55,707 research outputs found

    Improving the Interpretability of Classification Rules Discovered by an Ant Colony Algorithm: Extended Results

    Get PDF
    The vast majority of Ant Colony Optimization (ACO) algorithms for inducing classification rules use an ACO-based procedure to create a rule in an one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-MinerPB algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules)-i.e., the ACO search is guided by the quality of a list of rules, instead of an individual rule. In this paper we propose an extension of the cAnt-MinerPB algorithm to discover a set of rules (unordered rules). The main motivations for this work are to improve the interpretation of individual rules by discovering a set of rules and to evaluate the impact on the predictive accuracy of the algorithm. We also propose a new measure to evaluate the interpretability of the discovered rules to mitigate the fact that the commonly-used model size measure ignores how the rules are used to make a class prediction. Comparisons with state-of-the-art rule induction algorithms, support vector machines and the cAnt-MinerPB producing ordered rules are also presented

    QCBA: Postoptimization of Quantitative Attributes in Classifiers based on Association Rules

    Full text link
    The need to prediscretize numeric attributes before they can be used in association rule learning is a source of inefficiencies in the resulting classifier. This paper describes several new rule tuning steps aiming to recover information lost in the discretization of numeric (quantitative) attributes, and a new rule pruning strategy, which further reduces the size of the classification models. We demonstrate the effectiveness of the proposed methods on postoptimization of models generated by three state-of-the-art association rule classification algorithms: Classification based on Associations (Liu, 1998), Interpretable Decision Sets (Lakkaraju et al, 2016), and Scalable Bayesian Rule Lists (Yang, 2017). Benchmarks on 22 datasets from the UCI repository show that the postoptimized models are consistently smaller -- typically by about 50% -- and have better classification performance on most datasets

    Highly Relevant Routing Recommendation Systems for Handling Few Data Using MDL Principle and Embedded Relevance Boosting Factors

    Get PDF
    A route recommendation system can provide better recommendation if it also takes collected user reviews into account, e.g. places that generally get positive reviews may be preferred. However, to classify sentiment, many classification algorithms existing today suffer in handling small data items such as short written reviews. In this paper we propose a model for a strongly relevant route recommendation system that is based on an MDL-based (Minimum Description Length) sentiment classification and show that such a system is capable of handling small data items (short user reviews). Another highlight of the model is the inclusion of a set of boosting factors in the relevance calculation to improve the relevance in any recommendation system that implements the model.Comment: ACM SIGIR 2018 Workshop on Learning from Limited or Noisy Data for Information Retrieval (LND4IR'18), July 12, 2018, Ann Arbor, Michigan, USA, 8 pages, 9 figure

    GENESIM : genetic extraction of a single, interpretable model

    Get PDF
    Models obtained by decision tree induction techniques excel in being interpretable.However, they can be prone to overfitting, which results in a low predictive performance. Ensemble techniques are able to achieve a higher accuracy. However, this comes at a cost of losing interpretability of the resulting model. This makes ensemble techniques impractical in applications where decision support, instead of decision making, is crucial. To bridge this gap, we present the GENESIM algorithm that transforms an ensemble of decision trees to a single decision tree with an enhanced predictive performance by using a genetic algorithm. We compared GENESIM to prevalent decision tree induction and ensemble techniques using twelve publicly available data sets. The results show that GENESIM achieves a better predictive performance on most of these data sets than decision tree induction techniques and a predictive performance in the same order of magnitude as the ensemble techniques. Moreover, the resulting model of GENESIM has a very low complexity, making it very interpretable, in contrast to ensemble techniques.Comment: Presented at NIPS 2016 Workshop on Interpretable Machine Learning in Complex System

    An Experimental Evaluation of Nearest Neighbour Time Series Classification

    Get PDF
    Data mining research into time series classification (TSC) has focussed on alternative distance measures for nearest neighbour classifiers. It is standard practice to use 1-NN with Euclidean or dynamic time warping (DTW) distance as a straw man for comparison. As part of a wider investigation into elastic distance measures for TSC~\cite{lines14elastic}, we perform a series of experiments to test whether this standard practice is valid. Specifically, we compare 1-NN classifiers with Euclidean and DTW distance to standard classifiers, examine whether the performance of 1-NN Euclidean approaches that of 1-NN DTW as the number of cases increases, assess whether there is any benefit of setting kk for kk-NN through cross validation whether it is worth setting the warping path for DTW through cross validation and finally is it better to use a window or weighting for DTW. Based on experiments on 77 problems, we conclude that 1-NN with Euclidean distance is fairly easy to beat but 1-NN with DTW is not, if window size is set through cross validation
    • …
    corecore