE)

    Performance analysis of image transmission with various channel conditions/modulation techniques

    Get PDF
    This paper investigates the impact of different modulation techniques for digital communication systems that employ quadrature phase shift keying (QPSK) and quadrature amplitude modulation (16-QAM and 64-QAM) to transmit images over AWGN and Rayleigh fading channels for the cellular mobile networks. In the further steps, wiener and median filters has been adopted to the simulation are used at the receiver side to remove the impulsive noise present in the received image. This work is performed to evaluate the transmission of two dimensional (2D) gray-scale and color-scale (RGB) images with different values from signal to noise ratios (SNR), such as; (5, 10 and 15) dB over different channels. The correct conclusions are made by comparing many of the observed Matlab simulation results. This was carried out through the results that measure the quality of received image, which is analyzes in terms of SNRimage peak signal to noise ratio (PSNR) and mean square error (MSE)
    • …
    corecore