Models obtained by decision tree induction techniques excel in being
interpretable.However, they can be prone to overfitting, which results in a low
predictive performance. Ensemble techniques are able to achieve a higher
accuracy. However, this comes at a cost of losing interpretability of the
resulting model. This makes ensemble techniques impractical in applications
where decision support, instead of decision making, is crucial.
To bridge this gap, we present the GENESIM algorithm that transforms an
ensemble of decision trees to a single decision tree with an enhanced
predictive performance by using a genetic algorithm. We compared GENESIM to
prevalent decision tree induction and ensemble techniques using twelve publicly
available data sets. The results show that GENESIM achieves a better predictive
performance on most of these data sets than decision tree induction techniques
and a predictive performance in the same order of magnitude as the ensemble
techniques. Moreover, the resulting model of GENESIM has a very low complexity,
making it very interpretable, in contrast to ensemble techniques.Comment: Presented at NIPS 2016 Workshop on Interpretable Machine Learning in
Complex System