
Improving the Interpretability of Classification
Rules Discovered by an Ant Colony Algorithm:

Extended Results

Fernando E. B. Otero F.E.B.Otero@kent.ac.uk
University of Kent, Chatham Maritime, United Kingdom

Alex A. Freitas A.A.Freitas@kent.ac.uk
University of Kent, Canterbury, United Kingdom

Abstract
The vast majority of Ant Colony Optimization (ACO) algorithms for inducing classi-
fication rules use an ACO-based procedure to create a rule in an one-at-a-time fash-
ion. An improved search strategy has been proposed in the cAnt-MinerPB algorithm,
where an ACO-based procedure is used to create a complete list of rules (ordered
rules)—i.e., the ACO search is guided by the quality of a list of rules, instead of an
individual rule. In this paper we propose an extension of the cAnt-MinerPB algorithm
to discover a set of rules (unordered rules). The main motivations for this work are to
improve the interpretation of individual rules by discovering a set of rules and to eval-
uate the impact on the predictive accuracy of the algorithm. We also propose a new
measure to evaluate the interpretability of the discovered rules to mitigate the fact that
the commonly-used model size measure ignores how the rules are used to make a
class prediction. Comparisons with state-of-the-art rule induction algorithms, support
vector machines and the cAnt-MinerPB producing ordered rules are also presented.

Keywords
Ant colony optimization, data mining, classification, sequential covering, unordered
rules, comprehensibility.

1 Introduction

Ant colony optimization (ACO) has been successfully applied to the classification task
in data mining. Classification problems can be viewed as optimisation problems, where
the goal is to find the best model that represents the predictive relationships in the data
(Piatetsky-Shapiro and Frawley, 1991; Fayyad et al., 1996; Witten and Frank, 2011). In
essence, a classification problem consists of discovering a predictive model that rep-
resents the relationships between the predictor attribute values and the class (target)
attribute values of data instances (also called examples, or cases). The discovered clas-
sification model is then used to classify—predict the class attribute value of—new ex-
amples (unseen during training) based on the values of their predictor attributes.

Since the introduction of Ant-Miner (Parpinelli et al., 2002), the first ant colony rule
induction algorithm for the discovery of a list of classification rules, many extensions
have been proposed in the literature (Freitas et al., 2008; Martens et al., 2011). The vast
majority of these extensions follow the same overall design: they employ an ACO pro-
cedure to create a single classification rule in the form IF <term1 AND . . . AND termn>
THEN <class value> at each iteration of the algorithm, where the IF part corresponds

c⃝200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30708768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

F.E.B. Otero and A.A. Freitas

to the antecedent of the rule and the THEN part corresponds to the consequent of the
rule. The ACO-based rule construction procedure is repeated many times to produce
a classification model (i.e., a list of classification rules). The strategy of creating one-
rule-at-a-time, where the creation of each rule is an independent search problem, can
lead to the problem of rule interaction—the creation of a rule affects the rules that can
be created in subsequent iterations. A new strategy to mitigate the potential problem
of rule interaction has been recently proposed in (Otero et al., 2013) and implemented
in the cAnt-MinerPB algorithm. The main idea proposed in the new strategy is the use
of an ACO procedure to create a complete list of rules, guiding the search based on the
quality of the whole list, and therefore, taking into account the interaction between the
rules in the list.

This paper proposes an extension of the cAnt-MinerPB algorithm to create un-
ordered rules. The main motivation is to improve the interpretation of individual rules.
In an ordered set of rules (also referred to as list of rules), the effect (meaning) of a rule
depends on all previous rules in the list, since a rule is only used if all previous rules
do not cover the example. On the other hand, in an unordered set of rules, an exam-
ple is shown to all rules and a single rule or a subset of rules that covers the example
is used to make a prediction. The proposed unordered extension, called Unordered
cAnt-MinerPB, is evaluated against state-of-the-art rule induction algorithms and sup-
port vector machines in terms of predictive accuracy. We also propose a new measure
to evaluate the size of the discovered model and present the results comparing both
cAnt-MinerPB and Unordered cAnt-MinerPB algorithms against state-of-the-art rule
induction algorithms.

This paper is an extended version of a previous conference paper (Otero and Fre-
itas, 2013), providing a more detailed description of the proposed approach and also ex-
tending the computational results in four ways: we extend the number of datasets from
18 in our previous conference paper to 32 in the current paper, report predictive accu-
racy for two more rule induction algorithms (PSO/ACO2 and BioHEL), report model
size results based on the proposed prediction-explanation size measure for all the 9 rule
induction algorithms evaluated in the current paper (whilst model size results were re-
ported for only 3 algorithms in our previous conference paper), and report predictive
accuracy for a SVM classifier, including statistical significance analysis of the results.

The remainder of this paper is organized as follows. Section 2 presents a discus-
sion of the new strategy implemented in the cAnt-MinerPB algorithm. The details of
the proposed extension to create unordered rules are presented in Section 3. The com-
putational results are presented in Section 4. Finally, Section 5 concludes this paper and
presents future research directions.

2 Background

The majority of ant colony classification algorithms follows a sequential covering strat-
egy (one-rule-at-a-time) in order to create classification rules. The sequential cover-
ing strategy—also known as separate-and-conquer—is a commonly used strategy in
machine learning to create a list/set of rules and it consists of two main steps: the
algorithm creates a well-performing rule that classifies part of the available training ex-
amples (conquer step) and then removes the classified examples (separate step). This
iterative process is repeated until (almost) all examples have been classified—i.e., there
is a rule that classifies each of the available training examples. The use of the sequential
covering strategy reduces the problem of creating a list/set of classification rules into a
sequence of simpler problems, each requiring the creation of a single rule. In the case

2 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

of ant colony classification algorithms, a single rule is created by an ACO procedure,
which aims at searching for the best rule given a rule quality function. This is the strat-
egy found in Ant-Miner (Parpinelli et al., 2002), the first ACO-based rule induction
algorithm, and its many extensions (Freitas et al., 2008; Martens et al., 2011). One of
the few exceptions is the Grammar Based Ant Programming (GBAP) algorithm (Olmo
et al., 2011, 2012), which does not follow the sequential covering. In GBAP, each ant
in the colony creates a rule using a context-free grammar and a list of rules is obtained
using a niching approach—different ants compete to cover all training examples and
the most accurate ones are used to compose a list of rules.

As aforementioned in the Introduction (Section 1), the cAnt-MinerPB (Otero et al.,
2013) algorithm implements a new strategy to create classification rules, where the
main motivation is to avoid the potential problem of rule interaction arising from the
greedy nature of the sequential covering. The rule interaction problem is the result of
the use of a strategy where rules are discovered in an one-at-a-time fashion: the out-
come of a rule (the examples removed by the rule) has an impact on the rules that
can be created in subsequent iterations, since the removal of the examples effectively
changes the search space for the later iterations. As a result, Ant-Miner (and its vari-
ations) perform a greedy search for the list of best rules, using an ACO procedure to
search for the best rule given a set of examples, and it is highly dependant on the or-
der that rules are created. The strategy implemented in cAnt-MinerPB mitigates the
problem of rule interaction by using an ACO procedure to search for the best list of
rules. In cAnt-MinerPB, an ant creates an entire list of rules, while in Ant-Miner an
ant creates a single rule. This emphasises the differences in their ACO search strate-
gies: in Ant-Miner (and its extensions), the ACO search is guided by the quality of the
individual rules, as in (traditional) sequential covering algorithms; the ACO search in
cAnt-MinerPB algorithm, however, is not concerned by the quality of the individual
rules as long as the quality of the entire list of rules is improving, since the entire list is
created at once and the best list is chosen to guide the search.

This paper presents an extension to cAnt-MinerPB to discover unordered rules (set
of rules) instead of ordered rules (list of rules), with the aim of improving the inter-
pretability of the discovered rules. The discovery of unordered rule sets has been pre-
viously explored as extensions to the Ant-Miner algorithm only in (Smaldon and Fre-
itas, 2006; Nalini and Balasubramanie, 2008) to the best of our knowledge, although the
search strategy of Ant-Miner and cAnt-MinerPB are very different—both of the Ant-
Miner extensions in (Smaldon and Freitas, 2006; Nalini and Balasubramanie, 2008) use
an ACO procedure to create an individual rule. The motivation for extending the cAnt-
MinerPB algorithm is to use an ACO procedure to search for the best set of rules, taking
advantage of the improved strategy implemented in cAnt-MinerPB.

2.1 An overview of the cAnt-MinerPB algorithm

As we mentioned, the cAnt-MinerPB is an ACO classification algorithm that employs
a different search strategy than Ant-Miner and the vast majority of ACO classification
algorithms. Rather than creating a list of rules by searching for the best individual rule
at each iteration as Ant-Miner does, cAnt-MinerPB instead searches for the best list of
rules. This difference in the search strategy is reflected in the list creation process: in
cAnt-MinerPB, each ant creates an entire list of rules, whereas in Ant-Miner each ant
creates an individual rule. When an iteration of the ACO procedure is completed (i.e.,
after each ant of the colony creates a candidate list of rules), the best list of rules is used
to update the pheromone values. The pheromone update will guide the search to more

Evolutionary Computation Volume x, Number x 3

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

Input: training examples
Output: best discovered list of rules

1. InitialisePheromones();
2. listgb ← {};
3. m← 0;
4. while m < maximum iterations and not stagnation do
5. listib ← {};
6. for n← 1 to colony size do
7. examples← all training examples;
8. listn ← {};
9. while |examples| > maximum uncovered do

10. ComputeHeuristicInformation(examples);
11. rule← CreateRule(examples);
12. Prune(rule);
13. examples← examples− Covered(rule, examples);
14. listn ← listn + rule;
15. end while
16. if Quality(listn) > Quality(listib) then
17. listib ← listn;
18. end if
19. end for
20. UpdatePheromones(listib);
21. if Quality(listib) > Quality(listgb) then
22. listgb ← listib;
23. end if
24. m← m+ 1;
25. end while
26. return listgb;

Figure 1: High-level pseudocode of the cAnt-MinerPB algorithm (Otero et al., 2013).

prominent regions of the search space, affecting the candidate lists created in the future
iterations. The final (discovered) list of rules is the best candidate list of rules created
throughout the execution of the algorithm, based on a list quality function.

The high-level pseudocode of cAnt-MinerPB is presented in Figure 1. At each it-
eration (outer while loop), an ant in the colony starts with an empty list and the full
training set. Each ant then creates a rule probabilistically using the pheromone values
and heuristic information, prunes the rule, and removes all of the covered examples
from the training set. An ant repeats these steps to create a rule until the number of re-
maining examples reaches a predefined minimum threshold. The list creation process
(inner while loop) can be seen as a sequential covering but without an optimisation step:
at each iteration a rule is created probabilistically and added to the list of rules regard-
less of its quality. At no point are rules compared to each other and the rule quality is
not calculated during the rule creation process—the only time the rule quality function
is used is during the pruning step. The number of rules that an ant creates depends on
the available training examples at each iteration of the list creation process, which in
turn varies according to the number of examples covered by the previous rules created

4 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

(smoke = no)

(age)

(gender = female)(gender = female)

(gender = male)(gender = male)
(smoke = yes)

(smoke = no)

start

(a)

(smoke = no)

(age)

(gender = female)(gender = female)

(gender = male)(gender = male)
(smoke = yes)

(smoke = no)

start
τtour

1
2
...

0.8
0.5
...

τtour

1
2
...

0.9
0.4
...

(b)

Figure 2: The construction graph of cAnt-MinerPB when pheromone values are asso-
ciated with edges. In (a) the construction graph with a dummy ‘start’ vertex, corre-
sponding to the starting point for creating the rule antecedent and its purpose is to
associate pheromone values with the edge leading to the first vertex of the antecedent
of a rule; (b) the multiple pheromone values in the edges connecting vertices (‘start’→
‘smoke = no’→ ‘age’) are highlighted.

by the ant. As a consequence, the list creation process is flexible with respect to the size
of the lists: there is no pre-defined number of rules that an ant has to create and the lists
created by the ants might have different sizes.

In order to mitigate the problem of rule interaction, the order (sequence) that ants
create the rules is indirectly encoded in the pheromone values. During the list creation
process, an ant uses different pheromone values depending of the position of the cur-
rent rule being created. This is achieved by extending the pheromone matrix to include
a tour identification to represent the position of the rule (e.g., 1 for the first rule, 2 for the
second and so forth). Each edgeij of the construction graph, connecting vertices vi and
vj , has multiple pheromone values associated, one value for each rule position. This
is illustrated in Figure 2. When an ant is creating the i-th rule, it uses the pheromone
values associated with the i-th entry of every edgeij . A similar process occurs during
the pheromone update, where an ant updates the pheromone values of the edges used
to create the rules according to the rule’s position in the candidate list of rules.

After an iteration is completed, the iteration-best list of rules is used to update the
pheromones and the global-best list is updated, if the quality of the iteration-best list
is greater than the quality of the current global-best list. This entire process is repeated
until either the maximum number of iterations is reached or the ACO search stagnates.

3 Creating Unordered Rule Sets

cAnt-MinerPB creates a list of rules (also referred to as ordered rules), where the order
of rules plays an important role in the interpretation of individuals rules. When using a
list of rules to classify a new example, each rule is tested sequentially—i.e., the example
is shown to the first rule, then the second, and so forth—until a rule that covers1 the
example is found. Therefore, the effect (meaning) of a rule depends on all previous

1A rule covers an example when the example satisfies all the conditions in the antecedent of the rule.

Evolutionary Computation Volume x, Number x 5

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

rules in the list, since a rule is only used if all previous rules do not cover the example.
A simple example of this effect was given by Clark and Boswell (1991):

IF feathers = yes THEN class = bird
ELSE IF legs = two THEN class = human
ELSE ...

The rule ‘if legs=two then class=human’ cannot be correctly interpreted alone,
since birds also have two legs. If we analyse the rule in the context of the list, an
example is going to be tested against it only if the first rule is not used. In the case of
birds, they will satisfy the first rule and be classified correctly as ‘birds’. The problem
of analysing rules becomes more complex when we consider larger lists of rules.

An alternative to improve the interpretation of individual rules is to create a set
of rules (also referred to as unordered rules), where the order of rules is not important.
The use of a set of rules to classify an example consists of finding all rules that cover the
example and overlaps might occur (i.e., different rules covering the same example). If
only one rule covers the example, the rule classifies the example; if multiple rules cover
the example, a conflict resolution criteria is used to decide the final classification (the
predicted class value) of the example. Rule conflict resolution criteria will be discussed
in Subsection 3.4.

3.1 Unordered cAnt-MinerPB
The main modification in order to create unordered rules is in the way ants create the
set of rules. Instead of creating a rule and then determine its consequent based on the
majority class value of the covered training examples, the Unordered cAnt-MinerPB

introduces an extra loop to iterate over each class value. Therefore, an ant creates rules
for each class value in turn, using as negative examples all the examples associated with
different class values. Figure 3 presents the high-level pseudocode of the Unordered
cAnt-MinerPB algorithm.

In summary, the unordered algorithm works as follows. An ant starts with an
empty set of rules (outer for loop). Then, it creates rules for each of the class values (in-
ner for-all loop). In order to create a rule, ants probabilistically select terms to be added
to their current partial rule based on the pheromone values (τ) and heuristic infor-
mation (η); pheromone values are associated with edges connecting adjacent vertices,
while heuristic information is associated with vertices (candidate terms). In the first
iteration of the ACO search, all vertices have the same pheromone values—they are
all initialised to the same value (line 1); therefore, the heuristic information will have
a higher influence at the early stages of the search. An ant creates rules for a specific
class value until all examples of the class have been covered or the number of examples
remaining for the class is below a given maximum threshold (inner while loop). Once a
rule is created, it undergoes a pruning procedure to remove irrelevant terms (vertices)
from its antecedent. This is necessary due to the stochastic nature of the rule creation
process—terms are added to the antecedent as long as there are available vertices for
an ant to visit.

After a rule is created and pruned, it is added to current set of rules and the train-
ing examples correctly covered by the rule are removed—i.e., the examples covered by
the rule that are associated with the rule’s class value (positive examples). The heuris-
tic information for the current class value is recalculated at each iteration to reflect the
changes in the predictive power of the candidate terms due to the removal of the posi-
tive examples. The examples associated with different class values (negative examples)
remain, even the ones that are covered by a rule—unlike the original (ordered) cAnt-

6 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

Input: training examples
Output: best discovered rules

1. InitialisePheromones();
2. rulesgb ← {};
3. m← 0;
4. while m < maximum iterations and not stagnation do
5. rulesib ← {};
6. for n← 1 to colony size do
7. rulesn ← {};
8. for all class in classes do
9. examples← all training examples;

10. while Count(examples, class) > maximum uncovered do
11. ComputeHeuristicInformation(examples, class);
12. rule← CreateRule(examples, class);
13. Prune(rule);
14. examples← examples− Covered(rule, class, examples);
15. rulesn ← rulesn + rule;
16. end while
17. end for
18. if Quality(rulesn) > Quality(rulesib) then
19. rulesib ← rulesn;
20. end if
21. end for
22. UpdatePheromones(rulesib);
23. if Quality(rulesib) > Quality(rulesgb) then
24. rulesgb ← rulesib;
25. end if
26. m← m+ 1;
27. end while
28. return rulesgb;

Figure 3: High-level pseudocode of the Unordered cAnt-MinerPB algorithm.

MinerPB algorithm, where all covered examples are removed. After creating rules for
all class values, the iteration-best set of rules is updated if the quality of the newly cre-
ated set of rules is greater than the quality of the current iteration-best set. Once all
ants have created a set of rules and the iteration-best set is determined, the pheromone
values are updated using the iteration-best set and the global-best set of rules is up-
dated, if the quality of the iteration-best set is greater than the quality of the global-best
set (i.e., the best set of rules produced so far since the start of the search). The entire
procedure (outer while loop) is repeated until either a maximum number of iterations
has been reached or the search has converged. At the end, the best set of rules found is
returned as the discovered set of rules.

Note that when an ant is creating a rule, the consequent of the rule (the class value
predicted by the rule) is fixed. Therefore, the heuristic information and the dynamic
discretisation of continuous values take advantage of the class information and use a
more accurate class-specific measure—as it will be discussed in Subsections 3.2 and 3.3.

Evolutionary Computation Volume x, Number x 7

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

It is also important to emphasise that while the order of the rules is not important when
the rules are used during classification, it is important during the ACO search. Similar
to the cAnt-MinerPB, the edges of the construction graph in the unordered algorithm
also have multiple values, one value for each rule position. Therefore, the current po-
sition of the rule (tour identification) is used during the rule creation and pheromone
update processes. This allows the unordered algorithm to encode the order that the
rules were created and update the pheromones accordingly, which in turn guides the
search to more prominent sets of rules.

3.2 Class-Specific Heuristic Information

The rule creation in the Unordered cAnt-MinerPB is a probabilistically process based
on the pheromone values and heuristic. The probability of an ant to visit a vertex vj
when creating the rule t and located at vertex vi is given by

Pvj =
τ(t,vi,vj) · ηvj

Fvi
∑

k=1
τ(t,vi,vk) · ηvk

, (1)

where τ(t,vi,vj) is the amount of pheromone associated with the entry (t, vi, vj)—the en-
try for edgeij—in the pheromone matrix, ηvj is the heuristic information associated with
vertex vj and Fvi is the set of neighbouring vertices of vertex vi. Note that the expo-
nents α and β commonly used to control the influence of the pheromone and heuristic
information, respectively, are set to 1 as in the original Ant-Miner algorithm and there-
fore omitted from Eq. 1.

Given that in the unordered algorithm the consequent of the rules is fixed before
a rule is created, there is an opportunity to use a class-specific heuristic information in
the rule creation process. In this case, the heuristic information of each vertex vi of the
construction graph for the class value c is given by

ηvi(c) =
|Examples(vi, c)|

|Examples(vi)|
, (2)

where |Examples(vi, c)| is the number of training examples that satisfy the term
(attribute-condition) represented by vertex vi and that are associated with class value c,
and |Examples(vi)| is the number of training examples that satisfy the term (attribute-
condition) represented by vertex vi. In other words, the heuristic information ηvi(c)
corresponds to the fraction of training cases that are correctly covered by the term vi
(satisfy the condition represented by vi) with respect to the class value c.

3.3 Class-Specific Dynamic Discretisation

Continuous attributes represent a special case of vertices in the construction graph since
they do not have a set of fixed intervals to define a complete term (attribute-condition),
as illustrated in Figure 2. When a vertex representing a continuous attribute is used,
either for computing heuristic information or during the rule construction process, a
dynamic discretisation procedure is employed to select a discrete interval in order to
create a term. cAnt-MinerPB uses an entropy-based procedure, which does not require
the class information a priori. Since in the unordered algorithm the class value is avail-
able to the discretisation procedure, we use the Laplace accuracy as a criterion to select
a threshold value to discretise a continuous attribute as follows.

A threshold value w in the domain of the continuous attribute x dynamically gen-
erates two intervals: x ≤ w and x > w. The aim of the discretisation procedure is

8 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

to find the best threshold value given the current set of training cases available. The
best threshold value is the value w that maximises the interval accuracy in the set of
examples S regarding the class value c, given by

max(Lap(c, Sx≤w), Lap(c, Sx>w)) ∀w ∈ Dx , (3)

where Sx≤w is the set of examples that satisfy the interval x ≤ w, Sx>w is the set of
examples that satisfy the interval x > w and Dx are the values in the domain of attribute
x. The Laplace accuracy of an interval is given by

Lap(c, E) =
|Ec|+ 1

|E|+ k
, (4)

where E is the set of examples in the interval, |Ec| is the number of examples in E that
are associated with the class value c, |E| is the total number of examples in E and k is
the number of different values in the domain of the class attribute.

After selecting the best threshold value w, a term for the continuous attribute x is
created based on the Laplace accuracy of the two intervals generated, given by

termx =

{

x ≤ t if Lap(c, Sx≤w) > Lap(c, Sx>w)

x > t if Lap(c, Sx≤w) < Lap(c, Sx>w)
. (5)

In order words, the dynamic discretisation procedure selects the term (attribute-
condition) representing the interval that has the highest Laplace accuracy. There is no
need to store the threshold value w as long as the same previous vertices are selected,
since the dynamic discretisation procedure is deterministic and it will select the same
threshold value given the same set of training examples (Otero et al., 2008, 2009).

3.4 Using a Set of Rules to Classify Examples

As aforementioned, in order to classify an example using a set of rules, all rules that
cover the example are identified. The prediction of the class value of an example leads
to one of the following scenarios:

1. None of the rules covers the example: the example is assigned the default class value,
which corresponds to the majority class value of the training set;

2. Only one rule covers the example: the example is assigned the class value predicted
by the rule;

3. Multiple rules predicting the same class value cover the example: the example is
assigned the class value predicted by the rules;

4. Multiple rules predicting different class values cover the example: a conflict resolution
strategy is used to determine the predicted class value. There are mainly two
strategies: (i) use the rule with the highest quality (rule selection strategy); (ii)
combine (sum up) the class distribution of covered examples amongst the class
values of each rule and predict the majority class value in the sum (rule aggrega-
tion strategy), as proposed in (Clark and Boswell, 1991).

Evolutionary Computation Volume x, Number x 9

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

Let us consider an example in a 2-class problem {Y,N} that is covered by rules
R1⇒Y [7,0], R2⇒Y [4,0] and R3⇒N [1,5] (the values between squared brack-
ets correspond to the class values distribution of the covered examples). Since R3 pre-
dicts a class value different from the one predicted by R1 and R2, we have a conflict. If
we use a class rule aggregation strategy to resolve the conflict, we first sum up the class
distribution of the rules (which is [12,5]) and then predict the most common value in
the summed distribution (Y). In this example the use of a rule selection strategy would
produce the same prediction (Y), based on the assumption that rule R1 is the rule with
the highest quality.

Note that each of the conflict resolution strategies has a different impact in the
interpretability of the discovered rules. In the case of the rule selection strategy, a sin-
gle rule is responsible for the classification of an example—the rule with the highest
quality—regardless if multiple rules cover the example or not; in the case of the rule
aggregation strategy, (potentially) multiple rules are responsible for the classification
of an example. While in the former case the user has to analyse a single rule in order to
interpret a particular prediction, several rules should be analysed in order to interpret a
particular prediction in the latter case. Hence, the rule selection strategy usually leads
to simpler interpretations.

4 Computational Results

We divided the computational results in four sets of experiments. In the first set of
experiments, we evaluated different configurations of the proposed Unordered cAnt-
MinerPB. The aim is to determine the effects of the different conflict resolution strate-
gies, and also the effects of both the dynamic rule quality function selection and the
error-based list quality function (Medland et al., 2012), in the performance of the algo-
rithm. In the second set of experiments, we evaluated the Unordered cAnt-MinerPB

configurations against state-of-the-art rule induction classification algorithms in terms
of predictive accuracy. In the third set of experiments, we compared the interpretability
of the rules discovered by all algorithms used in the second set of experiments. Finally,
the fourth set of experiments compare the Unordered cAnt-MinerPB against a SVM
classification algorithm in terms of predictive accuracy.

In all the experiments, the performance of a classification algorithm is measured
using a tenfold cross-validation procedure, which consists of dividing a dataset into ten
stratified partitions (i.e., each partition contains a similar number of examples and class
distribution). For each partition, the classification algorithm is run using the remaining
nine partitions as training data and the predictive accuracy of the discovered model is
evaluated in the unseen (hold-out) partition. The final value of the predictive accuracy
for a particular dataset is the average value obtained across the ten partitions.

4.1 Evaluating different configurations

We evaluated 8 different configurations of the proposed Unordered cAnt-MinerPB com-
bining both conflict resolution strategies with both the dynamic rule quality function
selection and the error-based list quality function extensions proposed in (Medland
et al., 2012): 2 different conflict resolution strategies (rule selection and rule aggrega-
tion), 2 rule quality function selection approaches (static and dynamic), 2 list quality
functions (predictive accuracy and error-based); a total of 8 configurations, varying
those 3 general ‘parameters’.

In this first set of experiments, which can be considered as a parameter tuning
step, we selected 8 datasets from the UCI Machine Learning repository (Lichman, 2013),

10 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

namely automobile, blood-transfusion, ecoli, statlog heart, hepatitis, horse-colic, voting records
and zoo. For each of the datasets, we carried out a tenfold cross-validation procedure
for each of the 8 aforementioned parameter configurations; we used the default param-
eters of cAnt-MinerPB (Otero et al., 2013) for the remaining parameters: colony size of 5,
maximum number of iterations of 500, evaporation factor of 0.9 (evaporation rate equal to
1 − factor). Given the stochastic nature of the algorithm, each of the Unordered cAnt-
MinerPB configurations was run 10 times for every dataset.

Using a separate set of datasets just for parameter tuning, as in this Section, has the
advantage that after finding good parameter settings in this set of 8 datasets, we can
evaluate the generalisation ability of those settings in a different set of datasets (Section
4.2). Such generalisation ability is important in the classification task of data mining.

The results of these experiments showed that the use of the error-based list qual-
ity function in the Unordered cAnt-MinerPB algorithm had a negative impact in the
predictive accuracy of the discovered rules. Interesting, this is the opposite effect ob-
served in the original cAnt-MinerPB, where an improvement in predictive accuracy
is observed when the error-based list quality function is used (Medland et al., 2012).
The use of the dynamic rule quality function selection led to an improvement in pre-
dictive accuracy, independently of the conflict resolution strategy. As a result of these
experiments, we determined that the dynamic rule quality function selection and the
predictive accuracy as the list quality function are more suitable for the Unordered
cAnt-MinerPB algorithm. While the rule selection conflict resolution strategy led to an
improvement in the predictive accuracy compared to the configuration using the rule
aggregation strategy, we did not select a specific strategy at this stage, since they have
a different impact in the interpretability of the discovered rules. Therefore, we carried
out the remaining of the experiments using both rule selection and rule aggregation
conflict resolution strategies.

4.2 Comparisons with state-of-the-art rule induction classification algorithms

The computational experiments comparing the proposed Unordered cAnt-MinerPB al-
gorithm against state-of-the-art rule induction algorithms were carried out using a set
of 32 publicly available datasets from the UCI Machine Learning repository (Lichman,
2013)—a summary of the datasets used in the experiments is presented in Table 1. In
this table, the second and third columns give the number of nominal and continuous
attributes, respectively; the fourth column gives the number of classes and the fifth
column gives the number of examples of the dataset.

We have selected 6 rule induction algorithms, in addition to the cAnt-MinerPB and
Unordered cAnt-MinerPB algorithms.2 The details of the selected algorithms are given
in Table 2. All algorithms were used with the default parameter values proposed by
their corresponding authors—both cAnt-MinerPB and Unordered cAnt-MinerPB were
used with the same parameter values from the first set of experiments (see Subsection
4.1). We used 2 configurations for the Unordered cAnt-MinerPB: one using the rule
selection conflict resolution strategy (denoted as U-cAMPB [S]) and one using the rule
aggregation conflict resolution strategy (denoted as U-cAMPB [A]). None of the algo-
rithms had their parameter values optimised to individual datasets.

Table 3 presents the results concerning the predictive accuracy, where the higher
the value the better the algorithm performance in terms of accuracy, measured as the

2The source-code and binaries of the new Unordered cAnt-MinerPB algorithm are available for download
at http://www.cs.kent.ac.uk/people/staff/febo. We used the cAnt-MinerPB algorithm (from the same
software package) with the error-based list quality function, as suggested by Medland et al. (2012).

Evolutionary Computation Volume x, Number x 11

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

Table 1: Summary of the datasets used in the second set of experiments.

dataset # attributes # classes # examples
nominal continuous

annealing 29 9 6 898

balance-scale 4 0 3 625

banknote 0 4 2 1372

breast-l 9 0 2 286

breast-p 0 32 2 198

breast-tissue 0 9 6 106

breast-w 0 30 2 569

cardiotocography 0 21 3 2126

climate 0 18 2 540

credit-a 8 6 2 690

credit-g 13 7 2 1000

cylinder-bands 16 19 2 540

dermatology 33 1 6 366

glass 0 9 7 214

heart-c 6 7 5 303

heart-h 6 7 5 294

indian-liver 1 9 2 579

ionosphere 0 34 2 351

iris 0 4 3 150

liver-disorders 0 6 2 345

lymphography 15 3 4 148

mammographic 4 1 2 944

parkinsons 0 22 2 195

pima 0 8 2 768

thoracic 13 3 2 470

thyroid 0 5 2 215

tic-tae-toe 9 0 2 958

vertebral-column-2c 0 6 2 310

vertebral-column-3c 0 6 3 310

waveform 0 21 3 5000

wine 0 13 3 178

yeast 0 8 10 1484

average value obtained by an algorithm at the end of the tenfold cross-validation proce-
dure. In the case of stochastic algorithms—cAnt-MinerPB, Unordered cAnt-MinerPB,
PSO/ACO2 and BioHEL—the average value is computed over 15 executions of the
tenfold cross-validation procedure (i.e., each algorithm is run 15 × 10 times for each
dataset); the remaining algorithms are deterministic and the average is computed over
a single run of the tenfold cross-validation (i.e., each algorithm is run 1 × 10 times for
each dataset). In this table, the value of the algorithm with the best accuracy is indicated
by △ symbol.

Table 4 presents the statistical test results according to the non-parametric Fried-
man test with the Hommel’s post-hoc test (Demšar, 2006; Garcı́a and Herrera, 2008): the
first column corresponds to the algorithm’s name, the second column corresponds to
the average rank—where the lower the rank the better the algorithm’s performance—
obtained in the Friedman test, the third column shows the p-value of the statistical test

12 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

Table 2: The 6 rule induction algorithms used in the second set of experiments, in ad-
dition to the cAnt-MinerPB and Unordered cAnt-MinerPB algorithms.

name reference description

Unordered CN2 (Clark and Boswell, 1991) A version of the well-known CN2 rule in-
duction algorithm that creates unordered
rules using a beam search procedure to cre-
ate a classification rule

C4.5rules (Quinlan, 1993) A rule induction algorithm that extracts a
set of classification rules from an unpruned
decision tree created by the well-known
C4.5 algorithm (Quinlan, 1993, 1996)

PART (Frank and Witten, 1998; Witten
and Frank, 2011)

A rule induction algorithm that combines a
sequential covering strategy with a decision
tree induction procedure to create a rule

JRip (Witten and Frank, 2011) Weka’s implementation of the RIPPER (Co-
hen, 1995) algorithm, a rule induction al-
gorithm that employs a global optimisa-
tion step in order to produce a list of rules,
which takes into account both the quality
and length of the rules

PSO/ACO2 (Holden and Freitas, 2008) A hybrid particle swarm optimisation/ant
colony optimisation (PSO/ACO) algorithm
for the discovery of classification rules. The
PSO/ACO2 algorithm follows a sequential
covering strategy and directly deals with
both continuous and nominal attribute val-
ues

BioHEL (Bacardit et al., 2009) A genetic algorithm (GA) that discovers a
list of classification rules using a sequential
covering strategy. Each rule is created using
a GA search

when the average rank is compared to the average rank of the algorithm with the best
rank (the ‘control’ algorithm), and the fourth column corresponds to the Hommel’s
critical value. A row is shown in italic-boldface when there is a statistically signifi-
cant difference at the 0.05 (5%) significance level between the average ranks of an algo-
rithm and the control algorithm, determined by the fact that the p-value is lower than
Hommel’s critical value—i.e., it corresponds to the case where the control algorithm is
significantly better than the algorithm in that row.

The Unordered cAnt-MinerPB using the rule selection conflict resolution strategy
(denoted as U-cAMPB [S]) achieved the best average rank, outperforming state-of-the-
art rule induction algorithms with statistically significant differences—namely PART,
Unordered CN2, C4.5rules and JRip—and also outperformed both PSO/ACO2 and
BioHEL algorithms with statistically significant differences. The predictive accuracy
results did not show statistically significant differences between the rule selection and
rule aggregation conflict resolution strategies, although there is a clear difference in
terms of the interpretability of the discovered rules (as discussed in Subsection 4.3).
While there are no statistically significant differences between cAnt-MinerPB and Un-
ordered cAnt-MinerPB algorithms, the results obtained by the proposed Unordered
cAnt-MinerPB are positive, overall: the discovery of unordered rules explicitly im-
proves their interpretability (i.e., a particular rule has a modular meaning independent

Evolutionary Computation Volume x, Number x 13

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

Ta
b

le
3:

A
v

er
ag

e
p

re
d

ic
ti

v
e

ac
cu

ra
cy

(a
ve

ra
ge

[s
ta

n
da

rd
er

ro
r]

)
in

%
,m

ea
su

re
d

b
y

te
n

fo
ld

cr
o

ss
-v

al
id

at
io

n
.

T
h

e
v

al
u

e
o

f
th

e
m

o
st

ac
cu

ra
te

al
g

o
ri

th
m

fo
r

a
g

iv
en

d
at

as
et

s
is

m
ar

k
ed

w
it

h
a
△

sy
m

b
o

l.

d
at

as
et

U
-c

A
M

P
B

[S
]

U
-c

A
M

P
B

[A
]

U
n

o
rd

er
ed

C
N

2
C

4.
5r

u
le

s
PA

R
T

JR
ip

c
A

n
t-

M
in

er
P
B

P
SO

/
A

C
O

2
B

io
H

E
L

an
n

ea
li

n
g

97
.7

0
[0

.1
3]

!
95

.5
3

[0
.2

3]
!

88
.1

0
[0

.8
4]

!
94

.2
2

[0
.6

2]
!

94
.8

8
[0

.9
8]

!
94

.4
3

[0
.8

1]
!

97
.3

4
[0

.1
1]

!
97

.2
5

[0
.0

8]
!

99
.7

6
[0

.0
0]

△

b
al

an
ce

-s
ca

le
77

.8
2

[0
.2

0]
!

88
.8

5
[0

.2
1]

△
79

.3
4

[1
.3

9]
!

74
.8

7
[1

.1
6]

!
77

.1
2

[1
.4

0]
!

72
.9

5
[1

.9
2]

!
76

.2
6

[0
.2

9]
!

77
.3

7
[0

.0
3]

!
69

.4
7

[0
.0

8]
!

b
an

k
n

o
te

98
.8

0
[0

.0
0]

△
98

.6
4

[0
.0

1]
!

96
.0

7
[0

.8
4]

!
98

.6
9

[0
.2

2]
!

98
.3

2
[0

.3
9]

!
98

.0
3

[0
.5

1]
!

98
.5

5
[0

.0
0]

!
98

.3
9

[0
.0

9]
!

97
.3

5
[0

.0
1]

!

b
re

as
t-

l
74

.0
2

[0
.1

9]
!

73
.5

9
[0

.3
5]

!
73

.4
4

[1
.8

1]
!

68
.5

6
[1

.9
3]

!
68

.9
4

[1
.8

0]
!

69
.2

6
[2

.0
4]

!
75

.2
7

[0
.3

5]
△

72
.0

6
[0

.0
7]

!
57

.0
1

[0
.1

4]
!

b
re

as
t-

p
75

.1
9

[0
.4

4]
!

76
.0

7
[0

.3
2]

△
73

.6
8

[1
.5

6]
!

74
.6

8
[1

.9
9]

!
72

.7
4

[3
.9

5]
!

75
.7

9
[0

.9
1]

!
69

.4
7

[0
.3

2]
!

68
.0

9
[0

.4
5]

!
57

.4
7

[1
.4

7]
!

b
re

as
t-

ti
ss

u
e

65
.9

1
[0

.6
7]

!
67

.5
8

[0
.7

2]
△

63
.3

5
[4

.5
1]

!
66

.1
6

[2
.9

7]
!

64
.3

6
[3

.6
3]

!
60

.1
8

[3
.3

5]
!

64
.1

6
[0

.9
8]

!
63

.0
7

[0
.8

5]
!

51
.1

1
[0

.3
1]

!

b
re

as
t-

w
95

.2
0

[0
.1

2]
△

95
.0

2
[0

.1
9]

!
93

.1
5

[1
.5

1]
!

94
.1

8
[1

.1
4]

!
94

.1
9

[1
.1

2]
!

93
.6

6
[1

.4
2]

!
94

.3
4

[0
.1

6]
!

94
.6

1
[0

.0
4]

!
92

.1
0

[0
.0

6]
!

ca
rd

io
to

co
g

ra
p

h
y

92
.4

6
[0

.0
1]

!
91

.5
3

[0
.0

1]
!

88
.9

9
[0

.5
9]

!
92

.8
5

[0
.5

3]
!

92
.8

5
[0

.5
2]

!
92

.6
6

[0
.6

2]
!

92
.7

1
[0

.0
1]

!
93

.8
4

[0
.0

9]
△

91
.3

6
[0

.0
2]

!

cl
im

at
e

93
.1

1
[0

.2
6]

△
92

.9
1

[0
.0

2]
!

91
.2

9
[0

.4
8]

!
92

.9
6

[1
.1

3]
!

92
.9

6
[0

.8
2]

!
91

.1
1

[0
.9

1]
!

93
.0

7
[0

.0
8]

!
92

.8
5

[0
.2

8]
!

83
.8

0
[0

.0
8]

!

cr
ed

it
-a

84
.9

3
[0

.2
8]

!
85

.6
8

[0
.1

6]
!

82
.9

3
[1

.4
9]

!
85

.5
3

[1
.5

3]
!

83
.3

3
[1

.0
4]

!
86

.5
2

[1
.1

0]
△

86
.1

0
[0

.2
3]

!
83

.8
3

[0
.0

4]
!

77
.3

3
[0

.1
4]

!

cr
ed

it
-g

72
.8

4
[0

.3
2]

!
71

.0
8

[0
.2

2]
!

74
.6

0
[0

.9
8]

△
71

.6
0

[0
.9

2]
!

70
.6

0
[1

.4
9]

!
72

.2
0

[1
.0

7]
!

73
.6

7
[0

.2
8]

!
70

.3
5

[0
.0

9]
!

64
.3

8
[0

.1
2]

!

cy
li

n
d

er
-b

an
d

s
72

.0
6

[0
.4

2]
!

71
.8

3
[0

.4
1]

!
76

.8
5

[2
.0

5]
△

76
.4

8
[2

.5
6]

!
72

.4
1

[2
.2

3]
!

68
.7

0
[2

.3
3]

!
72

.3
6

[0
.3

5]
!

69
.6

8
[0

.5
3]

!
72

.0
2

[0
.1

0]
!

d
er

m
at

o
lo

g
y

90
.5

4
[0

.3
2]

!
90

.0
8

[0
.4

4]
!

87
.4

3
[1

.6
0]

!
93

.4
5

[1
.2

2]
!

94
.2

6
[1

.1
7]

△
88

.0
1

[2
.2

5]
!

92
.4

0
[0

.4
0]

!
92

.4
8

[0
.0

2]
!

92
.2

4
[0

.1
4]

!

g
la

ss
69

.4
6

[0
.8

1]
!

68
.2

4
[0

.8
1]

!
65

.7
3

[3
.9

7]
!

68
.6

3
[1

.7
0]

!
72

.8
1

[3
.4

2]
!

65
.7

1
[3

.7
4]

!
73

.1
1

[0
.6

1]
△

70
.5

7
[0

.2
8]

!
59

.2
3

[0
.5

9]
!

h
ea

rt
-c

56
.6

6
[0

.5
0]

!
57

.1
3

[0
.5

2]
△

55
.8

1
[2

.2
7]

!
53

.1
2

[1
.9

2]
!

53
.8

3
[1

.3
3]

!
53

.5
0

[1
.5

2]
!

55
.2

1
[0

.4
1]

!
53

.2
3

[0
.2

3]
!

45
.3

9
[0

.3
8]

!

h
ea

rt
-h

64
.6

4
[0

.4
5]

!
64

.0
2

[0
.3

3]
!

60
.9

0
[1

.2
0]

!
63

.3
1

[1
.4

0]
!

63
.6

4
[1

.5
8]

!
63

.9
3

[1
.2

9]
!

65
.9

2
[0

.3
5]

!
63

.1
8

[0
.4

5]
!

82
.0

6
[0

.4
1]

△

in
d

ia
n

-l
iv

er
69

.2
6

[0
.2

7]
!

70
.5

2
[0

.0
6]

!
71

.6
7

[0
.7

8]
△

68
.2

3
[1

.5
3]

!
70

.6
4

[1
.7

0]
!

67
.8

8
[1

.5
7]

!
68

.2
9

[0
.1

6]
!

68
.2

3
[0

.3
6]

!
58

.0
4

[0
.1

6]
!

io
n

o
sp

h
er

e
89

.4
4

[0
.3

3]
!

89
.8

5
[0

.3
5]

!
91

.7
3

[2
.7

7]
△

90
.8

5
[2

.5
9]

!
90

.5
9

[2
.0

0]
!

87
.4

5
[2

.6
4]

!
89

.9
5

[0
.2

3]
!

86
.0

6
[0

.2
0]

!
87

.1
6

[0
.2

1]
!

ir
is

94
.3

3
[0

.2
0]

!
93

.8
7

[0
.1

9]
!

92
.6

6
[1

.5
5]

!
95

.3
2

[1
.4

2]
!

93
.3

3
[1

.9
9]

!
96

.0
0

[1
.0

9]
△

93
.1

3
[0

.2
6]

!
95

.3
8

[0
.0

1]
!

95
.2

0
[0

.0
9]

!

li
v

er
-d

is
o

rd
er

s
69

.7
8

[0
.6

4]
△

69
.4

9
[0

.4
6]

!
66

.3
7

[1
.5

2]
!

64
.9

0
[3

.2
1]

!
62

.7
0

[3
.4

0]
!

66
.3

4
[2

.8
0]

!
66

.7
1

[0
.4

1]
!

68
.1

3
[0

.3
3]

!
58

.4
8

[0
.2

6]
!

ly
m

p
h

o
g

ra
p

h
y

79
.9

6
[0

.4
7]

!
80

.8
2

[0
.6

8]
△

78
.9

1
[4

.0
8]

!
79

.1
4

[2
.6

6]
!

71
.6

7
[3

.9
2]

!
76

.3
9

[3
.8

3]
!

76
.3

9
[0

.6
2]

!
54

.8
9

[0
.0

6]
!

75
.1

2
[0

.4
4]

!

m
am

m
o

g
ra

p
h

ic
83

.1
2

[0
.0

2]
!

83
.2

6
[0

.0
1]

!
77

.7
6

[1
.0

2]
!

83
.5

8
[0

.8
5]

△
81

.7
7

[1
.0

8]
!

82
.7

3
[1

.2
4]

!
83

.1
1

[0
.0

1]
!

82
.6

0
[0

.1
2]

!
76

.0
4

[0
.0

4]
!

p
ar

k
in

so
n

s
87

.7
5

[0
.4

5]
△

85
.2

8
[0

.6
2]

!
86

.6
6

[1
.3

8]
!

83
.4

9
[2

.2
3]

!
86

.0
5

[2
.4

7]
!

84
.5

3
[2

.5
5]

!
87

.4
2

[0
.5

0]
!

87
.3

6
[0

.1
7]

!
80

.9
3

[0
.7

9]
!

p
im

a
74

.5
5

[0
.3

0]
!

74
.3

2
[0

.1
5]

!
73

.4
2

[1
.1

3]
!

74
.3

2
[1

.7
3]

!
71

.7
3

[1
.7

1]
!

73
.5

5
[1

.6
3]

!
74

.6
7

[0
.2

0]
△

73
.0

9
[0

.0
5]

!
65

.6
2

[0
.1

2]
!

th
o

ra
ci

c
82

.8
7

[0
.0

2]
!

84
.8

3
[0

.0
2]

!
85

.1
0

[0
.3

1]
△

81
.7

0
[1

.3
9]

!
78

.0
8

[1
.1

0]
!

84
.6

8
[0

.4
3]

!
82

.8
9

[0
.0

4]
!

80
.7

0
[0

.3
0]

!
71

.4
0

[0
.4

3]
!

th
y

ro
id

92
.8

3
[0

.3
0]

!
92

.5
2

[0
.2

8]
!

94
.4

2
[1

.8
3]

△
92

.0
8

[2
.1

2]
!

93
.0

1
[2

.2
5]

!
92

.5
3

[1
.6

2]
!

91
.5

7
[0

.0
2]

!
91

.7
6

[0
.0

3]
!

92
.1

2
[0

.1
0]

!

ti
c-

ta
e-

to
e

91
.6

0
[0

.3
9]

!
79

.9
7

[0
.3

5]
!

98
.7

4
[0

.5
1]

!
98

.7
5

[0
.6

4]
!

94
.7

8
[0

.6
9]

!
97

.6
0

[0
.6

0]
!

81
.3

6
[0

.2
1]

!
10

0.
00

[0
.0

0]
△

10
0.

00
[0

.0
0]

△

v
er

te
b

ra
l-

co
lu

m
n

-2
c

81
.4

0
[0

.4
4]

!
82

.0
0

[0
.3

5]
!

80
.0

0
[2

.1
4]

!
79

.3
5

[1
.9

3]
!

80
.3

2
[0

.7
5]

!
82

.5
8

[2
.3

2]
△

79
.6

1
[0

.1
0]

!
81

.7
8

[0
.0

7]
!

68
.8

1
[0

.1
6]

!

v
er

te
b

ra
l-

co
lu

m
n

-3
c

79
.4

0
[0

.4
1]

!
80

.4
7

[0
.3

1]
!

76
.1

1
[2

.1
1]

!
79

.3
5

[1
.6

1]
!

80
.0

0
[1

.4
3]

!
80

.3
2

[2
.3

3]
!

81
.3

3
[0

.2
0]

!
82

.9
0

[0
.0

8]
△

67
.9

7
[0

.1
8]

!

w
av

ef
o

rm
80

.1
9

[0
.0

2]
!

80
.6

4
[0

.0
1]

!
69

.5
0

[0
.7

5]
!

77
.8

0
[0

.4
5]

!
78

.4
8

[0
.7

1]
!

79
.8

2
[0

.5
0]

!
75

.4
7

[0
.0

2]
!

81
.7

3
[0

.1
0]

△
76

.0
5

[0
.0

2]
!

w
in

e
95

.4
6

[0
.3

0]
!

95
.4

8
[0

.3
2]

△
93

.8
0

[1
.5

4]
!

91
.0

3
[2

.0
5]

!
91

.5
4

[1
.5

2]
!

92
.6

8
[2

.0
9]

!
94

.5
1

[0
.3

1]
!

89
.1

7
[0

.1
6]

!
85

.5
1

[0
.3

0]
!

y
ea

st
57

.4
5

[0
.0

3]
!

57
.3

9
[0

.0
3]

!
49

.7
2

[1
.1

2]
!

58
.2

2
[0

.8
5]

△
53

.4
3

[0
.8

8]
!

56
.8

7
[1

.1
5]

!
56

.0
8

[0
.0

8]
!

52
.9

8
[0

.2
7]

!
55

.0
4

[0
.0

7]
!

14 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

Table 4: Statistical test results of the algorithms’ average predictive accuracies accord-
ing to the non-parametric Friedman test with the Hommel’s post-hoc test. Statistically
significant differences at the α = 0.05 significance level are shown in italic-boldface.

Algorithm Avg. Rank p-value Hommel

U-cAMPB [S] (control) 3.37 – –

U-cAMPB [A] 3.56 0.7841 0.05

cAnt-MinerPB 4.15 0.2538 0.025

C4.5rules 5.01 0.0165 0.0166

PSO/ACO2 5.25 0.0061 0.0125

PART 5.25 0.0061 0.01

JRip 5.40 0.0030 0.0083

Unordered CN2 5.53 0.0016 0.0071

BioHEL 7.45 2.5E-9 0.0062

of the others rules), without sacrificing the predictive accuracy. More interestingly, the
Unordered cAnt-MinerPB significantly outperformed the Unordered CN2 algorithm,
which is the only other algorithm that discovers unordered rules. Both algorithms
share a similar strategy to create the rules, consisting of creating rules for each class
value separately—i.e., the consequent of the rule is fixed during the creation process.
Therefore, the difference in performance can be attributed mainly to the ACO search
strategy, which allows the Unordered cAnt-MinerPB to effectively explore the search
space for the best set of rules, instead of using a greedy strategy as the Unordered CN2.

4.3 Interpretability of the discovered rules

In order to quantify the interpretability of the discovered rules, we propose a new mea-
sure, called prediction-explanation size. Before presenting the details of how this measure
is calculated, it is worth discussing the problems with the commonly-used model size
as a measure of comprehensibility or interpretability (Freitas, 2013). The model size
measure, usually determined by the number of rules and the size of rules present in the
list/set of rules, ignores how the rules are used to make class predictions—e.g., if a sin-
gle or multiple rules are needed to classify an example. In addition, there is evidence
showing that, in some applications, larger models were considered by users as more
comprehensible than smaller ones, since they contained more informative attributes
to the user (Lavrac, 1999; Lavesson, 2011). An empirical study tested the assumption
that smaller models are more comprehensible to users (Huysmans et al., 2011). The
findings of this study indicate that the comprehensibility of the model from a user per-
spective tends to increase in line with the size of the model. Additionally, the concept
of ‘small’ or ‘large’ is subjective—e.g., in (Schwabacher and Langley, 2001) it is reported
that users found that a model with 41 rules was considered too large to be analysed by
a user, while in (Tsumoto, 2000) a user analysed 29,050 rules and identified a subset
of 220 interesting rules. Therefore, the model size—either measured as the number of
rules or the total number of attribute-conditions of the rules—may not be an adequate
indicator of the comprehensibility of a classification model.

We define the prediction-explanation size as the average number of attributes-
conditions (terms) that are evaluated in the model in order to predict the class value
of an example, where the average is computed over all examples being classified in the

Evolutionary Computation Volume x, Number x 15

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

Ta
b

le
5:

A
v

er
ag

e
p

re
d

ic
ti

o
n

-e
xp

la
n

at
io

n
si

ze
,m

ea
su

re
d

b
y

te
n

fo
ld

cr
o

ss
-v

al
id

at
io

n
.

T
h

e
v

al
u

e
o

f
th

e
b

es
t

al
g

o
ri

th
m

(l
o

w
es

t
v

al
u

e)
fo

r
a

g
iv

en
d

at
as

et
s

is
m

ar
k

ed
w

it
h

a
△

sy
m

b
o

l.

d
at

as
et

U
-c

A
M

P
B

[S
]

U
-c

A
M

P
B

[A
]

U
n

o
rd

er
ed

C
N

2
C

4.
5r

u
le

s
PA

R
T

JR
ip

c
A

n
t-

M
in

er
P
B

P
SO

/
A

C
O

2
B

io
H

E
L

an
n

ea
li

n
g

2.
14

[0
.0

2]
△

5.
64

[0
.0

8]
!

4.
49

[0
.2

1]
!

19
.9

2
[0

.9
9]

!
39

.5
3

[3
.0

2]
!

21
.9

7
[1

.5
5]

!
7.

39
[0

.1
4]

!
26

.9
7

[0
.3

6]
!

8.
35

[0
.0

5]
!

b
al

an
ce

-s
ca

le
1.

25
[0

.0
1]

△
4.

86
[0

.0
2]

!
3.

58
[0

.0
9]

!
42

.7
8

[0
.8

4]
!

24
.1

8
[1

.2
7]

!
10

.9
9

[0
.6

2]
!

4.
40

[0
.0

1]
!

23
.6

6
[0

.3
3]

!
98

.1
9

[0
.4

6]
!

b
an

k
n

o
te

1.
75

[0
.0

1]
△

5.
71

[0
.0

4]
!

4.
09

[0
.0

8]
!

11
.9

4
[0

.4
4]

!
6.

50
[0

.2
0]

!
11

.4
5

[0
.4

4]
!

4.
56

[0
.0

4]
!

6.
48

[0
.0

3]
!

24
.9

1
[0

.3
0]

!

b
re

as
t-

l
2.

64
[0

.0
4]

△
8.

36
[0

.1
4]

!
2.

88
[0

.1
4]

!
13

.3
2

[1
.6

6]
!

16
.9

8
[2

.4
2]

!
3.

42
[0

.5
0]

!
4.

00
[0

.1
2]

!
13

.1
5

[0
.2

9]
!

75
.1

3
[0

.5
7]

!

b
re

as
t-

p
1.

48
[0

.0
3]

!
4.

77
[0

.0
5]

!
3.

40
[0

.1
5]

!
4.

31
[0

.5
6]

!
5.

40
[0

.8
5]

!
0.

80
[0

.4
4]

△
4.

91
[0

.0
7]

!
9.

04
[0

.4
9]

!
35

.8
5

[0
.4

2]
!

b
re

as
t-

ti
ss

u
e

1.
42

[0
.0

1]
△

4.
43

[0
.0

6]
!

2.
10

[0
.2

5]
!

12
.5

0
[0

.8
2]

!
9.

67
[0

.7
2]

!
6.

35
[0

.4
6]

!
3.

92
[0

.0
3]

!
6.

85
[0

.1
3]

!
19

.7
1

[0
.4

0]
!

b
re

as
t-

w
1.

30
[0

.0
1]

△
7.

00
[0

.0
9]

!
5.

51
[0

.3
1]

!
9.

15
[0

.3
9]

!
4.

90
[0

.2
6]

!
6.

67
[0

.5
4]

!
3.

13
[0

.0
9]

!
5.

35
[0

.0
7]

!
22

.8
9

[0
.2

3]
!

ca
rd

io
to

co
g

ra
p

h
y

2.
71

[0
.0

3]
△

8.
86

[0
.1

7]
!

5.
44

[0
.3

7]
!

74
.8

2
[4

.5
6]

!
29

.8
0

[1
.1

4]
!

34
.0

1
[2

.5
1]

!
5.

66
[0

.0
6]

!
21

.9
5

[0
.2

1]
!

12
2.

83
[0

.4
6]

!

cl
im

at
e

1.
75

[0
.0

4]
△

4.
73

[0
.0

5]
!

5.
77

[0
.2

2]
!

14
.8

8
[0

.9
4]

!
2.

58
[0

.1
5]

!
7.

31
[0

.5
5]

!
2.

93
[0

.0
7]

!
3.

40
[0

.1
2]

!
36

.7
1

[0
.4

3]
!

cr
ed

it
-a

2.
29

[0
.0

3]
△

8.
52

[0
.1

5]
!

5.
46

[0
.2

1]
!

17
.3

9
[0

.7
9]

!
25

.7
5

[4
.6

2]
!

5.
72

[1
.1

3]
!

3.
34

[0
.1

1]
!

24
.1

4
[0

.3
7]

!
10

5.
55

[0
.5

3]
!

cr
ed

it
-g

2.
72

[0
.0

3]
△

13
.2

5
[0

.1
3]

!
4.

69
[0

.1
6]

!
41

.8
2

[3
.6

1]
!

73
.2

1
[3

.4
0]

!
8.

25
[1

.1
8]

!
13

.7
0

[0
.3

5]
!

13
3.

15
[2

.1
9]

!
23

5.
32

[1
.0

3]
!

cy
li

n
d

er
-b

an
d

s
3.

21
[0

.0
5]

△
12

.7
0

[0
.1

4]
!

3.
40

[0
.2

1]
!

54
.8

2
[1

.1
7]

!
43

.2
8

[2
.5

2]
!

13
.8

8
[1

.7
8]

!
25

.9
9

[0
.7

4]
!

47
.6

2
[0

.5
7]

!
99

.4
6

[0
.7

9]
!

d
er

m
at

o
lo

g
y

3.
66

[0
.0

6]
!

15
.1

8
[0

.2
0]

!
2.

76
[0

.1
4]

△
22

.7
7

[0
.7

6]
!

13
.8

7
[0

.7
2]

!
17

.8
9

[1
.0

0]
!

14
.9

1
[0

.2
4]

!
13

.9
7

[0
.0

9]
!

22
.4

8
[0

.2
4]

!

g
la

ss
2.

21
[0

.0
2]

△
6.

01
[0

.0
8]

!
3.

46
[0

.3
0]

!
29

.8
4

[1
.1

0]
!

21
.2

1
[1

.8
3]

!
12

.7
8

[0
.7

7]
!

5.
26

[0
.0

8]
!

26
.5

3
[0

.3
3]

!
44

.1
4

[0
.4

1]
!

h
ea

rt
-c

2.
76

[0
.0

2]
△

12
.0

4
[0

.1
1]

!
3.

80
[0

.3
5]

!
43

.6
6

[1
.7

8]
!

52
.7

6
[2

.0
4]

!
6.

34
[1

.2
8]

!
8.

01
[0

.2
3]

!
29

.0
5

[0
.4

4]
!

10
7.

23
[0

.4
7]

!

h
ea

rt
-h

2.
62

[0
.0

5]
△

11
.2

1
[0

.1
1]

!
4.

64
[0

.1
7]

!
45

.4
8

[0
.7

8]
!

24
.7

7
[1

.7
7]

!
4.

29
[0

.6
9]

!
5.

71
[0

.2
0]

!
16

.5
4

[0
.1

9]
!

51
.9

9
[0

.4
7]

!

in
d

ia
n

-l
iv

er
2.

91
[0

.0
3]

△
8.

49
[0

.0
7]

!
3.

37
[0

.2
2]

!
19

.6
3

[4
.0

1]
!

14
.2

4
[1

.8
1]

!
3.

94
[0

.6
1]

!
5.

05
[0

.0
9]

!
45

.1
0

[0
.7

1]
!

11
5.

35
[1

.0
5]

!

io
n

o
sp

h
er

e
2.

57
[0

.0
4]

△
6.

35
[0

.0
9]

!
4.

69
[0

.3
0]

!
13

.1
2

[0
.4

2]
!

8.
99

[0
.4

6]
!

4.
89

[0
.6

8]
!

5.
11

[0
.1

1]
!

8.
05

[0
.2

9]
!

18
.5

4
[0

.1
6]

!

ir
is

1.
37

[0
.0

1]
△

2.
93

[0
.0

6]
!

2.
03

[0
.1

3]
!

3.
47

[0
.0

5]
!

2.
53

[0
.1

0]
!

2.
46

[0
.1

4]
!

2.
89

[0
.0

5]
!

1.
67

[0
.0

0]
!

6.
71

[0
.0

7]
!

li
v

er
s-

d
is

o
rd

er
2.

20
[0

.0
2]

△
7.

01
[0

.0
8]

!
3.

55
[0

.2
6]

!
26

.3
4

[1
.4

9]
!

13
.4

7
[1

.2
9]

!
5.

81
[0

.7
1]

!
5.

24
[0

.0
7]

!
33

.2
7

[0
.2

0]
!

62
.4

0
[0

.5
0]

!

ly
m

p
h

o
g

ra
p

h
y

2.
57

[0
.0

8]
△

9.
13

[0
.1

0]
!

4.
74

[0
.2

9]
!

13
.3

2
[0

.5
2]

!
10

.8
0

[0
.7

3]
!

7.
72

[0
.4

8]
!

6.
81

[0
.5

1]
!

2.
08

[0
.0

3]
!

28
.9

6
[0

.2
9]

!

m
am

m
o

g
ra

p
h

ic
1.

77
[0

.0
3]

△
8.

16
[0

.0
9]

!
3.

88
[0

.1
1]

!
6.

59
[0

.1
7]

!
8.

41
[2

.1
4]

!
2.

47
[0

.1
7]

!
3.

42
[0

.0
7]

!
7.

22
[0

.2
7]

!
12

1.
34

[0
.6

4]
!

p
ar

k
in

so
n

s
1.

45
[0

.0
3]

△
4.

73
[0

.0
5]

!
3.

89
[0

.2
7]

!
11

.7
9

[0
.4

7]
!

5.
45

[0
.4

8]
!

6.
65

[0
.6

5]
!

3.
00

[0
.0

6]
!

4.
69

[0
.0

5]
!

18
.3

3
[0

.2
6]

!

p
im

a
2.

06
[0

.0
1]

△
8.

54
[0

.1
2]

!
4.

20
[0

.1
8]

!
14

.9
4

[0
.7

6]
!

9.
06

[0
.6

2]
!

6.
01

[0
.7

2]
!

4.
95

[0
.0

6]
!

45
.6

5
[0

.3
6]

!
12

0.
05

[0
.6

7]
!

th
o

ra
ci

c
4.

28
[0

.0
8]

!
11

.1
9

[0
.5

6]
!

4.
56

[0
.2

4]
!

25
.5

6
[1

.5
1]

!
31

.3
0

[2
.4

3]
!

0.
40

[0
.3

1]
△

4.
59

[0
.3

0]
!

31
.0

7
[1

.7
7]

!
96

.4
3

[0
.4

6]
!

th
y

ro
id

2.
17

[0
.0

5]
△

4.
17

[0
.0

9]
!

2.
35

[0
.2

1]
!

8.
62

[0
.1

6]
!

5.
23

[0
.1

5]
!

4.
74

[0
.3

5]
!

3.
06

[0
.0

6]
!

5.
32

[0
.0

3]
!

11
.2

2
[0

.0
9]

!

ti
c-

ta
c-

to
e

2.
37

[0
.0

2]
△

5.
24

[0
.0

9]
!

3.
65

[0
.1

1]
!

33
.3

4
[0

.8
7]

!
48

.9
6

[1
.9

1]
!

26
.9

1
[2

.0
1]

!
8.

86
[0

.5
8]

!
17

.5
9

[0
.0

0]
!

71
.4

8
[0

.1
6]

!

v
er

te
b

ra
l-

co
lu

m
n

-2
c

1.
49

[0
.0

1]
△

5.
48

[0
.0

8]
!

2.
52

[0
.1

8]
!

7.
25

[0
.6

7]
!

3.
12

[0
.2

2]
!

5.
78

[0
.8

0]
!

3.
12

[0
.0

6]
!

8.
35

[0
.1

0]
!

38
.1

6
[0

.3
1]

!

v
er

te
b

ra
l-

co
lu

m
n

-3
c

1.
62

[0
.0

1]
△

5.
72

[0
.0

5]
!

3.
68

[0
.1

9]
!

8.
68

[0
.5

2]
!

5.
37

[0
.2

6]
!

8.
99

[1
.0

4]
!

3.
72

[0
.0

6]
!

8.
86

[0
.1

0]
!

39
.2

8
[0

.2
3]

!

w
av

ef
o

rm
2.

95
[0

.0
1]

△
9.

00
[0

.0
9]

!
6.

16
[0

.1
4]

!
22

9.
06

[5
.6

9]
!

15
1.

41
[3

.2
3]

!
82

.3
5

[5
.0

1]
!

5.
58

[0
.0

6]
!

27
9.

83
[1

.3
9]

!
35

7.
86

[1
.2

7]
!

w
in

e
1.

12
[0

.0
1]

△
3.

50
[0

.0
6]

!
3.

46
[0

.1
7]

!
5.

24
[0

.1
1]

!
3.

62
[0

.1
3]

!
4.

51
[0

.3
1]

!
2.

34
[0

.0
4]

!
5.

28
[0

.0
9]

!
11

.4
9

[0
.1

3]
!

y
ea

st
3.

69
[0

.0
3]

△
14

.1
8

[0
.0

9]
!

5.
47

[0
.0

8]
!

11
3.

97
[4

.4
3]

!
32

1.
17

[1
7.

77
]
!

34
.4

4
[2

.2
3]

!
11

.3
1

[0
.2

6]
!

35
7.

65
[2

.6
2]

!
24

5.
87

[1
.2

6]
!

16 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

Table 6: Statistical test results of the algorithms’ average prediction-explanation size
according to the non-parametric Friedman test with the Hommel’s post-hoc test. Sta-
tistically significant differences at the α = 0.05 significance level are shown in italic-
boldface.

Algorithm Avg. Rank p-value Hommel

U-cAMPB [S] (control) 1.12 – –

Unordered CN2 2.53 0.0399 0.05

cAnt-MinerPB 3.50 5.2E-4 0.025

JRip 4.68 1.9E-7 0.0166

U-cAMPB [A] 4.75 1.1E-7 0.0125

PSO/ACO2 6.21 1.0E-13 0.01

PART 6.25 7.1E-14 0.0083

C4.5rules 7.15 1.2E-18 0.0071

BioHEL 8.78 4.9E-29 0.0062

test set. The rationale behind the prediction-explanation size measure is that it provides
an estimate of the number of attributes-conditions that a user has to analyse in order
to interpret a model’s prediction and those attribute-conditions can be regarded as an
explanation for the class prediction. In the case of cAnt-MinerPB, PART, C4.5rules,
JRip, PSO/ACO2 and BioHEL algorithms, which produce an ordered list of rules, the
prediction-explanation size is calculated taking into account all rules that are evaluated
in order to make a prediction. E.g., if there are 3 rules in the list, each composed by 3
attributes-conditions, and the second rule is used to make a prediction, the prediction-
explanation size is the sum of the attributes-conditions of the first and second rules.
While the first rule is not directly involved in the prediction, it is indirectly involved,
since the second rule is only evaluated if the first rule is not used (i.e., its attribute-
conditions evaluate to false).

In the case of the Unordered cAnt-MinerPB algorithm, which produces a set of
rules (unordered rules), the prediction-explanation size depends on the conflict resolu-
tion strategy used. When the rule selection strategy is used, only one rule is respon-
sible for the prediction and therefore, the prediction-explanation size is the number
of attribute-conditions of the rule. When the rule aggregation strategy is used, the
prediction-explanation size is the sum of the attribute-conditions of the rules that cover
the example, since all rules that cover the example contribute to the final prediction.
The Unordered CN2 uses a similar rule aggregation strategy to resolve conflicts, and
therefore the same definition for the prediction-explanation size. It should be noted
that in the Unordered cAnt-MinerPB algorithm, each rule does have a modular mean-
ing independent of the others, regardless of the conflict resolution strategy used, since
the order of the rules is not important.

Table 5 presents the results (average [standard error]) concerning the prediction-
explanation size of the models discovered by all the algorithms used in the second
set of experiments (Subsection 4.2), the lower the value the better the algorithm per-
formance. In this table, the value of the algorithm with the best prediction-explanation
size is indicated by △ symbol. Table 6 presents the statistical test results according to the
non-parametric Friedman test with the Hommel’s post-hoc test—where the lower the
rank the better the algorithm’s performance. A row is shown in italic-boldface when

Evolutionary Computation Volume x, Number x 17

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

IF suprapapillary-epidermis = 3 ELSE IF rete-ridges = 2
THEN class = 1 AND spongiosis = 0

THEN class = 1
ELSE IF focal-hypergranulosis = 2

THEN class = 3 ELSE IF papillary-dermis = 3
THEN class = 5

ELSE IF oral-mucosal = 2

THEN class = 3 ELSE IF scaling = 3
AND knee-elbow = 0

ELSE IF suprapapillary-epidermis = 2 AND koebner-phenomenon = 0
THEN class = 1 THEN class = 2

(a) Ordered rules used by cAnt-MinerPB.

IF eosinophils-infiltrate = 1 IF scaling = 3

AND polygonal-papules = 0 AND polygonal-papules = 0
AND disappearance-granular-layer = 0 AND hyperkeratosis = 0
AND suprapapillary-epidermis = 0 AND koebner-phenomenon = 0

AND koebner-phenomenon = 0 AND family-history = 0
THEN class = 2 [0,14,0,0,4,0] AND munro-microabcess = 0

AND disappearance-granular-layer = 0
THEN class = 2 [3,10,0,0,0,0]

(b) Rules used by Unordered cAnt-MinerPB [A] (the class frequencies are shown between brackets).

IF spongiosis = 3

AND perifollicular-parakeratosis = 0
AND vacuolisation-basal-layer = 0

THEN class = 2

(c) Rule used by Unordered cAnt-MinerPB [S] (the one with the highest quality).

Figure 4: Rules used to classify a particular test example from the dermatology dataset:
(a) in cAnt-MinerPB, rules need to be evaluated following their order—rule 7 (bottom
rule from the second column) is used only if all previous rules do not classify the ex-
ample (total of 10 attribute-conditions); (b) Unordered cAnt-MinerPB [A] can make the
same prediction using 2 rules (total of 12 attribute-conditions); (c) Unordered cAnt-
MinerPB [S] uses only 1 rule (total of 3 attribute-conditions) to make the same predic-
tion.

there is a statistically significant difference at the 0.05 (5%) significance level between
the average ranks of an algorithm and the control algorithm, determined by the fact
that the p-value is lower than Hommel’s critical value—i.e., it corresponds to the case
where the control algorithm is significantly better than the algorithm in that row.

On one hand, the advantage of unordered rules combined with the rule selection
strategy (denoted as U-cAMPB [S]) is clear: in 29 out of the 32 datasets, it has the lowest
number of attribute-conditions involved in the classification of an example. It outper-
formed all other algorithms with statistically significant differences. On the other hand,
the results using the rule aggregation strategy (denoted as U-cAMPB [A]) were some-
what unexpected: U-cAMPB [A] was statistically significantly worse that the U-cAMPB

[S], and even achieved a worse average rank than the cAnt-MinerPB. This is due to the
fact that in the set of rules discovered by U-cAMPB [A], rules are longer (with more
attribute-conditions) on average and they may overlap when classifying an example.
Since all rules covering an example will be taken into consideration in the prediction-
explanation size calculation, it leads to an increased number of attribute-conditions.
This is illustrated in Figures 4 and 5. Figure 4 shows the rules involved to classify
a particular test example of the dermatology dataset: cAnt-MinerPB uses a total of 10

18 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

IF ink_type = cover ELSE IF press_speed <= 1325.0

AND blade_mfg = benton THEN class = band (16,5)
AND grain_screened = yes

THEN class = band ELSE IF press_speed <= 1495.0
AND press = 802

ELSE IF paper_type = super AND press_type = albert70
THEN band THEN class = noband

ELSE IF press_type = motter70 ELSE IF press_speed > 2025.0
AND plating_tank = 1910 AND viscosity > 52.5

AND press_speed > 1565.0 AND paper_type = coated
AND type_cylinder = yes THEN class = noband

THEN class = noband (1,12)

ELSE IF ink_temperature > 16.9
ELSE IF press_speed > 2184.5 THEN class = band

THEN class = noband (10,75)
ELSE IF viscosity > 62.5

ELSE IF humifity <= 69.5 AND solvent_type = line
AND ink_type = coated AND proof_ctd_ink = yes
AND grain_screened = no THEN class = band

THEN class = noband

(a) Ordered rules used by cAnt-MinerPB.

IF press = 815 IF viscosity > 64.5
AND current_density > 36.0 THEN class = band [16,12]

THEN class = band [51,15]
IF type_cylinder = no

IF humifity > 89.5 AND ink_type = uncoated
AND varnish_pct <= 0.25 AND paper_type = uncoated

THEN class = band [13,9] AND wax <= 2.55

THEN class = band [20,10]
IF type_cylinder = no

AND solvent_type = line IF viscosity > 62.5
AND ink_type = uncoated AND plating_tank = 1910
AND hardener > 0.95 AND proof_ctd_ink = yes

THEN class = band [23,18] THEN class = band [16,9]

(b) Rules used by Unordered cAnt-MinerPB [A] (the class frequencies are shown between brackets).

IF press_type = woodhoe70
AND press = 815

AND wax <= 2.65
AND roller_durometer > 34.0

AND solvent_type = line
THEN class = band

(c) Rule used by Unordered cAnt-MinerPB [S] (the one with the highest quality).

Figure 5: Rules used to classify a particular test example from the cylinder-bands
dataset: (a) in cAnt-MinerPB, rules need to be evaluated following their order—rule
10 (bottom rule from the second column) is used only if all previous rules do not clas-
sify the example (total of 23 attribute-conditions); (b) Unordered cAnt-MinerPB [A] can
make the same prediction using 6 rules (total of 16 attribute-conditions); (c) Unordered
cAnt-MinerPB [S] uses only 1 rule (total of 5 attribute-conditions) to make the same
prediction.

Evolutionary Computation Volume x, Number x 19

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

attribute-conditions over 7 rules; U-cAMPB [A] makes the same (correct) prediction
using a total of 12 attribute conditions over 2 rules—the numbers enclosed in brackets
represent the class frequencies of the rule used to decide the final class prediction by the
subset of rules that cover the example; U-cAMPB [S] uses only 3 attribute-conditions
over 1 rule to make the same prediction, emphasising the advantage of unordered rules
in combination with the rule selection strategy. A similar behaviour is observed in the
cylinder-bands dataset shown in Figure 5: cAnt-MinerPB uses a total of 23 attribute-
conditions over 10 rules; U-cAMPB [A] makes the same (correct) prediction using a to-
tal of 16 attribute-conditions over 6 rules; U-cAMPB [S] uses only 5 attribute-conditions
over 1 rule to make the same prediction. The behaviour illustrated in these figures is
reflected in the average values presented in Table 5, where U-cAMPB [S] consistently
uses a smaller number of attribute-conditions to make the predictions.

Overall, these results are positive: we were able to improve the interpretability of
the rules (measured as the prediction-explanation size) by discovering unordered rules,
with no negative impact on the predictive accuracy. The Unordered cAnt-MinerPB

with the rule selection strategy was the algorithm that achieved the best rank in terms
of both predictive accuracy and prediction-explanation size measure, significantly out-
performing state-of-the-art rule induction algorithms.

4.4 Comparisons with SVM (Support Vector Machines)

We also compared the predictive accuracy of Unordered cAnt-MinerPB against a SVM
classifier (Vapnik, 2000) using a RBF (radial basis function) kernel. A SVM with a
RBF kernel function produces a black-box model, which is not straightforward human-
interpretable, by applying non-linear transformations to the input data in order to find
optimal class separation—the input is projected into a high-dimensional space created
by the kernel function. SVMs are generally considered the state-of-the-art in classifica-
tion regarding predictive accuracy, specially useful in applications where the compre-
hensibility of the model is not important. While in this paper we address the compre-
hensibility of classification rules, it is informative to compare the predictive accuracy
of Unordered cAnt-MinerPB against a SVM classifier nevertheless.

The experiments with the SVM classifier were carried out using the same datasets
from Table 1. For each dataset, the parameters of the SVM were determined using a
grid search procedure.3 The results (average [standard error]) are presented in Table 7,
using the same tenfold cross-validation procedure—the results of the 2 configurations
for the Unordered cAnt-MinerPB (selection [S] and aggregation [A] conflict resolution
strategies) are shown again for convenience. Table 8 presents the statistical test results
according to the non-parametric Friedman test with the Hommel’s post-hoc test—same
test applied in the experiments described in Subsections 4.2 and 4.3—comparing the
SVM results against Unordered cAnt-MinerPB results. As can be seen in Table 8, there
are no statistically significant differences between the performances of the algorithms.
At the same time, Unordered cAnt-MinerPB has the advantage of producing a compre-
hensible (white-box) classification model in the form of classification rules, while SVM
produces a black-box model.

3We used the SVM implementation from http://www.csie.ntu.edu.tw/∼cjlin/libsvm. The parame-
ters were determined using the easy.py grid search script.

20 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

Table 7: Average predictive accuracy (average [standard error]) in %, measured by ten-
fold cross-validation. The value of the most accurate algorithm for a given datasets is
marked with a △ symbol.

dataset U-cAMPB [S] U-cAMPB [A] SVM

annealing 97.70 [0.13] △ 95.53 [0.23] ! 97.66 [0.51] !

balance-scale 77.82 [0.20] ! 88.85 [0.21] ! 100.00 [0.00] △

banknote 98.80 [0.00] ! 98.64 [0.01] ! 100.00 [0.00] △

breast-l 74.02 [0.19] △ 73.59 [0.35] ! 72.44 [3.01] !

breast-p 75.19 [0.44] ! 76.07 [0.32] △ 75.79 [0.91] !

breast-tissue 65.91 [0.67] ! 67.58 [0.72] △ 64.36 [3.63] !

breast-w 95.20 [0.12] ! 95.02 [0.19] ! 98.06 [0.56] △

cardiotocography 92.46 [0.01] ! 91.53 [0.01] ! 93.27 [0.63] △

climate 93.11 [0.26] △ 92.91 [0.02] ! 95.37 [0.84] △

credit-a 84.93 [0.28] ! 85.68 [0.16] △ 84.20 [1.41] !

credit-g 72.84 [0.32] ! 71.08 [0.22] ! 77.90 [1.04] △

cylinder-bands 72.06 [0.42] ! 71.83 [0.41] ! 79.44 [1.60] △

dermatology 90.54 [0.32] ! 90.08 [0.44] ! 97.54 [0.64] △

glass 69.46 [0.81] ! 68.24 [0.81] ! 71.08 [4.37] △

heart-c 56.66 [0.50] ! 57.13 [0.52] △ 55.44 [1.65] !

heart-h 64.64 [0.45] ! 64.02 [0.33] ! 68.76 [1.83] △

indian-liver 69.26 [0.27] ! 70.52 [0.06] △ 69.78 [1.03] !

ionosphere 89.44 [0.33] ! 89.85 [0.35] ! 92.89 [1.05] △

iris 94.33 [0.20] ! 93.87 [0.19] ! 95.33 [1.42] △

liver-disorders 69.78 [0.64] ! 69.49 [0.46] ! 73.33 [0.95] △

lymphography 79.96 [0.47] ! 80.82 [0.68] ! 83.19 [2.82] △

mammographic 83.12 [0.02] ! 83.26 [0.01] ! 83.57 [1.14] △

parkinsons 87.75 [0.45] ! 85.28 [0.62] ! 93.82 [1.88] △

pima 74.55 [0.30] ! 74.32 [0.15] ! 77.08 [1.45] △

thoracic 82.87 [0.02] ! 84.83 [0.02] ! 85.11 [0.00] △

thyroid 92.83 [0.30] ! 92.52 [0.28] ! 96.69 [1.88] △

tic-tae-toe 91.60 [0.39] ! 79.97 [0.35] ! 99.48 [0.32] △

vertebral-column-2c 81.40 [0.44] ! 82.00 [0.35] ! 83.87 [1.73] △

vertebral-column-3c 79.40 [0.41] ! 80.47 [0.31] ! 85.81 [1.61] △

waveform 80.19 [0.02] ! 80.64 [0.01] ! 86.70 [0.45] △

wine 95.46 [0.30] ! 95.48 [0.32] ! 97.16 [0.95] △

yeast 57.45 [0.03] ! 57.39 [0.03] ! 59.70 [0.96] △

Table 8: Statistical test results of the algorithms’ average predictive accuracy according
to the non-parametric Friedman test with the Hommel’s post-hoc test—no statistically
significant differences between SVM and Unordered cAnt-MinerPB (U-cAMPB) are ob-
served at the α = 0.05 significance level.

Algorithm Avg. Rank p-value Hommel

SVM (control) 1.81 – –

U-cAMPB [S] 2.06 0.3173 0.05

U-cAMPB [A] 2.12 0.2112 0.025

Evolutionary Computation Volume x, Number x 21

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

Table 9: Average computational time (average [standard error]) in seconds to complete
a fold of the cross-validation (single execution) during training. The deterministic Un-
ordered CN2, C4.5rules, PART and JRip algorithms take on average a second to com-
plete a fold in any of the datasets used in the experiments.

dataset U-cAMPB [S] U-cAMPB [A] cAnt-MinerPB PSO/ACO2 BioHEL SVM

annealing 414.98 [27.07] 419.31 [91.74] 21.70 [1.49] 15.96 [0.20] 5.85 [0.11] 16.60 [0.16]

balance-scale 20.25 [0.27] 21.02 [0.11] 1.49 [0.01] 9.61 [0.04] 30.90 [0.04] 6.80 [0.13]

banknote 46.03 [4.73] 76.91 [0.13] 15.08 [0.19] 9.50 [0.10] 14.54 [0.06] 10.10 [0.10]

breast-l 13.03 [0.05] 12.95 [0.08] 1.21 [0.01] 2.76 [0.02] 12.35 [0.03] 4.20 [0.13]

breast-p 43.93 [1.50] 40.53 [1.24] 7.33 [0.34] 2.73 [0.02] 4.59 [0.01] 2.40 [0.16]

breast-tissue 12.61 [0.21] 12.05 [0.35] 1.81 [0.01] 0.90 [0.01] 3.80 [0.01] 1.30 [0.15]

breast-w 91.75 [10.49] 98.12 [11.87] 8.98 [0.32] 7.00 [0.07] 7.91 [0.01] 5.50 [0.17]

cardiotocography 657.10 [0.67] 666.50 [3.91] 181.29 [0.93] 63.71 [0.39] 75.93 [0.35] 60.80 [0.33]

climate 106.11 [0.46] 112.61 [0.14] 7.89 [0.04] 3.38 [0.02] 4.04 [0.06] 5.10 [0.10]

credit-a 127.32 [4.49] 118.05 [6.66] 7.03 [0.19] 13.26 [0.49] 34.31 [0.03] 11.30 [0.26]

credit-g 590.59 [13.13] 588.54 [16.35] 49.98 [2.43] 41.34 [0.97] 61.44 [0.05] 38.10 [0.23]

cylinder-bands 428.62 [13.01] 404.43 [17.37] 64.74 [5.84] 16.75 [1.02] 24.96 [0.02] 11.20 [0.13]

dermatology 100.16 [4.87] 105.90 [3.68] 9.83 [0.20] 5.04 [0.03] 9.36 [0.01] 5.30 [0.15]

glass 105.60 [8.15] 104.78 [6.80] 4.65 [0.04] 3.62 [0.02] 7.03 [0.01] 2.20 [0.13]

heart-c 270.46 [8.94] 277.62 [16.77] 6.42 [0.07] 5.08 [0.04] 17.30 [0.01] 4.20 [0.13]

heart-h 163.80 [3.73] 168.25 [5.76] 4.48 [0.03] 4.91 [0.13] 8.40 [0.02] 3.70 [0.15]

indian-liver 62.85 [0.01] 61.67 [0.01] 20.77 [0.01] 15.36 [0.55] 29.80 [0.09] 18.20 [0.49]

ionosphere 60.07 [3.13] 59.27 [4.09] 11.21 [0.90] 3.36 [0.04] 5.22 [0.01] 3.70 [0.15]

iris 4.35 [0.01] 4.15 [0.01] 1.21 [0.00] 0.50 [0.00] 1.83 [0.01] 1.00 [0.00]

livers-disorder 38.29 [0.55] 38.865 [0.67] 5.43 [0.03] 5.32 [0.04] 11.85 [0.01] 8.10 [0.10]

lymphography 10.20 [0.18] 10.112 [0.11] 1.69 [0.01] 1.18 [0.01] 5.96 [0.01] 1.60 [0.16]

mammographic 49.91 [1.07] 56.63 [0.57] 4.36 [0.11] 17.36 [0.28] 41.15 [0.15] 174.10 [9.98]

parkinsons 18.63 [0.24] 18.31 [0.37] 2.70 [0.02] 1.50 [0.01] 3.44 [0.01] 1.70 [0.15]

pima 152.13 [6.06] 144.69 [4.57] 10.08 [0.16] 19.74 [0.09] 29.26 [0.03] 26.10 [0.23]

thoracic 58.01 [0.37] 49.06 [0.68] 6.08 [0.14] 7.24 [0.15] 20.69 [0.03] 10.30 [0.21]

thyroid 6.86 [0.01] 7.07 [0.01] 1.66 [0.01] 0.81 [0.01] 2.22 [0.01] 1.20 [0.13]

tic-tac-toe 51.69 [1.66] 47.52 [2.02] 3.84 [0.01] 9.48 [0.03] 30.13 [0.03] 52.00 [0.87]

vertebral-column-2c 18.58 [0.02] 18.41 [0.02] 2.34 [0.01] 2.47 [0.01] 7.13 [0.01] 3.40 [0.16]

vertebral-column-3c 35.48 [0.15] 34.15 [0.35] 3.13 [0.01] 3.16 [0.03] 8.33 [0.01] 2.90 [0.10]

waveform 8655.02 [86.83] 9915.83 [99.01] 242.94 [92.70] 826.80 [8.72] 416.87 [2.10] 461.40 [0.75]

wine 1.46 [0.01] 5.28 [0.19] 1.68 [0.01] 0.90 [0.00] 2.59 [0.01] 1.40 [0.16]

yeast 8545.91 [79.14] 9228.54 [94.72] 46.13 [4.30] 312.75 [2.72] 102.90 [0.90] 145.60 [1.37]

4.5 Computational Time

The average computational time (average [standard error]) in seconds4 taken by each
algorithm to complete a fold of the cross-validation (single execution) during training
are presented in Table 9. The deterministic Unordered CN2, C4.5rules, PART and JRip
algorithms take on average a second to complete a fold in any of the datasets used
in the experiments, given that they employ heuristics to discover classification rules
without the need to evaluate multiple candidate solutions. There are no differences
in computational time during testing and all algorithms take on average a second to
classify the test data.

Overall, the computational time taken by Unordered cAnt-MinerPB is greater than

4On a 2.53GHz Intel Xeon CPU with 24GB RAM.

22 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

the time taken by cAnt-MinerPB, regardless of the conflict resolution strategy used. The
main reason for the increase in time is the extra loop (line 8 of the pseudocode in Figure
3) to iterate over each class value, which is used to create rules for each class value using
the examples associated with the remaining class values as negative examples—this is
the main modification in order to create unordered rules. Since more iterations over
the training data are required, greater increases in the computational time are observed
in the dermatology, glass, waveform and yeast datasets over cAnt-MinerPB: these datasets
have either a greater number of classes and/or number of examples. Therefore, we
can observe a trade-off of computational time and interpretability between Unordered
cAnt-MinerPB and cAnt-MinerPB: Unordered cAnt-MinerPB discovers modular rules
that improve the interpretability of the classification model at the expense of a greater
computational time. The remaining algorithms—with the exception of the determin-
istic algorithms—have a similar computational time to cAnt-MinerPB, where increases
in computational time are observed in larger datasets.

Note that many data mining applications are off-line and the time spent collecting,
cleaning and structuring the data is much greater than the computational time taken
by the classification algorithm to induce a model. Therefore, the computational time
tend to have a minor importance and other aspects—such as predictive accuracy and
interpretability—are more important. For applications where the computational time
becomes significant, ACO algorithms can be easily parallelised by running each ant
on an individual processing unit (e.g., core or processor) to reduce the overall compu-
tational time, since each ant builds and evaluates a candidate solution independently
from all other ants.

5 Conclusion

In this paper we have proposed an extension to the cAnt-MinerPB in order to discover
unordered rules, called Unordered cAnt-MinerPB. The main motivation is to improve
the interpretation of individual rules. In an ordered list of rules, the effect (meaning) of
a rule depends on all previous rules in the list, since a rule is only used if all previous
rules do not cover the example. On the other hand, in an unordered set of rules, an
example is shown to all rules and, depending on the conflict resolution strategy, a single
rule is used to make a prediction. We also proposed a new measure to characterise the
interpretability of the discovered rules, called prediction-explanation size.

We compared the proposed Unordered cAnt-MinerPB algorithm against state-of-
the-art rule induction algorithms in 32 publicly available datasets. The Unordered
cAnt-MinerPB algorithm achieved the best results in terms of both predictive accuracy
and prediction-explanation model size, outperforming state-of-the-art rule induction
algorithms with statistically significant differences. Our results show that the predic-
tions made by an unordered set of rules are potentially easier to be interpreted by a user,
due to the nature of unordered rules (i.e., each rule has a modular meaning indepen-
dent of the others) and there are less attribute-conditions involved in the predictions.
We also compared the Unordered cAnt-MinerPB algorithm against a SVM classifier.
Our results shows that there are no statistically significant differences in the predic-
tive accuracy obtained by Unordered cAnt-MinerPB and the SVM classifier. Overall,
these results are positive: we were able to improve the interpretability of the rules by
discovering unordered rules, with no negative impact on the predictive accuracy.

While in this work we have evaluated different rule quality and list quality func-
tions, the Unordered cAnt-MinerPB algorithm’s more specific parameters were not op-
timised, since we focused in comparing the differences between ordered and unordered

Evolutionary Computation Volume x, Number x 23

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

rules. It might be possible to further improve the algorithm by performing an evalu-
ation of different parameter settings. The use of different conflict resolution strate-
gies can also lead to improvements to the predictive accuracy of the discovered rules.
Similarly, the application of post-processing operators—such as the ones proposed in
(Franco et al., 2012)—on the set of rules to either reduce their complexity or improve
the predictive accuracy is also a research direction worth further exploration.

References

Bacardit, J., Burke, E., and Krasnogor, N. (2009). Improving the scalability of rule-based
evolutionary learning. Memetic Computing, 1(1):55–67.

Clark, P. and Boswell, R. (1991). Rule Induction with CN2: Some Recent Improvements.
In Machine Learning – Proceedings of the Fifth European Conference (EWSL-91), pages
151–163, Berlin. Springer.

Cohen, W. (1995). Fast effective rule induction. In Proceedings of the 12th International
Conference on Machine Learning, pages 115–123, San Francisco, CA, USA. Morgan
Kaufmann.

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research, 7:1–30.

Fayyad, U., Piatetsky-Shapiro, G., and Smith, P. (1996). From data mining to knowl-
edge discovery: an overview. In Fayyad, U., Piatetsky-Shapiro, G., Smith, P., and
Uthurusamy, R., editors, Advances in Knowledge Discovery & Data Mining, pages 1–34,
Cambridge, MA, USA. MIT Press.

Franco, M., Krasnogor, N., and Bacardit, J. (2012). Post-processing Operators for Deci-
sion Lists. In Genetic and Evolutionary Computation Conference (GECCO-2012), pages
847–854, New York, NY, USA. ACM Press.

Frank, E. and Witten, I. (1998). Generating Accurate Rule Sets Without Global Opti-
mization. In Shavlik, J., editor, Proceedings of the Fifteenth International Conference on
Machine Learning, pages 144–151, San Francisco, CA, USA. Morgan Kaufmann.

Freitas, A. (2013). Comprehensible classification models: a position paper. ACM
SIGKDD Explorations, 15(1):1–10.

Freitas, A., Parpinelli, R., and Lopes, H. (2008). Ant colony algorithms for data classifi-
cation. In Encyclopedia of Information Science and Technology, volume 1, pages 154–159.
IGI Global, Hershey, PA, USA, 2nd edition.

Garcı́a, S. and Herrera, F. (2008). An Extension on “Statistical Comparisons of Clas-
sifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine
Learning Research, 9:2677–2694.

Holden, N. and Freitas, A. (2008). A hybrid PSO/ACO algorithm for discovering clas-
sification rules in data mining. Journal of Artificial Evolution and Applications (JAEA),
special issue on Particle Swarms: The Second Decade. 11 pages.

Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., and Baesens, B. (2011). An empir-
ical evaluation of the comprehensibility of decision table, tree and rule based predic-
tive models. Decision Support Systems, 51:141–154.

24 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

Improving the Interpretability of Classification Rules

Lavesson, H. A. N. (2011). User-oriented assessment of classification model under-
standability. In Proceedings of the 11th Scandinavian Conference on Artificial Intelligence
(SCAI), pages 11–19, Lansdale, PA, USA. IOS Press.

Lavrac, N. (1999). Selected techniques for data mining in medicine. Artificial Intelligence
in Medicine, 16:3–23.

Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA:
University of California, School of Information and Computer Science.
[http://archive.ics.uci.edu/ml].

Martens, D., Baesens, B., and Fawcett, T. (2011). Editorial survey: swarm intelligence
for data mining. Machine Learning, 82(1):1–42.

Medland, M., Otero, F., and Freitas, A. (2012). Improving the cAnt-MinerPB Classifi-
cation Algorithm. In Dorigo, M., Birattari, M., Blum, C., Christensen, A. L., Engel-
brecht, A. P., Groß, R., and Stützle, T., editors, Swarm Intelligence, volume 7461 of
Lecture Notes in Computer Science, pages 73–84, Berlin. Springer.

Nalini, C. and Balasubramanie, P. (2008). Discovering Unordered Rule Sets for Mixed
Variables Using an Ant-Miner Algorithm. Data Science Journal, 7:76–87.

Olmo, J., Romero, J., and Ventura, S. (2011). Using Ant Programming Guided by Gram-
mar for Building Rule-Based Classifiers. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B: Cybernetics, 41:1585–1599.

Olmo, J., Romero, J., and Ventura, S. (2012). Classification rule mining using ant pro-
gramming guided by grammar with multiple pareto fronts. Soft Computing, 16:2143–
2163.

Otero, F. and Freitas, A. (2013). Improving the Interpretability of Classification Rules
Discovered by an Ant Colony Algorithm. In Genetic and Evolutionary Computation
Conference (GECCO-2013), pages 73–80, New York, NY, USA. ACM Press.

Otero, F., Freitas, A., and Johnson, C. (2008). cAnt-Miner: an ant colony classification
algorithm to cope with continuous attributes. In Dorigo, M., Birattari, M., Blum,
C., Clerc, M., Stützle, T., and Winfield, A., editors, Proceedings of the 6th International
Conference on Swarm Intelligence (ANTS 2008), Lecture Notes in Computer Science 5217,
pages 48–59. Springer-Verlag.

Otero, F., Freitas, A., and Johnson, C. (2009). Handling continuous attributes in ant
colony classification algorithms. In Proceedings of the 2009 IEEE Symposium on Com-
putational Intelligence in Data Mining (CIDM 2009), pages 225–231. IEEE.

Otero, F., Freitas, A., and Johnson, C. (2013). A New Sequential Covering Strategy
for Inducing Classification Rules With Ant Colony Algorithms. IEEE Transactions on
Evolutionary Computation, 17(1):64–76.

Parpinelli, R., Lopes, H., and Freitas, A. (2002). Data mining with an ant colony opti-
mization algorithm. IEEE Transactions on Evolutionary Computation, 6(4):321–332.

Piatetsky-Shapiro, G. and Frawley, W. (1991). Knowledge Discovery in Databases. AAAI
Press. 540 pages.

Evolutionary Computation Volume x, Number x 25

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

F.E.B. Otero and A.A. Freitas

Quinlan, J. (1996). Improved Use of Continuous Attributes in C4.5. Artificial Intelligence
Research, 7:77–90.

Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann, San Fran-
cisco, CA, USA. 316 pages.

Schwabacher, M. and Langley, P. (2001). Discovering communicable scientific knowl-
edge from spatio-temporal data. In Proceedings of 18th International Conference on Ma-
chine Learning (ICML-2001), pages 489–496, San Francisco, CA, USA. Morgan Kauf-
mann.

Smaldon, J. and Freitas, A. (2006). A new version of the ant-miner algorithm discov-
ering unordered rule sets. In Proc. Genetic and Evolutionary Computation Conference
(GECCO 2006), pages 43–50, New York, NY, USA. ACM Press.

Tsumoto, S. (2000). Clinical knowledge discovery in hospital information systems: two
case studies. In Proceedings of European Conference on Principles and Practice of Knowl-
edge Discovery and Data Mining (PKDD-2000), pages 652–656, Berlin. Springer.

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer, 2nd edition. 314
pages.

Witten, H. and Frank, E. (2011). Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, 3rd edition. 664 pages.

26 Evolutionary Computation Volume x, Number x

[PRE-PRINT] Accepted for publication in: Evolutionary Computation, MIT Press, June 2015 (DOI: 10.1162/EVCO_a_00155)

